aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/exp/ssa/ssa.go
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/exp/ssa/ssa.go')
-rw-r--r--gcc-4.8.1/libgo/go/exp/ssa/ssa.go1100
1 files changed, 0 insertions, 1100 deletions
diff --git a/gcc-4.8.1/libgo/go/exp/ssa/ssa.go b/gcc-4.8.1/libgo/go/exp/ssa/ssa.go
deleted file mode 100644
index eb0f7fc0b..000000000
--- a/gcc-4.8.1/libgo/go/exp/ssa/ssa.go
+++ /dev/null
@@ -1,1100 +0,0 @@
-package ssa
-
-// This package defines a high-level intermediate representation for
-// Go programs using static single-assignment (SSA) form.
-
-import (
- "fmt"
- "go/ast"
- "go/token"
- "go/types"
-)
-
-// A Program is a partial or complete Go program converted to SSA form.
-// Each Builder creates and populates a single Program during its
-// lifetime.
-//
-// TODO(adonovan): synthetic methods for promoted methods and for
-// standalone interface methods do not belong to any package. Make
-// them enumerable here.
-//
-// TODO(adonovan): MethodSets of types other than named types
-// (i.e. anon structs) are not currently accessible, nor are they
-// memoized. Add a method: MethodSetForType() which looks in the
-// appropriate Package (for methods of named types) or in
-// Program.AnonStructMethods (for methods of anon structs).
-//
-type Program struct {
- Files *token.FileSet // position information for the files of this Program
- Packages map[string]*Package // all loaded Packages, keyed by import path
- Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
-}
-
-// A Package is a single analyzed Go package, containing Members for
-// all package-level functions, variables, constants and types it
-// declares. These may be accessed directly via Members, or via the
-// type-specific accessor methods Func, Type, Var and Const.
-//
-type Package struct {
- Prog *Program // the owning program
- Types *types.Package // the type checker's package object for this package.
- ImportPath string // e.g. "sync/atomic"
- Pos token.Pos // position of an arbitrary file in the package
- Members map[string]Member // all exported and unexported members of the package
- AnonFuncs []*Function // all anonymous functions in this package
- Init *Function // the package's (concatenated) init function
-
- // The following fields are set transiently during building,
- // then cleared.
- files []*ast.File // the abstract syntax tree for the files of the package
-}
-
-// A Member is a member of a Go package, implemented by *Literal,
-// *Global, *Function, or *Type; they are created by package-level
-// const, var, func and type declarations respectively.
-//
-type Member interface {
- Name() string // the declared name of the package member
- String() string // human-readable information about the value
- Type() types.Type // the type of the package member
- ImplementsMember() // dummy method to indicate the "implements" relation.
-}
-
-// An Id identifies the name of a field of a struct type, or the name
-// of a method of an interface or a named type.
-//
-// For exported names, i.e. those beginning with a Unicode upper-case
-// letter, a simple string is unambiguous.
-//
-// However, a method set or struct may contain multiple unexported
-// names with identical spelling that are logically distinct because
-// they originate in different packages. Unexported names must
-// therefore be disambiguated by their package too.
-//
-// The Pkg field of an Id is therefore nil iff the name is exported.
-//
-// This type is suitable for use as a map key because the equivalence
-// relation == is consistent with identifier equality.
-type Id struct {
- Pkg *types.Package
- Name string
-}
-
-// A MethodSet contains all the methods whose receiver is either T or
-// *T, for some named or struct type T.
-//
-// TODO(adonovan): the client is required to adapt T<=>*T, e.g. when
-// invoking an interface method. (This could be simplified for the
-// client by having distinct method sets for T and *T, with the SSA
-// Builder generating wrappers as needed, but probably the client is
-// able to do a better job.) Document the precise rules the client
-// must follow.
-//
-type MethodSet map[Id]*Function
-
-// A Type is a Member of a Package representing the name, underlying
-// type and method set of a named type declared at package scope.
-//
-// The method set contains only concrete methods; it is empty for
-// interface types.
-//
-type Type struct {
- NamedType *types.NamedType
- Methods MethodSet
-}
-
-// An SSA value that can be referenced by an instruction.
-//
-// TODO(adonovan): add methods:
-// - Referrers() []*Instruction // all instructions that refer to this value.
