aboutsummaryrefslogtreecommitdiffstats
path: root/src/opts/SkNx_sse.h
blob: 9b4de700ee67aa4f81da20da09f7d42ed9af9c3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkNx_sse_DEFINED
#define SkNx_sse_DEFINED

// This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent.

namespace {  // See SkNx.h


template <>
class SkNf<2, float> {
public:
    SkNf(const __m128& vec) : fVec(vec) {}

    SkNf() {}
    explicit SkNf(float val) : fVec(_mm_set1_ps(val)) {}
    static SkNf Load(const float vals[2]) {
        return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)vals));
    }
    SkNf(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {}

    void store(float vals[2]) const { _mm_storel_pi((__m64*)vals, fVec); }

    SkNf operator + (const SkNf& o) const { return _mm_add_ps(fVec, o.fVec); }
    SkNf operator - (const SkNf& o) const { return _mm_sub_ps(fVec, o.fVec); }
    SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); }
    SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); }

    SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
    SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
    SkNf operator  < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
    SkNf operator  > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
    SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); }
    SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); }

    static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); }
    static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); }

    SkNf  sqrt() const { return _mm_sqrt_ps (fVec);  }
    SkNf rsqrt0() const { return _mm_rsqrt_ps(fVec); }
    SkNf rsqrt1() const { return this->rsqrt0(); }
    SkNf rsqrt2() const { return this->rsqrt1(); }

    SkNf       invert() const { return SkNf(1) / *this; }
    SkNf approxInvert() const { return _mm_rcp_ps(fVec); }

    template <int k> float kth() const {
        SkASSERT(0 <= k && k < 2);
        union { __m128 v; float fs[4]; } pun = {fVec};
        return pun.fs[k&1];
    }

    bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
    bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }

    __m128 fVec;
};

template <>
class SkNf<2, double> {
public:
    SkNf(const __m128d& vec) : fVec(vec) {}

    SkNf() {}
    explicit SkNf(double val)           : fVec( _mm_set1_pd(val) ) {}
    static SkNf Load(const double vals[2]) { return _mm_loadu_pd(vals); }
    SkNf(double a, double b) : fVec(_mm_setr_pd(a,b)) {}

    void store(double vals[2]) const { _mm_storeu_pd(vals, fVec); }

    SkNf operator + (const SkNf& o) const { return _mm_add_pd(fVec, o.fVec); }
    SkNf operator - (const SkNf& o) const { return _mm_sub_pd(fVec, o.fVec); }
    SkNf operator * (const SkNf& o) const { return _mm_mul_pd(fVec, o.fVec); }
    SkNf operator / (const SkNf& o) const { return _mm_div_pd(fVec, o.fVec); }

    SkNf operator == (const SkNf& o) const { return _mm_cmpeq_pd (fVec, o.fVec); }
    SkNf operator != (const SkNf& o) const { return _mm_cmpneq_pd(fVec, o.fVec); }
    SkNf operator  < (const SkNf& o) const { return _mm_cmplt_pd (fVec, o.fVec); }
    SkNf operator  > (const SkNf& o) const { return _mm_cmpgt_pd (fVec, o.fVec); }
    SkNf operator <= (const SkNf& o) const { return _mm_cmple_pd (fVec, o.fVec); }
    SkNf operator >= (const SkNf& o) const { return _mm_cmpge_pd (fVec, o.fVec); }

    static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_pd(l.fVec, r.fVec); }
    static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_pd(l.fVec, r.fVec); }

    SkNf  sqrt() const { return _mm_sqrt_pd(fVec);  }
    SkNf rsqrt0() const { return _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(fVec))); }
    SkNf rsqrt1() const { return this->rsqrt0(); }
    SkNf rsqrt2() const { return this->rsqrt1(); }

