aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/v850/predicates.md
blob: 1e16c1cae648e1540371169bc7982a963ebe8b8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
;; Predicate definitions for NEC V850.
;; Copyright (C) 2005-2014 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.

;; Return true if OP is either a register or 0.

(define_predicate "reg_or_0_operand"
  (match_code "reg,subreg,const_int,const_double")
{
  if (GET_CODE (op) == CONST_INT)
    return INTVAL (op) == 0;

  else if (GET_CODE (op) == CONST_DOUBLE)
    return satisfies_constraint_G (op);

  else
    return register_operand (op, mode);
})

;; Return true if OP is either a register or a signed five bit
;; integer.

(define_predicate "reg_or_int5_operand"
  (match_code "reg,subreg,const_int")
{
  if (GET_CODE (op) == CONST_INT)
    return CONST_OK_FOR_J (INTVAL (op));

  else
    return register_operand (op, mode);
})

;; Return true if OP is either a register or a signed nine bit
;; integer.

(define_predicate "reg_or_int9_operand"
  (match_code "reg,subreg,const_int")
{
  if (GET_CODE (op) == CONST_INT)
    return CONST_OK_FOR_O (INTVAL (op));

  return register_operand (op, mode);
})

;; Return true if OP is either a register or a const integer.

(define_predicate "reg_or_const_operand"
  (match_code "reg,const_int")
{
  if (GET_CODE (op) == CONST_INT)
    return TRUE;

  return register_operand (op, mode);
})

;; Return true if OP is a even number register.

(define_predicate "even_reg_operand"
  (match_code "reg")
{
  return (GET_CODE (op) == REG
	  && (REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || ((REGNO (op) > 0) && (REGNO (op) < 32)
		   && ((REGNO (op) & 1)==0))));
})

;; Return true if OP is a valid call operand.

(define_predicate "call_address_operand"
  (match_code "reg,symbol_ref")
{
  /* Only registers are valid call operands if TARGET_LONG_CALLS.  */
  if (TARGET_LONG_CALLS)
    return GET_CODE (op) == REG;
  return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG);
})

;; Return true if OP is a valid source operand for SImode move.

(define_predicate "movsi_source_operand"
  (match_code "label_ref,symbol_ref,const_int,const_double,const,high,mem,reg,subreg")
{
  /* Some constants, as well as symbolic operands
     must be done with HIGH & LO_SUM patterns.  */
  if (CONSTANT_P (op)
      && GET_CODE (op) != HIGH
      && !(GET_CODE (op) == CONST_INT
           && (CONST_OK_FOR_J (INTVAL (op))
               || CONST_OK_FOR_K (INTVAL (op))
               || CONST_OK_FOR_L (INTVAL (op)))))
    return special_symbolref_operand (op, mode);
  else
    return general_operand (op, mode);
})

;; Return true if OP is a valid operand for 23 bit displacement
;; operations.

(define_predicate "disp23_operand"
  (match_code "const_int")
{
  if (GET_CODE (op) == CONST_INT
      && ((unsigned)(INTVAL (op)) >= 0x8000)
      && ((unsigned)(INTVAL (op)) < 0x400000))
    return 1;
  else
    return 0;
})

;; Return true if OP is a symbol ref with 16-bit signed value.

(define_predicate "special_symbolref_operand"
  (match_code "symbol_ref")
{
  if (GET_CODE (op) == CONST
      && GET_CODE (XEXP (op, 0)) == PLUS
      && satisfies_constraint_K (XEXP (XEXP (op, 0), 1)))
    op = XEXP (XEXP (op, 0), 0);

  if (GET_CODE (op) == SYMBOL_REF)
    return (SYMBOL_REF_FLAGS (op)
	    & (SYMBOL_FLAG_ZDA | SYMBOL_FLAG_TDA | SYMBOL_FLAG_SDA)) != 0;

  return FALSE;
})

;; Return true if OP is a valid operand for bit related operations
;; containing only single 1 in its binary representation.

