From b9de1157289455b0ca26daff519d4a0ddcd1fa13 Mon Sep 17 00:00:00 2001 From: Dan Albert Date: Wed, 24 Feb 2016 13:48:45 -0800 Subject: Update 4.8.1 to 4.8.3. My previous drop was the wrong version. The platform mingw is currently using 4.8.3, not 4.8.1 (not sure how I got that wrong). From ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.3/gcc-4.8.3.tar.bz2. Bug: http://b/26523949 Change-Id: Id85f1bdcbbaf78c7d0b5a69e74c798a08f341c35 --- gcc-4.8.3/gcc/gimple.c | 4225 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 4225 insertions(+) create mode 100644 gcc-4.8.3/gcc/gimple.c (limited to 'gcc-4.8.3/gcc/gimple.c') diff --git a/gcc-4.8.3/gcc/gimple.c b/gcc-4.8.3/gcc/gimple.c new file mode 100644 index 000000000..9b5de4a25 --- /dev/null +++ b/gcc-4.8.3/gcc/gimple.c @@ -0,0 +1,4225 @@ +/* Gimple IR support functions. + + Copyright (C) 2007-2013 Free Software Foundation, Inc. + Contributed by Aldy Hernandez + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "target.h" +#include "tree.h" +#include "ggc.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "gimple.h" +#include "diagnostic.h" +#include "tree-flow.h" +#include "value-prof.h" +#include "flags.h" +#include "alias.h" +#include "demangle.h" +#include "langhooks.h" + +/* Global canonical type table. */ +static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node))) + htab_t gimple_canonical_types; +static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map))) + htab_t canonical_type_hash_cache; + +/* All the tuples have their operand vector (if present) at the very bottom + of the structure. Therefore, the offset required to find the + operands vector the size of the structure minus the size of the 1 + element tree array at the end (see gimple_ops). */ +#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \ + (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0), +EXPORTED_CONST size_t gimple_ops_offset_[] = { +#include "gsstruct.def" +}; +#undef DEFGSSTRUCT + +#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT), +static const size_t gsstruct_code_size[] = { +#include "gsstruct.def" +}; +#undef DEFGSSTRUCT + +#define DEFGSCODE(SYM, NAME, GSSCODE) NAME, +const char *const gimple_code_name[] = { +#include "gimple.def" +}; +#undef DEFGSCODE + +#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE, +EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = { +#include "gimple.def" +}; +#undef DEFGSCODE + +/* Gimple stats. */ + +int gimple_alloc_counts[(int) gimple_alloc_kind_all]; +int gimple_alloc_sizes[(int) gimple_alloc_kind_all]; + +/* Keep in sync with gimple.h:enum gimple_alloc_kind. */ +static const char * const gimple_alloc_kind_names[] = { + "assignments", + "phi nodes", + "conditionals", + "everything else" +}; + +/* Private API manipulation functions shared only with some + other files. */ +extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *); +extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *); + +/* Gimple tuple constructors. + Note: Any constructor taking a ``gimple_seq'' as a parameter, can + be passed a NULL to start with an empty sequence. */ + +/* Set the code for statement G to CODE. */ + +static inline void +gimple_set_code (gimple g, enum gimple_code code) +{ + g->gsbase.code = code; +} + +/* Return the number of bytes needed to hold a GIMPLE statement with + code CODE. */ + +static inline size_t +gimple_size (enum gimple_code code) +{ + return gsstruct_code_size[gss_for_code (code)]; +} + +/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS + operands. */ + +gimple +gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL) +{ + size_t size; + gimple stmt; + + size = gimple_size (code); + if (num_ops > 0) + size += sizeof (tree) * (num_ops - 1); + + if (GATHER_STATISTICS) + { + enum gimple_alloc_kind kind = gimple_alloc_kind (code); + gimple_alloc_counts[(int) kind]++; + gimple_alloc_sizes[(int) kind] += size; + } + + stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT); + gimple_set_code (stmt, code); + gimple_set_num_ops (stmt, num_ops); + + /* Do not call gimple_set_modified here as it has other side + effects and this tuple is still not completely built. */ + stmt->gsbase.modified = 1; + gimple_init_singleton (stmt); + + return stmt; +} + +/* Set SUBCODE to be the code of the expression computed by statement G. */ + +static inline void +gimple_set_subcode (gimple g, unsigned subcode) +{ + /* We only have 16 bits for the RHS code. Assert that we are not + overflowing it. */ + gcc_assert (subcode < (1 << 16)); + g->gsbase.subcode = subcode; +} + + + +/* Build a tuple with operands. CODE is the statement to build (which + must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code + for the new tuple. NUM_OPS is the number of operands to allocate. */ + +#define gimple_build_with_ops(c, s, n) \ + gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO) + +static gimple +gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode, + unsigned num_ops MEM_STAT_DECL) +{ + gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT); + gimple_set_subcode (s, subcode); + + return s; +} + + +/* Build a GIMPLE_RETURN statement returning RETVAL. */ + +gimple +gimple_build_return (tree retval) +{ + gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1); + if (retval) + gimple_return_set_retval (s, retval); + return s; +} + +/* Reset alias information on call S. */ + +void +gimple_call_reset_alias_info (gimple s) +{ + if (gimple_call_flags (s) & ECF_CONST) + memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution)); + else + pt_solution_reset (gimple_call_use_set (s)); + if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS)) + memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution)); + else + pt_solution_reset (gimple_call_clobber_set (s)); +} + +/* Helper for gimple_build_call, gimple_build_call_valist, + gimple_build_call_vec and gimple_build_call_from_tree. Build the basic + components of a GIMPLE_CALL statement to function FN with NARGS + arguments. */ + +static inline gimple +gimple_build_call_1 (tree fn, unsigned nargs) +{ + gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3); + if (TREE_CODE (fn) == FUNCTION_DECL) + fn = build_fold_addr_expr (fn); + gimple_set_op (s, 1, fn); + gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn))); + gimple_call_reset_alias_info (s); + return s; +} + + +/* Build a GIMPLE_CALL statement to function FN with the arguments + specified in vector ARGS. */ + +gimple +gimple_build_call_vec (tree fn, vec args) +{ + unsigned i; + unsigned nargs = args.length (); + gimple call = gimple_build_call_1 (fn, nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, args[i]); + + return call; +} + + +/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of + arguments. The ... are the arguments. */ + +gimple +gimple_build_call (tree fn, unsigned nargs, ...) +{ + va_list ap; + gimple call; + unsigned i; + + gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn)); + + call = gimple_build_call_1 (fn, nargs); + + va_start (ap, nargs); + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, va_arg (ap, tree)); + va_end (ap); + + return call; +} + + +/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of + arguments. AP contains the arguments. */ + +gimple +gimple_build_call_valist (tree fn, unsigned nargs, va_list ap) +{ + gimple call; + unsigned i; + + gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn)); + + call = gimple_build_call_1 (fn, nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, va_arg (ap, tree)); + + return call; +} + + +/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec. + Build the basic components of a GIMPLE_CALL statement to internal + function FN with NARGS arguments. */ + +static inline gimple +gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs) +{ + gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3); + s->gsbase.subcode |= GF_CALL_INTERNAL; + gimple_call_set_internal_fn (s, fn); + gimple_call_reset_alias_info (s); + return s; +} + + +/* Build a GIMPLE_CALL statement to internal function FN. NARGS is + the number of arguments. The ... are the arguments. */ + +gimple +gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...) +{ + va_list ap; + gimple call; + unsigned i; + + call = gimple_build_call_internal_1 (fn, nargs); + va_start (ap, nargs); + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, va_arg (ap, tree)); + va_end (ap); + + return call; +} + + +/* Build a GIMPLE_CALL statement to internal function FN with the arguments + specified in vector ARGS. */ + +gimple +gimple_build_call_internal_vec (enum internal_fn fn, vec args) +{ + unsigned i, nargs; + gimple call; + + nargs = args.length (); + call = gimple_build_call_internal_1 (fn, nargs); + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, args[i]); + + return call; +} + + +/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is + assumed to be in GIMPLE form already. Minimal checking is done of + this fact. */ + +gimple +gimple_build_call_from_tree (tree t) +{ + unsigned i, nargs; + gimple call; + tree fndecl = get_callee_fndecl (t); + + gcc_assert (TREE_CODE (t) == CALL_EXPR); + + nargs = call_expr_nargs (t); + call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i)); + + gimple_set_block (call, TREE_BLOCK (t)); + + /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */ + gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t)); + gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t)); + gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t)); + if (fndecl + && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL + && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA + || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN)) + gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t)); + else + gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t)); + gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t)); + gimple_call_set_nothrow (call, TREE_NOTHROW (t)); + gimple_set_no_warning (call, TREE_NO_WARNING (t)); + + return call; +} + + +/* Extract the operands and code for expression EXPR into *SUBCODE_P, + *OP1_P, *OP2_P and *OP3_P respectively. */ + +void +extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p, + tree *op2_p, tree *op3_p) +{ + enum gimple_rhs_class grhs_class; + + *subcode_p = TREE_CODE (expr); + grhs_class = get_gimple_rhs_class (*subcode_p); + + if (grhs_class == GIMPLE_TERNARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = TREE_OPERAND (expr, 1); + *op3_p = TREE_OPERAND (expr, 2); + } + else if (grhs_class == GIMPLE_BINARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = TREE_OPERAND (expr, 1); + *op3_p = NULL_TREE; + } + else if (grhs_class == GIMPLE_UNARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = NULL_TREE; + *op3_p = NULL_TREE; + } + else if (grhs_class == GIMPLE_SINGLE_RHS) + { + *op1_p = expr; + *op2_p = NULL_TREE; + *op3_p = NULL_TREE; + } + else + gcc_unreachable (); +} + + +/* Build a GIMPLE_ASSIGN statement. + + LHS of the assignment. + RHS of the assignment which can be unary or binary. */ + +gimple +gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL) +{ + enum tree_code subcode; + tree op1, op2, op3; + + extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3); + return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3 + PASS_MEM_STAT); +} + + +/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands + OP1 and OP2. If OP2 is NULL then SUBCODE must be of class + GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */ + +gimple +gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1, + tree op2, tree op3 MEM_STAT_DECL) +{ + unsigned num_ops; + gimple p; + + /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the + code). */ + num_ops = get_gimple_rhs_num_ops (subcode) + 1; + + p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops + PASS_MEM_STAT); + gimple_assign_set_lhs (p, lhs); + gimple_assign_set_rhs1 (p, op1); + if (op2) + { + gcc_assert (num_ops > 2); + gimple_assign_set_rhs2 (p, op2); + } + + if (op3) + { + gcc_assert (num_ops > 3); + gimple_assign_set_rhs3 (p, op3); + } + + return p; +} + +gimple +gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1, + tree op2 MEM_STAT_DECL) +{ + return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE + PASS_MEM_STAT); +} + + +/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P. + + DST/SRC are the destination and source respectively. You can pass + ungimplified trees in DST or SRC, in which case they will be + converted to a gimple operand if necessary. + + This function returns the newly created GIMPLE_ASSIGN tuple. */ + +gimple +gimplify_assign (tree dst, tree src, gimple_seq *seq_p) +{ + tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src); + gimplify_and_add (t, seq_p); + ggc_free (t); + return gimple_seq_last_stmt (*seq_p); +} + + +/* Build a GIMPLE_COND statement. + + PRED is the condition used to compare LHS and the RHS. + T_LABEL is the label to jump to if the condition is true. + F_LABEL is the label to jump to otherwise. */ + +gimple +gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, + tree t_label, tree f_label) +{ + gimple p; + + gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison); + p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4); + gimple_cond_set_lhs (p, lhs); + gimple_cond_set_rhs (p, rhs); + gimple_cond_set_true_label (p, t_label); + gimple_cond_set_false_label (p, f_label); + return p; +} + + +/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */ + +void +gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p, + tree *lhs_p, tree *rhs_p) +{ + gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison + || TREE_CODE (cond) == TRUTH_NOT_EXPR + || is_gimple_min_invariant (cond) + || SSA_VAR_P (cond)); + + extract_ops_from_tree (cond, code_p, lhs_p, rhs_p); + + /* Canonicalize conditionals of the form 'if (!VAL)'. */ + if (*code_p == TRUTH_NOT_EXPR) + { + *code_p = EQ_EXPR; + gcc_assert (*lhs_p && *rhs_p == NULL_TREE); + *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); + } + /* Canonicalize conditionals of the form 'if (VAL)' */ + else if (TREE_CODE_CLASS (*code_p) != tcc_comparison) + { + *code_p = NE_EXPR; + gcc_assert (*lhs_p && *rhs_p == NULL_TREE); + *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); + } +} + + +/* Build a GIMPLE_COND statement from the conditional expression tree + COND. T_LABEL and F_LABEL are as in gimple_build_cond. */ + +gimple +gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label) +{ + enum tree_code code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); + return gimple_build_cond (code, lhs, rhs, t_label, f_label); +} + +/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable + boolean expression tree COND. */ + +void +gimple_cond_set_condition_from_tree (gimple stmt, tree cond) +{ + enum tree_code code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); + gimple_cond_set_condition (stmt, code, lhs, rhs); +} + +/* Build a GIMPLE_LABEL statement for LABEL. */ + +gimple +gimple_build_label (tree label) +{ + gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1); + gimple_label_set_label (p, label); + return p; +} + +/* Build a GIMPLE_GOTO statement to label DEST. */ + +gimple +gimple_build_goto (tree dest) +{ + gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1); + gimple_goto_set_dest (p, dest); + return p; +} + + +/* Build a GIMPLE_NOP statement. */ + +gimple +gimple_build_nop (void) +{ + return gimple_alloc (GIMPLE_NOP, 0); +} + + +/* Build a GIMPLE_BIND statement. + VARS are the variables in BODY. + BLOCK is the containing block. */ + +gimple +gimple_build_bind (tree vars, gimple_seq body, tree block) +{ + gimple p = gimple_alloc (GIMPLE_BIND, 0); + gimple_bind_set_vars (p, vars); + if (body) + gimple_bind_set_body (p, body); + if (block) + gimple_bind_set_block (p, block); + return p; +} + +/* Helper function to set the simple fields of a asm stmt. + + STRING is a pointer to a string that is the asm blocks assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + */ + +static inline gimple +gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs, + unsigned nclobbers, unsigned nlabels) +{ + gimple p; + int size = strlen (string); + + /* ASMs with labels cannot have outputs. This should have been + enforced by the front end. */ + gcc_assert (nlabels == 0 || noutputs == 0); + + p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK, + ninputs + noutputs + nclobbers + nlabels); + + p->gimple_asm.ni = ninputs; + p->gimple_asm.no = noutputs; + p->gimple_asm.nc = nclobbers; + p->gimple_asm.nl = nlabels; + p->gimple_asm.string = ggc_alloc_string (string, size); + + if (GATHER_STATISTICS) + gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size; + + return p; +} + +/* Build a GIMPLE_ASM statement. + + STRING is the assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + INPUTS is a vector of the input register parameters. + OUTPUTS is a vector of the output register parameters. + CLOBBERS is a vector of the clobbered register parameters. + LABELS is a vector of destination labels. */ + +gimple +gimple_build_asm_vec (const char *string, vec *inputs, + vec *outputs, vec *clobbers, + vec *labels) +{ + gimple p; + unsigned i; + + p = gimple_build_asm_1 (string, + vec_safe_length (inputs), + vec_safe_length (outputs), + vec_safe_length (clobbers), + vec_safe_length (labels)); + + for (i = 0; i < vec_safe_length (inputs); i++) + gimple_asm_set_input_op (p, i, (*inputs)[i]); + + for (i = 0; i < vec_safe_length (outputs); i++) + gimple_asm_set_output_op (p, i, (*outputs)[i]); + + for (i = 0; i < vec_safe_length (clobbers); i++) + gimple_asm_set_clobber_op (p, i, (*clobbers)[i]); + + for (i = 0; i < vec_safe_length (labels); i++) + gimple_asm_set_label_op (p, i, (*labels)[i]); + + return p; +} + +/* Build a GIMPLE_CATCH statement. + + TYPES are the catch types. + HANDLER is the exception handler. */ + +gimple +gimple_build_catch (tree types, gimple_seq handler) +{ + gimple p = gimple_alloc (GIMPLE_CATCH, 0); + gimple_catch_set_types (p, types); + if (handler) + gimple_catch_set_handler (p, handler); + + return p; +} + +/* Build a GIMPLE_EH_FILTER statement. + + TYPES are the filter's types. + FAILURE is the filter's failure action. */ + +gimple +gimple_build_eh_filter (tree types, gimple_seq failure) +{ + gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0); + gimple_eh_filter_set_types (p, types); + if (failure) + gimple_eh_filter_set_failure (p, failure); + + return p; +} + +/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */ + +gimple +gimple_build_eh_must_not_throw (tree decl) +{ + gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0); + + gcc_assert (TREE_CODE (decl) == FUNCTION_DECL); + gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN); + gimple_eh_must_not_throw_set_fndecl (p, decl); + + return p; +} + +/* Build a GIMPLE_EH_ELSE statement. */ + +gimple +gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body) +{ + gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0); + gimple_eh_else_set_n_body (p, n_body); + gimple_eh_else_set_e_body (p, e_body); + return p; +} + +/* Build a GIMPLE_TRY statement. + + EVAL is the expression to evaluate. + CLEANUP is the cleanup expression. + KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on + whether this is a try/catch or a try/finally respectively. */ + +gimple +gimple_build_try (gimple_seq eval, gimple_seq cleanup, + enum gimple_try_flags kind) +{ + gimple p; + + gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY); + p = gimple_alloc (GIMPLE_TRY, 0); + gimple_set_subcode (p, kind); + if (eval) + gimple_try_set_eval (p, eval); + if (cleanup) + gimple_try_set_cleanup (p, cleanup); + + return p; +} + +/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement. + + CLEANUP is the cleanup expression. */ + +gimple +gimple_build_wce (gimple_seq cleanup) +{ + gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0); + if (cleanup) + gimple_wce_set_cleanup (p, cleanup); + + return p; +} + + +/* Build a GIMPLE_RESX statement. */ + +gimple +gimple_build_resx (int region) +{ + gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0); + p->gimple_eh_ctrl.region = region; + return p; +} + + +/* The helper for constructing a gimple switch statement. + INDEX is the switch's index. + NLABELS is the number of labels in the switch excluding the default. + DEFAULT_LABEL is the default label for the switch statement. */ + +gimple +gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label) +{ + /* nlabels + 1 default label + 1 index. */ + gcc_checking_assert (default_label); + gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK, + 1 + 1 + nlabels); + gimple_switch_set_index (p, index); + gimple_switch_set_default_label (p, default_label); + return p; +} + +/* Build a GIMPLE_SWITCH statement. + + INDEX is the switch's index. + DEFAULT_LABEL is the default label + ARGS is a vector of labels excluding the default. */ + +gimple +gimple_build_switch (tree index, tree default_label, vec args) +{ + unsigned i, nlabels = args.length (); + + gimple p = gimple_build_switch_nlabels (nlabels, index, default_label); + + /* Copy the labels from the vector to the switch statement. */ + for (i = 0; i < nlabels; i++) + gimple_switch_set_label (p, i + 1, args[i]); + + return p; +} + +/* Build a GIMPLE_EH_DISPATCH statement. */ + +gimple +gimple_build_eh_dispatch (int region) +{ + gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0); + p->gimple_eh_ctrl.region = region; + return p; +} + +/* Build a new GIMPLE_DEBUG_BIND statement. + + VAR is bound to VALUE; block and location are taken from STMT. */ + +gimple +gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL) +{ + gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG, + (unsigned)GIMPLE_DEBUG_BIND, 2 + PASS_MEM_STAT); + + gimple_debug_bind_set_var (p, var); + gimple_debug_bind_set_value (p, value); + if (stmt) + gimple_set_location (p, gimple_location (stmt)); + + return p; +} + + +/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement. + + VAR is bound to VALUE; block and location are taken from STMT. */ + +gimple +gimple_build_debug_source_bind_stat (tree var, tree value, + gimple stmt MEM_STAT_DECL) +{ + gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG, + (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2 + PASS_MEM_STAT); + + gimple_debug_source_bind_set_var (p, var); + gimple_debug_source_bind_set_value (p, value); + if (stmt) + gimple_set_location (p, gimple_location (stmt)); + + return p; +} + + +/* Build a GIMPLE_OMP_CRITICAL statement. + + BODY is the sequence of statements for which only one thread can execute. + NAME is optional identifier for this critical block. */ + +gimple +gimple_build_omp_critical (gimple_seq body, tree name) +{ + gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0); + gimple_omp_critical_set_name (p, name); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + +/* Build a GIMPLE_OMP_FOR statement. + + BODY is sequence of statements inside the for loop. + CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate, + lastprivate, reductions, ordered, schedule, and nowait. + COLLAPSE is the collapse count. + PRE_BODY is the sequence of statements that are loop invariant. */ + +gimple +gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse, + gimple_seq pre_body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_for_set_clauses (p, clauses); + p->gimple_omp_for.collapse = collapse; + p->gimple_omp_for.iter + = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); + if (pre_body) + gimple_omp_for_set_pre_body (p, pre_body); + + return p; +} + + +/* Build a GIMPLE_OMP_PARALLEL statement. + + BODY is sequence of statements which are executed in parallel. + CLAUSES, are the OMP parallel construct's clauses. + CHILD_FN is the function created for the parallel threads to execute. + DATA_ARG are the shared data argument(s). */ + +gimple +gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, + tree data_arg) +{ + gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_parallel_set_clauses (p, clauses); + gimple_omp_parallel_set_child_fn (p, child_fn); + gimple_omp_parallel_set_data_arg (p, data_arg); + + return p; +} + + +/* Build a GIMPLE_OMP_TASK statement. + + BODY is sequence of statements which are executed by the explicit task. + CLAUSES, are the OMP parallel construct's clauses. + CHILD_FN is the function created for the parallel threads to execute. + DATA_ARG are the shared data argument(s). + COPY_FN is the optional function for firstprivate initialization. + ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */ + +gimple +gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn, + tree data_arg, tree copy_fn, tree arg_size, + tree arg_align) +{ + gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_task_set_clauses (p, clauses); + gimple_omp_task_set_child_fn (p, child_fn); + gimple_omp_task_set_data_arg (p, data_arg); + gimple_omp_task_set_copy_fn (p, copy_fn); + gimple_omp_task_set_arg_size (p, arg_size); + gimple_omp_task_set_arg_align (p, arg_align); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTION statement for a sections statement. + + BODY is the sequence of statements in the section. */ + +gimple +gimple_build_omp_section (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_MASTER statement. + + BODY is the sequence of statements to be executed by just the master. */ + +gimple +gimple_build_omp_master (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_CONTINUE statement. + + CONTROL_DEF is the definition of the control variable. + CONTROL_USE is the use of the control variable. */ + +gimple +gimple_build_omp_continue (tree control_def, tree control_use) +{ + gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0); + gimple_omp_continue_set_control_def (p, control_def); + gimple_omp_continue_set_control_use (p, control_use); + return p; +} + +/* Build a GIMPLE_OMP_ORDERED statement. + + BODY is the sequence of statements inside a loop that will executed in + sequence. */ + +gimple +gimple_build_omp_ordered (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_RETURN statement. + WAIT_P is true if this is a non-waiting return. */ + +gimple +gimple_build_omp_return (bool wait_p) +{ + gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0); + if (wait_p) + gimple_omp_return_set_nowait (p); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTIONS statement. + + BODY is a sequence of section statements. + CLAUSES are any of the OMP sections contsruct's clauses: private, + firstprivate, lastprivate, reduction, and nowait. */ + +gimple +gimple_build_omp_sections (gimple_seq body, tree clauses) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_sections_set_clauses (p, clauses); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */ + +gimple +gimple_build_omp_sections_switch (void) +{ + return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0); +} + + +/* Build a GIMPLE_OMP_SINGLE statement. + + BODY is the sequence of statements that will be executed once. + CLAUSES are any of the OMP single construct's clauses: private, firstprivate, + copyprivate, nowait. */ + +gimple +gimple_build_omp_single (gimple_seq body, tree clauses) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_single_set_clauses (p, clauses); + + return p; +} + + +/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */ + +gimple +gimple_build_omp_atomic_load (tree lhs, tree rhs) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0); + gimple_omp_atomic_load_set_lhs (p, lhs); + gimple_omp_atomic_load_set_rhs (p, rhs); + return p; +} + +/* Build a GIMPLE_OMP_ATOMIC_STORE statement. + + VAL is the value we are storing. */ + +gimple +gimple_build_omp_atomic_store (tree val) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0); + gimple_omp_atomic_store_set_val (p, val); + return p; +} + +/* Build a GIMPLE_TRANSACTION statement. */ + +gimple +gimple_build_transaction (gimple_seq body, tree label) +{ + gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0); + gimple_transaction_set_body (p, body); + gimple_transaction_set_label (p, label); + return p; +} + +/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from + predict.def, OUTCOME is NOT_TAKEN or TAKEN. */ + +gimple +gimple_build_predict (enum br_predictor predictor, enum prediction outcome) +{ + gimple p = gimple_alloc (GIMPLE_PREDICT, 0); + /* Ensure all the predictors fit into the lower bits of the subcode. */ + gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN); + gimple_predict_set_predictor (p, predictor); + gimple_predict_set_outcome (p, outcome); + return p; +} + +#if defined ENABLE_GIMPLE_CHECKING +/* Complain of a gimple type mismatch and die. */ + +void +gimple_check_failed (const_gimple gs, const char *file, int line, + const char *function, enum gimple_code code, + enum tree_code subcode) +{ + internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d", + gimple_code_name[code], + tree_code_name[subcode], + gimple_code_name[gimple_code (gs)], + gs->gsbase.subcode > 0 + ? tree_code_name[gs->gsbase.subcode] + : "", + function, trim_filename (file), line); +} +#endif /* ENABLE_GIMPLE_CHECKING */ + + +/* Link gimple statement GS to the end of the sequence *SEQ_P. If + *SEQ_P is NULL, a new sequence is allocated. */ + +void +gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs) +{ + gimple_stmt_iterator si; + if (gs == NULL) + return; + + si = gsi_last (*seq_p); + gsi_insert_after (&si, gs, GSI_NEW_STMT); +} + + +/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is + NULL, a new sequence is allocated. */ + +void +gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src) +{ + gimple_stmt_iterator si; + if (src == NULL) + return; + + si = gsi_last (*dst_p); + gsi_insert_seq_after (&si, src, GSI_NEW_STMT); +} + + +/* Helper function of empty_body_p. Return true if STMT is an empty + statement. */ + +static bool +empty_stmt_p (gimple stmt) +{ + if (gimple_code (stmt) == GIMPLE_NOP) + return true; + if (gimple_code (stmt) == GIMPLE_BIND) + return empty_body_p (gimple_bind_body (stmt)); + return false; +} + + +/* Return true if BODY contains nothing but empty statements. */ + +bool +empty_body_p (gimple_seq body) +{ + gimple_stmt_iterator i; + + if (gimple_seq_empty_p (body)) + return true; + for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i)) + if (!empty_stmt_p (gsi_stmt (i)) + && !is_gimple_debug (gsi_stmt (i))) + return false; + + return true; +} + + +/* Perform a deep copy of sequence SRC and return the result. */ + +gimple_seq +gimple_seq_copy (gimple_seq src) +{ + gimple_stmt_iterator gsi; + gimple_seq new_seq = NULL; + gimple stmt; + + for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi)) + { + stmt = gimple_copy (gsi_stmt (gsi)); + gimple_seq_add_stmt (&new_seq, stmt); + } + + return new_seq; +} + + +/* Walk all the statements in the sequence *PSEQ calling walk_gimple_stmt + on each one. WI is as in walk_gimple_stmt. + + If walk_gimple_stmt returns non-NULL, the walk is stopped, and the + value is stored in WI->CALLBACK_RESULT. Also, the statement that + produced the value is returned if this statement has not been + removed by a callback (wi->removed_stmt). If the statement has + been removed, NULL is returned. + + Otherwise, all the statements are walked and NULL returned. */ + +gimple +walk_gimple_seq_mod (gimple_seq *pseq, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start (*pseq); !gsi_end_p (gsi); ) + { + tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi); + if (ret) + { + /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist + to hold it. */ + gcc_assert (wi); + wi->callback_result = ret; + + return wi->removed_stmt ? NULL : gsi_stmt (gsi); + } + + if (!wi->removed_stmt) + gsi_next (&gsi); + } + + if (wi) + wi->callback_result = NULL_TREE; + + return NULL; +} + + +/* Like walk_gimple_seq_mod, but ensure that the head of SEQ isn't + changed by the callbacks. */ + +gimple +walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple_seq seq2 = seq; + gimple ret = walk_gimple_seq_mod (&seq2, callback_stmt, callback_op, wi); + gcc_assert (seq2 == seq); + return ret; +} + + +/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */ + +static tree +walk_gimple_asm (gimple stmt, walk_tree_fn callback_op, + struct walk_stmt_info *wi) +{ + tree ret, op; + unsigned noutputs; + const char **oconstraints; + unsigned i, n; + const char *constraint; + bool allows_mem, allows_reg, is_inout; + + noutputs = gimple_asm_noutputs (stmt); + oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *)); + + if (wi) + wi->is_lhs = true; + + for (i = 0; i < noutputs; i++) + { + op = gimple_asm_output_op (stmt, i); + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); + oconstraints[i] = constraint; + parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg, + &is_inout); + if (wi) + wi->val_only = (allows_reg || !allows_mem); + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + n = gimple_asm_ninputs (stmt); + for (i = 0; i < n; i++) + { + op = gimple_asm_input_op (stmt, i); + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); + parse_input_constraint (&constraint, 0, 0, noutputs, 0, + oconstraints, &allows_mem, &allows_reg); + if (wi) + { + wi->val_only = (allows_reg || !allows_mem); + /* Although input "m" is not really a LHS, we need a lvalue. */ + wi->is_lhs = !wi->val_only; + } + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + + n = gimple_asm_nlabels (stmt); + for (i = 0; i < n; i++) + { + op = gimple_asm_label_op (stmt, i); + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + return NULL_TREE; +} + + +/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in + STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT. + + CALLBACK_OP is called on each operand of STMT via walk_tree. + Additional parameters to walk_tree must be stored in WI. For each operand + OP, walk_tree is called as: + + walk_tree (&OP, CALLBACK_OP, WI, WI->PSET) + + If CALLBACK_OP returns non-NULL for an operand, the remaining + operands are not scanned. + + The return value is that returned by the last call to walk_tree, or + NULL_TREE if no CALLBACK_OP is specified. */ + +tree +walk_gimple_op (gimple stmt, walk_tree_fn callback_op, + struct walk_stmt_info *wi) +{ + struct pointer_set_t *pset = (wi) ? wi->pset : NULL; + unsigned i; + tree ret = NULL_TREE; + + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + /* Walk the RHS operands. If the LHS is of a non-renamable type or + is a register variable, we may use a COMPONENT_REF on the RHS. */ + if (wi) + { + tree lhs = gimple_assign_lhs (stmt); + wi->val_only + = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs)) + || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS; + } + + for (i = 1; i < gimple_num_ops (stmt); i++) + { + ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, + pset); + if (ret) + return ret; + } + + /* Walk the LHS. If the RHS is appropriate for a memory, we + may use a COMPONENT_REF on the LHS. */ + if (wi) + { + /* If the RHS is of a non-renamable type or is a register variable, + we may use a COMPONENT_REF on the LHS. */ + tree rhs1 = gimple_assign_rhs1 (stmt); + wi->val_only + = (is_gimple_reg_type (TREE_TYPE (rhs1)) && !is_gimple_reg (rhs1)) + || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS; + wi->is_lhs = true; + } + + ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset); + if (ret) + return ret; + + if (wi) + { + wi->val_only = true; + wi->is_lhs = false; + } + break; + + case GIMPLE_CALL: + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + + ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + for (i = 0; i < gimple_call_num_args (stmt); i++) + { + if (wi) + wi->val_only + = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i))); + ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi, + pset); + if (ret) + return ret; + } + + if (gimple_call_lhs (stmt)) + { + if (wi) + { + wi->is_lhs = true; + wi->val_only + = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt))); + } + + ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + } + + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + break; + + case GIMPLE_CATCH: + ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_EH_FILTER: + ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_ASM: + ret = walk_gimple_asm (stmt, callback_op, wi); + if (ret) + return ret; + break; + + case GIMPLE_OMP_CONTINUE: + ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt), + callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt), + callback_op, wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_CRITICAL: + ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_FOR: + ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op, + wi, pset); + } + if (ret) + return ret; + break; + + case GIMPLE_OMP_PARALLEL: + ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_TASK: + ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_SECTIONS: + ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + + break; + + case GIMPLE_OMP_SINGLE: + ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_ATOMIC_LOAD: + ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_ATOMIC_STORE: + ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_TRANSACTION: + ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + /* Tuples that do not have operands. */ + case GIMPLE_NOP: + case GIMPLE_RESX: + case GIMPLE_OMP_RETURN: + case GIMPLE_PREDICT: + break; + + default: + { + enum gimple_statement_structure_enum gss; + gss = gimple_statement_structure (stmt); + if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS) + for (i = 0; i < gimple_num_ops (stmt); i++) + { + ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset); + if (ret) + return ret; + } + } + break; + } + + return NULL_TREE; +} + + +/* Walk the current statement in GSI (optionally using traversal state + stored in WI). If WI is NULL, no state is kept during traversal. + The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates + that it has handled all the operands of the statement, its return + value is returned. Otherwise, the return value from CALLBACK_STMT + is discarded and its operands are scanned. + + If CALLBACK_STMT is NULL or it didn't handle the operands, + CALLBACK_OP is called on each operand of the statement via + walk_gimple_op. If walk_gimple_op returns non-NULL for any + operand, the remaining operands are not scanned. In this case, the + return value from CALLBACK_OP is returned. + + In any other case, NULL_TREE is returned. */ + +tree +walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple ret; + tree tree_ret; + gimple stmt = gsi_stmt (*gsi); + + if (wi) + { + wi->gsi = *gsi; + wi->removed_stmt = false; + + if (wi->want_locations && gimple_has_location (stmt)) + input_location = gimple_location (stmt); + } + + ret = NULL; + + /* Invoke the statement callback. Return if the callback handled + all of STMT operands by itself. */ + if (callback_stmt) + { + bool handled_ops = false; + tree_ret = callback_stmt (gsi, &handled_ops, wi); + if (handled_ops) + return tree_ret; + + /* If CALLBACK_STMT did not handle operands, it should not have + a value to return. */ + gcc_assert (tree_ret == NULL); + + if (wi && wi->removed_stmt) + return NULL; + + /* Re-read stmt in case the callback changed it. */ + stmt = gsi_stmt (*gsi); + } + + /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */ + if (callback_op) + { + tree_ret = walk_gimple_op (stmt, callback_op, wi); + if (tree_ret) + return tree_ret; + } + + /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */ + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + ret = walk_gimple_seq_mod (gimple_bind_body_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_CATCH: + ret = walk_gimple_seq_mod (gimple_catch_handler_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_EH_FILTER: + ret = walk_gimple_seq_mod (gimple_eh_filter_failure_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_EH_ELSE: + ret = walk_gimple_seq_mod (gimple_eh_else_n_body_ptr (stmt), + callback_stmt, callback_op, wi); + if (ret) + return wi->callback_result; + ret = walk_gimple_seq_mod (gimple_eh_else_e_body_ptr (stmt), + callback_stmt, callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_TRY: + ret = walk_gimple_seq_mod (gimple_try_eval_ptr (stmt), callback_stmt, callback_op, + wi); + if (ret) + return wi->callback_result; + + ret = walk_gimple_seq_mod (gimple_try_cleanup_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_OMP_FOR: + ret = walk_gimple_seq_mod (gimple_omp_for_pre_body_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + + /* FALL THROUGH. */ + case GIMPLE_OMP_CRITICAL: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + ret = walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_WITH_CLEANUP_EXPR: + ret = walk_gimple_seq_mod (gimple_wce_cleanup_ptr (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_TRANSACTION: + ret = walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt), + callback_stmt, callback_op, wi); + if (ret) + return wi->callback_result; + break; + + default: + gcc_assert (!gimple_has_substatements (stmt)); + break; + } + + return NULL; +} + + +/* Set sequence SEQ to be the GIMPLE body for function FN. */ + +void +gimple_set_body (tree fndecl, gimple_seq seq) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + if (fn == NULL) + { + /* If FNDECL still does not have a function structure associated + with it, then it does not make sense for it to receive a + GIMPLE body. */ + gcc_assert (seq == NULL); + } + else + fn->gimple_body = seq; +} + + +/* Return the body of GIMPLE statements for function FN. After the + CFG pass, the function body doesn't exist anymore because it has + been split up into basic blocks. In this case, it returns + NULL. */ + +gimple_seq +gimple_body (tree fndecl) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + return fn ? fn->gimple_body : NULL; +} + +/* Return true when FNDECL has Gimple body either in unlowered + or CFG form. */ +bool +gimple_has_body_p (tree fndecl) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + return (gimple_body (fndecl) || (fn && fn->cfg)); +} + +/* Return true if calls C1 and C2 are known to go to the same function. */ + +bool +gimple_call_same_target_p (const_gimple c1, const_gimple c2) +{ + if (gimple_call_internal_p (c1)) + return (gimple_call_internal_p (c2) + && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)); + else + return (gimple_call_fn (c1) == gimple_call_fn (c2) + || (gimple_call_fndecl (c1) + && gimple_call_fndecl (c1) == gimple_call_fndecl (c2))); +} + +/* Detect flags from a GIMPLE_CALL. This is just like + call_expr_flags, but for gimple tuples. */ + +int +gimple_call_flags (const_gimple stmt) +{ + int flags; + tree decl = gimple_call_fndecl (stmt); + + if (decl) + flags = flags_from_decl_or_type (decl); + else if (gimple_call_internal_p (stmt)) + flags = internal_fn_flags (gimple_call_internal_fn (stmt)); + else + flags = flags_from_decl_or_type (gimple_call_fntype (stmt)); + + if (stmt->gsbase.subcode & GF_CALL_NOTHROW) + flags |= ECF_NOTHROW; + + return flags; +} + +/* Return the "fn spec" string for call STMT. */ + +static tree +gimple_call_fnspec (const_gimple stmt) +{ + tree type, attr; + + type = gimple_call_fntype (stmt); + if (!type) + return NULL_TREE; + + attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type)); + if (!attr) + return NULL_TREE; + + return TREE_VALUE (TREE_VALUE (attr)); +} + +/* Detects argument flags for argument number ARG on call STMT. */ + +int +gimple_call_arg_flags (const_gimple stmt, unsigned arg) +{ + tree attr = gimple_call_fnspec (stmt); + + if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr)) + return 0; + + switch (TREE_STRING_POINTER (attr)[1 + arg]) + { + case 'x': + case 'X': + return EAF_UNUSED; + + case 'R': + return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE; + + case 'r': + return EAF_NOCLOBBER | EAF_NOESCAPE; + + case 'W': + return EAF_DIRECT | EAF_NOESCAPE; + + case 'w': + return EAF_NOESCAPE; + + case '.': + default: + return 0; + } +} + +/* Detects return flags for the call STMT. */ + +int +gimple_call_return_flags (const_gimple stmt) +{ + tree attr; + + if (gimple_call_flags (stmt) & ECF_MALLOC) + return ERF_NOALIAS; + + attr = gimple_call_fnspec (stmt); + if (!attr || TREE_STRING_LENGTH (attr) < 1) + return 0; + + switch (TREE_STRING_POINTER (attr)[0]) + { + case '1': + case '2': + case '3': + case '4': + return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1'); + + case 'm': + return ERF_NOALIAS; + + case '.': + default: + return 0; + } +} + + +/* Return true if GS is a copy assignment. */ + +bool +gimple_assign_copy_p (gimple gs) +{ + return (gimple_assign_single_p (gs) + && is_gimple_val (gimple_op (gs, 1))); +} + + +/* Return true if GS is a SSA_NAME copy assignment. */ + +bool +gimple_assign_ssa_name_copy_p (gimple gs) +{ + return (gimple_assign_single_p (gs) + && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME + && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME); +} + + +/* Return true if GS is an assignment with a unary RHS, but the + operator has no effect on the assigned value. The logic is adapted + from STRIP_NOPS. This predicate is intended to be used in tuplifying + instances in which STRIP_NOPS was previously applied to the RHS of + an assignment. + + NOTE: In the use cases that led to the creation of this function + and of gimple_assign_single_p, it is typical to test for either + condition and to proceed in the same manner. In each case, the + assigned value is represented by the single RHS operand of the + assignment. I suspect there may be cases where gimple_assign_copy_p, + gimple_assign_single_p, or equivalent logic is used where a similar + treatment of unary NOPs is appropriate. */ + +bool +gimple_assign_unary_nop_p (gimple gs) +{ + return (is_gimple_assign (gs) + && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)) + || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR) + && gimple_assign_rhs1 (gs) != error_mark_node + && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs))) + == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs))))); +} + +/* Set BB to be the basic block holding G. */ + +void +gimple_set_bb (gimple stmt, basic_block bb) +{ + stmt->gsbase.bb = bb; + + /* If the statement is a label, add the label to block-to-labels map + so that we can speed up edge creation for GIMPLE_GOTOs. */ + if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL) + { + tree t; + int uid; + + t = gimple_label_label (stmt); + uid = LABEL_DECL_UID (t); + if (uid == -1) + { + unsigned old_len = vec_safe_length (label_to_block_map); + LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++; + if (old_len <= (unsigned) uid) + { + unsigned new_len = 3 * uid / 2 + 1; + + vec_safe_grow_cleared (label_to_block_map, new_len); + } + } + + (*label_to_block_map)[uid] = bb; + } +} + + +/* Modify the RHS of the assignment pointed-to by GSI using the + operands in the expression tree EXPR. + + NOTE: The statement pointed-to by GSI may be reallocated if it + did not have enough operand slots. + + This function is useful to convert an existing tree expression into + the flat representation used for the RHS of a GIMPLE assignment. + It will reallocate memory as needed to expand or shrink the number + of operand slots needed to represent EXPR. + + NOTE: If you find yourself building a tree and then calling this + function, you are most certainly doing it the slow way. It is much + better to build a new assignment or to use the function + gimple_assign_set_rhs_with_ops, which does not require an + expression tree to be built. */ + +void +gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr) +{ + enum tree_code subcode; + tree op1, op2, op3; + + extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3); + gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3); +} + + +/* Set the RHS of assignment statement pointed-to by GSI to CODE with + operands OP1, OP2 and OP3. + + NOTE: The statement pointed-to by GSI may be reallocated if it + did not have enough operand slots. */ + +void +gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code, + tree op1, tree op2, tree op3) +{ + unsigned new_rhs_ops = get_gimple_rhs_num_ops (code); + gimple stmt = gsi_stmt (*gsi); + + /* If the new CODE needs more operands, allocate a new statement. */ + if (gimple_num_ops (stmt) < new_rhs_ops + 1) + { + tree lhs = gimple_assign_lhs (stmt); + gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1); + memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt))); + gimple_init_singleton (new_stmt); + gsi_replace (gsi, new_stmt, true); + stmt = new_stmt; + + /* The LHS needs to be reset as this also changes the SSA name + on the LHS. */ + gimple_assign_set_lhs (stmt, lhs); + } + + gimple_set_num_ops (stmt, new_rhs_ops + 1); + gimple_set_subcode (stmt, code); + gimple_assign_set_rhs1 (stmt, op1); + if (new_rhs_ops > 1) + gimple_assign_set_rhs2 (stmt, op2); + if (new_rhs_ops > 2) + gimple_assign_set_rhs3 (stmt, op3); +} + + +/* Return the LHS of a statement that performs an assignment, + either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE + for a call to a function that returns no value, or for a + statement other than an assignment or a call. */ + +tree +gimple_get_lhs (const_gimple stmt) +{ + enum gimple_code code = gimple_code (stmt); + + if (code == GIMPLE_ASSIGN) + return gimple_assign_lhs (stmt); + else if (code == GIMPLE_CALL) + return gimple_call_lhs (stmt); + else + return NULL_TREE; +} + + +/* Set the LHS of a statement that performs an assignment, + either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ + +void +gimple_set_lhs (gimple stmt, tree lhs) +{ + enum gimple_code code = gimple_code (stmt); + + if (code == GIMPLE_ASSIGN) + gimple_assign_set_lhs (stmt, lhs); + else if (code == GIMPLE_CALL) + gimple_call_set_lhs (stmt, lhs); + else + gcc_unreachable(); +} + +/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a + GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an + expression with a different value. + + This will update any annotations (say debug bind stmts) referring + to the original LHS, so that they use the RHS instead. This is + done even if NLHS and LHS are the same, for it is understood that + the RHS will be modified afterwards, and NLHS will not be assigned + an equivalent value. + + Adjusting any non-annotation uses of the LHS, if needed, is a + responsibility of the caller. + + The effect of this call should be pretty much the same as that of + inserting a copy of STMT before STMT, and then removing the + original stmt, at which time gsi_remove() would have update + annotations, but using this function saves all the inserting, + copying and removing. */ + +void +gimple_replace_lhs (gimple stmt, tree nlhs) +{ + if (MAY_HAVE_DEBUG_STMTS) + { + tree lhs = gimple_get_lhs (stmt); + + gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt); + + insert_debug_temp_for_var_def (NULL, lhs); + } + + gimple_set_lhs (stmt, nlhs); +} + +/* Return a deep copy of statement STMT. All the operands from STMT + are reallocated and copied using unshare_expr. The DEF, USE, VDEF + and VUSE operand arrays are set to empty in the new copy. The new + copy isn't part of any sequence. */ + +gimple +gimple_copy (gimple stmt) +{ + enum gimple_code code = gimple_code (stmt); + unsigned num_ops = gimple_num_ops (stmt); + gimple copy = gimple_alloc (code, num_ops); + unsigned i; + + /* Shallow copy all the fields from STMT. */ + memcpy (copy, stmt, gimple_size (code)); + gimple_init_singleton (copy); + + /* If STMT has sub-statements, deep-copy them as well. */ + if (gimple_has_substatements (stmt)) + { + gimple_seq new_seq; + tree t; + + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + new_seq = gimple_seq_copy (gimple_bind_body (stmt)); + gimple_bind_set_body (copy, new_seq); + gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt))); + gimple_bind_set_block (copy, gimple_bind_block (stmt)); + break; + + case GIMPLE_CATCH: + new_seq = gimple_seq_copy (gimple_catch_handler (stmt)); + gimple_catch_set_handler (copy, new_seq); + t = unshare_expr (gimple_catch_types (stmt)); + gimple_catch_set_types (copy, t); + break; + + case GIMPLE_EH_FILTER: + new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt)); + gimple_eh_filter_set_failure (copy, new_seq); + t = unshare_expr (gimple_eh_filter_types (stmt)); + gimple_eh_filter_set_types (copy, t); + break; + + case GIMPLE_EH_ELSE: + new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt)); + gimple_eh_else_set_n_body (copy, new_seq); + new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt)); + gimple_eh_else_set_e_body (copy, new_seq); + break; + + case GIMPLE_TRY: + new_seq = gimple_seq_copy (gimple_try_eval (stmt)); + gimple_try_set_eval (copy, new_seq); + new_seq = gimple_seq_copy (gimple_try_cleanup (stmt)); + gimple_try_set_cleanup (copy, new_seq); + break; + + case GIMPLE_OMP_FOR: + new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt)); + gimple_omp_for_set_pre_body (copy, new_seq); + t = unshare_expr (gimple_omp_for_clauses (stmt)); + gimple_omp_for_set_clauses (copy, t); + copy->gimple_omp_for.iter + = ggc_alloc_vec_gimple_omp_for_iter + (gimple_omp_for_collapse (stmt)); + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + gimple_omp_for_set_cond (copy, i, + gimple_omp_for_cond (stmt, i)); + gimple_omp_for_set_index (copy, i, + gimple_omp_for_index (stmt, i)); + t = unshare_expr (gimple_omp_for_initial (stmt, i)); + gimple_omp_for_set_initial (copy, i, t); + t = unshare_expr (gimple_omp_for_final (stmt, i)); + gimple_omp_for_set_final (copy, i, t); + t = unshare_expr (gimple_omp_for_incr (stmt, i)); + gimple_omp_for_set_incr (copy, i, t); + } + goto copy_omp_body; + + case GIMPLE_OMP_PARALLEL: + t = unshare_expr (gimple_omp_parallel_clauses (stmt)); + gimple_omp_parallel_set_clauses (copy, t); + t = unshare_expr (gimple_omp_parallel_child_fn (stmt)); + gimple_omp_parallel_set_child_fn (copy, t); + t = unshare_expr (gimple_omp_parallel_data_arg (stmt)); + gimple_omp_parallel_set_data_arg (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_TASK: + t = unshare_expr (gimple_omp_task_clauses (stmt)); + gimple_omp_task_set_clauses (copy, t); + t = unshare_expr (gimple_omp_task_child_fn (stmt)); + gimple_omp_task_set_child_fn (copy, t); + t = unshare_expr (gimple_omp_task_data_arg (stmt)); + gimple_omp_task_set_data_arg (copy, t); + t = unshare_expr (gimple_omp_task_copy_fn (stmt)); + gimple_omp_task_set_copy_fn (copy, t); + t = unshare_expr (gimple_omp_task_arg_size (stmt)); + gimple_omp_task_set_arg_size (copy, t); + t = unshare_expr (gimple_omp_task_arg_align (stmt)); + gimple_omp_task_set_arg_align (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_CRITICAL: + t = unshare_expr (gimple_omp_critical_name (stmt)); + gimple_omp_critical_set_name (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_SECTIONS: + t = unshare_expr (gimple_omp_sections_clauses (stmt)); + gimple_omp_sections_set_clauses (copy, t); + t = unshare_expr (gimple_omp_sections_control (stmt)); + gimple_omp_sections_set_control (copy, t); + /* FALLTHRU */ + + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + copy_omp_body: + new_seq = gimple_seq_copy (gimple_omp_body (stmt)); + gimple_omp_set_body (copy, new_seq); + break; + + case GIMPLE_TRANSACTION: + new_seq = gimple_seq_copy (gimple_transaction_body (stmt)); + gimple_transaction_set_body (copy, new_seq); + break; + + case GIMPLE_WITH_CLEANUP_EXPR: + new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt)); + gimple_wce_set_cleanup (copy, new_seq); + break; + + default: + gcc_unreachable (); + } + } + + /* Make copy of operands. */ + for (i = 0; i < num_ops; i++) + gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i))); + + if (gimple_has_mem_ops (stmt)) + { + gimple_set_vdef (copy, gimple_vdef (stmt)); + gimple_set_vuse (copy, gimple_vuse (stmt)); + } + + /* Clear out SSA operand vectors on COPY. */ + if (gimple_has_ops (stmt)) + { + gimple_set_use_ops (copy, NULL); + + /* SSA operands need to be updated. */ + gimple_set_modified (copy, true); + } + + return copy; +} + + +/* Return true if statement S has side-effects. We consider a + statement to have side effects if: + + - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST. + - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */ + +bool +gimple_has_side_effects (const_gimple s) +{ + if (is_gimple_debug (s)) + return false; + + /* We don't have to scan the arguments to check for + volatile arguments, though, at present, we still + do a scan to check for TREE_SIDE_EFFECTS. */ + if (gimple_has_volatile_ops (s)) + return true; + + if (gimple_code (s) == GIMPLE_ASM + && gimple_asm_volatile_p (s)) + return true; + + if (is_gimple_call (s)) + { + int flags = gimple_call_flags (s); + + /* An infinite loop is considered a side effect. */ + if (!(flags & (ECF_CONST | ECF_PURE)) + || (flags & ECF_LOOPING_CONST_OR_PURE)) + return true; + + return false; + } + + return false; +} + +/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p. + Return true if S can trap. When INCLUDE_MEM is true, check whether + the memory operations could trap. When INCLUDE_STORES is true and + S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */ + +bool +gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores) +{ + tree t, div = NULL_TREE; + enum tree_code op; + + if (include_mem) + { + unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0; + + for (i = start; i < gimple_num_ops (s); i++) + if (tree_could_trap_p (gimple_op (s, i))) + return true; + } + + switch (gimple_code (s)) + { + case GIMPLE_ASM: + return gimple_asm_volatile_p (s); + + case GIMPLE_CALL: + t = gimple_call_fndecl (s); + /* Assume that calls to weak functions may trap. */ + if (!t || !DECL_P (t) || DECL_WEAK (t)) + return true; + return false; + + case GIMPLE_ASSIGN: + t = gimple_expr_type (s); + op = gimple_assign_rhs_code (s); + if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS) + div = gimple_assign_rhs2 (s); + return (operation_could_trap_p (op, FLOAT_TYPE_P (t), + (INTEGRAL_TYPE_P (t) + && TYPE_OVERFLOW_TRAPS (t)), + div)); + + default: + break; + } + + return false; +} + +/* Return true if statement S can trap. */ + +bool +gimple_could_trap_p (gimple s) +{ + return gimple_could_trap_p_1 (s, true, true); +} + +/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */ + +bool +gimple_assign_rhs_could_trap_p (gimple s) +{ + gcc_assert (is_gimple_assign (s)); + return gimple_could_trap_p_1 (s, true, false); +} + + +/* Print debugging information for gimple stmts generated. */ + +void +dump_gimple_statistics (void) +{ + int i, total_tuples = 0, total_bytes = 0; + + if (! GATHER_STATISTICS) + { + fprintf (stderr, "No gimple statistics\n"); + return; + } + + fprintf (stderr, "\nGIMPLE statements\n"); + fprintf (stderr, "Kind Stmts Bytes\n"); + fprintf (stderr, "---------------------------------------\n"); + for (i = 0; i < (int) gimple_alloc_kind_all; ++i) + { + fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i], + gimple_alloc_counts[i], gimple_alloc_sizes[i]); + total_tuples += gimple_alloc_counts[i]; + total_bytes += gimple_alloc_sizes[i]; + } + fprintf (stderr, "---------------------------------------\n"); + fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes); + fprintf (stderr, "---------------------------------------\n"); +} + + +/* Return the number of operands needed on the RHS of a GIMPLE + assignment for an expression with tree code CODE. */ + +unsigned +get_gimple_rhs_num_ops (enum tree_code code) +{ + enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); + + if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS) + return 1; + else if (rhs_class == GIMPLE_BINARY_RHS) + return 2; + else if (rhs_class == GIMPLE_TERNARY_RHS) + return 3; + else + gcc_unreachable (); +} + +#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \ + (unsigned char) \ + ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \ + : ((TYPE) == tcc_binary \ + || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \ + : ((TYPE) == tcc_constant \ + || (TYPE) == tcc_declaration \ + || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \ + : ((SYM) == TRUTH_AND_EXPR \ + || (SYM) == TRUTH_OR_EXPR \ + || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \ + : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \ + : ((SYM) == COND_EXPR \ + || (SYM) == WIDEN_MULT_PLUS_EXPR \ + || (SYM) == WIDEN_MULT_MINUS_EXPR \ + || (SYM) == DOT_PROD_EXPR \ + || (SYM) == REALIGN_LOAD_EXPR \ + || (SYM) == VEC_COND_EXPR \ + || (SYM) == VEC_PERM_EXPR \ + || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \ + : ((SYM) == CONSTRUCTOR \ + || (SYM) == OBJ_TYPE_REF \ + || (SYM) == ASSERT_EXPR \ + || (SYM) == ADDR_EXPR \ + || (SYM) == WITH_SIZE_EXPR \ + || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \ + : GIMPLE_INVALID_RHS), +#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS, + +const unsigned char gimple_rhs_class_table[] = { +#include "all-tree.def" +}; + +#undef DEFTREECODE +#undef END_OF_BASE_TREE_CODES + +/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */ + +/* Validation of GIMPLE expressions. */ + +/* Return true if T is a valid LHS for a GIMPLE assignment expression. */ + +bool +is_gimple_lvalue (tree t) +{ + return (is_gimple_addressable (t) + || TREE_CODE (t) == WITH_SIZE_EXPR + /* These are complex lvalues, but don't have addresses, so they + go here. */ + || TREE_CODE (t) == BIT_FIELD_REF); +} + +/* Return true if T is a GIMPLE condition. */ + +bool +is_gimple_condexpr (tree t) +{ + return (is_gimple_val (t) || (COMPARISON_CLASS_P (t) + && !tree_could_throw_p (t) + && is_gimple_val (TREE_OPERAND (t, 0)) + && is_gimple_val (TREE_OPERAND (t, 1)))); +} + +/* Return true if T is something whose address can be taken. */ + +bool +is_gimple_addressable (tree t) +{ + return (is_gimple_id (t) || handled_component_p (t) + || TREE_CODE (t) == MEM_REF); +} + +/* Return true if T is a valid gimple constant. */ + +bool +is_gimple_constant (const_tree t) +{ + switch (TREE_CODE (t)) + { + case INTEGER_CST: + case REAL_CST: + case FIXED_CST: + case STRING_CST: + case COMPLEX_CST: + case VECTOR_CST: + return true; + + /* Vector constant constructors are gimple invariant. */ + case CONSTRUCTOR: + if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + return TREE_CONSTANT (t); + else + return false; + + default: + return false; + } +} + +/* Return true if T is a gimple address. */ + +bool +is_gimple_address (const_tree t) +{ + tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = TREE_OPERAND (t, 0); + while (handled_component_p (op)) + { + if ((TREE_CODE (op) == ARRAY_REF + || TREE_CODE (op) == ARRAY_RANGE_REF) + && !is_gimple_val (TREE_OPERAND (op, 1))) + return false; + + op = TREE_OPERAND (op, 0); + } + + if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF) + return true; + + switch (TREE_CODE (op)) + { + case PARM_DECL: + case RESULT_DECL: + case LABEL_DECL: + case FUNCTION_DECL: + case VAR_DECL: + case CONST_DECL: + return true; + + default: + return false; + } +} + +/* Return true if T is a gimple invariant address. */ + +bool +is_gimple_invariant_address (const_tree t) +{ + const_tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = strip_invariant_refs (TREE_OPERAND (t, 0)); + if (!op) + return false; + + if (TREE_CODE (op) == MEM_REF) + { + const_tree op0 = TREE_OPERAND (op, 0); + return (TREE_CODE (op0) == ADDR_EXPR + && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)) + || decl_address_invariant_p (TREE_OPERAND (op0, 0)))); + } + + return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op); +} + +/* Return true if T is a gimple invariant address at IPA level + (so addresses of variables on stack are not allowed). */ + +bool +is_gimple_ip_invariant_address (const_tree t) +{ + const_tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = strip_invariant_refs (TREE_OPERAND (t, 0)); + if (!op) + return false; + + if (TREE_CODE (op) == MEM_REF) + { + const_tree op0 = TREE_OPERAND (op, 0); + return (TREE_CODE (op0) == ADDR_EXPR + && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)) + || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0)))); + } + + return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op); +} + +/* Return true if T is a GIMPLE minimal invariant. It's a restricted + form of function invariant. */ + +bool +is_gimple_min_invariant (const_tree t) +{ + if (TREE_CODE (t) == ADDR_EXPR) + return is_gimple_invariant_address (t); + + return is_gimple_constant (t); +} + +/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted + form of gimple minimal invariant. */ + +bool +is_gimple_ip_invariant (const_tree t) +{ + if (TREE_CODE (t) == ADDR_EXPR) + return is_gimple_ip_invariant_address (t); + + return is_gimple_constant (t); +} + +/* Return true if T is a variable. */ + +bool +is_gimple_variable (tree t) +{ + return (TREE_CODE (t) == VAR_DECL + || TREE_CODE (t) == PARM_DECL + || TREE_CODE (t) == RESULT_DECL + || TREE_CODE (t) == SSA_NAME); +} + +/* Return true if T is a GIMPLE identifier (something with an address). */ + +bool +is_gimple_id (tree t) +{ + return (is_gimple_variable (t) + || TREE_CODE (t) == FUNCTION_DECL + || TREE_CODE (t) == LABEL_DECL + || TREE_CODE (t) == CONST_DECL + /* Allow string constants, since they are addressable. */ + || TREE_CODE (t) == STRING_CST); +} + +/* Return true if T is a non-aggregate register variable. */ + +bool +is_gimple_reg (tree t) +{ + if (virtual_operand_p (t)) + return false; + + if (TREE_CODE (t) == SSA_NAME) + return true; + + if (!is_gimple_variable (t)) + return false; + + if (!is_gimple_reg_type (TREE_TYPE (t))) + return false; + + /* A volatile decl is not acceptable because we can't reuse it as + needed. We need to copy it into a temp first. */ + if (TREE_THIS_VOLATILE (t)) + return false; + + /* We define "registers" as things that can be renamed as needed, + which with our infrastructure does not apply to memory. */ + if (needs_to_live_in_memory (t)) + return false; + + /* Hard register variables are an interesting case. For those that + are call-clobbered, we don't know where all the calls are, since + we don't (want to) take into account which operations will turn + into libcalls at the rtl level. For those that are call-saved, + we don't currently model the fact that calls may in fact change + global hard registers, nor do we examine ASM_CLOBBERS at the tree + level, and so miss variable changes that might imply. All around, + it seems safest to not do too much optimization with these at the + tree level at all. We'll have to rely on the rtl optimizers to + clean this up, as there we've got all the appropriate bits exposed. */ + if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) + return false; + + /* Complex and vector values must have been put into SSA-like form. + That is, no assignments to the individual components. */ + if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + return DECL_GIMPLE_REG_P (t); + + return true; +} + + +/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */ + +bool +is_gimple_val (tree t) +{ + /* Make loads from volatiles and memory vars explicit. */ + if (is_gimple_variable (t) + && is_gimple_reg_type (TREE_TYPE (t)) + && !is_gimple_reg (t)) + return false; + + return (is_gimple_variable (t) || is_gimple_min_invariant (t)); +} + +/* Similarly, but accept hard registers as inputs to asm statements. */ + +bool +is_gimple_asm_val (tree t) +{ + if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) + return true; + + return is_gimple_val (t); +} + +/* Return true if T is a GIMPLE minimal lvalue. */ + +bool +is_gimple_min_lval (tree t) +{ + if (!