aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-vect-stmts.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/tree-vect-stmts.c')
-rw-r--r--gcc-4.9/gcc/tree-vect-stmts.c8107
1 files changed, 8107 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-vect-stmts.c b/gcc-4.9/gcc/tree-vect-stmts.c
new file mode 100644
index 000000000..884e769c8
--- /dev/null
+++ b/gcc-4.9/gcc/tree-vect-stmts.c
@@ -0,0 +1,8107 @@
+/* Statement Analysis and Transformation for Vectorization
+ Copyright (C) 2003-2014 Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+ and Ira Rosen <irar@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "dumpfile.h"
+#include "tm.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "target.h"
+#include "basic-block.h"
+#include "gimple-pretty-print.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-manip.h"
+#include "cfgloop.h"
+#include "tree-ssa-loop.h"
+#include "tree-scalar-evolution.h"
+#include "expr.h"
+#include "recog.h" /* FIXME: for insn_data */
+#include "optabs.h"
+#include "diagnostic-core.h"
+#include "tree-vectorizer.h"
+#include "dumpfile.h"
+#include "cgraph.h"
+
+/* For lang_hooks.types.type_for_mode. */
+#include "langhooks.h"
+
+/* Return the vectorized type for the given statement. */
+
+tree
+stmt_vectype (struct _stmt_vec_info *stmt_info)
+{
+ return STMT_VINFO_VECTYPE (stmt_info);
+}
+
+/* Return TRUE iff the given statement is in an inner loop relative to
+ the loop being vectorized. */
+bool
+stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
+{
+ gimple stmt = STMT_VINFO_STMT (stmt_info);
+ basic_block bb = gimple_bb (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop* loop;
+
+ if (!loop_vinfo)
+ return false;
+
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ return (bb->loop_father == loop->inner);
+}
+
+/* Record the cost of a statement, either by directly informing the
+ target model or by saving it in a vector for later processing.
+ Return a preliminary estimate of the statement's cost. */
+
+unsigned
+record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
+ enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
+ int misalign, enum vect_cost_model_location where)
+{
+ if (body_cost_vec)
+ {
+ tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
+ add_stmt_info_to_vec (body_cost_vec, count, kind,
+ stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
+ misalign);
+ return (unsigned)
+ (builtin_vectorization_cost (kind, vectype, misalign) * count);
+
+ }
+ else
+ {
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ void *target_cost_data;
+
+ if (loop_vinfo)
+ target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
+ else
+ target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
+
+ return add_stmt_cost (target_cost_data, count, kind, stmt_info,
+ misalign, where);
+ }
+}
+
+/* Return a variable of type ELEM_TYPE[NELEMS]. */
+
+static tree
+create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
+{
+ return create_tmp_var (build_array_type_nelts (elem_type, nelems),
+ "vect_array");
+}
+
+/* ARRAY is an array of vectors created by create_vector_array.
+ Return an SSA_NAME for the vector in index N. The reference
+ is part of the vectorization of STMT and the vector is associated
+ with scalar destination SCALAR_DEST. */
+
+static tree
+read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
+ tree array, unsigned HOST_WIDE_INT n)
+{
+ tree vect_type, vect, vect_name, array_ref;
+ gimple new_stmt;
+
+ gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
+ vect_type = TREE_TYPE (TREE_TYPE (array));
+ vect = vect_create_destination_var (scalar_dest, vect_type);
+ array_ref = build4 (ARRAY_REF, vect_type, array,
+ build_int_cst (size_type_node, n),
+ NULL_TREE, NULL_TREE);
+
+ new_stmt = gimple_build_assign (vect, array_ref);
+ vect_name = make_ssa_name (vect, new_stmt);
+ gimple_assign_set_lhs (new_stmt, vect_name);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ return vect_name;
+}
+
+/* ARRAY is an array of vectors created by create_vector_array.
+ Emit code to store SSA_NAME VECT in index N of the array.
+ The store is part of the vectorization of STMT. */
+
+static void
+write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect,
+ tree array, unsigned HOST_WIDE_INT n)
+{
+ tree array_ref;
+ gimple new_stmt;
+
+ array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
+ build_int_cst (size_type_node, n),
+ NULL_TREE, NULL_TREE);
+
+ new_stmt = gimple_build_assign (array_ref, vect);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+}
+
+/* PTR is a pointer to an array of type TYPE. Return a representation
+ of *PTR. The memory reference replaces those in FIRST_DR
+ (and its group). */
+
+static tree
+create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
+{
+ tree mem_ref, alias_ptr_type;
+
+ alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
+ mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
+ /* Arrays have the same alignment as their type. */
+ set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
+ return mem_ref;
+}
+
+/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
+
+/* Function vect_mark_relevant.
+
+ Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
+
+static void
+vect_mark_relevant (vec<gimple> *worklist, gimple stmt,
+ enum vect_relevant relevant, bool live_p,
+ bool used_in_pattern)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
+ bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+ gimple pattern_stmt;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "mark relevant %d, live %d.\n", relevant, live_p);
+
+ /* If this stmt is an original stmt in a pattern, we might need to mark its
+ related pattern stmt instead of the original stmt. However, such stmts
+ may have their own uses that are not in any pattern, in such cases the
+ stmt itself should be marked. */
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info))
+ {
+ bool found = false;
+ if (!used_in_pattern)
+ {
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple use_stmt;
+ tree lhs;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ if (is_gimple_assign (stmt))
+ lhs = gimple_assign_lhs (stmt);
+ else
+ lhs = gimple_call_lhs (stmt);
+
+ /* This use is out of pattern use, if LHS has other uses that are
+ pattern uses, we should mark the stmt itself, and not the pattern
+ stmt. */
+ if (lhs && TREE_CODE (lhs) == SSA_NAME)
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
+ {
+ if (is_gimple_debug (USE_STMT (use_p)))
+ continue;
+ use_stmt = USE_STMT (use_p);
+
+ if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
+ continue;
+
+ if (vinfo_for_stmt (use_stmt)
+ && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
+ {
+ found = true;
+ break;
+ }
+ }
+ }
+
+ if (!found)
+ {
+ /* This is the last stmt in a sequence that was detected as a
+ pattern that can potentially be vectorized. Don't mark the stmt
+ as relevant/live because it's not going to be vectorized.
+ Instead mark the pattern-stmt that replaces it. */
+
+ pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "last stmt in pattern. don't mark"
+ " relevant/live.\n");
+ stmt_info = vinfo_for_stmt (pattern_stmt);
+ gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
+ save_relevant = STMT_VINFO_RELEVANT (stmt_info);
+ save_live_p = STMT_VINFO_LIVE_P (stmt_info);
+ stmt = pattern_stmt;
+ }
+ }
+
+ STMT_VINFO_LIVE_P (stmt_info) |= live_p;
+ if (relevant > STMT_VINFO_RELEVANT (stmt_info))
+ STMT_VINFO_RELEVANT (stmt_info) = relevant;
+
+ if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
+ && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "already marked relevant/live.\n");
+ return;
+ }
+
+ worklist->safe_push (stmt);
+}
+
+
+/* Function vect_stmt_relevant_p.
+
+ Return true if STMT in loop that is represented by LOOP_VINFO is
+ "relevant for vectorization".
+
+ A stmt is considered "relevant for vectorization" if:
+ - it has uses outside the loop.
+ - it has vdefs (it alters memory).
+ - control stmts in the loop (except for the exit condition).
+
+ CHECKME: what other side effects would the vectorizer allow? */
+
+static bool
+vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
+ enum vect_relevant *relevant, bool *live_p)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ ssa_op_iter op_iter;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ def_operand_p def_p;
+
+ *relevant = vect_unused_in_scope;
+ *live_p = false;
+
+ /* cond stmt other than loop exit cond. */
+ if (is_ctrl_stmt (stmt)
+ && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
+ != loop_exit_ctrl_vec_info_type)
+ *relevant = vect_used_in_scope;
+
+ /* changing memory. */
+ if (gimple_code (stmt) != GIMPLE_PHI)
+ if (gimple_vdef (stmt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vec_stmt_relevant_p: stmt has vdefs.\n");
+ *relevant = vect_used_in_scope;
+ }
+
+ /* uses outside the loop. */
+ FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
+ {
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
+ {
+ basic_block bb = gimple_bb (USE_STMT (use_p));
+ if (!flow_bb_inside_loop_p (loop, bb))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vec_stmt_relevant_p: used out of loop.\n");
+
+ if (is_gimple_debug (USE_STMT (use_p)))
+ continue;
+
+ /* We expect all such uses to be in the loop exit phis
+ (because of loop closed form) */
+ gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
+ gcc_assert (bb == single_exit (loop)->dest);
+
+ *live_p = true;
+ }
+ }
+ }
+
+ return (*live_p || *relevant);
+}
+
+
+/* Function exist_non_indexing_operands_for_use_p
+
+ USE is one of the uses attached to STMT. Check if USE is
+ used in STMT for anything other than indexing an array. */
+
+static bool
+exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
+{
+ tree operand;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ /* USE corresponds to some operand in STMT. If there is no data
+ reference in STMT, then any operand that corresponds to USE
+ is not indexing an array. */
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return true;
+
+ /* STMT has a data_ref. FORNOW this means that its of one of
+ the following forms:
+ -1- ARRAY_REF = var
+ -2- var = ARRAY_REF
+ (This should have been verified in analyze_data_refs).
+
+ 'var' in the second case corresponds to a def, not a use,
+ so USE cannot correspond to any operands that are not used
+ for array indexing.
+
+ Therefore, all we need to check is if STMT falls into the
+ first case, and whether var corresponds to USE. */
+
+ if (!gimple_assign_copy_p (stmt))
+ {
+ if (is_gimple_call (stmt)
+ && gimple_call_internal_p (stmt))
+ switch (gimple_call_internal_fn (stmt))
+ {
+ case IFN_MASK_STORE:
+ operand = gimple_call_arg (stmt, 3);
+ if (operand == use)
+ return true;
+ /* FALLTHRU */
+ case IFN_MASK_LOAD:
+ operand = gimple_call_arg (stmt, 2);
+ if (operand == use)
+ return true;
+ break;
+ default:
+ break;
+ }
+ return false;
+ }
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
+ return false;
+ operand = gimple_assign_rhs1 (stmt);
+ if (TREE_CODE (operand) != SSA_NAME)
+ return false;
+
+ if (operand == use)
+ return true;
+
+ return false;
+}
+
+
+/*
+ Function process_use.
+
+ Inputs:
+ - a USE in STMT in a loop represented by LOOP_VINFO
+ - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
+ that defined USE. This is done by calling mark_relevant and passing it
+ the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
+ - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
+ be performed.
+
+ Outputs:
+ Generally, LIVE_P and RELEVANT are used to define the liveness and
+ relevance info of the DEF_STMT of this USE:
+ STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
+ STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
+ Exceptions:
+ - case 1: If USE is used only for address computations (e.g. array indexing),
+ which does not need to be directly vectorized, then the liveness/relevance
+ of the respective DEF_STMT is left unchanged.
+ - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
+ skip DEF_STMT cause it had already been processed.
+ - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
+ be modified accordingly.
+
+ Return true if everything is as expected. Return false otherwise. */
+
+static bool
+process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
+ enum vect_relevant relevant, vec<gimple> *worklist,
+ bool force)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ stmt_vec_info dstmt_vinfo;
+ basic_block bb, def_bb;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt;
+
+ /* case 1: we are only interested in uses that need to be vectorized. Uses
+ that are used for address computation are not considered relevant. */
+ if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
+ return true;
+
+ if (!vect_is_simple_use (use, stmt, loop_vinfo, NULL, &def_stmt, &def, &dt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: unsupported use in stmt.\n");
+ return false;
+ }
+
+ if (!def_stmt || gimple_nop_p (def_stmt))
+ return true;
+
+ def_bb = gimple_bb (def_stmt);
+ if (!flow_bb_inside_loop_p (loop, def_bb))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.\n");
+ return true;
+ }
+
+ /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
+ DEF_STMT must have already been processed, because this should be the
+ only way that STMT, which is a reduction-phi, was put in the worklist,
+ as there should be no other uses for DEF_STMT in the loop. So we just
+ check that everything is as expected, and we are done. */
+ dstmt_vinfo = vinfo_for_stmt (def_stmt);
+ bb = gimple_bb (stmt);
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
+ && gimple_code (def_stmt) != GIMPLE_PHI
+ && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
+ && bb->loop_father == def_bb->loop_father)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "reduc-stmt defining reduc-phi in the same nest.\n");
+ if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
+ dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
+ gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
+ gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
+ || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
+ return true;
+ }
+
+ /* case 3a: outer-loop stmt defining an inner-loop stmt:
+ outer-loop-header-bb:
+ d = def_stmt
+ inner-loop:
+ stmt # use (d)
+ outer-loop-tail-bb:
+ ... */
+ if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "outer-loop def-stmt defining inner-loop stmt.\n");
+
+ switch (relevant)
+ {
+ case vect_unused_in_scope:
+ relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
+ vect_used_in_scope : vect_unused_in_scope;
+ break;
+
+ case vect_used_in_outer_by_reduction:
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
+ relevant = vect_used_by_reduction;
+ break;
+
+ case vect_used_in_outer:
+ gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
+ relevant = vect_used_in_scope;
+ break;
+
+ case vect_used_in_scope:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* case 3b: inner-loop stmt defining an outer-loop stmt:
+ outer-loop-header-bb:
+ ...
+ inner-loop:
+ d = def_stmt
+ outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
+ stmt # use (d) */
+ else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "inner-loop def-stmt defining outer-loop stmt.\n");
+
+ switch (relevant)
+ {
+ case vect_unused_in_scope:
+ relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
+ || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
+ vect_used_in_outer_by_reduction : vect_unused_in_scope;
+ break;
+
+ case vect_used_by_reduction:
+ relevant = vect_used_in_outer_by_reduction;
+ break;
+
+ case vect_used_in_scope:
+ relevant = vect_used_in_outer;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ vect_mark_relevant (worklist, def_stmt, relevant, live_p,
+ is_pattern_stmt_p (stmt_vinfo));
+ return true;
+}
+
+
+/* Function vect_mark_stmts_to_be_vectorized.
+
+ Not all stmts in the loop need to be vectorized. For example:
+
+ for i...
+ for j...
+ 1. T0 = i + j
+ 2. T1 = a[T0]
+
+ 3. j = j + 1
+
+ Stmt 1 and 3 do not need to be vectorized, because loop control and
+ addressing of vectorized data-refs are handled differently.
+
+ This pass detects such stmts. */
+
+bool
+vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+ unsigned int nbbs = loop->num_nodes;
+ gimple_stmt_iterator si;
+ gimple stmt;
+ unsigned int i;
+ stmt_vec_info stmt_vinfo;
+ basic_block bb;
+ gimple phi;
+ bool live_p;
+ enum vect_relevant relevant, tmp_relevant;
+ enum vect_def_type def_type;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_mark_stmts_to_be_vectorized ===\n");
+
+ auto_vec<gimple, 64> worklist;
+
+ /* 1. Init worklist. */
+ for (i = 0; i < nbbs; i++)
+ {
+ bb = bbs[i];
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ phi = gsi_stmt (si);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
+ vect_mark_relevant (&worklist, phi, relevant, live_p, false);
+ }
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ stmt = gsi_stmt (si);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
+ vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
+ }
+ }
+
+ /* 2. Process_worklist */
+ while (worklist.length () > 0)
+ {
+ use_operand_p use_p;
+ ssa_op_iter iter;
+
+ stmt = worklist.pop ();
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
+ (DEF_STMT) as relevant/irrelevant and live/dead according to the
+ liveness and relevance properties of STMT. */
+ stmt_vinfo = vinfo_for_stmt (stmt);
+ relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
+ live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
+
+ /* Generally, the liveness and relevance properties of STMT are
+ propagated as is to the DEF_STMTs of its USEs:
+ live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
+ relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
+
+ One exception is when STMT has been identified as defining a reduction
+ variable; in this case we set the liveness/relevance as follows:
+ live_p = false
+ relevant = vect_used_by_reduction
+ This is because we distinguish between two kinds of relevant stmts -
+ those that are used by a reduction computation, and those that are
+ (also) used by a regular computation. This allows us later on to
+ identify stmts that are used solely by a reduction, and therefore the
+ order of the results that they produce does not have to be kept. */
+
+ def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
+ tmp_relevant = relevant;
+ switch (def_type)
+ {
+ case vect_reduction_def:
+ switch (tmp_relevant)
+ {
+ case vect_unused_in_scope:
+ relevant = vect_used_by_reduction;
+ break;
+
+ case vect_used_by_reduction:
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ break;
+ /* fall through */
+
+ default:
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unsupported use of reduction.\n");
+ return false;
+ }
+
+ live_p = false;
+ break;
+
+ case vect_nested_cycle:
+ if (tmp_relevant != vect_unused_in_scope
+ && tmp_relevant != vect_used_in_outer_by_reduction
+ && tmp_relevant != vect_used_in_outer)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unsupported use of nested cycle.\n");
+
+ return false;
+ }
+
+ live_p = false;
+ break;
+
+ case vect_double_reduction_def:
+ if (tmp_relevant != vect_unused_in_scope
+ && tmp_relevant != vect_used_by_reduction)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unsupported use of double reduction.\n");
+
+ return false;
+ }
+
+ live_p = false;
+ break;
+
+ default:
+ break;
+ }
+
+ if (is_pattern_stmt_p (stmt_vinfo))
+ {
+ /* Pattern statements are not inserted into the code, so
+ FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
+ have to scan the RHS or function arguments instead. */
+ if (is_gimple_assign (stmt))
+ {
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree op = gimple_assign_rhs1 (stmt);
+
+ i = 1;
+ if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
+ {
+ if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
+ live_p, relevant, &worklist, false)
+ || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
+ live_p, relevant, &worklist, false))
+ return false;
+ i = 2;
+ }
+ for (; i < gimple_num_ops (stmt); i++)
+ {
+ op = gimple_op (stmt, i);
+ if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
+ &worklist, false))
+ return false;
+ }
+ }
+ else if (is_gimple_call (stmt))
+ {
+ for (i = 0; i < gimple_call_num_args (stmt); i++)
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
+ &worklist, false))
+ return false;
+ }
+ }
+ }
+ else
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ tree op = USE_FROM_PTR (use_p);
+ if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
+ &worklist, false))
+ return false;
+ }
+
+ if (STMT_VINFO_GATHER_P (stmt_vinfo))
+ {
+ tree off;
+ tree decl = vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
+ gcc_assert (decl);
+ if (!process_use (stmt, off, loop_vinfo, live_p, relevant,
+ &worklist, true))
+ return false;
+ }
+ } /* while worklist */
+
+ return true;
+}
+
+
+/* Function vect_model_simple_cost.
+
+ Models cost for simple operations, i.e. those that only emit ncopies of a
+ single op. Right now, this does not account for multiple insns that could
+ be generated for the single vector op. We will handle that shortly. */
+
+void
+vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
+ enum vect_def_type *dt,
+ stmt_vector_for_cost *prologue_cost_vec,
+ stmt_vector_for_cost *body_cost_vec)
+{
+ int i;
+ int inside_cost = 0, prologue_cost = 0;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ /* FORNOW: Assuming maximum 2 args per stmts. */
+ for (i = 0; i < 2; i++)
+ if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
+ prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt,
+ stmt_info, 0, vect_prologue);
+
+ /* Pass the inside-of-loop statements to the target-specific cost model. */
+ inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
+ stmt_info, 0, vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_simple_cost: inside_cost = %d, "
+ "prologue_cost = %d .\n", inside_cost, prologue_cost);
+}
+
+
+/* Model cost for type demotion and promotion operations. PWR is normally
+ zero for single-step promotions and demotions. It will be one if
+ two-step promotion/demotion is required, and so on. Each additional
+ step doubles the number of instructions required. */
+
+static void
+vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
+ enum vect_def_type *dt, int pwr)
+{
+ int i, tmp;
+ int inside_cost = 0, prologue_cost = 0;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ void *target_cost_data;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ if (loop_vinfo)
+ target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
+ else
+ target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
+
+ for (i = 0; i < pwr + 1; i++)
+ {
+ tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
+ (i + 1) : i;
+ inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
+ vec_promote_demote, stmt_info, 0,
+ vect_body);
+ }
+
+ /* FORNOW: Assuming maximum 2 args per stmts. */
+ for (i = 0; i < 2; i++)
+ if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
+ prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
+ stmt_info, 0, vect_prologue);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_promotion_demotion_cost: inside_cost = %d, "
+ "prologue_cost = %d .\n", inside_cost, prologue_cost);
+}
+
+/* Function vect_cost_group_size
+
+ For grouped load or store, return the group_size only if it is the first
+ load or store of a group, else return 1. This ensures that group size is
+ only returned once per group. */
+
+static int
+vect_cost_group_size (stmt_vec_info stmt_info)
+{
+ gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
+
+ if (first_stmt == STMT_VINFO_STMT (stmt_info))
+ return GROUP_SIZE (stmt_info);
+
+ return 1;
+}
+
+
+/* Function vect_model_store_cost
+
+ Models cost for stores. In the case of grouped accesses, one access
+ has the overhead of the grouped access attributed to it. */
+
+void
+vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
+ bool store_lanes_p, enum vect_def_type dt,
+ slp_tree slp_node,
+ stmt_vector_for_cost *prologue_cost_vec,
+ stmt_vector_for_cost *body_cost_vec)
+{
+ int group_size;
+ unsigned int inside_cost = 0, prologue_cost = 0;
+ struct data_reference *first_dr;
+ gimple first_stmt;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ if (dt == vect_constant_def || dt == vect_external_def)
+ prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
+ stmt_info, 0, vect_prologue);
+
+ /* Grouped access? */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ {
+ if (slp_node)
+ {
+ first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
+ group_size = 1;
+ }
+ else
+ {
+ first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
+ group_size = vect_cost_group_size (stmt_info);
+ }
+
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ }
+ /* Not a grouped access. */
+ else
+ {
+ group_size = 1;
+ first_dr = STMT_VINFO_DATA_REF (stmt_info);
+ }
+
+ /* We assume that the cost of a single store-lanes instruction is
+ equivalent to the cost of GROUP_SIZE separate stores. If a grouped
+ access is instead being provided by a permute-and-store operation,
+ include the cost of the permutes. */
+ if (!store_lanes_p && group_size > 1)
+ {
+ /* Uses a high and low interleave operation for each needed permute. */
+
+ int nstmts = ncopies * exact_log2 (group_size) * group_size;
+ inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
+ stmt_info, 0, vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_store_cost: strided group_size = %d .\n",
+ group_size);
+ }
+
+ /* Costs of the stores. */
+ vect_get_store_cost (first_dr, ncopies, &inside_cost, body_cost_vec);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_store_cost: inside_cost = %d, "
+ "prologue_cost = %d .\n", inside_cost, prologue_cost);
+}
+
+
+/* Calculate cost of DR's memory access. */
+void
+vect_get_store_cost (struct data_reference *dr, int ncopies,
+ unsigned int *inside_cost,
+ stmt_vector_for_cost *body_cost_vec)
+{
+ int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ switch (alignment_support_scheme)
+ {
+ case dr_aligned:
+ {
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
+ vector_store, stmt_info, 0,
+ vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_store_cost: aligned.\n");
+ break;
+ }
+
+ case dr_unaligned_supported:
+ {
+ /* Here, we assign an additional cost for the unaligned store. */
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
+ unaligned_store, stmt_info,
+ DR_MISALIGNMENT (dr), vect_body);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_store_cost: unaligned supported by "
+ "hardware.\n");
+ break;
+ }
+
+ case dr_unaligned_unsupported:
+ {
+ *inside_cost = VECT_MAX_COST;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "vect_model_store_cost: unsupported access.\n");
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Function vect_model_load_cost
+
+ Models cost for loads. In the case of grouped accesses, the last access
+ has the overhead of the grouped access attributed to it. Since unaligned
+ accesses are supported for loads, we also account for the costs of the
+ access scheme chosen. */
+
+void
+vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
+ bool load_lanes_p, slp_tree slp_node,
+ stmt_vector_for_cost *prologue_cost_vec,
+ stmt_vector_for_cost *body_cost_vec)
+{
+ int group_size;
+ gimple first_stmt;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
+ unsigned int inside_cost = 0, prologue_cost = 0;
+
+ /* The SLP costs were already calculated during SLP tree build. */
+ if (PURE_SLP_STMT (stmt_info))
+ return;
+
+ /* Grouped accesses? */
+ first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && first_stmt && !slp_node)
+ {
+ group_size = vect_cost_group_size (stmt_info);
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ }
+ /* Not a grouped access. */
+ else
+ {
+ group_size = 1;
+ first_dr = dr;
+ }
+
+ /* We assume that the cost of a single load-lanes instruction is
+ equivalent to the cost of GROUP_SIZE separate loads. If a grouped
+ access is instead being provided by a load-and-permute operation,
+ include the cost of the permutes. */
+ if (!load_lanes_p && group_size > 1)
+ {
+ /* Uses an even and odd extract operations for each needed permute. */
+ int nstmts = ncopies * exact_log2 (group_size) * group_size;
+ inside_cost += record_stmt_cost (body_cost_vec, nstmts, vec_perm,
+ stmt_info, 0, vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: strided group_size = %d .\n",
+ group_size);
+ }
+
+ /* The loads themselves. */
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ {
+ /* N scalar loads plus gathering them into a vector. */
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ inside_cost += record_stmt_cost (body_cost_vec,
+ ncopies * TYPE_VECTOR_SUBPARTS (vectype),
+ scalar_load, stmt_info, 0, vect_body);
+ inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
+ stmt_info, 0, vect_body);
+ }
+ else
+ vect_get_load_cost (first_dr, ncopies,
+ ((!STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ || group_size > 1 || slp_node),
+ &inside_cost, &prologue_cost,
+ prologue_cost_vec, body_cost_vec, true);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: inside_cost = %d, "
+ "prologue_cost = %d .\n", inside_cost, prologue_cost);
+}
+
+
+/* Calculate cost of DR's memory access. */
+void
+vect_get_load_cost (struct data_reference *dr, int ncopies,
+ bool add_realign_cost, unsigned int *inside_cost,
+ unsigned int *prologue_cost,
+ stmt_vector_for_cost *prologue_cost_vec,
+ stmt_vector_for_cost *body_cost_vec,
+ bool record_prologue_costs)
+{
+ int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ switch (alignment_support_scheme)
+ {
+ case dr_aligned:
+ {
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
+ stmt_info, 0, vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: aligned.\n");
+
+ break;
+ }
+ case dr_unaligned_supported:
+ {
+ /* Here, we assign an additional cost for the unaligned load. */
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
+ unaligned_load, stmt_info,
+ DR_MISALIGNMENT (dr), vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: unaligned supported by "
+ "hardware.\n");
+
+ break;
+ }
+ case dr_explicit_realign:
+ {
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
+ vector_load, stmt_info, 0, vect_body);
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
+ vec_perm, stmt_info, 0, vect_body);
+
+ /* FIXME: If the misalignment remains fixed across the iterations of
+ the containing loop, the following cost should be added to the
+ prologue costs. */
+ if (targetm.vectorize.builtin_mask_for_load)
+ *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
+ stmt_info, 0, vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: explicit realign\n");
+
+ break;
+ }
+ case dr_explicit_realign_optimized:
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: unaligned software "
+ "pipelined.\n");
+
+ /* Unaligned software pipeline has a load of an address, an initial
+ load, and possibly a mask operation to "prime" the loop. However,
+ if this is an access in a group of loads, which provide grouped
+ access, then the above cost should only be considered for one
+ access in the group. Inside the loop, there is a load op
+ and a realignment op. */
+
+ if (add_realign_cost && record_prologue_costs)
+ {
+ *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
+ vector_stmt, stmt_info,
+ 0, vect_prologue);
+ if (targetm.vectorize.builtin_mask_for_load)
+ *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
+ vector_stmt, stmt_info,
+ 0, vect_prologue);
+ }
+
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
+ stmt_info, 0, vect_body);
+ *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
+ stmt_info, 0, vect_body);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_model_load_cost: explicit realign optimized"
+ "\n");
+
+ break;
+ }
+
+ case dr_unaligned_unsupported:
+ {
+ *inside_cost = VECT_MAX_COST;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "vect_model_load_cost: unsupported access.\n");
+ break;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
+ the loop preheader for the vectorized stmt STMT. */
+
+static void
+vect_init_vector_1 (gimple stmt, gimple new_stmt, gimple_stmt_iterator *gsi)
+{
+ if (gsi)
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ else
+ {
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+
+ if (loop_vinfo)
+ {
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ basic_block new_bb;
+ edge pe;
+
+ if (nested_in_vect_loop_p (loop, stmt))
+ loop = loop->inner;
+
+ pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ }
+ else
+ {
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
+ basic_block bb;
+ gimple_stmt_iterator gsi_bb_start;
+
+ gcc_assert (bb_vinfo);
+ bb = BB_VINFO_BB (bb_vinfo);
+ gsi_bb_start = gsi_after_labels (bb);
+ gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
+ }
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "created new init_stmt: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+}
+
+/* Function vect_init_vector.