    SkNf       invert() const { return SkNf(1) / *this; }
    SkNf approxInvert() const { return _mm_cvtps_pd(_mm_rcp_ps(_mm_cvtpd_ps(fVec))); }

    template <int k> double kth() const {
        SkASSERT(0 <= k && k < 2);
        union { __m128d v; double ds[2]; } pun = {fVec};
        return pun.ds[k&1];
    }

    bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castpd_si128(fVec)); }
    bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castpd_si128(fVec)); }

    __m128d fVec;
};

template <>
class SkNi<4, int> {
public:
    SkNi(const __m128i& vec) : fVec(vec) {}

    SkNi() {}
    explicit SkNi(int val) : fVec(_mm_set1_epi32(val)) {}
    static SkNi Load(const int vals[4]) { return _mm_loadu_si128((const __m128i*)vals); }
    SkNi(int a, int b, int c, int d) : fVec(_mm_setr_epi32(a,b,c,d)) {}

    void store(int vals[4]) const { _mm_storeu_si128((__m128i*)vals, fVec); }

    SkNi operator + (const SkNi& o) const { return _mm_add_epi32(fVec, o.fVec); }
    SkNi operator - (const SkNi& o) const { return _mm_sub_epi32(fVec, o.fVec); }
    SkNi operator * (const SkNi& o) const {
        __m128i mul20 = _mm_mul_epu32(fVec, o.fVec),
                mul31 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4));
        return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)),
                                  _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0)));
    }

    SkNi operator << (int bits) const { return _mm_slli_epi32(fVec, bits); }
    SkNi operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); }

    template <int k> int kth() const {
        SkASSERT(0 <= k && k < 4);
        switch (k) {
            case 0: return _mm_cvtsi128_si32(fVec);
            case 1: return _mm_cvtsi128_si32(_mm_srli_si128(fVec,  4));
            case 2: return _mm_cvtsi128_si32(_mm_srli_si128(fVec,  8));
            case 3: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 12));
            default: SkASSERT(false); return 0;
        }
    }

    __m128i fVec;
};

template <>
class SkNf<4, float> {
public:
    SkNf(const __m128& vec) : fVec(vec) {}

    SkNf() {}
    explicit SkNf(float val)           : fVec( _mm_set1_ps(val) ) {}
    static SkNf Load(const float vals[4]) { return _mm_loadu_ps(vals); }
    SkNf(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {}

    void store(float vals[4]) const { _mm_storeu_ps(vals, fVec); }

    SkNi<4, int> castTrunc() const { return _mm_cvttps_epi32(fVec); }

    SkNf operator + (const SkNf& o) const { return _mm_add_ps(fVec, o.fVec); }
    SkNf operator - (const SkNf& o) const { return _mm_sub_ps(fVec, o.fVec); }
    SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); }
    SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); }

    SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
    SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
    SkNf operator  < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
    SkNf operator  > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
    SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); }
    SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); }

    static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); }
    static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); }

    SkNf  sqrt() const { return _mm_sqrt_ps (fVec);  }
    SkNf rsqrt0() const { return _mm_rsqrt_ps(fVec); }
    SkNf rsqrt1() const { return this->rsqrt0(); }
    SkNf rsqrt2() const { return this->rsqrt1(); }

    SkNf       invert() const { return SkNf(1) / *this; }
    SkNf approxInvert() const { return _mm_rcp_ps(fVec); }

    template <int k> float kth() const {
        SkASSERT(0 <= k && k < 4);
        union { __m128 v; float fs[4]; } pun = {fVec};
        return pun.fs[k&3];
    }

    bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); }
    bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); }

    __m128 fVec;
};

template <>
class SkNi<4, uint16_t> {
public:
    SkNi(const __m128i& vec) : fVec(vec) {}

    SkNi() {}
    explicit SkNi(uint16_t val) : fVec(_mm_set1_epi16(val)) {}
    static SkNi Load(const uint16_t vals[4]) { return _mm_loadl_epi64((const __m128i*)vals); }
    SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {}

    void store(uint16_t vals[4]) const { _mm_storel_epi64((__m128i*)vals, fVec); }

    SkNi operator + (const SkNi& o) const { return _mm_add_epi16(fVec, o.fVec); }
    SkNi operator - (const SkNi& o) const { return _mm_sub_epi16(fVec, o.fVec); }
    SkNi operator * (const SkNi& o) const { return _mm_mullo_epi16(fVec, o.fVec); }