(t = CONST_CAST_TREE (strip_invariant_refs (t)))) + return false; + return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF); +} + +/* Return true if T is a valid function operand of a CALL_EXPR. */ + +bool +is_gimple_call_addr (tree t) +{ + return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t)); +} + +/* Return true if T is a valid address operand of a MEM_REF. */ + +bool +is_gimple_mem_ref_addr (tree t) +{ + return (is_gimple_reg (t) + || TREE_CODE (t) == INTEGER_CST + || (TREE_CODE (t) == ADDR_EXPR + && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0)) + || decl_address_invariant_p (TREE_OPERAND (t, 0))))); +} + + +/* Given a memory reference expression T, return its base address. + The base address of a memory reference expression is the main + object being referenced. For instance, the base address for + 'array[i].fld[j]' is 'array'. You can think of this as stripping + away the offset part from a memory address. + + This function calls handled_component_p to strip away all the inner + parts of the memory reference until it reaches the base object. */ + +tree +get_base_address (tree t) +{ + while (handled_component_p (t)) + t = TREE_OPERAND (t, 0); + + if ((TREE_CODE (t) == MEM_REF + || TREE_CODE (t) == TARGET_MEM_REF) + && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR) + t = TREE_OPERAND (TREE_OPERAND (t, 0), 0); + + /* ??? Either the alias oracle or all callers need to properly deal + with WITH_SIZE_EXPRs before we can look through those. */ + if (TREE_CODE (t) == WITH_SIZE_EXPR) + return NULL_TREE; + + return t; +} + +void +recalculate_side_effects (tree t) +{ + enum tree_code code = TREE_CODE (t); + int len = TREE_OPERAND_LENGTH (t); + int i; + + switch (TREE_CODE_CLASS (code)) + { + case tcc_expression: + switch (code) + { + case INIT_EXPR: + case MODIFY_EXPR: + case VA_ARG_EXPR: + case PREDECREMENT_EXPR: + case PREINCREMENT_EXPR: + case POSTDECREMENT_EXPR: + case POSTINCREMENT_EXPR: + /* All of these have side-effects, no matter what their + operands are. */ + return; + + default: + break; + } + /* Fall through. */ + + case tcc_comparison: /* a comparison expression */ + case tcc_unary: /* a unary arithmetic expression */ + case tcc_binary: /* a binary arithmetic expression */ + case tcc_reference: /* a reference */ + case tcc_vl_exp: /* a function call */ + TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t); + for (i = 0; i < len; ++i) + { + tree op = TREE_OPERAND (t, i); + if (op && TREE_SIDE_EFFECTS (op)) + TREE_SIDE_EFFECTS (t) = 1; + } + break; + + case tcc_constant: + /* No side-effects. */ + return; + + default: + gcc_unreachable (); + } +} + +/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns + a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if + we failed to create one. */ + +tree +canonicalize_cond_expr_cond (tree t) +{ + /* Strip conversions around boolean operations. */ + if (CONVERT_EXPR_P (t) + && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))) + || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) + == BOOLEAN_TYPE)) + t = TREE_OPERAND (t, 0); + + /* For !x use x == 0. */ + if (TREE_CODE (t) == TRUTH_NOT_EXPR) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (EQ_EXPR, TREE_TYPE (t), + top0, build_int_cst (TREE_TYPE (top0), 0)); + } + /* For cmp ? 1 : 0 use cmp. */ + else if (TREE_CODE (t) == COND_EXPR + && COMPARISON_CLASS_P (TREE_OPERAND (t, 0)) + && integer_onep (TREE_OPERAND (t, 1)) + && integer_zerop (TREE_OPERAND (t, 2))) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (TREE_CODE (top0), TREE_TYPE (t), + TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1)); + } + + if (is_gimple_condexpr (t)) + return t; + + return NULL_TREE; +} + +/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in + the positions marked by the set ARGS_TO_SKIP. */ + +gimple +gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) +{ + int i; + int nargs = gimple_call_num_args (stmt); + vec vargs; + vargs.create (nargs); + gimple new_stmt; + + for (i = 0; i < nargs; i++) + if (!bitmap_bit_p (args_to_skip, i)) + vargs.quick_push (gimple_call_arg (stmt, i)); + + if (gimple_call_internal_p (stmt)) + new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt), + vargs); + else + new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs); + vargs.release (); + if (gimple_call_lhs (stmt)) + gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); + + gimple_set_vuse (new_stmt, gimple_vuse (stmt)); + gimple_set_vdef (new_stmt, gimple_vdef (stmt)); + + if (gimple_has_location (stmt)) + gimple_set_location (new_stmt, gimple_location (stmt)); + gimple_call_copy_flags (new_stmt, stmt); + gimple_call_set_chain (new_stmt, gimple_call_chain (stmt)); + + gimple_set_modified (new_stmt, true); + + return new_stmt; +} + + + +/* Return true if the field decls F1 and F2 are at the same offset. + + This is intended to be used on GIMPLE types only. */ + +bool +gimple_compare_field_offset (tree f1, tree f2) +{ + if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2)) + { + tree offset1 = DECL_FIELD_OFFSET (f1); + tree offset2 = DECL_FIELD_OFFSET (f2); + return ((offset1 == offset2 + /* Once gimplification is done, self-referential offsets are + instantiated as operand #2 of the COMPONENT_REF built for + each access and reset. Therefore, they are not relevant + anymore and fields are interchangeable provided that they + represent the same access. */ + || (TREE_CODE (offset1) == PLACEHOLDER_EXPR + && TREE_CODE (offset2) == PLACEHOLDER_EXPR + && (DECL_SIZE (f1) == DECL_SIZE (f2) + || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR + && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR) + || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0)) + && DECL_ALIGN (f1) == DECL_ALIGN (f2)) + || operand_equal_p (offset1, offset2, 0)) + && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1), + DECL_FIELD_BIT_OFFSET (f2))); + } + + /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN + should be, so handle differing ones specially by decomposing + the offset into a byte and bit offset manually. */ + if (host_integerp (DECL_FIELD_OFFSET (f1), 0) + && host_integerp (DECL_FIELD_OFFSET (f2), 0)) + { + unsigned HOST_WIDE_INT byte_offset1, byte_offset2; + unsigned HOST_WIDE_INT bit_offset1, bit_offset2; + bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1)); + byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1)) + + bit_offset1 / BITS_PER_UNIT); + bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2)); + byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2)) + + bit_offset2 / BITS_PER_UNIT); + if (byte_offset1 != byte_offset2) + return false; + return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT; + } + + return false; +} + +/* Returning a hash value for gimple type TYPE combined with VAL. + + The hash value returned is equal for types considered compatible + by gimple_canonical_types_compatible_p. */ + +static hashval_t +iterative_hash_canonical_type (tree type, hashval_t val) +{ + hashval_t v; + void **slot; + struct tree_int_map *mp, m; + + m.base.from = type; + if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT)) + && *slot) + return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val); + + /* Combine a few common features of types so that types are grouped into + smaller sets; when searching for existing matching types to merge, + only existing types having the same features as the new type will be + checked. */ + v = iterative_hash_hashval_t (TREE_CODE (type), 0); + v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v); + v = iterative_hash_hashval_t (TYPE_ALIGN (type), v); + v = iterative_hash_hashval_t (TYPE_MODE (type), v); + + /* Incorporate common features of numerical types. */ + if (INTEGRAL_TYPE_P (type) + || SCALAR_FLOAT_TYPE_P (type) + || FIXED_POINT_TYPE_P (type) + || TREE_CODE (type) == VECTOR_TYPE + || TREE_CODE (type) == COMPLEX_TYPE + || TREE_CODE (type) == OFFSET_TYPE + || POINTER_TYPE_P (type)) + { + v = iterative_hash_hashval_t (TYPE_PRECISION (type), v); + v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v); + } + + /* For pointer and reference types, fold in information about the type + pointed to but do not recurse to the pointed-to type. */ + if (POINTER_TYPE_P (type)) + { + v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v); + v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v); + v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v); + v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v); + } + + /* For integer types hash only the string flag. */ + if (TREE_CODE (type) == INTEGER_TYPE) + v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v); + + /* For array types hash the domain bounds and the string flag. */ + if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type)) + { + v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v); + /* OMP lowering can introduce error_mark_node in place of + random local decls in types. */ + if (TYPE_MIN_VALUE (TYPE_DOMAIN (type)) != error_mark_node) + v = iterative_hash_expr (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), v); + if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != error_mark_node) + v = iterative_hash_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), v); + } + + /* Recurse for aggregates with a single element type. */ + if (TREE_CODE (type) == ARRAY_TYPE + || TREE_CODE (type) == COMPLEX_TYPE + || TREE_CODE (type) == VECTOR_TYPE) + v = iterative_hash_canonical_type (TREE_TYPE (type), v); + + /* Incorporate function return and argument types. */ + if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) + { + unsigned na; + tree p; + + /* For method types also incorporate their parent class. */ + if (TREE_CODE (type) == METHOD_TYPE) + v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v); + + v = iterative_hash_canonical_type (TREE_TYPE (type), v); + + for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p)) + { + v = iterative_hash_canonical_type (TREE_VALUE (p), v); + na++; + } + + v = iterative_hash_hashval_t (na, v); + } + + if (RECORD_OR_UNION_TYPE_P (type)) + { + unsigned nf; + tree f; + + for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f)) + if (TREE_CODE (f) == FIELD_DECL) + { + v = iterative_hash_canonical_type (TREE_TYPE (f), v); + nf++; + } + + v = iterative_hash_hashval_t (nf, v); + } + + /* Cache the just computed hash value. */ + mp = ggc_alloc_cleared_tree_int_map (); + mp->base.from = type; + mp->to = v; + *slot = (void *) mp; + + return iterative_hash_hashval_t (v, val); +} + +static hashval_t +gimple_canonical_type_hash (const void *p) +{ + if (canonical_type_hash_cache == NULL) + canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash, + tree_int_map_eq, NULL); + + return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0); +} + + + + +/* The TYPE_CANONICAL merging machinery. It should closely resemble + the middle-end types_compatible_p function. It needs to avoid + claiming types are different for types that should be treated + the same with respect to TBAA. Canonical types are also used + for IL consistency checks via the useless_type_conversion_p + predicate which does not handle all type kinds itself but falls + back to pointer-comparison of TYPE_CANONICAL for aggregates + for example. */ + +/* Return true iff T1 and T2 are structurally identical for what + TBAA is concerned. */ + +static bool +gimple_canonical_types_compatible_p (tree t1, tree t2) +{ + /* Before starting to set up the SCC machinery handle simple cases. */ + + /* Check first for the obvious case of pointer identity. */ + if (t1 == t2) + return true; + + /* Check that we have two types to compare. */ + if (t1 == NULL_TREE || t2 == NULL_TREE) + return false; + + /* If the types have been previously registered and found equal + they still are. */ + if (TYPE_CANONICAL (t1) + && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)) + return true; + + /* Can't be the same type if the types don't have the same code. */ + if (TREE_CODE (t1) != TREE_CODE (t2)) + return false; + + if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2)) + return false; + + /* Qualifiers do not matter for canonical type comparison purposes. */ + + /* Void types and nullptr types are always the same. */ + if (TREE_CODE (t1) == VOID_TYPE + || TREE_CODE (t1) == NULLPTR_TYPE) + return true; + + /* Can't be the same type if they have different alignment, or mode. */ + if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2) + || TYPE_MODE (t1) != TYPE_MODE (t2)) + return false; + + /* Non-aggregate types can be handled cheaply. */ + if (INTEGRAL_TYPE_P (t1) + || SCALAR_FLOAT_TYPE_P (t1) + || FIXED_POINT_TYPE_P (t1) + || TREE_CODE (t1) == VECTOR_TYPE + || TREE_CODE (t1) == COMPLEX_TYPE + || TREE_CODE (t1) == OFFSET_TYPE + || POINTER_TYPE_P (t1)) + { + /* Can't be the same type if they have different sign or precision. */ + if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2) + || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)) + return false; + + if (TREE_CODE (t1) == INTEGER_TYPE + && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)) + return false; + + /* For canonical type comparisons we do not want to build SCCs + so we cannot compare pointed-to types. But we can, for now, + require the same pointed-to type kind and match what + useless_type_conversion_p would do. */ + if (POINTER_TYPE_P (t1)) + { + /* If the two pointers have different ref-all attributes, + they can't be the same type. */ + if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2)) + return false; + + if (TYPE_ADDR_SPACE (TREE_TYPE (t1)) + != TYPE_ADDR_SPACE (TREE_TYPE (t2))) + return false; + + if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2)) + return