+
+ Insert a new stmt (INIT_STMT) that initializes a new variable of type
+ TYPE with the value VAL. If TYPE is a vector type and VAL does not have
+ vector type a vector with all elements equal to VAL is created first.
+ Place the initialization at BSI if it is not NULL. Otherwise, place the
+ initialization at the loop preheader.
+ Return the DEF of INIT_STMT.
+ It will be used in the vectorization of STMT. */
+
+tree
+vect_init_vector (gimple stmt, tree val, tree type, gimple_stmt_iterator *gsi)
+{
+ tree new_var;
+ gimple init_stmt;
+ tree vec_oprnd;
+ tree new_temp;
+
+ if (TREE_CODE (type) == VECTOR_TYPE
+ && TREE_CODE (TREE_TYPE (val)) != VECTOR_TYPE)
+ {
+ if (!types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
+ {
+ if (CONSTANT_CLASS_P (val))
+ val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (type), val);
+ else
+ {
+ new_temp = make_ssa_name (TREE_TYPE (type), NULL);
+ init_stmt = gimple_build_assign_with_ops (NOP_EXPR,
+ new_temp, val,
+ NULL_TREE);
+ vect_init_vector_1 (stmt, init_stmt, gsi);
+ val = new_temp;
+ }
+ }
+ val = build_vector_from_val (type, val);
+ }
+
+ new_var = vect_get_new_vect_var (type, vect_simple_var, "cst_");
+ init_stmt = gimple_build_assign (new_var, val);
+ new_temp = make_ssa_name (new_var, init_stmt);
+ gimple_assign_set_lhs (init_stmt, new_temp);
+ vect_init_vector_1 (stmt, init_stmt, gsi);
+ vec_oprnd = gimple_assign_lhs (init_stmt);
+ return vec_oprnd;
+}
+
+
+/* Function vect_get_vec_def_for_operand.
+
+ OP is an operand in STMT. This function returns a (vector) def that will be
+ used in the vectorized stmt for STMT.
+
+ In the case that OP is an SSA_NAME which is defined in the loop, then
+ STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
+
+ In case OP is an invariant or constant, a new stmt that creates a vector def
+ needs to be introduced. */
+
+tree
+vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
+{
+ tree vec_oprnd;
+ gimple vec_stmt;
+ gimple def_stmt;
+ stmt_vec_info def_stmt_info = NULL;
+ stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
+ unsigned int nunits;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
+ tree def;
+ enum vect_def_type dt;
+ bool is_simple_use;
+ tree vector_type;
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_get_vec_def_for_operand: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ is_simple_use = vect_is_simple_use (op, stmt, loop_vinfo, NULL,
+ &def_stmt, &def, &dt);
+ gcc_assert (is_simple_use);
+ if (dump_enabled_p ())
+ {
+ int loc_printed = 0;
+ if (def)
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "def = ");
+ loc_printed = 1;
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, def);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ if (def_stmt)
+ {
+ if (loc_printed)
+ dump_printf (MSG_NOTE, " def_stmt = ");
+ else
+ dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ }
+
+ switch (dt)
+ {
+ /* Case 1: operand is a constant. */
+ case vect_constant_def:
+ {
+ vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
+ gcc_assert (vector_type);
+ nunits = TYPE_VECTOR_SUBPARTS (vector_type);
+
+ if (scalar_def)
+ *scalar_def = op;
+
+ /* Create 'vect_cst_ = {cst,cst,...,cst}' */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Create vector_cst. nunits = %d\n", nunits);
+
+ return vect_init_vector (stmt, op, vector_type, NULL);
+ }
+
+ /* Case 2: operand is defined outside the loop - loop invariant. */
+ case vect_external_def:
+ {
+ vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
+ gcc_assert (vector_type);
+
+ if (scalar_def)
+ *scalar_def = def;
+
+ /* Create 'vec_inv = {inv,inv,..,inv}' */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "Create vector_inv.\n");
+
+ return vect_init_vector (stmt, def, vector_type, NULL);
+ }
+
+ /* Case 3: operand is defined inside the loop. */
+ case vect_internal_def:
+ {
+ if (scalar_def)
+ *scalar_def = NULL/* FIXME tuples: def_stmt*/;
+
+ /* Get the def from the vectorized stmt. */
+ def_stmt_info = vinfo_for_stmt (def_stmt);
+
+ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+ /* Get vectorized pattern statement. */
+ if (!vec_stmt
+ && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
+ && !STMT_VINFO_RELEVANT (def_stmt_info))
+ vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
+ STMT_VINFO_RELATED_STMT (def_stmt_info)));
+ gcc_assert (vec_stmt);
+ if (gimple_code (vec_stmt) == GIMPLE_PHI)
+ vec_oprnd = PHI_RESULT (vec_stmt);
+ else if (is_gimple_call (vec_stmt))
+ vec_oprnd = gimple_call_lhs (vec_stmt);
+ else
+ vec_oprnd = gimple_assign_lhs (vec_stmt);
+ return vec_oprnd;
+ }
+
+ /* Case 4: operand is defined by a loop header phi - reduction */
+ case vect_reduction_def:
+ case vect_double_reduction_def:
+ case vect_nested_cycle:
+ {
+ struct loop *loop;
+
+ gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
+ loop = (gimple_bb (def_stmt))->loop_father;
+
+ /* Get the def before the loop */
+ op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
+ return get_initial_def_for_reduction (stmt, op, scalar_def);
+ }
+
+ /* Case 5: operand is defined by loop-header phi - induction. */
+ case vect_induction_def:
+ {
+ gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
+
+ /* Get the def from the vectorized stmt. */
+ def_stmt_info = vinfo_for_stmt (def_stmt);
+ vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
+ if (gimple_code (vec_stmt) == GIMPLE_PHI)
+ vec_oprnd = PHI_RESULT (vec_stmt);
+ else
+ vec_oprnd = gimple_get_lhs (vec_stmt);
+ return vec_oprnd;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Function vect_get_vec_def_for_stmt_copy
+
+ Return a vector-def for an operand. This function is used when the
+ vectorized stmt to be created (by the caller to this function) is a "copy"
+ created in case the vectorized result cannot fit in one vector, and several
+ copies of the vector-stmt are required. In this case the vector-def is
+ retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
+ of the stmt that defines VEC_OPRND.
+ DT is the type of the vector def VEC_OPRND.
+
+ Context:
+ In case the vectorization factor (VF) is bigger than the number
+ of elements that can fit in a vectype (nunits), we have to generate
+ more than one vector stmt to vectorize the scalar stmt. This situation
+ arises when there are multiple data-types operated upon in the loop; the
+ smallest data-type determines the VF, and as a result, when vectorizing
+ stmts operating on wider types we need to create 'VF/nunits' "copies" of the
+ vector stmt (each computing a vector of 'nunits' results, and together
+ computing 'VF' results in each iteration). This function is called when
+ vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
+ which VF=16 and nunits=4, so the number of copies required is 4):
+
+ scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
+
+ S1: x = load VS1.0: vx.0 = memref0 VS1.1
+ VS1.1: vx.1 = memref1 VS1.2
+ VS1.2: vx.2 = memref2 VS1.3
+ VS1.3: vx.3 = memref3
+
+ S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
+ VSnew.1: vz1 = vx.1 + ... VSnew.2
+ VSnew.2: vz2 = vx.2 + ... VSnew.3
+ VSnew.3: vz3 = vx.3 + ...
+
+ The vectorization of S1 is explained in vectorizable_load.
+ The vectorization of S2:
+ To create the first vector-stmt out of the 4 copies - VSnew.0 -
+ the function 'vect_get_vec_def_for_operand' is called to
+ get the relevant vector-def for each operand of S2. For operand x it
+ returns the vector-def 'vx.0'.
+
+ To create the remaining copies of the vector-stmt (VSnew.j), this
+ function is called to get the relevant vector-def for each operand. It is
+ obtained from the respective VS1.j stmt, which is recorded in the
+ STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
+
+ For example, to obtain the vector-def 'vx.1' in order to create the
+ vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
+ Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
+ STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
+ and return its def ('vx.1').
+ Overall, to create the above sequence this function will be called 3 times:
+ vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
+ vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
+ vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
+
+tree
+vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
+{
+ gimple vec_stmt_for_operand;
+ stmt_vec_info def_stmt_info;
+
+ /* Do nothing; can reuse same def. */
+ if (dt == vect_external_def || dt == vect_constant_def )
+ return vec_oprnd;
+
+ vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
+ def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
+ gcc_assert (def_stmt_info);
+ vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
+ gcc_assert (vec_stmt_for_operand);
+ vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
+ if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
+ vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
+ else
+ vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
+ return vec_oprnd;
+}
+
+
+/* Get vectorized definitions for the operands to create a copy of an original
+ stmt. See vect_get_vec_def_for_stmt_copy () for details. */
+
+static void
+vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
+ vec<tree> *vec_oprnds0,
+ vec<tree> *vec_oprnds1)
+{
+ tree vec_oprnd = vec_oprnds0->pop ();
+
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
+ vec_oprnds0->quick_push (vec_oprnd);
+
+ if (vec_oprnds1 && vec_oprnds1->length ())
+ {
+ vec_oprnd = vec_oprnds1->pop ();
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
+ vec_oprnds1->quick_push (vec_oprnd);
+ }
+}
+
+
+/* Get vectorized definitions for OP0 and OP1.
+ REDUC_INDEX is the index of reduction operand in case of reduction,
+ and -1 otherwise. */
+
+void
+vect_get_vec_defs (tree op0, tree op1, gimple stmt,
+ vec<tree> *vec_oprnds0,
+ vec<tree> *vec_oprnds1,
+ slp_tree slp_node, int reduc_index)
+{
+ if (slp_node)
+ {
+ int nops = (op1 == NULL_TREE) ? 1 : 2;
+ auto_vec<tree> ops (nops);
+ auto_vec<vec<tree> > vec_defs (nops);
+
+ ops.quick_push (op0);
+ if (op1)
+ ops.quick_push (op1);
+
+ vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index);
+
+ *vec_oprnds0 = vec_defs[0];
+ if (op1)
+ *vec_oprnds1 = vec_defs[1];
+ }
+ else
+ {
+ tree vec_oprnd;
+
+ vec_oprnds0->create (1);
+ vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
+ vec_oprnds0->quick_push (vec_oprnd);
+
+ if (op1)
+ {
+ vec_oprnds1->create (1);
+ vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
+ vec_oprnds1->quick_push (vec_oprnd);
+ }
+ }
+}
+
+
+/* Function vect_finish_stmt_generation.
+
+ Insert a new stmt. */
+
+void
+vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
+ gimple_stmt_iterator *gsi)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+
+ gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
+
+ if (!gsi_end_p (*gsi)
+ && gimple_has_mem_ops (vec_stmt))
+ {
+ gimple at_stmt = gsi_stmt (*gsi);
+ tree vuse = gimple_vuse (at_stmt);
+ if (vuse && TREE_CODE (vuse) == SSA_NAME)
+ {
+ tree vdef = gimple_vdef (at_stmt);
+ gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
+ /* If we have an SSA vuse and insert a store, update virtual
+ SSA form to avoid triggering the renamer. Do so only
+ if we can easily see all uses - which is what almost always
+ happens with the way vectorized stmts are inserted. */
+ if ((vdef && TREE_CODE (vdef) == SSA_NAME)
+ && ((is_gimple_assign (vec_stmt)
+ && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
+ || (is_gimple_call (vec_stmt)
+ && !(gimple_call_flags (vec_stmt)
+ & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
+ {
+ tree new_vdef = copy_ssa_name (vuse, vec_stmt);
+ gimple_set_vdef (vec_stmt, new_vdef);
+ SET_USE (gimple_vuse_op (at_stmt), new_vdef);
+ }
+ }
+ }
+ gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
+
+ set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
+ bb_vinfo));
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ gimple_set_location (vec_stmt, gimple_location (stmt));
+
+ /* While EH edges will generally prevent vectorization, stmt might
+ e.g. be in a must-not-throw region. Ensure newly created stmts
+ that could throw are part of the same region. */
+ int lp_nr = lookup_stmt_eh_lp (stmt);
+ if (lp_nr != 0 && stmt_could_throw_p (vec_stmt))
+ add_stmt_to_eh_lp (vec_stmt, lp_nr);
+}
+
+/* Checks if CALL can be vectorized in type VECTYPE. Returns
+ a function declaration if the target has a vectorized version
+ of the function, or NULL_TREE if the function cannot be vectorized. */
+
+tree
+vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
+{
+ tree fndecl = gimple_call_fndecl (call);
+
+ /* We only handle functions that do not read or clobber memory -- i.e.
+ const or novops ones. */
+ if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
+ return NULL_TREE;
+
+ if (!fndecl
+ || TREE_CODE (fndecl) != FUNCTION_DECL
+ || !DECL_BUILT_IN (fndecl))
+ return NULL_TREE;
+
+ return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
+ vectype_in);
+}
+
+
+static tree permute_vec_elements (tree, tree, tree, gimple,
+ gimple_stmt_iterator *);
+
+
+/* Function vectorizable_mask_load_store.
+
+ Check if STMT performs a conditional load or store that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at GSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_mask_load_store (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest = NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ stmt_vec_info prev_stmt_info;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree elem_type;
+ gimple new_stmt;
+ tree dummy;
+ tree dataref_ptr = NULL_TREE;
+ gimple ptr_incr;
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int i, j;
+ bool inv_p;
+ tree gather_base = NULL_TREE, gather_off = NULL_TREE;
+ tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
+ int gather_scale = 1;
+ enum vect_def_type gather_dt = vect_unknown_def_type;
+ bool is_store;
+ tree mask;
+ gimple def_stmt;
+ tree def;
+ enum vect_def_type dt;
+
+ if (slp_node != NULL)
+ return false;
+
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+ gcc_assert (ncopies >= 1);
+
+ is_store = gimple_call_internal_fn (stmt) == IFN_MASK_STORE;
+ mask = gimple_call_arg (stmt, 2);
+ if (TYPE_PRECISION (TREE_TYPE (mask))
+ != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype))))
+ return false;
+
+ /* FORNOW. This restriction should be relaxed. */
+ if (nested_in_vect_loop && ncopies > 1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "multiple types in nested loop.");
+ return false;
+ }
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ elem_type = TREE_TYPE (vectype);
+
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ return false;
+
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ return false;
+
+ if (STMT_VINFO_GATHER_P (stmt_info))
+ {
+ gimple def_stmt;
+ tree def;
+ gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
+ &gather_off, &gather_scale);
+ gcc_assert (gather_decl);
+ if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, NULL,
+ &def_stmt, &def, &gather_dt,
+ &gather_off_vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "gather index use not simple.");
+ return false;
+ }
+
+ tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
+ tree masktype
+ = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
+ if (TREE_CODE (masktype) == INTEGER_TYPE)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "masked gather with integer mask not supported.");
+ return false;
+ }
+ }
+ else if (tree_int_cst_compare (nested_in_vect_loop
+ ? STMT_VINFO_DR_STEP (stmt_info)
+ : DR_STEP (dr), size_zero_node) <= 0)
+ return false;
+ else if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ || !can_vec_mask_load_store_p (TYPE_MODE (vectype), !is_store))
+ return false;
+
+ if (TREE_CODE (mask) != SSA_NAME)
+ return false;
+
+ if (!vect_is_simple_use (mask, stmt, loop_vinfo, NULL,
+ &def_stmt, &def, &dt))
+ return false;
+
+ if (is_store)
+ {
+ tree rhs = gimple_call_arg (stmt, 3);
+ if (!vect_is_simple_use (rhs, stmt, loop_vinfo, NULL,
+ &def_stmt, &def, &dt))
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
+ if (is_store)
+ vect_model_store_cost (stmt_info, ncopies, false, dt,
+ NULL, NULL, NULL);
+ else
+ vect_model_load_cost (stmt_info, ncopies, false, NULL, NULL, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (STMT_VINFO_GATHER_P (stmt_info))
+ {
+ tree vec_oprnd0 = NULL_TREE, op;
+ tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
+ tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
+ tree ptr, vec_mask = NULL_TREE, mask_op = NULL_TREE, var, scale;
+ tree perm_mask = NULL_TREE, prev_res = NULL_TREE;
+ tree mask_perm_mask = NULL_TREE;
+ edge pe = loop_preheader_edge (loop);
+ gimple_seq seq;
+ basic_block new_bb;
+ enum { NARROW, NONE, WIDEN } modifier;
+ int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
+
+ rettype = TREE_TYPE (TREE_TYPE (gather_decl));
+ srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ scaletype = TREE_VALUE (arglist);
+ gcc_checking_assert (types_compatible_p (srctype, rettype)
+ && types_compatible_p (srctype, masktype));
+
+ if (nunits == gather_off_nunits)
+ modifier = NONE;
+ else if (nunits == gather_off_nunits / 2)
+ {
+ unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
+ modifier = WIDEN;
+
+ for (i = 0; i < gather_off_nunits; ++i)
+ sel[i] = i | nunits;
+
+ perm_mask = vect_gen_perm_mask (gather_off_vectype, sel);
+ gcc_assert (perm_mask != NULL_TREE);
+ }
+ else if (nunits == gather_off_nunits * 2)
+ {
+ unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
+ modifier = NARROW;
+
+ for (i = 0; i < nunits; ++i)
+ sel[i] = i < gather_off_nunits
+ ? i : i + nunits - gather_off_nunits;
+
+ perm_mask = vect_gen_perm_mask (vectype, sel);
+ gcc_assert (perm_mask != NULL_TREE);
+ ncopies *= 2;
+ for (i = 0; i < nunits; ++i)
+ sel[i] = i | gather_off_nunits;
+ mask_perm_mask = vect_gen_perm_mask (masktype, sel);
+ gcc_assert (mask_perm_mask != NULL_TREE);
+ }
+ else
+ gcc_unreachable ();
+
+ vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
+
+ ptr = fold_convert (ptrtype, gather_base);
+ if (!is_gimple_min_invariant (ptr))
+ {
+ ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
+ gcc_assert (!new_bb);
+ }
+
+ scale = build_int_cst (scaletype, gather_scale);
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; ++j)
+ {
+ if (modifier == WIDEN && (j & 1))
+ op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
+ perm_mask, stmt, gsi);
+ else if (j == 0)
+ op = vec_oprnd0
+ = vect_get_vec_def_for_operand (gather_off, stmt, NULL);
+ else
+ op = vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
+
+ if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
+ {
+ gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
+ == TYPE_VECTOR_SUBPARTS (idxtype));
+ var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
+ var = make_ssa_name (var, NULL);
+ op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
+ new_stmt
+ = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var,
+ op, NULL_TREE);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ op = var;
+ }
+
+ if (mask_perm_mask && (j & 1))
+ mask_op = permute_vec_elements (mask_op, mask_op,
+ mask_perm_mask, stmt, gsi);
+ else
+ {
+ if (j == 0)
+ vec_mask = vect_get_vec_def_for_operand (mask, stmt, NULL);
+ else
+ {
+ vect_is_simple_use (vec_mask, NULL, loop_vinfo, NULL,
+ &def_stmt, &def, &dt);
+ vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
+ }
+
+ mask_op = vec_mask;
+ if (!useless_type_conversion_p (masktype, TREE_TYPE (vec_mask)))
+ {
+ gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask_op))
+ == TYPE_VECTOR_SUBPARTS (masktype));
+ var = vect_get_new_vect_var (masktype, vect_simple_var,
+ NULL);
+ var = make_ssa_name (var, NULL);
+ mask_op = build1 (VIEW_CONVERT_EXPR, masktype, mask_op);
+ new_stmt
+ = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var,
+ mask_op, NULL_TREE);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ mask_op = var;
+ }
+ }
+
+ new_stmt
+ = gimple_build_call (gather_decl, 5, mask_op, ptr, op, mask_op,
+ scale);
+
+ if (!useless_type_conversion_p (vectype, rettype))
+ {
+ gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
+ == TYPE_VECTOR_SUBPARTS (rettype));
+ var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
+ op = make_ssa_name (var, new_stmt);
+ gimple_call_set_lhs (new_stmt, op);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ var = make_ssa_name (vec_dest, NULL);
+ op = build1 (VIEW_CONVERT_EXPR, vectype, op);
+ new_stmt
+ = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var, op,
+ NULL_TREE);
+ }
+ else
+ {
+ var = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, var);
+ }
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (modifier == NARROW)
+ {
+ if ((j & 1) == 0)
+ {
+ prev_res = var;
+ continue;
+ }
+ var = permute_vec_elements (prev_res, var,
+ perm_mask, stmt, gsi);
+ new_stmt = SSA_NAME_DEF_STMT (var);
+ }
+
+ if (prev_stmt_info == NULL)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
+ from the IL. */
+ tree lhs = gimple_call_lhs (stmt);
+ new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
+ set_vinfo_for_stmt (new_stmt, stmt_info);
+ set_vinfo_for_stmt (stmt, NULL);
+ STMT_VINFO_STMT (stmt_info) = new_stmt;
+ gsi_replace (gsi, new_stmt, true);
+ return true;
+ }
+ else if (is_store)
+ {
+ tree vec_rhs = NULL_TREE, vec_mask = NULL_TREE;
+ prev_stmt_info = NULL;
+ for (i = 0; i < ncopies; i++)
+ {
+ unsigned align, misalign;
+
+ if (i == 0)
+ {
+ tree rhs = gimple_call_arg (stmt, 3);
+ vec_rhs = vect_get_vec_def_for_operand (rhs, stmt, NULL);
+ vec_mask = vect_get_vec_def_for_operand (mask, stmt, NULL);
+ /* We should have catched mismatched types earlier. */
+ gcc_assert (useless_type_conversion_p (vectype,
+ TREE_TYPE (vec_rhs)));
+ dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
+ NULL_TREE, &dummy, gsi,
+ &ptr_incr, false, &inv_p);
+ gcc_assert (!inv_p);
+ }
+ else
+ {
+ vect_is_simple_use (vec_rhs, NULL, loop_vinfo, NULL, &def_stmt,
+ &def, &dt);
+ vec_rhs = vect_get_vec_def_for_stmt_copy (dt, vec_rhs);
+ vect_is_simple_use (vec_mask, NULL, loop_vinfo, NULL, &def_stmt,
+ &def, &dt);
+ vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
+ TYPE_SIZE_UNIT (vectype));
+ }
+
+ align = TYPE_ALIGN_UNIT (vectype);
+ if (aligned_access_p (dr))
+ misalign = 0;
+ else if (DR_MISALIGNMENT (dr) == -1)
+ {
+ align = TYPE_ALIGN_UNIT (elem_type);
+ misalign = 0;
+ }
+ else
+ misalign = DR_MISALIGNMENT (dr);
+ set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
+ misalign);
+ new_stmt
+ = gimple_build_call_internal (IFN_MASK_STORE, 4, dataref_ptr,
+ gimple_call_arg (stmt, 1),
+ vec_mask, vec_rhs);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (i == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+ else
+ {
+ tree vec_mask = NULL_TREE;
+ prev_stmt_info = NULL;
+ vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
+ for (i = 0; i < ncopies; i++)
+ {
+ unsigned align, misalign;
+
+ if (i == 0)
+ {
+ vec_mask = vect_get_vec_def_for_operand (mask, stmt, NULL);
+ dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
+ NULL_TREE, &dummy, gsi,
+ &ptr_incr, false, &inv_p);
+ gcc_assert (!inv_p);
+ }
+ else
+ {
+ vect_is_simple_use (vec_mask, NULL, loop_vinfo, NULL, &def_stmt,
+ &def, &dt);
+ vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
+ TYPE_SIZE_UNIT (vectype));
+ }
+
+ align = TYPE_ALIGN_UNIT (vectype);
+ if (aligned_access_p (dr))
+ misalign = 0;
+ else if (DR_MISALIGNMENT (dr) == -1)
+ {
+ align = TYPE_ALIGN_UNIT (elem_type);
+ misalign = 0;
+ }
+ else
+ misalign = DR_MISALIGNMENT (dr);
+ set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
+ misalign);
+ new_stmt
+ = gimple_build_call_internal (IFN_MASK_LOAD, 3, dataref_ptr,
+ gimple_call_arg (stmt, 1),
+ vec_mask);
+ gimple_call_set_lhs (new_stmt, make_ssa_name (vec_dest, NULL));
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (i == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+
+ if (!is_store)
+ {
+ /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
+ from the IL. */
+ tree lhs = gimple_call_lhs (stmt);
+ new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
+ set_vinfo_for_stmt (new_stmt, stmt_info);
+ set_vinfo_for_stmt (stmt, NULL);
+ STMT_VINFO_STMT (stmt_info) = new_stmt;
+ gsi_replace (gsi, new_stmt, true);
+ }
+
+ return true;
+}
+
+
+/* Function vectorizable_call.
