aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/gimple.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2016-02-24 13:48:45 -0800
committerDan Albert <danalbert@google.com>2016-02-24 13:51:18 -0800
commitb9de1157289455b0ca26daff519d4a0ddcd1fa13 (patch)
tree4c56cc0a34b91f17033a40a455f26652304f7b8d /gcc-4.8.3/gcc/gimple.c
parent098157a754787181cfa10e71325832448ddcea98 (diff)
downloadtoolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.tar.gz
toolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.tar.bz2
toolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.zip
Update 4.8.1 to 4.8.3.
My previous drop was the wrong version. The platform mingw is currently using 4.8.3, not 4.8.1 (not sure how I got that wrong). From ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.3/gcc-4.8.3.tar.bz2. Bug: http://b/26523949 Change-Id: Id85f1bdcbbaf78c7d0b5a69e74c798a08f341c35
Diffstat (limited to 'gcc-4.8.3/gcc/gimple.c')
-rw-r--r--gcc-4.8.3/gcc/gimple.c4225
1 files changed, 4225 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/gimple.c b/gcc-4.8.3/gcc/gimple.c
new file mode 100644
index 000000000..9b5de4a25
--- /dev/null
+++ b/gcc-4.8.3/gcc/gimple.c
@@ -0,0 +1,4225 @@
+/* Gimple IR support functions.
+
+ Copyright (C) 2007-2013 Free Software Foundation, Inc.
+ Contributed by Aldy Hernandez <aldyh@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "target.h"
+#include "tree.h"
+#include "ggc.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "gimple.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "value-prof.h"
+#include "flags.h"
+#include "alias.h"
+#include "demangle.h"
+#include "langhooks.h"
+
+/* Global canonical type table. */
+static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
+ htab_t gimple_canonical_types;
+static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
+ htab_t canonical_type_hash_cache;
+
+/* All the tuples have their operand vector (if present) at the very bottom
+ of the structure. Therefore, the offset required to find the
+ operands vector the size of the structure minus the size of the 1
+ element tree array at the end (see gimple_ops). */
+#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
+ (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
+EXPORTED_CONST size_t gimple_ops_offset_[] = {
+#include "gsstruct.def"
+};
+#undef DEFGSSTRUCT
+
+#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
+static const size_t gsstruct_code_size[] = {
+#include "gsstruct.def"
+};
+#undef DEFGSSTRUCT
+
+#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
+const char *const gimple_code_name[] = {
+#include "gimple.def"
+};
+#undef DEFGSCODE
+
+#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
+EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
+#include "gimple.def"
+};
+#undef DEFGSCODE
+
+/* Gimple stats. */
+
+int gimple_alloc_counts[(int) gimple_alloc_kind_all];
+int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
+
+/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
+static const char * const gimple_alloc_kind_names[] = {
+ "assignments",
+ "phi nodes",
+ "conditionals",
+ "everything else"
+};
+
+/* Private API manipulation functions shared only with some
+ other files. */
+extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
+extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
+
+/* Gimple tuple constructors.
+ Note: Any constructor taking a ``gimple_seq'' as a parameter, can
+ be passed a NULL to start with an empty sequence. */
+
+/* Set the code for statement G to CODE. */
+
+static inline void
+gimple_set_code (gimple g, enum gimple_code code)
+{
+ g->gsbase.code = code;
+}
+
+/* Return the number of bytes needed to hold a GIMPLE statement with
+ code CODE. */
+
+static inline size_t
+gimple_size (enum gimple_code code)
+{
+ return gsstruct_code_size[gss_for_code (code)];
+}
+
+/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
+ operands. */
+
+gimple
+gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
+{
+ size_t size;
+ gimple stmt;
+
+ size = gimple_size (code);
+ if (num_ops > 0)
+ size += sizeof (tree) * (num_ops - 1);
+
+ if (GATHER_STATISTICS)
+ {
+ enum gimple_alloc_kind kind = gimple_alloc_kind (code);
+ gimple_alloc_counts[(int) kind]++;
+ gimple_alloc_sizes[(int) kind] += size;
+ }
+
+ stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
+ gimple_set_code (stmt, code);
+ gimple_set_num_ops (stmt, num_ops);
+
+ /* Do not call gimple_set_modified here as it has other side
+ effects and this tuple is still not completely built. */
+ stmt->gsbase.modified = 1;
+ gimple_init_singleton (stmt);
+
+ return stmt;
+}
+
+/* Set SUBCODE to be the code of the expression computed by statement G. */
+
+static inline void
+gimple_set_subcode (gimple g, unsigned subcode)
+{
+ /* We only have 16 bits for the RHS code. Assert that we are not
+ overflowing it. */
+ gcc_assert (subcode < (1 << 16));
+ g->gsbase.subcode = subcode;
+}
+
+
+
+/* Build a tuple with operands. CODE is the statement to build (which
+ must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
+ for the new tuple. NUM_OPS is the number of operands to allocate. */
+
+#define gimple_build_with_ops(c, s, n) \
+ gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
+
+static gimple
+gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
+ unsigned num_ops MEM_STAT_DECL)
+{
+ gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
+ gimple_set_subcode (s, subcode);
+
+ return s;
+}
+
+
+/* Build a GIMPLE_RETURN statement returning RETVAL. */
+
+gimple
+gimple_build_return (tree retval)
+{
+ gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
+ if (retval)
+ gimple_return_set_retval (s, retval);
+ return s;
+}
+
+/* Reset alias information on call S. */
+
+void
+gimple_call_reset_alias_info (gimple s)
+{
+ if (gimple_call_flags (s) & ECF_CONST)
+ memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
+ else
+ pt_solution_reset (gimple_call_use_set (s));
+ if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
+ memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
+ else
+ pt_solution_reset (gimple_call_clobber_set (s));
+}
+
+/* Helper for gimple_build_call, gimple_build_call_valist,
+ gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
+ components of a GIMPLE_CALL statement to function FN with NARGS
+ arguments. */
+
+static inline gimple
+gimple_build_call_1 (tree fn, unsigned nargs)
+{
+ gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
+ if (TREE_CODE (fn) == FUNCTION_DECL)
+ fn = build_fold_addr_expr (fn);
+ gimple_set_op (s, 1, fn);
+ gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
+ gimple_call_reset_alias_info (s);
+ return s;
+}
+
+
+/* Build a GIMPLE_CALL statement to function FN with the arguments
+ specified in vector ARGS. */
+
+gimple
+gimple_build_call_vec (tree fn, vec<tree> args)
+{
+ unsigned i;
+ unsigned nargs = args.length ();
+ gimple call = gimple_build_call_1 (fn, nargs);
+
+ for (i = 0; i < nargs; i++)
+ gimple_call_set_arg (call, i, args[i]);
+
+ return call;
+}
+
+
+/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
+ arguments. The ... are the arguments. */
+
+gimple
+gimple_build_call (tree fn, unsigned nargs, ...)
+{
+ va_list ap;
+ gimple call;
+ unsigned i;
+
+ gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
+
+ call = gimple_build_call_1 (fn, nargs);
+
+ va_start (ap, nargs);
+ for (i = 0; i < nargs; i++)
+ gimple_call_set_arg (call, i, va_arg (ap, tree));
+ va_end (ap);
+
+ return call;
+}
+
+
+/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
+ arguments. AP contains the arguments. */
+
+gimple
+gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
+{
+ gimple call;
+ unsigned i;
+
+ gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
+
+ call = gimple_build_call_1 (fn, nargs);
+
+ for (i = 0; i < nargs; i++)
+ gimple_call_set_arg (call, i, va_arg (ap, tree));
+
+ return call;
+}
+
+
+/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
+ Build the basic components of a GIMPLE_CALL statement to internal
+ function FN with NARGS arguments. */
+
+static inline gimple
+gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
+{
+ gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
+ s->gsbase.subcode |= GF_CALL_INTERNAL;
+ gimple_call_set_internal_fn (s, fn);
+ gimple_call_reset_alias_info (s);
+ return s;
+}
+
+
+/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
+ the number of arguments. The ... are the arguments. */
+
+gimple
+gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
+{
+ va_list ap;
+ gimple call;
+ unsigned i;
+
+ call = gimple_build_call_internal_1 (fn, nargs);
+ va_start (ap, nargs);
+ for (i = 0; i < nargs; i++)
+ gimple_call_set_arg (call, i, va_arg (ap, tree));
+ va_end (ap);
+
+ return call;
+}
+
+
+/* Build a GIMPLE_CALL statement to internal function FN with the arguments
+ specified in vector ARGS. */
+
+gimple
+gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
+{
+ unsigned i, nargs;
+ gimple call;
+
+ nargs = args.length ();
+ call = gimple_build_call_internal_1 (fn, nargs);
+ for (i = 0; i < nargs; i++)
+ gimple_call_set_arg (call, i, args[i]);
+
+ return call;
+}
+
+
+/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
+ assumed to be in GIMPLE form already. Minimal checking is done of
+ this fact. */
+
+gimple
+gimple_build_call_from_tree (tree t)
+{
+ unsigned i, nargs;
+ gimple call;
+ tree fndecl = get_callee_fndecl (t);
+
+ gcc_assert (TREE_CODE (t) == CALL_EXPR);
+
+ nargs = call_expr_nargs (t);
+ call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
+
+ for (i = 0; i < nargs; i++)
+ gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
+
+ gimple_set_block (call, TREE_BLOCK (t));
+
+ /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
+ gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
+ gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
+ gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
+ if (fndecl
+ && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
+ && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
+ || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
+ gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
+ else
+ gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
+ gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
+ gimple_call_set_nothrow (call, TREE_NOTHROW (t));
+ gimple_set_no_warning (call, TREE_NO_WARNING (t));
+
+ return call;
+}
+
+
+/* Extract the operands and code for expression EXPR into *SUBCODE_P,
+ *OP1_P, *OP2_P and *OP3_P respectively. */
+
+void
+extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
+ tree *op2_p, tree *op3_p)
+{
+ enum gimple_rhs_class grhs_class;
+
+ *subcode_p = TREE_CODE (expr);
+ grhs_class = get_gimple_rhs_class (*subcode_p);
+
+ if (grhs_class == GIMPLE_TERNARY_RHS)
+ {
+ *op1_p = TREE_OPERAND (expr, 0);
+ *op2_p = TREE_OPERAND (expr, 1);
+ *op3_p = TREE_OPERAND (expr, 2);
+ }
+ else if (grhs_class == GIMPLE_BINARY_RHS)
+ {
+ *op1_p = TREE_OPERAND (expr, 0);
+ *op2_p = TREE_OPERAND (expr, 1);
+ *op3_p = NULL_TREE;
+ }
+ else if (grhs_class == GIMPLE_UNARY_RHS)
+ {
+ *op1_p = TREE_OPERAND (expr, 0);
+ *op2_p = NULL_TREE;
+ *op3_p = NULL_TREE;
+ }
+ else if (grhs_class == GIMPLE_SINGLE_RHS)
+ {
+ *op1_p = expr;
+ *op2_p = NULL_TREE;
+ *op3_p = NULL_TREE;
+ }
+ else
+ gcc_unreachable ();
+}
+
+
+/* Build a GIMPLE_ASSIGN statement.
+
+ LHS of the assignment.
+ RHS of the assignment which can be unary or binary. */
+
+gimple
+gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
+{
+ enum tree_code subcode;
+ tree op1, op2, op3;
+
+ extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
+ return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
+ PASS_MEM_STAT);
+}
+
+
+/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
+ OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
+ GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
+
+gimple
+gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
+ tree op2, tree op3 MEM_STAT_DECL)
+{
+ unsigned num_ops;
+ gimple p;
+
+ /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
+ code). */
+ num_ops = get_gimple_rhs_num_ops (subcode) + 1;
+
+ p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
+ PASS_MEM_STAT);
+ gimple_assign_set_lhs (p, lhs);
+ gimple_assign_set_rhs1 (p, op1);
+ if (op2)
+ {
+ gcc_assert (num_ops > 2);
+ gimple_assign_set_rhs2 (p, op2);
+ }
+
+ if (op3)
+ {
+ gcc_assert (num_ops > 3);
+ gimple_assign_set_rhs3 (p, op3);
+ }
+
+ return p;
+}
+
+gimple
+gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
+ tree op2 MEM_STAT_DECL)
+{
+ return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
+ PASS_MEM_STAT);
+}
+
+
+/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
+
+ DST/SRC are the destination and source respectively. You can pass
+ ungimplified trees in DST or SRC, in which case they will be
+ converted to a gimple operand if necessary.
+
+ This function returns the newly created GIMPLE_ASSIGN tuple. */
+
+gimple
+gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
+{
+ tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
+ gimplify_and_add (t, seq_p);
+ ggc_free (t);
+ return gimple_seq_last_stmt (*seq_p);
+}
+
+
+/* Build a GIMPLE_COND statement.
+
+ PRED is the condition used to compare LHS and the RHS.
+ T_LABEL is the label to jump to if the condition is true.
