aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/libsanitizer/asan/asan_allocator2.cc
blob: 1ff120e555c74eeb00a0f5946e70437570bc29bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
//===-- asan_allocator2.cc ------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator, 2-nd version.
// This variant uses the allocator from sanitizer_common, i.e. the one shared
// with ThreadSanitizer and MemorySanitizer.
//
// Status: under development, not enabled by default yet.
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#if ASAN_ALLOCATOR_VERSION == 2

#include "asan_mapping.h"
#include "asan_report.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_quarantine.h"

namespace __asan {

struct AsanMapUnmapCallback {
  void OnMap(uptr p, uptr size) const {
    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.mmaps++;
    thread_stats.mmaped += size;
  }
  void OnUnmap(uptr p, uptr size) const {
    PoisonShadow(p, size, 0);
    // We are about to unmap a chunk of user memory.
    // Mark the corresponding shadow memory as not needed.
    // Since asan's mapping is compacting, the shadow chunk may be
    // not page-aligned, so we only flush the page-aligned portion.
    uptr page_size = GetPageSizeCached();
    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.munmaps++;
    thread_stats.munmaped += size;
  }
};

#if SANITIZER_WORDSIZE == 64
#if defined(__powerpc64__)
const uptr kAllocatorSpace =  0xa0000000000ULL;
#else
const uptr kAllocatorSpace = 0x600000000000ULL;
#endif
const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
typedef DefaultSizeClassMap SizeClassMap;
typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
#elif SANITIZER_WORDSIZE == 32
static const u64 kAddressSpaceSize = 1ULL << 32;
typedef CompactSizeClassMap SizeClassMap;
typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
  SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
#endif

typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
    SecondaryAllocator> Allocator;

// We can not use THREADLOCAL because it is not supported on some of the
// platforms we care about (OSX 10.6, Android).
// static THREADLOCAL AllocatorCache cache;
AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
  CHECK(ms);
  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
}

static Allocator allocator;

static const uptr kMaxAllowedMallocSize =
  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);

static const uptr kMaxThreadLocalQuarantine =
  FIRST_32_SECOND_64(1 << 18, 1 << 20);

// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
enum {
  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
  CHUNK_ALLOCATED  = 2,
  CHUNK_QUARANTINE = 3
};

// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
// We use adaptive redzones: for larger allocation larger redzones are used.
static u32 RZLog2Size(u32 rz_log) {
  CHECK_LT(rz_log, 8);
  return 16 << rz_log;
}

static u32 RZSize2Log(u32 rz_size) {
  CHECK_GE(rz_size, 16);
  CHECK_LE(rz_size, 2048);
  CHECK(IsPowerOfTwo(rz_size));
  u32 res = Log2(rz_size) - 4;
  CHECK_EQ(rz_size, RZLog2Size(res));
  return res;
}

static uptr ComputeRZLog(uptr user_requested_size) {
  u32 rz_log =
    user_requested_size <= 64        - 16   ? 0 :
    user_requested_size <= 128       - 32   ? 1 :
    user_requested_size <= 512       - 64   ? 2 :
    user_requested_size <= 4096      - 128  ? 3 :
    user_requested_size <= (1 << 14) - 256  ? 4 :
    user_requested_size <= (1 << 15) - 512  ? 5 :
    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
  return Max(rz_log, RZSize2Log(flags()->redzone));
}

// The memory chunk allocated from the underlying allocator looks like this:
// L L L L L L H H U U U U U U R R
//   L -- left redzone words (0 or more bytes)
//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
//   U -- user memory.
//   R -- right redzone (0 or more bytes)
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
// memory.