+
+ Check if STMT performs a function call that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
+ slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op, type;
+ tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
+ tree vectype_out, vectype_in;
+ int nunits_in;
+ int nunits_out;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ tree fndecl, new_temp, def, rhs_type;
+ gimple def_stmt;
+ enum vect_def_type dt[3]
+ = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ int ncopies, j;
+ vec<tree> vargs = vNULL;
+ enum { NARROW, NONE, WIDEN } modifier;
+ size_t i, nargs;
+ tree lhs;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable call? */
+ if (!is_gimple_call (stmt))
+ return false;
+
+ if (gimple_call_internal_p (stmt)
+ && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
+ || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
+ return vectorizable_mask_load_store (stmt, gsi, vec_stmt,
+ slp_node);
+
+ if (gimple_call_lhs (stmt) == NULL_TREE
+ || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ gcc_checking_assert (!stmt_can_throw_internal (stmt));
+
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Process function arguments. */
+ rhs_type = NULL_TREE;
+ vectype_in = NULL_TREE;
+ nargs = gimple_call_num_args (stmt);
+
+ /* Bail out if the function has more than three arguments, we do not have
+ interesting builtin functions to vectorize with more than two arguments
+ except for fma. No arguments is also not good. */
+ if (nargs == 0 || nargs > 3)
+ return false;
+
+ /* Ignore the argument of IFN_GOMP_SIMD_LANE, it is magic. */
+ if (gimple_call_internal_p (stmt)
+ && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
+ {
+ nargs = 0;
+ rhs_type = unsigned_type_node;
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ tree opvectype;
+
+ op = gimple_call_arg (stmt, i);
+
+ /* We can only handle calls with arguments of the same type. */
+ if (rhs_type
+ && !types_compatible_p (rhs_type, TREE_TYPE (op)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "argument types differ.\n");
+ return false;
+ }
+ if (!rhs_type)
+ rhs_type = TREE_TYPE (op);
+
+ if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[i], &opvectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+
+ if (!vectype_in)
+ vectype_in = opvectype;
+ else if (opvectype
+ && opvectype != vectype_in)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "argument vector types differ.\n");
+ return false;
+ }
+ }
+ /* If all arguments are external or constant defs use a vector type with
+ the same size as the output vector type. */
+ if (!vectype_in)
+ vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype_in);
+ if (!vectype_in)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no vectype for scalar type ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ return false;
+ }
+
+ /* FORNOW */
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ if (nunits_in == nunits_out / 2)
+ modifier = NARROW;
+ else if (nunits_out == nunits_in)
+ modifier = NONE;
+ else if (nunits_out == nunits_in / 2)
+ modifier = WIDEN;
+ else
+ return false;
+
+ /* For now, we only vectorize functions if a target specific builtin
+ is available. TODO -- in some cases, it might be profitable to
+ insert the calls for pieces of the vector, in order to be able
+ to vectorize other operations in the loop. */
+ fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
+ if (fndecl == NULL_TREE)
+ {
+ if (gimple_call_internal_p (stmt)
+ && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
+ && !slp_node
+ && loop_vinfo
+ && LOOP_VINFO_LOOP (loop_vinfo)->simduid
+ && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
+ && LOOP_VINFO_LOOP (loop_vinfo)->simduid
+ == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
+ {
+ /* We can handle IFN_GOMP_SIMD_LANE by returning a
+ { 0, 1, 2, ... vf - 1 } vector. */
+ gcc_assert (nargs == 0);
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "function is not vectorizable.\n");
+ return false;
+ }
+ }
+
+ gcc_assert (!gimple_vuse (stmt));
+
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else if (modifier == NARROW)
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ /* Sanity check: make sure that at least one copy of the vectorized stmt
+ needs to be generated. */
+ gcc_assert (ncopies >= 1);
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ==="
+ "\n");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
+
+ /* Handle def. */
+ scalar_dest = gimple_call_lhs (stmt);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
+
+ prev_stmt_info = NULL;
+ switch (modifier)
+ {
+ case NONE:
+ for (j = 0; j < ncopies; ++j)
+ {
+ /* Build argument list for the vectorized call. */
+ if (j == 0)
+ vargs.create (nargs);
+ else
+ vargs.truncate (0);
+
+ if (slp_node)
+ {
+ auto_vec<vec<tree> > vec_defs (nargs);
+ vec<tree> vec_oprnds0;
+
+ for (i = 0; i < nargs; i++)
+ vargs.quick_push (gimple_call_arg (stmt, i));
+ vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
+ vec_oprnds0 = vec_defs[0];
+
+ /* Arguments are ready. Create the new vector stmt. */
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
+ {
+ size_t k;
+ for (k = 0; k < nargs; k++)
+ {
+ vec<tree> vec_oprndsk = vec_defs[k];
+ vargs[k] = vec_oprndsk[i];
+ }
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ vec<tree> vec_oprndsi = vec_defs[i];
+ vec_oprndsi.release ();
+ }
+ continue;
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ op = gimple_call_arg (stmt, i);
+ if (j == 0)
+ vec_oprnd0
+ = vect_get_vec_def_for_operand (op, stmt, NULL);
+ else
+ {
+ vec_oprnd0 = gimple_call_arg (new_stmt, i);
+ vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
+ }
+
+ vargs.quick_push (vec_oprnd0);
+ }
+
+ if (gimple_call_internal_p (stmt)
+ && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
+ {
+ tree *v = XALLOCAVEC (tree, nunits_out);
+ int k;
+ for (k = 0; k < nunits_out; ++k)
+ v[k] = build_int_cst (unsigned_type_node, j * nunits_out + k);
+ tree cst = build_vector (vectype_out, v);
+ tree new_var
+ = vect_get_new_vect_var (vectype_out, vect_simple_var, "cst_");
+ gimple init_stmt = gimple_build_assign (new_var, cst);
+ new_temp = make_ssa_name (new_var, init_stmt);
+ gimple_assign_set_lhs (init_stmt, new_temp);
+ vect_init_vector_1 (stmt, init_stmt, NULL);
+ new_temp = make_ssa_name (vec_dest, NULL);
+ new_stmt = gimple_build_assign (new_temp,
+ gimple_assign_lhs (init_stmt));
+ }
+ else
+ {
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ break;
+
+ case NARROW:
+ for (j = 0; j < ncopies; ++j)
+ {
+ /* Build argument list for the vectorized call. */
+ if (j == 0)
+ vargs.create (nargs * 2);
+ else
+ vargs.truncate (0);
+
+ if (slp_node)
+ {
+ auto_vec<vec<tree> > vec_defs (nargs);
+ vec<tree> vec_oprnds0;
+
+ for (i = 0; i < nargs; i++)
+ vargs.quick_push (gimple_call_arg (stmt, i));
+ vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
+ vec_oprnds0 = vec_defs[0];
+
+ /* Arguments are ready. Create the new vector stmt. */
+ for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
+ {
+ size_t k;
+ vargs.truncate (0);
+ for (k = 0; k < nargs; k++)
+ {
+ vec<tree> vec_oprndsk = vec_defs[k];
+ vargs.quick_push (vec_oprndsk[i]);
+ vargs.quick_push (vec_oprndsk[i + 1]);
+ }
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ vec<tree> vec_oprndsi = vec_defs[i];
+ vec_oprndsi.release ();
+ }
+ continue;
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ op = gimple_call_arg (stmt, i);
+ if (j == 0)
+ {
+ vec_oprnd0
+ = vect_get_vec_def_for_operand (op, stmt, NULL);
+ vec_oprnd1
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
+ }
+ else
+ {
+ vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
+ vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
+ vec_oprnd1
+ = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
+ }
+
+ vargs.quick_push (vec_oprnd0);
+ vargs.quick_push (vec_oprnd1);
+ }
+
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+
+ break;
+
+ case WIDEN:
+ /* No current target implements this case. */
+ return false;
+ }
+
+ vargs.release ();
+
+ /* The call in STMT might prevent it from being removed in dce.
+ We however cannot remove it here, due to the way the ssa name
+ it defines is mapped to the new definition. So just replace
+ rhs of the statement with something harmless. */
+
+ if (slp_node)
+ return true;
+
+ type = TREE_TYPE (scalar_dest);
+ if (is_pattern_stmt_p (stmt_info))
+ lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
+ else
+ lhs = gimple_call_lhs (stmt);
+ new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
+ set_vinfo_for_stmt (new_stmt, stmt_info);
+ set_vinfo_for_stmt (stmt, NULL);
+ STMT_VINFO_STMT (stmt_info) = new_stmt;
+ gsi_replace (gsi, new_stmt, false);
+
+ return true;
+}
+
+
+struct simd_call_arg_info
+{
+ tree vectype;
+ tree op;
+ enum vect_def_type dt;
+ HOST_WIDE_INT linear_step;
+ unsigned int align;
+};
+
+/* Function vectorizable_simd_clone_call.
+
+ Check if STMT performs a function call that can be vectorized
+ by calling a simd clone of the function.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_simd_clone_call (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op, type;
+ tree vec_oprnd0 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
+ tree vectype;
+ unsigned int nunits;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
+ tree fndecl, new_temp, def;
+ gimple def_stmt;
+ gimple new_stmt = NULL;
+ int ncopies, j;
+ vec<simd_call_arg_info> arginfo = vNULL;
+ vec<tree> vargs = vNULL;
+ size_t i, nargs;
+ tree lhs, rtype, ratype;
+ vec<constructor_elt, va_gc> *ret_ctor_elts;
+
+ /* Is STMT a vectorizable call? */
+ if (!is_gimple_call (stmt))
+ return false;
+
+ fndecl = gimple_call_fndecl (stmt);
+ if (fndecl == NULL_TREE)
+ return false;
+
+ struct cgraph_node *node = cgraph_get_node (fndecl);
+ if (node == NULL || node->simd_clones == NULL)
+ return false;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ if (gimple_call_lhs (stmt)
+ && TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ gcc_checking_assert (!stmt_can_throw_internal (stmt));
+
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ if (loop_vinfo && nested_in_vect_loop_p (loop, stmt))
+ return false;
+
+ /* FORNOW */
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ return false;
+
+ /* Process function arguments. */
+ nargs = gimple_call_num_args (stmt);
+
+ /* Bail out if the function has zero arguments. */
+ if (nargs == 0)
+ return false;
+
+ arginfo.create (nargs);
+
+ for (i = 0; i < nargs; i++)
+ {
+ simd_call_arg_info thisarginfo;
+ affine_iv iv;
+
+ thisarginfo.linear_step = 0;
+ thisarginfo.align = 0;
+ thisarginfo.op = NULL_TREE;
+
+ op = gimple_call_arg (stmt, i);
+ if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &thisarginfo.dt,
+ &thisarginfo.vectype)
+ || thisarginfo.dt == vect_uninitialized_def)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ arginfo.release ();
+ return false;
+ }
+
+ if (thisarginfo.dt == vect_constant_def
+ || thisarginfo.dt == vect_external_def)
+ gcc_assert (thisarginfo.vectype == NULL_TREE);
+ else
+ gcc_assert (thisarginfo.vectype != NULL_TREE);
+
+ if (thisarginfo.dt != vect_constant_def
+ && thisarginfo.dt != vect_external_def
+ && loop_vinfo
+ && TREE_CODE (op) == SSA_NAME
+ && simple_iv (loop, loop_containing_stmt (stmt), op, &iv, false)
+ && tree_fits_shwi_p (iv.step))
+ {
+ thisarginfo.linear_step = tree_to_shwi (iv.step);
+ thisarginfo.op = iv.base;
+ }
+ else if ((thisarginfo.dt == vect_constant_def
+ || thisarginfo.dt == vect_external_def)
+ && POINTER_TYPE_P (TREE_TYPE (op)))
+ thisarginfo.align = get_pointer_alignment (op) / BITS_PER_UNIT;
+
+ arginfo.quick_push (thisarginfo);
+ }
+
+ unsigned int badness = 0;
+ struct cgraph_node *bestn = NULL;
+ if (STMT_VINFO_SIMD_CLONE_FNDECL (stmt_info))
+ bestn = cgraph_get_node (STMT_VINFO_SIMD_CLONE_FNDECL (stmt_info));
+ else
+ for (struct cgraph_node *n = node->simd_clones; n != NULL;
+ n = n->simdclone->next_clone)
+ {
+ unsigned int this_badness = 0;
+ if (n->simdclone->simdlen
+ > (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ || n->simdclone->nargs != nargs)
+ continue;
+ if (n->simdclone->simdlen
+ < (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo))
+ this_badness += (exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
+ - exact_log2 (n->simdclone->simdlen)) * 1024;
+ if (n->simdclone->inbranch)
+ this_badness += 2048;
+ int target_badness = targetm.simd_clone.usable (n);
+ if (target_badness < 0)
+ continue;
+ this_badness += target_badness * 512;
+ /* FORNOW: Have to add code to add the mask argument. */
+ if (n->simdclone->inbranch)
+ continue;
+ for (i = 0; i < nargs; i++)
+ {
+ switch (n->simdclone->args[i].arg_type)
+ {
+ case SIMD_CLONE_ARG_TYPE_VECTOR:
+ if (!useless_type_conversion_p
+ (n->simdclone->args[i].orig_type,
+ TREE_TYPE (gimple_call_arg (stmt, i))))
+ i = -1;
+ else if (arginfo[i].dt == vect_constant_def
+ || arginfo[i].dt == vect_external_def
+ || arginfo[i].linear_step)
+ this_badness += 64;
+ break;
+ case SIMD_CLONE_ARG_TYPE_UNIFORM:
+ if (arginfo[i].dt != vect_constant_def
+ && arginfo[i].dt != vect_external_def)
+ i = -1;
+ break;
+ case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
+ if (arginfo[i].dt == vect_constant_def
+ || arginfo[i].dt == vect_external_def
+ || (arginfo[i].linear_step
+ != n->simdclone->args[i].linear_step))
+ i = -1;
+ break;
+ case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
+ /* FORNOW */
+ i = -1;
+ break;
+ case SIMD_CLONE_ARG_TYPE_MASK:
+ gcc_unreachable ();
+ }
+ if (i == (size_t) -1)
+ break;
+ if (n->simdclone->args[i].alignment > arginfo[i].align)
+ {
+ i = -1;
+ break;
+ }
+ if (arginfo[i].align)
+ this_badness += (exact_log2 (arginfo[i].align)
+ - exact_log2 (n->simdclone->args[i].alignment));
+ }
+ if (i == (size_t) -1)
+ continue;
+ if (bestn == NULL || this_badness < badness)
+ {
+ bestn = n;
+ badness = this_badness;
+ }
+ }
+
+ if (bestn == NULL)
+ {
+ arginfo.release ();
+ return false;
+ }
+
+ for (i = 0; i < nargs; i++)
+ if ((arginfo[i].dt == vect_constant_def
+ || arginfo[i].dt == vect_external_def)
+ && bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR)
+ {
+ arginfo[i].vectype
+ = get_vectype_for_scalar_type (TREE_TYPE (gimple_call_arg (stmt,
+ i)));
+ if (arginfo[i].vectype == NULL
+ || (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
+ > bestn->simdclone->simdlen))
+ {
+ arginfo.release ();
+ return false;
+ }
+ }
+
+ fndecl = bestn->decl;
+ nunits = bestn->simdclone->simdlen;
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ /* If the function isn't const, only allow it in simd loops where user
+ has asserted that at least nunits consecutive iterations can be
+ performed using SIMD instructions. */
+ if ((loop == NULL || (unsigned) loop->safelen < nunits)
+ && gimple_vuse (stmt))
+ {
+ arginfo.release ();
+ return false;
+ }
+
+ /* Sanity check: make sure that at least one copy of the vectorized stmt
+ needs to be generated. */
+ gcc_assert (ncopies >= 1);
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_SIMD_CLONE_FNDECL (stmt_info) = bestn->decl;
+ STMT_VINFO_TYPE (stmt_info) = call_simd_clone_vec_info_type;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vectorizable_simd_clone_call ===\n");
+/* vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); */
+ arginfo.release ();
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
+
+ /* Handle def. */
+ scalar_dest = gimple_call_lhs (stmt);
+ vec_dest = NULL_TREE;
+ rtype = NULL_TREE;
+ ratype = NULL_TREE;
+ if (scalar_dest)
+ {
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ rtype = TREE_TYPE (TREE_TYPE (fndecl));
+ if (TREE_CODE (rtype) == ARRAY_TYPE)
+ {
+ ratype = rtype;
+ rtype = TREE_TYPE (ratype);
+ }
+ }
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; ++j)
+ {
+ /* Build argument list for the vectorized call. */
+ if (j == 0)
+ vargs.create (nargs);
+ else
+ vargs.truncate (0);
+
+ for (i = 0; i < nargs; i++)
+ {
+ unsigned int k, l, m, o;
+ tree atype;
+ op = gimple_call_arg (stmt, i);
+ switch (bestn->simdclone->args[i].arg_type)
+ {
+ case SIMD_CLONE_ARG_TYPE_VECTOR:
+ atype = bestn->simdclone->args[i].vector_type;
+ o = nunits / TYPE_VECTOR_SUBPARTS (atype);
+ for (m = j * o; m < (j + 1) * o; m++)
+ {
+ if (TYPE_VECTOR_SUBPARTS (atype)
+ < TYPE_VECTOR_SUBPARTS (arginfo[i].vectype))
+ {
+ unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (atype));
+ k = (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
+ / TYPE_VECTOR_SUBPARTS (atype));
+ gcc_assert ((k & (k - 1)) == 0);
+ if (m == 0)
+ vec_oprnd0
+ = vect_get_vec_def_for_operand (op, stmt, NULL);
+ else
+ {
+ vec_oprnd0 = arginfo[i].op;
+ if ((m & (k - 1)) == 0)
+ vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
+ vec_oprnd0);
+ }
+ arginfo[i].op = vec_oprnd0;
+ vec_oprnd0
+ = build3 (BIT_FIELD_REF, atype, vec_oprnd0,
+ size_int (prec),
+ bitsize_int ((m & (k - 1)) * prec));
+ new_stmt
+ = gimple_build_assign (make_ssa_name (atype, NULL),
+ vec_oprnd0);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ vargs.safe_push (gimple_assign_lhs (new_stmt));
+ }
+ else
+ {
+ k = (TYPE_VECTOR_SUBPARTS (atype)
+ / TYPE_VECTOR_SUBPARTS (arginfo[i].vectype));
+ gcc_assert ((k & (k - 1)) == 0);
+ vec<constructor_elt, va_gc> *ctor_elts;
+ if (k != 1)
+ vec_alloc (ctor_elts, k);
+ else
+ ctor_elts = NULL;
+ for (l = 0; l < k; l++)
+ {
+ if (m == 0 && l == 0)
+ vec_oprnd0
+ = vect_get_vec_def_for_operand (op, stmt, NULL);
+ else
+ vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
+ arginfo[i].op);
+ arginfo[i].op = vec_oprnd0;
+ if (k == 1)
+ break;
+ CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE,
+ vec_oprnd0);
+ }
+ if (k == 1)
+ vargs.safe_push (vec_oprnd0);
+ else
+ {
+ vec_oprnd0 = build_constructor (atype, ctor_elts);
+ new_stmt
+ = gimple_build_assign (make_ssa_name (atype, NULL),
+ vec_oprnd0);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ vargs.safe_push (gimple_assign_lhs (new_stmt));
+ }
+ }
+ }
+ break;
+ case SIMD_CLONE_ARG_TYPE_UNIFORM:
+ vargs.safe_push (op);
+ break;
+ case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
+ if (j == 0)
+ {
+ gimple_seq stmts;
+ arginfo[i].op
+ = force_gimple_operand (arginfo[i].op, &stmts, true,
+ NULL_TREE);
+ if (stmts != NULL)
+ {
+ basic_block new_bb;
+ edge pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
+ gcc_assert (!new_bb);
+ }
+ tree phi_res = copy_ssa_name (op, NULL);
+ gimple new_phi = create_phi_node (phi_res, loop->header);
+ set_vinfo_for_stmt (new_phi,
+ new_stmt_vec_info (new_phi, loop_vinfo,
+ NULL));
+ add_phi_arg (new_phi, arginfo[i].op,
+ loop_preheader_edge (loop), UNKNOWN_LOCATION);
+ enum tree_code code
+ = POINTER_TYPE_P (TREE_TYPE (op))
+ ? POINTER_PLUS_EXPR : PLUS_EXPR;
+ tree type = POINTER_TYPE_P (TREE_TYPE (op))
+ ? sizetype : TREE_TYPE (op);
+ double_int cst
+ = double_int::from_shwi
+ (bestn->simdclone->args[i].linear_step);
+ cst *= double_int::from_uhwi (ncopies * nunits);
+ tree tcst = double_int_to_tree (type, cst);
+ tree phi_arg = copy_ssa_name (op, NULL);
+ new_stmt = gimple_build_assign_with_ops (code, phi_arg,
+ phi_res, tcst);
+ gimple_stmt_iterator si = gsi_after_labels (loop->header);
+ gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
+ set_vinfo_for_stmt (new_stmt,
+ new_stmt_vec_info (new_stmt, loop_vinfo,
+ NULL));
+ add_phi_arg (new_phi, phi_arg, loop_latch_edge (loop),
+ UNKNOWN_LOCATION);
+ arginfo[i].op = phi_res;
+ vargs.safe_push (phi_res);
+ }
+ else
+ {
+ enum tree_code code
+ = POINTER_TYPE_P (TREE_TYPE (op))
+ ? POINTER_PLUS_EXPR : PLUS_EXPR;
+ tree type = POINTER_TYPE_P (TREE_TYPE (op))
+ ? sizetype : TREE_TYPE (op);
+ double_int cst
+ = double_int::from_shwi
+ (bestn->simdclone->args[i].linear_step);
+ cst *= double_int::from_uhwi (j * nunits);
+ tree tcst = double_int_to_tree (type, cst);
+ new_temp = make_ssa_name (TREE_TYPE (op), NULL);
+ new_stmt
+ = gimple_build_assign_with_ops (code, new_temp,
+ arginfo[i].op, tcst);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ vargs.safe_push (new_temp);
+ }
+ break;
+ case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ new_stmt = gimple_build_call_vec (fndecl, vargs);
+ if (vec_dest)
+ {
+ gcc_assert (ratype || TYPE_VECTOR_SUBPARTS (rtype) == nunits);
+ if (ratype)
+ new_temp = create_tmp_var (ratype, NULL);
+ else if (TYPE_VECTOR_SUBPARTS (vectype)
+ == TYPE_VECTOR_SUBPARTS (rtype))
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ else
+ new_temp = make_ssa_name (rtype, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (vec_dest)
+ {
+ if (TYPE_VECTOR_SUBPARTS (vectype) < nunits)
+ {
+ unsigned int k, l;
+ unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (vectype));
+ k = nunits / TYPE_VECTOR_SUBPARTS (vectype);
+ gcc_assert ((k & (k - 1)) == 0);
+ for (l = 0; l < k; l++)
+ {
+ tree t;
+ if (ratype)
+ {
+ t = build_fold_addr_expr (new_temp);
+ t = build2 (MEM_REF, vectype, t,
+ build_int_cst (TREE_TYPE (t),
+ l * prec / BITS_PER_UNIT));
+ }
+ else
+ t = build3 (BIT_FIELD_REF, vectype, new_temp,
+ size_int (prec), bitsize_int (l * prec));
+ new_stmt
+ = gimple_build_assign (make_ssa_name (vectype, NULL), t);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (j == 0 && l == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ if (ratype)
+ {
+ tree clobber = build_constructor (ratype, NULL);
+ TREE_THIS_VOLATILE (clobber) = 1;
+ new_stmt = gimple_build_assign (new_temp, clobber);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ }
+ continue;
+ }
+ else if (TYPE_VECTOR_SUBPARTS (vectype) > nunits)
+ {
+ unsigned int k = (TYPE_VECTOR_SUBPARTS (vectype)
+ / TYPE_VECTOR_SUBPARTS (rtype));
+ gcc_assert ((k & (k - 1)) == 0);
+ if ((j & (k - 1)) == 0)
+ vec_alloc (ret_ctor_elts, k);
+ if (ratype)
+ {
+ unsigned int m, o = nunits / TYPE_VECTOR_SUBPARTS (rtype);
+ for (m = 0; m < o; m++)
+ {
+ tree tem = build4 (ARRAY_REF, rtype, new_temp,
+ size_int (m), NULL_TREE, NULL_TREE);
+ new_stmt
+ = gimple_build_assign (make_ssa_name (rtype, NULL),
+ tem);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE,
+ gimple_assign_lhs (new_stmt));
+ }
+ tree clobber = build_constructor (ratype, NULL);
+ TREE_THIS_VOLATILE (clobber) = 1;
+ new_stmt = gimple_build_assign (new_temp, clobber);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ }
+ else
+ CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, new_temp);
+ if ((j & (k - 1)) != k - 1)
+ continue;
+ vec_oprnd0 = build_constructor (vectype, ret_ctor_elts);
+ new_stmt
+ = gimple_build_assign (make_ssa_name (vec_dest, NULL),
+ vec_oprnd0);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if ((unsigned) j == k - 1)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ continue;
+ }
+ else if (ratype)
+ {
+ tree t = build_fold_addr_expr (new_temp);
+ t = build2 (MEM_REF, vectype, t,
+ build_int_cst (TREE_TYPE (t), 0));
+ new_stmt
+ = gimple_build_assign (make_ssa_name (vec_dest, NULL), t);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ tree clobber = build_constructor (ratype, NULL);
+ TREE_THIS_VOLATILE (clobber) = 1;
+ vect_finish_stmt_generation (stmt,
+ gimple_build_assign (new_temp,
+ clobber), gsi);
+ }
+ }
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ vargs.release ();
+
+ /* The call in STMT might prevent it from being removed in dce.
