aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/exp/ssa
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/exp/ssa')
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/blockopt.go186
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/doc.go113
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/func.go428
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/literal.go137
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/print.go383
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/sanity.go263
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/ssa.go1100
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/util.go172
8 files changed, 0 insertions, 2782 deletions
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/blockopt.go b/gcc-4.8.1/libgo/go/exp/ssa/blockopt.go
deleted file mode 100644
index a81be6aef..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/blockopt.go
+++ /dev/null
@@ -1,186 +0,0 @@
-package ssa
-
-// Simple block optimisations to simplify the control flow graph.
-
-// TODO(adonovan): instead of creating several "unreachable" blocks
-// per function in the Builder, reuse a single one (e.g. at Blocks[1])
-// to reduce garbage.
-
-import (
- "fmt"
- "os"
-)
-
-// If true, perform sanity checking and show progress at each
-// successive iteration of optimizeBlocks. Very verbose.
-const debugBlockOpt = false
-
-func hasPhi(b *BasicBlock) bool {
- _, ok := b.Instrs[0].(*Phi)
- return ok
-}
-
-// prune attempts to prune block b if it is unreachable (i.e. has no
-// predecessors other than itself), disconnecting it from the CFG.
-// The result is true if the optimisation was applied. i is the block
-// index within the function.
-//
-func prune(f *Function, i int, b *BasicBlock) bool {
- if i == 0 {
- return false // don't prune entry block
- }
- if len(b.Preds) == 0 || len(b.Preds) == 1 && b.Preds[0] == b {
- // Disconnect it from its successors.
- for _, c := range b.Succs {
- c.removePred(b)
- }
- if debugBlockOpt {
- fmt.Fprintln(os.Stderr, "prune", b.Name)
- }
-
- // Delete b.
- f.Blocks[i] = nil
- return true
- }
- return false
-}
-
-// jumpThreading attempts to apply simple jump-threading to block b,
-// in which a->b->c become a->c if b is just a Jump.
-// The result is true if the optimisation was applied.
-// i is the block index within the function.
-//
-func jumpThreading(f *Function, i int, b *BasicBlock) bool {
- if i == 0 {
- return false // don't apply to entry block
- }
- if b.Instrs == nil {
- fmt.Println("empty block ", b.Name)
- return false
- }
- if _, ok := b.Instrs[0].(*Jump); !ok {
- return false // not just a jump
- }
- c := b.Succs[0]
- if c == b {
- return false // don't apply to degenerate jump-to-self.
- }
- if hasPhi(c) {
- return false // not sound without more effort
- }
- for j, a := range b.Preds {
- a.replaceSucc(b, c)
-
- // If a now has two edges to c, replace its degenerate If by Jump.
- if len(a.Succs) == 2 && a.Succs[0] == c && a.Succs[1] == c {
- jump := new(Jump)
- jump.SetBlock(a)
- a.Instrs[len(a.Instrs)-1] = jump
- a.Succs = a.Succs[:1]
- c.removePred(b)
- } else {
- if j == 0 {
- c.replacePred(b, a)
- } else {
- c.Preds = append(c.Preds, a)
- }
- }
-
- if debugBlockOpt {
- fmt.Fprintln(os.Stderr, "jumpThreading", a.Name, b.Name, c.Name)
- }
- }
- f.Blocks[i] = nil
- return true
-}
-
-// fuseBlocks attempts to apply the block fusion optimisation to block
-// a, in which a->b becomes ab if len(a.Succs)==len(b.Preds)==1.
-// The result is true if the optimisation was applied.
-//
-func fuseBlocks(f *Function, a *BasicBlock) bool {
- if len(a.Succs) != 1 {
- return false
- }
- b := a.Succs[0]
- if len(b.Preds) != 1 {
- return false
- }
- // Eliminate jump at end of A, then copy all of B across.
- a.Instrs = append(a.Instrs[:len(a.Instrs)-1], b.Instrs...)
- for _, instr := range b.Instrs {
- instr.SetBlock(a)
- }
-
- // A inherits B's successors
- a.Succs = append(a.succs2[:0], b.Succs...)
-
- // Fix up Preds links of all successors of B.
- for _, c := range b.Succs {
- c.replacePred(b, a)
- }
-
- if debugBlockOpt {
- fmt.Fprintln(os.Stderr, "fuseBlocks", a.Name, b.Name)
- }
-
- // Make b unreachable. Subsequent pruning will reclaim it.
- b.Preds = nil
- return true
-}
-
-// optimizeBlocks() performs some simple block optimizations on a
-// completed function: dead block elimination, block fusion, jump
-// threading.
-//
-func optimizeBlocks(f *Function) {
- // Loop until no further progress.
- changed := true
- for changed {
- changed = false
-
- if debugBlockOpt {
- f.DumpTo(os.Stderr)
- MustSanityCheck(f, nil)
- }
-
- for i, b := range f.Blocks {
- // f.Blocks will temporarily contain nils to indicate
- // deleted blocks; we remove them at the end.
- if b == nil {
- continue
- }
-
- // Prune unreachable blocks (including all empty blocks).
- if prune(f, i, b) {
- changed = true
- continue // (b was pruned)
- }
-
- // Fuse blocks. b->c becomes bc.
- if fuseBlocks(f, b) {
- changed = true
- }
-
- // a->b->c becomes a->c if b contains only a Jump.
- if jumpThreading(f, i, b) {
- changed = true
- continue // (b was disconnected)
- }
- }
- }
-
- // Eliminate nils from Blocks.
- j := 0
- for _, b := range f.Blocks {
- if b != nil {
- f.Blocks[j] = b
- j++
- }
- }
- // Nil out b.Blocks[j:] to aid GC.
- for i := j; i < len(f.Blocks); i++ {
- f.Blocks[i] = nil
- }
- f.Blocks = f.Blocks[:j]
-}
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/doc.go b/gcc-4.8.1/libgo/go/exp/ssa/doc.go
deleted file mode 100644
index a489c3129..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/doc.go
+++ /dev/null
@@ -1,113 +0,0 @@
-// Package ssa defines a representation of the elements of Go programs
-// (packages, types, functions, variables and constants) using a
-// static single-assignment (SSA) form intermediate representation
-// (IR) for the the bodies of functions.
-//
-// THIS INTERFACE IS EXPERIMENTAL AND IS LIKELY TO CHANGE.
-//
-// For an introduction to SSA form, see
-// http://en.wikipedia.org/wiki/Static_single_assignment_form.
-// This page provides a broader reading list:
-// http://www.dcs.gla.ac.uk/~jsinger/ssa.html.
-//
-// The level of abstraction of the SSA form is intentionally close to
-// the source language to facilitate construction of source analysis
-// tools. It is not primarily intended for machine code generation.
-//
-// All looping, branching and switching constructs are replaced with
-// unstructured control flow. We may add higher-level control flow
-// primitives in the future to facilitate constant-time dispatch of
-// switch statements, for example.
-//
-// Builder encapsulates the tasks of type-checking (using go/types)
-// abstract syntax trees (as defined by go/ast) for the source files
-// comprising a Go program, and the conversion of each function from
-// Go ASTs to the SSA representation.
-//
-// By supplying an instance of the SourceLocator function prototype,
-// clients may control how the builder locates, loads and parses Go
-// sources files for imported packages. This package provides
-// GorootLoader, which uses go/build to locate packages in the Go
-// source distribution, and go/parser to parse them.
-//
-// The builder initially builds a naive SSA form in which all local
-// variables are addresses of stack locations with explicit loads and
-// stores. If desired, registerisation and φ-node insertion using
-// dominance and dataflow can be performed as a later pass to improve
-// the accuracy and performance of subsequent analyses; this pass is
-// not yet implemented.
-//
-// The program representation constructed by this package is fully
-// resolved internally, i.e. it does not rely on the names of Values,
-// Packages, Functions, Types or BasicBlocks for the correct
-// interpretation of the program. Only the identities of objects and
-// the topology of the SSA and type graphs are semantically
-// significant. (There is one exception: Ids, used to identify field
-// and method names, contain strings.) Avoidance of name-based
-// operations simplifies the implementation of subsequent passes and
-// can make them very efficient. Many objects are nonetheless named
-// to aid in debugging, but it is not essential that the names be
-// either accurate or unambiguous. The public API exposes a number of
-// name-based maps for client convenience.
-//
-// Given a Go source package such as this:
-//
-// package main
-//
-// import "fmt"
-//
-// const message = "Hello, World!"
-//
-// func hello() {
-// fmt.Println(message)
-// }
-//
-// The SSA Builder creates a *Program containing a main *Package such
-// as this:
-//
-// Package(Name: "main")
-// Members:
-// "message": *Literal (Type: untyped string, Value: "Hello, World!")
-// "init·guard": *Global (Type: *bool)
-// "hello": *Function (Type: func())
-// Init: *Function (Type: func())
-//
-// The printed representation of the function main.hello is shown
-// below. Within the function listing, the name of each BasicBlock
-// such as ".0.entry" is printed left-aligned, followed by the block's
-// instructions, i.e. implementations of Instruction.
-// For each instruction that defines an SSA virtual register
-// (i.e. implements Value), the type of that value is shown in the
-// right column.
-//
-// # Name: main.hello
-// # Declared at hello.go:7:6
-// # Type: func()
-// func hello():
-// .0.entry:
-// t0 = new [1]interface{} *[1]interface{}
-// t1 = &t0[0:untyped integer] *interface{}
-// t2 = make interface interface{} <- string ("Hello, World!":string) interface{}
-// *t1 = t2
-// t3 = slice t0[:] []interface{}
-// t4 = fmt.Println(t3) (n int, err error)
-// ret
-//
-// TODO(adonovan): demonstrate more features in the example:
-// parameters and control flow at the least.
-//
-// TODO(adonovan): Consider how token.Pos source location information
-// should be made available generally. Currently it is only present in
-// Package, Function and CallCommon.
-//
-// TODO(adonovan): Provide an example skeleton application that loads
-// and dumps the SSA form of a program. Accommodate package-at-a-time
-// vs. whole-program operation.
-//
-// TODO(adonovan): Consider the exceptional control-flow implications
-// of defer and recover().
-//
-// TODO(adonovan): build tables/functions that relate source variables
-// to SSA variables to assist user interfaces that make queries about
-// specific source entities.
-package ssa
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/func.go b/gcc-4.8.1/libgo/go/exp/ssa/func.go
deleted file mode 100644
index 6af5e1efc..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/func.go
+++ /dev/null
@@ -1,428 +0,0 @@
-package ssa
-
-// This file implements the Function and BasicBlock types.
-
-import (
- "fmt"
- "go/ast"
- "go/types"
- "io"
- "os"
-)
-
-// Mode bits for additional diagnostics and checking.