-//
-type Value interface {
- // Name returns the name of this value, and determines how
- // this Value appears when used as an operand of an
- // Instruction.
- //
- // This is the same as the source name for Parameters,
- // Builtins, Functions, Captures, Globals and some Allocs.
- // For literals, it is a representation of the literal's value
- // and type. For all other Values this is the name of the
- // virtual register defined by the instruction.
- //
- // The name of an SSA Value is not semantically significant,
- // and may not even be unique within a function.
- Name() string
-
- // If this value is an Instruction, String returns its
- // disassembled form; otherwise it returns unspecified
- // human-readable information about the Value, such as its
- // kind, name and type.
- String() string
-
- // Type returns the type of this value. Many instructions
- // (e.g. IndexAddr) change the behaviour depending on the
- // types of their operands.
- //
- // Documented type invariants below (e.g. "Alloc.Type()
- // returns a *types.Pointer") refer to the underlying type in
- // the case of NamedTypes.
- Type() types.Type
-
- // Dummy method to indicate the "implements" relation.
- ImplementsValue()
-}
-
-// An Instruction is an SSA instruction that computes a new Value or
-// has some effect.
-//
-// An Instruction that defines a value (e.g. BinOp) also implements
-// the Value interface; an Instruction that only has an effect (e.g. Store)
-// does not.
-//
-// TODO(adonovan): add method:
-// - Operands() []Value // all Values referenced by this instruction.
-//
-type Instruction interface {
- // String returns the disassembled form of this value. e.g.
- //
- // Examples of Instructions that define a Value:
- // e.g. "x + y" (BinOp)
- // "len([])" (Call)
- // Note that the name of the Value is not printed.
- //
- // Examples of Instructions that do define (are) Values:
- // e.g. "ret x" (Ret)
- // "*y = x" (Store)
- //
- // (This separation is useful for some analyses which
- // distinguish the operation from the value it
- // defines. e.g. 'y = local int' is both an allocation of
- // memory 'local int' and a definition of a pointer y.)
- String() string
-
- // Block returns the basic block to which this instruction
- // belongs.
- Block() *BasicBlock
-
- // SetBlock sets the basic block to which this instruction
- // belongs.
- SetBlock(*BasicBlock)
-
- // Dummy method to indicate the "implements" relation.
- ImplementsInstruction()
-}
-
-// Function represents the parameters, results and code of a function
-// or method.
-//
-// If Blocks is nil, this indicates an external function for which no
-// Go source code is available. In this case, Captures and Locals
-// will be nil too. Clients performing whole-program analysis must
-// handle external functions specially.
-//
-// Functions are immutable values; they do not have addresses.
-//
-// Blocks[0] is the function entry point; block order is not otherwise
-// semantically significant, though it may affect the readability of
-// the disassembly.
-//
-// A nested function that refers to one or more lexically enclosing
-// local variables ("free variables") has Capture parameters. Such
-// functions cannot be called directly but require a value created by
-// MakeClosure which, via its Bindings, supplies values for these
-// parameters. Captures are always addresses.
-//
-// If the function is a method (Signature.Recv != nil) then the first
-// element of Params is the receiver parameter.
-//
-// Type() returns the function's Signature.
-//
-type Function struct {
- Name_ string
- Signature *types.Signature
-
- Pos token.Pos // location of the definition
- Enclosing *Function // enclosing function if anon; nil if global
- Pkg *Package // enclosing package; nil for some synthetic methods
- Prog *Program // enclosing program
- Params []*Parameter
- FreeVars []*Capture // free variables whose values must be supplied by closure
- Locals []*Alloc
- Blocks []*BasicBlock // basic blocks of the function; nil => external
-
- // The following fields are set transiently during building,
- // then cleared.
- currentBlock *BasicBlock // where to emit code
- objects map[types.Object]Value // addresses of local variables
- results []*Alloc // tuple of named results
- syntax *funcSyntax // abstract syntax trees for Go source functions
- targets *targets // linked stack of branch targets
- lblocks map[*ast.Object]*lblock // labelled blocks
-}
-
-// An SSA basic block.
-//
-// The final element of Instrs is always an explicit transfer of
-// control (If, Jump or Ret).
-//
-// A block may contain no Instructions only if it is unreachable,
-// i.e. Preds is nil. Empty blocks are typically pruned.
-//
-// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
-// graph independent of the SSA Value graph. It is illegal for
-// multiple edges to exist between the same pair of blocks.