+ We however cannot remove it here, due to the way the ssa name
+ it defines is mapped to the new definition. So just replace
+ rhs of the statement with something harmless. */
+
+ if (slp_node)
+ return true;
+
+ if (scalar_dest)
+ {
+ type = TREE_TYPE (scalar_dest);
+ if (is_pattern_stmt_p (stmt_info))
+ lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
+ else
+ lhs = gimple_call_lhs (stmt);
+ new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
+ }
+ else
+ new_stmt = gimple_build_nop ();
+ set_vinfo_for_stmt (new_stmt, stmt_info);
+ set_vinfo_for_stmt (stmt, NULL);
+ STMT_VINFO_STMT (stmt_info) = new_stmt;
+ gsi_replace (gsi, new_stmt, false);
+ unlink_stmt_vdef (stmt);
+
+ return true;
+}
+
+
+/* Function vect_gen_widened_results_half
+
+ Create a vector stmt whose code, type, number of arguments, and result
+ variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
+ VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
+ In the case that CODE is a CALL_EXPR, this means that a call to DECL
+ needs to be created (DECL is a function-decl of a target-builtin).
+ STMT is the original scalar stmt that we are vectorizing. */
+
+static gimple
+vect_gen_widened_results_half (enum tree_code code,
+ tree decl,
+ tree vec_oprnd0, tree vec_oprnd1, int op_type,
+ tree vec_dest, gimple_stmt_iterator *gsi,
+ gimple stmt)
+{
+ gimple new_stmt;
+ tree new_temp;
+
+ /* Generate half of the widened result: */
+ if (code == CALL_EXPR)
+ {
+ /* Target specific support */
+ if (op_type == binary_op)
+ new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
+ else
+ new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ else
+ {
+ /* Generic support */
+ gcc_assert (op_type == TREE_CODE_LENGTH (code));
+ if (op_type != binary_op)
+ vec_oprnd1 = NULL;
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
+ vec_oprnd1);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ }
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ return new_stmt;
+}
+
+
+/* Get vectorized definitions for loop-based vectorization. For the first
+ operand we call vect_get_vec_def_for_operand() (with OPRND containing
+ scalar operand), and for the rest we get a copy with
+ vect_get_vec_def_for_stmt_copy() using the previous vector definition
+ (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
+ The vectors are collected into VEC_OPRNDS. */
+
+static void
+vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
+ vec<tree> *vec_oprnds, int multi_step_cvt)
+{
+ tree vec_oprnd;
+
+ /* Get first vector operand. */
+ /* All the vector operands except the very first one (that is scalar oprnd)
+ are stmt copies. */
+ if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
+ vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
+ else
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
+
+ vec_oprnds->quick_push (vec_oprnd);
+
+ /* Get second vector operand. */
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
+ vec_oprnds->quick_push (vec_oprnd);
+
+ *oprnd = vec_oprnd;
+
+ /* For conversion in multiple steps, continue to get operands
+ recursively. */
+ if (multi_step_cvt)
+ vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
+}
+
+
+/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
+ For multi-step conversions store the resulting vectors and call the function
+ recursively. */
+
+static void
+vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
+ int multi_step_cvt, gimple stmt,
+ vec<tree> vec_dsts,
+ gimple_stmt_iterator *gsi,
+ slp_tree slp_node, enum tree_code code,
+ stmt_vec_info *prev_stmt_info)
+{
+ unsigned int i;
+ tree vop0, vop1, new_tmp, vec_dest;
+ gimple new_stmt;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ vec_dest = vec_dsts.pop ();
+
+ for (i = 0; i < vec_oprnds->length (); i += 2)
+ {
+ /* Create demotion operation. */
+ vop0 = (*vec_oprnds)[i];
+ vop1 = (*vec_oprnds)[i + 1];
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
+ new_tmp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_tmp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (multi_step_cvt)
+ /* Store the resulting vector for next recursive call. */
+ (*vec_oprnds)[i/2] = new_tmp;
+ else
+ {
+ /* This is the last step of the conversion sequence. Store the
+ vectors in SLP_NODE or in vector info of the scalar statement
+ (or in STMT_VINFO_RELATED_STMT chain). */
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ else
+ {
+ if (!*prev_stmt_info)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
+
+ *prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+ }
+
+ /* For multi-step demotion operations we first generate demotion operations
+ from the source type to the intermediate types, and then combine the
+ results (stored in VEC_OPRNDS) in demotion operation to the destination
+ type. */
+ if (multi_step_cvt)
+ {
+ /* At each level of recursion we have half of the operands we had at the
+ previous level. */
+ vec_oprnds->truncate ((i+1)/2);
+ vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
+ stmt, vec_dsts, gsi, slp_node,
+ VEC_PACK_TRUNC_EXPR,
+ prev_stmt_info);
+ }
+
+ vec_dsts.quick_push (vec_dest);
+}
+
+
+/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
+ and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
+ the resulting vectors and call the function recursively. */
+
+static void
+vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
+ vec<tree> *vec_oprnds1,
+ gimple stmt, tree vec_dest,
+ gimple_stmt_iterator *gsi,
+ enum tree_code code1,
+ enum tree_code code2, tree decl1,
+ tree decl2, int op_type)
+{
+ int i;
+ tree vop0, vop1, new_tmp1, new_tmp2;
+ gimple new_stmt1, new_stmt2;
+ vec<tree> vec_tmp = vNULL;
+
+ vec_tmp.create (vec_oprnds0->length () * 2);
+ FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
+ {
+ if (op_type == binary_op)
+ vop1 = (*vec_oprnds1)[i];
+ else
+ vop1 = NULL_TREE;
+
+ /* Generate the two halves of promotion operation. */
+ new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
+ op_type, vec_dest, gsi, stmt);
+ new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
+ op_type, vec_dest, gsi, stmt);
+ if (is_gimple_call (new_stmt1))
+ {
+ new_tmp1 = gimple_call_lhs (new_stmt1);
+ new_tmp2 = gimple_call_lhs (new_stmt2);
+ }
+ else
+ {
+ new_tmp1 = gimple_assign_lhs (new_stmt1);
+ new_tmp2 = gimple_assign_lhs (new_stmt2);
+ }
+
+ /* Store the results for the next step. */
+ vec_tmp.quick_push (new_tmp1);
+ vec_tmp.quick_push (new_tmp2);
+ }
+
+ vec_oprnds0->release ();
+ *vec_oprnds0 = vec_tmp;
+}
+
+
+/* Check if STMT performs a conversion operation, that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at GSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0, op1 = NULL_TREE;
+ tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
+ enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
+ tree decl1 = NULL_TREE, decl2 = NULL_TREE;
+ tree new_temp;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out, vectype_in;
+ int ncopies, i, j;
+ tree lhs_type, rhs_type;
+ enum { NARROW, NONE, WIDEN } modifier;
+ vec<tree> vec_oprnds0 = vNULL;
+ vec<tree> vec_oprnds1 = vNULL;
+ tree vop0;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int multi_step_cvt = 0;
+ vec<tree> vec_dsts = vNULL;
+ vec<tree> interm_types = vNULL;
+ tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
+ int op_type;
+ enum machine_mode rhs_mode;
+ unsigned short fltsz;
+
+ /* Is STMT a vectorizable conversion? */
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (!CONVERT_EXPR_CODE_P (code)
+ && code != FIX_TRUNC_EXPR
+ && code != FLOAT_EXPR
+ && code != WIDEN_MULT_EXPR
+ && code != WIDEN_LSHIFT_EXPR)
+ return false;
+
+ op_type = TREE_CODE_LENGTH (code);
+
+ /* Check types of lhs and rhs. */
+ scalar_dest = gimple_assign_lhs (stmt);
+ lhs_type = TREE_TYPE (scalar_dest);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ op0 = gimple_assign_rhs1 (stmt);
+ rhs_type = TREE_TYPE (op0);
+
+ if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
+ && !((INTEGRAL_TYPE_P (lhs_type)
+ && INTEGRAL_TYPE_P (rhs_type))
+ || (SCALAR_FLOAT_TYPE_P (lhs_type)
+ && SCALAR_FLOAT_TYPE_P (rhs_type))))
+ return false;
+
+ if ((INTEGRAL_TYPE_P (lhs_type)
+ && (TYPE_PRECISION (lhs_type)
+ != GET_MODE_PRECISION (TYPE_MODE (lhs_type))))
+ || (INTEGRAL_TYPE_P (rhs_type)
+ && (TYPE_PRECISION (rhs_type)
+ != GET_MODE_PRECISION (TYPE_MODE (rhs_type)))))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "type conversion to/from bit-precision unsupported."
+ "\n");
+ return false;
+ }
+
+ /* Check the operands of the operation. */
+ if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype_in))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ if (op_type == binary_op)
+ {
+ bool ok;
+
+ op1 = gimple_assign_rhs2 (stmt);
+ gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
+ /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
+ OP1. */
+ if (CONSTANT_CLASS_P (op0))
+ ok = vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[1], &vectype_in);
+ else
+ ok = vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt[1]);
+
+ if (!ok)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ }
+
+ /* If op0 is an external or constant defs use a vector type of
+ the same size as the output vector type. */
+ if (!vectype_in)
+ vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype_in);
+ if (!vectype_in)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no vectype for scalar type ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ return false;
+ }
+
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ if (nunits_in < nunits_out)
+ modifier = NARROW;
+ else if (nunits_out == nunits_in)
+ modifier = NONE;
+ else
+ modifier = WIDEN;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else if (modifier == NARROW)
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ /* Sanity check: make sure that at least one copy of the vectorized stmt
+ needs to be generated. */
+ gcc_assert (ncopies >= 1);
+
+ /* Supportable by target? */
+ switch (modifier)
+ {
+ case NONE:
+ if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
+ return false;
+ if (supportable_convert_operation (code, vectype_out, vectype_in,
+ &decl1, &code1))
+ break;
+ /* FALLTHRU */
+ unsupported:
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "conversion not supported by target.\n");
+ return false;
+
+ case WIDEN:
+ if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
+ &code1, &code2, &multi_step_cvt,
+ &interm_types))
+ {
+ /* Binary widening operation can only be supported directly by the
+ architecture. */
+ gcc_assert (!(multi_step_cvt && op_type == binary_op));
+ break;
+ }
+
+ if (code != FLOAT_EXPR
+ || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
+ <= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
+ goto unsupported;
+
+ rhs_mode = TYPE_MODE (rhs_type);
+ fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
+ for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type));
+ rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz;
+ rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode))
+ {
+ cvt_type
+ = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
+ cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
+ if (cvt_type == NULL_TREE)
+ goto unsupported;
+
+ if (GET_MODE_SIZE (rhs_mode) == fltsz)
+ {
+ if (!supportable_convert_operation (code, vectype_out,
+ cvt_type, &decl1, &codecvt1))
+ goto unsupported;
+ }
+ else if (!supportable_widening_operation (code, stmt, vectype_out,
+ cvt_type, &codecvt1,
+ &codecvt2, &multi_step_cvt,
+ &interm_types))
+ continue;
+ else
+ gcc_assert (multi_step_cvt == 0);
+
+ if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
+ vectype_in, &code1, &code2,
+ &multi_step_cvt, &interm_types))
+ break;
+ }
+
+ if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
+ goto unsupported;
+
+ if (GET_MODE_SIZE (rhs_mode) == fltsz)
+ codecvt2 = ERROR_MARK;
+ else
+ {
+ multi_step_cvt++;
+ interm_types.safe_push (cvt_type);
+ cvt_type = NULL_TREE;
+ }
+ break;
+
+ case NARROW:
+ gcc_assert (op_type == unary_op);
+ if (supportable_narrowing_operation (code, vectype_out, vectype_in,
+ &code1, &multi_step_cvt,
+ &interm_types))
+ break;
+
+ if (code != FIX_TRUNC_EXPR
+ || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
+ >= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
+ goto unsupported;
+
+ rhs_mode = TYPE_MODE (rhs_type);
+ cvt_type
+ = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
+ cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
+ if (cvt_type == NULL_TREE)
+ goto unsupported;
+ if (!supportable_convert_operation (code, cvt_type, vectype_in,
+ &decl1, &codecvt1))
+ goto unsupported;
+ if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
+ &code1, &multi_step_cvt,
+ &interm_types))
+ break;
+ goto unsupported;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vectorizable_conversion ===\n");
+ if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
+ {
+ STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
+ }
+ else if (modifier == NARROW)
+ {
+ STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
+ vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
+ }
+ else
+ {
+ STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
+ vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
+ }
+ interm_types.release ();
+ return true;
+ }
+
+ /** Transform. **/
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "transform conversion. ncopies = %d.\n", ncopies);
+
+ if (op_type == binary_op)
+ {
+ if (CONSTANT_CLASS_P (op0))
+ op0 = fold_convert (TREE_TYPE (op1), op0);
+ else if (CONSTANT_CLASS_P (op1))
+ op1 = fold_convert (TREE_TYPE (op0), op1);
+ }
+
+ /* In case of multi-step conversion, we first generate conversion operations
+ to the intermediate types, and then from that types to the final one.
+ We create vector destinations for the intermediate type (TYPES) received
+ from supportable_*_operation, and store them in the correct order
+ for future use in vect_create_vectorized_*_stmts (). */
+ vec_dsts.create (multi_step_cvt + 1);
+ vec_dest = vect_create_destination_var (scalar_dest,
+ (cvt_type && modifier == WIDEN)
+ ? cvt_type : vectype_out);
+ vec_dsts.quick_push (vec_dest);
+
+ if (multi_step_cvt)
+ {
+ for (i = interm_types.length () - 1;
+ interm_types.iterate (i, &intermediate_type); i--)
+ {
+ vec_dest = vect_create_destination_var (scalar_dest,
+ intermediate_type);
+ vec_dsts.quick_push (vec_dest);
+ }
+ }
+
+ if (cvt_type)
+ vec_dest = vect_create_destination_var (scalar_dest,
+ modifier == WIDEN
+ ? vectype_out : cvt_type);
+
+ if (!slp_node)
+ {
+ if (modifier == WIDEN)
+ {
+ vec_oprnds0.create (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1);
+ if (op_type == binary_op)
+ vec_oprnds1.create (1);
+ }
+ else if (modifier == NARROW)
+ vec_oprnds0.create (
+ 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
+ }
+ else if (code == WIDEN_LSHIFT_EXPR)
+ vec_oprnds1.create (slp_node->vec_stmts_size);
+
+ last_oprnd = op0;
+ prev_stmt_info = NULL;
+ switch (modifier)
+ {
+ case NONE:
+ for (j = 0; j < ncopies; j++)
+ {
+ if (j == 0)
+ vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node,
+ -1);
+ else
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
+
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
+ {
+ /* Arguments are ready, create the new vector stmt. */
+ if (code1 == CALL_EXPR)
+ {
+ new_stmt = gimple_build_call (decl1, 1, vop0);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ else
+ {
+ gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
+ new_stmt = gimple_build_assign_with_ops (code1, vec_dest,
+ vop0, NULL);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ }
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ break;
+
+ case WIDEN:
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to
+ generate more than one vector stmt - i.e - we need to "unroll"
+ the vector stmt by a factor VF/nunits. */
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ if (slp_node)
+ {
+ if (code == WIDEN_LSHIFT_EXPR)
+ {
+ unsigned int k;
+
+ vec_oprnd1 = op1;
+ /* Store vec_oprnd1 for every vector stmt to be created
+ for SLP_NODE. We check during the analysis that all
+ the shift arguments are the same. */
+ for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
+ vec_oprnds1.quick_push (vec_oprnd1);
+
+ vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
+ slp_node, -1);
+ }
+ else
+ vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
+ &vec_oprnds1, slp_node, -1);
+ }
+ else
+ {
+ vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
+ vec_oprnds0.quick_push (vec_oprnd0);
+ if (op_type == binary_op)
+ {
+ if (code == WIDEN_LSHIFT_EXPR)
+ vec_oprnd1 = op1;
+ else
+ vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt,
+ NULL);
+ vec_oprnds1.quick_push (vec_oprnd1);
+ }
+ }
+ }
+ else
+ {
+ vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
+ vec_oprnds0.truncate (0);
+ vec_oprnds0.quick_push (vec_oprnd0);
+ if (op_type == binary_op)
+ {
+ if (code == WIDEN_LSHIFT_EXPR)
+ vec_oprnd1 = op1;
+ else
+ vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
+ vec_oprnd1);
+ vec_oprnds1.truncate (0);
+ vec_oprnds1.quick_push (vec_oprnd1);
+ }
+ }
+
+ /* Arguments are ready. Create the new vector stmts. */
+ for (i = multi_step_cvt; i >= 0; i--)
+ {
+ tree this_dest = vec_dsts[i];
+ enum tree_code c1 = code1, c2 = code2;
+ if (i == 0 && codecvt2 != ERROR_MARK)
+ {
+ c1 = codecvt1;
+ c2 = codecvt2;
+ }
+ vect_create_vectorized_promotion_stmts (&vec_oprnds0,
+ &vec_oprnds1,
+ stmt, this_dest, gsi,
+ c1, c2, decl1, decl2,
+ op_type);
+ }
+
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
+ {
+ if (cvt_type)
+ {
+ if (codecvt1 == CALL_EXPR)
+ {
+ new_stmt = gimple_build_call (decl1, 1, vop0);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ else
+ {
+ gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
+ new_temp = make_ssa_name (vec_dest, NULL);
+ new_stmt = gimple_build_assign_with_ops (codecvt1,
+ new_temp,
+ vop0, NULL);
+ }
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ }
+ else
+ new_stmt = SSA_NAME_DEF_STMT (vop0);
+
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ else
+ {
+ if (!prev_stmt_info)
+ STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+ }
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ break;
+
+ case NARROW:
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to
+ generate more than one vector stmt - i.e - we need to "unroll"
+ the vector stmt by a factor VF/nunits. */
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (slp_node)
+ vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
+ slp_node, -1);
+ else
+ {
+ vec_oprnds0.truncate (0);
+ vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
+ vect_pow2 (multi_step_cvt) - 1);
+ }
+
+ /* Arguments are ready. Create the new vector stmts. */
+ if (cvt_type)
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
+ {
+ if (codecvt1 == CALL_EXPR)
+ {
+ new_stmt = gimple_build_call (decl1, 1, vop0);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+ }
+ else
+ {
+ gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
+ new_temp = make_ssa_name (vec_dest, NULL);
+ new_stmt = gimple_build_assign_with_ops (codecvt1, new_temp,
+ vop0, NULL);
+ }
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ vec_oprnds0[i] = new_temp;
+ }
+
+ vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
+ stmt, vec_dsts, gsi,
+ slp_node, code1,
+ &prev_stmt_info);
+ }
+
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ break;
+ }
+
+ vec_oprnds0.release ();
+ vec_oprnds1.release ();
+ vec_dsts.release ();
+ interm_types.release ();
+
+ return true;
+}
+
+
+/* Function vectorizable_assignment.