-// TODO(adonovan): move these to builder.go once submitted.
-type BuilderMode uint
-
-const (
- LogPackages BuilderMode = 1 << iota // Dump package inventory to stderr
- LogFunctions // Dump function SSA code to stderr
- LogSource // Show source locations as SSA builder progresses
- SanityCheckFunctions // Perform sanity checking of function bodies
- UseGCImporter // Ignore SourceLoader; use gc-compiled object code for all imports
-)
-
-// addEdge adds a control-flow graph edge from from to to.
-func addEdge(from, to *BasicBlock) {
- from.Succs = append(from.Succs, to)
- to.Preds = append(to.Preds, from)
-}
-
-// emit appends an instruction to the current basic block.
-// If the instruction defines a Value, it is returned.
-//
-func (b *BasicBlock) emit(i Instruction) Value {
- i.SetBlock(b)
- b.Instrs = append(b.Instrs, i)
- v, _ := i.(Value)
- return v
-}
-
-// phis returns the prefix of b.Instrs containing all the block's φ-nodes.
-func (b *BasicBlock) phis() []Instruction {
- for i, instr := range b.Instrs {
- if _, ok := instr.(*Phi); !ok {
- return b.Instrs[:i]
- }
- }
- return nil // unreachable in well-formed blocks
-}
-
-// replacePred replaces all occurrences of p in b's predecessor list with q.
-// Ordinarily there should be at most one.
-//
-func (b *BasicBlock) replacePred(p, q *BasicBlock) {
- for i, pred := range b.Preds {
- if pred == p {
- b.Preds[i] = q
- }
- }
-}
-
-// replaceSucc replaces all occurrences of p in b's successor list with q.
-// Ordinarily there should be at most one.
-//
-func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
- for i, succ := range b.Succs {
- if succ == p {
- b.Succs[i] = q
- }
- }
-}
-
-// removePred removes all occurrences of p in b's
-// predecessor list and φ-nodes.
-// Ordinarily there should be at most one.
-//
-func (b *BasicBlock) removePred(p *BasicBlock) {
- phis := b.phis()
-
- // We must preserve edge order for φ-nodes.
- j := 0
- for i, pred := range b.Preds {
- if pred != p {
- b.Preds[j] = b.Preds[i]
- // Strike out φ-edge too.
- for _, instr := range phis {
- phi := instr.(*Phi)
- phi.Edges[j] = phi.Edges[i]
- }
- j++
- }
- }
- // Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
- for i := j; i < len(b.Preds); i++ {
- b.Preds[i] = nil
- for _, instr := range phis {
- instr.(*Phi).Edges[i] = nil
- }
- }
- b.Preds = b.Preds[:j]
- for _, instr := range phis {
- phi := instr.(*Phi)
- phi.Edges = phi.Edges[:j]
- }
-}
-
-// Destinations associated with unlabelled for/switch/select stmts.
-// We push/pop one of these as we enter/leave each construct and for
-// each BranchStmt we scan for the innermost target of the right type.
-//
-type targets struct {
- tail *targets // rest of stack
- _break *BasicBlock
- _continue *BasicBlock
- _fallthrough *BasicBlock
-}
-
-// Destinations associated with a labelled block.
-// We populate these as labels are encountered in forward gotos or
-// labelled statements.
-//
-type lblock struct {
- _goto *BasicBlock
- _break *BasicBlock
- _continue *BasicBlock
-}
-
-// funcSyntax holds the syntax tree for the function declaration and body.
-type funcSyntax struct {
- recvField *ast.FieldList
- paramFields *ast.FieldList
- resultFields *ast.FieldList
- body *ast.BlockStmt
-}
-
-// labelledBlock returns the branch target associated with the
-// specified label, creating it if needed.
-//
-func (f *Function) labelledBlock(label *ast.Ident) *lblock {
- lb := f.lblocks[label.Obj]
- if lb == nil {
- lb = &lblock{_goto: f.newBasicBlock("label." + label.Name)}
- f.lblocks[label.Obj] = lb
- }
- return lb
-}
-
-// addParam adds a (non-escaping) parameter to f.Params of the
-// specified name and type.
-//
-func (f *Function) addParam(name string, typ types.Type) *Parameter {
- v := &Parameter{
- Name_: name,
- Type_: typ,
- }
- f.Params = append(f.Params, v)
- return v
-}
-
-// addSpilledParam declares a parameter that is pre-spilled to the
-// stack; the function body will load/store the spilled location.
-// Subsequent registerization will eliminate spills where possible.
-//
-func (f *Function) addSpilledParam(obj types.Object) {
- name := obj.GetName()
- param := f.addParam(name, obj.GetType())
- spill := &Alloc{
- Name_: name + "~", // "~" means "spilled"
- Type_: pointer(obj.GetType()),
- }
- f.objects[obj] = spill
- f.Locals = append(f.Locals, spill)
- f.emit(spill)
- f.emit(&Store{Addr: spill, Val: param})
-}
-
-// start initializes the function prior to generating SSA code for its body.
-// Precondition: f.Type() already set.
-//
-// If f.syntax != nil, f is a Go source function and idents must be a
-// mapping from syntactic identifiers to their canonical type objects;
-// Otherwise, idents is ignored and the usual set-up for Go source
-// functions is skipped.
-//
-func (f *Function) start(mode BuilderMode, idents map[*ast.Ident]types.Object) {
- if mode&LogSource != 0 {
- fmt.Fprintf(os.Stderr, "build function %s @ %s\n", f.FullName(), f.Prog.Files.Position(f.Pos))
- }
- f.currentBlock = f.newBasicBlock("entry")
- f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
- if f.syntax == nil {
- return // synthetic function; no syntax tree
- }
- f.lblocks = make(map[*ast.Object]*lblock)
-
- // Receiver (at most one inner iteration).
- if f.syntax.recvField != nil {
- for _, field := range f.syntax.recvField.List {
- for _, n := range field.Names {
- f.addSpilledParam(idents[n])
- }
- if field.Names == nil {
- f.addParam(f.Signature.Recv.Name, f.Signature.Recv.Type)
- }
- }
- }
-
- // Parameters.
- if f.syntax.paramFields != nil {
- for _, field := range f.syntax.paramFields.List {
- for _, n := range field.Names {
- f.addSpilledParam(idents[n])
- }
- }
- }
-
- // Results.
- if f.syntax.resultFields != nil {
- for _, field := range f.syntax.resultFields.List {
- // Implicit "var" decl of locals for named results.
- for _, n := range field.Names {
- f.results = append(f.results, f.addNamedLocal(idents[n]))
- }
- }
- }
-}
-
-// finish() finalizes the function after SSA code generation of its body.
-func (f *Function) finish(mode BuilderMode) {
- f.objects = nil
- f.results = nil
- f.currentBlock = nil
- f.lblocks = nil
- f.syntax = nil
-
- // Remove any f.Locals that are now heap-allocated.
- j := 0
- for _, l := range f.Locals {
- if !l.Heap {
- f.Locals[j] = l
- j++
- }
- }
- // Nil out f.Locals[j:] to aid GC.
- for i := j; i < len(f.Locals); i++ {
- f.Locals[i] = nil
- }
- f.Locals = f.Locals[:j]
-
- // Ensure all value-defining Instructions have register names.
- // (Non-Instruction Values are named at construction.)
- tmp := 0
- for _, b := range f.Blocks {
- for _, instr := range b.Instrs {
- switch instr := instr.(type) {
- case *Alloc:
- // Local Allocs may already be named.
- if instr.Name_ == "" {
- instr.Name_ = fmt.Sprintf("t%d", tmp)
- tmp++
- }
- case Value:
- instr.(interface {
- setNum(int)
- }).setNum(tmp)
- tmp++
- }
- }
- }
- optimizeBlocks(f)
-
- if mode&LogFunctions != 0 {
- f.DumpTo(os.Stderr)
- }
- if mode&SanityCheckFunctions != 0 {
- MustSanityCheck(f, nil)
- }
- if mode&LogSource != 0 {
- fmt.Fprintf(os.Stderr, "build function %s done\n", f.FullName())
- }
-}
-
-// addNamedLocal creates a local variable, adds it to function f and
-// returns it. Its name and type are taken from obj. Subsequent
-// calls to f.lookup(obj) will return the same local.
-//
-// Precondition: f.syntax != nil (i.e. a Go source function).
-//
-func (f *Function) addNamedLocal(obj types.Object) *Alloc {
- l := f.addLocal(obj.GetType())
- l.Name_ = obj.GetName()
- f.objects[obj] = l
- return l
-}
-
-// addLocal creates an anonymous local variable of type typ, adds it
-// to function f and returns it.
-//
-func (f *Function) addLocal(typ types.Type) *Alloc {
- v := &Alloc{Type_: pointer(typ)}
- f.Locals = append(f.Locals, v)
- f.emit(v)
- return v
-}
-
-// lookup returns the address of the named variable identified by obj
-// that is local to function f or one of its enclosing functions.
-// If escaping, the reference comes from a potentially escaping pointer
-// expression and the referent must be heap-allocated.
-//
-func (f *Function) lookup(obj types.Object, escaping bool) Value {
- if v, ok := f.objects[obj]; ok {
- if escaping {
- // Walk up the chain of Captures.
- x := v
- for {
- if c, ok := x.(*Capture); ok {
- x = c.Outer
- } else {
- break
- }
- }
- // By construction, all captures are ultimately Allocs in the
- // naive SSA form. Parameters are pre-spilled to the stack.
- x.(*Alloc).Heap = true
- }
- return v // function-local var (address)
- }
-
- // Definition must be in an enclosing function;
- // plumb it through intervening closures.
- if f.Enclosing == nil {
- panic("no Value for type.Object " + obj.GetName())
- }
- v := &Capture{f.Enclosing.lookup(obj, true)} // escaping
- f.objects[obj] = v
- f.FreeVars = append(f.FreeVars, v)
- return v
-}
-
-// emit emits the specified instruction to function f, updating the
-// control-flow graph if required.
-//
-func (f *Function) emit(instr Instruction) Value {
- return f.currentBlock.emit(instr)
-}
-
-// DumpTo prints to w a human readable "disassembly" of the SSA code of
-// all basic blocks of function f.