// If a memory chunk is allocated by memalign and we had to increase the
// allocation size to achieve the proper alignment, then we store this magic
// value in the first uptr word of the memory block and store the address of
// ChunkBase in the next uptr.
// M B ? ? ? L L L L L L  H H U U U U U U
//   M -- magic value kMemalignMagic
//   B -- address of ChunkHeader pointing to the first 'H'
static const uptr kMemalignMagic = 0xCC6E96B9;

struct ChunkHeader {
  // 1-st 8 bytes.
  u32 chunk_state       : 8;  // Must be first.
  u32 alloc_tid         : 24;

  u32 free_tid          : 24;
  u32 from_memalign     : 1;
  u32 alloc_type        : 2;
  u32 rz_log            : 3;
  // 2-nd 8 bytes
  // This field is used for small sizes. For large sizes it is equal to
  // SizeClassMap::kMaxSize and the actual size is stored in the
  // SecondaryAllocator's metadata.
  u32 user_requested_size;
  u32 alloc_context_id;
};

struct ChunkBase : ChunkHeader {
  // Header2, intersects with user memory.
  AsanChunk *next;
  u32 free_context_id;
};

static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
COMPILER_CHECK(kChunkHeaderSize == 16);
COMPILER_CHECK(kChunkHeader2Size <= 16);

struct AsanChunk: ChunkBase {
  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
  uptr UsedSize() {
    if (user_requested_size != SizeClassMap::kMaxSize)
      return user_requested_size;
    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
  }
  void *AllocBeg() {
    if (from_memalign)
      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
  }
  // We store the alloc/free stack traces in the chunk itself.
  u32 *AllocStackBeg() {
    return (u32*)(Beg() - RZLog2Size(rz_log));
  }
  uptr AllocStackSize() {
    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
  }
  u32 *FreeStackBeg() {
    return (u32*)(Beg() + kChunkHeader2Size);
  }
  uptr FreeStackSize() {
    if (user_requested_size < kChunkHeader2Size) return 0;
    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
    return (available - kChunkHeader2Size) / sizeof(u32);
  }
};

uptr AsanChunkView::Beg() { return chunk_->Beg(); }
uptr AsanChunkView::End() { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }

static void GetStackTraceFromId(u32 id, StackTrace *stack) {
  CHECK(id);
  uptr size = 0;
  const uptr *trace = StackDepotGet(id, &size);
  CHECK_LT(size, kStackTraceMax);
  internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
  stack->size = size;
}

void AsanChunkView::GetAllocStack(StackTrace *stack) {
  if (flags()->use_stack_depot)
    GetStackTraceFromId(chunk_->alloc_context_id, stack);
  else
    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
                                chunk_->AllocStackSize());
}

void AsanChunkView::GetFreeStack(StackTrace *stack) {
  if (flags()->use_stack_depot)
    GetStackTraceFromId(chunk_->free_context_id, stack);
  else
    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
                                chunk_->FreeStackSize());
}

struct QuarantineCallback;
typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
typedef AsanQuarantine::Cache QuarantineCache;
static AsanQuarantine quarantine(LINKER_INITIALIZED);
static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;

QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
  CHECK(ms);
  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
}

struct QuarantineCallback {
  explicit QuarantineCallback(AllocatorCache *cache)
      : cache_(cache) {
  }

  void Recycle(AsanChunk *m) {
    CHECK(m->chunk_state == CHUNK_QUARANTINE);
    m->chunk_state = CHUNK_AVAILABLE;
    CHECK_NE(m->alloc_tid, kInvalidTid);
    CHECK_NE(m->free_tid, kInvalidTid);
    PoisonShadow(m->Beg(),
                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
                 kAsanHeapLeftRedzoneMagic);
    void *p = reinterpret_cast<void *>(m->AllocBeg());
    if (m->from_memalign) {
      uptr *memalign_magic = reinterpret_cast<uptr *>(p);
      CHECK_EQ(memalign_magic[0], kMemalignMagic);
      CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
    }

