aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/libsanitizer/asan/asan_allocator2.cc
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2013-03-28 11:14:20 -0700
committerBen Cheng <bccheng@google.com>2013-03-28 12:40:33 -0700
commitaf0c51ac87ab2a87caa03fa108f0d164987a2764 (patch)
tree4b8b470f7c5b69642fdab8d0aa1fbc148d02196b /gcc-4.8/libsanitizer/asan/asan_allocator2.cc
parentd87cae247d39ebf4f5a6bf25c932a14d2fdb9384 (diff)
downloadtoolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.tar.gz
toolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.tar.bz2
toolchain_gcc-af0c51ac87ab2a87caa03fa108f0d164987a2764.zip
[GCC 4.8] Initial check-in of GCC 4.8.0
Change-Id: I0719d8a6d0f69b367a6ab6f10eb75622dbf12771
Diffstat (limited to 'gcc-4.8/libsanitizer/asan/asan_allocator2.cc')
-rw-r--r--gcc-4.8/libsanitizer/asan/asan_allocator2.cc709
1 files changed, 709 insertions, 0 deletions
diff --git a/gcc-4.8/libsanitizer/asan/asan_allocator2.cc b/gcc-4.8/libsanitizer/asan/asan_allocator2.cc
new file mode 100644
index 000000000..1ff120e55
--- /dev/null
+++ b/gcc-4.8/libsanitizer/asan/asan_allocator2.cc
@@ -0,0 +1,709 @@
+//===-- asan_allocator2.cc ------------------------------------------------===//
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+//
+// Implementation of ASan's memory allocator, 2-nd version.
+// This variant uses the allocator from sanitizer_common, i.e. the one shared
+// with ThreadSanitizer and MemorySanitizer.
+//
+// Status: under development, not enabled by default yet.
+//===----------------------------------------------------------------------===//
+#include "asan_allocator.h"
+#if ASAN_ALLOCATOR_VERSION == 2
+
+#include "asan_mapping.h"
+#include "asan_report.h"
+#include "asan_thread.h"
+#include "asan_thread_registry.h"
+#include "sanitizer_common/sanitizer_allocator.h"
+#include "sanitizer_common/sanitizer_internal_defs.h"
+#include "sanitizer_common/sanitizer_list.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "sanitizer_common/sanitizer_quarantine.h"
+
+namespace __asan {
+
+struct AsanMapUnmapCallback {
+ void OnMap(uptr p, uptr size) const {
+ PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
+ // Statistics.
+ AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
+ thread_stats.mmaps++;
+ thread_stats.mmaped += size;
+ }
+ void OnUnmap(uptr p, uptr size) const {
+ PoisonShadow(p, size, 0);
+ // We are about to unmap a chunk of user memory.
+ // Mark the corresponding shadow memory as not needed.
+ // Since asan's mapping is compacting, the shadow chunk may be
+ // not page-aligned, so we only flush the page-aligned portion.
+ uptr page_size = GetPageSizeCached();
+ uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
+ uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
+ FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
+ // Statistics.
+ AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
+ thread_stats.munmaps++;
+ thread_stats.munmaped += size;
+ }
+};
+
+#if SANITIZER_WORDSIZE == 64
+#if defined(__powerpc64__)
+const uptr kAllocatorSpace = 0xa0000000000ULL;
+#else
+const uptr kAllocatorSpace = 0x600000000000ULL;
+#endif
+const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
+typedef DefaultSizeClassMap SizeClassMap;
+typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
+ SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
+#elif SANITIZER_WORDSIZE == 32
+static const u64 kAddressSpaceSize = 1ULL << 32;
+typedef CompactSizeClassMap SizeClassMap;
+typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
+ SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
+#endif
+
+typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
+typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
+typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
+ SecondaryAllocator> Allocator;
+
+// We can not use THREADLOCAL because it is not supported on some of the
+// platforms we care about (OSX 10.6, Android).