-//
-// The order of Preds and Succs are significant (to Phi and If
-// instructions, respectively).
-//
-type BasicBlock struct {
- Name string // label; no semantic significance
- Func *Function // containing function
- Instrs []Instruction // instructions in order
- Preds, Succs []*BasicBlock // predecessors and successors
- succs2 [2]*BasicBlock // initial space for Succs.
-}
-
-// Pure values ----------------------------------------
-
-// A Capture is a pointer to a lexically enclosing local variable.
-//
-// The referent of a capture is an Alloc or another Capture and is
-// always considered potentially escaping, so Captures are always
-// addresses in the heap, and have pointer types.
-//
-type Capture struct {
- Outer Value // the Value captured from the enclosing context.
-}
-
-// A Parameter represents an input parameter of a function.
-//
-type Parameter struct {
- Name_ string
- Type_ types.Type
-}
-
-// A Literal represents a literal nil, boolean, string or numeric
-// (integer, fraction or complex) value.
-//
-// A literal's underlying Type() can be a basic type, possibly one of
-// the "untyped" types. A nil literal can have any reference type:
-// interface, map, channel, pointer, slice, or function---but not
-// "untyped nil".
-//
-// All source-level constant expressions are represented by a Literal
-// of equal type and value.
-//
-// Value holds the exact value of the literal, independent of its
-// Type(), using the same representation as package go/types uses for
-// constants.
-//
-// Example printed form:
-// 42:int
-// "hello":untyped string
-// 3+4i:MyComplex
-//
-type Literal struct {
- Type_ types.Type
- Value interface{}
-}
-
-// A Global is a named Value holding the address of a package-level
-// variable.
-//
-type Global struct {
- Name_ string
- Type_ types.Type
- Pkg *Package
-
- // The following fields are set transiently during building,
- // then cleared.
- spec *ast.ValueSpec // explained at buildGlobal
-}
-
-// A built-in function, e.g. len.
-//
-// Builtins are immutable values; they do not have addresses.
-//
-// Type() returns an inscrutable *types.builtin. Built-in functions
-// may have polymorphic or variadic types that are not expressible in
-// Go's type system.
-//
-type Builtin struct {
- Object *types.Func // canonical types.Universe object for this built-in
-}
-
-// Value-defining instructions ----------------------------------------
-
-// The Alloc instruction reserves space for a value of the given type,
-// zero-initializes it, and yields its address.
-//
-// Alloc values are always addresses, and have pointer types, so the
-// type of the allocated space is actually indirect(Type()).
-//
-// If Heap is false, Alloc allocates space in the function's
-// activation record (frame); we refer to an Alloc(Heap=false) as a
-// "local" alloc. Each local Alloc returns the same address each time
-// it is executed within the same activation; the space is
-// re-initialized to zero.
-//
-// If Heap is true, Alloc allocates space in the heap, and returns; we
-// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
-// returns a different address each time it is executed.
-//
-// When Alloc is applied to a channel, map or slice type, it returns
-// the address of an uninitialized (nil) reference of that kind; store
-// the result of MakeSlice, MakeMap or MakeChan in that location to
-// instantiate these types.
-//
-// Example printed form:
-// t0 = local int
-// t1 = new int
-//
-type Alloc struct {
- anInstruction
- Name_ string
- Type_ types.Type
- Heap bool
-}
-
-// Phi represents an SSA φ-node, which combines values that differ
-// across incoming control-flow edges and yields a new value. Within
-// a block, all φ-nodes must appear before all non-φ nodes.
-//
-// Example printed form:
-// t2 = phi [0.start: t0, 1.if.then: t1, ...]
-//
-type Phi struct {
- Register
- Edges []Value // Edges[i] is value for Block().Preds[i]
-}
-
-// Call represents a function or method call.
-//
-// The Call instruction yields the function result, if there is
-// exactly one, or a tuple (empty or len>1) whose components are
-// accessed via Extract.
-//
-// See CallCommon for generic function call documentation.
-//
-// Example printed form:
-// t2 = println(t0, t1)
-// t4 = t3()
-// t7 = invoke t5.Println(...t6)
-//
-type Call struct {
- Register
- CallCommon
-}
-
-// BinOp yields the result of binary operation X Op Y.
