aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/go/gofrontend/gogo.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/go/gofrontend/gogo.cc')
-rw-r--r--gcc-4.9/gcc/go/gofrontend/gogo.cc6198
1 files changed, 6198 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/go/gofrontend/gogo.cc b/gcc-4.9/gcc/go/gofrontend/gogo.cc
new file mode 100644
index 000000000..9739f289f
--- /dev/null
+++ b/gcc-4.9/gcc/go/gofrontend/gogo.cc
@@ -0,0 +1,6198 @@
+// gogo.cc -- Go frontend parsed representation.
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "go-system.h"
+
+#include "filenames.h"
+
+#include "go-c.h"
+#include "go-dump.h"
+#include "lex.h"
+#include "types.h"
+#include "statements.h"
+#include "expressions.h"
+#include "dataflow.h"
+#include "runtime.h"
+#include "import.h"
+#include "export.h"
+#include "backend.h"
+#include "gogo.h"
+
+// Class Gogo.
+
+Gogo::Gogo(Backend* backend, Linemap* linemap, int, int pointer_size)
+ : backend_(backend),
+ linemap_(linemap),
+ package_(NULL),
+ functions_(),
+ globals_(new Bindings(NULL)),
+ file_block_names_(),
+ imports_(),
+ imported_unsafe_(false),
+ packages_(),
+ init_functions_(),
+ var_deps_(),
+ need_init_fn_(false),
+ init_fn_name_(),
+ imported_init_fns_(),
+ pkgpath_(),
+ pkgpath_symbol_(),
+ prefix_(),
+ pkgpath_set_(false),
+ pkgpath_from_option_(false),
+ prefix_from_option_(false),
+ relative_import_path_(),
+ verify_types_(),
+ interface_types_(),
+ specific_type_functions_(),
+ specific_type_functions_are_written_(false),
+ named_types_are_converted_(false)
+{
+ const Location loc = Linemap::predeclared_location();
+
+ Named_type* uint8_type = Type::make_integer_type("uint8", true, 8,
+ RUNTIME_TYPE_KIND_UINT8);
+ this->add_named_type(uint8_type);
+ this->add_named_type(Type::make_integer_type("uint16", true, 16,
+ RUNTIME_TYPE_KIND_UINT16));
+ this->add_named_type(Type::make_integer_type("uint32", true, 32,
+ RUNTIME_TYPE_KIND_UINT32));
+ this->add_named_type(Type::make_integer_type("uint64", true, 64,
+ RUNTIME_TYPE_KIND_UINT64));
+
+ this->add_named_type(Type::make_integer_type("int8", false, 8,
+ RUNTIME_TYPE_KIND_INT8));
+ this->add_named_type(Type::make_integer_type("int16", false, 16,
+ RUNTIME_TYPE_KIND_INT16));
+ Named_type* int32_type = Type::make_integer_type("int32", false, 32,
+ RUNTIME_TYPE_KIND_INT32);
+ this->add_named_type(int32_type);
+ this->add_named_type(Type::make_integer_type("int64", false, 64,
+ RUNTIME_TYPE_KIND_INT64));
+
+ this->add_named_type(Type::make_float_type("float32", 32,
+ RUNTIME_TYPE_KIND_FLOAT32));
+ this->add_named_type(Type::make_float_type("float64", 64,
+ RUNTIME_TYPE_KIND_FLOAT64));
+
+ this->add_named_type(Type::make_complex_type("complex64", 64,
+ RUNTIME_TYPE_KIND_COMPLEX64));
+ this->add_named_type(Type::make_complex_type("complex128", 128,
+ RUNTIME_TYPE_KIND_COMPLEX128));
+
+ int int_type_size = pointer_size;
+ if (int_type_size < 32)
+ int_type_size = 32;
+ this->add_named_type(Type::make_integer_type("uint", true,
+ int_type_size,
+ RUNTIME_TYPE_KIND_UINT));
+ Named_type* int_type = Type::make_integer_type("int", false, int_type_size,
+ RUNTIME_TYPE_KIND_INT);
+ this->add_named_type(int_type);
+
+ this->add_named_type(Type::make_integer_type("uintptr", true,
+ pointer_size,
+ RUNTIME_TYPE_KIND_UINTPTR));
+
+ // "byte" is an alias for "uint8".
+ uint8_type->integer_type()->set_is_byte();
+ Named_object* byte_type = Named_object::make_type("byte", NULL, uint8_type,
+ loc);
+ this->add_named_type(byte_type->type_value());
+
+ // "rune" is an alias for "int32".
+ int32_type->integer_type()->set_is_rune();
+ Named_object* rune_type = Named_object::make_type("rune", NULL, int32_type,
+ loc);
+ this->add_named_type(rune_type->type_value());
+
+ this->add_named_type(Type::make_named_bool_type());
+
+ this->add_named_type(Type::make_named_string_type());
+
+ // "error" is interface { Error() string }.
+ {
+ Typed_identifier_list *methods = new Typed_identifier_list;
+ Typed_identifier_list *results = new Typed_identifier_list;
+ results->push_back(Typed_identifier("", Type::lookup_string_type(), loc));
+ Type *method_type = Type::make_function_type(NULL, NULL, results, loc);
+ methods->push_back(Typed_identifier("Error", method_type, loc));
+ Interface_type *error_iface = Type::make_interface_type(methods, loc);
+ error_iface->finalize_methods();
+ Named_type *error_type = Named_object::make_type("error", NULL, error_iface, loc)->type_value();
+ this->add_named_type(error_type);
+ }
+
+ this->globals_->add_constant(Typed_identifier("true",
+ Type::make_boolean_type(),
+ loc),
+ NULL,
+ Expression::make_boolean(true, loc),
+ 0);
+ this->globals_->add_constant(Typed_identifier("false",
+ Type::make_boolean_type(),
+ loc),
+ NULL,
+ Expression::make_boolean(false, loc),
+ 0);
+
+ this->globals_->add_constant(Typed_identifier("nil", Type::make_nil_type(),
+ loc),
+ NULL,
+ Expression::make_nil(loc),
+ 0);
+
+ Type* abstract_int_type = Type::make_abstract_integer_type();
+ this->globals_->add_constant(Typed_identifier("iota", abstract_int_type,
+ loc),
+ NULL,
+ Expression::make_iota(),
+ 0);
+
+ Function_type* new_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ new_type->set_is_varargs();
+ new_type->set_is_builtin();
+ this->globals_->add_function_declaration("new", NULL, new_type, loc);
+
+ Function_type* make_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ make_type->set_is_varargs();
+ make_type->set_is_builtin();
+ this->globals_->add_function_declaration("make", NULL, make_type, loc);
+
+ Typed_identifier_list* len_result = new Typed_identifier_list();
+ len_result->push_back(Typed_identifier("", int_type, loc));
+ Function_type* len_type = Type::make_function_type(NULL, NULL, len_result,
+ loc);
+ len_type->set_is_builtin();
+ this->globals_->add_function_declaration("len", NULL, len_type, loc);
+
+ Typed_identifier_list* cap_result = new Typed_identifier_list();
+ cap_result->push_back(Typed_identifier("", int_type, loc));
+ Function_type* cap_type = Type::make_function_type(NULL, NULL, len_result,
+ loc);
+ cap_type->set_is_builtin();
+ this->globals_->add_function_declaration("cap", NULL, cap_type, loc);
+
+ Function_type* print_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ print_type->set_is_varargs();
+ print_type->set_is_builtin();
+ this->globals_->add_function_declaration("print", NULL, print_type, loc);
+
+ print_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ print_type->set_is_varargs();
+ print_type->set_is_builtin();
+ this->globals_->add_function_declaration("println", NULL, print_type, loc);
+
+ Type *empty = Type::make_empty_interface_type(loc);
+ Typed_identifier_list* panic_parms = new Typed_identifier_list();
+ panic_parms->push_back(Typed_identifier("e", empty, loc));
+ Function_type *panic_type = Type::make_function_type(NULL, panic_parms,
+ NULL, loc);
+ panic_type->set_is_builtin();
+ this->globals_->add_function_declaration("panic", NULL, panic_type, loc);
+
+ Typed_identifier_list* recover_result = new Typed_identifier_list();
+ recover_result->push_back(Typed_identifier("", empty, loc));
+ Function_type* recover_type = Type::make_function_type(NULL, NULL,
+ recover_result,
+ loc);
+ recover_type->set_is_builtin();
+ this->globals_->add_function_declaration("recover", NULL, recover_type, loc);
+
+ Function_type* close_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ close_type->set_is_varargs();
+ close_type->set_is_builtin();
+ this->globals_->add_function_declaration("close", NULL, close_type, loc);
+
+ Typed_identifier_list* copy_result = new Typed_identifier_list();
+ copy_result->push_back(Typed_identifier("", int_type, loc));
+ Function_type* copy_type = Type::make_function_type(NULL, NULL,
+ copy_result, loc);
+ copy_type->set_is_varargs();
+ copy_type->set_is_builtin();
+ this->globals_->add_function_declaration("copy", NULL, copy_type, loc);
+
+ Function_type* append_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ append_type->set_is_varargs();
+ append_type->set_is_builtin();
+ this->globals_->add_function_declaration("append", NULL, append_type, loc);
+
+ Function_type* complex_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ complex_type->set_is_varargs();
+ complex_type->set_is_builtin();
+ this->globals_->add_function_declaration("complex", NULL, complex_type, loc);
+
+ Function_type* real_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ real_type->set_is_varargs();
+ real_type->set_is_builtin();
+ this->globals_->add_function_declaration("real", NULL, real_type, loc);
+
+ Function_type* imag_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ imag_type->set_is_varargs();
+ imag_type->set_is_builtin();
+ this->globals_->add_function_declaration("imag", NULL, imag_type, loc);
+
+ Function_type* delete_type = Type::make_function_type(NULL, NULL, NULL, loc);
+ delete_type->set_is_varargs();
+ delete_type->set_is_builtin();
+ this->globals_->add_function_declaration("delete", NULL, delete_type, loc);
+}
+
+// Convert a pkgpath into a string suitable for a symbol. Note that
+// this transformation is convenient but imperfect. A -fgo-pkgpath
+// option of a/b_c will conflict with a -fgo-pkgpath option of a_b/c,
+// possibly leading to link time errors.
+
+std::string
+Gogo::pkgpath_for_symbol(const std::string& pkgpath)
+{
+ std::string s = pkgpath;
+ for (size_t i = 0; i < s.length(); ++i)
+ {
+ char c = s[i];
+ if ((c >= 'a' && c <= 'z')
+ || (c >= 'A' && c <= 'Z')
+ || (c >= '0' && c <= '9')
+ || c == '_'
+ || c == '.'
+ || c == '$')
+ ;
+ else
+ s[i] = '_';
+ }
+ return s;
+}
+
+// Get the package path to use for type reflection data. This should
+// ideally be unique across the entire link.
+
+const std::string&
+Gogo::pkgpath() const
+{
+ go_assert(this->pkgpath_set_);
+ return this->pkgpath_;
+}
+
+// Set the package path from the -fgo-pkgpath command line option.
+
+void
+Gogo::set_pkgpath(const std::string& arg)
+{
+ go_assert(!this->pkgpath_set_);
+ this->pkgpath_ = arg;
+ this->pkgpath_set_ = true;
+ this->pkgpath_from_option_ = true;
+}
+
+// Get the package path to use for symbol names.
+
+const std::string&
+Gogo::pkgpath_symbol() const
+{
+ go_assert(this->pkgpath_set_);
+ return this->pkgpath_symbol_;
+}
+
+// Set the unique prefix to use to determine the package path, from
+// the -fgo-prefix command line option.
+
+void
+Gogo::set_prefix(const std::string& arg)
+{
+ go_assert(!this->prefix_from_option_);
+ this->prefix_ = arg;
+ this->prefix_from_option_ = true;
+}
+
+// Munge name for use in an error message.
+
+std::string
+Gogo::message_name(const std::string& name)
+{
+ return go_localize_identifier(Gogo::unpack_hidden_name(name).c_str());
+}
+
+// Get the package name.
+
+const std::string&
+Gogo::package_name() const
+{
+ go_assert(this->package_ != NULL);
+ return this->package_->package_name();
+}
+
+// Set the package name.
+
+void
+Gogo::set_package_name(const std::string& package_name,
+ Location location)
+{
+ if (this->package_ != NULL)
+ {
+ if (this->package_->package_name() != package_name)
+ error_at(location, "expected package %<%s%>",
+ Gogo::message_name(this->package_->package_name()).c_str());
+ return;
+ }
+
+ // Now that we know the name of the package we are compiling, set
+ // the package path to use for reflect.Type.PkgPath and global
+ // symbol names.
+ if (!this->pkgpath_set_)
+ {
+ if (!this->prefix_from_option_ && package_name == "main")
+ this->pkgpath_ = package_name;
+ else
+ {
+ if (!this->prefix_from_option_)
+ this->prefix_ = "go";
+ this->pkgpath_ = this->prefix_ + '.' + package_name;
+ }
+ this->pkgpath_set_ = true;
+ }
+
+ this->pkgpath_symbol_ = Gogo::pkgpath_for_symbol(this->pkgpath_);
+
+ this->package_ = this->register_package(this->pkgpath_, location);
+ this->package_->set_package_name(package_name, location);
+
+ if (this->is_main_package())
+ {
+ // Declare "main" as a function which takes no parameters and
+ // returns no value.
+ Location uloc = Linemap::unknown_location();
+ this->declare_function(Gogo::pack_hidden_name("main", false),
+ Type::make_function_type (NULL, NULL, NULL, uloc),
+ uloc);
+ }
+}
+
+// Return whether this is the "main" package. This is not true if
+// -fgo-pkgpath or -fgo-prefix was used.
+
+bool
+Gogo::is_main_package() const
+{
+ return (this->package_name() == "main"
+ && !this->pkgpath_from_option_
+ && !this->prefix_from_option_);
+}
+
+// Import a package.
+
+void
+Gogo::import_package(const std::string& filename,
+ const std::string& local_name,
+ bool is_local_name_exported,
+ Location location)
+{
+ if (filename.empty())
+ {
+ error_at(location, "import path is empty");
+ return;
+ }
+
+ const char *pf = filename.data();
+ const char *pend = pf + filename.length();
+ while (pf < pend)
+ {
+ unsigned int c;
+ int adv = Lex::fetch_char(pf, &c);
+ if (adv == 0)
+ {
+ error_at(location, "import path contains invalid UTF-8 sequence");
+ return;
+ }
+ if (c == '\0')
+ {
+ error_at(location, "import path contains NUL");
+ return;
+ }
+ if (c < 0x20 || c == 0x7f)
+ {
+ error_at(location, "import path contains control character");
+ return;
+ }
+ if (c == '\\')
+ {
+ error_at(location, "import path contains backslash; use slash");
+ return;
+ }
+ if (Lex::is_unicode_space(c))
+ {
+ error_at(location, "import path contains space character");
+ return;
+ }
+ if (c < 0x7f && strchr("!\"#$%&'()*,:;<=>?[]^`{|}", c) != NULL)
+ {
+ error_at(location, "import path contains invalid character '%c'", c);
+ return;
+ }
+ pf += adv;
+ }
+
+ if (IS_ABSOLUTE_PATH(filename.c_str()))
+ {
+ error_at(location, "import path cannot be absolute path");
+ return;
+ }
+
+ if (local_name == "init")
+ error_at(location, "cannot import package as init");
+
+ if (filename == "unsafe")
+ {
+ this->import_unsafe(local_name, is_local_name_exported, location);
+ return;
+ }
+
+ Imports::const_iterator p = this->imports_.find(filename);
+ if (p != this->imports_.end())
+ {
+ Package* package = p->second;
+ package->set_location(location);
+ package->set_is_imported();
+ std::string ln = local_name;
+ bool is_ln_exported = is_local_name_exported;
+ if (ln.empty())
+ {
+ ln = package->package_name();
+ go_assert(!ln.empty());
+ is_ln_exported = Lex::is_exported_name(ln);
+ }
+ if (ln == ".")
+ {
+ Bindings* bindings = package->bindings();
+ for (Bindings::const_declarations_iterator p =
+ bindings->begin_declarations();
+ p != bindings->end_declarations();
+ ++p)
+ this->add_named_object(p->second);
+ }
+ else if (ln == "_")
+ package->set_uses_sink_alias();
+ else
+ {
+ ln = this->pack_hidden_name(ln, is_ln_exported);
+ this->package_->bindings()->add_package(ln, package);
+ }
+ return;
+ }
+
+ Import::Stream* stream = Import::open_package(filename, location,
+ this->relative_import_path_);
+ if (stream == NULL)
+ {
+ error_at(location, "import file %qs not found", filename.c_str());
+ return;
+ }
+
+ Import imp(stream, location);
+ imp.register_builtin_types(this);
+ Package* package = imp.import(this, local_name, is_local_name_exported);
+ if (package != NULL)
+ {
+ if (package->pkgpath() == this->pkgpath())
+ error_at(location,
+ ("imported package uses same package path as package "
+ "being compiled (see -fgo-pkgpath option)"));
+
+ this->imports_.insert(std::make_pair(filename, package));
+ package->set_is_imported();
+ }
+
+ delete stream;
+}
+
+// Add an import control function for an imported package to the list.
+
+void
+Gogo::add_import_init_fn(const std::string& package_name,
+ const std::string& init_name, int prio)
+{
+ for (std::set<Import_init>::const_iterator p =
+ this->imported_init_fns_.begin();
+ p != this->imported_init_fns_.end();
+ ++p)
+ {
+ if (p->init_name() == init_name)
+ {
+ // If a test of package P1, built as part of package P1,
+ // imports package P2, and P2 imports P1 (perhaps
+ // indirectly), then we will see the same import name with
+ // different import priorities. That is OK, so don't give
+ // an error about it.
+ if (p->package_name() != package_name)
+ {
+ error("duplicate package initialization name %qs",
+ Gogo::message_name(init_name).c_str());
+ inform(UNKNOWN_LOCATION, "used by package %qs at priority %d",
+ Gogo::message_name(p->package_name()).c_str(),
+ p->priority());
+ inform(UNKNOWN_LOCATION, " and by package %qs at priority %d",
+ Gogo::message_name(package_name).c_str(), prio);
+ }
+ return;
+ }
+ }
+
+ this->imported_init_fns_.insert(Import_init(package_name, init_name,
+ prio));
+}
+
+// Return whether we are at the global binding level.