+// static THREADLOCAL AllocatorCache cache;
+AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
+ CHECK(ms);
+ CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
+ return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
+}
+
+static Allocator allocator;
+
+static const uptr kMaxAllowedMallocSize =
+ FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
+
+static const uptr kMaxThreadLocalQuarantine =
+ FIRST_32_SECOND_64(1 << 18, 1 << 20);
+
+// Every chunk of memory allocated by this allocator can be in one of 3 states:
+// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
+// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
+// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
+enum {
+ CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
+ CHUNK_ALLOCATED = 2,
+ CHUNK_QUARANTINE = 3
+};
+
+// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
+// We use adaptive redzones: for larger allocation larger redzones are used.
+static u32 RZLog2Size(u32 rz_log) {
+ CHECK_LT(rz_log, 8);
+ return 16 << rz_log;
+}
+
+static u32 RZSize2Log(u32 rz_size) {
+ CHECK_GE(rz_size, 16);
+ CHECK_LE(rz_size, 2048);
+ CHECK(IsPowerOfTwo(rz_size));
+ u32 res = Log2(rz_size) - 4;
+ CHECK_EQ(rz_size, RZLog2Size(res));
+ return res;
+}
+
+static uptr ComputeRZLog(uptr user_requested_size) {
+ u32 rz_log =
+ user_requested_size <= 64 - 16 ? 0 :
+ user_requested_size <= 128 - 32 ? 1 :
+ user_requested_size <= 512 - 64 ? 2 :
+ user_requested_size <= 4096 - 128 ? 3 :
+ user_requested_size <= (1 << 14) - 256 ? 4 :
+ user_requested_size <= (1 << 15) - 512 ? 5 :
+ user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
+ return Max(rz_log, RZSize2Log(flags()->redzone));
+}
+
+// The memory chunk allocated from the underlying allocator looks like this:
+// L L L L L L H H U U U U U U R R
+// L -- left redzone words (0 or more bytes)
+// H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
+// U -- user memory.
+// R -- right redzone (0 or more bytes)
+// ChunkBase consists of ChunkHeader and other bytes that overlap with user
+// memory.
+
+// If a memory chunk is allocated by memalign and we had to increase the
+// allocation size to achieve the proper alignment, then we store this magic
+// value in the first uptr word of the memory block and store the address of
+// ChunkBase in the next uptr.
+// M B ? ? ? L L L L L L H H U U U U U U
+// M -- magic value kMemalignMagic
+// B -- address of ChunkHeader pointing to the first 'H'
+static const uptr kMemalignMagic = 0xCC6E96B9;
+
+struct ChunkHeader {
+ // 1-st 8 bytes.
+ u32 chunk_state : 8; // Must be first.
+ u32 alloc_tid : 24;
+
+ u32 free_tid : 24;
+ u32 from_memalign : 1;
+ u32 alloc_type : 2;
+ u32 rz_log : 3;
+ // 2-nd 8 bytes
+ // This field is used for small sizes. For large sizes it is equal to
+ // SizeClassMap::kMaxSize and the actual size is stored in the
+ // SecondaryAllocator's metadata.
+ u32 user_requested_size;
+ u32 alloc_context_id;
+};
+
+struct ChunkBase : ChunkHeader {
+ // Header2, intersects with user memory.
+ AsanChunk *next;
+ u32 free_context_id;
+};
+
+static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
+static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
+COMPILER_CHECK(kChunkHeaderSize == 16);
+COMPILER_CHECK(kChunkHeader2Size <= 16);
+
+struct AsanChunk: ChunkBase {
+ uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
+ uptr UsedSize() {
+ if (user_requested_size != SizeClassMap::kMaxSize)
+ return user_requested_size;
+ return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
+ }
+ void *AllocBeg() {
+ if (from_memalign)
+ return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
+ return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
+ }
+ // We store the alloc/free stack traces in the chunk itself.