-//
-// Example printed form:
-// t1 = t0 + 1:int
-//
-type BinOp struct {
- Register
- // One of:
- // ADD SUB MUL QUO REM + - * / %
- // AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
- // EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
- Op token.Token
- X, Y Value
-}
-
-// UnOp yields the result of Op X.
-// ARROW is channel receive.
-// MUL is pointer indirection (load).
-//
-// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
-// and a boolean indicating the success of the receive. The
-// components of the tuple are accessed using Extract.
-//
-// Example printed form:
-// t0 = *x
-// t2 = <-t1,ok
-//
-type UnOp struct {
- Register
- Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
- X Value
- CommaOk bool
-}
-
-// Conv yields the conversion of X to type Type().
-//
-// A conversion is one of the following kinds. The behaviour of the
-// conversion operator may depend on both Type() and X.Type(), as well
-// as the dynamic value.
-//
-// A '+' indicates that a dynamic representation change may occur.
-// A '-' indicates that the conversion is a value-preserving change
-// to types only.
-//
-// 1. implicit conversions (arising from assignability rules):
-// - adding/removing a name, same underlying types.
-// - channel type restriction, possibly adding/removing a name.
-// 2. explicit conversions (in addition to the above):
-// - changing a name, same underlying types.
-// - between pointers to identical base types.
-// + conversions between real numeric types.
-// + conversions between complex numeric types.
-// + integer/[]byte/[]rune -> string.
-// + string -> []byte/[]rune.
-//
-// TODO(adonovan): split into two cases:
-// - rename value (ChangeType)
-// + value to type with different representation (Conv)
-//
-// Conversions of untyped string/number/bool constants to a specific
-// representation are eliminated during SSA construction.
-//
-// Example printed form:
-// t1 = convert interface{} <- int (t0)
-//
-type Conv struct {
- Register
- X Value
-}
-
-// ChangeInterface constructs a value of one interface type from a
-// value of another interface type known to be assignable to it.
-//
-// Example printed form:
-// t1 = change interface interface{} <- I (t0)
-//
-type ChangeInterface struct {
- Register
- X Value
-}
-
-// MakeInterface constructs an instance of an interface type from a
-// value and its method-set.
-//
-// To construct the zero value of an interface type T, use:
-// &Literal{types.nilType{}, T}
-//
-// Example printed form:
-// t1 = make interface interface{} <- int (42:int)
-//
-type MakeInterface struct {
- Register
- X Value
- Methods MethodSet // method set of (non-interface) X iff converting to interface
-}
-
-// A MakeClosure instruction yields an anonymous function value whose
-// code is Fn and whose lexical capture slots are populated by Bindings.
-//
-// By construction, all captured variables are addresses of variables
-// allocated with 'new', i.e. Alloc(Heap=true).
-//
-// Type() returns a *types.Signature.
-//
-// Example printed form:
-// t0 = make closure anon@1.2 [x y z]
-//
-type MakeClosure struct {
- Register
- Fn *Function
- Bindings []Value // values for each free variable in Fn.FreeVars
-}
-
-// The MakeMap instruction creates a new hash-table-based map object
-// and yields a value of kind map.
-//
-// Type() returns a *types.Map.
-//
-// Example printed form:
-// t1 = make map[string]int t0
-//
-type MakeMap struct {
- Register
- Reserve Value // initial space reservation; nil => default
-}
-
-// The MakeChan instruction creates a new channel object and yields a
-// value of kind chan.
-//
-// Type() returns a *types.Chan.
-//
-// Example printed form:
-// t0 = make chan int 0
-//
-type MakeChan struct {
- Register
- Size Value // int; size of buffer; zero => synchronous.
-}
-
-// MakeSlice yields a slice of length Len backed by a newly allocated
-// array of length Cap.
-//
-// Both Len and Cap must be non-nil Values of integer type.
-//
-// (Alloc(types.Array) followed by Slice will not suffice because
-// Alloc can only create arrays of statically known length.)
-//
-// Type() returns a *types.Slice.
-//
-// Example printed form:
-// t1 = make slice []string 1:int t0
-//
-type MakeSlice struct {
- Register
- Len Value
- Cap Value
-}
-
-// Slice yields a slice of an existing string, slice or *array X
-// between optional integer bounds Low and High.
-//
-// Type() returns string if the type of X was string, otherwise a
-// *types.Slice with the same element type as X.