+ F_LABEL is the label to jump to otherwise. */
+
+gimple
+gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
+ tree t_label, tree f_label)
+{
+ gimple p;
+
+ gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
+ p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
+ gimple_cond_set_lhs (p, lhs);
+ gimple_cond_set_rhs (p, rhs);
+ gimple_cond_set_true_label (p, t_label);
+ gimple_cond_set_false_label (p, f_label);
+ return p;
+}
+
+
+/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
+
+void
+gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
+ tree *lhs_p, tree *rhs_p)
+{
+ gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
+ || TREE_CODE (cond) == TRUTH_NOT_EXPR
+ || is_gimple_min_invariant (cond)
+ || SSA_VAR_P (cond));
+
+ extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
+
+ /* Canonicalize conditionals of the form 'if (!VAL)'. */
+ if (*code_p == TRUTH_NOT_EXPR)
+ {
+ *code_p = EQ_EXPR;
+ gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
+ *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
+ }
+ /* Canonicalize conditionals of the form 'if (VAL)' */
+ else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
+ {
+ *code_p = NE_EXPR;
+ gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
+ *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
+ }
+}
+
+
+/* Build a GIMPLE_COND statement from the conditional expression tree
+ COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
+
+gimple
+gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
+{
+ enum tree_code code;
+ tree lhs, rhs;
+
+ gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
+ return gimple_build_cond (code, lhs, rhs, t_label, f_label);
+}
+
+/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
+ boolean expression tree COND. */
+
+void
+gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
+{
+ enum tree_code code;
+ tree lhs, rhs;
+
+ gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
+ gimple_cond_set_condition (stmt, code, lhs, rhs);
+}
+
+/* Build a GIMPLE_LABEL statement for LABEL. */
+
+gimple
+gimple_build_label (tree label)
+{
+ gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
+ gimple_label_set_label (p, label);
+ return p;
+}
+
+/* Build a GIMPLE_GOTO statement to label DEST. */
+
+gimple
+gimple_build_goto (tree dest)
+{
+ gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
+ gimple_goto_set_dest (p, dest);
+ return p;
+}
+
+
+/* Build a GIMPLE_NOP statement. */
+
+gimple
+gimple_build_nop (void)
+{
+ return gimple_alloc (GIMPLE_NOP, 0);
+}
+
+
+/* Build a GIMPLE_BIND statement.
+ VARS are the variables in BODY.
+ BLOCK is the containing block. */
+
+gimple
+gimple_build_bind (tree vars, gimple_seq body, tree block)
+{
+ gimple p = gimple_alloc (GIMPLE_BIND, 0);
+ gimple_bind_set_vars (p, vars);
+ if (body)
+ gimple_bind_set_body (p, body);
+ if (block)
+ gimple_bind_set_block (p, block);
+ return p;
+}
+
+/* Helper function to set the simple fields of a asm stmt.
+
+ STRING is a pointer to a string that is the asm blocks assembly code.
+ NINPUT is the number of register inputs.
+ NOUTPUT is the number of register outputs.
+ NCLOBBERS is the number of clobbered registers.
+ */
+
+static inline gimple
+gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
+ unsigned nclobbers, unsigned nlabels)
+{
+ gimple p;
+ int size = strlen (string);
+
+ /* ASMs with labels cannot have outputs. This should have been
+ enforced by the front end. */
+ gcc_assert (nlabels == 0 || noutputs == 0);
+
+ p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
+ ninputs + noutputs + nclobbers + nlabels);
+
+ p->gimple_asm.ni = ninputs;
+ p->gimple_asm.no = noutputs;
+ p->gimple_asm.nc = nclobbers;
+ p->gimple_asm.nl = nlabels;
+ p->gimple_asm.string = ggc_alloc_string (string, size);
+
+ if (GATHER_STATISTICS)
+ gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
+
+ return p;
+}
+
+/* Build a GIMPLE_ASM statement.
+
+ STRING is the assembly code.
+ NINPUT is the number of register inputs.
+ NOUTPUT is the number of register outputs.
+ NCLOBBERS is the number of clobbered registers.
+ INPUTS is a vector of the input register parameters.
+ OUTPUTS is a vector of the output register parameters.
+ CLOBBERS is a vector of the clobbered register parameters.
+ LABELS is a vector of destination labels. */
+
+gimple
+gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
+ vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
+ vec<tree, va_gc> *labels)
+{
+ gimple p;
+ unsigned i;
+
+ p = gimple_build_asm_1 (string,
+ vec_safe_length (inputs),
+ vec_safe_length (outputs),
+ vec_safe_length (clobbers),
+ vec_safe_length (labels));
+
+ for (i = 0; i < vec_safe_length (inputs); i++)
+ gimple_asm_set_input_op (p, i, (*inputs)[i]);
+
+ for (i = 0; i < vec_safe_length (outputs); i++)
+ gimple_asm_set_output_op (p, i, (*outputs)[i]);
+
+ for (i = 0; i < vec_safe_length (clobbers); i++)
+ gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
+
+ for (i = 0; i < vec_safe_length (labels); i++)
+ gimple_asm_set_label_op (p, i, (*labels)[i]);
+
+ return p;
+}
+
+/* Build a GIMPLE_CATCH statement.
+
+ TYPES are the catch types.
+ HANDLER is the exception handler. */
+
+gimple
+gimple_build_catch (tree types, gimple_seq handler)
+{
+ gimple p = gimple_alloc (GIMPLE_CATCH, 0);
+ gimple_catch_set_types (p, types);
+ if (handler)
+ gimple_catch_set_handler (p, handler);
+
+ return p;
+}
+
+/* Build a GIMPLE_EH_FILTER statement.
+
+ TYPES are the filter's types.
+ FAILURE is the filter's failure action. */
+
+gimple
+gimple_build_eh_filter (tree types, gimple_seq failure)
+{
+ gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
+ gimple_eh_filter_set_types (p, types);
+ if (failure)
+ gimple_eh_filter_set_failure (p, failure);
+
+ return p;
+}
+
+/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
+
+gimple
+gimple_build_eh_must_not_throw (tree decl)
+{
+ gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
+
+ gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
+ gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
+ gimple_eh_must_not_throw_set_fndecl (p, decl);
+
+ return p;
+}
+
+/* Build a GIMPLE_EH_ELSE statement. */
+
+gimple
+gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
+{
+ gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
+ gimple_eh_else_set_n_body (p, n_body);
+ gimple_eh_else_set_e_body (p, e_body);
+ return p;
+}
+
+/* Build a GIMPLE_TRY statement.
+
+ EVAL is the expression to evaluate.
+ CLEANUP is the cleanup expression.
+ KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
+ whether this is a try/catch or a try/finally respectively. */
+
+gimple
+gimple_build_try (gimple_seq eval, gimple_seq cleanup,
+ enum gimple_try_flags kind)
+{
+ gimple p;
+
+ gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
+ p = gimple_alloc (GIMPLE_TRY, 0);
+ gimple_set_subcode (p, kind);
+ if (eval)
+ gimple_try_set_eval (p, eval);
+ if (cleanup)
+ gimple_try_set_cleanup (p, cleanup);
+
+ return p;
+}
+
+/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
+
+ CLEANUP is the cleanup expression. */
+
+gimple
+gimple_build_wce (gimple_seq cleanup)
+{
+ gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
+ if (cleanup)
+ gimple_wce_set_cleanup (p, cleanup);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_RESX statement. */
+
+gimple
+gimple_build_resx (int region)
+{
+ gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
+ p->gimple_eh_ctrl.region = region;
+ return p;
+}
+
+
+/* The helper for constructing a gimple switch statement.
+ INDEX is the switch's index.
+ NLABELS is the number of labels in the switch excluding the default.
+ DEFAULT_LABEL is the default label for the switch statement. */
+
+gimple
+gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
+{
+ /* nlabels + 1 default label + 1 index. */
+ gcc_checking_assert (default_label);
+ gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
+ 1 + 1 + nlabels);
+ gimple_switch_set_index (p, index);
+ gimple_switch_set_default_label (p, default_label);
+ return p;
+}
+
+/* Build a GIMPLE_SWITCH statement.
+
+ INDEX is the switch's index.
+ DEFAULT_LABEL is the default label
+ ARGS is a vector of labels excluding the default. */
+
+gimple
+gimple_build_switch (tree index, tree default_label, vec<tree> args)
+{
+ unsigned i, nlabels = args.length ();
+
+ gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
+
+ /* Copy the labels from the vector to the switch statement. */
+ for (i = 0; i < nlabels; i++)
+ gimple_switch_set_label (p, i + 1, args[i]);
+
+ return p;
+}
+
+/* Build a GIMPLE_EH_DISPATCH statement. */
+
+gimple
+gimple_build_eh_dispatch (int region)
+{
+ gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
+ p->gimple_eh_ctrl.region = region;
+ return p;
+}
+
+/* Build a new GIMPLE_DEBUG_BIND statement.
+
+ VAR is bound to VALUE; block and location are taken from STMT. */
+
+gimple
+gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
+{
+ gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
+ (unsigned)GIMPLE_DEBUG_BIND, 2
+ PASS_MEM_STAT);
+
+ gimple_debug_bind_set_var (p, var);
+ gimple_debug_bind_set_value (p, value);
+ if (stmt)
+ gimple_set_location (p, gimple_location (stmt));
+
+ return p;
+}
+
+
+/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
+
+ VAR is bound to VALUE; block and location are taken from STMT. */
+
+gimple
+gimple_build_debug_source_bind_stat (tree var, tree value,
+ gimple stmt MEM_STAT_DECL)
+{
+ gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
+ (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
+ PASS_MEM_STAT);
+
+ gimple_debug_source_bind_set_var (p, var);
+ gimple_debug_source_bind_set_value (p, value);
+ if (stmt)
+ gimple_set_location (p, gimple_location (stmt));
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_CRITICAL statement.
+
+ BODY is the sequence of statements for which only one thread can execute.
+ NAME is optional identifier for this critical block. */
+
+gimple
+gimple_build_omp_critical (gimple_seq body, tree name)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
+ gimple_omp_critical_set_name (p, name);
+ if (body)
+ gimple_omp_set_body (p, body);
+
+ return p;
+}
+
+/* Build a GIMPLE_OMP_FOR statement.
+
+ BODY is sequence of statements inside the for loop.
+ CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
+ lastprivate, reductions, ordered, schedule, and nowait.
+ COLLAPSE is the collapse count.
+ PRE_BODY is the sequence of statements that are loop invariant. */
+
+gimple
+gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
+ gimple_seq pre_body)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+ gimple_omp_for_set_clauses (p, clauses);
+ p->gimple_omp_for.collapse = collapse;
+ p->gimple_omp_for.iter
+ = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
+ if (pre_body)
+ gimple_omp_for_set_pre_body (p, pre_body);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_PARALLEL statement.
+
+ BODY is sequence of statements which are executed in parallel.
+ CLAUSES, are the OMP parallel construct's clauses.
+ CHILD_FN is the function created for the parallel threads to execute.
+ DATA_ARG are the shared data argument(s). */
+
+gimple
+gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
+ tree data_arg)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+ gimple_omp_parallel_set_clauses (p, clauses);
+ gimple_omp_parallel_set_child_fn (p, child_fn);
+ gimple_omp_parallel_set_data_arg (p, data_arg);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_TASK statement.
+
+ BODY is sequence of statements which are executed by the explicit task.
+ CLAUSES, are the OMP parallel construct's clauses.
+ CHILD_FN is the function created for the parallel threads to execute.
+ DATA_ARG are the shared data argument(s).
+ COPY_FN is the optional function for firstprivate initialization.
+ ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
+
+gimple
+gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
+ tree data_arg, tree copy_fn, tree arg_size,
+ tree arg_align)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+ gimple_omp_task_set_clauses (p, clauses);
+ gimple_omp_task_set_child_fn (p, child_fn);
+ gimple_omp_task_set_data_arg (p, data_arg);
+ gimple_omp_task_set_copy_fn (p, copy_fn);
+ gimple_omp_task_set_arg_size (p, arg_size);
+ gimple_omp_task_set_arg_align (p, arg_align);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
+
+ BODY is the sequence of statements in the section. */
+
+gimple
+gimple_build_omp_section (gimple_seq body)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_MASTER statement.
+
+ BODY is the sequence of statements to be executed by just the master. */
+
+gimple
+gimple_build_omp_master (gimple_seq body)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_CONTINUE statement.
+
+ CONTROL_DEF is the definition of the control variable.
+ CONTROL_USE is the use of the control variable. */
+
+gimple
+gimple_build_omp_continue (tree control_def, tree control_use)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
+ gimple_omp_continue_set_control_def (p, control_def);
+ gimple_omp_continue_set_control_use (p, control_use);
+ return p;
+}
+
+/* Build a GIMPLE_OMP_ORDERED statement.
+
+ BODY is the sequence of statements inside a loop that will executed in
+ sequence. */
+
+gimple
+gimple_build_omp_ordered (gimple_seq body)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_RETURN statement.
+ WAIT_P is true if this is a non-waiting return. */
+
+gimple
+gimple_build_omp_return (bool wait_p)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
+ if (wait_p)
+ gimple_omp_return_set_nowait (p);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_SECTIONS statement.
+
+ BODY is a sequence of section statements.
+ CLAUSES are any of the OMP sections contsruct's clauses: private,
+ firstprivate, lastprivate, reduction, and nowait. */
+
+gimple
+gimple_build_omp_sections (gimple_seq body, tree clauses)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+ gimple_omp_sections_set_clauses (p, clauses);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
+
+gimple
+gimple_build_omp_sections_switch (void)
+{
+ return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
+}
+
+
+/* Build a GIMPLE_OMP_SINGLE statement.
+
+ BODY is the sequence of statements that will be executed once.
+ CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
+ copyprivate, nowait. */
+
+gimple
+gimple_build_omp_single (gimple_seq body, tree clauses)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
+ if (body)
+ gimple_omp_set_body (p, body);
+ gimple_omp_single_set_clauses (p, clauses);
+
+ return p;
+}
+
+
+/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
+
+gimple
+gimple_build_omp_atomic_load (tree lhs, tree rhs)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
+ gimple_omp_atomic_load_set_lhs (p, lhs);
+ gimple_omp_atomic_load_set_rhs (p, rhs);
+ return p;
+}
+
+/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
+
+ VAL is the value we are storing. */
+
+gimple
+gimple_build_omp_atomic_store (tree val)
+{
+ gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
+ gimple_omp_atomic_store_set_val (p, val);
+ return p;
+}
+
+/* Build a GIMPLE_TRANSACTION statement. */
+
+gimple
+gimple_build_transaction (gimple_seq body, tree label)
+{
+ gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
+ gimple_transaction_set_body (p, body);
+ gimple_transaction_set_label (p, label);
+ return p;
+}
+
+/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
+ predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
+
+gimple
+gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
+{
+ gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
+ /* Ensure all the predictors fit into the lower bits of the subcode. */
+ gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
+ gimple_predict_set_predictor (p, predictor);
+ gimple_predict_set_outcome (p, outcome);
+ return p;
+}
+
+#if defined ENABLE_GIMPLE_CHECKING
+/* Complain of a gimple type mismatch and die. */
+
+void
+gimple_check_failed (const_gimple gs, const char *file, int line,
+ const char *function, enum gimple_code code,
+ enum tree_code subcode)
+{
+ internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
+ gimple_code_name[code],
+ tree_code_name[subcode],
+ gimple_code_name[gimple_code (gs)],
+ gs->gsbase.subcode > 0
+ ? tree_code_name[gs->gsbase.subcode]
+ : "",
+ function, trim_filename (file), line);
+}
+#endif /* ENABLE_GIMPLE_CHECKING */
+
+
+/* Link gimple statement GS to the end of the sequence *SEQ_P. If
+ *SEQ_P is NULL, a new sequence is allocated. */
+
+void
+gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
+{
+ gimple_stmt_iterator si;
+ if (gs == NULL)
+ return;
+
+ si = gsi_last (*seq_p);
+ gsi_insert_after (&si, gs, GSI_NEW_STMT);
+}
+
+
+/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
+ NULL, a new sequence is allocated. */
+
+void
+gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
+{
+ gimple_stmt_iterator si;
+ if (src == NULL)
+ return;
+
+ si = gsi_last (*dst_p);
+ gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
+}
+
+
+/* Helper function of empty_body_p. Return true if STMT is an empty
+ statement. */
+
+static bool
+empty_stmt_p (gimple stmt)
+{
+ if (gimple_code (stmt) == GIMPLE_NOP)
+ return true;
+ if (gimple_code (stmt) == GIMPLE_BIND)
+ return empty_body_p (gimple_bind_body (stmt));
+ return false;
+}
+
+
+/* Return true if BODY contains nothing but empty statements. */
+
+bool
+empty_body_p (gimple_seq body)
+{
+ gimple_stmt_iterator i;
+
+ if (gimple_seq_empty_p (body))
+ return true;
+ for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
+ if (!empty_stmt_p (gsi_stmt (i))
+ && !is_gimple_debug (gsi_stmt (i)))
+ return false;
+
+ return true;
+}
+
+
+/* Perform a deep copy of sequence SRC and return the result. */
+
+gimple_seq
+gimple_seq_copy (gimple_seq src)
+{
+ gimple_stmt_iterator gsi;
+ gimple_seq new_seq = NULL;
+ gimple stmt;
+
+ for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gimple_copy (gsi_stmt (gsi));
+ gimple_seq_add_stmt (&new_seq, stmt);
+ }
+
+ return new_seq;
+}
+
+
+/* Walk all the statements in the sequence *PSEQ calling walk_gimple_stmt
+ on each one. WI is as in walk_gimple_stmt.
+
+ If walk_gimple_stmt returns non-NULL, the walk is stopped, and the
+ value is stored in WI->CALLBACK_RESULT. Also, the statement that
+ produced the value is returned if this statement has not been
+ removed by a callback (wi->removed_stmt). If the statement has
+ been removed, NULL is returned.
+
+ Otherwise, all the statements are walked and NULL returned. */
+
+gimple
+walk_gimple_seq_mod (gimple_seq *pseq, walk_stmt_fn callback_stmt,
+ walk_tree_fn callback_op, struct walk_stmt_info *wi)
+{
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start (*pseq); !gsi_end_p (gsi); )
+ {
+ tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
+ if (ret)
+ {
+ /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
+ to hold it. */
+ gcc_assert (wi);
+ wi->callback_result = ret;
+
+ return wi->removed_stmt ? NULL : gsi_stmt (gsi);
+ }
+
+ if (!wi->removed_stmt)
+ gsi_next (&gsi);
+ }
+
+ if (wi)
+ wi->callback_result = NULL_TREE;
+
+ return NULL;
+}
+
+
+/* Like walk_gimple_seq_mod, but ensure that the head of SEQ isn't
+ changed by the callbacks. */
+
+gimple
+walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
+ walk_tree_fn callback_op, struct walk_stmt_info *wi)
+{
+ gimple_seq seq2 = seq;
+ gimple ret = walk_gimple_seq_mod (&seq2, callback_stmt, callback_op, wi);
+ gcc_assert (seq2 == seq);
+ return ret;
+}
+
+
+/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
+
+static tree
+walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
+ struct walk_stmt_info *wi)
+{
+ tree ret, op;
+ unsigned noutputs;
+ const char **oconstraints;
+ unsigned i, n;
+ const char *constraint;
+ bool allows_mem, allows_reg, is_inout;
+
+ noutputs = gimple_asm_noutputs (stmt);
+ oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
+
+ if (wi)
+ wi->is_lhs = true;
+
+ for (i = 0; i < noutputs; i++)
+ {
+ op = gimple_asm_output_op (stmt, i);
+ constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
+ oconstraints[i] = constraint;
+ parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
+ &is_inout);
+ if (wi)
+ wi->val_only = (allows_reg || !allows_mem);
+ ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
+ if (ret)
+ return ret;
+ }
+
+ n = gimple_asm_ninputs (stmt);
+ for (i = 0; i < n; i++)
+ {
+ op = gimple_asm_input_op (stmt, i);
+ constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
+ parse_input_constraint (&constraint, 0, 0, noutputs, 0,
+ oconstraints, &allows_mem, &allows_reg);
+ if (wi)
+ {
+ wi->val_only = (allows_reg || !allows_mem);
+ /* Although input "m" is not really a LHS, we need a lvalue. */
+ wi->is_lhs = !wi->val_only;
+ }
+ ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
+ if (ret)
+ return ret;
+ }
+
+ if (wi)
+ {
+ wi->is_lhs = false;
+ wi->val_only = true;
+ }
+
+ n = gimple_asm_nlabels (stmt);
+ for (i = 0; i < n; i++)
+ {
+ op = gimple_asm_label_op (stmt, i);
+ ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
+ if (ret)
+ return ret;
+ }
+
+ return NULL_TREE;
+}
+
+
+/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
+ STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
+
+ CALLBACK_OP is called on each operand of STMT via walk_tree.
+ Additional parameters to walk_tree must be stored in WI. For each operand
+ OP, walk_tree is called as:
+
+ walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
+
+ If CALLBACK_OP returns non-NULL for an operand, the remaining
+ operands are not scanned.
+
+ The return value is that returned by the last call to walk_tree, or
+ NULL_TREE if no CALLBACK_OP is specified. */
+
+tree
+walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
+ struct walk_stmt_info *wi)
+{
+ struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
+ unsigned i;
+ tree ret = NULL_TREE;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ /* Walk the RHS operands. If the LHS is of a non-renamable type or
+ is a register variable, we may use a COMPONENT_REF on the RHS. */
+ if (wi)
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ wi->val_only
+ = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
+ || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
+ }
+
+ for (i = 1; i < gimple_num_ops (stmt); i++)
+ {
+ ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ }
+
+ /* Walk the LHS. If the RHS is appropriate for a memory, we
+ may use a COMPONENT_REF on the LHS. */
+ if (wi)
+ {
+ /* If the RHS is of a non-renamable type or is a register variable,
+ we may use a COMPONENT_REF on the LHS. */
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ wi->val_only
+ = (is_gimple_reg_type (TREE_TYPE (rhs1)) && !is_gimple_reg (rhs1))
+ || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
+ wi->is_lhs = true;
+ }
+
+ ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
+ if (ret)
+ return ret;
+
+ if (wi)
+ {
+ wi->val_only = true;
+ wi->is_lhs = false;
+ }
+ break;
+
+ case GIMPLE_CALL:
+ if (wi)
+ {
+ wi->is_lhs = false;
+ wi->val_only = true;
+ }
+
+ ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
+ if (ret)
+ return ret;
+
+ ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < gimple_call_num_args (stmt); i++)
+ {
+ if (wi)
+ wi->val_only
+ = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
+ ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ }
+
+ if (gimple_call_lhs (stmt))
+ {
+ if (wi)
+ {
+ wi->is_lhs = true;
+ wi->val_only
+ = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
+ }
+
+ ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
+ if (ret)
+ return ret;
+ }
+
+ if (wi)
+ {
+ wi->is_lhs = false;
+ wi->val_only = true;
+ }
+ break;
+
+ case GIMPLE_CATCH:
+ ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_EH_FILTER:
+ ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_ASM:
+ ret = walk_gimple_asm (stmt, callback_op, wi);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_CONTINUE:
+ ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
+ callback_op, wi, pset);
+ if (ret)
+ return ret;
+
+ ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
+ callback_op, wi, pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_CRITICAL:
+ ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_FOR:
+ ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
+ {
+ ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
+ wi, pset);
+ }
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_PARALLEL:
+ ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_TASK:
+ ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_SECTIONS:
+ ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+
+ ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+
+ break;
+
+ case GIMPLE_OMP_SINGLE:
+ ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_ATOMIC_LOAD:
+ ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+
+ ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
+ pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_OMP_ATOMIC_STORE:
+ ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ break;
+
+ case GIMPLE_TRANSACTION:
+ ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op,
+ wi, pset);
+ if (ret)
+ return ret;
+ break;
+
+ /* Tuples that do not have operands. */
+ case GIMPLE_NOP:
+ case GIMPLE_RESX:
+ case GIMPLE_OMP_RETURN:
+ case GIMPLE_PREDICT:
+ break;
+
+ default:
+ {
+ enum gimple_statement_structure_enum gss;
+ gss = gimple_statement_structure (stmt);
+ if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
+ for (i = 0; i < gimple_num_ops (stmt); i++)
+ {
+ ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
+ if (ret)
+ return ret;
+ }
+ }
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+
+/* Walk the current statement in GSI (optionally using traversal state
+ stored in WI). If WI is NULL, no state is kept during traversal.
+ The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
+ that it has handled all the operands of the statement, its return
+ value is returned. Otherwise, the return value from CALLBACK_STMT
+ is discarded and its operands are scanned.
+
+ If CALLBACK_STMT is NULL or it didn't handle the operands,
+ CALLBACK_OP is called on each operand of the statement via
+ walk_gimple_op. If walk_gimple_op returns non-NULL for any
+ operand, the remaining operands are not scanned. In this case, the
+ return value from CALLBACK_OP is returned.