+ u32 *AllocStackBeg() {
+ return (u32*)(Beg() - RZLog2Size(rz_log));
+ }
+ uptr AllocStackSize() {
+ CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
+ return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
+ }
+ u32 *FreeStackBeg() {
+ return (u32*)(Beg() + kChunkHeader2Size);
+ }
+ uptr FreeStackSize() {
+ if (user_requested_size < kChunkHeader2Size) return 0;
+ uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
+ return (available - kChunkHeader2Size) / sizeof(u32);
+ }
+};
+
+uptr AsanChunkView::Beg() { return chunk_->Beg(); }
+uptr AsanChunkView::End() { return Beg() + UsedSize(); }
+uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
+uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
+uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
+
+static void GetStackTraceFromId(u32 id, StackTrace *stack) {
+ CHECK(id);
+ uptr size = 0;
+ const uptr *trace = StackDepotGet(id, &size);
+ CHECK_LT(size, kStackTraceMax);
+ internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
+ stack->size = size;
+}
+
+void AsanChunkView::GetAllocStack(StackTrace *stack) {
+ if (flags()->use_stack_depot)
+ GetStackTraceFromId(chunk_->alloc_context_id, stack);
+ else
+ StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
+ chunk_->AllocStackSize());
+}
+
+void AsanChunkView::GetFreeStack(StackTrace *stack) {
+ if (flags()->use_stack_depot)
+ GetStackTraceFromId(chunk_->free_context_id, stack);
+ else
+ StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
+ chunk_->FreeStackSize());
+}
+
+struct QuarantineCallback;
+typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
+typedef AsanQuarantine::Cache QuarantineCache;
+static AsanQuarantine quarantine(LINKER_INITIALIZED);
+static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
+static AllocatorCache fallback_allocator_cache;
+static SpinMutex fallback_mutex;
+
+QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
+ CHECK(ms);
+ CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
+ return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
+}
+
+struct QuarantineCallback {
+ explicit QuarantineCallback(AllocatorCache *cache)
+ : cache_(cache) {
+ }
+
+ void Recycle(AsanChunk *m) {
+ CHECK(m->chunk_state == CHUNK_QUARANTINE);
+ m->chunk_state = CHUNK_AVAILABLE;
+ CHECK_NE(m->alloc_tid, kInvalidTid);
+ CHECK_NE(m->free_tid, kInvalidTid);
+ PoisonShadow(m->Beg(),
+ RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
+ kAsanHeapLeftRedzoneMagic);
+ void *p = reinterpret_cast<void *>(m->AllocBeg());
+ if (m->from_memalign) {
+ uptr *memalign_magic = reinterpret_cast<uptr *>(p);
+ CHECK_EQ(memalign_magic[0], kMemalignMagic);
+ CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
+ }
+
+ // Statistics.
+ AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
+ thread_stats.real_frees++;
+ thread_stats.really_freed += m->UsedSize();
+
+ allocator.Deallocate(cache_, p);
+ }
+
+ void *Allocate(uptr size) {
+ return allocator.Allocate(cache_, size, 1, false);
+ }
+
+ void Deallocate(void *p) {
+ allocator.Deallocate(cache_, p);
+ }
+
+ AllocatorCache *cache_;
+};
+
+void InitializeAllocator() {
+ allocator.Init();
+ quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
+}
+
+static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
+ AllocType alloc_type) {
+ if (!asan_inited)
+ __asan_init();
+ CHECK(stack);
+ const uptr min_alignment = SHADOW_GRANULARITY;
+ if (alignment < min_alignment)
+ alignment = min_alignment;
+ if (size == 0) {
+ // We'd be happy to avoid allocating memory for zero-size requests, but
+ // some programs/tests depend on this behavior and assume that malloc would
+ // not return NULL even for zero-size allocations. Moreover, it looks like
+ // operator new should never return NULL, and results of consecutive "new"
+ // calls must be different even if the allocated size is zero.
+ size = 1;
+ }
+ CHECK(IsPowerOfTwo(alignment));
+ uptr rz_log = ComputeRZLog(size);
+ uptr rz_size = RZLog2Size(rz_log);
+ uptr rounded_size = RoundUpTo(size, alignment);
+ if (rounded_size < kChunkHeader2Size)
+ rounded_size = kChunkHeader2Size;
+ uptr needed_size = rounded_size + rz_size;
+ if (alignment > min_alignment)
+ needed_size += alignment;
+ bool using_primary_allocator = true;
+ // If we are allocating from the secondary allocator, there will be no
+ // automatic right redzone, so add the right redzone manually.