+
+bool
+Gogo::in_global_scope() const
+{
+ return this->functions_.empty();
+}
+
+// Return the current binding contour.
+
+Bindings*
+Gogo::current_bindings()
+{
+ if (!this->functions_.empty())
+ return this->functions_.back().blocks.back()->bindings();
+ else if (this->package_ != NULL)
+ return this->package_->bindings();
+ else
+ return this->globals_;
+}
+
+const Bindings*
+Gogo::current_bindings() const
+{
+ if (!this->functions_.empty())
+ return this->functions_.back().blocks.back()->bindings();
+ else if (this->package_ != NULL)
+ return this->package_->bindings();
+ else
+ return this->globals_;
+}
+
+// Return the current block.
+
+Block*
+Gogo::current_block()
+{
+ if (this->functions_.empty())
+ return NULL;
+ else
+ return this->functions_.back().blocks.back();
+}
+
+// Look up a name in the current binding contour. If PFUNCTION is not
+// NULL, set it to the function in which the name is defined, or NULL
+// if the name is defined in global scope.
+
+Named_object*
+Gogo::lookup(const std::string& name, Named_object** pfunction) const
+{
+ if (pfunction != NULL)
+ *pfunction = NULL;
+
+ if (Gogo::is_sink_name(name))
+ return Named_object::make_sink();
+
+ for (Open_functions::const_reverse_iterator p = this->functions_.rbegin();
+ p != this->functions_.rend();
+ ++p)
+ {
+ Named_object* ret = p->blocks.back()->bindings()->lookup(name);
+ if (ret != NULL)
+ {
+ if (pfunction != NULL)
+ *pfunction = p->function;
+ return ret;
+ }
+ }
+
+ if (this->package_ != NULL)
+ {
+ Named_object* ret = this->package_->bindings()->lookup(name);
+ if (ret != NULL)
+ {
+ if (ret->package() != NULL)
+ ret->package()->set_used();
+ return ret;
+ }
+ }
+
+ // We do not look in the global namespace. If we did, the global
+ // namespace would effectively hide names which were defined in
+ // package scope which we have not yet seen. Instead,
+ // define_global_names is called after parsing is over to connect
+ // undefined names at package scope with names defined at global
+ // scope.
+
+ return NULL;
+}
+
+// Look up a name in the current block, without searching enclosing
+// blocks.
+
+Named_object*
+Gogo::lookup_in_block(const std::string& name) const
+{
+ go_assert(!this->functions_.empty());
+ go_assert(!this->functions_.back().blocks.empty());
+ return this->functions_.back().blocks.back()->bindings()->lookup_local(name);
+}
+
+// Look up a name in the global namespace.
+
+Named_object*
+Gogo::lookup_global(const char* name) const
+{
+ return this->globals_->lookup(name);
+}
+
+// Add an imported package.
+
+Package*
+Gogo::add_imported_package(const std::string& real_name,
+ const std::string& alias_arg,
+ bool is_alias_exported,
+ const std::string& pkgpath,
+ Location location,
+ bool* padd_to_globals)
+{
+ Package* ret = this->register_package(pkgpath, location);
+ ret->set_package_name(real_name, location);
+
+ *padd_to_globals = false;
+
+ if (alias_arg == ".")
+ *padd_to_globals = true;
+ else if (alias_arg == "_")
+ ret->set_uses_sink_alias();
+ else
+ {
+ std::string alias = alias_arg;
+ if (alias.empty())
+ {
+ alias = real_name;
+ is_alias_exported = Lex::is_exported_name(alias);
+ }
+ alias = this->pack_hidden_name(alias, is_alias_exported);
+ Named_object* no = this->package_->bindings()->add_package(alias, ret);
+ if (!no->is_package())
+ return NULL;
+ }
+
+ return ret;
+}
+
+// Register a package. This package may or may not be imported. This
+// returns the Package structure for the package, creating if it
+// necessary. LOCATION is the location of the import statement that
+// led us to see this package.
+
+Package*
+Gogo::register_package(const std::string& pkgpath, Location location)
+{
+ Package* package = NULL;
+ std::pair<Packages::iterator, bool> ins =
+ this->packages_.insert(std::make_pair(pkgpath, package));
+ if (!ins.second)
+ {
+ // We have seen this package name before.
+ package = ins.first->second;
+ go_assert(package != NULL && package->pkgpath() == pkgpath);
+ if (Linemap::is_unknown_location(package->location()))
+ package->set_location(location);
+ }
+ else
+ {
+ // First time we have seen this package name.
+ package = new Package(pkgpath, location);
+ go_assert(ins.first->second == NULL);
+ ins.first->second = package;
+ }
+
+ return package;
+}
+
+// Start compiling a function.
+
+Named_object*
+Gogo::start_function(const std::string& name, Function_type* type,
+ bool add_method_to_type, Location location)
+{
+ bool at_top_level = this->functions_.empty();
+
+ Block* block = new Block(NULL, location);
+
+ Function* enclosing = (at_top_level
+ ? NULL
+ : this->functions_.back().function->func_value());
+
+ Function* function = new Function(type, enclosing, block, location);
+
+ if (type->is_method())
+ {
+ const Typed_identifier* receiver = type->receiver();
+ Variable* this_param = new Variable(receiver->type(), NULL, false,
+ true, true, location);
+ std::string rname = receiver->name();
+ if (rname.empty() || Gogo::is_sink_name(rname))
+ {
+ // We need to give receivers a name since they wind up in
+ // DECL_ARGUMENTS. FIXME.
+ static unsigned int count;
+ char buf[50];
+ snprintf(buf, sizeof buf, "r.%u", count);
+ ++count;
+ rname = buf;
+ }
+ block->bindings()->add_variable(rname, NULL, this_param);
+ }
+
+ const Typed_identifier_list* parameters = type->parameters();
+ bool is_varargs = type->is_varargs();
+ if (parameters != NULL)
+ {
+ for (Typed_identifier_list::const_iterator p = parameters->begin();
+ p != parameters->end();
+ ++p)
+ {
+ Variable* param = new Variable(p->type(), NULL, false, true, false,
+ location);
+ if (is_varargs && p + 1 == parameters->end())
+ param->set_is_varargs_parameter();
+
+ std::string pname = p->name();
+ if (pname.empty() || Gogo::is_sink_name(pname))
+ {
+ // We need to give parameters a name since they wind up
+ // in DECL_ARGUMENTS. FIXME.
+ static unsigned int count;
+ char buf[50];
+ snprintf(buf, sizeof buf, "p.%u", count);
+ ++count;
+ pname = buf;
+ }
+ block->bindings()->add_variable(pname, NULL, param);
+ }
+ }
+
+ function->create_result_variables(this);
+
+ const std::string* pname;
+ std::string nested_name;
+ bool is_init = false;
+ if (Gogo::unpack_hidden_name(name) == "init" && !type->is_method())
+ {
+ if ((type->parameters() != NULL && !type->parameters()->empty())
+ || (type->results() != NULL && !type->results()->empty()))
+ error_at(location,
+ "func init must have no arguments and no return values");
+ // There can be multiple "init" functions, so give them each a
+ // different name.
+ static int init_count;
+ char buf[30];
+ snprintf(buf, sizeof buf, ".$init%d", init_count);
+ ++init_count;
+ nested_name = buf;
+ pname = &nested_name;
+ is_init = true;
+ }
+ else if (!name.empty())
+ pname = &name;
+ else
+ {
+ // Invent a name for a nested function.
+ static int nested_count;
+ char buf[30];
+ snprintf(buf, sizeof buf, ".$nested%d", nested_count);
+ ++nested_count;
+ nested_name = buf;
+ pname = &nested_name;
+ }
+
+ Named_object* ret;
+ if (Gogo::is_sink_name(*pname))
+ {
+ static int sink_count;
+ char buf[30];
+ snprintf(buf, sizeof buf, ".$sink%d", sink_count);
+ ++sink_count;
+ ret = this->package_->bindings()->add_function(buf, NULL, function);
+ ret->func_value()->set_is_sink();
+ }
+ else if (!type->is_method())
+ {
+ ret = this->package_->bindings()->add_function(*pname, NULL, function);
+ if (!ret->is_function() || ret->func_value() != function)
+ {
+ // Redefinition error. Invent a name to avoid knockon
+ // errors.
+ static int redefinition_count;
+ char buf[30];
+ snprintf(buf, sizeof buf, ".$redefined%d", redefinition_count);
+ ++redefinition_count;
+ ret = this->package_->bindings()->add_function(buf, NULL, function);
+ }
+ }
+ else
+ {
+ if (!add_method_to_type)
+ ret = Named_object::make_function(name, NULL, function);
+ else
+ {
+ go_assert(at_top_level);
+ Type* rtype = type->receiver()->type();
+
+ // We want to look through the pointer created by the
+ // parser, without getting an error if the type is not yet
+ // defined.
+ if (rtype->classification() == Type::TYPE_POINTER)
+ rtype = rtype->points_to();
+
+ if (rtype->is_error_type())
+ ret = Named_object::make_function(name, NULL, function);
+ else if (rtype->named_type() != NULL)
+ {
+ ret = rtype->named_type()->add_method(name, function);
+ if (!ret->is_function())
+ {
+ // Redefinition error.
+ ret = Named_object::make_function(name, NULL, function);
+ }
+ }
+ else if (rtype->forward_declaration_type() != NULL)
+ {
+ Named_object* type_no =
+ rtype->forward_declaration_type()->named_object();
+ if (type_no->is_unknown())
+ {
+ // If we are seeing methods it really must be a
+ // type. Declare it as such. An alternative would
+ // be to support lists of methods for unknown
+ // expressions. Either way the error messages if
+ // this is not a type are going to get confusing.
+ Named_object* declared =
+ this->declare_package_type(type_no->name(),
+ type_no->location());
+ go_assert(declared
+ == type_no->unknown_value()->real_named_object());
+ }
+ ret = rtype->forward_declaration_type()->add_method(name,
+ function);
+ }
+ else
+ go_unreachable();
+ }
+ this->package_->bindings()->add_method(ret);
+ }
+
+ this->functions_.resize(this->functions_.size() + 1);
+ Open_function& of(this->functions_.back());
+ of.function = ret;
+ of.blocks.push_back(block);
+
+ if (is_init)
+ {
+ this->init_functions_.push_back(ret);
+ this->need_init_fn_ = true;
+ }
+
+ return ret;
+}
+
+// Finish compiling a function.
+
+void
+Gogo::finish_function(Location location)
+{
+ this->finish_block(location);
+ go_assert(this->functions_.back().blocks.empty());
+ this->functions_.pop_back();
+}
+
+// Return the current function.
+
+Named_object*
+Gogo::current_function() const
+{
+ go_assert(!this->functions_.empty());
+ return this->functions_.back().function;
+}
+
+// Start a new block.
+
+void
+Gogo::start_block(Location location)
+{
+ go_assert(!this->functions_.empty());
+ Block* block = new Block(this->current_block(), location);
+ this->functions_.back().blocks.push_back(block);
+}
+
+// Finish a block.
+
+Block*
+Gogo::finish_block(Location location)
+{
+ go_assert(!this->functions_.empty());
+ go_assert(!this->functions_.back().blocks.empty());
+ Block* block = this->functions_.back().blocks.back();
+ this->functions_.back().blocks.pop_back();
+ block->set_end_location(location);
+ return block;
+}
+
+// Add an erroneous name.
+
+Named_object*
+Gogo::add_erroneous_name(const std::string& name)
+{
+ return this->package_->bindings()->add_erroneous_name(name);
+}
+
+// Add an unknown name.
+
+Named_object*
+Gogo::add_unknown_name(const std::string& name, Location location)
+{
+ return this->package_->bindings()->add_unknown_name(name, location);
+}
+
+// Declare a function.
+
+Named_object*
+Gogo::declare_function(const std::string& name, Function_type* type,
+ Location location)
+{
+ if (!type->is_method())
+ return this->current_bindings()->add_function_declaration(name, NULL, type,
+ location);
+ else
+ {
+ // We don't bother to add this to the list of global
+ // declarations.
+ Type* rtype = type->receiver()->type();
+
+ // We want to look through the pointer created by the
+ // parser, without getting an error if the type is not yet
+ // defined.
+ if (rtype->classification() == Type::TYPE_POINTER)
+ rtype = rtype->points_to();
+
+ if (rtype->is_error_type())
+ return NULL;
+ else if (rtype->named_type() != NULL)
+ return rtype->named_type()->add_method_declaration(name, NULL, type,
+ location);
+ else if (rtype->forward_declaration_type() != NULL)
+ {
+ Forward_declaration_type* ftype = rtype->forward_declaration_type();
+ return ftype->add_method_declaration(name, NULL, type, location);
+ }
+ else
+ go_unreachable();
+ }
+}
+
+// Add a label definition.
+
+Label*
+Gogo::add_label_definition(const std::string& label_name,
+ Location location)
+{
+ go_assert(!this->functions_.empty());
+ Function* func = this->functions_.back().function->func_value();
+ Label* label = func->add_label_definition(this, label_name, location);
+ this->add_statement(Statement::make_label_statement(label, location));
+ return label;
+}
+
+// Add a label reference.
+
+Label*
+Gogo::add_label_reference(const std::string& label_name,
+ Location location, bool issue_goto_errors)
+{
+ go_assert(!this->functions_.empty());
+ Function* func = this->functions_.back().function->func_value();
+ return func->add_label_reference(this, label_name, location,
+ issue_goto_errors);
+}
+
+// Return the current binding state.
+
+Bindings_snapshot*
+Gogo::bindings_snapshot(Location location)
+{
+ return new Bindings_snapshot(this->current_block(), location);
+}
+
+// Add a statement.
+
+void
+Gogo::add_statement(Statement* statement)
+{
+ go_assert(!this->functions_.empty()
+ && !this->functions_.back().blocks.empty());
+ this->functions_.back().blocks.back()->add_statement(statement);
+}
+
+// Add a block.
+
+void
+Gogo::add_block(Block* block, Location location)
+{
+ go_assert(!this->functions_.empty()
+ && !this->functions_.back().blocks.empty());
+ Statement* statement = Statement::make_block_statement(block, location);
+ this->functions_.back().blocks.back()->add_statement(statement);
+}
+
+// Add a constant.
+
+Named_object*
+Gogo::add_constant(const Typed_identifier& tid, Expression* expr,
+ int iota_value)
+{
+ return this->current_bindings()->add_constant(tid, NULL, expr, iota_value);
+}
+
+// Add a type.
+
+void
+Gogo::add_type(const std::string& name, Type* type, Location location)
+{
+ Named_object* no = this->current_bindings()->add_type(name, NULL, type,
+ location);
+ if (!this->in_global_scope() && no->is_type())
+ {
+ Named_object* f = this->functions_.back().function;
+ unsigned int index;
+ if (f->is_function())
+ index = f->func_value()->new_local_type_index();
+ else
+ index = 0;
+ no->type_value()->set_in_function(f, index);
+ }
+}
+
+// Add a named type.
+
+void
+Gogo::add_named_type(Named_type* type)
+{
+ go_assert(this->in_global_scope());
+ this->current_bindings()->add_named_type(type);
+}
+
+// Declare a type.
+
+Named_object*
+Gogo::declare_type(const std::string& name, Location location)
+{
+ Bindings* bindings = this->current_bindings();
+ Named_object* no = bindings->add_type_declaration(name, NULL, location);
+ if (!this->in_global_scope() && no->is_type_declaration())
+ {
+ Named_object* f = this->functions_.back().function;
+ unsigned int index;
+ if (f->is_function())
+ index = f->func_value()->new_local_type_index();
+ else
+ index = 0;
+ no->type_declaration_value()->set_in_function(f, index);
+ }
+ return no;
+}
+
+// Declare a type at the package level.
+
+Named_object*
+Gogo::declare_package_type(const std::string& name, Location location)
+{
+ return this->package_->bindings()->add_type_declaration(name, NULL, location);
+}
+
+// Declare a function at the package level.
+
+Named_object*
+Gogo::declare_package_function(const std::string& name, Function_type* type,
+ Location location)
+{
+ return this->package_->bindings()->add_function_declaration(name, NULL, type,
+ location);
+}
+
+// Define a type which was already declared.
+
+void
+Gogo::define_type(Named_object* no, Named_type* type)
+{
+ this->current_bindings()->define_type(no, type);
+}
+
+// Add a variable.
+
+Named_object*
+Gogo::add_variable(const std::string& name, Variable* variable)
+{
+ Named_object* no = this->current_bindings()->add_variable(name, NULL,
+ variable);
+
+ // In a function the middle-end wants to see a DECL_EXPR node.
+ if (no != NULL
+ && no->is_variable()
+ && !no->var_value()->is_parameter()
+ && !this->functions_.empty())
+ this->add_statement(Statement::make_variable_declaration(no));
+
+ return no;
+}
+
+// Add a sink--a reference to the blank identifier _.
+
+Named_object*
+Gogo::add_sink()
+{
+ return Named_object::make_sink();
+}
+
+// Add a named object.
+
+void
+Gogo::add_named_object(Named_object* no)
+{
+ this->current_bindings()->add_named_object(no);
+}
+
+// Mark all local variables used. This is used when some types of
+// parse error occur.
+
+void
+Gogo::mark_locals_used()
+{
+ for (Open_functions::iterator pf = this->functions_.begin();
+ pf != this->functions_.end();
+ ++pf)
+ {
+ for (std::vector<Block*>::iterator pb = pf->blocks.begin();
+ pb != pf->blocks.end();
+ ++pb)
+ (*pb)->bindings()->mark_locals_used();
+ }
+}
+
+// Record that we've seen an interface type.
+
+void
+Gogo::record_interface_type(Interface_type* itype)
+{
+ this->interface_types_.push_back(itype);
+}
+
+// Return an erroneous name that indicates that an error has already
+// been reported.
+
+std::string
+Gogo::erroneous_name()
+{
+ static int erroneous_count;
+ char name[50];
+ snprintf(name, sizeof name, "$erroneous%d", erroneous_count);
+ ++erroneous_count;
+ return name;
+}
+
+// Return whether a name is an erroneous name.