(define_predicate "power_of_two_operand"
  (match_code "const_int")
{
  if (GET_CODE (op) != CONST_INT)
    return 0;

  if (exact_log2 (INTVAL (op)) == -1)
    return 0;
  return 1;
})

;; Return nonzero if the given RTX is suitable for collapsing into a
;; jump to a function prologue.

(define_predicate "pattern_is_ok_for_prologue"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;
  rtx vector_element;

  /* If there are no registers to save then the function prologue
     is not suitable.  */
  if (count <= (TARGET_LONG_CALLS ? 3 : 2))
    return 0;

  /* The pattern matching has already established that we are adjusting the
     stack and pushing at least one register.  We must now check that the
     remaining entries in the vector to make sure that they are also register
     pushes, except for the last entry which should be a CLOBBER of r10.

     The test below performs the C equivalent of this machine description
     pattern match:

     (set (mem:SI (plus:SI (reg:SI 3)
      (match_operand:SI 2 "immediate_operand" "i")))
      (match_operand:SI 3 "register_is_ok_for_epilogue" "r"))

     */

  for (i = 2; i < count - (TARGET_LONG_CALLS ? 2: 1); i++)
    {
      rtx dest;
      rtx src;
      rtx plus;

      vector_element = XVECEXP (op, 0, i);

      if (GET_CODE (vector_element) != SET)
	return 0;

      dest = SET_DEST (vector_element);
      src = SET_SRC (vector_element);

      if (GET_CODE (dest) != MEM
	  || GET_MODE (dest) != SImode
	  || GET_CODE (src) != REG
	  || GET_MODE (src) != SImode
	  || ! register_is_ok_for_epilogue (src, SImode))
	return 0;

      plus = XEXP (dest, 0);

      if ( GET_CODE (plus) != PLUS
	  || GET_CODE (XEXP (plus, 0)) != REG
	  || GET_MODE (XEXP (plus, 0)) != SImode
	  || REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
	  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
	return 0;

      /* If the register is being pushed somewhere other than the stack
	 space just acquired by the first operand then abandon this quest.
	 Note: the test is <= because both values are negative.	 */
      if (INTVAL (XEXP (plus, 1))
	  <= INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)))
	{
	  return 0;
	}
    }

  /* Make sure that the last entries in the vector are clobbers.  */
  vector_element = XVECEXP (op, 0, i++);

  if (GET_CODE (vector_element) != CLOBBER
      || GET_CODE (XEXP (vector_element, 0)) != REG
      || REGNO (XEXP (vector_element, 0)) != 10)
    return 0;

  if (TARGET_LONG_CALLS)
    {
      vector_element = XVECEXP (op, 0, i++);

      if (GET_CODE (vector_element) != CLOBBER
	  || GET_CODE (XEXP (vector_element, 0)) != REG
	  || REGNO (XEXP (vector_element, 0)) != 11)
	return 0;
    }

  return i == count;
})

;; Return nonzero if the given RTX is suitable for collapsing into
;; jump to a function epilogue.

(define_predicate "pattern_is_ok_for_epilogue"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;

  /* If there are no registers to restore then the function epilogue
     is not suitable.  */
  if (count <= 2)
    return 0;

  /* The pattern matching has already established that we are performing a
     function epilogue and that we are popping at least one register.  We must
     now check the remaining entries in the vector to make sure that they are
     also register pops.  There is no good reason why there should ever be
     anything else in this vector, but being paranoid always helps...

     The test below performs the C equivalent of this machine description
     pattern match:

        (set (match_operand:SI n "register_is_ok_for_epilogue" "r")
	  (mem:SI (plus:SI (reg:SI 3) (match_operand:SI n "immediate_operand" "i"))))
     */

  for (i = 2; i < count; i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);
      rtx dest;
      rtx src;
      rtx plus;

      if (GET_CODE (vector_element) != SET)
	return 0;

      dest = SET_DEST (vector_element);
      src = SET_SRC (vector_element);

      if (GET_CODE (dest) != REG
	  || GET_MODE (dest) != SImode
	  || ! register_is_ok_for_epilogue (dest, SImode)
	  || GET_CODE (src) != MEM
	  || GET_MODE (src) != SImode)
	return 0;

      plus = XEXP (src, 0);

      if (GET_CODE (plus) != PLUS
	  || GET_CODE (XEXP (plus, 0)) != REG
	  || GET_MODE (XEXP (plus, 0)) != SImode
	  || REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
	  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
	return 0;
    }

  return 1;
})

;; Return true if the given RTX is a register which can be restored by
;; a function epilogue.