-//
-func (f *Function) DumpTo(w io.Writer) {
- fmt.Fprintf(w, "# Name: %s\n", f.FullName())
- fmt.Fprintf(w, "# Declared at %s\n", f.Prog.Files.Position(f.Pos))
- fmt.Fprintf(w, "# Type: %s\n", f.Signature)
-
- if f.Enclosing != nil {
- fmt.Fprintf(w, "# Parent: %s\n", f.Enclosing.Name())
- }
-
- if f.FreeVars != nil {
- io.WriteString(w, "# Free variables:\n")
- for i, fv := range f.FreeVars {
- fmt.Fprintf(w, "# % 3d:\t%s %s\n", i, fv.Name(), fv.Type())
- }
- }
-
- params := f.Params
- if f.Signature.Recv != nil {
- fmt.Fprintf(w, "func (%s) %s(", params[0].Name(), f.Name())
- params = params[1:]
- } else {
- fmt.Fprintf(w, "func %s(", f.Name())
- }
- for i, v := range params {
- if i > 0 {
- io.WriteString(w, ", ")
- }
- io.WriteString(w, v.Name())
- }
- io.WriteString(w, "):\n")
-
- for _, b := range f.Blocks {
- if b == nil {
- // Corrupt CFG.
- fmt.Fprintf(w, ".nil:\n")
- continue
- }
- fmt.Fprintf(w, ".%s:\t\t\t\t\t\t\t P:%d S:%d\n", b.Name, len(b.Preds), len(b.Succs))
- if false { // CFG debugging
- fmt.Fprintf(w, "\t# CFG: %s --> %s --> %s\n", blockNames(b.Preds), b.Name, blockNames(b.Succs))
- }
- for _, instr := range b.Instrs {
- io.WriteString(w, "\t")
- if v, ok := instr.(Value); ok {
- l := 80 // for old time's sake.
- // Left-align the instruction.
- if name := v.Name(); name != "" {
- n, _ := fmt.Fprintf(w, "%s = ", name)
- l -= n
- }
- n, _ := io.WriteString(w, instr.String())
- l -= n
- // Right-align the type.
- if t := v.Type(); t != nil {
- fmt.Fprintf(w, "%*s", l-9, t)
- }
- } else {
- io.WriteString(w, instr.String())
- }
- io.WriteString(w, "\n")
- }
- }
- fmt.Fprintf(w, "\n")
-}
-
-// newBasicBlock adds to f a new basic block with a unique name and
-// returns it. It does not automatically become the current block for
-// subsequent calls to emit.
-//
-func (f *Function) newBasicBlock(name string) *BasicBlock {
- b := &BasicBlock{
- Name: fmt.Sprintf("%d.%s", len(f.Blocks), name),
- Func: f,
- }
- b.Succs = b.succs2[:0]
- f.Blocks = append(f.Blocks, b)
- return b
-}
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/literal.go b/gcc-4.8.1/libgo/go/exp/ssa/literal.go
deleted file mode 100644
index fa26c47e9..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/literal.go
+++ /dev/null
@@ -1,137 +0,0 @@
-package ssa
-
-// This file defines the Literal SSA value type.
-
-import (
- "fmt"
- "go/types"
- "math/big"
- "strconv"
-)
-
-// newLiteral returns a new literal of the specified value and type.
-// val must be valid according to the specification of Literal.Value.
-//
-func newLiteral(val interface{}, typ types.Type) *Literal {
- // This constructor exists to provide a single place to
- // insert logging/assertions during debugging.
- return &Literal{typ, val}
-}
-
-// intLiteral returns an untyped integer literal that evaluates to i.
-func intLiteral(i int64) *Literal {
- return newLiteral(i, types.Typ[types.UntypedInt])
-}
-
-// nilLiteral returns a nil literal of the specified (reference) type.
-func nilLiteral(typ types.Type) *Literal {
- return newLiteral(types.NilType{}, typ)
-}
-
-func (l *Literal) Name() string {
- var s string
- switch x := l.Value.(type) {
- case bool:
- s = fmt.Sprintf("%v", l.Value)
- case int64:
- s = fmt.Sprintf("%d", l.Value)
- case *big.Int:
- s = x.String()
- case *big.Rat:
- s = x.FloatString(20)
- case string:
- if len(x) > 20 {
- x = x[:17] + "..." // abbreviate
- }
- s = strconv.Quote(x)
- case types.Complex:
- r := x.Re.FloatString(20)
- i := x.Im.FloatString(20)
- s = fmt.Sprintf("%s+%si", r, i)
- case types.NilType:
- s = "nil"
- default:
- panic(fmt.Sprintf("unexpected literal value: %T", x))
- }
- return s + ":" + l.Type_.String()
-}
-
-func (l *Literal) Type() types.Type {
- return l.Type_
-}
-
-// IsNil returns true if this literal represents a typed or untyped nil value.
-func (l *Literal) IsNil() bool {
- _, ok := l.Value.(types.NilType)
- return ok
-}
-
-// Int64 returns the numeric value of this literal truncated to fit
-// a signed 64-bit integer.
-//
-func (l *Literal) Int64() int64 {
- switch x := l.Value.(type) {
- case int64:
- return x
- case *big.Int:
- return x.Int64()
- case *big.Rat:
- // TODO(adonovan): fix: is this the right rounding mode?
- var q big.Int
- return q.Quo(x.Num(), x.Denom()).Int64()
- }
- panic(fmt.Sprintf("unexpected literal value: %T", l.Value))
-}
-
-// Uint64 returns the numeric value of this literal truncated to fit
-// an unsigned 64-bit integer.
-//
-func (l *Literal) Uint64() uint64 {
- switch x := l.Value.(type) {
- case int64:
- if x < 0 {
- return 0
- }
- return uint64(x)
- case *big.Int:
- return x.Uint64()
- case *big.Rat:
- // TODO(adonovan): fix: is this right?
- var q big.Int
- return q.Quo(x.Num(), x.Denom()).Uint64()
- }
- panic(fmt.Sprintf("unexpected literal value: %T", l.Value))
-}
-
-// Float64 returns the numeric value of this literal truncated to fit
-// a float64.
-//
-func (l *Literal) Float64() float64 {
- switch x := l.Value.(type) {
- case int64:
- return float64(x)
- case *big.Int:
- var r big.Rat
- f, _ := r.SetInt(x).Float64()
- return f
- case *big.Rat:
- f, _ := x.Float64()
- return f
- }
- panic(fmt.Sprintf("unexpected literal value: %T", l.Value))
-}
-
-// Complex128 returns the complex value of this literal truncated to
-// fit a complex128.
-//
-func (l *Literal) Complex128() complex128 {
- switch x := l.Value.(type) {
- case int64, *big.Int, *big.Rat:
- return complex(l.Float64(), 0)
- case types.Complex:
- re64, _ := x.Re.Float64()
- im64, _ := x.Im.Float64()
- return complex(re64, im64)
- }
- panic(fmt.Sprintf("unexpected literal value: %T", l.Value))
-}
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/print.go b/gcc-4.8.1/libgo/go/exp/ssa/print.go
deleted file mode 100644
index b8708b6ed..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/print.go
+++ /dev/null
@@ -1,383 +0,0 @@
-package ssa
-
-// This file implements the String() methods for all Value and
-// Instruction types.
-
-import (
- "bytes"
- "fmt"
- "go/ast"
- "go/types"
-)
-
-func (id Id) String() string {
- if id.Pkg == nil {
- return id.Name
- }
- return fmt.Sprintf("%s/%s", id.Pkg.Path, id.Name)
-}
-
-// relName returns the name of v relative to i.
-// In most cases, this is identical to v.Name(), but for cross-package
-// references to Functions (including methods) and Globals, the
-// package-qualified FullName is used instead.
-//
-func relName(v Value, i Instruction) string {
- switch v := v.(type) {
- case *Global:
- if v.Pkg == i.Block().Func.Pkg {
- return v.Name()
- }
- return v.FullName()
- case *Function:
- if v.Pkg == nil || v.Pkg == i.Block().Func.Pkg {
- return v.Name()
- }
- return v.FullName()
- }
- return v.Name()
-}
-
-// Value.String()
-//
-// This method is provided only for debugging.
-// It never appears in disassembly, which uses Value.Name().
-
-func (v *Literal) String() string {
- return fmt.Sprintf("literal %s rep=%T", v.Name(), v.Value)
-}
-
-func (v *Parameter) String() string {
- return fmt.Sprintf("parameter %s : %s", v.Name(), v.Type())
-}
-
-func (v *Capture) String() string {
- return fmt.Sprintf("capture %s : %s", v.Name(), v.Type())
-}
-
-func (v *Global) String() string {
- return fmt.Sprintf("global %s : %s", v.Name(), v.Type())
-}
-
-func (v *Builtin) String() string {
- return fmt.Sprintf("builtin %s : %s", v.Name(), v.Type())
-}
-
-func (r *Function) String() string {
- return fmt.Sprintf("function %s : %s", r.Name(), r.Type())
-}
-
-// FullName returns the name of this function qualified by the
-// package name, unless it is anonymous or synthetic.
-//
-// TODO(adonovan): move to func.go when it's submitted.
-//
-func (f *Function) FullName() string {
- if f.Enclosing != nil || f.Pkg == nil {
- return f.Name_ // anonymous or synthetic
- }
- return fmt.Sprintf("%s.%s", f.Pkg.ImportPath, f.Name_)
-}
-
-// FullName returns g's package-qualified name.
-func (g *Global) FullName() string {
- return fmt.Sprintf("%s.%s", g.Pkg.ImportPath, g.Name_)
-}
-
-// Instruction.String()
-
-func (v *Alloc) String() string {
- op := "local"
- if v.Heap {
- op = "new"
- }
- return fmt.Sprintf("%s %s", op, indirectType(v.Type()))
-}
-
-func (v *Phi) String() string {
- var b bytes.Buffer
- b.WriteString("phi [")
- for i, edge := range v.Edges {
- if i > 0 {
- b.WriteString(", ")
- }
- // Be robust against malformed CFG.
- blockname := "?"
- if v.Block_ != nil && i < len(v.Block_.Preds) {
- blockname = v.Block_.Preds[i].Name
- }
- b.WriteString(blockname)
- b.WriteString(": ")
- b.WriteString(relName(edge, v))
- }
- b.WriteString("]")
- return b.String()
-}
-
-func printCall(v *CallCommon, prefix string, instr Instruction) string {
- var b bytes.Buffer
- b.WriteString(prefix)
- if v.Func != nil {
- b.WriteString(relName(v.Func, instr))
- } else {
- name := underlyingType(v.Recv.Type()).(*types.Interface).Methods[v.Method].Name
- fmt.Fprintf(&b, "invoke %s.%s [#%d]", relName(v.Recv, instr), name, v.Method)
- }
- b.WriteString("(")
- for i, arg := range v.Args {
- if i > 0 {
- b.WriteString(", ")
- }
- b.WriteString(relName(arg, instr))
- }
- if v.HasEllipsis {
- b.WriteString("...")