+
+bool
+Gogo::is_erroneous_name(const std::string& name)
+{
+ return name.compare(0, 10, "$erroneous") == 0;
+}
+
+// Return a name for a thunk object.
+
+std::string
+Gogo::thunk_name()
+{
+ static int thunk_count;
+ char thunk_name[50];
+ snprintf(thunk_name, sizeof thunk_name, "$thunk%d", thunk_count);
+ ++thunk_count;
+ return thunk_name;
+}
+
+// Return whether a function is a thunk.
+
+bool
+Gogo::is_thunk(const Named_object* no)
+{
+ return no->name().compare(0, 6, "$thunk") == 0;
+}
+
+// Define the global names. We do this only after parsing all the
+// input files, because the program might define the global names
+// itself.
+
+void
+Gogo::define_global_names()
+{
+ for (Bindings::const_declarations_iterator p =
+ this->globals_->begin_declarations();
+ p != this->globals_->end_declarations();
+ ++p)
+ {
+ Named_object* global_no = p->second;
+ std::string name(Gogo::pack_hidden_name(global_no->name(), false));
+ Named_object* no = this->package_->bindings()->lookup(name);
+ if (no == NULL)
+ continue;
+ no = no->resolve();
+ if (no->is_type_declaration())
+ {
+ if (global_no->is_type())
+ {
+ if (no->type_declaration_value()->has_methods())
+ error_at(no->location(),
+ "may not define methods for global type");
+ no->set_type_value(global_no->type_value());
+ }
+ else
+ {
+ error_at(no->location(), "expected type");
+ Type* errtype = Type::make_error_type();
+ Named_object* err =
+ Named_object::make_type("erroneous_type", NULL, errtype,
+ Linemap::predeclared_location());
+ no->set_type_value(err->type_value());
+ }
+ }
+ else if (no->is_unknown())
+ no->unknown_value()->set_real_named_object(global_no);
+ }
+
+ // Give an error if any name is defined in both the package block
+ // and the file block. For example, this can happen if one file
+ // imports "fmt" and another file defines a global variable fmt.
+ for (Bindings::const_declarations_iterator p =
+ this->package_->bindings()->begin_declarations();
+ p != this->package_->bindings()->end_declarations();
+ ++p)
+ {
+ if (p->second->is_unknown()
+ && p->second->unknown_value()->real_named_object() == NULL)
+ {
+ // No point in warning about an undefined name, as we will
+ // get other errors later anyhow.
+ continue;
+ }
+ File_block_names::const_iterator pf =
+ this->file_block_names_.find(p->second->name());
+ if (pf != this->file_block_names_.end())
+ {
+ std::string n = p->second->message_name();
+ error_at(p->second->location(),
+ "%qs defined as both imported name and global name",
+ n.c_str());
+ inform(pf->second, "%qs imported here", n.c_str());
+ }
+
+ // No package scope identifier may be named "init".
+ if (!p->second->is_function()
+ && Gogo::unpack_hidden_name(p->second->name()) == "init")
+ {
+ error_at(p->second->location(),
+ "cannot declare init - must be func");
+ }
+ }
+}
+
+// Clear out names in file scope.
+
+void
+Gogo::clear_file_scope()
+{
+ this->package_->bindings()->clear_file_scope(this);
+
+ // Warn about packages which were imported but not used.
+ bool quiet = saw_errors();
+ for (Packages::iterator p = this->packages_.begin();
+ p != this->packages_.end();
+ ++p)
+ {
+ Package* package = p->second;
+ if (package != this->package_
+ && package->is_imported()
+ && !package->used()
+ && !package->uses_sink_alias()
+ && !quiet)
+ error_at(package->location(), "imported and not used: %s",
+ Gogo::message_name(package->package_name()).c_str());
+ package->clear_is_imported();
+ package->clear_uses_sink_alias();
+ package->clear_used();
+ }
+}
+
+// Queue up a type specific function for later writing. These are
+// written out in write_specific_type_functions, called after the
+// parse tree is lowered.
+
+void
+Gogo::queue_specific_type_function(Type* type, Named_type* name,
+ const std::string& hash_name,
+ Function_type* hash_fntype,
+ const std::string& equal_name,
+ Function_type* equal_fntype)
+{
+ go_assert(!this->specific_type_functions_are_written_);
+ go_assert(!this->in_global_scope());
+ Specific_type_function* tsf = new Specific_type_function(type, name,
+ hash_name,
+ hash_fntype,
+ equal_name,
+ equal_fntype);
+ this->specific_type_functions_.push_back(tsf);
+}
+
+// Look for types which need specific hash or equality functions.
+
+class Specific_type_functions : public Traverse
+{
+ public:
+ Specific_type_functions(Gogo* gogo)
+ : Traverse(traverse_types),
+ gogo_(gogo)
+ { }
+
+ int
+ type(Type*);
+
+ private:
+ Gogo* gogo_;
+};
+
+int
+Specific_type_functions::type(Type* t)
+{
+ Named_object* hash_fn;
+ Named_object* equal_fn;
+ switch (t->classification())
+ {
+ case Type::TYPE_NAMED:
+ {
+ Named_type* nt = t->named_type();
+ if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
+ t->type_functions(this->gogo_, nt, NULL, NULL, &hash_fn, &equal_fn);
+
+ // If this is a struct type, we don't want to make functions
+ // for the unnamed struct.
+ Type* rt = nt->real_type();
+ if (rt->struct_type() == NULL)
+ {
+ if (Type::traverse(rt, this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ else
+ {
+ // If this type is defined in another package, then we don't
+ // need to worry about the unexported fields.
+ bool is_defined_elsewhere = nt->named_object()->package() != NULL;
+ const Struct_field_list* fields = rt->struct_type()->fields();
+ for (Struct_field_list::const_iterator p = fields->begin();
+ p != fields->end();
+ ++p)
+ {
+ if (is_defined_elsewhere
+ && Gogo::is_hidden_name(p->field_name()))
+ continue;
+ if (Type::traverse(p->type(), this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+
+ return TRAVERSE_SKIP_COMPONENTS;
+ }
+
+ case Type::TYPE_STRUCT:
+ case Type::TYPE_ARRAY:
+ if (!t->compare_is_identity(this->gogo_) && t->is_comparable())
+ t->type_functions(this->gogo_, NULL, NULL, NULL, &hash_fn, &equal_fn);
+ break;
+
+ default:
+ break;
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Write out type specific functions.
+
+void
+Gogo::write_specific_type_functions()
+{
+ Specific_type_functions stf(this);
+ this->traverse(&stf);
+
+ while (!this->specific_type_functions_.empty())
+ {
+ Specific_type_function* tsf = this->specific_type_functions_.back();
+ this->specific_type_functions_.pop_back();
+ tsf->type->write_specific_type_functions(this, tsf->name,
+ tsf->hash_name,
+ tsf->hash_fntype,
+ tsf->equal_name,
+ tsf->equal_fntype);
+ delete tsf;
+ }
+ this->specific_type_functions_are_written_ = true;
+}
+
+// Traverse the tree.
+
+void
+Gogo::traverse(Traverse* traverse)
+{
+ // Traverse the current package first for consistency. The other
+ // packages will only contain imported types, constants, and
+ // declarations.
+ if (this->package_->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
+ return;
+ for (Packages::const_iterator p = this->packages_.begin();
+ p != this->packages_.end();
+ ++p)
+ {
+ if (p->second != this->package_)
+ {
+ if (p->second->bindings()->traverse(traverse, true) == TRAVERSE_EXIT)
+ break;
+ }
+ }
+}
+
+// Add a type to verify. This is used for types of sink variables, in
+// order to give appropriate error messages.
+
+void
+Gogo::add_type_to_verify(Type* type)
+{
+ this->verify_types_.push_back(type);
+}
+
+// Traversal class used to verify types.
+
+class Verify_types : public Traverse
+{
+ public:
+ Verify_types()
+ : Traverse(traverse_types)
+ { }
+
+ int
+ type(Type*);
+};
+
+// Verify that a type is correct.
+
+int
+Verify_types::type(Type* t)
+{
+ if (!t->verify())
+ return TRAVERSE_SKIP_COMPONENTS;
+ return TRAVERSE_CONTINUE;
+}
+
+// Verify that all types are correct.
+
+void
+Gogo::verify_types()
+{
+ Verify_types traverse;
+ this->traverse(&traverse);
+
+ for (std::vector<Type*>::iterator p = this->verify_types_.begin();
+ p != this->verify_types_.end();
+ ++p)
+ (*p)->verify();
+ this->verify_types_.clear();
+}
+
+// Traversal class used to lower parse tree.
+
+class Lower_parse_tree : public Traverse
+{
+ public:
+ Lower_parse_tree(Gogo* gogo, Named_object* function)
+ : Traverse(traverse_variables
+ | traverse_constants
+ | traverse_functions
+ | traverse_statements
+ | traverse_expressions),
+ gogo_(gogo), function_(function), iota_value_(-1), inserter_()
+ { }
+
+ void
+ set_inserter(const Statement_inserter* inserter)
+ { this->inserter_ = *inserter; }
+
+ int
+ variable(Named_object*);
+
+ int
+ constant(Named_object*, bool);
+
+ int
+ function(Named_object*);
+
+ int
+ statement(Block*, size_t* pindex, Statement*);
+
+ int
+ expression(Expression**);
+
+ private:
+ // General IR.
+ Gogo* gogo_;
+ // The function we are traversing.
+ Named_object* function_;
+ // Value to use for the predeclared constant iota.
+ int iota_value_;
+ // Current statement inserter for use by expressions.
+ Statement_inserter inserter_;
+};
+
+// Lower variables.
+
+int
+Lower_parse_tree::variable(Named_object* no)
+{
+ if (!no->is_variable())
+ return TRAVERSE_CONTINUE;
+
+ if (no->is_variable() && no->var_value()->is_global())
+ {
+ // Global variables can have loops in their initialization
+ // expressions. This is handled in lower_init_expression.
+ no->var_value()->lower_init_expression(this->gogo_, this->function_,
+ &this->inserter_);
+ return TRAVERSE_CONTINUE;
+ }
+
+ // This is a local variable. We are going to return
+ // TRAVERSE_SKIP_COMPONENTS here because we want to traverse the
+ // initialization expression when we reach the variable declaration
+ // statement. However, that means that we need to traverse the type
+ // ourselves.
+ if (no->var_value()->has_type())
+ {
+ Type* type = no->var_value()->type();
+ if (type != NULL)
+ {
+ if (Type::traverse(type, this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ go_assert(!no->var_value()->has_pre_init());
+
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower constants. We handle constants specially so that we can set
+// the right value for the predeclared constant iota. This works in
+// conjunction with the way we lower Const_expression objects.
+
+int
+Lower_parse_tree::constant(Named_object* no, bool)
+{
+ Named_constant* nc = no->const_value();
+
+ // Don't get into trouble if the constant's initializer expression
+ // refers to the constant itself.
+ if (nc->lowering())
+ return TRAVERSE_CONTINUE;
+ nc->set_lowering();
+
+ go_assert(this->iota_value_ == -1);
+ this->iota_value_ = nc->iota_value();
+ nc->traverse_expression(this);
+ this->iota_value_ = -1;
+
+ nc->clear_lowering();
+
+ // We will traverse the expression a second time, but that will be
+ // fast.
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Lower the body of a function, and set the closure type. Record the
+// function while lowering it, so that we can pass it down when
+// lowering an expression.
+
+int
+Lower_parse_tree::function(Named_object* no)
+{
+ no->func_value()->set_closure_type();
+
+ go_assert(this->function_ == NULL);
+ this->function_ = no;
+ int t = no->func_value()->traverse(this);
+ this->function_ = NULL;
+
+ if (t == TRAVERSE_EXIT)
+ return t;
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower statement parse trees.
+
+int
+Lower_parse_tree::statement(Block* block, size_t* pindex, Statement* sorig)
+{
+ // Because we explicitly traverse the statement's contents
+ // ourselves, we want to skip block statements here. There is
+ // nothing to lower in a block statement.
+ if (sorig->is_block_statement())
+ return TRAVERSE_CONTINUE;
+
+ Statement_inserter hold_inserter(this->inserter_);
+ this->inserter_ = Statement_inserter(block, pindex);
+
+ // Lower the expressions first.
+ int t = sorig->traverse_contents(this);
+ if (t == TRAVERSE_EXIT)
+ {
+ this->inserter_ = hold_inserter;
+ return t;
+ }
+
+ // Keep lowering until nothing changes.
+ Statement* s = sorig;
+ while (true)
+ {
+ Statement* snew = s->lower(this->gogo_, this->function_, block,
+ &this->inserter_);
+ if (snew == s)
+ break;
+ s = snew;
+ t = s->traverse_contents(this);
+ if (t == TRAVERSE_EXIT)
+ {
+ this->inserter_ = hold_inserter;
+ return t;
+ }
+ }
+
+ if (s != sorig)
+ block->replace_statement(*pindex, s);
+
+ this->inserter_ = hold_inserter;
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower expression parse trees.
+
+int
+Lower_parse_tree::expression(Expression** pexpr)
+{
+ // We have to lower all subexpressions first, so that we can get
+ // their type if necessary. This is awkward, because we don't have
+ // a postorder traversal pass.
+ if ((*pexpr)->traverse_subexpressions(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ // Keep lowering until nothing changes.
+ while (true)
+ {
+ Expression* e = *pexpr;
+ Expression* enew = e->lower(this->gogo_, this->function_,
+ &this->inserter_, this->iota_value_);
+ if (enew == e)
+ break;
+ if (enew->traverse_subexpressions(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ *pexpr = enew;
+ }
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Lower the parse tree. This is called after the parse is complete,
+// when all names should be resolved.
+
+void
+Gogo::lower_parse_tree()
+{
+ Lower_parse_tree lower_parse_tree(this, NULL);
+ this->traverse(&lower_parse_tree);
+}
+
+// Lower a block.
+
+void
+Gogo::lower_block(Named_object* function, Block* block)
+{
+ Lower_parse_tree lower_parse_tree(this, function);
+ block->traverse(&lower_parse_tree);
+}
+
+// Lower an expression. INSERTER may be NULL, in which case the
+// expression had better not need to create any temporaries.
+
+void
+Gogo::lower_expression(Named_object* function, Statement_inserter* inserter,
+ Expression** pexpr)
+{
+ Lower_parse_tree lower_parse_tree(this, function);
+ if (inserter != NULL)
+ lower_parse_tree.set_inserter(inserter);
+ lower_parse_tree.expression(pexpr);
+}
+
+// Lower a constant. This is called when lowering a reference to a
+// constant. We have to make sure that the constant has already been
+// lowered.
+
+void
+Gogo::lower_constant(Named_object* no)
+{
+ go_assert(no->is_const());
+ Lower_parse_tree lower(this, NULL);
+ lower.constant(no, false);
+}
+
+// Traverse the tree to create function descriptors as needed.
+
+class Create_function_descriptors : public Traverse
+{
+ public:
+ Create_function_descriptors(Gogo* gogo)
+ : Traverse(traverse_functions | traverse_expressions),
+ gogo_(gogo)
+ { }
+
+ int
+ function(Named_object*);
+
+ int
+ expression(Expression**);
+
+ private:
+ Gogo* gogo_;
+};
+
+// Create a descriptor for every top-level exported function.
+
+int
+Create_function_descriptors::function(Named_object* no)
+{
+ if (no->is_function()
+ && no->func_value()->enclosing() == NULL
+ && !no->func_value()->is_method()
+ && !Gogo::is_hidden_name(no->name())
+ && !Gogo::is_thunk(no))
+ no->func_value()->descriptor(this->gogo_, no);
+
+ return TRAVERSE_CONTINUE;
+}
+
+// If we see a function referenced in any way other than calling it,
+// create a descriptor for it.
+
+int
+Create_function_descriptors::expression(Expression** pexpr)
+{
+ Expression* expr = *pexpr;
+
+ Func_expression* fe = expr->func_expression();
+ if (fe != NULL)
+ {
+ // We would not get here for a call to this function, so this is
+ // a reference to a function other than calling it. We need a
+ // descriptor.
+ if (fe->closure() != NULL)
+ return TRAVERSE_CONTINUE;
+ Named_object* no = fe->named_object();
+ if (no->is_function() && !no->func_value()->is_method())
+ no->func_value()->descriptor(this->gogo_, no);
+ else if (no->is_function_declaration()
+ && !no->func_declaration_value()->type()->is_method()
+ && !Linemap::is_predeclared_location(no->location()))
+ no->func_declaration_value()->descriptor(this->gogo_, no);
+ return TRAVERSE_CONTINUE;
+ }
+
+ Bound_method_expression* bme = expr->bound_method_expression();
+ if (bme != NULL)
+ {
+ // We would not get here for a call to this method, so this is a
+ // method value. We need to create a thunk.
+ Bound_method_expression::create_thunk(this->gogo_, bme->method(),
+ bme->function());
+ return TRAVERSE_CONTINUE;
+ }
+
+ Interface_field_reference_expression* ifre =
+ expr->interface_field_reference_expression();
+ if (ifre != NULL)
+ {
+ // We would not get here for a call to this interface method, so
+ // this is a method value. We need to create a thunk.
+ Interface_type* type = ifre->expr()->type()->interface_type();
+ if (type != NULL)
+ Interface_field_reference_expression::create_thunk(this->gogo_, type,
+ ifre->name());
+ return TRAVERSE_CONTINUE;
+ }
+
+ Call_expression* ce = expr->call_expression();
+ if (ce != NULL)
+ {
+ Expression* fn = ce->fn();
+ if (fn->func_expression() != NULL
+ || fn->bound_method_expression() != NULL
+ || fn->interface_field_reference_expression() != NULL)
+ {
+ // Traverse the arguments but not the function.
+ Expression_list* args = ce->args();
+ if (args != NULL)
+ {
+ if (args->traverse(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_SKIP_COMPONENTS;
+ }
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Create function descriptors as needed. We need a function
+// descriptor for all exported functions and for all functions that
+// are referenced without being called.
+
+void
+Gogo::create_function_descriptors()
+{
+ // Create a function descriptor for any exported function that is
+ // declared in this package. This is so that we have a descriptor
+ // for functions written in assembly. Gather the descriptors first
+ // so that we don't add declarations while looping over them.