    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.real_frees++;
    thread_stats.really_freed += m->UsedSize();

    allocator.Deallocate(cache_, p);
  }

  void *Allocate(uptr size) {
    return allocator.Allocate(cache_, size, 1, false);
  }

  void Deallocate(void *p) {
    allocator.Deallocate(cache_, p);
  }

  AllocatorCache *cache_;
};

void InitializeAllocator() {
  allocator.Init();
  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
}

static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
                      AllocType alloc_type) {
  if (!asan_inited)
    __asan_init();
  CHECK(stack);
  const uptr min_alignment = SHADOW_GRANULARITY;
  if (alignment < min_alignment)
    alignment = min_alignment;
  if (size == 0) {
    // We'd be happy to avoid allocating memory for zero-size requests, but
    // some programs/tests depend on this behavior and assume that malloc would
    // not return NULL even for zero-size allocations. Moreover, it looks like
    // operator new should never return NULL, and results of consecutive "new"
    // calls must be different even if the allocated size is zero.
    size = 1;
  }
  CHECK(IsPowerOfTwo(alignment));
  uptr rz_log = ComputeRZLog(size);
  uptr rz_size = RZLog2Size(rz_log);
  uptr rounded_size = RoundUpTo(size, alignment);
  if (rounded_size < kChunkHeader2Size)
    rounded_size = kChunkHeader2Size;
  uptr needed_size = rounded_size + rz_size;
  if (alignment > min_alignment)
    needed_size += alignment;
  bool using_primary_allocator = true;
  // If we are allocating from the secondary allocator, there will be no
  // automatic right redzone, so add the right redzone manually.
  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
    needed_size += rz_size;
    using_primary_allocator = false;
  }
  CHECK(IsAligned(needed_size, min_alignment));
  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
           (void*)size);
    return 0;
  }

  AsanThread *t = asanThreadRegistry().GetCurrent();
  void *allocated;
  if (t) {
    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
    allocated = allocator.Allocate(cache, needed_size, 8, false);
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *cache = &fallback_allocator_cache;
    allocated = allocator.Allocate(cache, needed_size, 8, false);
  }
  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
  // Clear the first allocated word (an old kMemalignMagic may still be there).
  reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
  uptr alloc_end = alloc_beg + needed_size;
  uptr beg_plus_redzone = alloc_beg + rz_size;
  uptr user_beg = beg_plus_redzone;
  if (!IsAligned(user_beg, alignment))
    user_beg = RoundUpTo(user_beg, alignment);
  uptr user_end = user_beg + size;
  CHECK_LE(user_end, alloc_end);
  uptr chunk_beg = user_beg - kChunkHeaderSize;
  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
  m->chunk_state = CHUNK_ALLOCATED;
  m->alloc_type = alloc_type;
  m->rz_log = rz_log;
  u32 alloc_tid = t ? t->tid() : 0;
  m->alloc_tid = alloc_tid;
  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
  m->free_tid = kInvalidTid;
  m->from_memalign = user_beg != beg_plus_redzone;
  if (m->from_memalign) {
    CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
    uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
    memalign_magic[0] = kMemalignMagic;
    memalign_magic[1] = chunk_beg;
  }
  if (using_primary_allocator) {
    CHECK(size);
    m->user_requested_size = size;
    CHECK(allocator.FromPrimary(allocated));
  } else {
    CHECK(!allocator.FromPrimary(allocated));
    m->user_requested_size = SizeClassMap::kMaxSize;
    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
    meta[0] = size;
    meta[1] = chunk_beg;
  }

  if (flags()->use_stack_depot) {
    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
  } else {
    m->alloc_context_id = 0;
    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
  }

  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
  // Unpoison the bulk of the memory region.
  if (size_rounded_down_to_granularity)
    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
  // Deal with the end of the region if size is not aligned to granularity.
  if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
    *shadow = size & (SHADOW_GRANULARITY - 1);
  }

  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.mallocs++;
  thread_stats.malloced += size;
  thread_stats.malloced_redzones += needed_size - size;
  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
  thread_stats.malloced_by_size[class_id]++;
  if (needed_size > SizeClassMap::kMaxSize)
    thread_stats.malloc_large++;

  void *res = reinterpret_cast<void *>(user_beg);
  ASAN_MALLOC_HOOK(res, size);
  return res;
}

static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
  uptr p = reinterpret_cast<uptr>(ptr);
  if (p == 0) return;
  ASAN_FREE_HOOK(ptr);
  uptr chunk_beg = p - kChunkHeaderSize;
  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);