+
+ In any other case, NULL_TREE is returned. */
+
+tree
+walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
+ walk_tree_fn callback_op, struct walk_stmt_info *wi)
+{
+ gimple ret;
+ tree tree_ret;
+ gimple stmt = gsi_stmt (*gsi);
+
+ if (wi)
+ {
+ wi->gsi = *gsi;
+ wi->removed_stmt = false;
+
+ if (wi->want_locations && gimple_has_location (stmt))
+ input_location = gimple_location (stmt);
+ }
+
+ ret = NULL;
+
+ /* Invoke the statement callback. Return if the callback handled
+ all of STMT operands by itself. */
+ if (callback_stmt)
+ {
+ bool handled_ops = false;
+ tree_ret = callback_stmt (gsi, &handled_ops, wi);
+ if (handled_ops)
+ return tree_ret;
+
+ /* If CALLBACK_STMT did not handle operands, it should not have
+ a value to return. */
+ gcc_assert (tree_ret == NULL);
+
+ if (wi && wi->removed_stmt)
+ return NULL;
+
+ /* Re-read stmt in case the callback changed it. */
+ stmt = gsi_stmt (*gsi);
+ }
+
+ /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
+ if (callback_op)
+ {
+ tree_ret = walk_gimple_op (stmt, callback_op, wi);
+ if (tree_ret)
+ return tree_ret;
+ }
+
+ /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_BIND:
+ ret = walk_gimple_seq_mod (gimple_bind_body_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_CATCH:
+ ret = walk_gimple_seq_mod (gimple_catch_handler_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_EH_FILTER:
+ ret = walk_gimple_seq_mod (gimple_eh_filter_failure_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_EH_ELSE:
+ ret = walk_gimple_seq_mod (gimple_eh_else_n_body_ptr (stmt),
+ callback_stmt, callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ ret = walk_gimple_seq_mod (gimple_eh_else_e_body_ptr (stmt),
+ callback_stmt, callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_TRY:
+ ret = walk_gimple_seq_mod (gimple_try_eval_ptr (stmt), callback_stmt, callback_op,
+ wi);
+ if (ret)
+ return wi->callback_result;
+
+ ret = walk_gimple_seq_mod (gimple_try_cleanup_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_OMP_FOR:
+ ret = walk_gimple_seq_mod (gimple_omp_for_pre_body_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+
+ /* FALL THROUGH. */
+ case GIMPLE_OMP_CRITICAL:
+ case GIMPLE_OMP_MASTER:
+ case GIMPLE_OMP_ORDERED:
+ case GIMPLE_OMP_SECTION:
+ case GIMPLE_OMP_PARALLEL:
+ case GIMPLE_OMP_TASK:
+ case GIMPLE_OMP_SECTIONS:
+ case GIMPLE_OMP_SINGLE:
+ ret = walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_WITH_CLEANUP_EXPR:
+ ret = walk_gimple_seq_mod (gimple_wce_cleanup_ptr (stmt), callback_stmt,
+ callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ case GIMPLE_TRANSACTION:
+ ret = walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
+ callback_stmt, callback_op, wi);
+ if (ret)
+ return wi->callback_result;
+ break;
+
+ default:
+ gcc_assert (!gimple_has_substatements (stmt));
+ break;
+ }
+
+ return NULL;
+}
+
+
+/* Set sequence SEQ to be the GIMPLE body for function FN. */
+
+void
+gimple_set_body (tree fndecl, gimple_seq seq)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
+ if (fn == NULL)
+ {
+ /* If FNDECL still does not have a function structure associated
+ with it, then it does not make sense for it to receive a
+ GIMPLE body. */
+ gcc_assert (seq == NULL);
+ }
+ else
+ fn->gimple_body = seq;
+}
+
+
+/* Return the body of GIMPLE statements for function FN. After the
+ CFG pass, the function body doesn't exist anymore because it has
+ been split up into basic blocks. In this case, it returns
+ NULL. */
+
+gimple_seq
+gimple_body (tree fndecl)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
+ return fn ? fn->gimple_body : NULL;
+}
+
+/* Return true when FNDECL has Gimple body either in unlowered
+ or CFG form. */
+bool
+gimple_has_body_p (tree fndecl)
+{
+ struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
+ return (gimple_body (fndecl) || (fn && fn->cfg));
+}
+
+/* Return true if calls C1 and C2 are known to go to the same function. */
+
+bool
+gimple_call_same_target_p (const_gimple c1, const_gimple c2)
+{
+ if (gimple_call_internal_p (c1))
+ return (gimple_call_internal_p (c2)
+ && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
+ else
+ return (gimple_call_fn (c1) == gimple_call_fn (c2)
+ || (gimple_call_fndecl (c1)
+ && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
+}
+
+/* Detect flags from a GIMPLE_CALL. This is just like
+ call_expr_flags, but for gimple tuples. */
+
+int
+gimple_call_flags (const_gimple stmt)
+{
+ int flags;
+ tree decl = gimple_call_fndecl (stmt);
+
+ if (decl)
+ flags = flags_from_decl_or_type (decl);
+ else if (gimple_call_internal_p (stmt))
+ flags = internal_fn_flags (gimple_call_internal_fn (stmt));
+ else
+ flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
+
+ if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
+ flags |= ECF_NOTHROW;
+
+ return flags;
+}
+
+/* Return the "fn spec" string for call STMT. */
+
+static tree
+gimple_call_fnspec (const_gimple stmt)
+{
+ tree type, attr;
+
+ type = gimple_call_fntype (stmt);
+ if (!type)
+ return NULL_TREE;
+
+ attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
+ if (!attr)
+ return NULL_TREE;
+
+ return TREE_VALUE (TREE_VALUE (attr));
+}
+
+/* Detects argument flags for argument number ARG on call STMT. */
+
+int
+gimple_call_arg_flags (const_gimple stmt, unsigned arg)
+{
+ tree attr = gimple_call_fnspec (stmt);
+
+ if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
+ return 0;
+
+ switch (TREE_STRING_POINTER (attr)[1 + arg])
+ {
+ case 'x':
+ case 'X':
+ return EAF_UNUSED;
+
+ case 'R':
+ return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
+
+ case 'r':
+ return EAF_NOCLOBBER | EAF_NOESCAPE;
+
+ case 'W':
+ return EAF_DIRECT | EAF_NOESCAPE;
+
+ case 'w':
+ return EAF_NOESCAPE;
+
+ case '.':
+ default:
+ return 0;
+ }
+}
+
+/* Detects return flags for the call STMT. */
+
+int
+gimple_call_return_flags (const_gimple stmt)
+{
+ tree attr;
+
+ if (gimple_call_flags (stmt) & ECF_MALLOC)
+ return ERF_NOALIAS;
+
+ attr = gimple_call_fnspec (stmt);
+ if (!attr || TREE_STRING_LENGTH (attr) < 1)
+ return 0;
+
+ switch (TREE_STRING_POINTER (attr)[0])
+ {
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
+
+ case 'm':
+ return ERF_NOALIAS;
+
+ case '.':
+ default:
+ return 0;
+ }
+}
+
+
+/* Return true if GS is a copy assignment. */
+
+bool
+gimple_assign_copy_p (gimple gs)
+{
+ return (gimple_assign_single_p (gs)
+ && is_gimple_val (gimple_op (gs, 1)));
+}
+
+
+/* Return true if GS is a SSA_NAME copy assignment. */
+
+bool
+gimple_assign_ssa_name_copy_p (gimple gs)
+{
+ return (gimple_assign_single_p (gs)
+ && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
+ && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
+}
+
+
+/* Return true if GS is an assignment with a unary RHS, but the
+ operator has no effect on the assigned value. The logic is adapted
+ from STRIP_NOPS. This predicate is intended to be used in tuplifying
+ instances in which STRIP_NOPS was previously applied to the RHS of
+ an assignment.
+
+ NOTE: In the use cases that led to the creation of this function
+ and of gimple_assign_single_p, it is typical to test for either
+ condition and to proceed in the same manner. In each case, the
+ assigned value is represented by the single RHS operand of the
+ assignment. I suspect there may be cases where gimple_assign_copy_p,
+ gimple_assign_single_p, or equivalent logic is used where a similar
+ treatment of unary NOPs is appropriate. */
+
+bool
+gimple_assign_unary_nop_p (gimple gs)
+{
+ return (is_gimple_assign (gs)
+ && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
+ || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
+ && gimple_assign_rhs1 (gs) != error_mark_node
+ && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
+ == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
+}
+
+/* Set BB to be the basic block holding G. */
+
+void
+gimple_set_bb (gimple stmt, basic_block bb)
+{
+ stmt->gsbase.bb = bb;
+
+ /* If the statement is a label, add the label to block-to-labels map
+ so that we can speed up edge creation for GIMPLE_GOTOs. */
+ if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
+ {
+ tree t;
+ int uid;
+
+ t = gimple_label_label (stmt);
+ uid = LABEL_DECL_UID (t);
+ if (uid == -1)
+ {
+ unsigned old_len = vec_safe_length (label_to_block_map);
+ LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
+ if (old_len <= (unsigned) uid)
+ {
+ unsigned new_len = 3 * uid / 2 + 1;
+
+ vec_safe_grow_cleared (label_to_block_map, new_len);
+ }
+ }
+
+ (*label_to_block_map)[uid] = bb;
+ }
+}
+
+
+/* Modify the RHS of the assignment pointed-to by GSI using the
+ operands in the expression tree EXPR.
+
+ NOTE: The statement pointed-to by GSI may be reallocated if it
+ did not have enough operand slots.
+
+ This function is useful to convert an existing tree expression into
+ the flat representation used for the RHS of a GIMPLE assignment.
+ It will reallocate memory as needed to expand or shrink the number
+ of operand slots needed to represent EXPR.
+
+ NOTE: If you find yourself building a tree and then calling this
+ function, you are most certainly doing it the slow way. It is much
+ better to build a new assignment or to use the function
+ gimple_assign_set_rhs_with_ops, which does not require an
+ expression tree to be built. */
+
+void
+gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
+{
+ enum tree_code subcode;
+ tree op1, op2, op3;
+
+ extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
+ gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
+}
+
+
+/* Set the RHS of assignment statement pointed-to by GSI to CODE with
+ operands OP1, OP2 and OP3.
+
+ NOTE: The statement pointed-to by GSI may be reallocated if it
+ did not have enough operand slots. */
+
+void
+gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
+ tree op1, tree op2, tree op3)
+{
+ unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
+ gimple stmt = gsi_stmt (*gsi);
+
+ /* If the new CODE needs more operands, allocate a new statement. */
+ if (gimple_num_ops (stmt) < new_rhs_ops + 1)
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
+ memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
+ gimple_init_singleton (new_stmt);
+ gsi_replace (gsi, new_stmt, true);
+ stmt = new_stmt;
+
+ /* The LHS needs to be reset as this also changes the SSA name
+ on the LHS. */
+ gimple_assign_set_lhs (stmt, lhs);
+ }
+
+ gimple_set_num_ops (stmt, new_rhs_ops + 1);
+ gimple_set_subcode (stmt, code);
+ gimple_assign_set_rhs1 (stmt, op1);
+ if (new_rhs_ops > 1)
+ gimple_assign_set_rhs2 (stmt, op2);
+ if (new_rhs_ops > 2)
+ gimple_assign_set_rhs3 (stmt, op3);
+}
+
+
+/* Return the LHS of a statement that performs an assignment,
+ either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
+ for a call to a function that returns no value, or for a
+ statement other than an assignment or a call. */
+
+tree
+gimple_get_lhs (const_gimple stmt)
+{
+ enum gimple_code code = gimple_code (stmt);
+
+ if (code == GIMPLE_ASSIGN)
+ return gimple_assign_lhs (stmt);
+ else if (code == GIMPLE_CALL)
+ return gimple_call_lhs (stmt);
+ else
+ return NULL_TREE;
+}
+
+
+/* Set the LHS of a statement that performs an assignment,
+ either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
+
+void
+gimple_set_lhs (gimple stmt, tree lhs)
+{
+ enum gimple_code code = gimple_code (stmt);
+
+ if (code == GIMPLE_ASSIGN)
+ gimple_assign_set_lhs (stmt, lhs);
+ else if (code == GIMPLE_CALL)
+ gimple_call_set_lhs (stmt, lhs);
+ else
+ gcc_unreachable();
+}
+
+/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
+ GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
+ expression with a different value.
+
+ This will update any annotations (say debug bind stmts) referring
+ to the original LHS, so that they use the RHS instead. This is
+ done even if NLHS and LHS are the same, for it is understood that
+ the RHS will be modified afterwards, and NLHS will not be assigned
+ an equivalent value.
+
+ Adjusting any non-annotation uses of the LHS, if needed, is a
+ responsibility of the caller.
+
+ The effect of this call should be pretty much the same as that of
+ inserting a copy of STMT before STMT, and then removing the
+ original stmt, at which time gsi_remove() would have update
+ annotations, but using this function saves all the inserting,
+ copying and removing. */
+
+void
+gimple_replace_lhs (gimple stmt, tree nlhs)
+{
+ if (MAY_HAVE_DEBUG_STMTS)
+ {
+ tree lhs = gimple_get_lhs (stmt);
+
+ gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
+
+ insert_debug_temp_for_var_def (NULL, lhs);
+ }
+
+ gimple_set_lhs (stmt, nlhs);
+}
+
+/* Return a deep copy of statement STMT. All the operands from STMT
+ are reallocated and copied using unshare_expr. The DEF, USE, VDEF
+ and VUSE operand arrays are set to empty in the new copy. The new
+ copy isn't part of any sequence. */
+
+gimple
+gimple_copy (gimple stmt)
+{
+ enum gimple_code code = gimple_code (stmt);
+ unsigned num_ops = gimple_num_ops (stmt);
+ gimple copy = gimple_alloc (code, num_ops);
+ unsigned i;
+
+ /* Shallow copy all the fields from STMT. */
+ memcpy (copy, stmt, gimple_size (code));
+ gimple_init_singleton (copy);
+
+ /* If STMT has sub-statements, deep-copy them as well. */
+ if (gimple_has_substatements (stmt))
+ {
+ gimple_seq new_seq;
+ tree t;
+
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_BIND:
+ new_seq = gimple_seq_copy (gimple_bind_body (stmt));
+ gimple_bind_set_body (copy, new_seq);
+ gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
+ gimple_bind_set_block (copy, gimple_bind_block (stmt));
+ break;
+
+ case GIMPLE_CATCH:
+ new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
+ gimple_catch_set_handler (copy, new_seq);
+ t = unshare_expr (gimple_catch_types (stmt));
+ gimple_catch_set_types (copy, t);
+ break;
+
+ case GIMPLE_EH_FILTER:
+ new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
+ gimple_eh_filter_set_failure (copy, new_seq);
+ t = unshare_expr (gimple_eh_filter_types (stmt));
+ gimple_eh_filter_set_types (copy, t);
+ break;
+
+ case GIMPLE_EH_ELSE:
+ new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
+ gimple_eh_else_set_n_body (copy, new_seq);
+ new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
+ gimple_eh_else_set_e_body (copy, new_seq);
+ break;
+
+ case GIMPLE_TRY:
+ new_seq = gimple_seq_copy (gimple_try_eval (stmt));
+ gimple_try_set_eval (copy, new_seq);
+ new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
+ gimple_try_set_cleanup (copy, new_seq);
+ break;
+
+ case GIMPLE_OMP_FOR:
+ new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
+ gimple_omp_for_set_pre_body (copy, new_seq);
+ t = unshare_expr (gimple_omp_for_clauses (stmt));
+ gimple_omp_for_set_clauses (copy, t);
+ copy->gimple_omp_for.iter
+ = ggc_alloc_vec_gimple_omp_for_iter
+ (gimple_omp_for_collapse (stmt));
+ for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
+ {
+ gimple_omp_for_set_cond (copy, i,