- }
- b.WriteString(")")
- return b.String()
-}
-
-func (v *Call) String() string {
- return printCall(&v.CallCommon, "", v)
-}
-
-func (v *BinOp) String() string {
- return fmt.Sprintf("%s %s %s", relName(v.X, v), v.Op.String(), relName(v.Y, v))
-}
-
-func (v *UnOp) String() string {
- return fmt.Sprintf("%s%s%s", v.Op, relName(v.X, v), commaOk(v.CommaOk))
-}
-
-func (v *Conv) String() string {
- return fmt.Sprintf("convert %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
-}
-
-func (v *ChangeInterface) String() string {
- return fmt.Sprintf("change interface %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
-}
-
-func (v *MakeInterface) String() string {
- return fmt.Sprintf("make interface %s <- %s (%s)", v.Type(), v.X.Type(), relName(v.X, v))
-}
-
-func (v *MakeClosure) String() string {
- var b bytes.Buffer
- fmt.Fprintf(&b, "make closure %s", relName(v.Fn, v))
- if v.Bindings != nil {
- b.WriteString(" [")
- for i, c := range v.Bindings {
- if i > 0 {
- b.WriteString(", ")
- }
- b.WriteString(relName(c, v))
- }
- b.WriteString("]")
- }
- return b.String()
-}
-
-func (v *MakeSlice) String() string {
- var b bytes.Buffer
- b.WriteString("make slice ")
- b.WriteString(v.Type().String())
- b.WriteString(" ")
- b.WriteString(relName(v.Len, v))
- b.WriteString(" ")
- b.WriteString(relName(v.Cap, v))
- return b.String()
-}
-
-func (v *Slice) String() string {
- var b bytes.Buffer
- b.WriteString("slice ")
- b.WriteString(relName(v.X, v))
- b.WriteString("[")
- if v.Low != nil {
- b.WriteString(relName(v.Low, v))
- }
- b.WriteString(":")
- if v.High != nil {
- b.WriteString(relName(v.High, v))
- }
- b.WriteString("]")
- return b.String()
-}
-
-func (v *MakeMap) String() string {
- res := ""
- if v.Reserve != nil {
- res = relName(v.Reserve, v)
- }
- return fmt.Sprintf("make %s %s", v.Type(), res)
-}
-
-func (v *MakeChan) String() string {
- return fmt.Sprintf("make %s %s", v.Type(), relName(v.Size, v))
-}
-
-func (v *FieldAddr) String() string {
- fields := underlyingType(indirectType(v.X.Type())).(*types.Struct).Fields
- // Be robust against a bad index.
- name := "?"
- if v.Field >= 0 && v.Field < len(fields) {
- name = fields[v.Field].Name
- }
- return fmt.Sprintf("&%s.%s [#%d]", relName(v.X, v), name, v.Field)
-}
-
-func (v *Field) String() string {
- fields := underlyingType(v.X.Type()).(*types.Struct).Fields
- // Be robust against a bad index.
- name := "?"
- if v.Field >= 0 && v.Field < len(fields) {
- name = fields[v.Field].Name
- }
- return fmt.Sprintf("%s.%s [#%d]", relName(v.X, v), name, v.Field)
-}
-
-func (v *IndexAddr) String() string {
- return fmt.Sprintf("&%s[%s]", relName(v.X, v), relName(v.Index, v))
-}
-
-func (v *Index) String() string {
- return fmt.Sprintf("%s[%s]", relName(v.X, v), relName(v.Index, v))
-}
-
-func (v *Lookup) String() string {
- return fmt.Sprintf("%s[%s]%s", relName(v.X, v), relName(v.Index, v), commaOk(v.CommaOk))
-}
-
-func (v *Range) String() string {
- return "range " + relName(v.X, v)
-}
-
-func (v *Next) String() string {
- return "next " + relName(v.Iter, v)
-}
-
-func (v *TypeAssert) String() string {
- return fmt.Sprintf("typeassert%s %s.(%s)", commaOk(v.CommaOk), relName(v.X, v), v.AssertedType)
-}
-
-func (v *Extract) String() string {
- return fmt.Sprintf("extract %s #%d", relName(v.Tuple, v), v.Index)
-}
-
-func (s *Jump) String() string {
- // Be robust against malformed CFG.
- blockname := "?"
- if s.Block_ != nil && len(s.Block_.Succs) == 1 {
- blockname = s.Block_.Succs[0].Name
- }
- return fmt.Sprintf("jump %s", blockname)
-}
-
-func (s *If) String() string {
- // Be robust against malformed CFG.
- tblockname, fblockname := "?", "?"
- if s.Block_ != nil && len(s.Block_.Succs) == 2 {
- tblockname = s.Block_.Succs[0].Name
- fblockname = s.Block_.Succs[1].Name
- }
- return fmt.Sprintf("if %s goto %s else %s", relName(s.Cond, s), tblockname, fblockname)
-}
-
-func (s *Go) String() string {
- return printCall(&s.CallCommon, "go ", s)
-}
-
-func (s *Ret) String() string {
- var b bytes.Buffer
- b.WriteString("ret")
- for i, r := range s.Results {
- if i == 0 {
- b.WriteString(" ")
- } else {
- b.WriteString(", ")
- }
- b.WriteString(relName(r, s))
- }
- return b.String()
-}
-
-func (s *Send) String() string {
- return fmt.Sprintf("send %s <- %s", relName(s.Chan, s), relName(s.X, s))
-}
-
-func (s *Defer) String() string {
- return printCall(&s.CallCommon, "defer ", s)
-}
-
-func (s *Select) String() string {
- var b bytes.Buffer
- for i, st := range s.States {
- if i > 0 {
- b.WriteString(", ")
- }
- if st.Dir == ast.RECV {
- b.WriteString("<-")
- b.WriteString(relName(st.Chan, s))
- } else {
- b.WriteString(relName(st.Chan, s))
- b.WriteString("<-")
- b.WriteString(relName(st.Send, s))
- }
- }
- non := ""
- if !s.Blocking {
- non = "non"
- }
- return fmt.Sprintf("select %sblocking [%s]", non, b.String())
-}
-
-func (s *Store) String() string {
- return fmt.Sprintf("*%s = %s", relName(s.Addr, s), relName(s.Val, s))
-}
-
-func (s *MapUpdate) String() string {
- return fmt.Sprintf("%s[%s] = %s", relName(s.Map, s), relName(s.Key, s), relName(s.Value, s))
-}
-
-func (p *Package) String() string {
- // TODO(adonovan): prettify output.
- var b bytes.Buffer
- fmt.Fprintf(&b, "Package %s at %s:\n", p.ImportPath, p.Prog.Files.File(p.Pos).Name())
-
- // TODO(adonovan): make order deterministic.
- maxname := 0
- for name := range p.Members {
- if l := len(name); l > maxname {
- maxname = l
- }
- }
-
- for name, mem := range p.Members {
- switch mem := mem.(type) {
- case *Literal:
- fmt.Fprintf(&b, " const %-*s %s\n", maxname, name, mem.Name())
-
- case *Function:
- fmt.Fprintf(&b, " func %-*s %s\n", maxname, name, mem.Type())
-
- case *Type:
- fmt.Fprintf(&b, " type %-*s %s\n", maxname, name, mem.NamedType.Underlying)
- // TODO(adonovan): make order deterministic.
- for name, method := range mem.Methods {
- fmt.Fprintf(&b, " method %s %s\n", name, method.Signature)
- }
-
- case *Global:
- fmt.Fprintf(&b, " var %-*s %s\n", maxname, name, mem.Type())
-
- }
- }
- return b.String()
-}
-
-func commaOk(x bool) string {
- if x {
- return ",ok"
- }
- return ""
-}
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/sanity.go b/gcc-4.8.1/libgo/go/exp/ssa/sanity.go
deleted file mode 100644
index bbb30cfcf..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/sanity.go
+++ /dev/null
@@ -1,263 +0,0 @@
-package ssa
-
-// An optional pass for sanity checking invariants of the SSA representation.
-// Currently it checks CFG invariants but little at the instruction level.
-
-import (
- "bytes"
- "fmt"
- "io"
- "os"
-)
-
-type sanity struct {
- reporter io.Writer
- fn *Function
- block *BasicBlock
- insane bool
-}
-
-// SanityCheck performs integrity checking of the SSA representation
-// of the function fn and returns true if it was valid. Diagnostics
-// are written to reporter if non-nil, os.Stderr otherwise. Some
-// diagnostics are only warnings and do not imply a negative result.
-//
-// Sanity checking is intended to facilitate the debugging of code
-// transformation passes.
-//
-func SanityCheck(fn *Function, reporter io.Writer) bool {
- if reporter == nil {
- reporter = os.Stderr
- }
- return (&sanity{reporter: reporter}).checkFunction(fn)
-}
-
-// MustSanityCheck is like SanityCheck but panics instead of returning
-// a negative result.
-//
-func MustSanityCheck(fn *Function, reporter io.Writer) {
- if !SanityCheck(fn, reporter) {
- panic("SanityCheck failed")
- }
-}
-
-// blockNames returns the names of the specified blocks as a
-// human-readable string.
-//
-func blockNames(blocks []*BasicBlock) string {
- var buf bytes.Buffer
- for i, b := range blocks {
- if i > 0 {
- io.WriteString(&buf, ", ")
- }
- io.WriteString(&buf, b.Name)
- }
- return buf.String()
-}
-
-func (s *sanity) diagnostic(prefix, format string, args ...interface{}) {
- fmt.Fprintf(s.reporter, "%s: function %s", prefix, s.fn.FullName())
- if s.block != nil {
- fmt.Fprintf(s.reporter, ", block %s", s.block.Name)
- }
- io.WriteString(s.reporter, ": ")
- fmt.Fprintf(s.reporter, format, args...)
- io.WriteString(s.reporter, "\n")
-}
-
-func (s *sanity) errorf(format string, args ...interface{}) {
- s.insane = true
- s.diagnostic("Error", format, args...)
-}
-
-func (s *sanity) warnf(format string, args ...interface{}) {
- s.diagnostic("Warning", format, args...)
-}
-
-// findDuplicate returns an arbitrary basic block that appeared more
-// than once in blocks, or nil if all were unique.
-func findDuplicate(blocks []*BasicBlock) *BasicBlock {
- if len(blocks) < 2 {
- return nil
- }
- if blocks[0] == blocks[1] {
- return blocks[0]
- }
- // Slow path:
- m := make(map[*BasicBlock]bool)
- for _, b := range blocks {
- if m[b] {
- return b
- }
- m[b] = true
- }
- return nil
-}
-
-func (s *sanity) checkInstr(idx int, instr Instruction) {
- switch instr := instr.(type) {
- case *If, *Jump, *Ret:
- s.errorf("control flow instruction not at end of block")
- case *Phi:
- if idx == 0 {
- // It suffices to apply this check to just the first phi node.