-//
-// Example printed form:
-// t1 = slice t0[1:]
-//
-type Slice struct {
- Register
- X Value // slice, string, or *array
- Low, High Value // either may be nil
-}
-
-// FieldAddr yields the address of Field of *struct X.
-//
-// The field is identified by its index within the field list of the
-// struct type of X.
-//
-// Type() returns a *types.Pointer.
-//
-// Example printed form:
-// t1 = &t0.name [#1]
-//
-type FieldAddr struct {
- Register
- X Value // *struct
- Field int // index into X.Type().(*types.Struct).Fields
-}
-
-// Field yields the Field of struct X.
-//
-// The field is identified by its index within the field list of the
-// struct type of X; by using numeric indices we avoid ambiguity of
-// package-local identifiers and permit compact representations.
-//
-// Example printed form:
-// t1 = t0.name [#1]
-//
-type Field struct {
- Register
- X Value // struct
- Field int // index into X.Type().(*types.Struct).Fields
-}
-
-// IndexAddr yields the address of the element at index Index of
-// collection X. Index is an integer expression.
-//
-// The elements of maps and strings are not addressable; use Lookup or
-// MapUpdate instead.
-//
-// Type() returns a *types.Pointer.
-//
-// Example printed form:
-// t2 = &t0[t1]
-//
-type IndexAddr struct {
- Register
- X Value // slice or *array,
- Index Value // numeric index
-}
-
-// Index yields element Index of array X.
-//
-// TODO(adonovan): permit X to have type slice.
-// Currently this requires IndexAddr followed by Load.
-//
-// Example printed form:
-// t2 = t0[t1]
-//
-type Index struct {
- Register
- X Value // array
- Index Value // integer index
-}
-
-// Lookup yields element Index of collection X, a map or string.
-// Index is an integer expression if X is a string or the appropriate
-// key type if X is a map.
-//
-// If CommaOk, the result is a 2-tuple of the value above and a
-// boolean indicating the result of a map membership test for the key.
-// The components of the tuple are accessed using Extract.
-//
-// Example printed form:
-// t2 = t0[t1]
-// t5 = t3[t4],ok
-//
-type Lookup struct {
- Register
- X Value // string or map
- Index Value // numeric or key-typed index
- CommaOk bool // return a value,ok pair
-}
-
-// SelectState is a helper for Select.
-// It represents one goal state and its corresponding communication.
-//
-type SelectState struct {
- Dir ast.ChanDir // direction of case
- Chan Value // channel to use (for send or receive)
- Send Value // value to send (for send)
-}
-
-// Select tests whether (or blocks until) one or more of the specified
-// sent or received states is entered.
-//
-// It returns a triple (index int, recv ?, recvOk bool) whose
-// components, described below, must be accessed via the Extract
-// instruction.
-//
-// If Blocking, select waits until exactly one state holds, i.e. a
-// channel becomes ready for the designated operation of sending or
-// receiving; select chooses one among the ready states
-// pseudorandomly, performs the send or receive operation, and sets
-// 'index' to the index of the chosen channel.
-//
-// If !Blocking, select doesn't block if no states hold; instead it
-// returns immediately with index equal to -1.
-//
-// If the chosen channel was used for a receive, 'recv' is set to the
-// received value; Otherwise it is unspecified. recv has no useful
-// type since it is conceptually the union of all possible received
-// values.
-//
-// The third component of the triple, recvOk, is a boolean whose value
-// is true iff the selected operation was a receive and the receive
-// successfully yielded a value.
-//
-// Example printed form:
-// t3 = select nonblocking [<-t0, t1<-t2, ...]
-// t4 = select blocking []
-//
-type Select struct {
- Register
- States []SelectState
- Blocking bool
-}
-
-// Range yields an iterator over the domain and range of X.
-// Elements are accessed via Next.
-//
-// Type() returns a *types.Result (tuple type).
-//
-// Example printed form:
-// t0 = range "hello":string
-//
-type Range struct {
- Register
- X Value // array, *array, slice, string, map or chan
-}
-
-// Next reads and advances the iterator Iter and returns a 3-tuple
-// value (ok, k, v). If the iterator is not exhausted, ok is true and
-// k and v are the next elements of the domain and range,
-// respectively. Otherwise ok is false and k and v are undefined.