(define_predicate "register_is_ok_for_epilogue"
  (match_code "reg")
{
  /* The save/restore routines can only cope with registers 20 - 31.  */
  return ((GET_CODE (op) == REG)
          && (((REGNO (op) >= 20) && REGNO (op) <= 31)));
})

;; Return nonzero if the given RTX is suitable for collapsing into a
;; DISPOSE instruction.

(define_predicate "pattern_is_ok_for_dispose"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;

  /* If there are no registers to restore then
     the dispose instruction is not suitable.  */
  if (count <= 2)
    return 0;

  /* The pattern matching has already established that we are performing a
     function epilogue and that we are popping at least one register.  We must
     now check the remaining entries in the vector to make sure that they are
     also register pops.  There is no good reason why there should ever be
     anything else in this vector, but being paranoid always helps...

     The test below performs the C equivalent of this machine description
     pattern match:

        (set (match_operand:SI n "register_is_ok_for_epilogue" "r")
	  (mem:SI (plus:SI (reg:SI 3)
	    (match_operand:SI n "immediate_operand" "i"))))
     */

  for (i = 3; i < count; i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);
      rtx dest;
      rtx src;
      rtx plus;

      if (GET_CODE (vector_element) != SET)
	return 0;

      dest = SET_DEST (vector_element);
      src  = SET_SRC (vector_element);

      if (   GET_CODE (dest) != REG
	  || GET_MODE (dest) != SImode
	  || ! register_is_ok_for_epilogue (dest, SImode)
	  || GET_CODE (src) != MEM
	  || GET_MODE (src) != SImode)
	return 0;

      plus = XEXP (src, 0);

      if (   GET_CODE (plus) != PLUS
	  || GET_CODE (XEXP (plus, 0)) != REG
	  || GET_MODE (XEXP (plus, 0)) != SImode
	  || REGNO    (XEXP (plus, 0)) != STACK_POINTER_REGNUM
	  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
	return 0;
    }

  return 1;
})

;; Return nonzero if the given RTX is suitable for collapsing into a
;; PREPARE instruction.

(define_predicate "pattern_is_ok_for_prepare"
  (match_code "parallel")
{
  int count = XVECLEN (op, 0);
  int i;

  /* If there are no registers to restore then the prepare instruction
     is not suitable.  */
  if (count <= 1)
    return 0;

  /* The pattern matching has already established that we are adjusting the
     stack and pushing at least one register.  We must now check that the
     remaining entries in the vector to make sure that they are also register
     pushes.

     The test below performs the C equivalent of this machine description
     pattern match:

     (set (mem:SI (plus:SI (reg:SI 3)
       (match_operand:SI 2 "immediate_operand" "i")))
         (match_operand:SI 3 "register_is_ok_for_epilogue" "r"))

     */

  for (i = 1; i < count; i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);
      rtx dest;
      rtx src;
      rtx plus;

      if (GET_CODE (vector_element) == CLOBBER)
	continue;

      if (GET_CODE (vector_element) != SET)
	return 0;

      dest = SET_DEST (vector_element);
      src  = SET_SRC (vector_element);

      if (   GET_CODE (dest) != MEM
	  || GET_MODE (dest) != SImode
	  || GET_CODE (src) != REG
	  || GET_MODE (src) != SImode
	  || ! register_is_ok_for_epilogue (src, SImode)
	     )
	return 0;

      plus = XEXP (dest, 0);

      if (   GET_CODE (plus) != PLUS
	  || GET_CODE (XEXP (plus, 0)) != REG
	  || GET_MODE (XEXP (plus, 0)) != SImode
	  || REGNO    (XEXP (plus, 0)) != STACK_POINTER_REGNUM
	  || GET_CODE (XEXP (plus, 1)) != CONST_INT)
	return 0;

      /* If the register is being pushed somewhere other than the stack
	 space just acquired by the first operand then abandon this quest.
	 Note: the test is <= because both values are negative.	 */
      if (INTVAL (XEXP (plus, 1))
	  < INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)))
	return 0;
    }

  return 1;
})

;; Return true if OP is a valid operand for bit related operations
;; containing only single 0 in its binary representation.