+ if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
+ needed_size += rz_size;
+ using_primary_allocator = false;
+ }
+ CHECK(IsAligned(needed_size, min_alignment));
+ if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
+ Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
+ (void*)size);
+ return 0;
+ }
+
+ AsanThread *t = asanThreadRegistry().GetCurrent();
+ void *allocated;
+ if (t) {
+ AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
+ allocated = allocator.Allocate(cache, needed_size, 8, false);
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocated = allocator.Allocate(cache, needed_size, 8, false);
+ }
+ uptr alloc_beg = reinterpret_cast<uptr>(allocated);
+ // Clear the first allocated word (an old kMemalignMagic may still be there).
+ reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
+ uptr alloc_end = alloc_beg + needed_size;
+ uptr beg_plus_redzone = alloc_beg + rz_size;
+ uptr user_beg = beg_plus_redzone;
+ if (!IsAligned(user_beg, alignment))
+ user_beg = RoundUpTo(user_beg, alignment);
+ uptr user_end = user_beg + size;
+ CHECK_LE(user_end, alloc_end);
+ uptr chunk_beg = user_beg - kChunkHeaderSize;
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+ m->chunk_state = CHUNK_ALLOCATED;
+ m->alloc_type = alloc_type;
+ m->rz_log = rz_log;
+ u32 alloc_tid = t ? t->tid() : 0;
+ m->alloc_tid = alloc_tid;
+ CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
+ m->free_tid = kInvalidTid;
+ m->from_memalign = user_beg != beg_plus_redzone;
+ if (m->from_memalign) {
+ CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
+ uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
+ memalign_magic[0] = kMemalignMagic;
+ memalign_magic[1] = chunk_beg;
+ }
+ if (using_primary_allocator) {
+ CHECK(size);
+ m->user_requested_size = size;
+ CHECK(allocator.FromPrimary(allocated));
+ } else {
+ CHECK(!allocator.FromPrimary(allocated));
+ m->user_requested_size = SizeClassMap::kMaxSize;
+ uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
+ meta[0] = size;
+ meta[1] = chunk_beg;
+ }
+
+ if (flags()->use_stack_depot) {
+ m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
+ } else {
+ m->alloc_context_id = 0;
+ StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
+ }
+
+ uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
+ // Unpoison the bulk of the memory region.
+ if (size_rounded_down_to_granularity)
+ PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
+ // Deal with the end of the region if size is not aligned to granularity.
+ if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
+ u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
+ *shadow = size & (SHADOW_GRANULARITY - 1);
+ }
+
+ AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
+ thread_stats.mallocs++;
+ thread_stats.malloced += size;
+ thread_stats.malloced_redzones += needed_size - size;
+ uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
+ thread_stats.malloced_by_size[class_id]++;
+ if (needed_size > SizeClassMap::kMaxSize)
+ thread_stats.malloc_large++;
+
+ void *res = reinterpret_cast<void *>(user_beg);
+ ASAN_MALLOC_HOOK(res, size);
+ return res;
+}
+
+static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
+ uptr p = reinterpret_cast<uptr>(ptr);
+ if (p == 0) return;
+ ASAN_FREE_HOOK(ptr);
+ uptr chunk_beg = p - kChunkHeaderSize;
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+
+ // Flip the chunk_state atomically to avoid race on double-free.
+ u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
+ memory_order_relaxed);
+
+ if (old_chunk_state == CHUNK_QUARANTINE)
+ ReportDoubleFree((uptr)ptr, stack);
+ else if (old_chunk_state != CHUNK_ALLOCATED)
+ ReportFreeNotMalloced((uptr)ptr, stack);
+ CHECK(old_chunk_state == CHUNK_ALLOCATED);
+ if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
+ ReportAllocTypeMismatch((uptr)ptr, stack,
+ (AllocType)m->alloc_type, (AllocType)alloc_type);
+
+ CHECK_GE(m->alloc_tid, 0);
+ if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
+ CHECK_EQ(m->free_tid, kInvalidTid);
+ AsanThread *t = asanThreadRegistry().GetCurrent();
+ m->free_tid = t ? t->tid() : 0;
+ if (flags()->use_stack_depot) {
+ m->free_context_id = StackDepotPut(stack->trace, stack->size);
+ } else {
+ m->free_context_id = 0;
+ StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
+ }
+ CHECK(m->chunk_state == CHUNK_QUARANTINE);
+ // Poison the region.