- if dup := findDuplicate(s.block.Preds); dup != nil {
- s.errorf("phi node in block with duplicate predecessor %s", dup.Name)
- }
- } else {
- prev := s.block.Instrs[idx-1]
- if _, ok := prev.(*Phi); !ok {
- s.errorf("Phi instruction follows a non-Phi: %T", prev)
- }
- }
- if ne, np := len(instr.Edges), len(s.block.Preds); ne != np {
- s.errorf("phi node has %d edges but %d predecessors", ne, np)
- }
-
- case *Alloc:
- case *Call:
- case *BinOp:
- case *UnOp:
- case *MakeClosure:
- case *MakeChan:
- case *MakeMap:
- case *MakeSlice:
- case *Slice:
- case *Field:
- case *FieldAddr:
- case *IndexAddr:
- case *Index:
- case *Select:
- case *Range:
- case *TypeAssert:
- case *Extract:
- case *Go:
- case *Defer:
- case *Send:
- case *Store:
- case *MapUpdate:
- case *Next:
- case *Lookup:
- case *Conv:
- case *ChangeInterface:
- case *MakeInterface:
- // TODO(adonovan): implement checks.
- default:
- panic(fmt.Sprintf("Unknown instruction type: %T", instr))
- }
-}
-
-func (s *sanity) checkFinalInstr(idx int, instr Instruction) {
- switch instr.(type) {
- case *If:
- if nsuccs := len(s.block.Succs); nsuccs != 2 {
- s.errorf("If-terminated block has %d successors; expected 2", nsuccs)
- return
- }
- if s.block.Succs[0] == s.block.Succs[1] {
- s.errorf("If-instruction has same True, False target blocks: %s", s.block.Succs[0].Name)
- return
- }
-
- case *Jump:
- if nsuccs := len(s.block.Succs); nsuccs != 1 {
- s.errorf("Jump-terminated block has %d successors; expected 1", nsuccs)
- return
- }
-
- case *Ret:
- if nsuccs := len(s.block.Succs); nsuccs != 0 {
- s.errorf("Ret-terminated block has %d successors; expected none", nsuccs)
- return
- }
- // TODO(adonovan): check number and types of results
-
- default:
- s.errorf("non-control flow instruction at end of block")
- }
-}
-
-func (s *sanity) checkBlock(b *BasicBlock, isEntry bool) {
- s.block = b
-
- // Check all blocks are reachable.
- // (The entry block is always implicitly reachable.)
- if !isEntry && len(b.Preds) == 0 {
- s.warnf("unreachable block")
- if b.Instrs == nil {
- // Since this block is about to be pruned,
- // tolerating transient problems in it
- // simplifies other optimisations.
- return
- }
- }
-
- // Check predecessor and successor relations are dual.
- for _, a := range b.Preds {
- found := false
- for _, bb := range a.Succs {
- if bb == b {
- found = true
- break
- }
- }
- if !found {
- s.errorf("expected successor edge in predecessor %s; found only: %s", a.Name, blockNames(a.Succs))
- }
- }
- for _, c := range b.Succs {
- found := false
- for _, bb := range c.Preds {
- if bb == b {
- found = true
- break
- }
- }
- if !found {
- s.errorf("expected predecessor edge in successor %s; found only: %s", c.Name, blockNames(c.Preds))
- }
- }
-
- // Check each instruction is sane.
- n := len(b.Instrs)
- if n == 0 {
- s.errorf("basic block contains no instructions")
- }
- for j, instr := range b.Instrs {
- if b2 := instr.Block(); b2 == nil {
- s.errorf("nil Block() for instruction at index %d", j)
- continue
- } else if b2 != b {
- s.errorf("wrong Block() (%s) for instruction at index %d ", b2.Name, j)
- continue
- }
- if j < n-1 {
- s.checkInstr(j, instr)
- } else {
- s.checkFinalInstr(j, instr)
- }
- }
-}
-
-func (s *sanity) checkFunction(fn *Function) bool {
- // TODO(adonovan): check Function invariants:
- // - check owning Package (if any) contains this function.
- // - check params match signature
- // - check locals are all !Heap
- // - check transient fields are nil
- // - check block labels are unique (warning)
- s.fn = fn
- if fn.Prog == nil {
- s.errorf("nil Prog")
- }
- for i, b := range fn.Blocks {
- if b == nil {
- s.warnf("nil *BasicBlock at f.Blocks[%d]", i)
- continue
- }
- s.checkBlock(b, i == 0)
- }
- s.block = nil
- s.fn = nil
- return !s.insane
-}
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/ssa.go b/gcc-4.8.1/libgo/go/exp/ssa/ssa.go
deleted file mode 100644
index eb0f7fc0b..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/ssa.go
+++ /dev/null
@@ -1,1100 +0,0 @@
-package ssa
-
-// This package defines a high-level intermediate representation for
-// Go programs using static single-assignment (SSA) form.
-
-import (
- "fmt"
- "go/ast"
- "go/token"
- "go/types"
-)
-
-// A Program is a partial or complete Go program converted to SSA form.
-// Each Builder creates and populates a single Program during its
-// lifetime.
-//
-// TODO(adonovan): synthetic methods for promoted methods and for
-// standalone interface methods do not belong to any package. Make
-// them enumerable here.
-//
-// TODO(adonovan): MethodSets of types other than named types
-// (i.e. anon structs) are not currently accessible, nor are they
-// memoized. Add a method: MethodSetForType() which looks in the
-// appropriate Package (for methods of named types) or in
-// Program.AnonStructMethods (for methods of anon structs).
-//
-type Program struct {
- Files *token.FileSet // position information for the files of this Program
- Packages map[string]*Package // all loaded Packages, keyed by import path
- Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
-}
-
-// A Package is a single analyzed Go package, containing Members for
-// all package-level functions, variables, constants and types it
-// declares. These may be accessed directly via Members, or via the
-// type-specific accessor methods Func, Type, Var and Const.
-//
-type Package struct {
- Prog *Program // the owning program
- Types *types.Package // the type checker's package object for this package.
- ImportPath string // e.g. "sync/atomic"
- Pos token.Pos // position of an arbitrary file in the package
- Members map[string]Member // all exported and unexported members of the package
- AnonFuncs []*Function // all anonymous functions in this package
- Init *Function // the package's (concatenated) init function
-
- // The following fields are set transiently during building,
- // then cleared.
- files []*ast.File // the abstract syntax tree for the files of the package
-}
-
-// A Member is a member of a Go package, implemented by *Literal,
-// *Global, *Function, or *Type; they are created by package-level
-// const, var, func and type declarations respectively.
-//
-type Member interface {
- Name() string // the declared name of the package member
- String() string // human-readable information about the value
- Type() types.Type // the type of the package member
- ImplementsMember() // dummy method to indicate the "implements" relation.
-}
-
-// An Id identifies the name of a field of a struct type, or the name
-// of a method of an interface or a named type.
-//
-// For exported names, i.e. those beginning with a Unicode upper-case
-// letter, a simple string is unambiguous.
-//
-// However, a method set or struct may contain multiple unexported
-// names with identical spelling that are logically distinct because
-// they originate in different packages. Unexported names must
-// therefore be disambiguated by their package too.
-//
-// The Pkg field of an Id is therefore nil iff the name is exported.
-//
-// This type is suitable for use as a map key because the equivalence
-// relation == is consistent with identifier equality.
-type Id struct {
- Pkg *types.Package
- Name string
-}
-
-// A MethodSet contains all the methods whose receiver is either T or
-// *T, for some named or struct type T.
-//
-// TODO(adonovan): the client is required to adapt T<=>*T, e.g. when
-// invoking an interface method. (This could be simplified for the
-// client by having distinct method sets for T and *T, with the SSA
-// Builder generating wrappers as needed, but probably the client is
-// able to do a better job.) Document the precise rules the client
-// must follow.
-//
-type MethodSet map[Id]*Function
-
-// A Type is a Member of a Package representing the name, underlying
-// type and method set of a named type declared at package scope.
-//
-// The method set contains only concrete methods; it is empty for
-// interface types.
-//
-type Type struct {
- NamedType *types.NamedType
- Methods MethodSet
-}
-
-// An SSA value that can be referenced by an instruction.
-//
-// TODO(adonovan): add methods:
-// - Referrers() []*Instruction // all instructions that refer to this value.
-//
-type Value interface {
- // Name returns the name of this value, and determines how
- // this Value appears when used as an operand of an
- // Instruction.
- //
- // This is the same as the source name for Parameters,
- // Builtins, Functions, Captures, Globals and some Allocs.
- // For literals, it is a representation of the literal's value
- // and type. For all other Values this is the name of the
- // virtual register defined by the instruction.
- //
- // The name of an SSA Value is not semantically significant,
- // and may not even be unique within a function.
- Name() string
-
- // If this value is an Instruction, String returns its
- // disassembled form; otherwise it returns unspecified
- // human-readable information about the Value, such as its
- // kind, name and type.
- String() string
-
- // Type returns the type of this value. Many instructions
- // (e.g. IndexAddr) change the behaviour depending on the
- // types of their operands.
- //
- // Documented type invariants below (e.g. "Alloc.Type()
- // returns a *types.Pointer") refer to the underlying type in
- // the case of NamedTypes.
- Type() types.Type
-
- // Dummy method to indicate the "implements" relation.
- ImplementsValue()
-}
-
-// An Instruction is an SSA instruction that computes a new Value or
-// has some effect.
-//
-// An Instruction that defines a value (e.g. BinOp) also implements
-// the Value interface; an Instruction that only has an effect (e.g. Store)
-// does not.
-//
-// TODO(adonovan): add method:
-// - Operands() []Value // all Values referenced by this instruction.
-//
-type Instruction interface {
- // String returns the disassembled form of this value. e.g.
- //
- // Examples of Instructions that define a Value:
- // e.g. "x + y" (BinOp)
- // "len([])" (Call)
- // Note that the name of the Value is not printed.
- //
- // Examples of Instructions that do define (are) Values:
- // e.g. "ret x" (Ret)
- // "*y = x" (Store)
- //
- // (This separation is useful for some analyses which
- // distinguish the operation from the value it
- // defines. e.g. 'y = local int' is both an allocation of
- // memory 'local int' and a definition of a pointer y.)
- String() string
-
- // Block returns the basic block to which this instruction
- // belongs.
- Block() *BasicBlock
-
- // SetBlock sets the basic block to which this instruction
- // belongs.
- SetBlock(*BasicBlock)
-
- // Dummy method to indicate the "implements" relation.
- ImplementsInstruction()
-}
-
-// Function represents the parameters, results and code of a function
-// or method.
-//
-// If Blocks is nil, this indicates an external function for which no
-// Go source code is available. In this case, Captures and Locals
-// will be nil too. Clients performing whole-program analysis must
-// handle external functions specially.
-//
-// Functions are immutable values; they do not have addresses.