+ std::vector<Named_object*> fndecls;
+ Bindings* b = this->package_->bindings();
+ for (Bindings::const_declarations_iterator p = b->begin_declarations();
+ p != b->end_declarations();
+ ++p)
+ {
+ Named_object* no = p->second;
+ if (no->is_function_declaration()
+ && !no->func_declaration_value()->type()->is_method()
+ && !Linemap::is_predeclared_location(no->location())
+ && !Gogo::is_hidden_name(no->name()))
+ fndecls.push_back(no);
+ }
+ for (std::vector<Named_object*>::const_iterator p = fndecls.begin();
+ p != fndecls.end();
+ ++p)
+ (*p)->func_declaration_value()->descriptor(this, *p);
+ fndecls.clear();
+
+ Create_function_descriptors cfd(this);
+ this->traverse(&cfd);
+}
+
+// Look for interface types to finalize methods of inherited
+// interfaces.
+
+class Finalize_methods : public Traverse
+{
+ public:
+ Finalize_methods(Gogo* gogo)
+ : Traverse(traverse_types),
+ gogo_(gogo)
+ { }
+
+ int
+ type(Type*);
+
+ private:
+ Gogo* gogo_;
+};
+
+// Finalize the methods of an interface type.
+
+int
+Finalize_methods::type(Type* t)
+{
+ // Check the classification so that we don't finalize the methods
+ // twice for a named interface type.
+ switch (t->classification())
+ {
+ case Type::TYPE_INTERFACE:
+ t->interface_type()->finalize_methods();
+ break;
+
+ case Type::TYPE_NAMED:
+ {
+ // We have to finalize the methods of the real type first.
+ // But if the real type is a struct type, then we only want to
+ // finalize the methods of the field types, not of the struct
+ // type itself. We don't want to add methods to the struct,
+ // since it has a name.
+ Named_type* nt = t->named_type();
+ Type* rt = nt->real_type();
+ if (rt->classification() != Type::TYPE_STRUCT)
+ {
+ if (Type::traverse(rt, this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ else
+ {
+ if (rt->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+
+ nt->finalize_methods(this->gogo_);
+
+ // If this type is defined in a different package, then finalize the
+ // types of all the methods, since we won't see them otherwise.
+ if (nt->named_object()->package() != NULL && nt->has_any_methods())
+ {
+ const Methods* methods = nt->methods();
+ for (Methods::const_iterator p = methods->begin();
+ p != methods->end();
+ ++p)
+ {
+ if (Type::traverse(p->second->type(), this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+
+ // Finalize the types of all methods that are declared but not
+ // defined, since we won't see the declarations otherwise.
+ if (nt->named_object()->package() == NULL
+ && nt->local_methods() != NULL)
+ {
+ const Bindings* methods = nt->local_methods();
+ for (Bindings::const_declarations_iterator p =
+ methods->begin_declarations();
+ p != methods->end_declarations();
+ p++)
+ {
+ if (p->second->is_function_declaration())
+ {
+ Type* mt = p->second->func_declaration_value()->type();
+ if (Type::traverse(mt, this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ }
+
+ return TRAVERSE_SKIP_COMPONENTS;
+ }
+
+ case Type::TYPE_STRUCT:
+ // Traverse the field types first in case there is an embedded
+ // field with methods that the struct should inherit.
+ if (t->struct_type()->traverse_field_types(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ t->struct_type()->finalize_methods(this->gogo_);
+ return TRAVERSE_SKIP_COMPONENTS;
+
+ default:
+ break;
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Finalize method lists and build stub methods for types.
+
+void
+Gogo::finalize_methods()
+{
+ Finalize_methods finalize(this);
+ this->traverse(&finalize);
+}
+
+// Set types for unspecified variables and constants.
+
+void
+Gogo::determine_types()
+{
+ Bindings* bindings = this->current_bindings();
+ for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+ p != bindings->end_definitions();
+ ++p)
+ {
+ if ((*p)->is_function())
+ (*p)->func_value()->determine_types();
+ else if ((*p)->is_variable())
+ (*p)->var_value()->determine_type();
+ else if ((*p)->is_const())
+ (*p)->const_value()->determine_type();
+
+ // See if a variable requires us to build an initialization
+ // function. We know that we will see all global variables
+ // here.
+ if (!this->need_init_fn_ && (*p)->is_variable())
+ {
+ Variable* variable = (*p)->var_value();
+
+ // If this is a global variable which requires runtime
+ // initialization, we need an initialization function.
+ if (!variable->is_global())
+ ;
+ else if (variable->init() == NULL)
+ ;
+ else if (variable->type()->interface_type() != NULL)
+ this->need_init_fn_ = true;
+ else if (variable->init()->is_constant())
+ ;
+ else if (!variable->init()->is_composite_literal())
+ this->need_init_fn_ = true;
+ else if (variable->init()->is_nonconstant_composite_literal())
+ this->need_init_fn_ = true;
+
+ // If this is a global variable which holds a pointer value,
+ // then we need an initialization function to register it as a
+ // GC root.
+ if (variable->is_global() && variable->type()->has_pointer())
+ this->need_init_fn_ = true;
+ }
+ }
+
+ // Determine the types of constants in packages.
+ for (Packages::const_iterator p = this->packages_.begin();
+ p != this->packages_.end();
+ ++p)
+ p->second->determine_types();
+}
+
+// Traversal class used for type checking.
+
+class Check_types_traverse : public Traverse
+{
+ public:
+ Check_types_traverse(Gogo* gogo)
+ : Traverse(traverse_variables
+ | traverse_constants
+ | traverse_functions
+ | traverse_statements
+ | traverse_expressions),
+ gogo_(gogo)
+ { }
+
+ int
+ variable(Named_object*);
+
+ int
+ constant(Named_object*, bool);
+
+ int
+ function(Named_object*);
+
+ int
+ statement(Block*, size_t* pindex, Statement*);
+
+ int
+ expression(Expression**);
+
+ private:
+ // General IR.
+ Gogo* gogo_;
+};
+
+// Check that a variable initializer has the right type.
+
+int
+Check_types_traverse::variable(Named_object* named_object)
+{
+ if (named_object->is_variable())
+ {
+ Variable* var = named_object->var_value();
+
+ // Give error if variable type is not defined.
+ var->type()->base();
+
+ Expression* init = var->init();
+ std::string reason;
+ if (init != NULL
+ && !Type::are_assignable(var->type(), init->type(), &reason))
+ {
+ if (reason.empty())
+ error_at(var->location(), "incompatible type in initialization");
+ else
+ error_at(var->location(),
+ "incompatible type in initialization (%s)",
+ reason.c_str());
+ var->clear_init();
+ }
+ else if (!var->is_used()
+ && !var->is_global()
+ && !var->is_parameter()
+ && !var->is_receiver()
+ && !var->type()->is_error()
+ && (init == NULL || !init->is_error_expression())
+ && !Lex::is_invalid_identifier(named_object->name()))
+ error_at(var->location(), "%qs declared and not used",
+ named_object->message_name().c_str());
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Check that a constant initializer has the right type.
+
+int
+Check_types_traverse::constant(Named_object* named_object, bool)
+{
+ Named_constant* constant = named_object->const_value();
+ Type* ctype = constant->type();
+ if (ctype->integer_type() == NULL
+ && ctype->float_type() == NULL
+ && ctype->complex_type() == NULL
+ && !ctype->is_boolean_type()
+ && !ctype->is_string_type())
+ {
+ if (ctype->is_nil_type())
+ error_at(constant->location(), "const initializer cannot be nil");
+ else if (!ctype->is_error())
+ error_at(constant->location(), "invalid constant type");
+ constant->set_error();
+ }
+ else if (!constant->expr()->is_constant())
+ {
+ error_at(constant->expr()->location(), "expression is not constant");
+ constant->set_error();
+ }
+ else if (!Type::are_assignable(constant->type(), constant->expr()->type(),
+ NULL))
+ {
+ error_at(constant->location(),
+ "initialization expression has wrong type");
+ constant->set_error();
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// There are no types to check in a function, but this is where we
+// issue warnings about labels which are defined but not referenced.
+
+int
+Check_types_traverse::function(Named_object* no)
+{
+ no->func_value()->check_labels();
+ return TRAVERSE_CONTINUE;
+}
+
+// Check that types are valid in a statement.
+
+int
+Check_types_traverse::statement(Block*, size_t*, Statement* s)
+{
+ s->check_types(this->gogo_);
+ return TRAVERSE_CONTINUE;
+}
+
+// Check that types are valid in an expression.
+
+int
+Check_types_traverse::expression(Expression** expr)
+{
+ (*expr)->check_types(this->gogo_);
+ return TRAVERSE_CONTINUE;
+}
+
+// Check that types are valid.
+
+void
+Gogo::check_types()
+{
+ Check_types_traverse traverse(this);
+ this->traverse(&traverse);
+}
+
+// Check the types in a single block.
+
+void
+Gogo::check_types_in_block(Block* block)
+{
+ Check_types_traverse traverse(this);
+ block->traverse(&traverse);
+}
+
+// A traversal class used to find a single shortcut operator within an
+// expression.
+
+class Find_shortcut : public Traverse
+{
+ public:
+ Find_shortcut()
+ : Traverse(traverse_blocks
+ | traverse_statements
+ | traverse_expressions),
+ found_(NULL)
+ { }
+
+ // A pointer to the expression which was found, or NULL if none was
+ // found.
+ Expression**
+ found() const
+ { return this->found_; }
+
+ protected:
+ int
+ block(Block*)
+ { return TRAVERSE_SKIP_COMPONENTS; }
+
+ int
+ statement(Block*, size_t*, Statement*)
+ { return TRAVERSE_SKIP_COMPONENTS; }
+
+ int
+ expression(Expression**);
+
+ private:
+ Expression** found_;
+};
+
+// Find a shortcut expression.
+
+int
+Find_shortcut::expression(Expression** pexpr)
+{
+ Expression* expr = *pexpr;
+ Binary_expression* be = expr->binary_expression();
+ if (be == NULL)
+ return TRAVERSE_CONTINUE;
+ Operator op = be->op();
+ if (op != OPERATOR_OROR && op != OPERATOR_ANDAND)
+ return TRAVERSE_CONTINUE;
+ go_assert(this->found_ == NULL);
+ this->found_ = pexpr;
+ return TRAVERSE_EXIT;
+}
+
+// A traversal class used to turn shortcut operators into explicit if
+// statements.
+
+class Shortcuts : public Traverse
+{
+ public:
+ Shortcuts(Gogo* gogo)
+ : Traverse(traverse_variables
+ | traverse_statements),
+ gogo_(gogo)
+ { }
+
+ protected:
+ int
+ variable(Named_object*);
+
+ int
+ statement(Block*, size_t*, Statement*);
+
+ private:
+ // Convert a shortcut operator.
+ Statement*
+ convert_shortcut(Block* enclosing, Expression** pshortcut);
+
+ // The IR.
+ Gogo* gogo_;
+};
+
+// Remove shortcut operators in a single statement.
+
+int
+Shortcuts::statement(Block* block, size_t* pindex, Statement* s)
+{
+ // FIXME: This approach doesn't work for switch statements, because
+ // we add the new statements before the whole switch when we need to
+ // instead add them just before the switch expression. The right
+ // fix is probably to lower switch statements with nonconstant cases
+ // to a series of conditionals.
+ if (s->switch_statement() != NULL)
+ return TRAVERSE_CONTINUE;
+
+ while (true)
+ {
+ Find_shortcut find_shortcut;
+
+ // If S is a variable declaration, then ordinary traversal won't
+ // do anything. We want to explicitly traverse the
+ // initialization expression if there is one.
+ Variable_declaration_statement* vds = s->variable_declaration_statement();
+ Expression* init = NULL;
+ if (vds == NULL)
+ s->traverse_contents(&find_shortcut);
+ else
+ {
+ init = vds->var()->var_value()->init();
+ if (init == NULL)
+ return TRAVERSE_CONTINUE;
+ init->traverse(&init, &find_shortcut);
+ }
+ Expression** pshortcut = find_shortcut.found();
+ if (pshortcut == NULL)
+ return TRAVERSE_CONTINUE;
+
+ Statement* snew = this->convert_shortcut(block, pshortcut);
+ block->insert_statement_before(*pindex, snew);
+ ++*pindex;
+
+ if (pshortcut == &init)
+ vds->var()->var_value()->set_init(init);
+ }
+}
+
+// Remove shortcut operators in the initializer of a global variable.
+
+int
+Shortcuts::variable(Named_object* no)
+{
+ if (no->is_result_variable())
+ return TRAVERSE_CONTINUE;
+ Variable* var = no->var_value();
+ Expression* init = var->init();
+ if (!var->is_global() || init == NULL)
+ return TRAVERSE_CONTINUE;
+
+ while (true)
+ {
+ Find_shortcut find_shortcut;
+ init->traverse(&init, &find_shortcut);
+ Expression** pshortcut = find_shortcut.found();
+ if (pshortcut == NULL)
+ return TRAVERSE_CONTINUE;
+
+ Statement* snew = this->convert_shortcut(NULL, pshortcut);
+ var->add_preinit_statement(this->gogo_, snew);
+ if (pshortcut == &init)
+ var->set_init(init);
+ }
+}
+
+// Given an expression which uses a shortcut operator, return a
+// statement which implements it, and update *PSHORTCUT accordingly.
+
+Statement*
+Shortcuts::convert_shortcut(Block* enclosing, Expression** pshortcut)
+{
+ Binary_expression* shortcut = (*pshortcut)->binary_expression();
+ Expression* left = shortcut->left();
+ Expression* right = shortcut->right();
+ Location loc = shortcut->location();
+
+ Block* retblock = new Block(enclosing, loc);
+ retblock->set_end_location(loc);
+
+ Temporary_statement* ts = Statement::make_temporary(shortcut->type(),
+ left, loc);
+ retblock->add_statement(ts);
+
+ Block* block = new Block(retblock, loc);
+ block->set_end_location(loc);
+ Expression* tmpref = Expression::make_temporary_reference(ts, loc);
+ Statement* assign = Statement::make_assignment(tmpref, right, loc);
+ block->add_statement(assign);
+
+ Expression* cond = Expression::make_temporary_reference(ts, loc);
+ if (shortcut->binary_expression()->op() == OPERATOR_OROR)
+ cond = Expression::make_unary(OPERATOR_NOT, cond, loc);
+
+ Statement* if_statement = Statement::make_if_statement(cond, block, NULL,
+ loc);
+ retblock->add_statement(if_statement);
+
+ *pshortcut = Expression::make_temporary_reference(ts, loc);
+
+ delete shortcut;
+
+ // Now convert any shortcut operators in LEFT and RIGHT.
+ Shortcuts shortcuts(this->gogo_);
+ retblock->traverse(&shortcuts);
+
+ return Statement::make_block_statement(retblock, loc);
+}
+
+// Turn shortcut operators into explicit if statements. Doing this
+// considerably simplifies the order of evaluation rules.
+
+void
+Gogo::remove_shortcuts()
+{
+ Shortcuts shortcuts(this);
+ this->traverse(&shortcuts);
+}
+
+// A traversal class which finds all the expressions which must be
+// evaluated in order within a statement or larger expression. This
+// is used to implement the rules about order of evaluation.
+
+class Find_eval_ordering : public Traverse
+{
+ private:
+ typedef std::vector<Expression**> Expression_pointers;
+
+ public:
+ Find_eval_ordering()
+ : Traverse(traverse_blocks
+ | traverse_statements
+ | traverse_expressions),
+ exprs_()
+ { }
+
+ size_t
+ size() const
+ { return this->exprs_.size(); }
+
+ typedef Expression_pointers::const_iterator const_iterator;
+
+ const_iterator
+ begin() const
+ { return this->exprs_.begin(); }
+
+ const_iterator
+ end() const
+ { return this->exprs_.end(); }
+
+ protected:
+ int
+ block(Block*)
+ { return TRAVERSE_SKIP_COMPONENTS; }
+
+ int
+ statement(Block*, size_t*, Statement*)
+ { return TRAVERSE_SKIP_COMPONENTS; }
+
+ int
+ expression(Expression**);
+
+ private:
+ // A list of pointers to expressions with side-effects.
+ Expression_pointers exprs_;
+};
+
+// If an expression must be evaluated in order, put it on the list.
+
+int
+Find_eval_ordering::expression(Expression** expression_pointer)
+{
+ // We have to look at subexpressions before this one.
+ if ((*expression_pointer)->traverse_subexpressions(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ if ((*expression_pointer)->must_eval_in_order())
+ this->exprs_.push_back(expression_pointer);
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// A traversal class for ordering evaluations.
+
+class Order_eval : public Traverse
+{
+ public:
+ Order_eval(Gogo* gogo)
+ : Traverse(traverse_variables
+ | traverse_statements),
+ gogo_(gogo)
+ { }
+
+ int
+ variable(Named_object*);
+
+ int
+ statement(Block*, size_t*, Statement*);
+
+ private:
+ // The IR.
+ Gogo* gogo_;
+};
+
+// Implement the order of evaluation rules for a statement.
+
+int
+Order_eval::statement(Block* block, size_t* pindex, Statement* s)
+{
+ // FIXME: This approach doesn't work for switch statements, because
+ // we add the new statements before the whole switch when we need to
+ // instead add them just before the switch expression. The right
+ // fix is probably to lower switch statements with nonconstant cases
+ // to a series of conditionals.
+ if (s->switch_statement() != NULL)
+ return TRAVERSE_CONTINUE;
+
+ Find_eval_ordering find_eval_ordering;
+
+ // If S is a variable declaration, then ordinary traversal won't do
+ // anything. We want to explicitly traverse the initialization
+ // expression if there is one.
+ Variable_declaration_statement* vds = s->variable_declaration_statement();
+ Expression* init = NULL;
+ Expression* orig_init = NULL;
+ if (vds == NULL)
+ s->traverse_contents(&find_eval_ordering);
+ else
+ {
+ init = vds->var()->var_value()->init();
+ if (init == NULL)
+ return TRAVERSE_CONTINUE;
+ orig_init = init;
+
+ // It might seem that this could be
+ // init->traverse_subexpressions. Unfortunately that can fail
+ // in a case like
+ // var err os.Error
+ // newvar, err := call(arg())
+ // Here newvar will have an init of call result 0 of
+ // call(arg()). If we only traverse subexpressions, we will
+ // only find arg(), and we won't bother to move anything out.