-//
-// For channel iterators, k is the received value and v is always
-// undefined.
-//
-// Components of the tuple are accessed using Extract.
-//
-// Type() returns a *types.Result (tuple type).
-//
-// Example printed form:
-// t1 = next t0
-//
-type Next struct {
- Register
- Iter Value
-}
-
-// TypeAssert tests whether interface value X has type
-// AssertedType.
-//
-// If CommaOk: on success it returns a pair (v, true) where v is a
-// copy of value X; on failure it returns (z, false) where z is the
-// zero value of that type. The components of the pair must be
-// accessed using the Extract instruction.
-//
-// If !CommaOk, on success it returns just the single value v; on
-// failure it panics.
-//
-// Type() reflects the actual type of the result, possibly a pair
-// (types.Result); AssertedType is the asserted type.
-//
-// Example printed form:
-// t1 = typeassert t0.(int)
-// t3 = typeassert,ok t2.(T)
-//
-type TypeAssert struct {
- Register
- X Value
- AssertedType types.Type
- CommaOk bool
-}
-
-// Extract yields component Index of Tuple.
-//
-// This is used to access the results of instructions with multiple
-// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
-// IndexExpr(Map).
-//
-// Example printed form:
-// t1 = extract t0 #1
-//
-type Extract struct {
- Register
- Tuple Value
- Index int
-}
-
-// Instructions executed for effect. They do not yield a value. --------------------
-
-// Jump transfers control to the sole successor of its owning block.
-//
-// A Jump instruction must be the last instruction of its containing
-// BasicBlock.
-//
-// Example printed form:
-// jump done
-//
-type Jump struct {
- anInstruction
-}
-
-// The If instruction transfers control to one of the two successors
-// of its owning block, depending on the boolean Cond: the first if
-// true, the second if false.
-//
-// An If instruction must be the last instruction of its containing
-// BasicBlock.
-//
-// Example printed form:
-// if t0 goto done else body
-//
-type If struct {
- anInstruction
- Cond Value
-}
-
-// Ret returns values and control back to the calling function.
-//
-// len(Results) is always equal to the number of results in the
-// function's signature. A source-level 'return' statement with no
-// operands in a multiple-return value function is desugared to make
-// the results explicit.
-//
-// If len(Results) > 1, Ret returns a tuple value with the specified
-// components which the caller must access using Extract instructions.
-//
-// There is no instruction to return a ready-made tuple like those
-// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
-// a tail-call to a function with multiple result parameters.
-// TODO(adonovan): consider defining one; but: dis- and re-assembling
-// the tuple is unavoidable if assignability conversions are required
-// on the components.
-//
-// Ret must be the last instruction of its containing BasicBlock.
-// Such a block has no successors.
-//
-// Example printed form:
-// ret
-// ret nil:I, 2:int
-//
-type Ret struct {
- anInstruction
- Results []Value
-}
-
-// Go creates a new goroutine and calls the specified function
-// within it.
-//
-// See CallCommon for generic function call documentation.
-//
-// Example printed form:
-// go println(t0, t1)
-// go t3()
-// go invoke t5.Println(...t6)
-//
-type Go struct {
- anInstruction
- CallCommon
-}
-
-// Defer pushes the specified call onto a stack of functions
-// to be called immediately prior to returning from the
-// current function.
-//
-// See CallCommon for generic function call documentation.
-//
-// Example printed form:
-// defer println(t0, t1)
-// defer t3()
-// defer invoke t5.Println(...t6)
-//
-type Defer struct {
- anInstruction
- CallCommon
-}
-
-// Send sends X on channel Chan.
-//
-// Example printed form:
-// send t0 <- t1
-//
-type Send struct {
- anInstruction
- Chan, X Value
-}
-
-// Store stores Val at address Addr.
-// Stores can be of arbitrary types.
-//
-// Example printed form:
-// *x = y
-//
-type Store struct {
- anInstruction
- Addr Value
- Val Value
-}
-
-// MapUpdate updates the association of Map[Key] to Value.
-//
-// Example printed form:
-// t0[t1] = t2
-//
-type MapUpdate struct {
- anInstruction
- Map Value
- Key Value
- Value Value
-}
-
-// Embeddable mix-ins used for common parts of other structs. --------------------
-
-// Register is a mix-in embedded by all SSA values that are also
-// instructions, i.e. virtual registers, and provides implementations
-// of the Value interface's Name() and Type() methods: the name is
-// simply a numbered register (e.g. "t0") and the type is the Type_
-// field.