(define_predicate "not_power_of_two_operand"
  (match_code "const_int")
{
  unsigned int mask;

  if (mode == QImode)
    mask = 0xff;
  else if (mode == HImode)
    mask = 0xffff;
  else if (mode == SImode)
    mask = 0xffffffff;
  else
    return 0;

  if (GET_CODE (op) != CONST_INT)
    return 0;

  if (exact_log2 (~INTVAL (op) & mask) == -1)
    return 0;
  return 1;
})

;; Return true if OP is a float value operand with value as 1.

(define_predicate "const_float_1_operand"
  (match_code "const_int")
{
  if (GET_CODE (op) != CONST_DOUBLE
      || mode != GET_MODE (op)
      || (mode != DFmode && mode != SFmode))
    return 0;

  return op == CONST1_RTX(mode);
})

;; Return true if OP is a float value operand with value as 0.

(define_predicate "const_float_0_operand"
  (match_code "const_int")
{
  if (GET_CODE (op) != CONST_DOUBLE
      || mode != GET_MODE (op)
      || (mode != DFmode && mode != SFmode))
    return 0;

  return op == CONST0_RTX(mode);
})

(define_predicate "label_ref_operand"
  (match_code "label_ref")
)


(define_predicate "e3v5_shift_operand"
  (match_code "const_int,reg")
  {
    if (CONST_INT_P (op))
      return IN_RANGE (INTVAL (op), 0, 31);
    return true;
  }
)

(define_predicate "ior_operator"
  (match_code "ior")
{
  return (GET_CODE (op) == IOR);
})

;; Return true if the floating point comparison operation
;; given produces a canonical answer.
(define_predicate "v850_float_z_comparison_operator"
  (match_code "lt,le,eq,gt,ge")
{
  enum rtx_code code = GET_CODE (op);

  if (GET_RTX_CLASS (code) != RTX_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
    return 0;

  if (mode != GET_MODE (op) && mode != VOIDmode)
    return 0;

  if ((GET_CODE (XEXP (op, 0)) != REG
       || REGNO (XEXP (op, 0)) != CC_REGNUM)
      || XEXP (op, 1) != const0_rtx)
    return 0;

  if (GET_MODE (XEXP (op, 0)) == CC_FPU_LTmode)
    return code == LT;
  if (GET_MODE (XEXP (op, 0)) == CC_FPU_LEmode)
    return code == LE;
  if (GET_MODE (XEXP (op, 0)) == CC_FPU_EQmode)
    return code == EQ;
  if (GET_MODE (XEXP (op, 0)) == CC_FPU_GTmode)
    return code == GT;
  if (GET_MODE (XEXP (op, 0)) == CC_FPU_GEmode)
    return code == GE;

  /* Note we do not accept CC_FPU_NEmode here.  See
     v850_float_nz_comparison for the reason why.  */
  return 0;
})

;; Return true if the floating point comparison operation
;; given produces an inverted answer.
(define_predicate "v850_float_nz_comparison_operator"
  (match_code "ne")
{
  enum rtx_code code = GET_CODE (op);

  /* The V850E2V3 does not have a floating point NZ comparison operator.
     Instead it is implemented as an EQ comparison and this function ensures
     that the branch_nz_normal and set_nz_insn patterns are used to examine
     (and invert) the result of the floating point comparison.  */

  if (GET_RTX_CLASS (code) != RTX_COMPARE
      && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
    return 0;

  if (mode != GET_MODE (op) && mode != VOIDmode)
    return 0;

  if ((GET_CODE (XEXP (op, 0)) != REG
       || REGNO (XEXP (op, 0)) != CC_REGNUM)
      || XEXP (op, 1) != const0_rtx)
    return 0;

  if (GET_MODE (XEXP (op, 0)) == CC_FPU_NEmode)
    return code == NE;

  return 0;
})