+ gimple_omp_for_cond (stmt, i));
+ gimple_omp_for_set_index (copy, i,
+ gimple_omp_for_index (stmt, i));
+ t = unshare_expr (gimple_omp_for_initial (stmt, i));
+ gimple_omp_for_set_initial (copy, i, t);
+ t = unshare_expr (gimple_omp_for_final (stmt, i));
+ gimple_omp_for_set_final (copy, i, t);
+ t = unshare_expr (gimple_omp_for_incr (stmt, i));
+ gimple_omp_for_set_incr (copy, i, t);
+ }
+ goto copy_omp_body;
+
+ case GIMPLE_OMP_PARALLEL:
+ t = unshare_expr (gimple_omp_parallel_clauses (stmt));
+ gimple_omp_parallel_set_clauses (copy, t);
+ t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
+ gimple_omp_parallel_set_child_fn (copy, t);
+ t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
+ gimple_omp_parallel_set_data_arg (copy, t);
+ goto copy_omp_body;
+
+ case GIMPLE_OMP_TASK:
+ t = unshare_expr (gimple_omp_task_clauses (stmt));
+ gimple_omp_task_set_clauses (copy, t);
+ t = unshare_expr (gimple_omp_task_child_fn (stmt));
+ gimple_omp_task_set_child_fn (copy, t);
+ t = unshare_expr (gimple_omp_task_data_arg (stmt));
+ gimple_omp_task_set_data_arg (copy, t);
+ t = unshare_expr (gimple_omp_task_copy_fn (stmt));
+ gimple_omp_task_set_copy_fn (copy, t);
+ t = unshare_expr (gimple_omp_task_arg_size (stmt));
+ gimple_omp_task_set_arg_size (copy, t);
+ t = unshare_expr (gimple_omp_task_arg_align (stmt));
+ gimple_omp_task_set_arg_align (copy, t);
+ goto copy_omp_body;
+
+ case GIMPLE_OMP_CRITICAL:
+ t = unshare_expr (gimple_omp_critical_name (stmt));
+ gimple_omp_critical_set_name (copy, t);
+ goto copy_omp_body;
+
+ case GIMPLE_OMP_SECTIONS:
+ t = unshare_expr (gimple_omp_sections_clauses (stmt));
+ gimple_omp_sections_set_clauses (copy, t);
+ t = unshare_expr (gimple_omp_sections_control (stmt));
+ gimple_omp_sections_set_control (copy, t);
+ /* FALLTHRU */
+
+ case GIMPLE_OMP_SINGLE:
+ case GIMPLE_OMP_SECTION:
+ case GIMPLE_OMP_MASTER:
+ case GIMPLE_OMP_ORDERED:
+ copy_omp_body:
+ new_seq = gimple_seq_copy (gimple_omp_body (stmt));
+ gimple_omp_set_body (copy, new_seq);
+ break;
+
+ case GIMPLE_TRANSACTION:
+ new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
+ gimple_transaction_set_body (copy, new_seq);
+ break;
+
+ case GIMPLE_WITH_CLEANUP_EXPR:
+ new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
+ gimple_wce_set_cleanup (copy, new_seq);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Make copy of operands. */
+ for (i = 0; i < num_ops; i++)
+ gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
+
+ if (gimple_has_mem_ops (stmt))
+ {
+ gimple_set_vdef (copy, gimple_vdef (stmt));
+ gimple_set_vuse (copy, gimple_vuse (stmt));
+ }
+
+ /* Clear out SSA operand vectors on COPY. */
+ if (gimple_has_ops (stmt))
+ {
+ gimple_set_use_ops (copy, NULL);
+
+ /* SSA operands need to be updated. */
+ gimple_set_modified (copy, true);
+ }
+
+ return copy;
+}
+
+
+/* Return true if statement S has side-effects. We consider a
+ statement to have side effects if:
+
+ - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
+ - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
+
+bool
+gimple_has_side_effects (const_gimple s)
+{
+ if (is_gimple_debug (s))
+ return false;
+
+ /* We don't have to scan the arguments to check for
+ volatile arguments, though, at present, we still
+ do a scan to check for TREE_SIDE_EFFECTS. */
+ if (gimple_has_volatile_ops (s))
+ return true;
+
+ if (gimple_code (s) == GIMPLE_ASM
+ && gimple_asm_volatile_p (s))
+ return true;
+
+ if (is_gimple_call (s))
+ {
+ int flags = gimple_call_flags (s);
+
+ /* An infinite loop is considered a side effect. */
+ if (!(flags & (ECF_CONST | ECF_PURE))
+ || (flags & ECF_LOOPING_CONST_OR_PURE))
+ return true;
+
+ return false;
+ }
+
+ return false;
+}
+
+/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
+ Return true if S can trap. When INCLUDE_MEM is true, check whether
+ the memory operations could trap. When INCLUDE_STORES is true and
+ S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
+
+bool
+gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
+{
+ tree t, div = NULL_TREE;
+ enum tree_code op;
+
+ if (include_mem)
+ {
+ unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
+
+ for (i = start; i < gimple_num_ops (s); i++)
+ if (tree_could_trap_p (gimple_op (s, i)))
+ return true;
+ }
+
+ switch (gimple_code (s))
+ {
+ case GIMPLE_ASM:
+ return gimple_asm_volatile_p (s);
+
+ case GIMPLE_CALL:
+ t = gimple_call_fndecl (s);
+ /* Assume that calls to weak functions may trap. */
+ if (!t || !DECL_P (t) || DECL_WEAK (t))
+ return true;
+ return false;
+
+ case GIMPLE_ASSIGN:
+ t = gimple_expr_type (s);
+ op = gimple_assign_rhs_code (s);
+ if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
+ div = gimple_assign_rhs2 (s);
+ return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
+ (INTEGRAL_TYPE_P (t)
+ && TYPE_OVERFLOW_TRAPS (t)),
+ div));
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return true if statement S can trap. */
+
+bool
+gimple_could_trap_p (gimple s)
+{
+ return gimple_could_trap_p_1 (s, true, true);
+}
+
+/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
+
+bool
+gimple_assign_rhs_could_trap_p (gimple s)
+{
+ gcc_assert (is_gimple_assign (s));
+ return gimple_could_trap_p_1 (s, true, false);
+}
+
+
+/* Print debugging information for gimple stmts generated. */
+
+void
+dump_gimple_statistics (void)
+{
+ int i, total_tuples = 0, total_bytes = 0;
+
+ if (! GATHER_STATISTICS)
+ {
+ fprintf (stderr, "No gimple statistics\n");
+ return;
+ }
+
+ fprintf (stderr, "\nGIMPLE statements\n");
+ fprintf (stderr, "Kind Stmts Bytes\n");
+ fprintf (stderr, "---------------------------------------\n");
+ for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
+ {
+ fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
+ gimple_alloc_counts[i], gimple_alloc_sizes[i]);
+ total_tuples += gimple_alloc_counts[i];
+ total_bytes += gimple_alloc_sizes[i];
+ }
+ fprintf (stderr, "---------------------------------------\n");
+ fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
+ fprintf (stderr, "---------------------------------------\n");
+}
+
+
+/* Return the number of operands needed on the RHS of a GIMPLE
+ assignment for an expression with tree code CODE. */
+
+unsigned
+get_gimple_rhs_num_ops (enum tree_code code)
+{
+ enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
+
+ if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
+ return 1;
+ else if (rhs_class == GIMPLE_BINARY_RHS)
+ return 2;
+ else if (rhs_class == GIMPLE_TERNARY_RHS)
+ return 3;
+ else
+ gcc_unreachable ();
+}
+
+#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
+ (unsigned char) \
+ ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
+ : ((TYPE) == tcc_binary \
+ || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
+ : ((TYPE) == tcc_constant \
+ || (TYPE) == tcc_declaration \
+ || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
+ : ((SYM) == TRUTH_AND_EXPR \
+ || (SYM) == TRUTH_OR_EXPR \
+ || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
+ : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
+ : ((SYM) == COND_EXPR \
+ || (SYM) == WIDEN_MULT_PLUS_EXPR \
+ || (SYM) == WIDEN_MULT_MINUS_EXPR \
+ || (SYM) == DOT_PROD_EXPR \
+ || (SYM) == REALIGN_LOAD_EXPR \
+ || (SYM) == VEC_COND_EXPR \
+ || (SYM) == VEC_PERM_EXPR \
+ || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
+ : ((SYM) == CONSTRUCTOR \
+ || (SYM) == OBJ_TYPE_REF \
+ || (SYM) == ASSERT_EXPR \
+ || (SYM) == ADDR_EXPR \
+ || (SYM) == WITH_SIZE_EXPR \
+ || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
+ : GIMPLE_INVALID_RHS),
+#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
+
+const unsigned char gimple_rhs_class_table[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
+
+/* Validation of GIMPLE expressions. */
+
+/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
+
+bool
+is_gimple_lvalue (tree t)
+{
+ return (is_gimple_addressable (t)
+ || TREE_CODE (t) == WITH_SIZE_EXPR
+ /* These are complex lvalues, but don't have addresses, so they
+ go here. */
+ || TREE_CODE (t) == BIT_FIELD_REF);
+}
+
+/* Return true if T is a GIMPLE condition. */
+
+bool
+is_gimple_condexpr (tree t)
+{
+ return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
+ && !tree_could_throw_p (t)
+ && is_gimple_val (TREE_OPERAND (t, 0))
+ && is_gimple_val (TREE_OPERAND (t, 1))));
+}
+
+/* Return true if T is something whose address can be taken. */
+
+bool
+is_gimple_addressable (tree t)
+{
+ return (is_gimple_id (t) || handled_component_p (t)
+ || TREE_CODE (t) == MEM_REF);
+}
+
+/* Return true if T is a valid gimple constant. */
+
+bool
+is_gimple_constant (const_tree t)
+{
+ switch (TREE_CODE (t))
+ {
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ case STRING_CST:
+ case COMPLEX_CST:
+ case VECTOR_CST:
+ return true;
+
+ /* Vector constant constructors are gimple invariant. */
+ case CONSTRUCTOR:
+ if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
+ return TREE_CONSTANT (t);
+ else
+ return false;
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if T is a gimple address. */
+
+bool
+is_gimple_address (const_tree t)
+{
+ tree op;
+
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return false;
+
+ op = TREE_OPERAND (t, 0);
+ while (handled_component_p (op))
+ {
+ if ((TREE_CODE (op) == ARRAY_REF
+ || TREE_CODE (op) == ARRAY_RANGE_REF)
+ && !is_gimple_val (TREE_OPERAND (op, 1)))
+ return false;
+
+ op = TREE_OPERAND (op, 0);
+ }
+
+ if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
+ return true;
+
+ switch (TREE_CODE (op))
+ {
+ case PARM_DECL:
+ case RESULT_DECL:
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ case VAR_DECL:
+ case CONST_DECL:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+/* Return true if T is a gimple invariant address. */
+
+bool
+is_gimple_invariant_address (const_tree t)
+{
+ const_tree op;
+
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return false;
+
+ op = strip_invariant_refs (TREE_OPERAND (t, 0));
+ if (!op)
+ return false;
+
+ if (TREE_CODE (op) == MEM_REF)
+ {
+ const_tree op0 = TREE_OPERAND (op, 0);
+ return (TREE_CODE (op0) == ADDR_EXPR
+ && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
+ || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
+}
+
+/* Return true if T is a gimple invariant address at IPA level
+ (so addresses of variables on stack are not allowed). */
+
+bool
+is_gimple_ip_invariant_address (const_tree t)
+{
+ const_tree op;
+
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return false;
+
+ op = strip_invariant_refs (TREE_OPERAND (t, 0));
+ if (!op)
+ return false;
+
+ if (TREE_CODE (op) == MEM_REF)
+ {
+ const_tree op0 = TREE_OPERAND (op, 0);
+ return (TREE_CODE (op0) == ADDR_EXPR
+ && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
+ || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
+}
+
+/* Return true if T is a GIMPLE minimal invariant. It's a restricted
+ form of function invariant. */
+
+bool
+is_gimple_min_invariant (const_tree t)
+{
+ if (TREE_CODE (t) == ADDR_EXPR)
+ return is_gimple_invariant_address (t);
+
+ return is_gimple_constant (t);
+}
+
+/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
+ form of gimple minimal invariant. */
+
+bool
+is_gimple_ip_invariant (const_tree t)
+{
+ if (TREE_CODE (t) == ADDR_EXPR)
+ return is_gimple_ip_invariant_address (t);
+
+ return is_gimple_constant (t);
+}
+
+/* Return true if T is a variable. */
+
+bool
+is_gimple_variable (tree t)
+{
+ return (TREE_CODE (t) == VAR_DECL
+ || TREE_CODE (t) == PARM_DECL
+ || TREE_CODE (t) == RESULT_DECL
+ || TREE_CODE (t) == SSA_NAME);
+}
+
+/* Return true if T is a GIMPLE identifier (something with an address). */
+
+bool
+is_gimple_id (tree t)
+{
+ return (is_gimple_variable (t)
+ || TREE_CODE (t) == FUNCTION_DECL
+ || TREE_CODE (t) == LABEL_DECL
+ || TREE_CODE (t) == CONST_DECL
+ /* Allow string constants, since they are addressable. */
+ || TREE_CODE (t) == STRING_CST);
+}
+
+/* Return true if T is a non-aggregate register variable. */
+
+bool
+is_gimple_reg (tree t)
+{
+ if (virtual_operand_p (t))
+ return false;
+
+ if (TREE_CODE (t) == SSA_NAME)
+ return true;
+
+ if (!is_gimple_variable (t))
+ return false;
+
+ if (!is_gimple_reg_type (TREE_TYPE (t)))
+ return false;
+
+ /* A volatile decl is not acceptable because we can't reuse it as
+ needed. We need to copy it into a temp first. */
+ if (TREE_THIS_VOLATILE (t))
+ return false;
+
+ /* We define "registers" as things that can be renamed as needed,
+ which with our infrastructure does not apply to memory. */
+ if (needs_to_live_in_memory (t))
+ return false;
+
+ /* Hard register variables are an interesting case. For those that
+ are call-clobbered, we don't know where all the calls are, since
+ we don't (want to) take into account which operations will turn
+ into libcalls at the rtl level. For those that are call-saved,
+ we don't currently model the fact that calls may in fact change
+ global hard registers, nor do we examine ASM_CLOBBERS at the tree
+ level, and so miss variable changes that might imply. All around,
+ it seems safest to not do too much optimization with these at the
+ tree level at all. We'll have to rely on the rtl optimizers to
+ clean this up, as there we've got all the appropriate bits exposed. */
+ if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
+ return false;
+
+ /* Complex and vector values must have been put into SSA-like form.
+ That is, no assignments to the individual components. */
+ if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
+ || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
+ return DECL_GIMPLE_REG_P (t);
+
+ return true;
+}
+
+
+/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
+
+bool
+is_gimple_val (tree t)
+{
+ /* Make loads from volatiles and memory vars explicit. */
+ if (is_gimple_variable (t)
+ && is_gimple_reg_type (TREE_TYPE (t))
+ && !is_gimple_reg (t))
+ return false;
+
+ return (is_gimple_variable (t) || is_gimple_min_invariant (t));
+}
+
+/* Similarly, but accept hard registers as inputs to asm statements. */
+
+bool
+is_gimple_asm_val (tree t)
+{
+ if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
+ return true;
+
+ return is_gimple_val (t);
+}
+
+/* Return true if T is a GIMPLE minimal lvalue. */
+
+bool
+is_gimple_min_lval (tree t)
+{
+ if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
+ return false;
+ return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
+}
+
+/* Return true if T is a valid function operand of a CALL_EXPR. */
+
+bool
+is_gimple_call_addr (tree t)
+{
+ return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
+}
+
+/* Return true if T is a valid address operand of a MEM_REF. */
+
+bool
+is_gimple_mem_ref_addr (tree t)
+{
+ return (is_gimple_reg (t)
+ || TREE_CODE (t) == INTEGER_CST
+ || (TREE_CODE (t) == ADDR_EXPR
+ && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
+ || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
+}
+
+
+/* Given a memory reference expression T, return its base address.