+ // Then we get to the assignment to err, we will traverse the
+ // whole statement, and this time we will find both call() and
+ // arg(), and so we will move them out. This will cause them to
+ // be put into temporary variables before the assignment to err
+ // but after the declaration of newvar. To avoid that problem,
+ // we traverse the entire expression here.
+ Expression::traverse(&init, &find_eval_ordering);
+ }
+
+ size_t c = find_eval_ordering.size();
+ if (c == 0)
+ return TRAVERSE_CONTINUE;
+
+ // If there is only one expression with a side-effect, we can
+ // usually leave it in place.
+ if (c == 1)
+ {
+ switch (s->classification())
+ {
+ case Statement::STATEMENT_ASSIGNMENT:
+ // For an assignment statement, we need to evaluate an
+ // expression on the right hand side before we evaluate any
+ // index expression on the left hand side, so for that case
+ // we always move the expression. Otherwise we mishandle
+ // m[0] = len(m) where m is a map.
+ break;
+
+ case Statement::STATEMENT_EXPRESSION:
+ {
+ // If this is a call statement that doesn't return any
+ // values, it will not have been counted as a value to
+ // move. We need to move any subexpressions in case they
+ // are themselves call statements that require passing a
+ // closure.
+ Expression* expr = s->expression_statement()->expr();
+ if (expr->call_expression() != NULL
+ && expr->call_expression()->result_count() == 0)
+ break;
+ return TRAVERSE_CONTINUE;
+ }
+
+ default:
+ // We can leave the expression in place.
+ return TRAVERSE_CONTINUE;
+ }
+ }
+
+ bool is_thunk = s->thunk_statement() != NULL;
+ for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
+ p != find_eval_ordering.end();
+ ++p)
+ {
+ Expression** pexpr = *p;
+
+ // The last expression in a thunk will be the call passed to go
+ // or defer, which we must not evaluate early.
+ if (is_thunk && p + 1 == find_eval_ordering.end())
+ break;
+
+ Location loc = (*pexpr)->location();
+ Statement* s;
+ if ((*pexpr)->call_expression() == NULL
+ || (*pexpr)->call_expression()->result_count() < 2)
+ {
+ Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
+ loc);
+ s = ts;
+ *pexpr = Expression::make_temporary_reference(ts, loc);
+ }
+ else
+ {
+ // A call expression which returns multiple results needs to
+ // be handled specially. We can't create a temporary
+ // because there is no type to give it. Any actual uses of
+ // the values will be done via Call_result_expressions.
+ s = Statement::make_statement(*pexpr, true);
+ }
+
+ block->insert_statement_before(*pindex, s);
+ ++*pindex;
+ }
+
+ if (init != orig_init)
+ vds->var()->var_value()->set_init(init);
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Implement the order of evaluation rules for the initializer of a
+// global variable.
+
+int
+Order_eval::variable(Named_object* no)
+{
+ if (no->is_result_variable())
+ return TRAVERSE_CONTINUE;
+ Variable* var = no->var_value();
+ Expression* init = var->init();
+ if (!var->is_global() || init == NULL)
+ return TRAVERSE_CONTINUE;
+
+ Find_eval_ordering find_eval_ordering;
+ Expression::traverse(&init, &find_eval_ordering);
+
+ if (find_eval_ordering.size() <= 1)
+ {
+ // If there is only one expression with a side-effect, we can
+ // leave it in place.
+ return TRAVERSE_SKIP_COMPONENTS;
+ }
+
+ Expression* orig_init = init;
+
+ for (Find_eval_ordering::const_iterator p = find_eval_ordering.begin();
+ p != find_eval_ordering.end();
+ ++p)
+ {
+ Expression** pexpr = *p;
+ Location loc = (*pexpr)->location();
+ Statement* s;
+ if ((*pexpr)->call_expression() == NULL
+ || (*pexpr)->call_expression()->result_count() < 2)
+ {
+ Temporary_statement* ts = Statement::make_temporary(NULL, *pexpr,
+ loc);
+ s = ts;
+ *pexpr = Expression::make_temporary_reference(ts, loc);
+ }
+ else
+ {
+ // A call expression which returns multiple results needs to
+ // be handled specially.
+ s = Statement::make_statement(*pexpr, true);
+ }
+ var->add_preinit_statement(this->gogo_, s);
+ }
+
+ if (init != orig_init)
+ var->set_init(init);
+
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Use temporary variables to implement the order of evaluation rules.
+
+void
+Gogo::order_evaluations()
+{
+ Order_eval order_eval(this);
+ this->traverse(&order_eval);
+}
+
+// Traversal to flatten parse tree after order of evaluation rules are applied.
+
+class Flatten : public Traverse
+{
+ public:
+ Flatten(Gogo* gogo, Named_object* function)
+ : Traverse(traverse_variables
+ | traverse_functions
+ | traverse_statements
+ | traverse_expressions),
+ gogo_(gogo), function_(function), inserter_()
+ { }
+
+ void
+ set_inserter(const Statement_inserter* inserter)
+ { this->inserter_ = *inserter; }
+
+ int
+ variable(Named_object*);
+
+ int
+ function(Named_object*);
+
+ int
+ statement(Block*, size_t* pindex, Statement*);
+
+ int
+ expression(Expression**);
+
+ private:
+ // General IR.
+ Gogo* gogo_;
+ // The function we are traversing.
+ Named_object* function_;
+ // Current statement inserter for use by expressions.
+ Statement_inserter inserter_;
+};
+
+// Flatten variables.
+
+int
+Flatten::variable(Named_object* no)
+{
+ if (!no->is_variable())
+ return TRAVERSE_CONTINUE;
+
+ if (no->is_variable() && no->var_value()->is_global())
+ {
+ // Global variables can have loops in their initialization
+ // expressions. This is handled in flatten_init_expression.
+ no->var_value()->flatten_init_expression(this->gogo_, this->function_,
+ &this->inserter_);
+ return TRAVERSE_CONTINUE;
+ }
+
+ go_assert(!no->var_value()->has_pre_init());
+
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten the body of a function. Record the function while flattening it,
+// so that we can pass it down when flattening an expression.
+
+int
+Flatten::function(Named_object* no)
+{
+ go_assert(this->function_ == NULL);
+ this->function_ = no;
+ int t = no->func_value()->traverse(this);
+ this->function_ = NULL;
+
+ if (t == TRAVERSE_EXIT)
+ return t;
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten statement parse trees.
+
+int
+Flatten::statement(Block* block, size_t* pindex, Statement* sorig)
+{
+ // Because we explicitly traverse the statement's contents
+ // ourselves, we want to skip block statements here. There is
+ // nothing to flatten in a block statement.
+ if (sorig->is_block_statement())
+ return TRAVERSE_CONTINUE;
+
+ Statement_inserter hold_inserter(this->inserter_);
+ this->inserter_ = Statement_inserter(block, pindex);
+
+ // Flatten the expressions first.
+ int t = sorig->traverse_contents(this);
+ if (t == TRAVERSE_EXIT)
+ {
+ this->inserter_ = hold_inserter;
+ return t;
+ }
+
+ // Keep flattening until nothing changes.
+ Statement* s = sorig;
+ while (true)
+ {
+ Statement* snew = s->flatten(this->gogo_, this->function_, block,
+ &this->inserter_);
+ if (snew == s)
+ break;
+ s = snew;
+ t = s->traverse_contents(this);
+ if (t == TRAVERSE_EXIT)
+ {
+ this->inserter_ = hold_inserter;
+ return t;
+ }
+ }
+
+ if (s != sorig)
+ block->replace_statement(*pindex, s);
+
+ this->inserter_ = hold_inserter;
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten expression parse trees.
+
+int
+Flatten::expression(Expression** pexpr)
+{
+ // Keep flattening until nothing changes.
+ while (true)
+ {
+ Expression* e = *pexpr;
+ if (e->traverse_subexpressions(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+
+ Expression* enew = e->flatten(this->gogo_, this->function_,
+ &this->inserter_);
+ if (enew == e)
+ break;
+ *pexpr = enew;
+ }
+ return TRAVERSE_SKIP_COMPONENTS;
+}
+
+// Flatten a block.
+
+void
+Gogo::flatten_block(Named_object* function, Block* block)
+{
+ Flatten flatten(this, function);
+ block->traverse(&flatten);
+}
+
+// Flatten an expression. INSERTER may be NULL, in which case the
+// expression had better not need to create any temporaries.
+
+void
+Gogo::flatten_expression(Named_object* function, Statement_inserter* inserter,
+ Expression** pexpr)
+{
+ Flatten flatten(this, function);
+ if (inserter != NULL)
+ flatten.set_inserter(inserter);
+ flatten.expression(pexpr);
+}
+
+void
+Gogo::flatten()
+{
+ Flatten flatten(this, NULL);
+ this->traverse(&flatten);
+}
+
+// Traversal to convert calls to the predeclared recover function to
+// pass in an argument indicating whether it can recover from a panic
+// or not.
+
+class Convert_recover : public Traverse
+{
+ public:
+ Convert_recover(Named_object* arg)
+ : Traverse(traverse_expressions),
+ arg_(arg)
+ { }
+
+ protected:
+ int
+ expression(Expression**);
+
+ private:
+ // The argument to pass to the function.
+ Named_object* arg_;
+};
+
+// Convert calls to recover.
+
+int
+Convert_recover::expression(Expression** pp)
+{
+ Call_expression* ce = (*pp)->call_expression();
+ if (ce != NULL && ce->is_recover_call())
+ ce->set_recover_arg(Expression::make_var_reference(this->arg_,
+ ce->location()));
+ return TRAVERSE_CONTINUE;
+}
+
+// Traversal for build_recover_thunks.
+
+class Build_recover_thunks : public Traverse
+{
+ public:
+ Build_recover_thunks(Gogo* gogo)
+ : Traverse(traverse_functions),
+ gogo_(gogo)
+ { }
+
+ int
+ function(Named_object*);
+
+ private:
+ Expression*
+ can_recover_arg(Location);
+
+ // General IR.
+ Gogo* gogo_;
+};
+
+// If this function calls recover, turn it into a thunk.
+
+int
+Build_recover_thunks::function(Named_object* orig_no)
+{
+ Function* orig_func = orig_no->func_value();
+ if (!orig_func->calls_recover()
+ || orig_func->is_recover_thunk()
+ || orig_func->has_recover_thunk())
+ return TRAVERSE_CONTINUE;
+
+ Gogo* gogo = this->gogo_;
+ Location location = orig_func->location();
+
+ static int count;
+ char buf[50];
+
+ Function_type* orig_fntype = orig_func->type();
+ Typed_identifier_list* new_params = new Typed_identifier_list();
+ std::string receiver_name;
+ if (orig_fntype->is_method())
+ {
+ const Typed_identifier* receiver = orig_fntype->receiver();
+ snprintf(buf, sizeof buf, "rt.%u", count);
+ ++count;
+ receiver_name = buf;
+ new_params->push_back(Typed_identifier(receiver_name, receiver->type(),
+ receiver->location()));
+ }
+ const Typed_identifier_list* orig_params = orig_fntype->parameters();
+ if (orig_params != NULL && !orig_params->empty())
+ {
+ for (Typed_identifier_list::const_iterator p = orig_params->begin();
+ p != orig_params->end();
+ ++p)
+ {
+ snprintf(buf, sizeof buf, "pt.%u", count);
+ ++count;
+ new_params->push_back(Typed_identifier(buf, p->type(),
+ p->location()));
+ }
+ }
+ snprintf(buf, sizeof buf, "pr.%u", count);
+ ++count;
+ std::string can_recover_name = buf;
+ new_params->push_back(Typed_identifier(can_recover_name,
+ Type::lookup_bool_type(),
+ orig_fntype->location()));
+
+ const Typed_identifier_list* orig_results = orig_fntype->results();
+ Typed_identifier_list* new_results;
+ if (orig_results == NULL || orig_results->empty())
+ new_results = NULL;
+ else
+ {
+ new_results = new Typed_identifier_list();
+ for (Typed_identifier_list::const_iterator p = orig_results->begin();
+ p != orig_results->end();
+ ++p)
+ new_results->push_back(Typed_identifier("", p->type(), p->location()));
+ }
+
+ Function_type *new_fntype = Type::make_function_type(NULL, new_params,
+ new_results,
+ orig_fntype->location());
+ if (orig_fntype->is_varargs())
+ new_fntype->set_is_varargs();
+
+ std::string name = orig_no->name();
+ if (orig_fntype->is_method())
+ name += "$" + orig_fntype->receiver()->type()->mangled_name(gogo);
+ name += "$recover";
+ Named_object *new_no = gogo->start_function(name, new_fntype, false,
+ location);
+ Function *new_func = new_no->func_value();
+ if (orig_func->enclosing() != NULL)
+ new_func->set_enclosing(orig_func->enclosing());
+
+ // We build the code for the original function attached to the new
+ // function, and then swap the original and new function bodies.
+ // This means that existing references to the original function will
+ // then refer to the new function. That makes this code a little
+ // confusing, in that the reference to NEW_NO really refers to the
+ // other function, not the one we are building.
+
+ Expression* closure = NULL;
+ if (orig_func->needs_closure())
+ {
+ // For the new function we are creating, declare a new parameter
+ // variable NEW_CLOSURE_NO and set it to be the closure variable
+ // of the function. This will be set to the closure value
+ // passed in by the caller. Then pass a reference to this
+ // variable as the closure value when calling the original
+ // function. In other words, simply pass the closure value
+ // through the thunk we are creating.
+ Named_object* orig_closure_no = orig_func->closure_var();
+ Variable* orig_closure_var = orig_closure_no->var_value();
+ Variable* new_var = new Variable(orig_closure_var->type(), NULL, false,
+ false, false, location);
+ snprintf(buf, sizeof buf, "closure.%u", count);
+ ++count;
+ Named_object* new_closure_no = Named_object::make_variable(buf, NULL,
+ new_var);
+ new_func->set_closure_var(new_closure_no);
+ closure = Expression::make_var_reference(new_closure_no, location);
+ }
+
+ Expression* fn = Expression::make_func_reference(new_no, closure, location);
+
+ Expression_list* args = new Expression_list();
+ if (new_params != NULL)
+ {
+ // Note that we skip the last parameter, which is the boolean
+ // indicating whether recover can succed.
+ for (Typed_identifier_list::const_iterator p = new_params->begin();
+ p + 1 != new_params->end();
+ ++p)
+ {
+ Named_object* p_no = gogo->lookup(p->name(), NULL);
+ go_assert(p_no != NULL
+ && p_no->is_variable()
+ && p_no->var_value()->is_parameter());
+ args->push_back(Expression::make_var_reference(p_no, location));
+ }
+ }
+ args->push_back(this->can_recover_arg(location));
+
+ gogo->start_block(location);
+
+ Call_expression* call = Expression::make_call(fn, args, false, location);
+
+ // Any varargs call has already been lowered.
+ call->set_varargs_are_lowered();
+
+ Statement* s = Statement::make_return_from_call(call, location);
+ s->determine_types();
+ gogo->add_statement(s);
+
+ Block* b = gogo->finish_block(location);
+
+ gogo->add_block(b, location);
+
+ // Lower the call in case it returns multiple results.
+ gogo->lower_block(new_no, b);
+
+ gogo->finish_function(location);
+
+ // Swap the function bodies and types.
+ new_func->swap_for_recover(orig_func);
+ orig_func->set_is_recover_thunk();
+ new_func->set_calls_recover();
+ new_func->set_has_recover_thunk();
+
+ Bindings* orig_bindings = orig_func->block()->bindings();
+ Bindings* new_bindings = new_func->block()->bindings();
+ if (orig_fntype->is_method())
+ {
+ // We changed the receiver to be a regular parameter. We have
+ // to update the binding accordingly in both functions.
+ Named_object* orig_rec_no = orig_bindings->lookup_local(receiver_name);
+ go_assert(orig_rec_no != NULL
+ && orig_rec_no->is_variable()
+ && !orig_rec_no->var_value()->is_receiver());
+ orig_rec_no->var_value()->set_is_receiver();
+
+ std::string new_receiver_name(orig_fntype->receiver()->name());
+ if (new_receiver_name.empty())
+ {
+ // Find the receiver. It was named "r.NNN" in
+ // Gogo::start_function.
+ for (Bindings::const_definitions_iterator p =
+ new_bindings->begin_definitions();
+ p != new_bindings->end_definitions();
+ ++p)
+ {
+ const std::string& pname((*p)->name());
+ if (pname[0] == 'r' && pname[1] == '.')
+ {
+ new_receiver_name = pname;
+ break;
+ }
+ }
+ go_assert(!new_receiver_name.empty());
+ }
+ Named_object* new_rec_no = new_bindings->lookup_local(new_receiver_name);
+ if (new_rec_no == NULL)
+ go_assert(saw_errors());
+ else
+ {
+ go_assert(new_rec_no->is_variable()
+ && new_rec_no->var_value()->is_receiver());
+ new_rec_no->var_value()->set_is_not_receiver();
+ }
+ }
+
+ // Because we flipped blocks but not types, the can_recover
+ // parameter appears in the (now) old bindings as a parameter.
+ // Change it to a local variable, whereupon it will be discarded.
+ Named_object* can_recover_no = orig_bindings->lookup_local(can_recover_name);
+ go_assert(can_recover_no != NULL
+ && can_recover_no->is_variable()
+ && can_recover_no->var_value()->is_parameter());
+ orig_bindings->remove_binding(can_recover_no);
+
+ // Add the can_recover argument to the (now) new bindings, and
+ // attach it to any recover statements.
+ Variable* can_recover_var = new Variable(Type::lookup_bool_type(), NULL,
+ false, true, false, location);
+ can_recover_no = new_bindings->add_variable(can_recover_name, NULL,
+ can_recover_var);
+ Convert_recover convert_recover(can_recover_no);
+ new_func->traverse(&convert_recover);
+
+ // Update the function pointers in any named results.