+ PoisonShadow(m->Beg(),
+ RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
+ kAsanHeapFreeMagic);
+
+ AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
+ thread_stats.frees++;
+ thread_stats.freed += m->UsedSize();
+
+ // Push into quarantine.
+ if (t) {
+ AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
+ AllocatorCache *ac = GetAllocatorCache(ms);
+ quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
+ m, m->UsedSize());
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *ac = &fallback_allocator_cache;
+ quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
+ m, m->UsedSize());
+ }
+}
+
+static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
+ CHECK(old_ptr && new_size);
+ uptr p = reinterpret_cast<uptr>(old_ptr);
+ uptr chunk_beg = p - kChunkHeaderSize;
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+
+ AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
+ thread_stats.reallocs++;
+ thread_stats.realloced += new_size;
+
+ CHECK(m->chunk_state == CHUNK_ALLOCATED);
+ uptr old_size = m->UsedSize();
+ uptr memcpy_size = Min(new_size, old_size);
+ void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
+ if (new_ptr) {
+ CHECK(REAL(memcpy) != 0);
+ REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
+ Deallocate(old_ptr, stack, FROM_MALLOC);
+ }
+ return new_ptr;
+}
+
+static AsanChunk *GetAsanChunkByAddr(uptr p) {
+ void *ptr = reinterpret_cast<void *>(p);
+ uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
+ if (!alloc_beg) return 0;
+ uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
+ if (memalign_magic[0] == kMemalignMagic) {
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
+ CHECK(m->from_memalign);
+ return m;
+ }
+ if (!allocator.FromPrimary(ptr)) {
+ uptr *meta = reinterpret_cast<uptr *>(
+ allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
+ return m;
+ }
+ uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
+ CHECK_LE(actual_size, SizeClassMap::kMaxSize);
+ // We know the actually allocted size, but we don't know the redzone size.
+ // Just try all possible redzone sizes.
+ for (u32 rz_log = 0; rz_log < 8; rz_log++) {
+ u32 rz_size = RZLog2Size(rz_log);
+ uptr max_possible_size = actual_size - rz_size;
+ if (ComputeRZLog(max_possible_size) != rz_log)
+ continue;
+ return reinterpret_cast<AsanChunk *>(
+ alloc_beg + rz_size - kChunkHeaderSize);
+ }
+ return 0;
+}
+
+static uptr AllocationSize(uptr p) {
+ AsanChunk *m = GetAsanChunkByAddr(p);
+ if (!m) return 0;
+ if (m->chunk_state != CHUNK_ALLOCATED) return 0;
+ if (m->Beg() != p) return 0;
+ return m->UsedSize();
+}
+
+// We have an address between two chunks, and we want to report just one.
+AsanChunk *ChooseChunk(uptr addr,
+ AsanChunk *left_chunk, AsanChunk *right_chunk) {
+ // Prefer an allocated chunk over freed chunk and freed chunk
+ // over available chunk.
+ if (left_chunk->chunk_state != right_chunk->chunk_state) {
+ if (left_chunk->chunk_state == CHUNK_ALLOCATED)
+ return left_chunk;
+ if (right_chunk->chunk_state == CHUNK_ALLOCATED)
+ return right_chunk;
+ if (left_chunk->chunk_state == CHUNK_QUARANTINE)
+ return left_chunk;
+ if (right_chunk->chunk_state == CHUNK_QUARANTINE)
+ return right_chunk;
+ }
+ // Same chunk_state: choose based on offset.
+ sptr l_offset = 0, r_offset = 0;
+ CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
+ CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
+ if (l_offset < r_offset)
+ return left_chunk;
+ return right_chunk;
+}
+
+AsanChunkView FindHeapChunkByAddress(uptr addr) {
+ AsanChunk *m1 = GetAsanChunkByAddr(addr);
+ if (!m1) return AsanChunkView(m1);
+ sptr offset = 0;
+ if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
+ // The address is in the chunk's left redzone, so maybe it is actually
+ // a right buffer overflow from the other chunk to the left.
+ // Search a bit to the left to see if there is another chunk.