+ The base address of a memory reference expression is the main
+ object being referenced. For instance, the base address for
+ 'array[i].fld[j]' is 'array'. You can think of this as stripping
+ away the offset part from a memory address.
+
+ This function calls handled_component_p to strip away all the inner
+ parts of the memory reference until it reaches the base object. */
+
+tree
+get_base_address (tree t)
+{
+ while (handled_component_p (t))
+ t = TREE_OPERAND (t, 0);
+
+ if ((TREE_CODE (t) == MEM_REF
+ || TREE_CODE (t) == TARGET_MEM_REF)
+ && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
+ t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
+
+ /* ??? Either the alias oracle or all callers need to properly deal
+ with WITH_SIZE_EXPRs before we can look through those. */
+ if (TREE_CODE (t) == WITH_SIZE_EXPR)
+ return NULL_TREE;
+
+ return t;
+}
+
+void
+recalculate_side_effects (tree t)
+{
+ enum tree_code code = TREE_CODE (t);
+ int len = TREE_OPERAND_LENGTH (t);
+ int i;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_expression:
+ switch (code)
+ {
+ case INIT_EXPR:
+ case MODIFY_EXPR:
+ case VA_ARG_EXPR:
+ case PREDECREMENT_EXPR:
+ case PREINCREMENT_EXPR:
+ case POSTDECREMENT_EXPR:
+ case POSTINCREMENT_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ return;
+
+ default:
+ break;
+ }
+ /* Fall through. */
+
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ case tcc_reference: /* a reference */
+ case tcc_vl_exp: /* a function call */
+ TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
+ for (i = 0; i < len; ++i)
+ {
+ tree op = TREE_OPERAND (t, i);
+ if (op && TREE_SIDE_EFFECTS (op))
+ TREE_SIDE_EFFECTS (t) = 1;
+ }
+ break;
+
+ case tcc_constant:
+ /* No side-effects. */
+ return;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
+ a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
+ we failed to create one. */
+
+tree
+canonicalize_cond_expr_cond (tree t)
+{
+ /* Strip conversions around boolean operations. */
+ if (CONVERT_EXPR_P (t)
+ && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
+ || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
+ == BOOLEAN_TYPE))
+ t = TREE_OPERAND (t, 0);
+
+ /* For !x use x == 0. */
+ if (TREE_CODE (t) == TRUTH_NOT_EXPR)
+ {
+ tree top0 = TREE_OPERAND (t, 0);
+ t = build2 (EQ_EXPR, TREE_TYPE (t),
+ top0, build_int_cst (TREE_TYPE (top0), 0));
+ }
+ /* For cmp ? 1 : 0 use cmp. */
+ else if (TREE_CODE (t) == COND_EXPR
+ && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
+ && integer_onep (TREE_OPERAND (t, 1))
+ && integer_zerop (TREE_OPERAND (t, 2)))
+ {
+ tree top0 = TREE_OPERAND (t, 0);
+ t = build2 (TREE_CODE (top0), TREE_TYPE (t),
+ TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
+ }
+
+ if (is_gimple_condexpr (t))
+ return t;
+
+ return NULL_TREE;
+}
+
+/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
+ the positions marked by the set ARGS_TO_SKIP. */
+
+gimple
+gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
+{
+ int i;
+ int nargs = gimple_call_num_args (stmt);
+ vec<tree> vargs;
+ vargs.create (nargs);
+ gimple new_stmt;
+
+ for (i = 0; i < nargs; i++)
+ if (!bitmap_bit_p (args_to_skip, i))
+ vargs.quick_push (gimple_call_arg (stmt, i));
+
+ if (gimple_call_internal_p (stmt))
+ new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
+ vargs);
+ else
+ new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
+ vargs.release ();
+ if (gimple_call_lhs (stmt))
+ gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
+
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+
+ if (gimple_has_location (stmt))
+ gimple_set_location (new_stmt, gimple_location (stmt));
+ gimple_call_copy_flags (new_stmt, stmt);
+ gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
+
+ gimple_set_modified (new_stmt, true);
+
+ return new_stmt;
+}
+
+
+
+/* Return true if the field decls F1 and F2 are at the same offset.
+
+ This is intended to be used on GIMPLE types only. */
+
+bool
+gimple_compare_field_offset (tree f1, tree f2)
+{
+ if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
+ {
+ tree offset1 = DECL_FIELD_OFFSET (f1);
+ tree offset2 = DECL_FIELD_OFFSET (f2);
+ return ((offset1 == offset2
+ /* Once gimplification is done, self-referential offsets are
+ instantiated as operand #2 of the COMPONENT_REF built for
+ each access and reset. Therefore, they are not relevant
+ anymore and fields are interchangeable provided that they
+ represent the same access. */
+ || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
+ && TREE_CODE (offset2) == PLACEHOLDER_EXPR
+ && (DECL_SIZE (f1) == DECL_SIZE (f2)
+ || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
+ && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
+ || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
+ && DECL_ALIGN (f1) == DECL_ALIGN (f2))
+ || operand_equal_p (offset1, offset2, 0))
+ && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
+ DECL_FIELD_BIT_OFFSET (f2)));
+ }
+
+ /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
+ should be, so handle differing ones specially by decomposing
+ the offset into a byte and bit offset manually. */
+ if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
+ && host_integerp (DECL_FIELD_OFFSET (f2), 0))
+ {
+ unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
+ unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
+ bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
+ byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
+ + bit_offset1 / BITS_PER_UNIT);
+ bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
+ byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
+ + bit_offset2 / BITS_PER_UNIT);
+ if (byte_offset1 != byte_offset2)
+ return false;
+ return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
+ }
+
+ return false;
+}
+
+/* Returning a hash value for gimple type TYPE combined with VAL.
+
+ The hash value returned is equal for types considered compatible
+ by gimple_canonical_types_compatible_p. */
+
+static hashval_t
+iterative_hash_canonical_type (tree type, hashval_t val)
+{
+ hashval_t v;
+ void **slot;
+ struct tree_int_map *mp, m;
+
+ m.base.from = type;
+ if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
+ && *slot)
+ return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
+
+ /* Combine a few common features of types so that types are grouped into
+ smaller sets; when searching for existing matching types to merge,
+ only existing types having the same features as the new type will be
+ checked. */
+ v = iterative_hash_hashval_t (TREE_CODE (type), 0);
+ v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
+ v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
+ v = iterative_hash_hashval_t (TYPE_MODE (type), v);
+
+ /* Incorporate common features of numerical types. */
+ if (INTEGRAL_TYPE_P (type)
+ || SCALAR_FLOAT_TYPE_P (type)
+ || FIXED_POINT_TYPE_P (type)
+ || TREE_CODE (type) == VECTOR_TYPE
+ || TREE_CODE (type) == COMPLEX_TYPE
+ || TREE_CODE (type) == OFFSET_TYPE
+ || POINTER_TYPE_P (type))
+ {
+ v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
+ v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
+ }
+
+ /* For pointer and reference types, fold in information about the type
+ pointed to but do not recurse to the pointed-to type. */
+ if (POINTER_TYPE_P (type))
+ {
+ v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
+ v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
+ v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
+ v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
+ }
+
+ /* For integer types hash only the string flag. */
+ if (TREE_CODE (type) == INTEGER_TYPE)
+ v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
+
+ /* For array types hash the domain bounds and the string flag. */
+ if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
+ {
+ v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
+ /* OMP lowering can introduce error_mark_node in place of
+ random local decls in types. */
+ if (TYPE_MIN_VALUE (TYPE_DOMAIN (type)) != error_mark_node)
+ v = iterative_hash_expr (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), v);
+ if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != error_mark_node)
+ v = iterative_hash_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), v);
+ }
+
+ /* Recurse for aggregates with a single element type. */
+ if (TREE_CODE (type) == ARRAY_TYPE
+ || TREE_CODE (type) == COMPLEX_TYPE
+ || TREE_CODE (type) == VECTOR_TYPE)
+ v = iterative_hash_canonical_type (TREE_TYPE (type), v);
+
+ /* Incorporate function return and argument types. */
+ if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
+ {
+ unsigned na;
+ tree p;
+
+ /* For method types also incorporate their parent class. */
+ if (TREE_CODE (type) == METHOD_TYPE)
+ v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
+
+ v = iterative_hash_canonical_type (TREE_TYPE (type), v);
+
+ for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
+ {
+ v = iterative_hash_canonical_type (TREE_VALUE (p), v);
+ na++;
+ }
+
+ v = iterative_hash_hashval_t (na, v);
+ }
+
+ if (RECORD_OR_UNION_TYPE_P (type))
+ {
+ unsigned nf;
+ tree f;
+
+ for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
+ if (TREE_CODE (f) == FIELD_DECL)
+ {
+ v = iterative_hash_canonical_type (TREE_TYPE (f), v);
+ nf++;
+ }
+
+ v = iterative_hash_hashval_t (nf, v);
+ }
+
+ /* Cache the just computed hash value. */
+ mp = ggc_alloc_cleared_tree_int_map ();
+ mp->base.from = type;
+ mp->to = v;
+ *slot = (void *) mp;
+
+ return iterative_hash_hashval_t (v, val);
+}
+
+static hashval_t
+gimple_canonical_type_hash (const void *p)
+{
+ if (canonical_type_hash_cache == NULL)
+ canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
+ tree_int_map_eq, NULL);
+
+ return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
+}
+
+
+
+
+/* The TYPE_CANONICAL merging machinery. It should closely resemble
+ the middle-end types_compatible_p function. It needs to avoid
+ claiming types are different for types that should be treated
+ the same with respect to TBAA. Canonical types are also used
+ for IL consistency checks via the useless_type_conversion_p
+ predicate which does not handle all type kinds itself but falls
+ back to pointer-comparison of TYPE_CANONICAL for aggregates
+ for example. */
+
+/* Return true iff T1 and T2 are structurally identical for what
+ TBAA is concerned. */
+
+static bool
+gimple_canonical_types_compatible_p (tree t1, tree t2)
+{
+ /* Before starting to set up the SCC machinery handle simple cases. */
+
+ /* Check first for the obvious case of pointer identity. */
+ if (t1 == t2)
+ return true;
+
+ /* Check that we have two types to compare. */
+ if (t1 == NULL_TREE || t2 == NULL_TREE)
+ return false;
+
+ /* If the types have been previously registered and found equal
+ they still are. */
+ if (TYPE_CANONICAL (t1)
+ && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
+ return true;
+
+ /* Can't be the same type if the types don't have the same code. */
+ if (TREE_CODE (t1) != TREE_CODE (t2))
+ return false;
+
+ if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
+ return false;
+
+ /* Qualifiers do not matter for canonical type comparison purposes. */
+
+ /* Void types and nullptr types are always the same. */
+ if (TREE_CODE (t1) == VOID_TYPE
+ || TREE_CODE (t1) == NULLPTR_TYPE)
+ return true;
+
+ /* Can't be the same type if they have different alignment, or mode. */
+ if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
+ || TYPE_MODE (t1) != TYPE_MODE (t2))
+ return false;
+
+ /* Non-aggregate types can be handled cheaply. */
+ if (INTEGRAL_TYPE_P (t1)
+ || SCALAR_FLOAT_TYPE_P (t1)
+ || FIXED_POINT_TYPE_P (t1)
+ || TREE_CODE (t1) == VECTOR_TYPE
+ || TREE_CODE (t1) == COMPLEX_TYPE
+ || TREE_CODE (t1) == OFFSET_TYPE
+ || POINTER_TYPE_P (t1))
+ {
+ /* Can't be the same type if they have different sign or precision. */
+ if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
+ || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
+ return false;
+
+ if (TREE_CODE (t1) == INTEGER_TYPE
+ && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))
+ return false;
+
+ /* For canonical type comparisons we do not want to build SCCs
+ so we cannot compare pointed-to types. But we can, for now,
+ require the same pointed-to type kind and match what
+ useless_type_conversion_p would do. */
+ if (POINTER_TYPE_P (t1))
+ {
+ /* If the two pointers have different ref-all attributes,
+ they can't be the same type. */
+ if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
+ return false;
+
+ if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
+ != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
+ return false;
+
+ if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
+ return false;
+
+ if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
+ return false;
+ }
+
+ /* Tail-recurse to components. */
+ if (TREE_CODE (t1) == VECTOR_TYPE
+ || TREE_CODE (t1) == COMPLEX_TYPE)
+ return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
+ TREE_TYPE (t2));
+
+ return true;
+ }
+
+ /* Do type-specific comparisons. */
+ switch (TREE_CODE (t1))
+ {
+ case ARRAY_TYPE:
+ /* Array types are the same if the element types are the same and
+ the number of elements are the same. */
+ if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
+ || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
+ || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
+ return false;
+ else
+ {
+ tree i1 = TYPE_DOMAIN (t1);
+ tree i2 = TYPE_DOMAIN (t2);
+
+ /* For an incomplete external array, the type domain can be
+ NULL_TREE. Check this condition also. */
+ if (i1 == NULL_TREE && i2 == NULL_TREE)
+ return true;
+ else if (i1 == NULL_TREE || i2 == NULL_TREE)
+ return false;
+ else
+ {
+ tree min1 = TYPE_MIN_VALUE (i1);
+ tree min2 = TYPE_MIN_VALUE (i2);
+ tree max1 = TYPE_MAX_VALUE (i1);
+ tree max2 = TYPE_MAX_VALUE (i2);
+
+ /* The minimum/maximum values have to be the same. */
+ if ((min1 == min2
+ || (min1 && min2
+ && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
+ && TREE_CODE (min2) == PLACEHOLDER_EXPR)
+ || operand_equal_p (min1, min2, 0))))
+ && (max1 == max2
+ || (max1 && max2
+ && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
+ && TREE_CODE (max2) == PLACEHOLDER_EXPR)
+ || operand_equal_p (max1, max2, 0)))))
+ return true;
+ else
+ return false;
+ }
+ }
+
+ case METHOD_TYPE:
+ case FUNCTION_TYPE:
+ /* Function types are the same if the return type and arguments types
+ are the same. */
+ if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
+ return false;
+
+ if (!comp_type_attributes (t1, t2))
+ return false;
+
+ if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
+ return true;
+ else
+ {
+ tree parms1, parms2;
+
+ for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
+ parms1 && parms2;
+ parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
+ {
+ if (!gimple_canonical_types_compatible_p
+ (TREE_VALUE (parms1), TREE_VALUE (parms2)))
+ return false;
+ }
+
+ if (parms1 || parms2)
+ return false;
+
+ return true;
+ }
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree f1, f2;
+
+ /* For aggregate types, all the fields must be the same. */
+ for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
+ f1 || f2;
+ f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
+ {
+ /* Skip non-fields. */
+ while (f1 && TREE_CODE (f1) != FIELD_DECL)
+ f1 = TREE_CHAIN (f1);
+ while (f2 && TREE_CODE (f2) != FIELD_DECL)
+ f2 = TREE_CHAIN (f2);
+ if (!f1 || !f2)
+ break;
+ /* The fields must have the same name, offset and type. */
+ if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
+ || !gimple_compare_field_offset (f1, f2)
+ || !gimple_canonical_types_compatible_p
+ (TREE_TYPE (f1), TREE_TYPE (f2)))
+ return false;
+ }
+
+ /* If one aggregate has more fields than the other, they
+ are not the same. */
+ if (f1 || f2)
+ return false;
+
+ return true;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Returns nonzero if P1 and P2 are equal. */
+
+static int
+gimple_canonical_type_eq (const void *p1, const void *p2)
+{
+ const_tree t1 = (const_tree) p1;
+ const_tree t2 = (const_tree) p2;
+ return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
+ CONST_CAST_TREE (t2));
+}
+
+/* Register type T in the global type table gimple_types.