-//
-// Temporary names are automatically assigned to each Register on
-// completion of building a function in SSA form.
-//
-// Clients must not assume that the 'id' value (and the Name() derived
-// from it) is unique within a function. As always in this API,
-// semantics are determined only by identity; names exist only to
-// facilitate debugging.
-//
-type Register struct {
- anInstruction
- num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
- Type_ types.Type // type of virtual register
-}
-
-// AnInstruction is a mix-in embedded by all Instructions.
-// It provides the implementations of the Block and SetBlock methods.
-type anInstruction struct {
- Block_ *BasicBlock // the basic block of this instruction
-}
-
-// CallCommon is a mix-in embedded by Go, Defer and Call to hold the
-// common parts of a function or method call.
-//
-// Each CallCommon exists in one of two modes, function call and
-// interface method invocation, or "call" and "invoke" for short.
-//
-// 1. "call" mode: when Recv is nil, a CallCommon represents an
-// ordinary function call of the value in Func.
-//
-// In the common case in which Func is a *Function, this indicates a
-// statically dispatched call to a package-level function, an
-// anonymous function, or a method of a named type. Also statically
-// dispatched, but less common, Func may be a *MakeClosure, indicating
-// an immediately applied function literal with free variables. Any
-// other Value of Func indicates a dynamically dispatched function
-// call.
-//
-// Args contains the arguments to the call. If Func is a method,
-// Args[0] contains the receiver parameter. Recv and Method are not
-// used in this mode.
-//
-// Example printed form:
-// t2 = println(t0, t1)
-// go t3()
-// defer t5(...t6)
-//
-// 2. "invoke" mode: when Recv is non-nil, a CallCommon represents a
-// dynamically dispatched call to an interface method. In this
-// mode, Recv is the interface value and Method is the index of the
-// method within the interface type of the receiver.
-//
-// Recv is implicitly supplied to the concrete method implementation
-// as the receiver parameter; in other words, Args[0] holds not the
-// receiver but the first true argument. Func is not used in this
-// mode.
-//
-// Example printed form:
-// t1 = invoke t0.String()
-// go invoke t3.Run(t2)
-// defer invoke t4.Handle(...t5)
-//
-// In both modes, HasEllipsis is true iff the last element of Args is
-// a slice value containing zero or more arguments to a variadic
-// function. (This is not semantically significant since the type of
-// the called function is sufficient to determine this, but it aids
-// readability of the printed form.)
-//
-type CallCommon struct {
- Recv Value // receiver, iff interface method invocation
- Method int // index of interface method within Recv.Type().(*types.Interface).Methods
- Func Value // target of call, iff function call
- Args []Value // actual parameters, including receiver in invoke mode
- HasEllipsis bool // true iff last Args is a slice (needed?)
- Pos token.Pos // position of call expression
-}
-
-func (v *Builtin) Type() types.Type { return v.Object.GetType() }
-func (v *Builtin) Name() string { return v.Object.GetName() }
-
-func (v *Capture) Type() types.Type { return v.Outer.Type() }
-func (v *Capture) Name() string { return v.Outer.Name() }
-
-func (v *Global) Type() types.Type { return v.Type_ }
-func (v *Global) Name() string { return v.Name_ }
-
-func (v *Function) Name() string { return v.Name_ }
-func (v *Function) Type() types.Type { return v.Signature }
-
-func (v *Parameter) Type() types.Type { return v.Type_ }
-func (v *Parameter) Name() string { return v.Name_ }
-
-func (v *Alloc) Type() types.Type { return v.Type_ }
-func (v *Alloc) Name() string { return v.Name_ }
-
-func (v *Register) Type() types.Type { return v.Type_ }
-func (v *Register) setType(typ types.Type) { v.Type_ = typ }
-func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
-func (v *Register) setNum(num int) { v.num = num }
-
-func (v *anInstruction) Block() *BasicBlock { return v.Block_ }
-func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block }
-
-func (ms *Type) Type() types.Type { return ms.NamedType }
-func (ms *Type) String() string { return ms.Name() }
-func (ms *Type) Name() string { return ms.NamedType.Obj.Name }
-
-func (p *Package) Name() string { return p.Types.Name }
-
-// Func returns the package-level function of the specified name,
-// or nil if not found.