+ new_func->update_result_variables();
+ orig_func->update_result_variables();
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Return the expression to pass for the .can_recover parameter to the
+// new function. This indicates whether a call to recover may return
+// non-nil. The expression is
+// __go_can_recover(__builtin_return_address()).
+
+Expression*
+Build_recover_thunks::can_recover_arg(Location location)
+{
+ static Named_object* builtin_return_address;
+ if (builtin_return_address == NULL)
+ {
+ const Location bloc = Linemap::predeclared_location();
+
+ Typed_identifier_list* param_types = new Typed_identifier_list();
+ Type* uint_type = Type::lookup_integer_type("uint");
+ param_types->push_back(Typed_identifier("l", uint_type, bloc));
+
+ Typed_identifier_list* return_types = new Typed_identifier_list();
+ Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
+ return_types->push_back(Typed_identifier("", voidptr_type, bloc));
+
+ Function_type* fntype = Type::make_function_type(NULL, param_types,
+ return_types, bloc);
+ builtin_return_address =
+ Named_object::make_function_declaration("__builtin_return_address",
+ NULL, fntype, bloc);
+ const char* n = "__builtin_return_address";
+ builtin_return_address->func_declaration_value()->set_asm_name(n);
+ }
+
+ static Named_object* can_recover;
+ if (can_recover == NULL)
+ {
+ const Location bloc = Linemap::predeclared_location();
+ Typed_identifier_list* param_types = new Typed_identifier_list();
+ Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
+ param_types->push_back(Typed_identifier("a", voidptr_type, bloc));
+ Type* boolean_type = Type::lookup_bool_type();
+ Typed_identifier_list* results = new Typed_identifier_list();
+ results->push_back(Typed_identifier("", boolean_type, bloc));
+ Function_type* fntype = Type::make_function_type(NULL, param_types,
+ results, bloc);
+ can_recover = Named_object::make_function_declaration("__go_can_recover",
+ NULL, fntype,
+ bloc);
+ can_recover->func_declaration_value()->set_asm_name("__go_can_recover");
+ }
+
+ Expression* fn = Expression::make_func_reference(builtin_return_address,
+ NULL, location);
+
+ mpz_t zval;
+ mpz_init_set_ui(zval, 0UL);
+ Expression* zexpr = Expression::make_integer(&zval, NULL, location);
+ mpz_clear(zval);
+ Expression_list *args = new Expression_list();
+ args->push_back(zexpr);
+
+ Expression* call = Expression::make_call(fn, args, false, location);
+
+ args = new Expression_list();
+ args->push_back(call);
+
+ fn = Expression::make_func_reference(can_recover, NULL, location);
+ return Expression::make_call(fn, args, false, location);
+}
+
+// Build thunks for functions which call recover. We build a new
+// function with an extra parameter, which is whether a call to
+// recover can succeed. We then move the body of this function to
+// that one. We then turn this function into a thunk which calls the
+// new one, passing the value of
+// __go_can_recover(__builtin_return_address()). The function will be
+// marked as not splitting the stack. This will cooperate with the
+// implementation of defer to make recover do the right thing.
+
+void
+Gogo::build_recover_thunks()
+{
+ Build_recover_thunks build_recover_thunks(this);
+ this->traverse(&build_recover_thunks);
+}
+
+// Build a call to the runtime error function.
+
+Expression*
+Gogo::runtime_error(int code, Location location)
+{
+ Type* int32_type = Type::lookup_integer_type("int32");
+ mpz_t val;
+ mpz_init_set_ui(val, code);
+ Expression* code_expr = Expression::make_integer(&val, int32_type, location);
+ mpz_clear(val);
+ return Runtime::make_call(Runtime::RUNTIME_ERROR, location, 1, code_expr);
+}
+
+// Look for named types to see whether we need to create an interface
+// method table.
+
+class Build_method_tables : public Traverse
+{
+ public:
+ Build_method_tables(Gogo* gogo,
+ const std::vector<Interface_type*>& interfaces)
+ : Traverse(traverse_types),
+ gogo_(gogo), interfaces_(interfaces)
+ { }
+
+ int
+ type(Type*);
+
+ private:
+ // The IR.
+ Gogo* gogo_;
+ // A list of locally defined interfaces which have hidden methods.
+ const std::vector<Interface_type*>& interfaces_;
+};
+
+// Build all required interface method tables for types. We need to
+// ensure that we have an interface method table for every interface
+// which has a hidden method, for every named type which implements
+// that interface. Normally we can just build interface method tables
+// as we need them. However, in some cases we can require an
+// interface method table for an interface defined in a different
+// package for a type defined in that package. If that interface and
+// type both use a hidden method, that is OK. However, we will not be
+// able to build that interface method table when we need it, because
+// the type's hidden method will be static. So we have to build it
+// here, and just refer it from other packages as needed.
+
+void
+Gogo::build_interface_method_tables()
+{
+ if (saw_errors())
+ return;
+
+ std::vector<Interface_type*> hidden_interfaces;
+ hidden_interfaces.reserve(this->interface_types_.size());
+ for (std::vector<Interface_type*>::const_iterator pi =
+ this->interface_types_.begin();
+ pi != this->interface_types_.end();
+ ++pi)
+ {
+ const Typed_identifier_list* methods = (*pi)->methods();
+ if (methods == NULL)
+ continue;
+ for (Typed_identifier_list::const_iterator pm = methods->begin();
+ pm != methods->end();
+ ++pm)
+ {
+ if (Gogo::is_hidden_name(pm->name()))
+ {
+ hidden_interfaces.push_back(*pi);
+ break;
+ }
+ }
+ }
+
+ if (!hidden_interfaces.empty())
+ {
+ // Now traverse the tree looking for all named types.
+ Build_method_tables bmt(this, hidden_interfaces);
+ this->traverse(&bmt);
+ }
+
+ // We no longer need the list of interfaces.
+
+ this->interface_types_.clear();
+}
+
+// This is called for each type. For a named type, for each of the
+// interfaces with hidden methods that it implements, create the
+// method table.
+
+int
+Build_method_tables::type(Type* type)
+{
+ Named_type* nt = type->named_type();
+ Struct_type* st = type->struct_type();
+ if (nt != NULL || st != NULL)
+ {
+ for (std::vector<Interface_type*>::const_iterator p =
+ this->interfaces_.begin();
+ p != this->interfaces_.end();
+ ++p)
+ {
+ // We ask whether a pointer to the named type implements the
+ // interface, because a pointer can implement more methods
+ // than a value.
+ if (nt != NULL)
+ {
+ if ((*p)->implements_interface(Type::make_pointer_type(nt),
+ NULL))
+ {
+ nt->interface_method_table(this->gogo_, *p, false);
+ nt->interface_method_table(this->gogo_, *p, true);
+ }
+ }
+ else
+ {
+ if ((*p)->implements_interface(Type::make_pointer_type(st),
+ NULL))
+ {
+ st->interface_method_table(this->gogo_, *p, false);
+ st->interface_method_table(this->gogo_, *p, true);
+ }
+ }
+ }
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Traversal class used to check for return statements.
+
+class Check_return_statements_traverse : public Traverse
+{
+ public:
+ Check_return_statements_traverse()
+ : Traverse(traverse_functions)
+ { }
+
+ int
+ function(Named_object*);
+};
+
+// Check that a function has a return statement if it needs one.
+
+int
+Check_return_statements_traverse::function(Named_object* no)
+{
+ Function* func = no->func_value();
+ const Function_type* fntype = func->type();
+ const Typed_identifier_list* results = fntype->results();
+
+ // We only need a return statement if there is a return value.
+ if (results == NULL || results->empty())
+ return TRAVERSE_CONTINUE;
+
+ if (func->block()->may_fall_through())
+ error_at(func->block()->end_location(),
+ "missing return at end of function");
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Check return statements.
+
+void
+Gogo::check_return_statements()
+{
+ Check_return_statements_traverse traverse;
+ this->traverse(&traverse);
+}
+
+// Work out the package priority. It is one more than the maximum
+// priority of an imported package.
+
+int
+Gogo::package_priority() const
+{
+ int priority = 0;
+ for (Packages::const_iterator p = this->packages_.begin();
+ p != this->packages_.end();
+ ++p)
+ if (p->second->priority() > priority)
+ priority = p->second->priority();
+ return priority + 1;
+}
+
+// Export identifiers as requested.
+
+void
+Gogo::do_exports()
+{
+ // For now we always stream to a section. Later we may want to
+ // support streaming to a separate file.
+ Stream_to_section stream;
+
+ Export exp(&stream);
+ exp.register_builtin_types(this);
+ exp.export_globals(this->package_name(),
+ this->pkgpath(),
+ this->package_priority(),
+ this->imports_,
+ (this->need_init_fn_ && !this->is_main_package()
+ ? this->get_init_fn_name()
+ : ""),
+ this->imported_init_fns_,
+ this->package_->bindings());
+}
+
+// Find the blocks in order to convert named types defined in blocks.
+
+class Convert_named_types : public Traverse
+{
+ public:
+ Convert_named_types(Gogo* gogo)
+ : Traverse(traverse_blocks),
+ gogo_(gogo)
+ { }
+
+ protected:
+ int
+ block(Block* block);
+
+ private:
+ Gogo* gogo_;
+};
+
+int
+Convert_named_types::block(Block* block)
+{
+ this->gogo_->convert_named_types_in_bindings(block->bindings());
+ return TRAVERSE_CONTINUE;
+}
+
+// Convert all named types to the backend representation. Since named
+// types can refer to other types, this needs to be done in the right
+// sequence, which is handled by Named_type::convert. Here we arrange
+// to call that for each named type.
+
+void
+Gogo::convert_named_types()
+{
+ this->convert_named_types_in_bindings(this->globals_);
+ for (Packages::iterator p = this->packages_.begin();
+ p != this->packages_.end();
+ ++p)
+ {
+ Package* package = p->second;
+ this->convert_named_types_in_bindings(package->bindings());
+ }
+
+ Convert_named_types cnt(this);
+ this->traverse(&cnt);
+
+ // Make all the builtin named types used for type descriptors, and
+ // then convert them. They will only be written out if they are
+ // needed.
+ Type::make_type_descriptor_type();
+ Type::make_type_descriptor_ptr_type();
+ Function_type::make_function_type_descriptor_type();
+ Pointer_type::make_pointer_type_descriptor_type();
+ Struct_type::make_struct_type_descriptor_type();
+ Array_type::make_array_type_descriptor_type();
+ Array_type::make_slice_type_descriptor_type();
+ Map_type::make_map_type_descriptor_type();
+ Map_type::make_map_descriptor_type();
+ Channel_type::make_chan_type_descriptor_type();
+ Interface_type::make_interface_type_descriptor_type();
+ Expression::make_func_descriptor_type();
+ Type::convert_builtin_named_types(this);
+
+ Runtime::convert_types(this);
+
+ this->named_types_are_converted_ = true;
+}
+
+// Convert all names types in a set of bindings.
+
+void
+Gogo::convert_named_types_in_bindings(Bindings* bindings)
+{
+ for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+ p != bindings->end_definitions();
+ ++p)
+ {
+ if ((*p)->is_type())
+ (*p)->type_value()->convert(this);
+ }
+}
+
+// Class Function.
+
+Function::Function(Function_type* type, Function* enclosing, Block* block,
+ Location location)
+ : type_(type), enclosing_(enclosing), results_(NULL),
+ closure_var_(NULL), block_(block), location_(location), labels_(),
+ local_type_count_(0), descriptor_(NULL), fndecl_(NULL), defer_stack_(NULL),
+ is_sink_(false), results_are_named_(false), nointerface_(false),
+ is_unnamed_type_stub_method_(false), calls_recover_(false),
+ is_recover_thunk_(false), has_recover_thunk_(false),
+ in_unique_section_(false)
+{
+}
+
+// Create the named result variables.
+
+void
+Function::create_result_variables(Gogo* gogo)
+{
+ const Typed_identifier_list* results = this->type_->results();
+ if (results == NULL || results->empty())
+ return;
+
+ if (!results->front().name().empty())
+ this->results_are_named_ = true;
+
+ this->results_ = new Results();
+ this->results_->reserve(results->size());
+
+ Block* block = this->block_;
+ int index = 0;
+ for (Typed_identifier_list::const_iterator p = results->begin();
+ p != results->end();
+ ++p, ++index)
+ {
+ std::string name = p->name();
+ if (name.empty() || Gogo::is_sink_name(name))
+ {
+ static int result_counter;
+ char buf[100];
+ snprintf(buf, sizeof buf, "$ret%d", result_counter);
+ ++result_counter;
+ name = gogo->pack_hidden_name(buf, false);
+ }
+ Result_variable* result = new Result_variable(p->type(), this, index,
+ p->location());
+ Named_object* no = block->bindings()->add_result_variable(name, result);
+ if (no->is_result_variable())
+ this->results_->push_back(no);
+ else
+ {
+ static int dummy_result_count;
+ char buf[100];
+ snprintf(buf, sizeof buf, "$dret%d", dummy_result_count);
+ ++dummy_result_count;
+ name = gogo->pack_hidden_name(buf, false);
+ no = block->bindings()->add_result_variable(name, result);
+ go_assert(no->is_result_variable());
+ this->results_->push_back(no);
+ }
+ }
+}
+
+// Update the named result variables when cloning a function which
+// calls recover.
+
+void
+Function::update_result_variables()
+{
+ if (this->results_ == NULL)
+ return;
+
+ for (Results::iterator p = this->results_->begin();
+ p != this->results_->end();
+ ++p)
+ (*p)->result_var_value()->set_function(this);
+}
+
+// Return the closure variable, creating it if necessary.
+
+Named_object*
+Function::closure_var()
+{
+ if (this->closure_var_ == NULL)
+ {
+ go_assert(this->descriptor_ == NULL);
+ // We don't know the type of the variable yet. We add fields as
+ // we find them.
+ Location loc = this->type_->location();
+ Struct_field_list* sfl = new Struct_field_list;
+ Type* struct_type = Type::make_struct_type(sfl, loc);
+ Variable* var = new Variable(Type::make_pointer_type(struct_type),
+ NULL, false, false, false, loc);
+ var->set_is_used();
+ this->closure_var_ = Named_object::make_variable("$closure", NULL, var);
+ // Note that the new variable is not in any binding contour.
+ }
+ return this->closure_var_;
+}
+
+// Set the type of the closure variable.
+
+void
+Function::set_closure_type()
+{
+ if (this->closure_var_ == NULL)
+ return;
+ Named_object* closure = this->closure_var_;
+ Struct_type* st = closure->var_value()->type()->deref()->struct_type();
+
+ // The first field of a closure is always a pointer to the function
+ // code.
+ Type* voidptr_type = Type::make_pointer_type(Type::make_void_type());
+ st->push_field(Struct_field(Typed_identifier(".$f", voidptr_type,
+ this->location_)));
+
+ unsigned int index = 1;
+ for (Closure_fields::const_iterator p = this->closure_fields_.begin();
+ p != this->closure_fields_.end();
+ ++p, ++index)
+ {
+ Named_object* no = p->first;
+ char buf[20];
+ snprintf(buf, sizeof buf, "%u", index);
+ std::string n = no->name() + buf;
+ Type* var_type;
+ if (no->is_variable())
+ var_type = no->var_value()->type();
+ else
+ var_type = no->result_var_value()->type();
+ Type* field_type = Type::make_pointer_type(var_type);
+ st->push_field(Struct_field(Typed_identifier(n, field_type, p->second)));
+ }
+}
+
+// Return whether this function is a method.
+
+bool
+Function::is_method() const
+{
+ return this->type_->is_method();
+}
+
+// Add a label definition.
+
+Label*
+Function::add_label_definition(Gogo* gogo, const std::string& label_name,
+ Location location)
+{
+ Label* lnull = NULL;
+ std::pair<Labels::iterator, bool> ins =
+ this->labels_.insert(std::make_pair(label_name, lnull));
+ Label* label;
+ if (ins.second)
+ {
+ // This is a new label.
+ label = new Label(label_name);
+ ins.first->second = label;
+ }
+ else
+ {
+ // The label was already in the hash table.
+ label = ins.first->second;
+ if (label->is_defined())
+ {
+ error_at(location, "label %qs already defined",
+ Gogo::message_name(label_name).c_str());
+ inform(label->location(), "previous definition of %qs was here",
+ Gogo::message_name(label_name).c_str());
+ return new Label(label_name);
+ }
+ }
+
+ label->define(location, gogo->bindings_snapshot(location));
+
+ // Issue any errors appropriate for any previous goto's to this
+ // label.
+ const std::vector<Bindings_snapshot*>& refs(label->refs());
+ for (std::vector<Bindings_snapshot*>::const_iterator p = refs.begin();
+ p != refs.end();
+ ++p)
+ (*p)->check_goto_to(gogo->current_block());
+ label->clear_refs();
+
+ return label;
+}
+
+// Add a reference to a label.
+
+Label*
+Function::add_label_reference(Gogo* gogo, const std::string& label_name,
+ Location location, bool issue_goto_errors)
+{
+ Label* lnull = NULL;
+ std::pair<Labels::iterator, bool> ins =
+ this->labels_.insert(std::make_pair(label_name, lnull));
+ Label* label;
+ if (!ins.second)
+ {
+ // The label was already in the hash table.
+ label = ins.first->second;
+ }
+ else
+ {
+ go_assert(ins.first->second == NULL);
+ label = new Label(label_name);
+ ins.first->second = label;
+ }
+
+ label->set_is_used();
+
+ if (issue_goto_errors)
+ {
+ Bindings_snapshot* snapshot = label->snapshot();
+ if (snapshot != NULL)
+ snapshot->check_goto_from(gogo->current_block(), location);
+ else
+ label->add_snapshot_ref(gogo->bindings_snapshot(location));
+ }
+
+ return label;
+}
+
+// Warn about labels that are defined but not used.
+
+void
+Function::check_labels() const
+{
+ for (Labels::const_iterator p = this->labels_.begin();
+ p != this->labels_.end();
+ p++)
+ {
+ Label* label = p->second;
+ if (!label->is_used())
+ error_at(label->location(), "label %qs defined and not used",
+ Gogo::message_name(label->name()).c_str());
+ }
+}
+
+// Swap one function with another. This is used when building the
+// thunk we use to call a function which calls recover. It may not
+// work for any other case.