false; + + if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2))) + return false; + } + + /* Tail-recurse to components. */ + if (TREE_CODE (t1) == VECTOR_TYPE + || TREE_CODE (t1) == COMPLEX_TYPE) + return gimple_canonical_types_compatible_p (TREE_TYPE (t1), + TREE_TYPE (t2)); + + return true; + } + + /* Do type-specific comparisons. */ + switch (TREE_CODE (t1)) + { + case ARRAY_TYPE: + /* Array types are the same if the element types are the same and + the number of elements are the same. */ + if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)) + || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2) + || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2)) + return false; + else + { + tree i1 = TYPE_DOMAIN (t1); + tree i2 = TYPE_DOMAIN (t2); + + /* For an incomplete external array, the type domain can be + NULL_TREE. Check this condition also. */ + if (i1 == NULL_TREE && i2 == NULL_TREE) + return true; + else if (i1 == NULL_TREE || i2 == NULL_TREE) + return false; + else + { + tree min1 = TYPE_MIN_VALUE (i1); + tree min2 = TYPE_MIN_VALUE (i2); + tree max1 = TYPE_MAX_VALUE (i1); + tree max2 = TYPE_MAX_VALUE (i2); + + /* The minimum/maximum values have to be the same. */ + if ((min1 == min2 + || (min1 && min2 + && ((TREE_CODE (min1) == PLACEHOLDER_EXPR + && TREE_CODE (min2) == PLACEHOLDER_EXPR) + || operand_equal_p (min1, min2, 0)))) + && (max1 == max2 + || (max1 && max2 + && ((TREE_CODE (max1) == PLACEHOLDER_EXPR + && TREE_CODE (max2) == PLACEHOLDER_EXPR) + || operand_equal_p (max1, max2, 0))))) + return true; + else + return false; + } + } + + case METHOD_TYPE: + case FUNCTION_TYPE: + /* Function types are the same if the return type and arguments types + are the same. */ + if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))) + return false; + + if (!comp_type_attributes (t1, t2)) + return false; + + if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2)) + return true; + else + { + tree parms1, parms2; + + for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); + parms1 && parms2; + parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2)) + { + if (!gimple_canonical_types_compatible_p + (TREE_VALUE (parms1), TREE_VALUE (parms2))) + return false; + } + + if (parms1 || parms2) + return false; + + return true; + } + + case RECORD_TYPE: + case UNION_TYPE: + case QUAL_UNION_TYPE: + { + tree f1, f2; + + /* For aggregate types, all the fields must be the same. */ + for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2); + f1 || f2; + f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) + { + /* Skip non-fields. */ + while (f1 && TREE_CODE (f1) != FIELD_DECL) + f1 = TREE_CHAIN (f1); + while (f2 && TREE_CODE (f2) != FIELD_DECL) + f2 = TREE_CHAIN (f2); + if (!f1 || !f2) + break; + /* The fields must have the same name, offset and type. */ + if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2) + || !gimple_compare_field_offset (f1, f2) + || !gimple_canonical_types_compatible_p + (TREE_TYPE (f1), TREE_TYPE (f2))) + return false; + } + + /* If one aggregate has more fields than the other, they + are not the same. */ + if (f1 || f2) + return false; + + return true; + } + + default: + gcc_unreachable (); + } +} + + +/* Returns nonzero if P1 and P2 are equal. */ + +static int +gimple_canonical_type_eq (const void *p1, const void *p2) +{ + const_tree t1 = (const_tree) p1; + const_tree t2 = (const_tree) p2; + return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1), + CONST_CAST_TREE (t2)); +} + +/* Register type T in the global type table gimple_types. + If another type T', compatible with T, already existed in + gimple_types then return T', otherwise return T. This is used by + LTO to merge identical types read from different TUs. + + ??? This merging does not exactly match how the tree.c middle-end + functions will assign TYPE_CANONICAL when new types are created + during optimization (which at least happens for pointer and array + types). */ + +tree +gimple_register_canonical_type (tree t) +{ + void **slot; + + gcc_assert (TYPE_P (t)); + + if (TYPE_CANONICAL (t)) + return TYPE_CANONICAL (t); + + if (gimple_canonical_types == NULL) + gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash, + gimple_canonical_type_eq, 0); + + slot = htab_find_slot (gimple_canonical_types, t, INSERT); + if (*slot + && *(tree *)slot != t) + { + tree new_type = (tree) *((tree *) slot); + + TYPE_CANONICAL (t) = new_type; + t = new_type; + } + else + { + TYPE_CANONICAL (t) = t; + *slot = (void *) t; + } + + return t; +} + + +/* Show statistics on references to the global type table gimple_types. */ + +void +print_gimple_types_stats (const char *pfx) +{ + if (gimple_canonical_types) + fprintf (stderr, "[%s] GIMPLE canonical type table: size %ld, " + "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx, + (long) htab_size (gimple_canonical_types), + (long) htab_elements (gimple_canonical_types), + (long) gimple_canonical_types->searches, + (long) gimple_canonical_types->collisions, + htab_collisions (gimple_canonical_types)); + else + fprintf (stderr, "[%s] GIMPLE canonical type table is empty\n", pfx); + if (canonical_type_hash_cache) + fprintf (stderr, "[%s] GIMPLE canonical type hash table: size %ld, " + "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx, + (long) htab_size (canonical_type_hash_cache), + (long) htab_elements (canonical_type_hash_cache), + (long) canonical_type_hash_cache->searches, + (long) canonical_type_hash_cache->collisions, + htab_collisions (canonical_type_hash_cache)); + else + fprintf (stderr, "[%s] GIMPLE canonical type hash table is empty\n", pfx); +} + +/* Free the gimple type hashtables used for LTO type merging. */ + +void +free_gimple_type_tables (void) +{ + if (gimple_canonical_types) + { + htab_delete (gimple_canonical_types); + gimple_canonical_types = NULL; + } + if (canonical_type_hash_cache) + { + htab_delete (canonical_type_hash_cache); + canonical_type_hash_cache = NULL; + } +} + + +/* Return a type the same as TYPE except unsigned or + signed according to UNSIGNEDP. */ + +static tree +gimple_signed_or_unsigned_type (bool unsignedp, tree type) +{ + tree type1; + + type1 = TYPE_MAIN_VARIANT (type); + if (type1 == signed_char_type_node + || type1 == char_type_node + || type1 == unsigned_char_type_node) + return unsignedp ? unsigned_char_type_node : signed_char_type_node; + if (type1 == integer_type_node || type1 == unsigned_type_node) + return unsignedp ? unsigned_type_node : integer_type_node; + if (type1 == short_integer_type_node || type1 == short_unsigned_type_node) + return unsignedp ? short_unsigned_type_node : short_integer_type_node; + if (type1 == long_integer_type_node || type1 == long_unsigned_type_node) + return unsignedp ? long_unsigned_type_node : long_integer_type_node; + if (type1 == long_long_integer_type_node + || type1 == long_long_unsigned_type_node) + return unsignedp + ? long_long_unsigned_type_node + : long_long_integer_type_node; + if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node)) + return unsignedp + ? int128_unsigned_type_node + : int128_integer_type_node; +#if HOST_BITS_PER_WIDE_INT >= 64 + if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node) + return unsignedp ? unsigned_intTI_type_node : intTI_type_node; +#endif + if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node) + return unsignedp ? unsigned_intDI_type_node : intDI_type_node; + if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node) + return unsignedp ? unsigned_intSI_type_node : intSI_type_node; + if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node) + return unsignedp ? unsigned_intHI_type_node : intHI_type_node; + if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node) + return unsignedp ? unsigned_intQI_type_node : intQI_type_node; + +#define GIMPLE_FIXED_TYPES(NAME) \ + if (type1 == short_ ## NAME ## _type_node \ + || type1 == unsigned_short_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_short_ ## NAME ## _type_node \ + : short_ ## NAME ## _type_node; \ + if (type1 == NAME ## _type_node \ + || type1 == unsigned_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_ ## NAME ## _type_node \ + : NAME ## _type_node; \ + if (type1 == long_ ## NAME ## _type_node \ + || type1 == unsigned_long_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_long_ ## NAME ## _type_node \ + : long_ ## NAME ## _type_node; \ + if (type1 == long_long_ ## NAME ## _type_node \ + || type1 == unsigned_long_long_ ## NAME ## _type_node) \ + return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \ + : long_long_ ## NAME ## _type_node; + +#define GIMPLE_FIXED_MODE_TYPES(NAME) \ + if (type1 == NAME ## _type_node \ + || type1 == u ## NAME ## _type_node) \ + return unsignedp ? u ## NAME ## _type_node \ + : NAME ## _type_node; + +#define GIMPLE_FIXED_TYPES_SAT(NAME) \ + if (type1 == sat_ ## short_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \ + : sat_ ## short_ ## NAME ## _type_node; \ + if (type1 == sat_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \ + : sat_ ## NAME ## _type_node; \ + if (type1 == sat_ ## long_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \ + : sat_ ## long_ ## NAME ## _type_node; \ + if (type1 == sat_ ## long_long_ ## NAME ## _type_node \ + || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \ + return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \ + : sat_ ## long_long_ ## NAME ## _type_node; + +#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \ + if (type1 == sat_ ## NAME ## _type_node \ + || type1 == sat_ ## u ## NAME ## _type_node) \ + return unsignedp ? sat_ ## u ## NAME ## _type_node \ + : sat_ ## NAME ## _type_node; + + GIMPLE_FIXED_TYPES (fract); + GIMPLE_FIXED_TYPES_SAT (fract); + GIMPLE_FIXED_TYPES (accum); + GIMPLE_FIXED_TYPES_SAT (accum); + + GIMPLE_FIXED_MODE_TYPES (qq); + GIMPLE_FIXED_MODE_TYPES (hq); + GIMPLE_FIXED_MODE_TYPES (sq); + GIMPLE_FIXED_MODE_TYPES (dq); + GIMPLE_FIXED_MODE_TYPES (tq); + GIMPLE_FIXED_MODE_TYPES_SAT (qq); + GIMPLE_FIXED_MODE_TYPES_SAT (hq); + GIMPLE_FIXED_MODE_TYPES_SAT (sq); + GIMPLE_FIXED_MODE_TYPES_SAT (dq); + GIMPLE_FIXED_MODE_TYPES_SAT (tq); + GIMPLE_FIXED_MODE_TYPES (ha); + GIMPLE_FIXED_MODE_TYPES (sa); + GIMPLE_FIXED_MODE_TYPES (da); + GIMPLE_FIXED_MODE_TYPES (ta); + GIMPLE_FIXED_MODE_TYPES_SAT (ha); + GIMPLE_FIXED_MODE_TYPES_SAT (sa); + GIMPLE_FIXED_MODE_TYPES_SAT (da); + GIMPLE_FIXED_MODE_TYPES_SAT (ta); + + /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not + the precision; they have precision set to match their range, but + may use a wider mode to match an ABI. If we change modes, we may + wind up with bad conversions. For INTEGER_TYPEs in C, must check + the precision as well, so as to yield correct results for + bit-field types. C++ does not have these separate bit-field + types, and producing a signed or unsigned variant of an + ENUMERAL_TYPE may cause other problems as well. */ + if (!INTEGRAL_TYPE_P (type) + || TYPE_UNSIGNED (type) == unsignedp) + return type; + +#define TYPE_OK(node) \ + (TYPE_MODE (type) == TYPE_MODE (node) \ + && TYPE_PRECISION (type) == TYPE_PRECISION (node)) + if (TYPE_OK (signed_char_type_node)) + return unsignedp ? unsigned_char_type_node : signed_char_type_node; + if (TYPE_OK (integer_type_node)) + return unsignedp ? unsigned_type_node : integer_type_node; + if (TYPE_OK (short_integer_type_node)) + return unsignedp ? short_unsigned_type_node : short_integer_type_node; + if (TYPE_OK (long_integer_type_node)) + return unsignedp ? long_unsigned_type_node : long_integer_type_node; + if (TYPE_OK (long_long_integer_type_node)) + return (unsignedp + ? long_long_unsigned_type_node + : long_long_integer_type_node); + if (int128_integer_type_node && TYPE_OK (int128_integer_type_node)) + return (unsignedp + ? int128_unsigned_type_node + : int128_integer_type_node); + +#if HOST_BITS_PER_WIDE_INT >= 64 + if (TYPE_OK (intTI_type_node)) + return unsignedp ? unsigned_intTI_type_node : intTI_type_node; +#endif + if (TYPE_OK (intDI_type_node)) + return unsignedp ? unsigned_intDI_type_node : intDI_type_node; + if (TYPE_OK (intSI_type_node)) + return unsignedp ? unsigned_intSI_type_node : intSI_type_node; + if (TYPE_OK (intHI_type_node)) + return unsignedp ? unsigned_intHI_type_node : intHI_type_node; + if (TYPE_OK (intQI_type_node)) + return unsignedp ? unsigned_intQI_type_node : intQI_type_node; + +#undef GIMPLE_FIXED_TYPES +#undef GIMPLE_FIXED_MODE_TYPES +#undef GIMPLE_FIXED_TYPES_SAT +#undef GIMPLE_FIXED_MODE_TYPES_SAT +#undef TYPE_OK + + return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp); +} + + +/* Return an unsigned type the same as TYPE in other respects. */ + +tree +gimple_unsigned_type (tree type) +{ + return gimple_signed_or_unsigned_type (true, type); +} + + +/* Return a signed type the same as TYPE in other respects. */ + +tree +gimple_signed_type (tree type) +{ + return gimple_signed_or_unsigned_type (false, type); +} + + +/* Return the typed-based alias set for T, which may be an expression + or a type. Return -1 if we don't do anything special. */ + +alias_set_type +gimple_get_alias_set (tree t) +{ + tree u; + + /* Permit type-punning when accessing a union, provided the access + is directly through the union. For example, this code does not + permit taking the address of a union member and then storing + through it. Even the type-punning allowed here is a GCC + extension, albeit a common and useful one; the C standard says + that such accesses have implementation-defined behavior. */ + for (u = t; + TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF; + u = TREE_OPERAND (u, 0)) + if (TREE_CODE (u) == COMPONENT_REF + && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE) + return 0; + + /* That's all the expressions we handle specially. */ + if (!TYPE_P (t)) + return -1; + + /* For convenience, follow the C standard when dealing with + character types. Any object may be accessed via an lvalue that + has character type. */ + if (t == char_type_node + || t == signed_char_type_node + || t == unsigned_char_type_node) + return 0; + + /* Allow aliasing between signed and unsigned variants of the same + type. We treat the signed variant as canonical. */ + if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t)) + { + tree t1 = gimple_signed_type (t); + + /* t1 == t can happen for boolean nodes which are always unsigned. */ + if (t1 != t) + return get_alias_set (t1); + } + + return -1; +} + + +/* Data structure used to count the number of dereferences to PTR + inside an expression. */ +struct count_ptr_d +{ + tree ptr; + unsigned num_stores; + unsigned num_loads; +}; + +/* Helper for count_uses_and_derefs. Called by walk_tree to look for + (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */ + +static tree +count_ptr_derefs (tree *tp, int *walk_subtrees, void *data) +{ + struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data; + struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info; + + /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld, + pointer 'ptr' is *not* dereferenced, it is simply used to compute + the address of 'fld' as 'ptr + offsetof(fld)'. */ + if (TREE_CODE (*tp) == ADDR_EXPR) + { + *walk_subtrees = 0; + return NULL_TREE; + } + + if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr) + { + if (wi_p->is_lhs) + count_p->num_stores++; + else + count_p->num_loads++; + } + + return NULL_TREE; +} + +/* Count the number of direct and indirect uses for pointer PTR in + statement STMT. The number of direct uses is stored in + *NUM_USES_P. Indirect references are counted separately depending + on whether they are store or load operations. The counts are + stored in *NUM_STORES_P and *NUM_LOADS_P. */ + +void +count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p, + unsigned *num_loads_p, unsigned *num_stores_p) +{ + ssa_op_iter i; + tree use; + + *num_uses_p = 0; + *num_loads_p = 0; + *num_stores_p = 0; + + /* Find out the total number of uses of PTR in STMT. */ + FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE) + if (use == ptr) + (*num_uses_p)++; + + /* Now count the number of indirect references to PTR. This is + truly awful, but we don't have much choice. There are no parent + pointers inside INDIRECT_REFs, so an expression like + '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to + find all the indirect and direct uses of x_1 inside. The only + shortcut we can take is the fact that GIMPLE only allows + INDIRECT_REFs inside the expressions below. */ + if (is_gimple_assign (stmt) + || gimple_code (stmt) == GIMPLE_RETURN + || gimple_code (stmt) == GIMPLE_ASM + || is_gimple_call (stmt)) + { + struct walk_stmt_info wi; + struct count_ptr_d count; + + count.ptr = ptr; + count.num_stores = 0; + count.num_loads = 0; + + memset (&wi, 0, sizeof (wi)); + wi.info = &count; + walk_gimple_op (stmt, count_ptr_derefs, &wi); + + *num_stores_p = count.num_stores; + *num_loads_p = count.num_loads; + } + + gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p); +} + +/* From a tree operand OP return the base of a load or store operation + or NULL_TREE if OP is not a load or a store. */ + +static tree +get_base_loadstore (tree op) +{ + while (handled_component_p (op)) + op = TREE_OPERAND (op, 0); + if (DECL_P (op) + || INDIRECT_REF_P (op) + || TREE_CODE (op) == MEM_REF + || TREE_CODE (op) == TARGET_MEM_REF) + return op; + return NULL_TREE; +} + +/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and + VISIT_ADDR if non-NULL on loads, store and address-taken operands + passing the STMT, the base of the operand, the operand itself containing + the base and DATA to it. The base will be either a decl, an indirect + reference (including TARGET_MEM_REF) or the argument of an address + expression. + Returns the results of these callbacks or'ed. */ + +bool +walk_stmt_load_store_addr_ops (gimple stmt, void *data, + walk_stmt_load_store_addr_fn visit_load, + walk_stmt_load_store_addr_fn visit_store, + walk_stmt_load_store_addr_fn visit_addr) +{ + bool ret = false; + unsigned i; + if (gimple_assign_single_p (stmt)) + { + tree lhs, rhs, arg; + if (visit_store) + { + arg = gimple_assign_lhs (stmt); + lhs = get_base_loadstore (arg); + if (lhs) + ret |= visit_store (stmt, lhs, arg, data); + } + arg = gimple_assign_rhs1 (stmt); + rhs = arg; + while (handled_component_p (rhs)) + rhs = TREE_OPERAND (rhs, 0); + if (visit_addr) + { + if (TREE_CODE (rhs) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), arg, data); + else if (TREE_CODE (rhs) == TARGET_MEM_REF + && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), arg, + data); + else if (TREE_CODE (rhs) == OBJ_TYPE_REF + && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs), + 0), arg, data); + else if (TREE_CODE (rhs) == CONSTRUCTOR) + { + unsigned int ix; + tree val; + + FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val) + if (TREE_CODE (val) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (val, 0), arg, data); + else if (TREE_CODE (val) == OBJ_TYPE_REF + && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR) + ret |= visit_addr (stmt, + TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val), + 0), arg, data); + } + lhs = gimple_assign_lhs (stmt); + if (TREE_CODE (lhs) == TARGET_MEM_REF + && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), lhs, data); + } + if (visit_load) + { + rhs = get_base_loadstore (rhs); + if (rhs) + ret |= visit_load (stmt, rhs, arg, data); + } + } + else if (visit_addr + && (is_gimple_assign (stmt) + || gimple_code (stmt) == GIMPLE_COND)) + { + for (i = 0; i < gimple_num_ops (stmt); ++i) + { + tree op = gimple_op (stmt, i); + if (op == NULL_TREE) + ; + else if (TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); + /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison + tree with two operands. */ + else if (i == 1 && COMPARISON_CLASS_P (op)) + { + if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0), + 0), op, data); + if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1), + 0), op, data); + } + } + } + else if (is_gimple_call (stmt)) + { + if (visit_store) + { + tree arg = gimple_call_lhs (stmt); + if (arg) + { + tree lhs = get_base_loadstore (arg); + if (lhs) + ret |= visit_store (stmt, lhs, arg, data); + } + } + if (visit_load || visit_addr) + for (i = 0; i < gimple_call_num_args (stmt); ++i) + { + tree arg = gimple_call_arg (stmt, i); + if (visit_addr + && TREE_CODE (arg) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (arg, 0), arg, data); + else if (visit_load) + { + tree rhs = get_base_loadstore (arg); + if (rhs) + ret |= visit_load (stmt, rhs, arg, data); + } + } + if (visit_addr + && gimple_call_chain (stmt) + && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0), + gimple_call_chain (stmt), data); + if (visit_addr + && gimple_call_return_slot_opt_p (stmt) + && gimple_call_lhs (stmt) != NULL_TREE + && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt)))) + ret |= visit_addr (stmt, gimple_call_lhs (stmt), + gimple_call_lhs (stmt), data); + } + else if (gimple_code (stmt) == GIMPLE_ASM) + { + unsigned noutputs; + const char *constraint; + const char **oconstraints; + bool allows_mem, allows_reg, is_inout; + noutputs = gimple_asm_noutputs (stmt); + oconstraints = XALLOCAVEC (const char *, noutputs); + if (visit_store || visit_addr) + for (i = 0; i < gimple_asm_noutputs (stmt); ++i) + { + tree link = gimple_asm_output_op (stmt, i); + tree op = get_base_loadstore (TREE_VALUE (link)); + if (op && visit_store) + ret |= visit_store (stmt, op, TREE_VALUE (link), data); + if (visit_addr) + { + constraint = TREE_STRING_POINTER + (TREE_VALUE (TREE_PURPOSE (link))); + oconstraints[i] = constraint; + parse_output_constraint (&constraint, i, 0, 0, &allows_mem, + &allows_reg, &is_inout); + if (op && !allows_reg && allows_mem) + ret |= visit_addr (stmt, op, TREE_VALUE (link), data); + } + } + if (visit_load || visit_addr) + for (i = 0; i < gimple_asm_ninputs (stmt); ++i) + { + tree link = gimple_asm_input_op (stmt, i); + tree op = TREE_VALUE (link); + if (visit_addr + && TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); + else if (visit_load || visit_addr) + { + op = get_base_loadstore (op); + if (op) + { + if (visit_load) + ret |= visit_load (stmt, op, TREE_VALUE (link), data); + if (visit_addr) + { + constraint = TREE_STRING_POINTER + (TREE_VALUE (TREE_PURPOSE (link))); + parse_input_constraint (&constraint, 0, 0, noutputs, + 0, oconstraints, + &allows_mem, &allows_reg); + if (!allows_reg && allows_mem) + ret |= visit_addr (stmt, op, TREE_VALUE (link), + data); + } + } + } + } + } + else if (gimple_code (stmt) == GIMPLE_RETURN) + { + tree op = gimple_return_retval (stmt); + if (op) + { + if (visit_addr + && TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); + else if (visit_load) + { + tree base = get_base_loadstore (op); + if (base) + ret |= visit_load (stmt, base, op, data); + } + } + } + else if (visit_addr + && gimple_code (stmt) == GIMPLE_PHI) + { + for (i = 0; i < gimple_phi_num_args (stmt); ++i) + { + tree op = PHI_ARG_DEF (stmt, i); + if (TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); + } + } + else if (visit_addr + && gimple_code (stmt) == GIMPLE_GOTO) + { + tree op = gimple_goto_dest (stmt); + if (TREE_CODE (op) == ADDR_EXPR) + ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); + } + + return ret; +} + +/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP + should make a faster clone for this case. */ + +bool +walk_stmt_load_store_ops (gimple stmt, void *data, + walk_stmt_load_store_addr_fn visit_load, + walk_stmt_load_store_addr_fn visit_store) +{ + return walk_stmt_load_store_addr_ops (stmt, data, + visit_load, visit_store, NULL); +} + +/* Helper for gimple_ior_addresses_taken_1. */ + +static bool +gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data) +{ + bitmap addresses_taken = (bitmap)data; + addr = get_base_address (addr); + if (addr + && DECL_P (addr)) + { + bitmap_set_bit (addresses_taken, DECL_UID (addr)); + return true; + } + return false; +} + +/* Set the bit for the uid of all decls that have their address taken + in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there + were any in this stmt. */ + +bool +gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt) +{ + return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL, + gimple_ior_addresses_taken_1); +} + + +/* Return a printable name for symbol DECL. */ + +const char * +gimple_decl_printable_name (tree decl, int verbosity) +{ + if (!DECL_NAME (decl)) + return NULL; + + if (DECL_ASSEMBLER_NAME_SET_P (decl)) + { + const char *str, *mangled_str; + int dmgl_opts = DMGL_NO_OPTS; + + if (verbosity >= 2) + { + dmgl_opts = DMGL_VERBOSE + | DMGL_ANSI + | DMGL_GNU_V3 + | DMGL_RET_POSTFIX; + if (TREE_CODE (decl) == FUNCTION_DECL) + dmgl_opts |= DMGL_PARAMS; + } + + mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); + str = cplus_demangle_v3 (mangled_str, dmgl_opts); + return (str) ? str : mangled_str; + } + + return IDENTIFIER_POINTER (DECL_NAME (decl)); +} + +/* Return TRUE iff stmt is a call to a built-in function. */ + +bool +is_gimple_builtin_call (gimple stmt) +{ + tree callee; + + if (is_gimple_call (stmt) + && (callee = gimple_call_fndecl (stmt)) + && is_builtin_fn (callee) + && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL) + return true; + + return false; +} + +/* Return true when STMTs arguments match those of FNDECL. */ + +static bool +validate_call (gimple stmt, tree fndecl) +{ + tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); + unsigned nargs = gimple_call_num_args (stmt); + for (unsigned i = 0; i < nargs; ++i) + { + /* Variadic args follow. */ + if (!targs) + return true; + tree arg = gimple_call_arg (stmt, i); + if (INTEGRAL_TYPE_P (TREE_TYPE (arg)) + && INTEGRAL_TYPE_P (TREE_VALUE (targs))) + ; + else if (POINTER_TYPE_P (TREE_TYPE (arg)) + && POINTER_TYPE_P (TREE_VALUE (targs))) + ; + else if (TREE_CODE (TREE_TYPE (arg)) + != TREE_CODE (TREE_VALUE (targs))) + return false; + targs = TREE_CHAIN (targs); + } + if (targs && !VOID_TYPE_P (TREE_VALUE (targs))) + return false; + return true; +} + +/* Return true when STMT is builtins call to CLASS. */ + +bool +gimple_call_builtin_p (gimple stmt, enum built_in_class klass) +{ + tree fndecl; + if (is_gimple_call (stmt) + && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE + && DECL_BUILT_IN_CLASS (fndecl) == klass) + return validate_call (stmt, fndecl); + return false; +} + +/* Return true when STMT is builtins call to CODE of CLASS. */ + +bool +gimple_call_builtin_p (gimple stmt, enum built_in_function code) +{ + tree fndecl; + if (is_gimple_call (stmt) + && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE + && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL + && DECL_FUNCTION_CODE (fndecl) == code) + return validate_call (stmt, fndecl); + return false; +} + +/* Return true if STMT clobbers memory. STMT is required to be a + GIMPLE_ASM. */ + +bool +gimple_asm_clobbers_memory_p (const_gimple stmt) +{ + unsigned i; + + for (i = 0; i < gimple_asm_nclobbers (stmt); i++) + { + tree op = gimple_asm_clobber_op (stmt, i); + if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0) + return true; + } + + return false; +} +#include "gt-gimple.h" -- cgit v1.2.3