-//
-// Blocks[0] is the function entry point; block order is not otherwise
-// semantically significant, though it may affect the readability of
-// the disassembly.
-//
-// A nested function that refers to one or more lexically enclosing
-// local variables ("free variables") has Capture parameters. Such
-// functions cannot be called directly but require a value created by
-// MakeClosure which, via its Bindings, supplies values for these
-// parameters. Captures are always addresses.
-//
-// If the function is a method (Signature.Recv != nil) then the first
-// element of Params is the receiver parameter.
-//
-// Type() returns the function's Signature.
-//
-type Function struct {
- Name_ string
- Signature *types.Signature
-
- Pos token.Pos // location of the definition
- Enclosing *Function // enclosing function if anon; nil if global
- Pkg *Package // enclosing package; nil for some synthetic methods
- Prog *Program // enclosing program
- Params []*Parameter
- FreeVars []*Capture // free variables whose values must be supplied by closure
- Locals []*Alloc
- Blocks []*BasicBlock // basic blocks of the function; nil => external
-
- // The following fields are set transiently during building,
- // then cleared.
- currentBlock *BasicBlock // where to emit code
- objects map[types.Object]Value // addresses of local variables
- results []*Alloc // tuple of named results
- syntax *funcSyntax // abstract syntax trees for Go source functions
- targets *targets // linked stack of branch targets
- lblocks map[*ast.Object]*lblock // labelled blocks
-}
-
-// An SSA basic block.
-//
-// The final element of Instrs is always an explicit transfer of
-// control (If, Jump or Ret).
-//
-// A block may contain no Instructions only if it is unreachable,
-// i.e. Preds is nil. Empty blocks are typically pruned.
-//
-// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
-// graph independent of the SSA Value graph. It is illegal for
-// multiple edges to exist between the same pair of blocks.
-//
-// The order of Preds and Succs are significant (to Phi and If
-// instructions, respectively).
-//
-type BasicBlock struct {
- Name string // label; no semantic significance
- Func *Function // containing function
- Instrs []Instruction // instructions in order
- Preds, Succs []*BasicBlock // predecessors and successors
- succs2 [2]*BasicBlock // initial space for Succs.
-}
-
-// Pure values ----------------------------------------
-
-// A Capture is a pointer to a lexically enclosing local variable.
-//
-// The referent of a capture is an Alloc or another Capture and is
-// always considered potentially escaping, so Captures are always
-// addresses in the heap, and have pointer types.
-//
-type Capture struct {
- Outer Value // the Value captured from the enclosing context.
-}
-
-// A Parameter represents an input parameter of a function.
-//
-type Parameter struct {
- Name_ string
- Type_ types.Type
-}
-
-// A Literal represents a literal nil, boolean, string or numeric
-// (integer, fraction or complex) value.
-//
-// A literal's underlying Type() can be a basic type, possibly one of
-// the "untyped" types. A nil literal can have any reference type:
-// interface, map, channel, pointer, slice, or function---but not
-// "untyped nil".
-//
-// All source-level constant expressions are represented by a Literal
-// of equal type and value.
-//
-// Value holds the exact value of the literal, independent of its
-// Type(), using the same representation as package go/types uses for
-// constants.
-//
-// Example printed form:
-// 42:int
-// "hello":untyped string
-// 3+4i:MyComplex
-//
-type Literal struct {
- Type_ types.Type
- Value interface{}
-}
-
-// A Global is a named Value holding the address of a package-level
-// variable.
-//
-type Global struct {
- Name_ string
- Type_ types.Type
- Pkg *Package
-
- // The following fields are set transiently during building,
- // then cleared.
- spec *ast.ValueSpec // explained at buildGlobal
-}
-
-// A built-in function, e.g. len.
-//
-// Builtins are immutable values; they do not have addresses.
-//
-// Type() returns an inscrutable *types.builtin. Built-in functions
-// may have polymorphic or variadic types that are not expressible in
-// Go's type system.
-//
-type Builtin struct {
- Object *types.Func // canonical types.Universe object for this built-in
-}
-
-// Value-defining instructions ----------------------------------------
-
-// The Alloc instruction reserves space for a value of the given type,
-// zero-initializes it, and yields its address.
-//
-// Alloc values are always addresses, and have pointer types, so the
-// type of the allocated space is actually indirect(Type()).
-//
-// If Heap is false, Alloc allocates space in the function's
-// activation record (frame); we refer to an Alloc(Heap=false) as a
-// "local" alloc. Each local Alloc returns the same address each time
-// it is executed within the same activation; the space is
-// re-initialized to zero.
-//
-// If Heap is true, Alloc allocates space in the heap, and returns; we
-// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
-// returns a different address each time it is executed.
-//
-// When Alloc is applied to a channel, map or slice type, it returns
-// the address of an uninitialized (nil) reference of that kind; store
-// the result of MakeSlice, MakeMap or MakeChan in that location to
-// instantiate these types.
-//
-// Example printed form:
-// t0 = local int
-// t1 = new int
-//
-type Alloc struct {
- anInstruction
- Name_ string
- Type_ types.Type
- Heap bool
-}
-
-// Phi represents an SSA φ-node, which combines values that differ
-// across incoming control-flow edges and yields a new value. Within
-// a block, all φ-nodes must appear before all non-φ nodes.
-//
-// Example printed form:
-// t2 = phi [0.start: t0, 1.if.then: t1, ...]
-//
-type Phi struct {
- Register
- Edges []Value // Edges[i] is value for Block().Preds[i]
-}
-
-// Call represents a function or method call.
-//
-// The Call instruction yields the function result, if there is
-// exactly one, or a tuple (empty or len>1) whose components are
-// accessed via Extract.
-//
-// See CallCommon for generic function call documentation.
-//
-// Example printed form:
-// t2 = println(t0, t1)
-// t4 = t3()
-// t7 = invoke t5.Println(...t6)
-//
-type Call struct {
- Register
- CallCommon
-}
-
-// BinOp yields the result of binary operation X Op Y.
-//
-// Example printed form:
-// t1 = t0 + 1:int
-//
-type BinOp struct {
- Register
- // One of:
- // ADD SUB MUL QUO REM + - * / %
- // AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
- // EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
- Op token.Token
- X, Y Value
-}
-
-// UnOp yields the result of Op X.
-// ARROW is channel receive.
-// MUL is pointer indirection (load).
-//
-// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
-// and a boolean indicating the success of the receive. The
-// components of the tuple are accessed using Extract.
-//
-// Example printed form:
-// t0 = *x
-// t2 = <-t1,ok
-//
-type UnOp struct {
- Register
- Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
- X Value
- CommaOk bool
-}
-
-// Conv yields the conversion of X to type Type().
-//
-// A conversion is one of the following kinds. The behaviour of the
-// conversion operator may depend on both Type() and X.Type(), as well
-// as the dynamic value.
-//
-// A '+' indicates that a dynamic representation change may occur.
-// A '-' indicates that the conversion is a value-preserving change
-// to types only.
-//
-// 1. implicit conversions (arising from assignability rules):
-// - adding/removing a name, same underlying types.
-// - channel type restriction, possibly adding/removing a name.
-// 2. explicit conversions (in addition to the above):
-// - changing a name, same underlying types.
-// - between pointers to identical base types.
-// + conversions between real numeric types.
-// + conversions between complex numeric types.
-// + integer/[]byte/[]rune -> string.
-// + string -> []byte/[]rune.
-//
-// TODO(adonovan): split into two cases:
-// - rename value (ChangeType)
-// + value to type with different representation (Conv)
-//
-// Conversions of untyped string/number/bool constants to a specific
-// representation are eliminated during SSA construction.
-//
-// Example printed form:
-// t1 = convert interface{} <- int (t0)
-//
-type Conv struct {
- Register
- X Value
-}
-
-// ChangeInterface constructs a value of one interface type from a
-// value of another interface type known to be assignable to it.
-//
-// Example printed form:
-// t1 = change interface interface{} <- I (t0)
-//
-type ChangeInterface struct {
- Register
- X Value
-}
-
-// MakeInterface constructs an instance of an interface type from a
-// value and its method-set.
-//
-// To construct the zero value of an interface type T, use:
-// &Literal{types.nilType{}, T}
-//
-// Example printed form:
-// t1 = make interface interface{} <- int (42:int)
-//
-type MakeInterface struct {
- Register
- X Value
- Methods MethodSet // method set of (non-interface) X iff converting to interface
-}
-
-// A MakeClosure instruction yields an anonymous function value whose
-// code is Fn and whose lexical capture slots are populated by Bindings.
-//
-// By construction, all captured variables are addresses of variables
-// allocated with 'new', i.e. Alloc(Heap=true).
-//
-// Type() returns a *types.Signature.
-//
-// Example printed form:
-// t0 = make closure anon@1.2 [x y z]
-//
-type MakeClosure struct {
- Register
- Fn *Function
- Bindings []Value // values for each free variable in Fn.FreeVars
-}
-
-// The MakeMap instruction creates a new hash-table-based map object
-// and yields a value of kind map.
-//
-// Type() returns a *types.Map.
-//
-// Example printed form:
-// t1 = make map[string]int t0
-//
-type MakeMap struct {
- Register
- Reserve Value // initial space reservation; nil => default
-}
-
-// The MakeChan instruction creates a new channel object and yields a
-// value of kind chan.
-//
-// Type() returns a *types.Chan.
-//
-// Example printed form:
-// t0 = make chan int 0
-//
-type MakeChan struct {
- Register
- Size Value // int; size of buffer; zero => synchronous.
-}
-
-// MakeSlice yields a slice of length Len backed by a newly allocated
-// array of length Cap.
-//
-// Both Len and Cap must be non-nil Values of integer type.
-//
-// (Alloc(types.Array) followed by Slice will not suffice because
-// Alloc can only create arrays of statically known length.)
-//
-// Type() returns a *types.Slice.
-//
-// Example printed form:
-// t1 = make slice []string 1:int t0
-//
-type MakeSlice struct {
- Register
- Len Value
- Cap Value
-}
-
-// Slice yields a slice of an existing string, slice or *array X
-// between optional integer bounds Low and High.
-//
-// Type() returns string if the type of X was string, otherwise a
-// *types.Slice with the same element type as X.
-//
-// Example printed form:
-// t1 = slice t0[1:]
-//
-type Slice struct {
- Register
- X Value // slice, string, or *array
- Low, High Value // either may be nil
-}
-
-// FieldAddr yields the address of Field of *struct X.
-//
-// The field is identified by its index within the field list of the
-// struct type of X.
-//
-// Type() returns a *types.Pointer.
-//
-// Example printed form:
-// t1 = &t0.name [#1]
-//
-type FieldAddr struct {
- Register
- X Value // *struct
- Field int // index into X.Type().(*types.Struct).Fields
-}
-
-// Field yields the Field of struct X.