+
+void
+Function::swap_for_recover(Function *x)
+{
+ go_assert(this->enclosing_ == x->enclosing_);
+ std::swap(this->results_, x->results_);
+ std::swap(this->closure_var_, x->closure_var_);
+ std::swap(this->block_, x->block_);
+ go_assert(this->location_ == x->location_);
+ go_assert(this->fndecl_ == NULL && x->fndecl_ == NULL);
+ go_assert(this->defer_stack_ == NULL && x->defer_stack_ == NULL);
+}
+
+// Traverse the tree.
+
+int
+Function::traverse(Traverse* traverse)
+{
+ unsigned int traverse_mask = traverse->traverse_mask();
+
+ if ((traverse_mask
+ & (Traverse::traverse_types | Traverse::traverse_expressions))
+ != 0)
+ {
+ if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+
+ // FIXME: We should check traverse_functions here if nested
+ // functions are stored in block bindings.
+ if (this->block_ != NULL
+ && (traverse_mask
+ & (Traverse::traverse_variables
+ | Traverse::traverse_constants
+ | Traverse::traverse_blocks
+ | Traverse::traverse_statements
+ | Traverse::traverse_expressions
+ | Traverse::traverse_types)) != 0)
+ {
+ if (this->block_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Work out types for unspecified variables and constants.
+
+void
+Function::determine_types()
+{
+ if (this->block_ != NULL)
+ this->block_->determine_types();
+}
+
+// Return the function descriptor, the value you get when you refer to
+// the function in Go code without calling it.
+
+Expression*
+Function::descriptor(Gogo*, Named_object* no)
+{
+ go_assert(!this->is_method());
+ go_assert(this->closure_var_ == NULL);
+ if (this->descriptor_ == NULL)
+ this->descriptor_ = Expression::make_func_descriptor(no);
+ return this->descriptor_;
+}
+
+// Get a pointer to the variable representing the defer stack for this
+// function, making it if necessary. The value of the variable is set
+// by the runtime routines to true if the function is returning,
+// rather than panicing through. A pointer to this variable is used
+// as a marker for the functions on the defer stack associated with
+// this function. A function-specific variable permits inlining a
+// function which uses defer.
+
+Expression*
+Function::defer_stack(Location location)
+{
+ if (this->defer_stack_ == NULL)
+ {
+ Type* t = Type::lookup_bool_type();
+ Expression* n = Expression::make_boolean(false, location);
+ this->defer_stack_ = Statement::make_temporary(t, n, location);
+ this->defer_stack_->set_is_address_taken();
+ }
+ Expression* ref = Expression::make_temporary_reference(this->defer_stack_,
+ location);
+ return Expression::make_unary(OPERATOR_AND, ref, location);
+}
+
+// Export the function.
+
+void
+Function::export_func(Export* exp, const std::string& name) const
+{
+ Function::export_func_with_type(exp, name, this->type_);
+}
+
+// Export a function with a type.
+
+void
+Function::export_func_with_type(Export* exp, const std::string& name,
+ const Function_type* fntype)
+{
+ exp->write_c_string("func ");
+
+ if (fntype->is_method())
+ {
+ exp->write_c_string("(");
+ const Typed_identifier* receiver = fntype->receiver();
+ exp->write_name(receiver->name());
+ exp->write_c_string(" ");
+ exp->write_type(receiver->type());
+ exp->write_c_string(") ");
+ }
+
+ exp->write_string(name);
+
+ exp->write_c_string(" (");
+ const Typed_identifier_list* parameters = fntype->parameters();
+ if (parameters != NULL)
+ {
+ bool is_varargs = fntype->is_varargs();
+ bool first = true;
+ for (Typed_identifier_list::const_iterator p = parameters->begin();
+ p != parameters->end();
+ ++p)
+ {
+ if (first)
+ first = false;
+ else
+ exp->write_c_string(", ");
+ exp->write_name(p->name());
+ exp->write_c_string(" ");
+ if (!is_varargs || p + 1 != parameters->end())
+ exp->write_type(p->type());
+ else
+ {
+ exp->write_c_string("...");
+ exp->write_type(p->type()->array_type()->element_type());
+ }
+ }
+ }
+ exp->write_c_string(")");
+
+ const Typed_identifier_list* results = fntype->results();
+ if (results != NULL)
+ {
+ if (results->size() == 1 && results->begin()->name().empty())
+ {
+ exp->write_c_string(" ");
+ exp->write_type(results->begin()->type());
+ }
+ else
+ {
+ exp->write_c_string(" (");
+ bool first = true;
+ for (Typed_identifier_list::const_iterator p = results->begin();
+ p != results->end();
+ ++p)
+ {
+ if (first)
+ first = false;
+ else
+ exp->write_c_string(", ");
+ exp->write_name(p->name());
+ exp->write_c_string(" ");
+ exp->write_type(p->type());
+ }
+ exp->write_c_string(")");
+ }
+ }
+ exp->write_c_string(";\n");
+}
+
+// Import a function.
+
+void
+Function::import_func(Import* imp, std::string* pname,
+ Typed_identifier** preceiver,
+ Typed_identifier_list** pparameters,
+ Typed_identifier_list** presults,
+ bool* is_varargs)
+{
+ imp->require_c_string("func ");
+
+ *preceiver = NULL;
+ if (imp->peek_char() == '(')
+ {
+ imp->require_c_string("(");
+ std::string name = imp->read_name();
+ imp->require_c_string(" ");
+ Type* rtype = imp->read_type();
+ *preceiver = new Typed_identifier(name, rtype, imp->location());
+ imp->require_c_string(") ");
+ }
+
+ *pname = imp->read_identifier();
+
+ Typed_identifier_list* parameters;
+ *is_varargs = false;
+ imp->require_c_string(" (");
+ if (imp->peek_char() == ')')
+ parameters = NULL;
+ else
+ {
+ parameters = new Typed_identifier_list();
+ while (true)
+ {
+ std::string name = imp->read_name();
+ imp->require_c_string(" ");
+
+ if (imp->match_c_string("..."))
+ {
+ imp->advance(3);
+ *is_varargs = true;
+ }
+
+ Type* ptype = imp->read_type();
+ if (*is_varargs)
+ ptype = Type::make_array_type(ptype, NULL);
+ parameters->push_back(Typed_identifier(name, ptype,
+ imp->location()));
+ if (imp->peek_char() != ',')
+ break;
+ go_assert(!*is_varargs);
+ imp->require_c_string(", ");
+ }
+ }
+ imp->require_c_string(")");
+ *pparameters = parameters;
+
+ Typed_identifier_list* results;
+ if (imp->peek_char() != ' ')
+ results = NULL;
+ else
+ {
+ results = new Typed_identifier_list();
+ imp->require_c_string(" ");
+ if (imp->peek_char() != '(')
+ {
+ Type* rtype = imp->read_type();
+ results->push_back(Typed_identifier("", rtype, imp->location()));
+ }
+ else
+ {
+ imp->require_c_string("(");
+ while (true)
+ {
+ std::string name = imp->read_name();
+ imp->require_c_string(" ");
+ Type* rtype = imp->read_type();
+ results->push_back(Typed_identifier(name, rtype,
+ imp->location()));
+ if (imp->peek_char() != ',')
+ break;
+ imp->require_c_string(", ");
+ }
+ imp->require_c_string(")");
+ }
+ }
+ imp->require_c_string(";\n");
+ *presults = results;
+}
+
+// Get the backend representation.
+
+Bfunction*
+Function::get_or_make_decl(Gogo* gogo, Named_object* no)
+{
+ if (this->fndecl_ == NULL)
+ {
+ std::string asm_name;
+ bool is_visible = false;
+ if (no->package() != NULL)
+ ;
+ else if (this->enclosing_ != NULL || Gogo::is_thunk(no))
+ ;
+ else if (Gogo::unpack_hidden_name(no->name()) == "init"
+ && !this->type_->is_method())
+ ;
+ else if (Gogo::unpack_hidden_name(no->name()) == "main"
+ && gogo->is_main_package())
+ is_visible = true;
+ // Methods have to be public even if they are hidden because
+ // they can be pulled into type descriptors when using
+ // anonymous fields.
+ else if (!Gogo::is_hidden_name(no->name())
+ || this->type_->is_method())
+ {
+ if (!this->is_unnamed_type_stub_method_)
+ is_visible = true;
+ std::string pkgpath = gogo->pkgpath_symbol();
+ if (this->type_->is_method()
+ && Gogo::is_hidden_name(no->name())
+ && Gogo::hidden_name_pkgpath(no->name()) != gogo->pkgpath())
+ {
+ // This is a method we created for an unexported
+ // method of an imported embedded type. We need to
+ // use the pkgpath of the imported package to avoid
+ // a possible name collision. See bug478 for a test
+ // case.
+ pkgpath = Gogo::hidden_name_pkgpath(no->name());
+ pkgpath = Gogo::pkgpath_for_symbol(pkgpath);
+ }
+
+ asm_name = pkgpath;
+ asm_name.append(1, '.');
+ asm_name.append(Gogo::unpack_hidden_name(no->name()));
+ if (this->type_->is_method())
+ {
+ asm_name.append(1, '.');
+ Type* rtype = this->type_->receiver()->type();
+ asm_name.append(rtype->mangled_name(gogo));
+ }
+ }
+
+ // If a function calls the predeclared recover function, we
+ // can't inline it, because recover behaves differently in a
+ // function passed directly to defer. If this is a recover
+ // thunk that we built to test whether a function can be
+ // recovered, we can't inline it, because that will mess up
+ // our return address comparison.
+ bool is_inlinable = !(this->calls_recover_ || this->is_recover_thunk_);
+
+ // If this is a thunk created to call a function which calls
+ // the predeclared recover function, we need to disable
+ // stack splitting for the thunk.
+ bool disable_split_stack = this->is_recover_thunk_;
+
+ // This should go into a unique section if that has been
+ // requested elsewhere, or if this is a nointerface function.
+ // We want to put a nointerface function into a unique section
+ // because there is a good chance that the linker garbage
+ // collection can discard it.
+ bool in_unique_section = this->in_unique_section_ || this->nointerface_;
+
+ Btype* functype = this->type_->get_backend_fntype(gogo);
+ this->fndecl_ =
+ gogo->backend()->function(functype, no->get_id(gogo), asm_name,
+ is_visible, false, is_inlinable,
+ disable_split_stack, in_unique_section,
+ this->location());
+ }
+ return this->fndecl_;
+}
+
+// Class Block.
+
+Block::Block(Block* enclosing, Location location)
+ : enclosing_(enclosing), statements_(),
+ bindings_(new Bindings(enclosing == NULL
+ ? NULL
+ : enclosing->bindings())),
+ start_location_(location),
+ end_location_(UNKNOWN_LOCATION)
+{
+}
+
+// Add a statement to a block.
+
+void
+Block::add_statement(Statement* statement)
+{
+ this->statements_.push_back(statement);
+}
+
+// Add a statement to the front of a block. This is slow but is only
+// used for reference counts of parameters.
+
+void
+Block::add_statement_at_front(Statement* statement)
+{
+ this->statements_.insert(this->statements_.begin(), statement);
+}
+
+// Replace a statement in a block.
+
+void
+Block::replace_statement(size_t index, Statement* s)
+{
+ go_assert(index < this->statements_.size());
+ this->statements_[index] = s;
+}
+
+// Add a statement before another statement.
+
+void
+Block::insert_statement_before(size_t index, Statement* s)
+{
+ go_assert(index < this->statements_.size());
+ this->statements_.insert(this->statements_.begin() + index, s);
+}
+
+// Add a statement after another statement.
+
+void
+Block::insert_statement_after(size_t index, Statement* s)
+{
+ go_assert(index < this->statements_.size());
+ this->statements_.insert(this->statements_.begin() + index + 1, s);
+}
+
+// Traverse the tree.
+
+int
+Block::traverse(Traverse* traverse)
+{
+ unsigned int traverse_mask = traverse->traverse_mask();
+
+ if ((traverse_mask & Traverse::traverse_blocks) != 0)
+ {
+ int t = traverse->block(this);
+ if (t == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ else if (t == TRAVERSE_SKIP_COMPONENTS)
+ return TRAVERSE_CONTINUE;
+ }
+
+ if ((traverse_mask
+ & (Traverse::traverse_variables
+ | Traverse::traverse_constants
+ | Traverse::traverse_expressions
+ | Traverse::traverse_types)) != 0)
+ {
+ const unsigned int e_or_t = (Traverse::traverse_expressions
+ | Traverse::traverse_types);
+ const unsigned int e_or_t_or_s = (e_or_t
+ | Traverse::traverse_statements);
+ for (Bindings::const_definitions_iterator pb =
+ this->bindings_->begin_definitions();
+ pb != this->bindings_->end_definitions();
+ ++pb)
+ {
+ int t = TRAVERSE_CONTINUE;
+ switch ((*pb)->classification())
+ {
+ case Named_object::NAMED_OBJECT_CONST:
+ if ((traverse_mask & Traverse::traverse_constants) != 0)
+ t = traverse->constant(*pb, false);
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask & e_or_t) != 0)
+ {
+ Type* tc = (*pb)->const_value()->type();
+ if (tc != NULL
+ && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ t = (*pb)->const_value()->traverse_expression(traverse);
+ }
+ break;
+
+ case Named_object::NAMED_OBJECT_VAR:
+ case Named_object::NAMED_OBJECT_RESULT_VAR:
+ if ((traverse_mask & Traverse::traverse_variables) != 0)
+ t = traverse->variable(*pb);
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask & e_or_t) != 0)
+ {
+ if ((*pb)->is_result_variable()
+ || (*pb)->var_value()->has_type())
+ {
+ Type* tv = ((*pb)->is_variable()
+ ? (*pb)->var_value()->type()
+ : (*pb)->result_var_value()->type());
+ if (tv != NULL
+ && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask & e_or_t_or_s) != 0
+ && (*pb)->is_variable())
+ t = (*pb)->var_value()->traverse_expression(traverse,
+ traverse_mask);
+ break;
+
+ case Named_object::NAMED_OBJECT_FUNC:
+ case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+ go_unreachable();
+
+ case Named_object::NAMED_OBJECT_TYPE:
+ if ((traverse_mask & e_or_t) != 0)
+ t = Type::traverse((*pb)->type_value(), traverse);
+ break;
+
+ case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+ case Named_object::NAMED_OBJECT_UNKNOWN:
+ case Named_object::NAMED_OBJECT_ERRONEOUS:
+ break;
+
+ case Named_object::NAMED_OBJECT_PACKAGE:
+ case Named_object::NAMED_OBJECT_SINK:
+ go_unreachable();
+
+ default:
+ go_unreachable();
+ }
+
+ if (t == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+
+ // No point in checking traverse_mask here--if we got here we always
+ // want to walk the statements. The traversal can insert new
+ // statements before or after the current statement. Inserting
+ // statements before the current statement requires updating I via
+ // the pointer; those statements will not be traversed. Any new
+ // statements inserted after the current statement will be traversed
+ // in their turn.
+ for (size_t i = 0; i < this->statements_.size(); ++i)
+ {
+ if (this->statements_[i]->traverse(this, &i, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Work out types for unspecified variables and constants.
+
+void
+Block::determine_types()
+{
+ for (Bindings::const_definitions_iterator pb =
+ this->bindings_->begin_definitions();
+ pb != this->bindings_->end_definitions();
+ ++pb)
+ {
+ if ((*pb)->is_variable())
+ (*pb)->var_value()->determine_type();
+ else if ((*pb)->is_const())
+ (*pb)->const_value()->determine_type();
+ }
+
+ for (std::vector<Statement*>::const_iterator ps = this->statements_.begin();
+ ps != this->statements_.end();
+ ++ps)
+ (*ps)->determine_types();
+}
+
+// Return true if the statements in this block may fall through.
+
+bool
+Block::may_fall_through() const
+{
+ if (this->statements_.empty())
+ return true;
+ return this->statements_.back()->may_fall_through();
+}
+
+// Convert a block to the backend representation.
+
+Bblock*
+Block::get_backend(Translate_context* context)
+{
+ Gogo* gogo = context->gogo();
+ Named_object* function = context->function();
+ std::vector<Bvariable*> vars;
+ vars.reserve(this->bindings_->size_definitions());
+ for (Bindings::const_definitions_iterator pv =
+ this->bindings_->begin_definitions();
+ pv != this->bindings_->end_definitions();
+ ++pv)
+ {
+ if ((*pv)->is_variable() && !(*pv)->var_value()->is_parameter())
+ vars.push_back((*pv)->get_backend_variable(gogo, function));
+ }
+
+ // FIXME: Permitting FUNCTION to be NULL here is a temporary measure
+ // until we have a proper representation of the init function.
+ Bfunction* bfunction;
+ if (function == NULL)
+ bfunction = NULL;
+ else
+ bfunction = tree_to_function(function->func_value()->get_decl());
+ Bblock* ret = context->backend()->block(bfunction, context->bblock(),
+ vars, this->start_location_,
+ this->end_location_);
+
+ Translate_context subcontext(gogo, function, this, ret);
+ std::vector<Bstatement*> bstatements;
+ bstatements.reserve(this->statements_.size());
+ for (std::vector<Statement*>::const_iterator p = this->statements_.begin();
+ p != this->statements_.end();
+ ++p)
+ bstatements.push_back((*p)->get_backend(&subcontext));
+
+ context->backend()->block_add_statements(ret, bstatements);
+
+ return ret;
+}
+
+// Class Bindings_snapshot.
+
+Bindings_snapshot::Bindings_snapshot(const Block* b, Location location)
+ : block_(b), counts_(), location_(location)
+{
+ while (b != NULL)
+ {
+ this->counts_.push_back(b->bindings()->size_definitions());
+ b = b->enclosing();
+ }
+}
+
+// Report errors appropriate for a goto from B to this.
+
+void
+Bindings_snapshot::check_goto_from(const Block* b, Location loc)
+{
+ size_t dummy;
+ if (!this->check_goto_block(loc, b, this->block_, &dummy))
+ return;
+ this->check_goto_defs(loc, this->block_,
+ this->block_->bindings()->size_definitions(),
+ this->counts_[0]);
+}
+
+// Report errors appropriate for a goto from this to B.