+ AsanChunk *m2 = 0;
+ for (uptr l = 1; l < GetPageSizeCached(); l++) {
+ m2 = GetAsanChunkByAddr(addr - l);
+ if (m2 == m1) continue; // Still the same chunk.
+ break;
+ }
+ if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
+ m1 = ChooseChunk(addr, m2, m1);
+ }
+ return AsanChunkView(m1);
+}
+
+void AsanThreadLocalMallocStorage::CommitBack() {
+ AllocatorCache *ac = GetAllocatorCache(this);
+ quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
+ allocator.SwallowCache(GetAllocatorCache(this));
+}
+
+void PrintInternalAllocatorStats() {
+ allocator.PrintStats();
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
+ AllocType alloc_type) {
+ return Allocate(size, alignment, stack, alloc_type);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
+ Deallocate(ptr, stack, alloc_type);
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void *asan_malloc(uptr size, StackTrace *stack) {
+ return Allocate(size, 8, stack, FROM_MALLOC);
+}
+
+void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
+ if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
+ void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
+ if (ptr)
+ REAL(memset)(ptr, 0, nmemb * size);
+ return ptr;
+}
+
+void *asan_realloc(void *p, uptr size, StackTrace *stack) {
+ if (p == 0)
+ return Allocate(size, 8, stack, FROM_MALLOC);
+ if (size == 0) {
+ Deallocate(p, stack, FROM_MALLOC);
+ return 0;
+ }
+ return Reallocate(p, size, stack);
+}
+
+void *asan_valloc(uptr size, StackTrace *stack) {
+ return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
+}
+
+void *asan_pvalloc(uptr size, StackTrace *stack) {
+ uptr PageSize = GetPageSizeCached();
+ size = RoundUpTo(size, PageSize);
+ if (size == 0) {
+ // pvalloc(0) should allocate one page.
+ size = PageSize;
+ }
+ return Allocate(size, PageSize, stack, FROM_MALLOC);
+}
+
+int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
+ StackTrace *stack) {
+ void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
+ CHECK(IsAligned((uptr)ptr, alignment));
+ *memptr = ptr;
+ return 0;
+}
+
+uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
+ CHECK(stack);
+ if (ptr == 0) return 0;
+ uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
+ if (flags()->check_malloc_usable_size && (usable_size == 0))
+ ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
+ return usable_size;
+}
+
+uptr asan_mz_size(const void *ptr) {
+ return AllocationSize(reinterpret_cast<uptr>(ptr));
+}
+
+void asan_mz_force_lock() {
+ allocator.ForceLock();
+ fallback_mutex.Lock();
+}
+
+void asan_mz_force_unlock() {
+ fallback_mutex.Unlock();
+ allocator.ForceUnlock();
+}
+
+} // namespace __asan
+
+// ---------------------- Interface ---------------- {{{1
+using namespace __asan; // NOLINT
+
+// ASan allocator doesn't reserve extra bytes, so normally we would
+// just return "size". We don't want to expose our redzone sizes, etc here.
+uptr __asan_get_estimated_allocated_size(uptr size) {
+ return size;
+}
+
+bool __asan_get_ownership(const void *p) {
+ uptr ptr = reinterpret_cast<uptr>(p);
+ return (AllocationSize(ptr) > 0);
+}
+
+uptr __asan_get_allocated_size(const void *p) {
+ if (p == 0) return 0;
+ uptr ptr = reinterpret_cast<uptr>(p);
+ uptr allocated_size = AllocationSize(ptr);
+ // Die if p is not malloced or if it is already freed.
+ if (allocated_size == 0) {
+ GET_STACK_TRACE_FATAL_HERE;
+ ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
+ }
+ return allocated_size;
+}
+
+#if !SANITIZER_SUPPORTS_WEAK_HOOKS
+// Provide default (no-op) implementation of malloc hooks.
+extern "C" {
+SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
+void __asan_malloc_hook(void *ptr, uptr size) {
+ (void)ptr;
+ (void)size;
+}
+SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
+void __asan_free_hook(void *ptr) {
+ (void)ptr;
+}
+} // extern "C"
+#endif
+
+
+#endif // ASAN_ALLOCATOR_VERSION