-//
-// The field is identified by its index within the field list of the
-// struct type of X; by using numeric indices we avoid ambiguity of
-// package-local identifiers and permit compact representations.
-//
-// Example printed form:
-// t1 = t0.name [#1]
-//
-type Field struct {
- Register
- X Value // struct
- Field int // index into X.Type().(*types.Struct).Fields
-}
-
-// IndexAddr yields the address of the element at index Index of
-// collection X. Index is an integer expression.
-//
-// The elements of maps and strings are not addressable; use Lookup or
-// MapUpdate instead.
-//
-// Type() returns a *types.Pointer.
-//
-// Example printed form:
-// t2 = &t0[t1]
-//
-type IndexAddr struct {
- Register
- X Value // slice or *array,
- Index Value // numeric index
-}
-
-// Index yields element Index of array X.
-//
-// TODO(adonovan): permit X to have type slice.
-// Currently this requires IndexAddr followed by Load.
-//
-// Example printed form:
-// t2 = t0[t1]
-//
-type Index struct {
- Register
- X Value // array
- Index Value // integer index
-}
-
-// Lookup yields element Index of collection X, a map or string.
-// Index is an integer expression if X is a string or the appropriate
-// key type if X is a map.
-//
-// If CommaOk, the result is a 2-tuple of the value above and a
-// boolean indicating the result of a map membership test for the key.
-// The components of the tuple are accessed using Extract.
-//
-// Example printed form:
-// t2 = t0[t1]
-// t5 = t3[t4],ok
-//
-type Lookup struct {
- Register
- X Value // string or map
- Index Value // numeric or key-typed index
- CommaOk bool // return a value,ok pair
-}
-
-// SelectState is a helper for Select.
-// It represents one goal state and its corresponding communication.
-//
-type SelectState struct {
- Dir ast.ChanDir // direction of case
- Chan Value // channel to use (for send or receive)
- Send Value // value to send (for send)
-}
-
-// Select tests whether (or blocks until) one or more of the specified
-// sent or received states is entered.
-//
-// It returns a triple (index int, recv ?, recvOk bool) whose
-// components, described below, must be accessed via the Extract
-// instruction.
-//
-// If Blocking, select waits until exactly one state holds, i.e. a
-// channel becomes ready for the designated operation of sending or
-// receiving; select chooses one among the ready states
-// pseudorandomly, performs the send or receive operation, and sets
-// 'index' to the index of the chosen channel.
-//
-// If !Blocking, select doesn't block if no states hold; instead it
-// returns immediately with index equal to -1.
-//
-// If the chosen channel was used for a receive, 'recv' is set to the
-// received value; Otherwise it is unspecified. recv has no useful
-// type since it is conceptually the union of all possible received
-// values.
-//
-// The third component of the triple, recvOk, is a boolean whose value
-// is true iff the selected operation was a receive and the receive
-// successfully yielded a value.
-//
-// Example printed form:
-// t3 = select nonblocking [<-t0, t1<-t2, ...]
-// t4 = select blocking []
-//
-type Select struct {
- Register
- States []SelectState
- Blocking bool
-}
-
-// Range yields an iterator over the domain and range of X.
-// Elements are accessed via Next.
-//
-// Type() returns a *types.Result (tuple type).
-//
-// Example printed form:
-// t0 = range "hello":string
-//
-type Range struct {
- Register
- X Value // array, *array, slice, string, map or chan
-}
-
-// Next reads and advances the iterator Iter and returns a 3-tuple
-// value (ok, k, v). If the iterator is not exhausted, ok is true and
-// k and v are the next elements of the domain and range,
-// respectively. Otherwise ok is false and k and v are undefined.
-//
-// For channel iterators, k is the received value and v is always
-// undefined.
-//
-// Components of the tuple are accessed using Extract.
-//
-// Type() returns a *types.Result (tuple type).
-//
-// Example printed form:
-// t1 = next t0
-//
-type Next struct {
- Register
- Iter Value
-}
-
-// TypeAssert tests whether interface value X has type
-// AssertedType.
-//
-// If CommaOk: on success it returns a pair (v, true) where v is a
-// copy of value X; on failure it returns (z, false) where z is the
-// zero value of that type. The components of the pair must be
-// accessed using the Extract instruction.
-//
-// If !CommaOk, on success it returns just the single value v; on
-// failure it panics.
-//
-// Type() reflects the actual type of the result, possibly a pair
-// (types.Result); AssertedType is the asserted type.
-//
-// Example printed form:
-// t1 = typeassert t0.(int)
-// t3 = typeassert,ok t2.(T)
-//
-type TypeAssert struct {
- Register
- X Value
- AssertedType types.Type
- CommaOk bool
-}
-
-// Extract yields component Index of Tuple.
-//
-// This is used to access the results of instructions with multiple
-// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
-// IndexExpr(Map).
-//
-// Example printed form:
-// t1 = extract t0 #1
-//
-type Extract struct {
- Register
- Tuple Value
- Index int
-}
-
-// Instructions executed for effect. They do not yield a value. --------------------
-
-// Jump transfers control to the sole successor of its owning block.
-//
-// A Jump instruction must be the last instruction of its containing
-// BasicBlock.
-//
-// Example printed form:
-// jump done
-//
-type Jump struct {
- anInstruction
-}
-
-// The If instruction transfers control to one of the two successors
-// of its owning block, depending on the boolean Cond: the first if
-// true, the second if false.
-//
-// An If instruction must be the last instruction of its containing
-// BasicBlock.
-//
-// Example printed form:
-// if t0 goto done else body
-//
-type If struct {
- anInstruction
- Cond Value
-}
-
-// Ret returns values and control back to the calling function.
-//
-// len(Results) is always equal to the number of results in the
-// function's signature. A source-level 'return' statement with no
-// operands in a multiple-return value function is desugared to make
-// the results explicit.
-//
-// If len(Results) > 1, Ret returns a tuple value with the specified
-// components which the caller must access using Extract instructions.
-//
-// There is no instruction to return a ready-made tuple like those
-// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
-// a tail-call to a function with multiple result parameters.
-// TODO(adonovan): consider defining one; but: dis- and re-assembling
-// the tuple is unavoidable if assignability conversions are required
-// on the components.
-//
-// Ret must be the last instruction of its containing BasicBlock.
-// Such a block has no successors.
-//
-// Example printed form:
-// ret
-// ret nil:I, 2:int
-//
-type Ret struct {
- anInstruction
- Results []Value
-}
-
-// Go creates a new goroutine and calls the specified function
-// within it.
-//
-// See CallCommon for generic function call documentation.
-//
-// Example printed form:
-// go println(t0, t1)
-// go t3()
-// go invoke t5.Println(...t6)
-//
-type Go struct {
- anInstruction
- CallCommon
-}
-
-// Defer pushes the specified call onto a stack of functions
-// to be called immediately prior to returning from the
-// current function.
-//
-// See CallCommon for generic function call documentation.
-//
-// Example printed form:
-// defer println(t0, t1)
-// defer t3()
-// defer invoke t5.Println(...t6)
-//
-type Defer struct {
- anInstruction
- CallCommon
-}
-
-// Send sends X on channel Chan.
-//
-// Example printed form:
-// send t0 <- t1
-//
-type Send struct {
- anInstruction
- Chan, X Value
-}
-
-// Store stores Val at address Addr.
-// Stores can be of arbitrary types.
-//
-// Example printed form:
-// *x = y
-//
-type Store struct {
- anInstruction
- Addr Value
- Val Value
-}
-
-// MapUpdate updates the association of Map[Key] to Value.
-//
-// Example printed form:
-// t0[t1] = t2
-//
-type MapUpdate struct {
- anInstruction
- Map Value
- Key Value
- Value Value
-}
-
-// Embeddable mix-ins used for common parts of other structs. --------------------
-
-// Register is a mix-in embedded by all SSA values that are also
-// instructions, i.e. virtual registers, and provides implementations
-// of the Value interface's Name() and Type() methods: the name is
-// simply a numbered register (e.g. "t0") and the type is the Type_
-// field.
-//
-// Temporary names are automatically assigned to each Register on
-// completion of building a function in SSA form.
-//
-// Clients must not assume that the 'id' value (and the Name() derived
-// from it) is unique within a function. As always in this API,
-// semantics are determined only by identity; names exist only to
-// facilitate debugging.
-//
-type Register struct {
- anInstruction
- num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
- Type_ types.Type // type of virtual register
-}
-
-// AnInstruction is a mix-in embedded by all Instructions.
-// It provides the implementations of the Block and SetBlock methods.
-type anInstruction struct {
- Block_ *BasicBlock // the basic block of this instruction
-}
-
-// CallCommon is a mix-in embedded by Go, Defer and Call to hold the
-// common parts of a function or method call.
-//
-// Each CallCommon exists in one of two modes, function call and
-// interface method invocation, or "call" and "invoke" for short.
-//
-// 1. "call" mode: when Recv is nil, a CallCommon represents an
-// ordinary function call of the value in Func.
-//
-// In the common case in which Func is a *Function, this indicates a
-// statically dispatched call to a package-level function, an
-// anonymous function, or a method of a named type. Also statically
-// dispatched, but less common, Func may be a *MakeClosure, indicating
-// an immediately applied function literal with free variables. Any
-// other Value of Func indicates a dynamically dispatched function
-// call.
-//
-// Args contains the arguments to the call. If Func is a method,
-// Args[0] contains the receiver parameter. Recv and Method are not
-// used in this mode.
-//
-// Example printed form:
-// t2 = println(t0, t1)
-// go t3()
-// defer t5(...t6)
-//
-// 2. "invoke" mode: when Recv is non-nil, a CallCommon represents a
-// dynamically dispatched call to an interface method. In this
-// mode, Recv is the interface value and Method is the index of the
-// method within the interface type of the receiver.
-//
-// Recv is implicitly supplied to the concrete method implementation
-// as the receiver parameter; in other words, Args[0] holds not the
-// receiver but the first true argument. Func is not used in this
-// mode.
-//
-// Example printed form:
-// t1 = invoke t0.String()
-// go invoke t3.Run(t2)
-// defer invoke t4.Handle(...t5)
-//
-// In both modes, HasEllipsis is true iff the last element of Args is
-// a slice value containing zero or more arguments to a variadic
-// function. (This is not semantically significant since the type of
-// the called function is sufficient to determine this, but it aids
-// readability of the printed form.)
-//
-type CallCommon struct {
- Recv Value // receiver, iff interface method invocation
- Method int // index of interface method within Recv.Type().(*types.Interface).Methods
- Func Value // target of call, iff function call
- Args []Value // actual parameters, including receiver in invoke mode
- HasEllipsis bool // true iff last Args is a slice (needed?)
