aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/libquadmath/math/cexpq.c
blob: bd4be1ebe7112489e27bce69fcbe8b6c3fc9dcfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* Return value of complex exponential function for complex __float128 value.
   Copyright (C) 1997-2012 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include "quadmath-imp.h"

#ifdef HAVE_FENV_H
# include <fenv.h>
#endif


__complex128
cexpq (__complex128 x)
{
  __complex128 retval;
  int rcls = fpclassifyq (__real__ x);
  int icls = fpclassifyq (__imag__ x);

  if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
    {
      /* Real part is finite.  */
      if (__builtin_expect (icls >= QUADFP_ZERO, 1))
	{
	  /* Imaginary part is finite.  */
	  const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
	  __float128 sinix, cosix;

	  if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
	    {
	      sincosq (__imag__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __imag__ x;
	      cosix = 1.0Q;
	    }

	  if (__real__ x > t)
	    {
	      __float128 exp_t = expq (t);
	      __real__ x -= t;
	      sinix *= exp_t;
	      cosix *= exp_t;
	      if (__real__ x > t)
		{
		  __real__ x -= t;
		  sinix *= exp_t;
		  cosix *= exp_t;
		}
	    }
	  if (__real__ x > t)
	    {
	      /* Overflow (original real part of x > 3t).  */
	      __real__ retval = FLT128_MAX * cosix;
	      __imag__ retval = FLT128_MAX * sinix;
	    }
	  else
	    {
	      __float128 exp_val = expq (__real__ x);
	      __real__ retval = exp_val * cosix;
	      __imag__ retval = exp_val * sinix;
	    }
	}
      else
	{
	  /* If the imaginary part is +-inf or NaN and the real part
	     is not +-inf the result is NaN + iNaN.  */
	  __real__ retval = nanq ("");
	  __imag__ retval = nanq ("");

#ifdef HAVE_FENV_H
	  feraiseexcept (FE_INVALID);
#endif
	}
    }
  else if (__builtin_expect (rcls == QUADFP_INFINITE, 1))
    {
      /* Real part is infinite.  */
      if (__builtin_expect (icls >= QUADFP_ZERO, 1))
	{
	  /* Imaginary part is finite.  */
	  __float128 value = signbitq (__real__ x) ? 0.0Q : HUGE_VALQ;

	  if (icls == QUADFP_ZERO)
	    {
	      /* Imaginary part is 0.0.  */
	      __real__ retval = value;
	      __imag__ retval = __imag__ x;
	    }
	  else
	    {
	      __float128 sinix, cosix;

	      if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
		{
		  sincosq (__imag__ x, &sinix, &cosix);
		}
	      else
		{
		  sinix = __imag__ x;
		  cosix = 1.0Q;
		}

	      __real__ retval = copysignq (value, cosix);
	      __imag__ retval = copysignq (value, sinix);
	    }
	}
      else if (signbitq (__real__ x) == 0)
	{
	  __real__ retval = HUGE_VALQ;
	  __imag__ retval = nanq ("");

#ifdef HAVE_FENV_H
	  if (icls == QUADFP_INFINITE)
	    feraiseexcept (FE_INVALID);
#endif
	}
      else
	{
	  __real__ retval = 0.0Q;
	  __imag__ retval = copysignq (0.0Q, __imag__ x);
	}
    }
  else
    {
      /* If the real part is NaN the result is NaN + iNaN.  */
      __real__ retval = nanq ("");
      __imag__ retval = nanq ("");

#ifdef HAVE_FENV_H
      if (rcls != QUADFP_NAN || icls != QUADFP_NAN)
	feraiseexcept (FE_INVALID);
#endif
    }

  return retval;
}