+
+ Check if STMT performs an assignment (copy) that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ tree new_temp;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int i, j;
+ vec<tree> vec_oprnds = vNULL;
+ tree vop;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info = NULL;
+ enum tree_code code;
+ tree vectype_in;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is vectorizable assignment? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (gimple_assign_single_p (stmt)
+ || code == PAREN_EXPR
+ || CONVERT_EXPR_CODE_P (code))
+ op = gimple_assign_rhs1 (stmt);
+ else
+ return false;
+
+ if (code == VIEW_CONVERT_EXPR)
+ op = TREE_OPERAND (op, 0);
+
+ if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype_in))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+
+ /* We can handle NOP_EXPR conversions that do not change the number
+ of elements or the vector size. */
+ if ((CONVERT_EXPR_CODE_P (code)
+ || code == VIEW_CONVERT_EXPR)
+ && (!vectype_in
+ || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
+ || (GET_MODE_SIZE (TYPE_MODE (vectype))
+ != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
+ return false;
+
+ /* We do not handle bit-precision changes. */
+ if ((CONVERT_EXPR_CODE_P (code)
+ || code == VIEW_CONVERT_EXPR)
+ && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
+ && ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
+ != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
+ || ((TYPE_PRECISION (TREE_TYPE (op))
+ != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
+ /* But a conversion that does not change the bit-pattern is ok. */
+ && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
+ > TYPE_PRECISION (TREE_TYPE (op)))
+ && TYPE_UNSIGNED (TREE_TYPE (op))))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "type conversion to/from bit-precision "
+ "unsupported.\n");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vectorizable_assignment ===\n");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.\n");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle use. */
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1);
+ else
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
+
+ /* Arguments are ready. create the new vector stmt. */
+ FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
+ {
+ if (CONVERT_EXPR_CODE_P (code)
+ || code == VIEW_CONVERT_EXPR)
+ vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
+ new_stmt = gimple_build_assign (vec_dest, vop);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ vec_oprnds.release ();
+ return true;
+}
+
+
+/* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
+ either as shift by a scalar or by a vector. */
+
+bool
+vect_supportable_shift (enum tree_code code, tree scalar_type)
+{
+
+ enum machine_mode vec_mode;
+ optab optab;
+ int icode;
+ tree vectype;
+
+ vectype = get_vectype_for_scalar_type (scalar_type);
+ if (!vectype)
+ return false;
+
+ optab = optab_for_tree_code (code, vectype, optab_scalar);
+ if (!optab
+ || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
+ {
+ optab = optab_for_tree_code (code, vectype, optab_vector);
+ if (!optab
+ || (optab_handler (optab, TYPE_MODE (vectype))
+ == CODE_FOR_nothing))
+ return false;
+ }
+
+ vec_mode = TYPE_MODE (vectype);
+ icode = (int) optab_handler (optab, vec_mode);
+ if (icode == CODE_FOR_nothing)
+ return false;
+
+ return true;
+}
+
+
+/* Function vectorizable_shift.
+
+ Check if STMT performs a shift operation that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0, op1 = NULL;
+ tree vec_oprnd1 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code;
+ enum machine_mode vec_mode;
+ tree new_temp;
+ optab optab;
+ int icode;
+ enum machine_mode optab_op2_mode;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out;
+ tree op1_vectype;
+ int ncopies;
+ int j, i;
+ vec<tree> vec_oprnds0 = vNULL;
+ vec<tree> vec_oprnds1 = vNULL;
+ tree vop0, vop1;
+ unsigned int k;
+ bool scalar_shift_arg = true;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int vf;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable binary/unary operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+
+ if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
+ || code == RROTATE_EXPR))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+ if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
+ != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "bit-precision shifts not supported.\n");
+ return false;
+ }
+
+ op0 = gimple_assign_rhs1 (stmt);
+ if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ /* If op0 is an external or constant def use a vector type with
+ the same size as the output vector type. */
+ if (!vectype)
+ vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype);
+ if (!vectype)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no vectype for scalar type\n");
+ return false;
+ }
+
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
+ if (nunits_out != nunits_in)
+ return false;
+
+ op1 = gimple_assign_rhs2 (stmt);
+ if (!vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt[1], &op1_vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+
+ if (loop_vinfo)
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ else
+ vf = 1;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ gcc_assert (ncopies >= 1);
+
+ /* Determine whether the shift amount is a vector, or scalar. If the
+ shift/rotate amount is a vector, use the vector/vector shift optabs. */
+
+ if (dt[1] == vect_internal_def && !slp_node)
+ scalar_shift_arg = false;
+ else if (dt[1] == vect_constant_def
+ || dt[1] == vect_external_def
+ || dt[1] == vect_internal_def)
+ {
+ /* In SLP, need to check whether the shift count is the same,
+ in loops if it is a constant or invariant, it is always
+ a scalar shift. */
+ if (slp_node)
+ {
+ vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
+ gimple slpstmt;
+
+ FOR_EACH_VEC_ELT (stmts, k, slpstmt)
+ if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
+ scalar_shift_arg = false;
+ }
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "operand mode requires invariant argument.\n");
+ return false;
+ }
+
+ /* Vector shifted by vector. */
+ if (!scalar_shift_arg)
+ {
+ optab = optab_for_tree_code (code, vectype, optab_vector);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vector/vector shift/rotate found.\n");
+
+ if (!op1_vectype)
+ op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
+ if (op1_vectype == NULL_TREE
+ || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unusable type for last operand in"
+ " vector/vector shift/rotate.\n");
+ return false;
+ }
+ }
+ /* See if the machine has a vector shifted by scalar insn and if not
+ then see if it has a vector shifted by vector insn. */
+ else
+ {
+ optab = optab_for_tree_code (code, vectype, optab_scalar);
+ if (optab
+ && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vector/scalar shift/rotate found.\n");
+ }
+ else
+ {
+ optab = optab_for_tree_code (code, vectype, optab_vector);
+ if (optab
+ && (optab_handler (optab, TYPE_MODE (vectype))
+ != CODE_FOR_nothing))
+ {
+ scalar_shift_arg = false;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vector/vector shift/rotate found.\n");
+
+ /* Unlike the other binary operators, shifts/rotates have
+ the rhs being int, instead of the same type as the lhs,
+ so make sure the scalar is the right type if we are
+ dealing with vectors of long long/long/short/char. */
+ if (dt[1] == vect_constant_def)
+ op1 = fold_convert (TREE_TYPE (vectype), op1);
+ else if (!useless_type_conversion_p (TREE_TYPE (vectype),
+ TREE_TYPE (op1)))
+ {
+ if (slp_node
+ && TYPE_MODE (TREE_TYPE (vectype))
+ != TYPE_MODE (TREE_TYPE (op1)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unusable type for last operand in"
+ " vector/vector shift/rotate.\n");
+ return false;
+ }
+ if (vec_stmt && !slp_node)
+ {
+ op1 = fold_convert (TREE_TYPE (vectype), op1);
+ op1 = vect_init_vector (stmt, op1,
+ TREE_TYPE (vectype), NULL);
+ }
+ }
+ }
+ }
+ }
+
+ /* Supportable by target? */
+ if (!optab)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no optab.\n");
+ return false;
+ }
+ vec_mode = TYPE_MODE (vectype);
+ icode = (int) optab_handler (optab, vec_mode);
+ if (icode == CODE_FOR_nothing)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "op not supported by target.\n");
+ /* Check only during analysis. */
+ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+ || (vf < vect_min_worthwhile_factor (code)
+ && !vec_stmt))
+ return false;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "proceeding using word mode.\n");
+ }
+
+ /* Worthwhile without SIMD support? Check only during analysis. */
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && vf < vect_min_worthwhile_factor (code)
+ && !vec_stmt)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not worthwhile without SIMD support.\n");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vectorizable_shift ===\n");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "transform binary/unary operation.\n");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ if (scalar_shift_arg)
+ {
+ /* Vector shl and shr insn patterns can be defined with scalar
+ operand 2 (shift operand). In this case, use constant or loop
+ invariant op1 directly, without extending it to vector mode
+ first. */
+ optab_op2_mode = insn_data[icode].operand[2].mode;
+ if (!VECTOR_MODE_P (optab_op2_mode))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "operand 1 using scalar mode.\n");
+ vec_oprnd1 = op1;
+ vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : 1);
+ vec_oprnds1.quick_push (vec_oprnd1);
+ if (slp_node)
+ {
+ /* Store vec_oprnd1 for every vector stmt to be created
+ for SLP_NODE. We check during the analysis that all
+ the shift arguments are the same.
+ TODO: Allow different constants for different vector
+ stmts generated for an SLP instance. */
+ for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
+ vec_oprnds1.quick_push (vec_oprnd1);
+ }
+ }
+ }
+
+ /* vec_oprnd1 is available if operand 1 should be of a scalar-type
+ (a special case for certain kind of vector shifts); otherwise,
+ operand 1 should be of a vector type (the usual case). */
+ if (vec_oprnd1)
+ vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
+ slp_node, -1);
+ else
+ vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
+ slp_node, -1);
+ }
+ else
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
+
+ /* Arguments are ready. Create the new vector stmt. */
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
+ {
+ vop1 = vec_oprnds1[i];
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ vec_oprnds0.release ();
+ vec_oprnds1.release ();
+
+ return true;
+}
+
+
+/* Function vectorizable_operation.
+
+ Check if STMT performs a binary, unary or ternary operation that can
+ be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, slp_tree slp_node)
+{
+ tree vec_dest;
+ tree scalar_dest;
+ tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ enum tree_code code;
+ enum machine_mode vec_mode;
+ tree new_temp;
+ int op_type;
+ optab optab;
+ int icode;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt[3]
+ = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
+ gimple new_stmt = NULL;
+ stmt_vec_info prev_stmt_info;
+ int nunits_in;
+ int nunits_out;
+ tree vectype_out;
+ int ncopies;
+ int j, i;
+ vec<tree> vec_oprnds0 = vNULL;
+ vec<tree> vec_oprnds1 = vNULL;
+ vec<tree> vec_oprnds2 = vNULL;
+ tree vop0, vop1, vop2;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int vf;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is STMT a vectorizable binary/unary operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+
+ /* For pointer addition, we should use the normal plus for
+ the vector addition. */
+ if (code == POINTER_PLUS_EXPR)
+ code = PLUS_EXPR;
+
+ /* Support only unary or binary operations. */
+ op_type = TREE_CODE_LENGTH (code);
+ if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "num. args = %d (not unary/binary/ternary op).\n",
+ op_type);
+ return false;
+ }
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ vectype_out = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* Most operations cannot handle bit-precision types without extra
+ truncations. */
+ if ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
+ != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
+ /* Exception are bitwise binary operations. */
+ && code != BIT_IOR_EXPR
+ && code != BIT_XOR_EXPR
+ && code != BIT_AND_EXPR)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "bit-precision arithmetic not supported.\n");
+ return false;
+ }
+
+ op0 = gimple_assign_rhs1 (stmt);
+ if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt[0], &vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ /* If op0 is an external or constant def use a vector type with
+ the same size as the output vector type. */
+ if (!vectype)
+ vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
+ if (vec_stmt)
+ gcc_assert (vectype);
+ if (!vectype)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no vectype for scalar type ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ TREE_TYPE (op0));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ return false;
+ }
+
+ nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
+ nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
+ if (nunits_out != nunits_in)
+ return false;
+
+ if (op_type == binary_op || op_type == ternary_op)
+ {
+ op1 = gimple_assign_rhs2 (stmt);
+ if (!vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt[1]))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ }
+ if (op_type == ternary_op)
+ {
+ op2 = gimple_assign_rhs3 (stmt);
+ if (!vect_is_simple_use (op2, stmt, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt[2]))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ }
+
+ if (loop_vinfo)
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ else
+ vf = 1;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
+
+ gcc_assert (ncopies >= 1);
+
+ /* Shifts are handled in vectorizable_shift (). */
+ if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
+ || code == RROTATE_EXPR)
+ return false;
+
+ /* Supportable by target? */
+
+ vec_mode = TYPE_MODE (vectype);
+ if (code == MULT_HIGHPART_EXPR)
+ {
+ if (can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype)))
+ icode = LAST_INSN_CODE;
+ else
+ icode = CODE_FOR_nothing;
+ }
+ else
+ {
+ optab = optab_for_tree_code (code, vectype, optab_default);
+ if (!optab)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no optab.\n");
+ return false;
+ }
+ icode = (int) optab_handler (optab, vec_mode);
+ }
+
+ if (icode == CODE_FOR_nothing)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "op not supported by target.\n");
+ /* Check only during analysis. */
+ if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
+ || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
+ return false;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "proceeding using word mode.\n");
+ }
+
+ /* Worthwhile without SIMD support? Check only during analysis. */
+ if (!VECTOR_MODE_P (vec_mode)
+ && !vec_stmt
+ && vf < vect_min_worthwhile_factor (code))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not worthwhile without SIMD support.\n");
+ return false;
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vectorizable_operation ===\n");
+ vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "transform binary/unary operation.\n");
+
+ /* Handle def. */
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. In doing so, we record a pointer
+ from one copy of the vector stmt to the next, in the field
+ STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
+ stages to find the correct vector defs to be used when vectorizing
+ stmts that use the defs of the current stmt. The example below
+ illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
+ we need to create 4 vectorized stmts):
+
+ before vectorization:
+ RELATED_STMT VEC_STMT
+ S1: x = memref - -
+ S2: z = x + 1 - -
+
+ step 1: vectorize stmt S1 (done in vectorizable_load. See more details
+ there):
+ RELATED_STMT VEC_STMT
+ VS1_0: vx0 = memref0 VS1_1 -
+ VS1_1: vx1 = memref1 VS1_2 -
+ VS1_2: vx2 = memref2 VS1_3 -
+ VS1_3: vx3 = memref3 - -
+ S1: x = load - VS1_0
+ S2: z = x + 1 - -
+
+ step2: vectorize stmt S2 (done here):
+ To vectorize stmt S2 we first need to find the relevant vector
+ def for the first operand 'x'. This is, as usual, obtained from
+ the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
+ that defines 'x' (S1). This way we find the stmt VS1_0, and the
+ relevant vector def 'vx0'. Having found 'vx0' we can generate
+ the vector stmt VS2_0, and as usual, record it in the
+ STMT_VINFO_VEC_STMT of stmt S2.
+ When creating the second copy (VS2_1), we obtain the relevant vector
+ def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
+ stmt VS1_0. This way we find the stmt VS1_1 and the relevant
+ vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
+ pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
+ Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
+ chain of stmts and pointers:
+ RELATED_STMT VEC_STMT
+ VS1_0: vx0 = memref0 VS1_1 -
+ VS1_1: vx1 = memref1 VS1_2 -
+ VS1_2: vx2 = memref2 VS1_3 -
+ VS1_3: vx3 = memref3 - -
+ S1: x = load - VS1_0
+ VS2_0: vz0 = vx0 + v1 VS2_1 -
+ VS2_1: vz1 = vx1 + v1 VS2_2 -
+ VS2_2: vz2 = vx2 + v1 VS2_3 -
+ VS2_3: vz3 = vx3 + v1 - -
+ S2: z = x + 1 - VS2_0 */
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* Handle uses. */
+ if (j == 0)
+ {
+ if (op_type == binary_op || op_type == ternary_op)
+ vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
+ slp_node, -1);
+ else
+ vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
+ slp_node, -1);
+ if (op_type == ternary_op)
+ {
+ vec_oprnds2.create (1);
+ vec_oprnds2.quick_push (vect_get_vec_def_for_operand (op2,
+ stmt,
+ NULL));
+ }
+ }
+ else
+ {
+ vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
+ if (op_type == ternary_op)
+ {
+ tree vec_oprnd = vec_oprnds2.pop ();
+ vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
+ vec_oprnd));
+ }
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
+ {
+ vop1 = ((op_type == binary_op || op_type == ternary_op)
+ ? vec_oprnds1[i] : NULL_TREE);
+ vop2 = ((op_type == ternary_op)
+ ? vec_oprnds2[i] : NULL_TREE);
+ new_stmt = gimple_build_assign_with_ops (code, vec_dest,
+ vop0, vop1, vop2);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ vec_oprnds0.release ();
+ vec_oprnds1.release ();
+ vec_oprnds2.release ();
+
+ return true;
+}
+
+/* A helper function to ensure data reference DR's base alignment
+ for STMT_INFO. */
+
+static void
+ensure_base_align (stmt_vec_info stmt_info, struct data_reference *dr)
+{
+ if (!dr->aux)
+ return;
+
+ if (((dataref_aux *)dr->aux)->base_misaligned)
+ {
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree base_decl = ((dataref_aux *)dr->aux)->base_decl;
+
+ DECL_ALIGN (base_decl) = TYPE_ALIGN (vectype);
+ DECL_USER_ALIGN (base_decl) = 1;
+ ((dataref_aux *)dr->aux)->base_misaligned = false;
+ }
+}
+
+
+/* Given a vector type VECTYPE returns the VECTOR_CST mask that implements
+ reversal of the vector elements. If that is impossible to do,
+ returns NULL. */
+
+static tree
+perm_mask_for_reverse (tree vectype)
+{
+ int i, nunits;
+ unsigned char *sel;
+
+ nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ sel = XALLOCAVEC (unsigned char, nunits);
+
+ for (i = 0; i < nunits; ++i)
+ sel[i] = nunits - 1 - i;
+
+ return vect_gen_perm_mask (vectype, sel);
+}
+
+/* Function vectorizable_store.
+
+ Check if STMT defines a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
+ slp_tree slp_node)
+{
+ tree scalar_dest;
+ tree data_ref;
+ tree op;
+ tree vec_oprnd = NULL_TREE;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree elem_type;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+ enum machine_mode vec_mode;
+ tree dummy;
+ enum dr_alignment_support alignment_support_scheme;
+ tree def;
+ gimple def_stmt;
+ enum vect_def_type dt;
+ stmt_vec_info prev_stmt_info = NULL;
+ tree dataref_ptr = NULL_TREE;
+ tree dataref_offset = NULL_TREE;
+ gimple ptr_incr = NULL;
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int j;
+ gimple next_stmt, first_stmt = NULL;
+ bool grouped_store = false;
+ bool store_lanes_p = false;
+ unsigned int group_size, i;
+ vec<tree> dr_chain = vNULL;
+ vec<tree> oprnds = vNULL;
+ vec<tree> result_chain = vNULL;
+ bool inv_p;
+ bool negative = false;
+ tree offset = NULL_TREE;
+ vec<tree> vec_oprnds = vNULL;
+ bool slp = (slp_node != NULL);
+ unsigned int vec_num;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ tree aggr_type;
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+
+ /* FORNOW. This restriction should be relaxed. */
+ if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "multiple types in nested loop.\n");
+ return false;
+ }
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is vectorizable store? */
+
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
+ && is_pattern_stmt_p (stmt_info))
+ scalar_dest = TREE_OPERAND (scalar_dest, 0);
+ if (TREE_CODE (scalar_dest) != ARRAY_REF
+ && TREE_CODE (scalar_dest) != BIT_FIELD_REF
+ && TREE_CODE (scalar_dest) != INDIRECT_REF
+ && TREE_CODE (scalar_dest) != COMPONENT_REF
+ && TREE_CODE (scalar_dest) != IMAGPART_EXPR
+ && TREE_CODE (scalar_dest) != REALPART_EXPR
+ && TREE_CODE (scalar_dest) != MEM_REF)
+ return false;
+
+ gcc_assert (gimple_assign_single_p (stmt));
+ op = gimple_assign_rhs1 (stmt);
+ if (!vect_is_simple_use (op, stmt, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+
+ elem_type = TREE_TYPE (vectype);
+ vec_mode = TYPE_MODE (vectype);
+
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - array initialization with 0). */
+ if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ negative =
+ tree_int_cst_compare (loop && nested_in_vect_loop_p (loop, stmt)
+ ? STMT_VINFO_DR_STEP (stmt_info) : DR_STEP (dr),
+ size_zero_node) < 0;
+ if (negative && ncopies > 1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "multiple types with negative step.\n");
+ return false;
+ }
+
+ if (negative)
+ {
+ gcc_assert (!grouped_store);
+ alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+ if (alignment_support_scheme != dr_aligned
+ && alignment_support_scheme != dr_unaligned_supported)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "negative step but alignment required.\n");
+ return false;
+ }
+ if (dt != vect_constant_def
+ && dt != vect_external_def
+ && !perm_mask_for_reverse (vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "negative step and reversing not supported.\n");
+ return false;
+ }
+ }
+
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ {
+ grouped_store = true;
+ first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
+ if (!slp && !PURE_SLP_STMT (stmt_info))
+ {
+ group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
+ if (vect_store_lanes_supported (vectype, group_size))
+ store_lanes_p = true;
+ else if (!vect_grouped_store_supported (vectype, group_size))
+ return false;
+ }
+
+ if (first_stmt == stmt)
+ {
+ /* STMT is the leader of the group. Check the operands of all the
+ stmts of the group. */
+ next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
+ while (next_stmt)
+ {
+ gcc_assert (gimple_assign_single_p (next_stmt));
+ op = gimple_assign_rhs1 (next_stmt);
+ if (!vect_is_simple_use (op, next_stmt, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &dt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "use not simple.\n");
+ return false;
+ }
+ next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
+ }
+ }
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
+ vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt,
+ NULL, NULL, NULL);
+ return true;
+ }
+
+ /** Transform. **/
+
+ ensure_base_align (stmt_info, dr);
+
+ if (grouped_store)
+ {
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
+
+ GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
+
+ /* FORNOW */
+ gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
+
+ /* We vectorize all the stmts of the interleaving group when we
+ reach the last stmt in the group. */
+ if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
+ < GROUP_SIZE (vinfo_for_stmt (first_stmt))
+ && !slp)
+ {
+ *vec_stmt = NULL;
+ return true;
+ }
+
+ if (slp)
+ {
+ grouped_store = false;
+ /* VEC_NUM is the number of vect stmts to be created for this
+ group. */
+ vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
+ first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ op = gimple_assign_rhs1 (first_stmt);
+ }
+ else
+ /* VEC_NUM is the number of vect stmts to be created for this
+ group. */
+ vec_num = group_size;
+ }
+ else
+ {
+ first_stmt = stmt;
+ first_dr = dr;
+ group_size = vec_num = 1;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "transform store. ncopies = %d\n", ncopies);
+
+ dr_chain.create (group_size);
+ oprnds.create (group_size);
+
+ alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
+ gcc_assert (alignment_support_scheme);
+ /* Targets with store-lane instructions must not require explicit
+ realignment. */
+ gcc_assert (!store_lanes_p
+ || alignment_support_scheme == dr_aligned
+ || alignment_support_scheme == dr_unaligned_supported);
+
+ if (negative)
+ offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
+
+ if (store_lanes_p)
+ aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
+ else
+ aggr_type = vectype;
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. For more details see documentation in
+ vect_get_vec_def_for_copy_stmt. */
+
+ /* In case of interleaving (non-unit grouped access):
+
+ S1: &base + 2 = x2
+ S2: &base = x0
+ S3: &base + 1 = x1
+ S4: &base + 3 = x3
+
+ We create vectorized stores starting from base address (the access of the
+ first stmt in the chain (S2 in the above example), when the last store stmt
+ of the chain (S4) is reached:
+
+ VS1: &base = vx2
+ VS2: &base + vec_size*1 = vx0
+ VS3: &base + vec_size*2 = vx1
+ VS4: &base + vec_size*3 = vx3
+
+ Then permutation statements are generated:
+
+ VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
+ VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
+ ...
+
+ And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
+ (the order of the data-refs in the output of vect_permute_store_chain
+ corresponds to the order of scalar stmts in the interleaving chain - see
+ the documentation of vect_permute_store_chain()).
+
+ In case of both multiple types and interleaving, above vector stores and
+ permutation stmts are created for every copy. The result vector stmts are
+ put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
+ STMT_VINFO_RELATED_STMT for the next copies.
+ */
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ gimple new_stmt;
+
+ if (j == 0)
+ {
+ if (slp)
+ {
+ /* Get vectorized arguments for SLP_NODE. */
+ vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
+ NULL, slp_node, -1);
+
+ vec_oprnd = vec_oprnds[0];
+ }
+ else
+ {
+ /* For interleaved stores we collect vectorized defs for all the
+ stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
+ used as an input to vect_permute_store_chain(), and OPRNDS as
+ an input to vect_get_vec_def_for_stmt_copy() for the next copy.
+
+ If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
+ OPRNDS are of size 1. */
+ next_stmt = first_stmt;
+ for (i = 0; i < group_size; i++)
+ {
+ /* Since gaps are not supported for interleaved stores,
+ GROUP_SIZE is the exact number of stmts in the chain.
+ Therefore, NEXT_STMT can't be NULL_TREE. In case that
+ there is no interleaving, GROUP_SIZE is 1, and only one
+ iteration of the loop will be executed. */
+ gcc_assert (next_stmt
+ && gimple_assign_single_p (next_stmt));
+ op = gimple_assign_rhs1 (next_stmt);
+
+ vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
+ NULL);
+ dr_chain.quick_push (vec_oprnd);
+ oprnds.quick_push (vec_oprnd);
+ next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
+ }
+ }
+
+ /* We should have catched mismatched types earlier. */
+ gcc_assert (useless_type_conversion_p (vectype,
+ TREE_TYPE (vec_oprnd)));
+ bool simd_lane_access_p
+ = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
+ if (simd_lane_access_p
+ && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
+ && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
+ && integer_zerop (DR_OFFSET (first_dr))
+ && integer_zerop (DR_INIT (first_dr))
+ && alias_sets_conflict_p (get_alias_set (aggr_type),
+ get_alias_set (DR_REF (first_dr))))
+ {
+ dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
+ dataref_offset = build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0);
+ inv_p = false;
+ }
+ else
+ dataref_ptr
+ = vect_create_data_ref_ptr (first_stmt, aggr_type,
+ simd_lane_access_p ? loop : NULL,
+ offset, &dummy, gsi, &ptr_incr,
+ simd_lane_access_p, &inv_p);
+ gcc_assert (bb_vinfo || !inv_p);
+ }
+ else
+ {
+ /* For interleaved stores we created vectorized defs for all the
+ defs stored in OPRNDS in the previous iteration (previous copy).
