/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkNx_sse_DEFINED #define SkNx_sse_DEFINED // This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent. namespace { // See SkNx.h template <> class SkNf<2, float> { public: SkNf(const __m128& vec) : fVec(vec) {} SkNf() {} explicit SkNf(float val) : fVec(_mm_set1_ps(val)) {} static SkNf Load(const float vals[2]) { return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)vals)); } SkNf(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {} void store(float vals[2]) const { _mm_storel_pi((__m64*)vals, fVec); } SkNf operator + (const SkNf& o) const { return _mm_add_ps(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return _mm_sub_ps(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); } SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } SkNf operator < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); } SkNf operator > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); } SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); } static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); } SkNf sqrt() const { return _mm_sqrt_ps (fVec); } SkNf rsqrt0() const { return _mm_rsqrt_ps(fVec); } SkNf rsqrt1() const { return this->rsqrt0(); } SkNf rsqrt2() const { return this->rsqrt1(); } SkNf invert() const { return SkNf(1) / *this; } SkNf approxInvert() const { return _mm_rcp_ps(fVec); } template float kth() const { SkASSERT(0 <= k && k < 2); union { __m128 v; float fs[4]; } pun = {fVec}; return pun.fs[k&1]; } bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); } __m128 fVec; }; template <> class SkNf<2, double> { public: SkNf(const __m128d& vec) : fVec(vec) {} SkNf() {} explicit SkNf(double val) : fVec( _mm_set1_pd(val) ) {} static SkNf Load(const double vals[2]) { return _mm_loadu_pd(vals); } SkNf(double a, double b) : fVec(_mm_setr_pd(a,b)) {} void store(double vals[2]) const { _mm_storeu_pd(vals, fVec); } SkNf operator + (const SkNf& o) const { return _mm_add_pd(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return _mm_sub_pd(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return _mm_mul_pd(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { return _mm_div_pd(fVec, o.fVec); } SkNf operator == (const SkNf& o) const { return _mm_cmpeq_pd (fVec, o.fVec); } SkNf operator != (const SkNf& o) const { return _mm_cmpneq_pd(fVec, o.fVec); } SkNf operator < (const SkNf& o) const { return _mm_cmplt_pd (fVec, o.fVec); } SkNf operator > (const SkNf& o) const { return _mm_cmpgt_pd (fVec, o.fVec); } SkNf operator <= (const SkNf& o) const { return _mm_cmple_pd (fVec, o.fVec); } SkNf operator >= (const SkNf& o) const { return _mm_cmpge_pd (fVec, o.fVec); } static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_pd(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_pd(l.fVec, r.fVec); } SkNf sqrt() const { return _mm_sqrt_pd(fVec); } SkNf rsqrt0() const { return _mm_cvtps_pd(_mm_rsqrt_ps(_mm_cvtpd_ps(fVec))); } SkNf rsqrt1() const { return this->rsqrt0(); } SkNf rsqrt2() const { return this->rsqrt1(); } SkNf invert() const { return SkNf(1) / *this; } SkNf approxInvert() const { return _mm_cvtps_pd(_mm_rcp_ps(_mm_cvtpd_ps(fVec))); } template double kth() const { SkASSERT(0 <= k && k < 2); union { __m128d v; double ds[2]; } pun = {fVec}; return pun.ds[k&1]; } bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castpd_si128(fVec)); } bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castpd_si128(fVec)); } __m128d fVec; }; template <> class SkNi<4, int> { public: SkNi(const __m128i& vec) : fVec(vec) {} SkNi() {} explicit SkNi(int val) : fVec(_mm_set1_epi32(val)) {} static SkNi Load(const int vals[4]) { return _mm_loadu_si128((const __m128i*)vals); } SkNi(int a, int b, int c, int d) : fVec(_mm_setr_epi32(a,b,c,d)) {} void store(int vals[4]) const { _mm_storeu_si128((__m128i*)vals, fVec); } SkNi operator + (const SkNi& o) const { return _mm_add_epi32(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return _mm_sub_epi32(fVec, o.fVec); } SkNi operator * (const SkNi& o) const { __m128i mul20 = _mm_mul_epu32(fVec, o.fVec), mul31 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul20, _MM_SHUFFLE(0,0,2,0)), _mm_shuffle_epi32(mul31, _MM_SHUFFLE(0,0,2,0))); } SkNi operator << (int bits) const { return _mm_slli_epi32(fVec, bits); } SkNi operator >> (int bits) const { return _mm_srai_epi32(fVec, bits); } template int kth() const { SkASSERT(0 <= k && k < 4); switch (k) { case 0: return _mm_cvtsi128_si32(fVec); case 1: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 4)); case 2: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 8)); case 3: return _mm_cvtsi128_si32(_mm_srli_si128(fVec, 12)); default: SkASSERT(false); return 0; } } __m128i fVec; }; template <> class SkNf<4, float> { public: SkNf(const __m128& vec) : fVec(vec) {} SkNf() {} explicit SkNf(float val) : fVec( _mm_set1_ps(val) ) {} static SkNf Load(const float vals[4]) { return _mm_loadu_ps(vals); } SkNf(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {} void store(float vals[4]) const { _mm_storeu_ps(vals, fVec); } SkNi<4, int> castTrunc() const { return _mm_cvttps_epi32(fVec); } SkNf operator + (const SkNf& o) const { return _mm_add_ps(fVec, o.fVec); } SkNf operator - (const SkNf& o) const { return _mm_sub_ps(fVec, o.fVec); } SkNf operator * (const SkNf& o) const { return _mm_mul_ps(fVec, o.fVec); } SkNf operator / (const SkNf& o) const { return _mm_div_ps(fVec, o.fVec); } SkNf operator == (const SkNf& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } SkNf operator != (const SkNf& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } SkNf operator < (const SkNf& o) const { return _mm_cmplt_ps (fVec, o.fVec); } SkNf operator > (const SkNf& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } SkNf operator <= (const SkNf& o) const { return _mm_cmple_ps (fVec, o.fVec); } SkNf operator >= (const SkNf& o) const { return _mm_cmpge_ps (fVec, o.fVec); } static SkNf Min(const SkNf& l, const SkNf& r) { return _mm_min_ps(l.fVec, r.fVec); } static SkNf Max(const SkNf& l, const SkNf& r) { return _mm_max_ps(l.fVec, r.fVec); } SkNf sqrt() const { return _mm_sqrt_ps (fVec); } SkNf rsqrt0() const { return _mm_rsqrt_ps(fVec); } SkNf rsqrt1() const { return this->rsqrt0(); } SkNf rsqrt2() const { return this->rsqrt1(); } SkNf invert() const { return SkNf(1) / *this; } SkNf approxInvert() const { return _mm_rcp_ps(fVec); } template float kth() const { SkASSERT(0 <= k && k < 4); union { __m128 v; float fs[4]; } pun = {fVec}; return pun.fs[k&3]; } bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); } bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); } __m128 fVec; }; template <> class SkNi<4, uint16_t> { public: SkNi(const __m128i& vec) : fVec(vec) {} SkNi() {} explicit SkNi(uint16_t val) : fVec(_mm_set1_epi16(val)) {} static SkNi Load(const uint16_t vals[4]) { return _mm_loadl_epi64((const __m128i*)vals); } SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {} void store(uint16_t vals[4]) const { _mm_storel_epi64((__m128i*)vals, fVec); } SkNi operator + (const SkNi& o) const { return _mm_add_epi16(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return _mm_sub_epi16(fVec, o.fVec); } SkNi operator * (const SkNi& o) const { return _mm_mullo_epi16(fVec, o.fVec); } SkNi operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } SkNi operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } template uint16_t kth() const { SkASSERT(0 <= k && k < 4); return _mm_extract_epi16(fVec, k); } __m128i fVec; }; template <> class SkNi<8, uint16_t> { public: SkNi(const __m128i& vec) : fVec(vec) {} SkNi() {} explicit SkNi(uint16_t val) : fVec(_mm_set1_epi16(val)) {} static SkNi Load(const uint16_t vals[8]) { return _mm_loadu_si128((const __m128i*)vals); } SkNi(uint16_t a, uint16_t b, uint16_t c, uint16_t d, uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {} void store(uint16_t vals[8]) const { _mm_storeu_si128((__m128i*)vals, fVec); } SkNi operator + (const SkNi& o) const { return _mm_add_epi16(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return _mm_sub_epi16(fVec, o.fVec); } SkNi operator * (const SkNi& o) const { return _mm_mullo_epi16(fVec, o.fVec); } SkNi operator << (int bits) const { return _mm_slli_epi16(fVec, bits); } SkNi operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); } static SkNi Min(const SkNi& a, const SkNi& b) { // No unsigned _mm_min_epu16, so we'll shift into a space where we can use the // signed version, _mm_min_epi16, then shift back. const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine. const __m128i top_8x = _mm_set1_epi16(top); return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x), _mm_sub_epi8(b.fVec, top_8x))); } template uint16_t kth() const { SkASSERT(0 <= k && k < 8); return _mm_extract_epi16(fVec, k); } __m128i fVec; }; template <> class SkNi<16, uint8_t> { public: SkNi(const __m128i& vec) : fVec(vec) {} SkNi() {} explicit SkNi(uint8_t val) : fVec(_mm_set1_epi8(val)) {} static SkNi Load(const uint8_t vals[16]) { return _mm_loadu_si128((const __m128i*)vals); } SkNi(uint8_t a, uint8_t b, uint8_t c, uint8_t d, uint8_t e, uint8_t f, uint8_t g, uint8_t h, uint8_t i, uint8_t j, uint8_t k, uint8_t l, uint8_t m, uint8_t n, uint8_t o, uint8_t p) : fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {} void store(uint8_t vals[16]) const { _mm_storeu_si128((__m128i*)vals, fVec); } SkNi saturatedAdd(const SkNi& o) const { return _mm_adds_epu8(fVec, o.fVec); } SkNi operator + (const SkNi& o) const { return _mm_add_epi8(fVec, o.fVec); } SkNi operator - (const SkNi& o) const { return _mm_sub_epi8(fVec, o.fVec); } static SkNi Min(const SkNi& a, const SkNi& b) { return _mm_min_epu8(a.fVec, b.fVec); } SkNi operator < (const SkNi& o) const { // There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare. auto flip = _mm_set1_epi8(char(0x80)); return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec)); } template uint8_t kth() const { SkASSERT(0 <= k && k < 16); // SSE4.1 would just `return _mm_extract_epi8(fVec, k)`. We have to read 16-bits instead. int pair = _mm_extract_epi16(fVec, k/2); return k % 2 == 0 ? pair : (pair >> 8); } SkNi thenElse(const SkNi& t, const SkNi& e) const { return _mm_or_si128(_mm_and_si128 (fVec, t.fVec), _mm_andnot_si128(fVec, e.fVec)); } __m128i fVec; }; } // namespace #endif//SkNx_sse_DEFINED