  // Flip the chunk_state atomically to avoid race on double-free.
  u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
                                       memory_order_relaxed);

  if (old_chunk_state == CHUNK_QUARANTINE)
    ReportDoubleFree((uptr)ptr, stack);
  else if (old_chunk_state != CHUNK_ALLOCATED)
    ReportFreeNotMalloced((uptr)ptr, stack);
  CHECK(old_chunk_state == CHUNK_ALLOCATED);
  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
    ReportAllocTypeMismatch((uptr)ptr, stack,
                            (AllocType)m->alloc_type, (AllocType)alloc_type);

  CHECK_GE(m->alloc_tid, 0);
  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
    CHECK_EQ(m->free_tid, kInvalidTid);
  AsanThread *t = asanThreadRegistry().GetCurrent();
  m->free_tid = t ? t->tid() : 0;
  if (flags()->use_stack_depot) {
    m->free_context_id = StackDepotPut(stack->trace, stack->size);
  } else {
    m->free_context_id = 0;
    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
  }
  CHECK(m->chunk_state == CHUNK_QUARANTINE);
  // Poison the region.
  PoisonShadow(m->Beg(),
               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
               kAsanHeapFreeMagic);

  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.frees++;
  thread_stats.freed += m->UsedSize();

  // Push into quarantine.
  if (t) {
    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
    AllocatorCache *ac = GetAllocatorCache(ms);
    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
                   m, m->UsedSize());
  } else {
    SpinMutexLock l(&fallback_mutex);
    AllocatorCache *ac = &fallback_allocator_cache;
    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
                   m, m->UsedSize());
  }
}

static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
  CHECK(old_ptr && new_size);
  uptr p = reinterpret_cast<uptr>(old_ptr);
  uptr chunk_beg = p - kChunkHeaderSize;
  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);

  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.reallocs++;
  thread_stats.realloced += new_size;

  CHECK(m->chunk_state == CHUNK_ALLOCATED);
  uptr old_size = m->UsedSize();
  uptr memcpy_size = Min(new_size, old_size);
  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
  if (new_ptr) {
    CHECK(REAL(memcpy) != 0);
    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
    Deallocate(old_ptr, stack, FROM_MALLOC);
  }
  return new_ptr;
}

static AsanChunk *GetAsanChunkByAddr(uptr p) {
  void *ptr = reinterpret_cast<void *>(p);
  uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
  if (!alloc_beg) return 0;
  uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
  if (memalign_magic[0] == kMemalignMagic) {
    AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
    CHECK(m->from_memalign);
    return m;
  }
  if (!allocator.FromPrimary(ptr)) {
    uptr *meta = reinterpret_cast<uptr *>(
        allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
    return m;
  }
  uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
  CHECK_LE(actual_size, SizeClassMap::kMaxSize);
  // We know the actually allocted size, but we don't know the redzone size.
  // Just try all possible redzone sizes.
  for (u32 rz_log = 0; rz_log < 8; rz_log++) {
    u32 rz_size = RZLog2Size(rz_log);
    uptr max_possible_size = actual_size - rz_size;
    if (ComputeRZLog(max_possible_size) != rz_log)
      continue;
    return reinterpret_cast<AsanChunk *>(
        alloc_beg + rz_size - kChunkHeaderSize);
  }
  return 0;
}

static uptr AllocationSize(uptr p) {
  AsanChunk *m = GetAsanChunkByAddr(p);
  if (!m) return 0;
  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
  if (m->Beg() != p) return 0;
  return m->UsedSize();
}

// We have an address between two chunks, and we want to report just one.
AsanChunk *ChooseChunk(uptr addr,
                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
  // Prefer an allocated chunk over freed chunk and freed chunk
  // over available chunk.
  if (left_chunk->chunk_state != right_chunk->chunk_state) {
    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
      return left_chunk;
    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
      return right_chunk;
    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
      return left_chunk;
    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
      return right_chunk;
  }
  // Same chunk_state: choose based on offset.
  sptr l_offset = 0, r_offset = 0;
  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
  if (l_offset < r_offset)
    return left_chunk;
  return right_chunk;
}