+ If another type T', compatible with T, already existed in
+ gimple_types then return T', otherwise return T. This is used by
+ LTO to merge identical types read from different TUs.
+
+ ??? This merging does not exactly match how the tree.c middle-end
+ functions will assign TYPE_CANONICAL when new types are created
+ during optimization (which at least happens for pointer and array
+ types). */
+
+tree
+gimple_register_canonical_type (tree t)
+{
+ void **slot;
+
+ gcc_assert (TYPE_P (t));
+
+ if (TYPE_CANONICAL (t))
+ return TYPE_CANONICAL (t);
+
+ if (gimple_canonical_types == NULL)
+ gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
+ gimple_canonical_type_eq, 0);
+
+ slot = htab_find_slot (gimple_canonical_types, t, INSERT);
+ if (*slot
+ && *(tree *)slot != t)
+ {
+ tree new_type = (tree) *((tree *) slot);
+
+ TYPE_CANONICAL (t) = new_type;
+ t = new_type;
+ }
+ else
+ {
+ TYPE_CANONICAL (t) = t;
+ *slot = (void *) t;
+ }
+
+ return t;
+}
+
+
+/* Show statistics on references to the global type table gimple_types. */
+
+void
+print_gimple_types_stats (const char *pfx)
+{
+ if (gimple_canonical_types)
+ fprintf (stderr, "[%s] GIMPLE canonical type table: size %ld, "
+ "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx,
+ (long) htab_size (gimple_canonical_types),
+ (long) htab_elements (gimple_canonical_types),
+ (long) gimple_canonical_types->searches,
+ (long) gimple_canonical_types->collisions,
+ htab_collisions (gimple_canonical_types));
+ else
+ fprintf (stderr, "[%s] GIMPLE canonical type table is empty\n", pfx);
+ if (canonical_type_hash_cache)
+ fprintf (stderr, "[%s] GIMPLE canonical type hash table: size %ld, "
+ "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx,
+ (long) htab_size (canonical_type_hash_cache),
+ (long) htab_elements (canonical_type_hash_cache),
+ (long) canonical_type_hash_cache->searches,
+ (long) canonical_type_hash_cache->collisions,
+ htab_collisions (canonical_type_hash_cache));
+ else
+ fprintf (stderr, "[%s] GIMPLE canonical type hash table is empty\n", pfx);
+}
+
+/* Free the gimple type hashtables used for LTO type merging. */
+
+void
+free_gimple_type_tables (void)
+{
+ if (gimple_canonical_types)
+ {
+ htab_delete (gimple_canonical_types);
+ gimple_canonical_types = NULL;
+ }
+ if (canonical_type_hash_cache)
+ {
+ htab_delete (canonical_type_hash_cache);
+ canonical_type_hash_cache = NULL;
+ }
+}
+
+
+/* Return a type the same as TYPE except unsigned or
+ signed according to UNSIGNEDP. */
+
+static tree
+gimple_signed_or_unsigned_type (bool unsignedp, tree type)
+{
+ tree type1;
+
+ type1 = TYPE_MAIN_VARIANT (type);
+ if (type1 == signed_char_type_node
+ || type1 == char_type_node
+ || type1 == unsigned_char_type_node)
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+ if (type1 == integer_type_node || type1 == unsigned_type_node)
+ return unsignedp ? unsigned_type_node : integer_type_node;
+ if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
+ return unsignedp ? short_unsigned_type_node : short_integer_type_node;
+ if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
+ return unsignedp ? long_unsigned_type_node : long_integer_type_node;
+ if (type1 == long_long_integer_type_node
+ || type1 == long_long_unsigned_type_node)
+ return unsignedp
+ ? long_long_unsigned_type_node
+ : long_long_integer_type_node;
+ if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
+ return unsignedp
+ ? int128_unsigned_type_node
+ : int128_integer_type_node;
+#if HOST_BITS_PER_WIDE_INT >= 64
+ if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
+ return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
+#endif
+ if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
+ return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
+ if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
+ return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
+ if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
+ return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
+ if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
+ return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
+
+#define GIMPLE_FIXED_TYPES(NAME) \
+ if (type1 == short_ ## NAME ## _type_node \
+ || type1 == unsigned_short_ ## NAME ## _type_node) \
+ return unsignedp ? unsigned_short_ ## NAME ## _type_node \
+ : short_ ## NAME ## _type_node; \
+ if (type1 == NAME ## _type_node \
+ || type1 == unsigned_ ## NAME ## _type_node) \
+ return unsignedp ? unsigned_ ## NAME ## _type_node \
+ : NAME ## _type_node; \
+ if (type1 == long_ ## NAME ## _type_node \
+ || type1 == unsigned_long_ ## NAME ## _type_node) \
+ return unsignedp ? unsigned_long_ ## NAME ## _type_node \
+ : long_ ## NAME ## _type_node; \
+ if (type1 == long_long_ ## NAME ## _type_node \
+ || type1 == unsigned_long_long_ ## NAME ## _type_node) \
+ return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
+ : long_long_ ## NAME ## _type_node;
+
+#define GIMPLE_FIXED_MODE_TYPES(NAME) \
+ if (type1 == NAME ## _type_node \
+ || type1 == u ## NAME ## _type_node) \
+ return unsignedp ? u ## NAME ## _type_node \
+ : NAME ## _type_node;
+
+#define GIMPLE_FIXED_TYPES_SAT(NAME) \
+ if (type1 == sat_ ## short_ ## NAME ## _type_node \
+ || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
+ return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
+ : sat_ ## short_ ## NAME ## _type_node; \
+ if (type1 == sat_ ## NAME ## _type_node \
+ || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
+ return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
+ : sat_ ## NAME ## _type_node; \
+ if (type1 == sat_ ## long_ ## NAME ## _type_node \
+ || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
+ return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
+ : sat_ ## long_ ## NAME ## _type_node; \
+ if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
+ || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
+ return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
+ : sat_ ## long_long_ ## NAME ## _type_node;
+
+#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
+ if (type1 == sat_ ## NAME ## _type_node \
+ || type1 == sat_ ## u ## NAME ## _type_node) \
+ return unsignedp ? sat_ ## u ## NAME ## _type_node \
+ : sat_ ## NAME ## _type_node;
+
+ GIMPLE_FIXED_TYPES (fract);
+ GIMPLE_FIXED_TYPES_SAT (fract);
+ GIMPLE_FIXED_TYPES (accum);
+ GIMPLE_FIXED_TYPES_SAT (accum);
+
+ GIMPLE_FIXED_MODE_TYPES (qq);
+ GIMPLE_FIXED_MODE_TYPES (hq);
+ GIMPLE_FIXED_MODE_TYPES (sq);
+ GIMPLE_FIXED_MODE_TYPES (dq);
+ GIMPLE_FIXED_MODE_TYPES (tq);
+ GIMPLE_FIXED_MODE_TYPES_SAT (qq);
+ GIMPLE_FIXED_MODE_TYPES_SAT (hq);
+ GIMPLE_FIXED_MODE_TYPES_SAT (sq);
+ GIMPLE_FIXED_MODE_TYPES_SAT (dq);
+ GIMPLE_FIXED_MODE_TYPES_SAT (tq);
+ GIMPLE_FIXED_MODE_TYPES (ha);
+ GIMPLE_FIXED_MODE_TYPES (sa);
+ GIMPLE_FIXED_MODE_TYPES (da);
+ GIMPLE_FIXED_MODE_TYPES (ta);
+ GIMPLE_FIXED_MODE_TYPES_SAT (ha);
+ GIMPLE_FIXED_MODE_TYPES_SAT (sa);
+ GIMPLE_FIXED_MODE_TYPES_SAT (da);
+ GIMPLE_FIXED_MODE_TYPES_SAT (ta);
+
+ /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
+ the precision; they have precision set to match their range, but
+ may use a wider mode to match an ABI. If we change modes, we may
+ wind up with bad conversions. For INTEGER_TYPEs in C, must check
+ the precision as well, so as to yield correct results for
+ bit-field types. C++ does not have these separate bit-field
+ types, and producing a signed or unsigned variant of an
+ ENUMERAL_TYPE may cause other problems as well. */
+ if (!INTEGRAL_TYPE_P (type)
+ || TYPE_UNSIGNED (type) == unsignedp)
+ return type;
+
+#define TYPE_OK(node) \
+ (TYPE_MODE (type) == TYPE_MODE (node) \
+ && TYPE_PRECISION (type) == TYPE_PRECISION (node))
+ if (TYPE_OK (signed_char_type_node))
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+ if (TYPE_OK (integer_type_node))
+ return unsignedp ? unsigned_type_node : integer_type_node;
+ if (TYPE_OK (short_integer_type_node))
+ return unsignedp ? short_unsigned_type_node : short_integer_type_node;
+ if (TYPE_OK (long_integer_type_node))
+ return unsignedp ? long_unsigned_type_node : long_integer_type_node;
+ if (TYPE_OK (long_long_integer_type_node))
+ return (unsignedp
+ ? long_long_unsigned_type_node
+ : long_long_integer_type_node);
+ if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
+ return (unsignedp
+ ? int128_unsigned_type_node
+ : int128_integer_type_node);
+
+#if HOST_BITS_PER_WIDE_INT >= 64
+ if (TYPE_OK (intTI_type_node))
+ return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
+#endif
+ if (TYPE_OK (intDI_type_node))
+ return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
+ if (TYPE_OK (intSI_type_node))
+ return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
+ if (TYPE_OK (intHI_type_node))
+ return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
+ if (TYPE_OK (intQI_type_node))
+ return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
+
+#undef GIMPLE_FIXED_TYPES
+#undef GIMPLE_FIXED_MODE_TYPES
+#undef GIMPLE_FIXED_TYPES_SAT
+#undef GIMPLE_FIXED_MODE_TYPES_SAT
+#undef TYPE_OK
+
+ return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
+}
+
+
+/* Return an unsigned type the same as TYPE in other respects. */
+
+tree
+gimple_unsigned_type (tree type)
+{
+ return gimple_signed_or_unsigned_type (true, type);
+}
+
+
+/* Return a signed type the same as TYPE in other respects. */
+
+tree
+gimple_signed_type (tree type)
+{
+ return gimple_signed_or_unsigned_type (false, type);
+}
+
+
+/* Return the typed-based alias set for T, which may be an expression
+ or a type. Return -1 if we don't do anything special. */
+
+alias_set_type
+gimple_get_alias_set (tree t)
+{
+ tree u;
+
+ /* Permit type-punning when accessing a union, provided the access
+ is directly through the union. For example, this code does not
+ permit taking the address of a union member and then storing
+ through it. Even the type-punning allowed here is a GCC
+ extension, albeit a common and useful one; the C standard says
+ that such accesses have implementation-defined behavior. */
+ for (u = t;
+ TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
+ u = TREE_OPERAND (u, 0))
+ if (TREE_CODE (u) == COMPONENT_REF
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
+ return 0;
+
+ /* That's all the expressions we handle specially. */
+ if (!TYPE_P (t))
+ return -1;
+
+ /* For convenience, follow the C standard when dealing with
+ character types. Any object may be accessed via an lvalue that
+ has character type. */
+ if (t == char_type_node
+ || t == signed_char_type_node
+ || t == unsigned_char_type_node)
+ return 0;
+
+ /* Allow aliasing between signed and unsigned variants of the same
+ type. We treat the signed variant as canonical. */
+ if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
+ {
+ tree t1 = gimple_signed_type (t);
+
+ /* t1 == t can happen for boolean nodes which are always unsigned. */
+ if (t1 != t)
+ return get_alias_set (t1);
+ }
+
+ return -1;
+}
+
+
+/* Data structure used to count the number of dereferences to PTR
+ inside an expression. */
+struct count_ptr_d
+{
+ tree ptr;
+ unsigned num_stores;
+ unsigned num_loads;
+};
+
+/* Helper for count_uses_and_derefs. Called by walk_tree to look for
+ (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
+
+static tree
+count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
+{
+ struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
+ struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
+
+ /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
+ pointer 'ptr' is *not* dereferenced, it is simply used to compute
+ the address of 'fld' as 'ptr + offsetof(fld)'. */
+ if (TREE_CODE (*tp) == ADDR_EXPR)
+ {
+ *walk_subtrees = 0;
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
+ {
+ if (wi_p->is_lhs)
+ count_p->num_stores++;
+ else
+ count_p->num_loads++;
+ }
+
+ return NULL_TREE;
+}
+
+/* Count the number of direct and indirect uses for pointer PTR in
+ statement STMT. The number of direct uses is stored in
+ *NUM_USES_P. Indirect references are counted separately depending
+ on whether they are store or load operations. The counts are
+ stored in *NUM_STORES_P and *NUM_LOADS_P. */
+
+void
+count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
+ unsigned *num_loads_p, unsigned *num_stores_p)
+{
+ ssa_op_iter i;
+ tree use;
+
+ *num_uses_p = 0;
+ *num_loads_p = 0;
+ *num_stores_p = 0;
+
+ /* Find out the total number of uses of PTR in STMT. */
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
+ if (use == ptr)
+ (*num_uses_p)++;
+
+ /* Now count the number of indirect references to PTR. This is
+ truly awful, but we don't have much choice. There are no parent
+ pointers inside INDIRECT_REFs, so an expression like
+ '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
+ find all the indirect and direct uses of x_1 inside. The only
+ shortcut we can take is the fact that GIMPLE only allows
+ INDIRECT_REFs inside the expressions below. */
+ if (is_gimple_assign (stmt)
+ || gimple_code (stmt) == GIMPLE_RETURN
+ || gimple_code (stmt) == GIMPLE_ASM
+ || is_gimple_call (stmt))
+ {
+ struct walk_stmt_info wi;
+ struct count_ptr_d count;
+
+ count.ptr = ptr;
+ count.num_stores = 0;
+ count.num_loads = 0;
+
+ memset (&wi, 0, sizeof (wi));
+ wi.info = &count;
+ walk_gimple_op (stmt, count_ptr_derefs, &wi);
+
+ *num_stores_p = count.num_stores;
+ *num_loads_p = count.num_loads;
+ }
+
+ gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
+}
+
+/* From a tree operand OP return the base of a load or store operation
+ or NULL_TREE if OP is not a load or a store. */
+
+static tree
+get_base_loadstore (tree op)
+{
+ while (handled_component_p (op))
+ op = TREE_OPERAND (op, 0);
+ if (DECL_P (op)
+ || INDIRECT_REF_P (op)
+ || TREE_CODE (op) == MEM_REF
+ || TREE_CODE (op) == TARGET_MEM_REF)
+ return op;
+ return NULL_TREE;
+}
+
+/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
+ VISIT_ADDR if non-NULL on loads, store and address-taken operands
+ passing the STMT, the base of the operand, the operand itself containing
+ the base and DATA to it. The base will be either a decl, an indirect
+ reference (including TARGET_MEM_REF) or the argument of an address
+ expression.