    SkNi operator << (int bits) const { return _mm_slli_epi16(fVec, bits); }
    SkNi operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); }

    template <int k> uint16_t kth() const {
        SkASSERT(0 <= k && k < 4);
        return _mm_extract_epi16(fVec, k);
    }

    __m128i fVec;
};

template <>
class SkNi<8, uint16_t> {
public:
    SkNi(const __m128i& vec) : fVec(vec) {}

    SkNi() {}
    explicit SkNi(uint16_t val) : fVec(_mm_set1_epi16(val)) {}
    static SkNi Load(const uint16_t vals[8]) { return _mm_loadu_si128((const __m128i*)vals); }
    SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
         uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {}

    void store(uint16_t vals[8]) const { _mm_storeu_si128((__m128i*)vals, fVec); }

    SkNi operator + (const SkNi& o) const { return _mm_add_epi16(fVec, o.fVec); }
    SkNi operator - (const SkNi& o) const { return _mm_sub_epi16(fVec, o.fVec); }
    SkNi operator * (const SkNi& o) const { return _mm_mullo_epi16(fVec, o.fVec); }

    SkNi operator << (int bits) const { return _mm_slli_epi16(fVec, bits); }
    SkNi operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); }

    static SkNi Min(const SkNi& a, const SkNi& b) {
        // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the
        // signed version, _mm_min_epi16, then shift back.
        const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine.
        const __m128i top_8x = _mm_set1_epi16(top);
        return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x),
                                                  _mm_sub_epi8(b.fVec, top_8x)));
    }

    template <int k> uint16_t kth() const {
        SkASSERT(0 <= k && k < 8);
        return _mm_extract_epi16(fVec, k);
    }

    __m128i fVec;
};

template <>
class SkNi<16, uint8_t> {
public:
    SkNi(const __m128i& vec) : fVec(vec) {}

    SkNi() {}
    explicit SkNi(uint8_t val) : fVec(_mm_set1_epi8(val)) {}
    static SkNi Load(const uint8_t vals[16]) { return _mm_loadu_si128((const __m128i*)vals); }
    SkNi(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
         uint8_t e, uint8_t f, uint8_t g, uint8_t h,
         uint8_t i, uint8_t j, uint8_t k, uint8_t l,
         uint8_t m, uint8_t n, uint8_t o, uint8_t p)
        : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {}

    void store(uint8_t vals[16]) const { _mm_storeu_si128((__m128i*)vals, fVec); }

    SkNi saturatedAdd(const SkNi& o) const { return _mm_adds_epu8(fVec, o.fVec); }

    SkNi operator + (const SkNi& o) const { return _mm_add_epi8(fVec, o.fVec); }
    SkNi operator - (const SkNi& o) const { return _mm_sub_epi8(fVec, o.fVec); }

    static SkNi Min(const SkNi& a, const SkNi& b) { return _mm_min_epu8(a.fVec, b.fVec); }
    SkNi operator < (const SkNi& o) const {
        // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare.
        auto flip = _mm_set1_epi8(char(0x80));
        return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec));
    }

    template <int k> uint8_t kth() const {
        SkASSERT(0 <= k && k < 16);
        // SSE4.1 would just `return _mm_extract_epi8(fVec, k)`.  We have to read 16-bits instead.
        int pair = _mm_extract_epi16(fVec, k/2);
        return k % 2 == 0 ? pair : (pair >> 8);
    }

    SkNi thenElse(const SkNi& t, const SkNi& e) const {
        return _mm_or_si128(_mm_and_si128   (fVec, t.fVec),
                            _mm_andnot_si128(fVec, e.fVec));
    }

    __m128i fVec;
};

}  // namespace

#endif//SkNx_sse_DEFINED