+ DR_CHAIN is then used as an input to vect_permute_store_chain(),
+ and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
+ next copy.
+ If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
+ OPRNDS are of size 1. */
+ for (i = 0; i < group_size; i++)
+ {
+ op = oprnds[i];
+ vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo, &def_stmt,
+ &def, &dt);
+ vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
+ dr_chain[i] = vec_oprnd;
+ oprnds[i] = vec_oprnd;
+ }
+ if (dataref_offset)
+ dataref_offset
+ = int_const_binop (PLUS_EXPR, dataref_offset,
+ TYPE_SIZE_UNIT (aggr_type));
+ else
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
+ TYPE_SIZE_UNIT (aggr_type));
+ }
+
+ if (store_lanes_p)
+ {
+ tree vec_array;
+
+ /* Combine all the vectors into an array. */
+ vec_array = create_vector_array (vectype, vec_num);
+ for (i = 0; i < vec_num; i++)
+ {
+ vec_oprnd = dr_chain[i];
+ write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
+ }
+
+ /* Emit:
+ MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
+ data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
+ new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
+ gimple_call_set_lhs (new_stmt, data_ref);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ }
+ else
+ {
+ new_stmt = NULL;
+ if (grouped_store)
+ {
+ if (j == 0)
+ result_chain.create (group_size);
+ /* Permute. */
+ vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
+ &result_chain);
+ }
+
+ next_stmt = first_stmt;
+ for (i = 0; i < vec_num; i++)
+ {
+ unsigned align, misalign;
+
+ if (i > 0)
+ /* Bump the vector pointer. */
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
+ stmt, NULL_TREE);
+
+ if (slp)
+ vec_oprnd = vec_oprnds[i];
+ else if (grouped_store)
+ /* For grouped stores vectorized defs are interleaved in
+ vect_permute_store_chain(). */
+ vec_oprnd = result_chain[i];
+
+ data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
+ dataref_offset
+ ? dataref_offset
+ : build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ align = TYPE_ALIGN_UNIT (vectype);
+ if (aligned_access_p (first_dr))
+ misalign = 0;
+ else if (DR_MISALIGNMENT (first_dr) == -1)
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (elem_type));
+ align = TYPE_ALIGN_UNIT (elem_type);
+ misalign = 0;
+ }
+ else
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (elem_type));
+ misalign = DR_MISALIGNMENT (first_dr);
+ }
+ if (dataref_offset == NULL_TREE)
+ set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
+ misalign);
+
+ if (negative
+ && dt != vect_constant_def
+ && dt != vect_external_def)
+ {
+ tree perm_mask = perm_mask_for_reverse (vectype);
+ tree perm_dest
+ = vect_create_destination_var (gimple_assign_rhs1 (stmt),
+ vectype);
+ tree new_temp = make_ssa_name (perm_dest, NULL);
+
+ /* Generate the permute statement. */
+ gimple perm_stmt
+ = gimple_build_assign_with_ops (VEC_PERM_EXPR, new_temp,
+ vec_oprnd, vec_oprnd,
+ perm_mask);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+
+ perm_stmt = SSA_NAME_DEF_STMT (new_temp);
+ vec_oprnd = new_temp;
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ new_stmt = gimple_build_assign (data_ref, vec_oprnd);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (slp)
+ continue;
+
+ next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
+ if (!next_stmt)
+ break;
+ }
+ }
+ if (!slp)
+ {
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+
+ dr_chain.release ();
+ oprnds.release ();
+ result_chain.release ();
+ vec_oprnds.release ();
+
+ return true;
+}
+
+/* Given a vector type VECTYPE and permutation SEL returns
+ the VECTOR_CST mask that implements the permutation of the
+ vector elements. If that is impossible to do, returns NULL. */
+
+tree
+vect_gen_perm_mask (tree vectype, unsigned char *sel)
+{
+ tree mask_elt_type, mask_type, mask_vec, *mask_elts;
+ int i, nunits;
+
+ nunits = TYPE_VECTOR_SUBPARTS (vectype);
+
+ if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
+ return NULL;
+
+ mask_elt_type = lang_hooks.types.type_for_mode
+ (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
+ mask_type = get_vectype_for_scalar_type (mask_elt_type);
+
+ mask_elts = XALLOCAVEC (tree, nunits);
+ for (i = nunits - 1; i >= 0; i--)
+ mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
+ mask_vec = build_vector (mask_type, mask_elts);
+
+ return mask_vec;
+}
+
+/* Given a vector variable X and Y, that was generated for the scalar
+ STMT, generate instructions to permute the vector elements of X and Y
+ using permutation mask MASK_VEC, insert them at *GSI and return the
+ permuted vector variable. */
+
+static tree
+permute_vec_elements (tree x, tree y, tree mask_vec, gimple stmt,
+ gimple_stmt_iterator *gsi)
+{
+ tree vectype = TREE_TYPE (x);
+ tree perm_dest, data_ref;
+ gimple perm_stmt;
+
+ perm_dest = vect_create_destination_var (gimple_get_lhs (stmt), vectype);
+ data_ref = make_ssa_name (perm_dest, NULL);
+
+ /* Generate the permute statement. */
+ perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
+ x, y, mask_vec);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+
+ return data_ref;
+}
+
+/* Hoist the definitions of all SSA uses on STMT out of the loop LOOP,
+ inserting them on the loops preheader edge. Returns true if we
+ were successful in doing so (and thus STMT can be moved then),
+ otherwise returns false. */
+
+static bool
+hoist_defs_of_uses (gimple stmt, struct loop *loop)
+{
+ ssa_op_iter i;
+ tree op;
+ bool any = false;
+
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (op);
+ if (!gimple_nop_p (def_stmt)
+ && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
+ {
+ /* Make sure we don't need to recurse. While we could do
+ so in simple cases when there are more complex use webs
+ we don't have an easy way to preserve stmt order to fulfil
+ dependencies within them. */
+ tree op2;
+ ssa_op_iter i2;
+ if (gimple_code (def_stmt) == GIMPLE_PHI)
+ return false;
+ FOR_EACH_SSA_TREE_OPERAND (op2, def_stmt, i2, SSA_OP_USE)
+ {
+ gimple def_stmt2 = SSA_NAME_DEF_STMT (op2);
+ if (!gimple_nop_p (def_stmt2)
+ && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt2)))
+ return false;
+ }
+ any = true;
+ }
+ }
+
+ if (!any)
+ return true;
+
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (op);
+ if (!gimple_nop_p (def_stmt)
+ && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
+ {
+ gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
+ gsi_remove (&gsi, false);
+ gsi_insert_on_edge_immediate (loop_preheader_edge (loop), def_stmt);
+ }
+ }
+
+ return true;
+}
+
+/* vectorizable_load.
+
+ Check if STMT reads a non scalar data-ref (array/pointer/structure) that
+ can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt to replace it, put it in VEC_STMT, and insert it at BSI.
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+static bool
+vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
+ slp_tree slp_node, slp_instance slp_node_instance)
+{
+ tree scalar_dest;
+ tree vec_dest = NULL;
+ tree data_ref = NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ stmt_vec_info prev_stmt_info;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+ struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
+ bool nested_in_vect_loop = false;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree elem_type;
+ tree new_temp;
+ enum machine_mode mode;
+ gimple new_stmt = NULL;
+ tree dummy;
+ enum dr_alignment_support alignment_support_scheme;
+ tree dataref_ptr = NULL_TREE;
+ tree dataref_offset = NULL_TREE;
+ gimple ptr_incr = NULL;
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ int i, j, group_size, group_gap;
+ tree msq = NULL_TREE, lsq;
+ tree offset = NULL_TREE;
+ tree realignment_token = NULL_TREE;
+ gimple phi = NULL;
+ vec<tree> dr_chain = vNULL;
+ bool grouped_load = false;
+ bool load_lanes_p = false;
+ gimple first_stmt;
+ bool inv_p;
+ bool negative = false;
+ bool compute_in_loop = false;
+ struct loop *at_loop;
+ int vec_num;
+ bool slp = (slp_node != NULL);
+ bool slp_perm = false;
+ enum tree_code code;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ int vf;
+ tree aggr_type;
+ tree gather_base = NULL_TREE, gather_off = NULL_TREE;
+ tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
+ int gather_scale = 1;
+ enum vect_def_type gather_dt = vect_unknown_def_type;
+
+ if (loop_vinfo)
+ {
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+ vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ }
+ else
+ vf = 1;
+
+ /* Multiple types in SLP are handled by creating the appropriate number of
+ vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
+ case of SLP. */
+ if (slp || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+
+ /* FORNOW. This restriction should be relaxed. */
+ if (nested_in_vect_loop && ncopies > 1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "multiple types in nested loop.\n");
+ return false;
+ }
+
+ /* Invalidate assumptions made by dependence analysis when vectorization
+ on the unrolled body effectively re-orders stmts. */
+ if (ncopies > 1
+ && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
+ && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "cannot perform implicit CSE when unrolling "
+ "with negative dependence distance\n");
+ return false;
+ }
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
+ return false;
+
+ /* Is vectorizable load? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ scalar_dest = gimple_assign_lhs (stmt);
+ if (TREE_CODE (scalar_dest) != SSA_NAME)
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+ if (code != ARRAY_REF
+ && code != BIT_FIELD_REF
+ && code != INDIRECT_REF
+ && code != COMPONENT_REF
+ && code != IMAGPART_EXPR
+ && code != REALPART_EXPR
+ && code != MEM_REF
+ && TREE_CODE_CLASS (code) != tcc_declaration)
+ return false;
+
+ if (!STMT_VINFO_DATA_REF (stmt_info))
+ return false;
+
+ elem_type = TREE_TYPE (vectype);
+ mode = TYPE_MODE (vectype);
+
+ /* FORNOW. In some cases can vectorize even if data-type not supported
+ (e.g. - data copies). */
+ if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Aligned load, but unsupported type.\n");
+ return false;
+ }
+
+ /* Check if the load is a part of an interleaving chain. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ {
+ grouped_load = true;
+ /* FORNOW */
+ gcc_assert (! nested_in_vect_loop && !STMT_VINFO_GATHER_P (stmt_info));
+
+ first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
+ if (!slp && !PURE_SLP_STMT (stmt_info))
+ {
+ group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
+ if (vect_load_lanes_supported (vectype, group_size))
+ load_lanes_p = true;
+ else if (!vect_grouped_load_supported (vectype, group_size))
+ return false;
+ }
+
+ /* Invalidate assumptions made by dependence analysis when vectorization
+ on the unrolled body effectively re-orders stmts. */
+ if (!PURE_SLP_STMT (stmt_info)
+ && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
+ && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
+ > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "cannot perform implicit CSE when performing "
+ "group loads with negative dependence distance\n");
+ return false;
+ }
+ }
+
+
+ if (STMT_VINFO_GATHER_P (stmt_info))
+ {
+ gimple def_stmt;
+ tree def;
+ gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
+ &gather_off, &gather_scale);
+ gcc_assert (gather_decl);
+ if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, bb_vinfo,
+ &def_stmt, &def, &gather_dt,
+ &gather_off_vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "gather index use not simple.\n");
+ return false;
+ }
+ }
+ else if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ ;
+ else
+ {
+ negative = tree_int_cst_compare (nested_in_vect_loop
+ ? STMT_VINFO_DR_STEP (stmt_info)
+ : DR_STEP (dr),
+ size_zero_node) < 0;
+ if (negative && ncopies > 1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "multiple types with negative step.\n");
+ return false;
+ }
+
+ if (negative)
+ {
+ if (grouped_load)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "negative step for group load not supported"
+ "\n");
+ return false;
+ }
+ alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
+ if (alignment_support_scheme != dr_aligned
+ && alignment_support_scheme != dr_unaligned_supported)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "negative step but alignment required.\n");
+ return false;
+ }
+ if (!perm_mask_for_reverse (vectype))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "negative step and reversing not supported."
+ "\n");
+ return false;
+ }
+ }
+ }
+
+ if (!vec_stmt) /* transformation not required. */
+ {
+ STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
+ vect_model_load_cost (stmt_info, ncopies, load_lanes_p, NULL, NULL, NULL);
+ return true;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "transform load. ncopies = %d\n", ncopies);
+
+ /** Transform. **/
+
+ ensure_base_align (stmt_info, dr);
+
+ if (STMT_VINFO_GATHER_P (stmt_info))
+ {
+ tree vec_oprnd0 = NULL_TREE, op;
+ tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
+ tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
+ tree ptr, mask, var, scale, merge, perm_mask = NULL_TREE, prev_res = NULL_TREE;
+ edge pe = loop_preheader_edge (loop);
+ gimple_seq seq;
+ basic_block new_bb;
+ enum { NARROW, NONE, WIDEN } modifier;
+ int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
+
+ if (nunits == gather_off_nunits)
+ modifier = NONE;
+ else if (nunits == gather_off_nunits / 2)
+ {
+ unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
+ modifier = WIDEN;
+
+ for (i = 0; i < gather_off_nunits; ++i)
+ sel[i] = i | nunits;
+
+ perm_mask = vect_gen_perm_mask (gather_off_vectype, sel);
+ gcc_assert (perm_mask != NULL_TREE);
+ }
+ else if (nunits == gather_off_nunits * 2)
+ {
+ unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
+ modifier = NARROW;
+
+ for (i = 0; i < nunits; ++i)
+ sel[i] = i < gather_off_nunits
+ ? i : i + nunits - gather_off_nunits;
+
+ perm_mask = vect_gen_perm_mask (vectype, sel);
+ gcc_assert (perm_mask != NULL_TREE);
+ ncopies *= 2;
+ }
+ else
+ gcc_unreachable ();
+
+ rettype = TREE_TYPE (TREE_TYPE (gather_decl));
+ srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
+ scaletype = TREE_VALUE (arglist);
+ gcc_checking_assert (types_compatible_p (srctype, rettype));
+
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ ptr = fold_convert (ptrtype, gather_base);
+ if (!is_gimple_min_invariant (ptr))
+ {
+ ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
+ gcc_assert (!new_bb);
+ }
+
+ /* Currently we support only unconditional gather loads,
+ so mask should be all ones. */
+ if (TREE_CODE (masktype) == INTEGER_TYPE)
+ mask = build_int_cst (masktype, -1);
+ else if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
+ {
+ mask = build_int_cst (TREE_TYPE (masktype), -1);
+ mask = build_vector_from_val (masktype, mask);
+ mask = vect_init_vector (stmt, mask, masktype, NULL);
+ }
+ else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
+ {
+ REAL_VALUE_TYPE r;
+ long tmp[6];
+ for (j = 0; j < 6; ++j)
+ tmp[j] = -1;
+ real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
+ mask = build_real (TREE_TYPE (masktype), r);
+ mask = build_vector_from_val (masktype, mask);
+ mask = vect_init_vector (stmt, mask, masktype, NULL);
+ }
+ else
+ gcc_unreachable ();
+
+ scale = build_int_cst (scaletype, gather_scale);
+
+ if (TREE_CODE (TREE_TYPE (rettype)) == INTEGER_TYPE)
+ merge = build_int_cst (TREE_TYPE (rettype), 0);
+ else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rettype)))
+ {
+ REAL_VALUE_TYPE r;
+ long tmp[6];
+ for (j = 0; j < 6; ++j)
+ tmp[j] = 0;
+ real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (rettype)));
+ merge = build_real (TREE_TYPE (rettype), r);
+ }
+ else
+ gcc_unreachable ();
+ merge = build_vector_from_val (rettype, merge);
+ merge = vect_init_vector (stmt, merge, rettype, NULL);
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; ++j)
+ {
+ if (modifier == WIDEN && (j & 1))
+ op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
+ perm_mask, stmt, gsi);
+ else if (j == 0)
+ op = vec_oprnd0
+ = vect_get_vec_def_for_operand (gather_off, stmt, NULL);
+ else
+ op = vec_oprnd0
+ = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
+
+ if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
+ {
+ gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
+ == TYPE_VECTOR_SUBPARTS (idxtype));
+ var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
+ var = make_ssa_name (var, NULL);
+ op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
+ new_stmt
+ = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var,
+ op, NULL_TREE);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ op = var;
+ }
+
+ new_stmt
+ = gimple_build_call (gather_decl, 5, merge, ptr, op, mask, scale);
+
+ if (!useless_type_conversion_p (vectype, rettype))
+ {
+ gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
+ == TYPE_VECTOR_SUBPARTS (rettype));
+ var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
+ op = make_ssa_name (var, new_stmt);
+ gimple_call_set_lhs (new_stmt, op);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ var = make_ssa_name (vec_dest, NULL);
+ op = build1 (VIEW_CONVERT_EXPR, vectype, op);
+ new_stmt
+ = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var, op,
+ NULL_TREE);
+ }
+ else
+ {
+ var = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, var);
+ }
+
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (modifier == NARROW)
+ {
+ if ((j & 1) == 0)
+ {
+ prev_res = var;
+ continue;
+ }
+ var = permute_vec_elements (prev_res, var,
+ perm_mask, stmt, gsi);
+ new_stmt = SSA_NAME_DEF_STMT (var);
+ }
+
+ if (prev_stmt_info == NULL)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ return true;
+ }
+ else if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ {
+ gimple_stmt_iterator incr_gsi;
+ bool insert_after;
+ gimple incr;
+ tree offvar;
+ tree ivstep;
+ tree running_off;
+ vec<constructor_elt, va_gc> *v = NULL;
+ gimple_seq stmts = NULL;
+ tree stride_base, stride_step, alias_off;
+
+ gcc_assert (!nested_in_vect_loop);
+
+ stride_base
+ = fold_build_pointer_plus
+ (unshare_expr (DR_BASE_ADDRESS (dr)),
+ size_binop (PLUS_EXPR,
+ convert_to_ptrofftype (unshare_expr (DR_OFFSET (dr))),
+ convert_to_ptrofftype (DR_INIT (dr))));
+ stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (dr)));
+
+ /* For a load with loop-invariant (but other than power-of-2)
+ stride (i.e. not a grouped access) like so:
+
+ for (i = 0; i < n; i += stride)
+ ... = array[i];
+
+ we generate a new induction variable and new accesses to
+ form a new vector (or vectors, depending on ncopies):
+
+ for (j = 0; ; j += VF*stride)
+ tmp1 = array[j];
+ tmp2 = array[j + stride];
+ ...
+ vectemp = {tmp1, tmp2, ...}
+ */
+
+ ivstep = stride_step;
+ ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
+ build_int_cst (TREE_TYPE (ivstep), vf));
+
+ standard_iv_increment_position (loop, &incr_gsi, &insert_after);
+
+ create_iv (stride_base, ivstep, NULL,
+ loop, &incr_gsi, insert_after,
+ &offvar, NULL);
+ incr = gsi_stmt (incr_gsi);
+ set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
+
+ stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
+
+ prev_stmt_info = NULL;
+ running_off = offvar;
+ alias_off = build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0);
+ for (j = 0; j < ncopies; j++)
+ {
+ tree vec_inv;
+
+ vec_alloc (v, nunits);
+ for (i = 0; i < nunits; i++)
+ {
+ tree newref, newoff;
+ gimple incr;
+ newref = build2 (MEM_REF, TREE_TYPE (vectype),
+ running_off, alias_off);
+
+ newref = force_gimple_operand_gsi (gsi, newref, true,
+ NULL_TREE, true,
+ GSI_SAME_STMT);
+ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, newref);
+ newoff = copy_ssa_name (running_off, NULL);
+ incr = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, newoff,
+ running_off, stride_step);
+ vect_finish_stmt_generation (stmt, incr, gsi);
+
+ running_off = newoff;
+ }
+
+ vec_inv = build_constructor (vectype, v);
+ new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
+ new_stmt = SSA_NAME_DEF_STMT (new_temp);
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ return true;
+ }
+
+ if (grouped_load)
+ {
+ first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
+ if (slp
+ && !SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()
+ && first_stmt != SLP_TREE_SCALAR_STMTS (slp_node)[0])
+ first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
+
+ /* Check if the chain of loads is already vectorized. */
+ if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt))
+ /* For SLP we would need to copy over SLP_TREE_VEC_STMTS.
+ ??? But we can only do so if there is exactly one
+ as we have no way to get at the rest. Leave the CSE
+ opportunity alone.
+ ??? With the group load eventually participating
+ in multiple different permutations (having multiple
+ slp nodes which refer to the same group) the CSE
+ is even wrong code. See PR56270. */
+ && !slp)
+ {
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ return true;
+ }
+ first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
+ group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
+
+ /* VEC_NUM is the number of vect stmts to be created for this group. */
+ if (slp)
+ {
+ grouped_load = false;
+ vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
+ if (SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
+ slp_perm = true;
+ group_gap = GROUP_GAP (vinfo_for_stmt (first_stmt));
+ }
+ else
+ {
+ vec_num = group_size;
+ group_gap = 0;
+ }
+ }
+ else
+ {
+ first_stmt = stmt;
+ first_dr = dr;
+ group_size = vec_num = 1;
+ group_gap = 0;
+ }
+
+ alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
+ gcc_assert (alignment_support_scheme);
+ /* Targets with load-lane instructions must not require explicit
+ realignment. */
+ gcc_assert (!load_lanes_p
+ || alignment_support_scheme == dr_aligned
+ || alignment_support_scheme == dr_unaligned_supported);
+
+ /* In case the vectorization factor (VF) is bigger than the number
+ of elements that we can fit in a vectype (nunits), we have to generate
+ more than one vector stmt - i.e - we need to "unroll" the
+ vector stmt by a factor VF/nunits. In doing so, we record a pointer
+ from one copy of the vector stmt to the next, in the field
+ STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
+ stages to find the correct vector defs to be used when vectorizing
+ stmts that use the defs of the current stmt. The example below
+ illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
+ need to create 4 vectorized stmts):
+
+ before vectorization:
+ RELATED_STMT VEC_STMT
+ S1: x = memref - -
+ S2: z = x + 1 - -
+
+ step 1: vectorize stmt S1:
+ We first create the vector stmt VS1_0, and, as usual, record a
+ pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
+ Next, we create the vector stmt VS1_1, and record a pointer to
+ it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
+ Similarly, for VS1_2 and VS1_3. This is the resulting chain of
+ stmts and pointers:
+ RELATED_STMT VEC_STMT
+ VS1_0: vx0 = memref0 VS1_1 -
+ VS1_1: vx1 = memref1 VS1_2 -
+ VS1_2: vx2 = memref2 VS1_3 -
+ VS1_3: vx3 = memref3 - -
+ S1: x = load - VS1_0
+ S2: z = x + 1 - -
+
+ See in documentation in vect_get_vec_def_for_stmt_copy for how the
+ information we recorded in RELATED_STMT field is used to vectorize
+ stmt S2. */
+
+ /* In case of interleaving (non-unit grouped access):
+
+ S1: x2 = &base + 2
+ S2: x0 = &base
+ S3: x1 = &base + 1
+ S4: x3 = &base + 3
+
+ Vectorized loads are created in the order of memory accesses
+ starting from the access of the first stmt of the chain:
+
+ VS1: vx0 = &base
+ VS2: vx1 = &base + vec_size*1
+ VS3: vx3 = &base + vec_size*2
+ VS4: vx4 = &base + vec_size*3
+
+ Then permutation statements are generated:
+
+ VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
+ VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
+ ...
+
+ And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
+ (the order of the data-refs in the output of vect_permute_load_chain
+ corresponds to the order of scalar stmts in the interleaving chain - see
+ the documentation of vect_permute_load_chain()).
+ The generation of permutation stmts and recording them in
+ STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
+
+ In case of both multiple types and interleaving, the vector loads and
+ permutation stmts above are created for every copy. The result vector
+ stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
+ corresponding STMT_VINFO_RELATED_STMT for the next copies. */
+
+ /* If the data reference is aligned (dr_aligned) or potentially unaligned
+ on a target that supports unaligned accesses (dr_unaligned_supported)
+ we generate the following code:
+ p = initial_addr;
+ indx = 0;
+ loop {
+ p = p + indx * vectype_size;
+ vec_dest = *(p);
+ indx = indx + 1;
+ }
+
+ Otherwise, the data reference is potentially unaligned on a target that
+ does not support unaligned accesses (dr_explicit_realign_optimized) -
+ then generate the following code, in which the data in each iteration is
+ obtained by two vector loads, one from the previous iteration, and one
+ from the current iteration:
+ p1 = initial_addr;
+ msq_init = *(floor(p1))
+ p2 = initial_addr + VS - 1;
+ realignment_token = call target_builtin;
+ indx = 0;
+ loop {
+ p2 = p2 + indx * vectype_size
+ lsq = *(floor(p2))
+ vec_dest = realign_load (msq, lsq, realignment_token)
+ indx = indx + 1;
+ msq = lsq;
+ } */
+
+ /* If the misalignment remains the same throughout the execution of the
+ loop, we can create the init_addr and permutation mask at the loop
+ preheader. Otherwise, it needs to be created inside the loop.