+ Returns the results of these callbacks or'ed. */
+
+bool
+walk_stmt_load_store_addr_ops (gimple stmt, void *data,
+ walk_stmt_load_store_addr_fn visit_load,
+ walk_stmt_load_store_addr_fn visit_store,
+ walk_stmt_load_store_addr_fn visit_addr)
+{
+ bool ret = false;
+ unsigned i;
+ if (gimple_assign_single_p (stmt))
+ {
+ tree lhs, rhs, arg;
+ if (visit_store)
+ {
+ arg = gimple_assign_lhs (stmt);
+ lhs = get_base_loadstore (arg);
+ if (lhs)
+ ret |= visit_store (stmt, lhs, arg, data);
+ }
+ arg = gimple_assign_rhs1 (stmt);
+ rhs = arg;
+ while (handled_component_p (rhs))
+ rhs = TREE_OPERAND (rhs, 0);
+ if (visit_addr)
+ {
+ if (TREE_CODE (rhs) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), arg, data);
+ else if (TREE_CODE (rhs) == TARGET_MEM_REF
+ && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), arg,
+ data);
+ else if (TREE_CODE (rhs) == OBJ_TYPE_REF
+ && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
+ 0), arg, data);
+ else if (TREE_CODE (rhs) == CONSTRUCTOR)
+ {
+ unsigned int ix;
+ tree val;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val)
+ if (TREE_CODE (val) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (val, 0), arg, data);
+ else if (TREE_CODE (val) == OBJ_TYPE_REF
+ && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR)
+ ret |= visit_addr (stmt,
+ TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val),
+ 0), arg, data);
+ }
+ lhs = gimple_assign_lhs (stmt);
+ if (TREE_CODE (lhs) == TARGET_MEM_REF
+ && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), lhs, data);
+ }
+ if (visit_load)
+ {
+ rhs = get_base_loadstore (rhs);
+ if (rhs)
+ ret |= visit_load (stmt, rhs, arg, data);
+ }
+ }
+ else if (visit_addr
+ && (is_gimple_assign (stmt)
+ || gimple_code (stmt) == GIMPLE_COND))
+ {
+ for (i = 0; i < gimple_num_ops (stmt); ++i)
+ {
+ tree op = gimple_op (stmt, i);
+ if (op == NULL_TREE)
+ ;
+ else if (TREE_CODE (op) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data);
+ /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison
+ tree with two operands. */
+ else if (i == 1 && COMPARISON_CLASS_P (op))
+ {
+ if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0),
+ 0), op, data);
+ if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1),
+ 0), op, data);
+ }
+ }
+ }
+ else if (is_gimple_call (stmt))
+ {
+ if (visit_store)
+ {
+ tree arg = gimple_call_lhs (stmt);
+ if (arg)
+ {
+ tree lhs = get_base_loadstore (arg);
+ if (lhs)
+ ret |= visit_store (stmt, lhs, arg, data);
+ }
+ }
+ if (visit_load || visit_addr)
+ for (i = 0; i < gimple_call_num_args (stmt); ++i)
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ if (visit_addr
+ && TREE_CODE (arg) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (arg, 0), arg, data);
+ else if (visit_load)
+ {
+ tree rhs = get_base_loadstore (arg);
+ if (rhs)
+ ret |= visit_load (stmt, rhs, arg, data);
+ }
+ }
+ if (visit_addr
+ && gimple_call_chain (stmt)
+ && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
+ gimple_call_chain (stmt), data);
+ if (visit_addr
+ && gimple_call_return_slot_opt_p (stmt)
+ && gimple_call_lhs (stmt) != NULL_TREE
+ && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
+ ret |= visit_addr (stmt, gimple_call_lhs (stmt),
+ gimple_call_lhs (stmt), data);
+ }
+ else if (gimple_code (stmt) == GIMPLE_ASM)
+ {
+ unsigned noutputs;
+ const char *constraint;
+ const char **oconstraints;
+ bool allows_mem, allows_reg, is_inout;
+ noutputs = gimple_asm_noutputs (stmt);
+ oconstraints = XALLOCAVEC (const char *, noutputs);
+ if (visit_store || visit_addr)
+ for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
+ {
+ tree link = gimple_asm_output_op (stmt, i);
+ tree op = get_base_loadstore (TREE_VALUE (link));
+ if (op && visit_store)
+ ret |= visit_store (stmt, op, TREE_VALUE (link), data);
+ if (visit_addr)
+ {
+ constraint = TREE_STRING_POINTER
+ (TREE_VALUE (TREE_PURPOSE (link)));
+ oconstraints[i] = constraint;
+ parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
+ &allows_reg, &is_inout);
+ if (op && !allows_reg && allows_mem)
+ ret |= visit_addr (stmt, op, TREE_VALUE (link), data);
+ }
+ }
+ if (visit_load || visit_addr)
+ for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
+ {
+ tree link = gimple_asm_input_op (stmt, i);
+ tree op = TREE_VALUE (link);
+ if (visit_addr
+ && TREE_CODE (op) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data);
+ else if (visit_load || visit_addr)
+ {
+ op = get_base_loadstore (op);
+ if (op)
+ {
+ if (visit_load)
+ ret |= visit_load (stmt, op, TREE_VALUE (link), data);
+ if (visit_addr)
+ {
+ constraint = TREE_STRING_POINTER
+ (TREE_VALUE (TREE_PURPOSE (link)));
+ parse_input_constraint (&constraint, 0, 0, noutputs,
+ 0, oconstraints,
+ &allows_mem, &allows_reg);
+ if (!allows_reg && allows_mem)
+ ret |= visit_addr (stmt, op, TREE_VALUE (link),
+ data);
+ }
+ }
+ }
+ }
+ }
+ else if (gimple_code (stmt) == GIMPLE_RETURN)
+ {
+ tree op = gimple_return_retval (stmt);
+ if (op)
+ {
+ if (visit_addr
+ && TREE_CODE (op) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data);
+ else if (visit_load)
+ {
+ tree base = get_base_loadstore (op);
+ if (base)
+ ret |= visit_load (stmt, base, op, data);
+ }
+ }
+ }
+ else if (visit_addr
+ && gimple_code (stmt) == GIMPLE_PHI)
+ {
+ for (i = 0; i < gimple_phi_num_args (stmt); ++i)
+ {
+ tree op = PHI_ARG_DEF (stmt, i);
+ if (TREE_CODE (op) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data);
+ }
+ }
+ else if (visit_addr
+ && gimple_code (stmt) == GIMPLE_GOTO)
+ {
+ tree op = gimple_goto_dest (stmt);
+ if (TREE_CODE (op) == ADDR_EXPR)
+ ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data);
+ }
+
+ return ret;
+}
+
+/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
+ should make a faster clone for this case. */
+
+bool
+walk_stmt_load_store_ops (gimple stmt, void *data,
+ walk_stmt_load_store_addr_fn visit_load,
+ walk_stmt_load_store_addr_fn visit_store)
+{
+ return walk_stmt_load_store_addr_ops (stmt, data,
+ visit_load, visit_store, NULL);
+}
+
+/* Helper for gimple_ior_addresses_taken_1. */
+
+static bool
+gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
+{
+ bitmap addresses_taken = (bitmap)data;
+ addr = get_base_address (addr);
+ if (addr
+ && DECL_P (addr))
+ {
+ bitmap_set_bit (addresses_taken, DECL_UID (addr));
+ return true;
+ }
+ return false;
+}
+
+/* Set the bit for the uid of all decls that have their address taken
+ in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
+ were any in this stmt. */
+
+bool
+gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
+{
+ return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
+ gimple_ior_addresses_taken_1);
+}
+
+
+/* Return a printable name for symbol DECL. */
+
+const char *
+gimple_decl_printable_name (tree decl, int verbosity)
+{
+ if (!DECL_NAME (decl))
+ return NULL;
+
+ if (DECL_ASSEMBLER_NAME_SET_P (decl))
+ {
+ const char *str, *mangled_str;
+ int dmgl_opts = DMGL_NO_OPTS;
+
+ if (verbosity >= 2)
+ {
+ dmgl_opts = DMGL_VERBOSE
+ | DMGL_ANSI
+ | DMGL_GNU_V3
+ | DMGL_RET_POSTFIX;
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ dmgl_opts |= DMGL_PARAMS;
+ }
+
+ mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
+ str = cplus_demangle_v3 (mangled_str, dmgl_opts);
+ return (str) ? str : mangled_str;
+ }
+
+ return IDENTIFIER_POINTER (DECL_NAME (decl));
+}
+
+/* Return TRUE iff stmt is a call to a built-in function. */
+
+bool
+is_gimple_builtin_call (gimple stmt)
+{
+ tree callee;
+
+ if (is_gimple_call (stmt)
+ && (callee = gimple_call_fndecl (stmt))
+ && is_builtin_fn (callee)
+ && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
+ return true;
+
+ return false;
+}
+
+/* Return true when STMTs arguments match those of FNDECL. */
+
+static bool
+validate_call (gimple stmt, tree fndecl)
+{
+ tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
+ unsigned nargs = gimple_call_num_args (stmt);
+ for (unsigned i = 0; i < nargs; ++i)
+ {
+ /* Variadic args follow. */
+ if (!targs)
+ return true;
+ tree arg = gimple_call_arg (stmt, i);
+ if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
+ && INTEGRAL_TYPE_P (TREE_VALUE (targs)))
+ ;
+ else if (POINTER_TYPE_P (TREE_TYPE (arg))
+ && POINTER_TYPE_P (TREE_VALUE (targs)))
+ ;
+ else if (TREE_CODE (TREE_TYPE (arg))
+ != TREE_CODE (TREE_VALUE (targs)))
+ return false;
+ targs = TREE_CHAIN (targs);
+ }
+ if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
+ return false;
+ return true;
+}
+
+/* Return true when STMT is builtins call to CLASS. */
+
+bool
+gimple_call_builtin_p (gimple stmt, enum built_in_class klass)
+{
+ tree fndecl;
+ if (is_gimple_call (stmt)
+ && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
+ && DECL_BUILT_IN_CLASS (fndecl) == klass)
+ return validate_call (stmt, fndecl);
+ return false;
+}
+
+/* Return true when STMT is builtins call to CODE of CLASS. */
+
+bool
+gimple_call_builtin_p (gimple stmt, enum built_in_function code)
+{
+ tree fndecl;
+ if (is_gimple_call (stmt)
+ && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
+ && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
+ && DECL_FUNCTION_CODE (fndecl) == code)
+ return validate_call (stmt, fndecl);
+ return false;
+}
+
+/* Return true if STMT clobbers memory. STMT is required to be a
+ GIMPLE_ASM. */
+
+bool
+gimple_asm_clobbers_memory_p (const_gimple stmt)
+{
+ unsigned i;
+
+ for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
+ {
+ tree op = gimple_asm_clobber_op (stmt, i);
+ if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
+ return true;
+ }
+
+ return false;
+}
+#include "gt-gimple.h"