-//
-func (p *Package) Func(name string) (f *Function) {
- f, _ = p.Members[name].(*Function)
- return
-}
-
-// Var returns the package-level variable of the specified name,
-// or nil if not found.
-//
-func (p *Package) Var(name string) (g *Global) {
- g, _ = p.Members[name].(*Global)
- return
-}
-
-// Const returns the package-level constant of the specified name,
-// or nil if not found.
-//
-func (p *Package) Const(name string) (l *Literal) {
- l, _ = p.Members[name].(*Literal)
- return
-}
-
-// Type returns the package-level type of the specified name,
-// or nil if not found.
-//
-func (p *Package) Type(name string) (t *Type) {
- t, _ = p.Members[name].(*Type)
- return
-}
-
-// "Implements" relation boilerplate.
-// Don't try to factor this using promotion and mix-ins: the long-hand
-// form serves as better documentation, including in godoc.
-
-func (*Alloc) ImplementsValue() {}
-func (*BinOp) ImplementsValue() {}
-func (*Builtin) ImplementsValue() {}
-func (*Call) ImplementsValue() {}
-func (*Capture) ImplementsValue() {}
-func (*ChangeInterface) ImplementsValue() {}
-func (*Conv) ImplementsValue() {}
-func (*Extract) ImplementsValue() {}
-func (*Field) ImplementsValue() {}
-func (*FieldAddr) ImplementsValue() {}
-func (*Function) ImplementsValue() {}
-func (*Global) ImplementsValue() {}
-func (*Index) ImplementsValue() {}
-func (*IndexAddr) ImplementsValue() {}
-func (*Literal) ImplementsValue() {}
-func (*Lookup) ImplementsValue() {}
-func (*MakeChan) ImplementsValue() {}
-func (*MakeClosure) ImplementsValue() {}
-func (*MakeInterface) ImplementsValue() {}
-func (*MakeMap) ImplementsValue() {}
-func (*MakeSlice) ImplementsValue() {}
-func (*Next) ImplementsValue() {}
-func (*Parameter) ImplementsValue() {}
-func (*Phi) ImplementsValue() {}
-func (*Range) ImplementsValue() {}
-func (*Select) ImplementsValue() {}
-func (*Slice) ImplementsValue() {}
-func (*TypeAssert) ImplementsValue() {}
-func (*UnOp) ImplementsValue() {}
-
-func (*Function) ImplementsMember() {}
-func (*Global) ImplementsMember() {}
-func (*Literal) ImplementsMember() {}
-func (*Type) ImplementsMember() {}
-
-func (*Alloc) ImplementsInstruction() {}
-func (*BinOp) ImplementsInstruction() {}
-func (*Call) ImplementsInstruction() {}
-func (*ChangeInterface) ImplementsInstruction() {}
-func (*Conv) ImplementsInstruction() {}
-func (*Defer) ImplementsInstruction() {}
-func (*Extract) ImplementsInstruction() {}
-func (*Field) ImplementsInstruction() {}
-func (*FieldAddr) ImplementsInstruction() {}
-func (*Go) ImplementsInstruction() {}
-func (*If) ImplementsInstruction() {}
-func (*Index) ImplementsInstruction() {}
-func (*IndexAddr) ImplementsInstruction() {}
-func (*Jump) ImplementsInstruction() {}
-func (*Lookup) ImplementsInstruction() {}
-func (*MakeChan) ImplementsInstruction() {}
-func (*MakeClosure) ImplementsInstruction() {}
-func (*MakeInterface) ImplementsInstruction() {}
-func (*MakeMap) ImplementsInstruction() {}
-func (*MakeSlice) ImplementsInstruction() {}
-func (*MapUpdate) ImplementsInstruction() {}
-func (*Next) ImplementsInstruction() {}
-func (*Phi) ImplementsInstruction() {}
-func (*Range) ImplementsInstruction() {}
-func (*Ret) ImplementsInstruction() {}
-func (*Select) ImplementsInstruction() {}
-func (*Send) ImplementsInstruction() {}
-func (*Slice) ImplementsInstruction() {}
-func (*Store) ImplementsInstruction() {}
-func (*TypeAssert) ImplementsInstruction() {}
-func (*UnOp) ImplementsInstruction() {}