+ This can only occur when vectorizing memory accesses in the inner-loop
+ nested within an outer-loop that is being vectorized. */
+
+ if (nested_in_vect_loop
+ && (TREE_INT_CST_LOW (DR_STEP (dr))
+ % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
+ {
+ gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
+ compute_in_loop = true;
+ }
+
+ if ((alignment_support_scheme == dr_explicit_realign_optimized
+ || alignment_support_scheme == dr_explicit_realign)
+ && !compute_in_loop)
+ {
+ msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
+ alignment_support_scheme, NULL_TREE,
+ &at_loop);
+ if (alignment_support_scheme == dr_explicit_realign_optimized)
+ {
+ phi = SSA_NAME_DEF_STMT (msq);
+ offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+ }
+ }
+ else
+ at_loop = loop;
+
+ if (negative)
+ offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
+
+ if (load_lanes_p)
+ aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
+ else
+ aggr_type = vectype;
+
+ prev_stmt_info = NULL;
+ for (j = 0; j < ncopies; j++)
+ {
+ /* 1. Create the vector or array pointer update chain. */
+ if (j == 0)
+ {
+ bool simd_lane_access_p
+ = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
+ if (simd_lane_access_p
+ && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
+ && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
+ && integer_zerop (DR_OFFSET (first_dr))
+ && integer_zerop (DR_INIT (first_dr))
+ && alias_sets_conflict_p (get_alias_set (aggr_type),
+ get_alias_set (DR_REF (first_dr)))
+ && (alignment_support_scheme == dr_aligned
+ || alignment_support_scheme == dr_unaligned_supported))
+ {
+ dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
+ dataref_offset = build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0);
+ inv_p = false;
+ }
+ else
+ dataref_ptr
+ = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
+ offset, &dummy, gsi, &ptr_incr,
+ simd_lane_access_p, &inv_p);
+ }
+ else if (dataref_offset)
+ dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset,
+ TYPE_SIZE_UNIT (aggr_type));
+ else
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
+ TYPE_SIZE_UNIT (aggr_type));
+
+ if (grouped_load || slp_perm)
+ dr_chain.create (vec_num);
+
+ if (load_lanes_p)
+ {
+ tree vec_array;
+
+ vec_array = create_vector_array (vectype, vec_num);
+
+ /* Emit:
+ VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
+ data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
+ new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
+ gimple_call_set_lhs (new_stmt, vec_array);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ /* Extract each vector into an SSA_NAME. */
+ for (i = 0; i < vec_num; i++)
+ {
+ new_temp = read_vector_array (stmt, gsi, scalar_dest,
+ vec_array, i);
+ dr_chain.quick_push (new_temp);
+ }
+
+ /* Record the mapping between SSA_NAMEs and statements. */
+ vect_record_grouped_load_vectors (stmt, dr_chain);
+ }
+ else
+ {
+ for (i = 0; i < vec_num; i++)
+ {
+ if (i > 0)
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
+ stmt, NULL_TREE);
+
+ /* 2. Create the vector-load in the loop. */
+ switch (alignment_support_scheme)
+ {
+ case dr_aligned:
+ case dr_unaligned_supported:
+ {
+ unsigned int align, misalign;
+
+ data_ref
+ = build2 (MEM_REF, vectype, dataref_ptr,
+ dataref_offset
+ ? dataref_offset
+ : build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ align = TYPE_ALIGN_UNIT (vectype);
+ if (alignment_support_scheme == dr_aligned)
+ {
+ gcc_assert (aligned_access_p (first_dr));
+ misalign = 0;
+ }
+ else if (DR_MISALIGNMENT (first_dr) == -1)
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (elem_type));
+ align = TYPE_ALIGN_UNIT (elem_type);
+ misalign = 0;
+ }
+ else
+ {
+ TREE_TYPE (data_ref)
+ = build_aligned_type (TREE_TYPE (data_ref),
+ TYPE_ALIGN (elem_type));
+ misalign = DR_MISALIGNMENT (first_dr);
+ }
+ if (dataref_offset == NULL_TREE)
+ set_ptr_info_alignment (get_ptr_info (dataref_ptr),
+ align, misalign);
+ break;
+ }
+ case dr_explicit_realign:
+ {
+ tree ptr, bump;
+ tree vs_minus_1;
+
+ vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+
+ if (compute_in_loop)
+ msq = vect_setup_realignment (first_stmt, gsi,
+ &realignment_token,
+ dr_explicit_realign,
+ dataref_ptr, NULL);
+
+ ptr = copy_ssa_name (dataref_ptr, NULL);
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, ptr, dataref_ptr,
+ build_int_cst
+ (TREE_TYPE (dataref_ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ data_ref
+ = build2 (MEM_REF, vectype, ptr,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ vec_dest = vect_create_destination_var (scalar_dest,
+ vectype);
+ new_stmt = gimple_build_assign (vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ msq = new_temp;
+
+ bump = size_binop (MULT_EXPR, vs_minus_1,
+ TYPE_SIZE_UNIT (elem_type));
+ ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, NULL_TREE, ptr,
+ build_int_cst
+ (TREE_TYPE (ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ ptr = copy_ssa_name (dataref_ptr, new_stmt);
+ gimple_assign_set_lhs (new_stmt, ptr);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ data_ref
+ = build2 (MEM_REF, vectype, ptr,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ break;
+ }
+ case dr_explicit_realign_optimized:
+ new_temp = copy_ssa_name (dataref_ptr, NULL);
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, new_temp, dataref_ptr,
+ build_int_cst
+ (TREE_TYPE (dataref_ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ data_ref
+ = build2 (MEM_REF, vectype, new_temp,
+ build_int_cst (reference_alias_ptr_type
+ (DR_REF (first_dr)), 0));
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ new_stmt = gimple_build_assign (vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ /* 3. Handle explicit realignment if necessary/supported.
+ Create in loop:
+ vec_dest = realign_load (msq, lsq, realignment_token) */
+ if (alignment_support_scheme == dr_explicit_realign_optimized
+ || alignment_support_scheme == dr_explicit_realign)
+ {
+ lsq = gimple_assign_lhs (new_stmt);
+ if (!realignment_token)
+ realignment_token = dataref_ptr;
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ new_stmt
+ = gimple_build_assign_with_ops (REALIGN_LOAD_EXPR,
+ vec_dest, msq, lsq,
+ realignment_token);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+
+ if (alignment_support_scheme == dr_explicit_realign_optimized)
+ {
+ gcc_assert (phi);
+ if (i == vec_num - 1 && j == ncopies - 1)
+ add_phi_arg (phi, lsq,
+ loop_latch_edge (containing_loop),
+ UNKNOWN_LOCATION);
+ msq = lsq;
+ }
+ }
+
+ /* 4. Handle invariant-load. */
+ if (inv_p && !bb_vinfo)
+ {
+ gcc_assert (!grouped_load);
+ /* If we have versioned for aliasing or the loop doesn't
+ have any data dependencies that would preclude this,
+ then we are sure this is a loop invariant load and
+ thus we can insert it on the preheader edge. */
+ if (LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo)
+ && !nested_in_vect_loop
+ && hoist_defs_of_uses (stmt, loop))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "hoisting out of the vectorized "
+ "loop: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ tree tem = copy_ssa_name (scalar_dest, NULL);
+ gsi_insert_on_edge_immediate
+ (loop_preheader_edge (loop),
+ gimple_build_assign (tem,
+ unshare_expr
+ (gimple_assign_rhs1 (stmt))));
+ new_temp = vect_init_vector (stmt, tem, vectype, NULL);
+ }
+ else
+ {
+ gimple_stmt_iterator gsi2 = *gsi;
+ gsi_next (&gsi2);
+ new_temp = vect_init_vector (stmt, scalar_dest,
+ vectype, &gsi2);
+ }
+ new_stmt = SSA_NAME_DEF_STMT (new_temp);
+ set_vinfo_for_stmt (new_stmt,
+ new_stmt_vec_info (new_stmt, loop_vinfo,
+ bb_vinfo));
+ }
+
+ if (negative)
+ {
+ tree perm_mask = perm_mask_for_reverse (vectype);
+ new_temp = permute_vec_elements (new_temp, new_temp,
+ perm_mask, stmt, gsi);
+ new_stmt = SSA_NAME_DEF_STMT (new_temp);
+ }
+
+ /* Collect vector loads and later create their permutation in
+ vect_transform_grouped_load (). */
+ if (grouped_load || slp_perm)
+ dr_chain.quick_push (new_temp);
+
+ /* Store vector loads in the corresponding SLP_NODE. */
+ if (slp && !slp_perm)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+ /* Bump the vector pointer to account for a gap. */
+ if (slp && group_gap != 0)
+ {
+ tree bump = size_binop (MULT_EXPR,
+ TYPE_SIZE_UNIT (elem_type),
+ size_int (group_gap));
+ dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
+ stmt, bump);
+ }
+ }
+
+ if (slp && !slp_perm)
+ continue;
+
+ if (slp_perm)
+ {
+ if (!vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
+ slp_node_instance, false))
+ {
+ dr_chain.release ();
+ return false;
+ }
+ }
+ else
+ {
+ if (grouped_load)
+ {
+ if (!load_lanes_p)
+ vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
+ *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
+ }
+ else
+ {
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+ }
+ dr_chain.release ();
+ }
+
+ return true;
+}
+
+/* Function vect_is_simple_cond.
+
+ Input:
+ LOOP - the loop that is being vectorized.
+ COND - Condition that is checked for simple use.
+
+ Output:
+ *COMP_VECTYPE - the vector type for the comparison.
+
+ Returns whether a COND can be vectorized. Checks whether
+ condition operands are supportable using vec_is_simple_use. */
+
+static bool
+vect_is_simple_cond (tree cond, gimple stmt, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo, tree *comp_vectype)
+{
+ tree lhs, rhs;
+ tree def;
+ enum vect_def_type dt;
+ tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
+
+ if (!COMPARISON_CLASS_P (cond))
+ return false;
+
+ lhs = TREE_OPERAND (cond, 0);
+ rhs = TREE_OPERAND (cond, 1);
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
+ if (!vect_is_simple_use_1 (lhs, stmt, loop_vinfo, bb_vinfo,
+ &lhs_def_stmt, &def, &dt, &vectype1))
+ return false;
+ }
+ else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
+ && TREE_CODE (lhs) != FIXED_CST)
+ return false;
+
+ if (TREE_CODE (rhs) == SSA_NAME)
+ {
+ gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
+ if (!vect_is_simple_use_1 (rhs, stmt, loop_vinfo, bb_vinfo,
+ &rhs_def_stmt, &def, &dt, &vectype2))
+ return false;
+ }
+ else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
+ && TREE_CODE (rhs) != FIXED_CST)
+ return false;
+
+ *comp_vectype = vectype1 ? vectype1 : vectype2;
+ return true;
+}
+
+/* vectorizable_condition.
+
+ Check if STMT is conditional modify expression that can be vectorized.
+ If VEC_STMT is also passed, vectorize the STMT: create a vectorized
+ stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
+ at GSI.
+
+ When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
+ to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
+ else caluse if it is 2).
+
+ Return FALSE if not a vectorizable STMT, TRUE otherwise. */
+
+bool
+vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
+ gimple *vec_stmt, tree reduc_def, int reduc_index,
+ slp_tree slp_node)
+{
+ tree scalar_dest = NULL_TREE;
+ tree vec_dest = NULL_TREE;
+ tree cond_expr, then_clause, else_clause;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree comp_vectype = NULL_TREE;
+ tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
+ tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
+ tree vec_compare, vec_cond_expr;
+ tree new_temp;
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ tree def;
+ enum vect_def_type dt, dts[4];
+ int nunits = TYPE_VECTOR_SUBPARTS (vectype);
+ int ncopies;
+ enum tree_code code;
+ stmt_vec_info prev_stmt_info = NULL;
+ int i, j;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ vec<tree> vec_oprnds0 = vNULL;
+ vec<tree> vec_oprnds1 = vNULL;
+ vec<tree> vec_oprnds2 = vNULL;
+ vec<tree> vec_oprnds3 = vNULL;
+ tree vec_cmp_type;
+
+ if (slp_node || PURE_SLP_STMT (stmt_info))
+ ncopies = 1;
+ else
+ ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
+
+ gcc_assert (ncopies >= 1);
+ if (reduc_index && ncopies > 1)
+ return false; /* FORNOW */
+
+ if (reduc_index && STMT_SLP_TYPE (stmt_info))
+ return false;
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
+ return false;
+
+ if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
+ && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
+ && reduc_def))
+ return false;
+
+ /* FORNOW: not yet supported. */
+ if (STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "value used after loop.\n");
+ return false;
+ }
+
+ /* Is vectorizable conditional operation? */
+ if (!is_gimple_assign (stmt))
+ return false;
+
+ code = gimple_assign_rhs_code (stmt);
+
+ if (code != COND_EXPR)
+ return false;
+
+ cond_expr = gimple_assign_rhs1 (stmt);
+ then_clause = gimple_assign_rhs2 (stmt);
+ else_clause = gimple_assign_rhs3 (stmt);
+
+ if (!vect_is_simple_cond (cond_expr, stmt, loop_vinfo, bb_vinfo,
+ &comp_vectype)
+ || !comp_vectype)
+ return false;
+
+ if (TREE_CODE (then_clause) == SSA_NAME)
+ {
+ gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
+ if (!vect_is_simple_use (then_clause, stmt, loop_vinfo, bb_vinfo,
+ &then_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (then_clause) != INTEGER_CST
+ && TREE_CODE (then_clause) != REAL_CST
+ && TREE_CODE (then_clause) != FIXED_CST)
+ return false;
+
+ if (TREE_CODE (else_clause) == SSA_NAME)
+ {
+ gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
+ if (!vect_is_simple_use (else_clause, stmt, loop_vinfo, bb_vinfo,
+ &else_def_stmt, &def, &dt))
+ return false;
+ }
+ else if (TREE_CODE (else_clause) != INTEGER_CST
+ && TREE_CODE (else_clause) != REAL_CST
+ && TREE_CODE (else_clause) != FIXED_CST)
+ return false;
+
+ unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype)));
+ /* The result of a vector comparison should be signed type. */
+ tree cmp_type = build_nonstandard_integer_type (prec, 0);
+ vec_cmp_type = get_same_sized_vectype (cmp_type, vectype);
+ if (vec_cmp_type == NULL_TREE)
+ return false;
+
+ if (!vec_stmt)
+ {
+ STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
+ return expand_vec_cond_expr_p (vectype, comp_vectype);
+ }
+
+ /* Transform. */
+
+ if (!slp_node)
+ {
+ vec_oprnds0.create (1);
+ vec_oprnds1.create (1);
+ vec_oprnds2.create (1);
+ vec_oprnds3.create (1);
+ }
+
+ /* Handle def. */
+ scalar_dest = gimple_assign_lhs (stmt);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+
+ /* Handle cond expr. */
+ for (j = 0; j < ncopies; j++)
+ {
+ gimple new_stmt = NULL;
+ if (j == 0)
+ {
+ if (slp_node)
+ {
+ auto_vec<tree, 4> ops;
+ auto_vec<vec<tree>, 4> vec_defs;
+
+ ops.safe_push (TREE_OPERAND (cond_expr, 0));
+ ops.safe_push (TREE_OPERAND (cond_expr, 1));
+ ops.safe_push (then_clause);
+ ops.safe_push (else_clause);
+ vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
+ vec_oprnds3 = vec_defs.pop ();
+ vec_oprnds2 = vec_defs.pop ();
+ vec_oprnds1 = vec_defs.pop ();
+ vec_oprnds0 = vec_defs.pop ();
+
+ ops.release ();
+ vec_defs.release ();
+ }
+ else
+ {
+ gimple gtemp;
+ vec_cond_lhs =
+ vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
+ stmt, NULL);
+ vect_is_simple_use (TREE_OPERAND (cond_expr, 0), stmt,
+ loop_vinfo, NULL, &gtemp, &def, &dts[0]);
+
+ vec_cond_rhs =
+ vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
+ stmt, NULL);
+ vect_is_simple_use (TREE_OPERAND (cond_expr, 1), stmt,
+ loop_vinfo, NULL, &gtemp, &def, &dts[1]);
+ if (reduc_index == 1)
+ vec_then_clause = reduc_def;
+ else
+ {
+ vec_then_clause = vect_get_vec_def_for_operand (then_clause,
+ stmt, NULL);
+ vect_is_simple_use (then_clause, stmt, loop_vinfo,
+ NULL, &gtemp, &def, &dts[2]);
+ }
+ if (reduc_index == 2)
+ vec_else_clause = reduc_def;
+ else
+ {
+ vec_else_clause = vect_get_vec_def_for_operand (else_clause,
+ stmt, NULL);
+ vect_is_simple_use (else_clause, stmt, loop_vinfo,
+ NULL, &gtemp, &def, &dts[3]);
+ }
+ }
+ }
+ else
+ {
+ vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0],
+ vec_oprnds0.pop ());
+ vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1],
+ vec_oprnds1.pop ());
+ vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
+ vec_oprnds2.pop ());
+ vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
+ vec_oprnds3.pop ());
+ }
+
+ if (!slp_node)
+ {
+ vec_oprnds0.quick_push (vec_cond_lhs);
+ vec_oprnds1.quick_push (vec_cond_rhs);
+ vec_oprnds2.quick_push (vec_then_clause);
+ vec_oprnds3.quick_push (vec_else_clause);
+ }
+
+ /* Arguments are ready. Create the new vector stmt. */
+ FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
+ {
+ vec_cond_rhs = vec_oprnds1[i];
+ vec_then_clause = vec_oprnds2[i];
+ vec_else_clause = vec_oprnds3[i];
+
+ vec_compare = build2 (TREE_CODE (cond_expr), vec_cmp_type,
+ vec_cond_lhs, vec_cond_rhs);
+ vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
+ vec_compare, vec_then_clause, vec_else_clause);
+
+ new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ vect_finish_stmt_generation (stmt, new_stmt, gsi);
+ if (slp_node)
+ SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
+ }
+
+ if (slp_node)
+ continue;
+
+ if (j == 0)
+ STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
+ else
+ STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
+
+ prev_stmt_info = vinfo_for_stmt (new_stmt);
+ }
+
+ vec_oprnds0.release ();
+ vec_oprnds1.release ();
+ vec_oprnds2.release ();
+ vec_oprnds3.release ();
+
+ return true;
+}
+
+
+/* Make sure the statement is vectorizable. */
+
+bool
+vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
+ bool ok;
+ tree scalar_type, vectype;
+ gimple pattern_stmt;
+ gimple_seq pattern_def_seq;
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (gimple_has_volatile_ops (stmt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: stmt has volatile operands\n");
+
+ return false;
+ }
+
+ /* Skip stmts that do not need to be vectorized. In loops this is expected
+ to include:
+ - the COND_EXPR which is the loop exit condition
+ - any LABEL_EXPRs in the loop
+ - computations that are used only for array indexing or loop control.
+ In basic blocks we only analyze statements that are a part of some SLP
+ instance, therefore, all the statements are relevant.
+
+ Pattern statement needs to be analyzed instead of the original statement
+ if the original statement is not relevant. Otherwise, we analyze both
+ statements. In basic blocks we are called from some SLP instance
+ traversal, don't analyze pattern stmts instead, the pattern stmts
+ already will be part of SLP instance. */
+
+ pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
+ if (!STMT_VINFO_RELEVANT_P (stmt_info)
+ && !STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info)
+ && pattern_stmt
+ && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
+ || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
+ {
+ /* Analyze PATTERN_STMT instead of the original stmt. */
+ stmt = pattern_stmt;
+ stmt_info = vinfo_for_stmt (pattern_stmt);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "==> examining pattern statement: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.\n");
+
+ return true;
+ }
+ }
+ else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
+ && node == NULL
+ && pattern_stmt
+ && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
+ || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
+ {
+ /* Analyze PATTERN_STMT too. */
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "==> examining pattern statement: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
+ return false;
+ }
+
+ if (is_pattern_stmt_p (stmt_info)
+ && node == NULL
+ && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
+ {
+ gimple_stmt_iterator si;
+
+ for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple pattern_def_stmt = gsi_stmt (si);
+ if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
+ || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
+ {
+ /* Analyze def stmt of STMT if it's a pattern stmt. */
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "==> examining pattern def statement: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (!vect_analyze_stmt (pattern_def_stmt,
+ need_to_vectorize, node))
+ return false;
+ }
+ }
+ }
+
+ switch (STMT_VINFO_DEF_TYPE (stmt_info))
+ {
+ case vect_internal_def:
+ break;
+
+ case vect_reduction_def:
+ case vect_nested_cycle:
+ gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
+ || relevance == vect_used_in_outer_by_reduction
+ || relevance == vect_unused_in_scope));
+ break;
+
+ case vect_induction_def:
+ case vect_constant_def:
+ case vect_external_def:
+ case vect_unknown_def_type:
+ default:
+ gcc_unreachable ();
+ }
+
+ if (bb_vinfo)
+ {
+ gcc_assert (PURE_SLP_STMT (stmt_info));
+
+ scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "get vectype for scalar type: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ vectype = get_vectype_for_scalar_type (scalar_type);
+ if (!vectype)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not SLPed: unsupported data-type ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ scalar_type);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return false;
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ STMT_VINFO_VECTYPE (stmt_info) = vectype;
+ }
+
+ if (STMT_VINFO_RELEVANT_P (stmt_info))
+ {
+ gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
+ gcc_assert (STMT_VINFO_VECTYPE (stmt_info)
+ || (is_gimple_call (stmt)
+ && gimple_call_lhs (stmt) == NULL_TREE));
+ *need_to_vectorize = true;
+ }
+
+ ok = true;
+ if (!bb_vinfo
+ && (STMT_VINFO_RELEVANT_P (stmt_info)
+ || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
+ ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, NULL)
+ || vectorizable_conversion (stmt, NULL, NULL, NULL)
+ || vectorizable_shift (stmt, NULL, NULL, NULL)
+ || vectorizable_operation (stmt, NULL, NULL, NULL)
+ || vectorizable_assignment (stmt, NULL, NULL, NULL)
+ || vectorizable_load (stmt, NULL, NULL, NULL, NULL)
+ || vectorizable_call (stmt, NULL, NULL, NULL)
+ || vectorizable_store (stmt, NULL, NULL, NULL)
+ || vectorizable_reduction (stmt, NULL, NULL, NULL)
+ || vectorizable_condition (stmt, NULL, NULL, NULL, 0, NULL));
+ else
+ {
+ if (bb_vinfo)
+ ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
+ || vectorizable_conversion (stmt, NULL, NULL, node)
+ || vectorizable_shift (stmt, NULL, NULL, node)
+ || vectorizable_operation (stmt, NULL, NULL, node)
+ || vectorizable_assignment (stmt, NULL, NULL, node)
+ || vectorizable_load (stmt, NULL, NULL, node, NULL)
+ || vectorizable_call (stmt, NULL, NULL, node)
+ || vectorizable_store (stmt, NULL, NULL, node)
+ || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node));
+ }
+
+ if (!ok)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: relevant stmt not ");
+ dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ return false;
+ }
+
+ if (bb_vinfo)
+ return true;
+
+ /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
+ need extra handling, except for vectorizable reductions. */
+ if (STMT_VINFO_LIVE_P (stmt_info)
+ && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
+ ok = vectorizable_live_operation (stmt, NULL, NULL);
+
+ if (!ok)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: live stmt not ");
+ dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_transform_stmt.