- Pos token.Pos // position of call expression
-}
-
-func (v *Builtin) Type() types.Type { return v.Object.GetType() }
-func (v *Builtin) Name() string { return v.Object.GetName() }
-
-func (v *Capture) Type() types.Type { return v.Outer.Type() }
-func (v *Capture) Name() string { return v.Outer.Name() }
-
-func (v *Global) Type() types.Type { return v.Type_ }
-func (v *Global) Name() string { return v.Name_ }
-
-func (v *Function) Name() string { return v.Name_ }
-func (v *Function) Type() types.Type { return v.Signature }
-
-func (v *Parameter) Type() types.Type { return v.Type_ }
-func (v *Parameter) Name() string { return v.Name_ }
-
-func (v *Alloc) Type() types.Type { return v.Type_ }
-func (v *Alloc) Name() string { return v.Name_ }
-
-func (v *Register) Type() types.Type { return v.Type_ }
-func (v *Register) setType(typ types.Type) { v.Type_ = typ }
-func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
-func (v *Register) setNum(num int) { v.num = num }
-
-func (v *anInstruction) Block() *BasicBlock { return v.Block_ }
-func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block }
-
-func (ms *Type) Type() types.Type { return ms.NamedType }
-func (ms *Type) String() string { return ms.Name() }
-func (ms *Type) Name() string { return ms.NamedType.Obj.Name }
-
-func (p *Package) Name() string { return p.Types.Name }
-
-// Func returns the package-level function of the specified name,
-// or nil if not found.
-//
-func (p *Package) Func(name string) (f *Function) {
- f, _ = p.Members[name].(*Function)
- return
-}
-
-// Var returns the package-level variable of the specified name,
-// or nil if not found.
-//
-func (p *Package) Var(name string) (g *Global) {
- g, _ = p.Members[name].(*Global)
- return
-}
-
-// Const returns the package-level constant of the specified name,
-// or nil if not found.
-//
-func (p *Package) Const(name string) (l *Literal) {
- l, _ = p.Members[name].(*Literal)
- return
-}
-
-// Type returns the package-level type of the specified name,
-// or nil if not found.
-//
-func (p *Package) Type(name string) (t *Type) {
- t, _ = p.Members[name].(*Type)
- return
-}
-
-// "Implements" relation boilerplate.
-// Don't try to factor this using promotion and mix-ins: the long-hand
-// form serves as better documentation, including in godoc.
-
-func (*Alloc) ImplementsValue() {}
-func (*BinOp) ImplementsValue() {}
-func (*Builtin) ImplementsValue() {}
-func (*Call) ImplementsValue() {}
-func (*Capture) ImplementsValue() {}
-func (*ChangeInterface) ImplementsValue() {}
-func (*Conv) ImplementsValue() {}
-func (*Extract) ImplementsValue() {}
-func (*Field) ImplementsValue() {}
-func (*FieldAddr) ImplementsValue() {}
-func (*Function) ImplementsValue() {}
-func (*Global) ImplementsValue() {}
-func (*Index) ImplementsValue() {}
-func (*IndexAddr) ImplementsValue() {}
-func (*Literal) ImplementsValue() {}
-func (*Lookup) ImplementsValue() {}
-func (*MakeChan) ImplementsValue() {}
-func (*MakeClosure) ImplementsValue() {}
-func (*MakeInterface) ImplementsValue() {}
-func (*MakeMap) ImplementsValue() {}
-func (*MakeSlice) ImplementsValue() {}
-func (*Next) ImplementsValue() {}
-func (*Parameter) ImplementsValue() {}
-func (*Phi) ImplementsValue() {}
-func (*Range) ImplementsValue() {}
-func (*Select) ImplementsValue() {}
-func (*Slice) ImplementsValue() {}
-func (*TypeAssert) ImplementsValue() {}
-func (*UnOp) ImplementsValue() {}
-
-func (*Function) ImplementsMember() {}
-func (*Global) ImplementsMember() {}
-func (*Literal) ImplementsMember() {}
-func (*Type) ImplementsMember() {}
-
-func (*Alloc) ImplementsInstruction() {}
-func (*BinOp) ImplementsInstruction() {}
-func (*Call) ImplementsInstruction() {}
-func (*ChangeInterface) ImplementsInstruction() {}
-func (*Conv) ImplementsInstruction() {}
-func (*Defer) ImplementsInstruction() {}
-func (*Extract) ImplementsInstruction() {}
-func (*Field) ImplementsInstruction() {}
-func (*FieldAddr) ImplementsInstruction() {}
-func (*Go) ImplementsInstruction() {}
-func (*If) ImplementsInstruction() {}
-func (*Index) ImplementsInstruction() {}
-func (*IndexAddr) ImplementsInstruction() {}
-func (*Jump) ImplementsInstruction() {}
-func (*Lookup) ImplementsInstruction() {}
-func (*MakeChan) ImplementsInstruction() {}
-func (*MakeClosure) ImplementsInstruction() {}
-func (*MakeInterface) ImplementsInstruction() {}
-func (*MakeMap) ImplementsInstruction() {}
-func (*MakeSlice) ImplementsInstruction() {}
-func (*MapUpdate) ImplementsInstruction() {}
-func (*Next) ImplementsInstruction() {}
-func (*Phi) ImplementsInstruction() {}
-func (*Range) ImplementsInstruction() {}
-func (*Ret) ImplementsInstruction() {}
-func (*Select) ImplementsInstruction() {}
-func (*Send) ImplementsInstruction() {}
-func (*Slice) ImplementsInstruction() {}
-func (*Store) ImplementsInstruction() {}
-func (*TypeAssert) ImplementsInstruction() {}
-func (*UnOp) ImplementsInstruction() {}
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/util.go b/gcc-4.8.1/libgo/go/exp/ssa/util.go
deleted file mode 100644
index 0d2ebde26..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/util.go
+++ /dev/null
@@ -1,172 +0,0 @@
-package ssa
-
-// This file defines a number of miscellaneous utility functions.
-
-import (
- "fmt"
- "go/ast"
- "go/types"
-)
-
-func unreachable() {
- panic("unreachable")
-}
-
-//// AST utilities
-
-// noparens returns e with any enclosing parentheses stripped.
-func noparens(e ast.Expr) ast.Expr {
- for {
- p, ok := e.(*ast.ParenExpr)
- if !ok {
- break
- }
- e = p.X
- }
- return e
-}
-
-// isBlankIdent returns true iff e is an Ident with name "_".
-// They have no associated types.Object, and thus no type.
-//
-// TODO(gri): consider making typechecker not treat them differently.
-// It's one less thing for clients like us to worry about.
-//
-func isBlankIdent(e ast.Expr) bool {
- id, ok := e.(*ast.Ident)
- return ok && id.Name == "_"
-}
-
-//// Type utilities. Some of these belong in go/types.
-
-// underlyingType returns the underlying type of typ.
-// TODO(gri): this is a copy of go/types.underlying; export that function.
-//
-func underlyingType(typ types.Type) types.Type {
- if typ, ok := typ.(*types.NamedType); ok {
- return typ.Underlying // underlying types are never NamedTypes
- }
- if typ == nil {
- panic("underlyingType(nil)")
- }
- return typ
-}
-
-// isPointer returns true for types whose underlying type is a pointer.
-func isPointer(typ types.Type) bool {
- if nt, ok := typ.(*types.NamedType); ok {
- typ = nt.Underlying
- }
- _, ok := typ.(*types.Pointer)
- return ok
-}
-
-// pointer(typ) returns the type that is a pointer to typ.
-func pointer(typ types.Type) *types.Pointer {
- return &types.Pointer{Base: typ}
-}
-
-// indirect(typ) assumes that typ is a pointer type,
-// or named alias thereof, and returns its base type.
-// Panic ensures if it is not a pointer.
-//
-func indirectType(ptr types.Type) types.Type {
- if v, ok := underlyingType(ptr).(*types.Pointer); ok {
- return v.Base
- }
- // When debugging it is convenient to comment out this line
- // and let it continue to print the (illegal) SSA form.
- panic("indirect() of non-pointer type: " + ptr.String())
- return nil
-}
-
-// deref returns a pointer's base type; otherwise it returns typ.
-func deref(typ types.Type) types.Type {
- if typ, ok := underlyingType(typ).(*types.Pointer); ok {
- return typ.Base
- }
- return typ
-}
-
-// methodIndex returns the method (and its index) named id within the
-// method table methods of named or interface type typ. If not found,
-// panic ensues.
-//
-func methodIndex(typ types.Type, methods []*types.Method, id Id) (i int, m *types.Method) {
- for i, m = range methods {
- if IdFromQualifiedName(m.QualifiedName) == id {
- return
- }
- }
- panic(fmt.Sprint("method not found: ", id, " in interface ", typ))
-}
-
-// objKind returns the syntactic category of the named entity denoted by obj.
-func objKind(obj types.Object) ast.ObjKind {
- switch obj.(type) {
- case *types.Package:
- return ast.Pkg
- case *types.TypeName:
- return ast.Typ
- case *types.Const:
- return ast.Con
- case *types.Var:
- return ast.Var
- case *types.Func:
- return ast.Fun
- }
- panic(fmt.Sprintf("unexpected Object type: %T", obj))
-}
-
-// DefaultType returns the default "typed" type for an "untyped" type;
-// it returns the incoming type for all other types. If there is no
-// corresponding untyped type, the result is types.Typ[types.Invalid].
-//
-// Exported to exp/ssa/interp.
-//
-// TODO(gri): this is a copy of go/types.defaultType; export that function.
-//
-func DefaultType(typ types.Type) types.Type {
- if t, ok := typ.(*types.Basic); ok {
- k := types.Invalid
- switch t.Kind {
- // case UntypedNil:
- // There is no default type for nil. For a good error message,
- // catch this case before calling this function.
- case types.UntypedBool:
- k = types.Bool
- case types.UntypedInt:
- k = types.Int
- case types.UntypedRune:
- k = types.Rune
- case types.UntypedFloat:
- k = types.Float64
- case types.UntypedComplex:
- k = types.Complex128
- case types.UntypedString:
- k = types.String
- }
- typ = types.Typ[k]
- }
- return typ
-}
-
-// makeId returns the Id (name, pkg) if the name is exported or
-// (name, nil) otherwise.
-//
-func makeId(name string, pkg *types.Package) (id Id) {
- id.Name = name
- if !ast.IsExported(name) {
- id.Pkg = pkg
- }
- return
-}
-
-// IdFromQualifiedName returns the Id (qn.Name, qn.Pkg) if qn is an
-// exported name or (qn.Name, nil) otherwise.
-//
-// Exported to exp/ssa/interp.
-//
-func IdFromQualifiedName(qn types.QualifiedName) Id {
- return makeId(qn.Name, qn.Pkg)
-}