AsanChunkView FindHeapChunkByAddress(uptr addr) {
  AsanChunk *m1 = GetAsanChunkByAddr(addr);
  if (!m1) return AsanChunkView(m1);
  sptr offset = 0;
  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
    // The address is in the chunk's left redzone, so maybe it is actually
    // a right buffer overflow from the other chunk to the left.
    // Search a bit to the left to see if there is another chunk.
    AsanChunk *m2 = 0;
    for (uptr l = 1; l < GetPageSizeCached(); l++) {
      m2 = GetAsanChunkByAddr(addr - l);
      if (m2 == m1) continue;  // Still the same chunk.
      break;
    }
    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
      m1 = ChooseChunk(addr, m2, m1);
  }
  return AsanChunkView(m1);
}

void AsanThreadLocalMallocStorage::CommitBack() {
  AllocatorCache *ac = GetAllocatorCache(this);
  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
  allocator.SwallowCache(GetAllocatorCache(this));
}

void PrintInternalAllocatorStats() {
  allocator.PrintStats();
}

SANITIZER_INTERFACE_ATTRIBUTE
void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
                    AllocType alloc_type) {
  return Allocate(size, alignment, stack, alloc_type);
}

SANITIZER_INTERFACE_ATTRIBUTE
void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
  Deallocate(ptr, stack, alloc_type);
}

SANITIZER_INTERFACE_ATTRIBUTE
void *asan_malloc(uptr size, StackTrace *stack) {
  return Allocate(size, 8, stack, FROM_MALLOC);
}

void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
  if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
  if (ptr)
    REAL(memset)(ptr, 0, nmemb * size);
  return ptr;
}

void *asan_realloc(void *p, uptr size, StackTrace *stack) {
  if (p == 0)
    return Allocate(size, 8, stack, FROM_MALLOC);
  if (size == 0) {
    Deallocate(p, stack, FROM_MALLOC);
    return 0;
  }
  return Reallocate(p, size, stack);
}

void *asan_valloc(uptr size, StackTrace *stack) {
  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
}

void *asan_pvalloc(uptr size, StackTrace *stack) {
  uptr PageSize = GetPageSizeCached();
  size = RoundUpTo(size, PageSize);
  if (size == 0) {
    // pvalloc(0) should allocate one page.
    size = PageSize;
  }
  return Allocate(size, PageSize, stack, FROM_MALLOC);
}

int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
                        StackTrace *stack) {
  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
  CHECK(IsAligned((uptr)ptr, alignment));
  *memptr = ptr;
  return 0;
}

uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
  CHECK(stack);
  if (ptr == 0) return 0;
  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
  if (flags()->check_malloc_usable_size && (usable_size == 0))
    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
  return usable_size;
}

uptr asan_mz_size(const void *ptr) {
  return AllocationSize(reinterpret_cast<uptr>(ptr));
}

void asan_mz_force_lock() {
  allocator.ForceLock();
  fallback_mutex.Lock();
}

void asan_mz_force_unlock() {
  fallback_mutex.Unlock();
  allocator.ForceUnlock();
}

}  // namespace __asan

// ---------------------- Interface ---------------- {{{1
using namespace __asan;  // NOLINT

// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size". We don't want to expose our redzone sizes, etc here.
uptr __asan_get_estimated_allocated_size(uptr size) {
  return size;
}

bool __asan_get_ownership(const void *p) {
  uptr ptr = reinterpret_cast<uptr>(p);
  return (AllocationSize(ptr) > 0);
}

uptr __asan_get_allocated_size(const void *p) {
  if (p == 0) return 0;
  uptr ptr = reinterpret_cast<uptr>(p);
  uptr allocated_size = AllocationSize(ptr);
  // Die if p is not malloced or if it is already freed.
  if (allocated_size == 0) {
    GET_STACK_TRACE_FATAL_HERE;
    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
  }
  return allocated_size;
}

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
extern "C" {
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_malloc_hook(void *ptr, uptr size) {
  (void)ptr;
  (void)size;
}
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_free_hook(void *ptr) {
  (void)ptr;
}
}  // extern "C"
#endif


#endif  // ASAN_ALLOCATOR_VERSION