+
+ Create a vectorized stmt to replace STMT, and insert it at BSI. */
+
+bool
+vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
+ bool *grouped_store, slp_tree slp_node,
+ slp_instance slp_node_instance)
+{
+ bool is_store = false;
+ gimple vec_stmt = NULL;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ bool done;
+
+ switch (STMT_VINFO_TYPE (stmt_info))
+ {
+ case type_demotion_vec_info_type:
+ case type_promotion_vec_info_type:
+ case type_conversion_vec_info_type:
+ done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case induc_vec_info_type:
+ gcc_assert (!slp_node);
+ done = vectorizable_induction (stmt, gsi, &vec_stmt);
+ gcc_assert (done);
+ break;
+
+ case shift_vec_info_type:
+ done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case op_vec_info_type:
+ done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case assignment_vec_info_type:
+ done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ case load_vec_info_type:
+ done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
+ slp_node_instance);
+ gcc_assert (done);
+ break;
+
+ case store_vec_info_type:
+ done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
+ {
+ /* In case of interleaving, the whole chain is vectorized when the
+ last store in the chain is reached. Store stmts before the last
+ one are skipped, and there vec_stmt_info shouldn't be freed
+ meanwhile. */
+ *grouped_store = true;
+ if (STMT_VINFO_VEC_STMT (stmt_info))
+ is_store = true;
+ }
+ else
+ is_store = true;
+ break;
+
+ case condition_vec_info_type:
+ done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
+ gcc_assert (done);
+ break;
+
+ case call_vec_info_type:
+ done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
+ stmt = gsi_stmt (*gsi);
+ if (is_gimple_call (stmt)
+ && gimple_call_internal_p (stmt)
+ && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
+ is_store = true;
+ break;
+
+ case call_simd_clone_vec_info_type:
+ done = vectorizable_simd_clone_call (stmt, gsi, &vec_stmt, slp_node);
+ stmt = gsi_stmt (*gsi);
+ break;
+
+ case reduc_vec_info_type:
+ done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
+ gcc_assert (done);
+ break;
+
+ default:
+ if (!STMT_VINFO_LIVE_P (stmt_info))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "stmt not supported.\n");
+ gcc_unreachable ();
+ }
+ }
+
+ /* Handle inner-loop stmts whose DEF is used in the loop-nest that
+ is being vectorized, but outside the immediately enclosing loop. */
+ if (vec_stmt
+ && STMT_VINFO_LOOP_VINFO (stmt_info)
+ && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
+ STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
+ && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
+ && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
+ || STMT_VINFO_RELEVANT (stmt_info) ==
+ vect_used_in_outer_by_reduction))
+ {
+ struct loop *innerloop = LOOP_VINFO_LOOP (
+ STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ tree scalar_dest;
+ gimple exit_phi;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Record the vdef for outer-loop vectorization.\n");
+
+ /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
+ (to be used when vectorizing outer-loop stmts that use the DEF of
+ STMT). */
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ scalar_dest = PHI_RESULT (stmt);
+ else
+ scalar_dest = gimple_assign_lhs (stmt);
+
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
+ {
+ if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
+ {
+ exit_phi = USE_STMT (use_p);
+ STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
+ }
+ }
+ }
+
+ /* Handle stmts whose DEF is used outside the loop-nest that is
+ being vectorized. */
+ if (STMT_VINFO_LIVE_P (stmt_info)
+ && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
+ {
+ done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
+ gcc_assert (done);
+ }
+
+ if (vec_stmt)
+ STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
+
+ return is_store;
+}
+
+
+/* Remove a group of stores (for SLP or interleaving), free their
+ stmt_vec_info. */
+
+void
+vect_remove_stores (gimple first_stmt)
+{
+ gimple next = first_stmt;
+ gimple tmp;
+ gimple_stmt_iterator next_si;
+
+ while (next)
+ {
+ stmt_vec_info stmt_info = vinfo_for_stmt (next);
+
+ tmp = GROUP_NEXT_ELEMENT (stmt_info);
+ if (is_pattern_stmt_p (stmt_info))
+ next = STMT_VINFO_RELATED_STMT (stmt_info);
+ /* Free the attached stmt_vec_info and remove the stmt. */
+ next_si = gsi_for_stmt (next);
+ unlink_stmt_vdef (next);
+ gsi_remove (&next_si, true);
+ release_defs (next);
+ free_stmt_vec_info (next);
+ next = tmp;
+ }
+}
+
+
+/* Function new_stmt_vec_info.
+
+ Create and initialize a new stmt_vec_info struct for STMT. */
+
+stmt_vec_info
+new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo)
+{
+ stmt_vec_info res;
+ res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
+
+ STMT_VINFO_TYPE (res) = undef_vec_info_type;
+ STMT_VINFO_STMT (res) = stmt;
+ STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
+ STMT_VINFO_BB_VINFO (res) = bb_vinfo;
+ STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
+ STMT_VINFO_LIVE_P (res) = false;
+ STMT_VINFO_VECTYPE (res) = NULL;
+ STMT_VINFO_VEC_STMT (res) = NULL;
+ STMT_VINFO_VECTORIZABLE (res) = true;
+ STMT_VINFO_IN_PATTERN_P (res) = false;
+ STMT_VINFO_RELATED_STMT (res) = NULL;
+ STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
+ STMT_VINFO_DATA_REF (res) = NULL;
+
+ STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
+ STMT_VINFO_DR_OFFSET (res) = NULL;
+ STMT_VINFO_DR_INIT (res) = NULL;
+ STMT_VINFO_DR_STEP (res) = NULL;
+ STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && is_loop_header_bb_p (gimple_bb (stmt)))
+ STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
+ else
+ STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
+
+ STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
+ STMT_SLP_TYPE (res) = loop_vect;
+ GROUP_FIRST_ELEMENT (res) = NULL;
+ GROUP_NEXT_ELEMENT (res) = NULL;
+ GROUP_SIZE (res) = 0;
+ GROUP_STORE_COUNT (res) = 0;
+ GROUP_GAP (res) = 0;
+ GROUP_SAME_DR_STMT (res) = NULL;
+
+ return res;
+}
+
+
+/* Create a hash table for stmt_vec_info. */
+
+void
+init_stmt_vec_info_vec (void)
+{
+ gcc_assert (!stmt_vec_info_vec.exists ());
+ stmt_vec_info_vec.create (50);
+}
+
+
+/* Free hash table for stmt_vec_info. */
+
+void
+free_stmt_vec_info_vec (void)
+{
+ unsigned int i;
+ vec_void_p info;
+ FOR_EACH_VEC_ELT (stmt_vec_info_vec, i, info)
+ if (info != NULL)
+ free_stmt_vec_info (STMT_VINFO_STMT ((stmt_vec_info) info));
+ gcc_assert (stmt_vec_info_vec.exists ());
+ stmt_vec_info_vec.release ();
+}
+
+
+/* Free stmt vectorization related info. */
+
+void
+free_stmt_vec_info (gimple stmt)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ if (!stmt_info)
+ return;
+
+ /* Check if this statement has a related "pattern stmt"
+ (introduced by the vectorizer during the pattern recognition
+ pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
+ too. */
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info))
+ {
+ stmt_vec_info patt_info
+ = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
+ if (patt_info)
+ {
+ gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
+ gimple patt_stmt = STMT_VINFO_STMT (patt_info);
+ gimple_set_bb (patt_stmt, NULL);
+ tree lhs = gimple_get_lhs (patt_stmt);
+ if (TREE_CODE (lhs) == SSA_NAME)
+ release_ssa_name (lhs);
+ if (seq)
+ {
+ gimple_stmt_iterator si;
+ for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple seq_stmt = gsi_stmt (si);
+ gimple_set_bb (seq_stmt, NULL);
+ lhs = gimple_get_lhs (patt_stmt);
+ if (TREE_CODE (lhs) == SSA_NAME)
+ release_ssa_name (lhs);
+ free_stmt_vec_info (seq_stmt);
+ }
+ }
+ free_stmt_vec_info (patt_stmt);
+ }
+ }
+
+ STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
+ set_vinfo_for_stmt (stmt, NULL);
+ free (stmt_info);
+}
+
+
+/* Function get_vectype_for_scalar_type_and_size.
+
+ Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
+ by the target. */
+
+static tree
+get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
+{
+ enum machine_mode inner_mode = TYPE_MODE (scalar_type);
+ enum machine_mode simd_mode;
+ unsigned int nbytes = GET_MODE_SIZE (inner_mode);
+ int nunits;
+ tree vectype;
+
+ if (nbytes == 0)
+ return NULL_TREE;
+
+ if (GET_MODE_CLASS (inner_mode) != MODE_INT
+ && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
+ return NULL_TREE;
+
+ /* For vector types of elements whose mode precision doesn't
+ match their types precision we use a element type of mode
+ precision. The vectorization routines will have to make sure
+ they support the proper result truncation/extension.
+ We also make sure to build vector types with INTEGER_TYPE
+ component type only. */
+ if (INTEGRAL_TYPE_P (scalar_type)
+ && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
+ || TREE_CODE (scalar_type) != INTEGER_TYPE))
+ scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
+ TYPE_UNSIGNED (scalar_type));
+
+ /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
+ When the component mode passes the above test simply use a type
+ corresponding to that mode. The theory is that any use that
+ would cause problems with this will disable vectorization anyway. */
+ else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
+ && !INTEGRAL_TYPE_P (scalar_type))
+ scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
+
+ /* We can't build a vector type of elements with alignment bigger than
+ their size. */
+ else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
+ scalar_type = lang_hooks.types.type_for_mode (inner_mode,
+ TYPE_UNSIGNED (scalar_type));
+
+ /* If we felt back to using the mode fail if there was
+ no scalar type for it. */
+ if (scalar_type == NULL_TREE)
+ return NULL_TREE;
+
+ /* If no size was supplied use the mode the target prefers. Otherwise
+ lookup a vector mode of the specified size. */
+ if (size == 0)
+ simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
+ else
+ simd_mode = mode_for_vector (inner_mode, size / nbytes);
+ nunits = GET_MODE_SIZE (simd_mode) / nbytes;
+ if (nunits <= 1)
+ return NULL_TREE;
+
+ vectype = build_vector_type (scalar_type, nunits);
+
+ if (!VECTOR_MODE_P (TYPE_MODE (vectype))
+ && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
+ return NULL_TREE;
+
+ return vectype;
+}
+
+unsigned int current_vector_size;
+
+/* Function get_vectype_for_scalar_type.
+
+ Returns the vector type corresponding to SCALAR_TYPE as supported
+ by the target. */
+
+tree
+get_vectype_for_scalar_type (tree scalar_type)
+{
+ tree vectype;
+ vectype = get_vectype_for_scalar_type_and_size (scalar_type,
+ current_vector_size);
+ if (vectype
+ && current_vector_size == 0)
+ current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
+ return vectype;
+}
+
+/* Function get_same_sized_vectype
+
+ Returns a vector type corresponding to SCALAR_TYPE of size
+ VECTOR_TYPE if supported by the target. */
+
+tree
+get_same_sized_vectype (tree scalar_type, tree vector_type)
+{
+ return get_vectype_for_scalar_type_and_size
+ (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
+}
+
+/* Function vect_is_simple_use.
+
+ Input:
+ LOOP_VINFO - the vect info of the loop that is being vectorized.
+ BB_VINFO - the vect info of the basic block that is being vectorized.
+ OPERAND - operand of STMT in the loop or bb.
+ DEF - the defining stmt in case OPERAND is an SSA_NAME.
+
+ Returns whether a stmt with OPERAND can be vectorized.
+ For loops, supportable operands are constants, loop invariants, and operands
+ that are defined by the current iteration of the loop. Unsupportable
+ operands are those that are defined by a previous iteration of the loop (as
+ is the case in reduction/induction computations).
+ For basic blocks, supportable operands are constants and bb invariants.
+ For now, operands defined outside the basic block are not supported. */
+
+bool
+vect_is_simple_use (tree operand, gimple stmt, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo, gimple *def_stmt,
+ tree *def, enum vect_def_type *dt)
+{
+ basic_block bb;
+ stmt_vec_info stmt_vinfo;
+ struct loop *loop = NULL;
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ *def_stmt = NULL;
+ *def = NULL_TREE;
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_is_simple_use: operand ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (CONSTANT_CLASS_P (operand))
+ {
+ *dt = vect_constant_def;
+ return true;
+ }
+
+ if (is_gimple_min_invariant (operand))
+ {
+ *def = operand;
+ *dt = vect_external_def;
+ return true;
+ }
+
+ if (TREE_CODE (operand) == PAREN_EXPR)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "non-associatable copy.\n");
+ operand = TREE_OPERAND (operand, 0);
+ }
+
+ if (TREE_CODE (operand) != SSA_NAME)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not ssa-name.\n");
+ return false;
+ }
+
+ *def_stmt = SSA_NAME_DEF_STMT (operand);
+ if (*def_stmt == NULL)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no def_stmt.\n");
+ return false;
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ /* Empty stmt is expected only in case of a function argument.
+ (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
+ if (gimple_nop_p (*def_stmt))
+ {
+ *def = operand;
+ *dt = vect_external_def;
+ return true;
+ }
+
+ bb = gimple_bb (*def_stmt);
+
+ if ((loop && !flow_bb_inside_loop_p (loop, bb))
+ || (!loop && bb != BB_VINFO_BB (bb_vinfo))
+ || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
+ *dt = vect_external_def;
+ else
+ {
+ stmt_vinfo = vinfo_for_stmt (*def_stmt);
+ *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
+ }
+
+ if (*dt == vect_unknown_def_type
+ || (stmt
+ && *dt == vect_double_reduction_def
+ && gimple_code (stmt) != GIMPLE_PHI))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Unsupported pattern.\n");
+ return false;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "type of def: %d.\n", *dt);
+
+ switch (gimple_code (*def_stmt))
+ {
+ case GIMPLE_PHI:
+ *def = gimple_phi_result (*def_stmt);
+ break;
+
+ case GIMPLE_ASSIGN:
+ *def = gimple_assign_lhs (*def_stmt);
+ break;
+
+ case GIMPLE_CALL:
+ *def = gimple_call_lhs (*def_stmt);
+ if (*def != NULL)
+ break;
+ /* FALLTHRU */
+ default:
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unsupported defining stmt:\n");
+ return false;
+ }
+
+ return true;
+}
+
+/* Function vect_is_simple_use_1.
+
+ Same as vect_is_simple_use_1 but also determines the vector operand
+ type of OPERAND and stores it to *VECTYPE. If the definition of
+ OPERAND is vect_uninitialized_def, vect_constant_def or
+ vect_external_def *VECTYPE will be set to NULL_TREE and the caller
+ is responsible to compute the best suited vector type for the
+ scalar operand. */
+
+bool
+vect_is_simple_use_1 (tree operand, gimple stmt, loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo, gimple *def_stmt,
+ tree *def, enum vect_def_type *dt, tree *vectype)
+{
+ if (!vect_is_simple_use (operand, stmt, loop_vinfo, bb_vinfo, def_stmt,
+ def, dt))
+ return false;
+
+ /* Now get a vector type if the def is internal, otherwise supply
+ NULL_TREE and leave it up to the caller to figure out a proper
+ type for the use stmt. */
+ if (*dt == vect_internal_def
+ || *dt == vect_induction_def
+ || *dt == vect_reduction_def
+ || *dt == vect_double_reduction_def
+ || *dt == vect_nested_cycle)
+ {
+ stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
+
+ if (STMT_VINFO_IN_PATTERN_P (stmt_info)
+ && !STMT_VINFO_RELEVANT (stmt_info)
+ && !STMT_VINFO_LIVE_P (stmt_info))
+ stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
+
+ *vectype = STMT_VINFO_VECTYPE (stmt_info);
+ gcc_assert (*vectype != NULL_TREE);
+ }
+ else if (*dt == vect_uninitialized_def
+ || *dt == vect_constant_def
+ || *dt == vect_external_def)
+ *vectype = NULL_TREE;
+ else
+ gcc_unreachable ();
+
+ return true;
+}
+
+
+/* Function supportable_widening_operation
+
+ Check whether an operation represented by the code CODE is a
+ widening operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE_IN
+ producing a result of type VECTYPE_OUT).
+
+ Widening operations we currently support are NOP (CONVERT), FLOAT
+ and WIDEN_MULT. This function checks if these operations are supported
+ by the target platform either directly (via vector tree-codes), or via
+ target builtins.
+
+ Output:
+ - CODE1 and CODE2 are codes of vector operations to be used when
+ vectorizing the operation, if available.
+ - MULTI_STEP_CVT determines the number of required intermediate steps in
+ case of multi-step conversion (like char->short->int - in that case
+ MULTI_STEP_CVT will be 1).
+ - INTERM_TYPES contains the intermediate type required to perform the
+ widening operation (short in the above example). */
+
+bool
+supportable_widening_operation (enum tree_code code, gimple stmt,
+ tree vectype_out, tree vectype_in,
+ enum tree_code *code1, enum tree_code *code2,
+ int *multi_step_cvt,
+ vec<tree> *interm_types)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *vect_loop = NULL;
+ enum machine_mode vec_mode;
+ enum insn_code icode1, icode2;
+ optab optab1, optab2;
+ tree vectype = vectype_in;
+ tree wide_vectype = vectype_out;
+ enum tree_code c1, c2;
+ int i;
+ tree prev_type, intermediate_type;
+ enum machine_mode intermediate_mode, prev_mode;
+ optab optab3, optab4;
+
+ *multi_step_cvt = 0;
+ if (loop_info)
+ vect_loop = LOOP_VINFO_LOOP (loop_info);
+
+ switch (code)
+ {
+ case WIDEN_MULT_EXPR:
+ /* The result of a vectorized widening operation usually requires
+ two vectors (because the widened results do not fit into one vector).
+ The generated vector results would normally be expected to be
+ generated in the same order as in the original scalar computation,
+ i.e. if 8 results are generated in each vector iteration, they are
+ to be organized as follows:
+ vect1: [res1,res2,res3,res4],
+ vect2: [res5,res6,res7,res8].
+
+ However, in the special case that the result of the widening
+ operation is used in a reduction computation only, the order doesn't
+ matter (because when vectorizing a reduction we change the order of
+ the computation). Some targets can take advantage of this and
+ generate more efficient code. For example, targets like Altivec,
+ that support widen_mult using a sequence of {mult_even,mult_odd}
+ generate the following vectors:
+ vect1: [res1,res3,res5,res7],
+ vect2: [res2,res4,res6,res8].
+
+ When vectorizing outer-loops, we execute the inner-loop sequentially
+ (each vectorized inner-loop iteration contributes to VF outer-loop
+ iterations in parallel). We therefore don't allow to change the
+ order of the computation in the inner-loop during outer-loop
+ vectorization. */
+ /* TODO: Another case in which order doesn't *really* matter is when we
+ widen and then contract again, e.g. (short)((int)x * y >> 8).
+ Normally, pack_trunc performs an even/odd permute, whereas the
+ repack from an even/odd expansion would be an interleave, which
+ would be significantly simpler for e.g. AVX2. */
+ /* In any case, in order to avoid duplicating the code below, recurse
+ on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
+ are properly set up for the caller. If we fail, we'll continue with
+ a VEC_WIDEN_MULT_LO/HI_EXPR check. */
+ if (vect_loop
+ && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
+ && !nested_in_vect_loop_p (vect_loop, stmt)
+ && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
+ stmt, vectype_out, vectype_in,
+ code1, code2, multi_step_cvt,
+ interm_types))
+ return true;
+ c1 = VEC_WIDEN_MULT_LO_EXPR;
+ c2 = VEC_WIDEN_MULT_HI_EXPR;
+ break;
+
+ case VEC_WIDEN_MULT_EVEN_EXPR:
+ /* Support the recursion induced just above. */
+ c1 = VEC_WIDEN_MULT_EVEN_EXPR;
+ c2 = VEC_WIDEN_MULT_ODD_EXPR;
+ break;
+
+ case WIDEN_LSHIFT_EXPR:
+ c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
+ c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
+ break;
+
+ CASE_CONVERT:
+ c1 = VEC_UNPACK_LO_EXPR;
+ c2 = VEC_UNPACK_HI_EXPR;
+ break;
+
+ case FLOAT_EXPR:
+ c1 = VEC_UNPACK_FLOAT_LO_EXPR;
+ c2 = VEC_UNPACK_FLOAT_HI_EXPR;
+ break;
+
+ case FIX_TRUNC_EXPR:
+ /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
+ VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
+ computing the operation. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
+ {
+ enum tree_code ctmp = c1;
+ c1 = c2;
+ c2 = ctmp;
+ }
+
+ if (code == FIX_TRUNC_EXPR)
+ {
+ /* The signedness is determined from output operand. */
+ optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
+ optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
+ }
+ else
+ {
+ optab1 = optab_for_tree_code (c1, vectype, optab_default);
+ optab2 = optab_for_tree_code (c2, vectype, optab_default);
+ }
+
+ if (!optab1 || !optab2)
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
+ || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
+ return false;
+
+ *code1 = c1;
+ *code2 = c2;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
+ && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
+ return true;
+
+ /* Check if it's a multi-step conversion that can be done using intermediate
+ types. */
+
+ prev_type = vectype;
+ prev_mode = vec_mode;
+
+ if (!CONVERT_EXPR_CODE_P (code))
+ return false;
+
+ /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
+ intermediate steps in promotion sequence. We try
+ MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
+ not. */
+ interm_types->create (MAX_INTERM_CVT_STEPS);
+ for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
+ {
+ intermediate_mode = insn_data[icode1].operand[0].mode;
+ intermediate_type
+ = lang_hooks.types.type_for_mode (intermediate_mode,
+ TYPE_UNSIGNED (prev_type));
+ optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
+ optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
+
+ if (!optab3 || !optab4
+ || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
+ || insn_data[icode1].operand[0].mode != intermediate_mode
+ || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
+ || insn_data[icode2].operand[0].mode != intermediate_mode
+ || ((icode1 = optab_handler (optab3, intermediate_mode))
+ == CODE_FOR_nothing)
+ || ((icode2 = optab_handler (optab4, intermediate_mode))
+ == CODE_FOR_nothing))
+ break;
+
+ interm_types->quick_push (intermediate_type);
+ (*multi_step_cvt)++;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
+ && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
+ return true;
+
+ prev_type = intermediate_type;
+ prev_mode = intermediate_mode;
+ }
+
+ interm_types->release ();
+ return false;
+}
+
+
+/* Function supportable_narrowing_operation
+
+ Check whether an operation represented by the code CODE is a
+ narrowing operation that is supported by the target platform in
+ vector form (i.e., when operating on arguments of type VECTYPE_IN
+ and producing a result of type VECTYPE_OUT).
+
+ Narrowing operations we currently support are NOP (CONVERT) and
+ FIX_TRUNC. This function checks if these operations are supported by
+ the target platform directly via vector tree-codes.
+
+ Output:
+ - CODE1 is the code of a vector operation to be used when
+ vectorizing the operation, if available.
+ - MULTI_STEP_CVT determines the number of required intermediate steps in
+ case of multi-step conversion (like int->short->char - in that case
+ MULTI_STEP_CVT will be 1).
+ - INTERM_TYPES contains the intermediate type required to perform the
+ narrowing operation (short in the above example). */
+
+bool
+supportable_narrowing_operation (enum tree_code code,
+ tree vectype_out, tree vectype_in,
+ enum tree_code *code1, int *multi_step_cvt,
+ vec<tree> *interm_types)
+{
+ enum machine_mode vec_mode;
+ enum insn_code icode1;
+ optab optab1, interm_optab;
+ tree vectype = vectype_in;
+ tree narrow_vectype = vectype_out;
+ enum tree_code c1;
+ tree intermediate_type;
+ enum machine_mode intermediate_mode, prev_mode;
+ int i;
+ bool uns;
+
+ *multi_step_cvt = 0;
+ switch (code)
+ {
+ CASE_CONVERT:
+ c1 = VEC_PACK_TRUNC_EXPR;
+ break;
+
+ case FIX_TRUNC_EXPR:
+ c1 = VEC_PACK_FIX_TRUNC_EXPR;
+ break;
+
+ case FLOAT_EXPR:
+ /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
+ tree code and optabs used for computing the operation. */
+ return false;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (code == FIX_TRUNC_EXPR)
+ /* The signedness is determined from output operand. */
+ optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
+ else
+ optab1 = optab_for_tree_code (c1, vectype, optab_default);
+
+ if (!optab1)
+ return false;
+
+ vec_mode = TYPE_MODE (vectype);
+ if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
+ return false;
+
+ *code1 = c1;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
+ return true;
+
+ /* Check if it's a multi-step conversion that can be done using intermediate
+ types. */
+ prev_mode = vec_mode;
+ if (code == FIX_TRUNC_EXPR)
+ uns = TYPE_UNSIGNED (vectype_out);
+ else
+ uns = TYPE_UNSIGNED (vectype);
+
+ /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
+ conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
+ costly than signed. */
+ if (code == FIX_TRUNC_EXPR && uns)
+ {
+ enum insn_code icode2;
+
+ intermediate_type
+ = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
+ interm_optab
+ = optab_for_tree_code (c1, intermediate_type, optab_default);
+ if (interm_optab != unknown_optab
+ && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
+ && insn_data[icode1].operand[0].mode
+ == insn_data[icode2].operand[0].mode)
+ {
+ uns = false;
+ optab1 = interm_optab;
+ icode1 = icode2;
+ }
+ }
+
+ /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
+ intermediate steps in promotion sequence. We try
+ MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
+ interm_types->create (MAX_INTERM_CVT_STEPS);
+ for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
+ {
+ intermediate_mode = insn_data[icode1].operand[0].mode;
+ intermediate_type
+ = lang_hooks.types.type_for_mode (intermediate_mode, uns);
+ interm_optab
+ = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
+ optab_default);
+ if (!interm_optab
+ || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
+ || insn_data[icode1].operand[0].mode != intermediate_mode
+ || ((icode1 = optab_handler (interm_optab, intermediate_mode))
+ == CODE_FOR_nothing))
+ break;
+
+ interm_types->quick_push (intermediate_type);
+ (*multi_step_cvt)++;
+
+ if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
+ return true;
+
+ prev_mode = intermediate_mode;
+ optab1 = interm_optab;
+ }
+
+ interm_types->release ();
+ return false;
+}