+
+void
+Bindings_snapshot::check_goto_to(const Block* b)
+{
+ size_t index;
+ if (!this->check_goto_block(this->location_, this->block_, b, &index))
+ return;
+ this->check_goto_defs(this->location_, b, this->counts_[index],
+ b->bindings()->size_definitions());
+}
+
+// Report errors appropriate for a goto at LOC from BFROM to BTO.
+// Return true if all is well, false if we reported an error. If this
+// returns true, it sets *PINDEX to the number of blocks BTO is above
+// BFROM.
+
+bool
+Bindings_snapshot::check_goto_block(Location loc, const Block* bfrom,
+ const Block* bto, size_t* pindex)
+{
+ // It is an error if BTO is not either BFROM or above BFROM.
+ size_t index = 0;
+ for (const Block* pb = bfrom; pb != bto; pb = pb->enclosing(), ++index)
+ {
+ if (pb == NULL)
+ {
+ error_at(loc, "goto jumps into block");
+ inform(bto->start_location(), "goto target block starts here");
+ return false;
+ }
+ }
+ *pindex = index;
+ return true;
+}
+
+// Report errors appropriate for a goto at LOC ending at BLOCK, where
+// CFROM is the number of names defined at the point of the goto and
+// CTO is the number of names defined at the point of the label.
+
+void
+Bindings_snapshot::check_goto_defs(Location loc, const Block* block,
+ size_t cfrom, size_t cto)
+{
+ if (cfrom < cto)
+ {
+ Bindings::const_definitions_iterator p =
+ block->bindings()->begin_definitions();
+ for (size_t i = 0; i < cfrom; ++i)
+ {
+ go_assert(p != block->bindings()->end_definitions());
+ ++p;
+ }
+ go_assert(p != block->bindings()->end_definitions());
+
+ std::string n = (*p)->message_name();
+ error_at(loc, "goto jumps over declaration of %qs", n.c_str());
+ inform((*p)->location(), "%qs defined here", n.c_str());
+ }
+}
+
+// Class Function_declaration.
+
+// Return the function descriptor.
+
+Expression*
+Function_declaration::descriptor(Gogo*, Named_object* no)
+{
+ go_assert(!this->fntype_->is_method());
+ if (this->descriptor_ == NULL)
+ this->descriptor_ = Expression::make_func_descriptor(no);
+ return this->descriptor_;
+}
+
+// Class Variable.
+
+Variable::Variable(Type* type, Expression* init, bool is_global,
+ bool is_parameter, bool is_receiver,
+ Location location)
+ : type_(type), init_(init), preinit_(NULL), location_(location),
+ backend_(NULL), is_global_(is_global), is_parameter_(is_parameter),
+ is_receiver_(is_receiver), is_varargs_parameter_(false), is_used_(false),
+ is_address_taken_(false), is_non_escaping_address_taken_(false),
+ seen_(false), init_is_lowered_(false), init_is_flattened_(false),
+ type_from_init_tuple_(false), type_from_range_index_(false),
+ type_from_range_value_(false), type_from_chan_element_(false),
+ is_type_switch_var_(false), determined_type_(false),
+ in_unique_section_(false)
+{
+ go_assert(type != NULL || init != NULL);
+ go_assert(!is_parameter || init == NULL);
+}
+
+// Traverse the initializer expression.
+
+int
+Variable::traverse_expression(Traverse* traverse, unsigned int traverse_mask)
+{
+ if (this->preinit_ != NULL)
+ {
+ if (this->preinit_->traverse(traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ if (this->init_ != NULL
+ && ((traverse_mask
+ & (Traverse::traverse_expressions | Traverse::traverse_types))
+ != 0))
+ {
+ if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ return TRAVERSE_CONTINUE;
+}
+
+// Lower the initialization expression after parsing is complete.
+
+void
+Variable::lower_init_expression(Gogo* gogo, Named_object* function,
+ Statement_inserter* inserter)
+{
+ Named_object* dep = gogo->var_depends_on(this);
+ if (dep != NULL && dep->is_variable())
+ dep->var_value()->lower_init_expression(gogo, function, inserter);
+
+ if (this->init_ != NULL && !this->init_is_lowered_)
+ {
+ if (this->seen_)
+ {
+ // We will give an error elsewhere, this is just to prevent
+ // an infinite loop.
+ return;
+ }
+ this->seen_ = true;
+
+ Statement_inserter global_inserter;
+ if (this->is_global_)
+ {
+ global_inserter = Statement_inserter(gogo, this);
+ inserter = &global_inserter;
+ }
+
+ gogo->lower_expression(function, inserter, &this->init_);
+
+ this->seen_ = false;
+
+ this->init_is_lowered_ = true;
+ }
+}
+
+// Flatten the initialization expression after ordering evaluations.
+
+void
+Variable::flatten_init_expression(Gogo* gogo, Named_object* function,
+ Statement_inserter* inserter)
+{
+ Named_object* dep = gogo->var_depends_on(this);
+ if (dep != NULL && dep->is_variable())
+ dep->var_value()->flatten_init_expression(gogo, function, inserter);
+
+ if (this->init_ != NULL && !this->init_is_flattened_)
+ {
+ if (this->seen_)
+ {
+ // We will give an error elsewhere, this is just to prevent
+ // an infinite loop.
+ return;
+ }
+ this->seen_ = true;
+
+ Statement_inserter global_inserter;
+ if (this->is_global_)
+ {
+ global_inserter = Statement_inserter(gogo, this);
+ inserter = &global_inserter;
+ }
+
+ gogo->flatten_expression(function, inserter, &this->init_);
+
+ this->seen_ = false;
+ this->init_is_flattened_ = true;
+ }
+}
+
+// Get the preinit block.
+
+Block*
+Variable::preinit_block(Gogo* gogo)
+{
+ go_assert(this->is_global_);
+ if (this->preinit_ == NULL)
+ this->preinit_ = new Block(NULL, this->location());
+
+ // If a global variable has a preinitialization statement, then we
+ // need to have an initialization function.
+ gogo->set_need_init_fn();
+
+ return this->preinit_;
+}
+
+// Add a statement to be run before the initialization expression.
+
+void
+Variable::add_preinit_statement(Gogo* gogo, Statement* s)
+{
+ Block* b = this->preinit_block(gogo);
+ b->add_statement(s);
+ b->set_end_location(s->location());
+}
+
+// Whether this variable has a type.
+
+bool
+Variable::has_type() const
+{
+ if (this->type_ == NULL)
+ return false;
+
+ // A variable created in a type switch case nil does not actually
+ // have a type yet. It will be changed to use the initializer's
+ // type in determine_type.
+ if (this->is_type_switch_var_
+ && this->type_->is_nil_constant_as_type())
+ return false;
+
+ return true;
+}
+
+// In an assignment which sets a variable to a tuple of EXPR, return
+// the type of the first element of the tuple.
+
+Type*
+Variable::type_from_tuple(Expression* expr, bool report_error) const
+{
+ if (expr->map_index_expression() != NULL)
+ {
+ Map_type* mt = expr->map_index_expression()->get_map_type();
+ if (mt == NULL)
+ return Type::make_error_type();
+ return mt->val_type();
+ }
+ else if (expr->receive_expression() != NULL)
+ {
+ Expression* channel = expr->receive_expression()->channel();
+ Type* channel_type = channel->type();
+ if (channel_type->channel_type() == NULL)
+ return Type::make_error_type();
+ return channel_type->channel_type()->element_type();
+ }
+ else
+ {
+ if (report_error)
+ error_at(this->location(), "invalid tuple definition");
+ return Type::make_error_type();
+ }
+}
+
+// Given EXPR used in a range clause, return either the index type or
+// the value type of the range, depending upon GET_INDEX_TYPE.
+
+Type*
+Variable::type_from_range(Expression* expr, bool get_index_type,
+ bool report_error) const
+{
+ Type* t = expr->type();
+ if (t->array_type() != NULL
+ || (t->points_to() != NULL
+ && t->points_to()->array_type() != NULL
+ && !t->points_to()->is_slice_type()))
+ {
+ if (get_index_type)
+ return Type::lookup_integer_type("int");
+ else
+ return t->deref()->array_type()->element_type();
+ }
+ else if (t->is_string_type())
+ {
+ if (get_index_type)
+ return Type::lookup_integer_type("int");
+ else
+ return Type::lookup_integer_type("int32");
+ }
+ else if (t->map_type() != NULL)
+ {
+ if (get_index_type)
+ return t->map_type()->key_type();
+ else
+ return t->map_type()->val_type();
+ }
+ else if (t->channel_type() != NULL)
+ {
+ if (get_index_type)
+ return t->channel_type()->element_type();
+ else
+ {
+ if (report_error)
+ error_at(this->location(),
+ "invalid definition of value variable for channel range");
+ return Type::make_error_type();
+ }
+ }
+ else
+ {
+ if (report_error)
+ error_at(this->location(), "invalid type for range clause");
+ return Type::make_error_type();
+ }
+}
+
+// EXPR should be a channel. Return the channel's element type.
+
+Type*
+Variable::type_from_chan_element(Expression* expr, bool report_error) const
+{
+ Type* t = expr->type();
+ if (t->channel_type() != NULL)
+ return t->channel_type()->element_type();
+ else
+ {
+ if (report_error)
+ error_at(this->location(), "expected channel");
+ return Type::make_error_type();
+ }
+}
+
+// Return the type of the Variable. This may be called before
+// Variable::determine_type is called, which means that we may need to
+// get the type from the initializer. FIXME: If we combine lowering
+// with type determination, then this should be unnecessary.
+
+Type*
+Variable::type()
+{
+ // A variable in a type switch with a nil case will have the wrong
+ // type here. This gets fixed up in determine_type, below.
+ Type* type = this->type_;
+ Expression* init = this->init_;
+ if (this->is_type_switch_var_
+ && this->type_->is_nil_constant_as_type())
+ {
+ Type_guard_expression* tge = this->init_->type_guard_expression();
+ go_assert(tge != NULL);
+ init = tge->expr();
+ type = NULL;
+ }
+
+ if (this->seen_)
+ {
+ if (this->type_ == NULL || !this->type_->is_error_type())
+ {
+ error_at(this->location_, "variable initializer refers to itself");
+ this->type_ = Type::make_error_type();
+ }
+ return this->type_;
+ }
+
+ this->seen_ = true;
+
+ if (type != NULL)
+ ;
+ else if (this->type_from_init_tuple_)
+ type = this->type_from_tuple(init, false);
+ else if (this->type_from_range_index_ || this->type_from_range_value_)
+ type = this->type_from_range(init, this->type_from_range_index_, false);
+ else if (this->type_from_chan_element_)
+ type = this->type_from_chan_element(init, false);
+ else
+ {
+ go_assert(init != NULL);
+ type = init->type();
+ go_assert(type != NULL);
+
+ // Variables should not have abstract types.
+ if (type->is_abstract())
+ type = type->make_non_abstract_type();
+
+ if (type->is_void_type())
+ type = Type::make_error_type();
+ }
+
+ this->seen_ = false;
+
+ return type;
+}
+
+// Fetch the type from a const pointer, in which case it should have
+// been set already.
+
+Type*
+Variable::type() const
+{
+ go_assert(this->type_ != NULL);
+ return this->type_;
+}
+
+// Set the type if necessary.
+
+void
+Variable::determine_type()
+{
+ if (this->determined_type_)
+ return;
+ this->determined_type_ = true;
+
+ if (this->preinit_ != NULL)
+ this->preinit_->determine_types();
+
+ // A variable in a type switch with a nil case will have the wrong
+ // type here. It will have an initializer which is a type guard.
+ // We want to initialize it to the value without the type guard, and
+ // use the type of that value as well.
+ if (this->is_type_switch_var_ && this->type_->is_nil_constant_as_type())
+ {
+ Type_guard_expression* tge = this->init_->type_guard_expression();
+ go_assert(tge != NULL);
+ this->type_ = NULL;
+ this->init_ = tge->expr();
+ }
+
+ if (this->init_ == NULL)
+ go_assert(this->type_ != NULL && !this->type_->is_abstract());
+ else if (this->type_from_init_tuple_)
+ {
+ Expression *init = this->init_;
+ init->determine_type_no_context();
+ this->type_ = this->type_from_tuple(init, true);
+ this->init_ = NULL;
+ }
+ else if (this->type_from_range_index_ || this->type_from_range_value_)
+ {
+ Expression* init = this->init_;
+ init->determine_type_no_context();
+ this->type_ = this->type_from_range(init, this->type_from_range_index_,
+ true);
+ this->init_ = NULL;
+ }
+ else if (this->type_from_chan_element_)
+ {
+ Expression* init = this->init_;
+ init->determine_type_no_context();
+ this->type_ = this->type_from_chan_element(init, true);
+ this->init_ = NULL;
+ }
+ else
+ {
+ Type_context context(this->type_, false);
+ this->init_->determine_type(&context);
+ if (this->type_ == NULL)
+ {
+ Type* type = this->init_->type();
+ go_assert(type != NULL);
+ if (type->is_abstract())
+ type = type->make_non_abstract_type();
+
+ if (type->is_void_type())
+ {
+ error_at(this->location_, "variable has no type");
+ type = Type::make_error_type();
+ }
+ else if (type->is_nil_type())
+ {
+ error_at(this->location_, "variable defined to nil type");
+ type = Type::make_error_type();
+ }
+ else if (type->is_call_multiple_result_type())
+ {
+ error_at(this->location_,
+ "single variable set to multiple-value function call");
+ type = Type::make_error_type();
+ }
+
+ this->type_ = type;
+ }
+ }
+}
+
+// Export the variable
+
+void
+Variable::export_var(Export* exp, const std::string& name) const
+{
+ go_assert(this->is_global_);
+ exp->write_c_string("var ");
+ exp->write_string(name);
+ exp->write_c_string(" ");
+ exp->write_type(this->type());
+ exp->write_c_string(";\n");
+}
+
+// Import a variable.
+
+void
+Variable::import_var(Import* imp, std::string* pname, Type** ptype)
+{
+ imp->require_c_string("var ");
+ *pname = imp->read_identifier();
+ imp->require_c_string(" ");
+ *ptype = imp->read_type();
+ imp->require_c_string(";\n");
+}
+
+// Convert a variable to the backend representation.
+
+Bvariable*
+Variable::get_backend_variable(Gogo* gogo, Named_object* function,
+ const Package* package, const std::string& name)
+{
+ if (this->backend_ == NULL)
+ {
+ Backend* backend = gogo->backend();
+ Type* type = this->type_;
+ if (type->is_error_type()
+ || (type->is_undefined()
+ && (!this->is_global_ || package == NULL)))
+ this->backend_ = backend->error_variable();
+ else
+ {
+ bool is_parameter = this->is_parameter_;
+ if (this->is_receiver_ && type->points_to() == NULL)
+ is_parameter = false;
+ if (this->is_in_heap())
+ {
+ is_parameter = false;
+ type = Type::make_pointer_type(type);
+ }
+
+ std::string n = Gogo::unpack_hidden_name(name);
+ Btype* btype = type->get_backend(gogo);
+
+ Bvariable* bvar;
+ if (this->is_global_)
+ bvar = backend->global_variable((package == NULL
+ ? gogo->package_name()
+ : package->package_name()),
+ (package == NULL
+ ? gogo->pkgpath_symbol()
+ : package->pkgpath_symbol()),
+ n,
+ btype,
+ package != NULL,
+ Gogo::is_hidden_name(name),
+ this->in_unique_section_,
+ this->location_);
+ else if (function == NULL)
+ {
+ go_assert(saw_errors());
+ bvar = backend->error_variable();
+ }
+ else
+ {
+ tree fndecl = function->func_value()->get_decl();
+ Bfunction* bfunction = tree_to_function(fndecl);
+ bool is_address_taken = (this->is_non_escaping_address_taken_
+ && !this->is_in_heap());
+ if (is_parameter)
+ bvar = backend->parameter_variable(bfunction, n, btype,
+ is_address_taken,
+ this->location_);
+ else
+ bvar = backend->local_variable(bfunction, n, btype,
+ is_address_taken,
+ this->location_);
+ }
+ this->backend_ = bvar;
+ }
+ }
+ return this->backend_;
+}
+
+// Class Result_variable.
+
+// Convert a result variable to the backend representation.
+
+Bvariable*
+Result_variable::get_backend_variable(Gogo* gogo, Named_object* function,
+ const std::string& name)
+{
+ if (this->backend_ == NULL)
+ {
+ Backend* backend = gogo->backend();
+ Type* type = this->type_;
+ if (type->is_error())
+ this->backend_ = backend->error_variable();
+ else
+ {
+ if (this->is_in_heap())
+ type = Type::make_pointer_type(type);
+ Btype* btype = type->get_backend(gogo);
+ tree fndecl = function->func_value()->get_decl();
+ Bfunction* bfunction = tree_to_function(fndecl);
+ std::string n = Gogo::unpack_hidden_name(name);
+ bool is_address_taken = (this->is_non_escaping_address_taken_
+ && !this->is_in_heap());
+ this->backend_ = backend->local_variable(bfunction, n, btype,
+ is_address_taken,
+ this->location_);
+ }
+ }
+ return this->backend_;
+}
+
+// Class Named_constant.
+
+// Traverse the initializer expression.
+
+int
+Named_constant::traverse_expression(Traverse* traverse)
+{
+ return Expression::traverse(&this->expr_, traverse);
+}
+
+// Determine the type of the constant.
+
+void
+Named_constant::determine_type()
+{
+ if (this->type_ != NULL)
+ {
+ Type_context context(this->type_, false);
+ this->expr_->determine_type(&context);
+ }
+ else
+ {
+ // A constant may have an abstract type.
+ Type_context context(NULL, true);
+ this->expr_->determine_type(&context);
+ this->type_ = this->expr_->type();
+ go_assert(this->type_ != NULL);
+ }
+}
+
+// Indicate that we found and reported an error for this constant.
+
+void
+Named_constant::set_error()
+{
+ this->type_ = Type::make_error_type();
+ this->expr_ = Expression::make_error(this->location_);
+}
+
+// Export a constant.
+
+void
+Named_constant::export_const(Export* exp, const std::string& name) const
+{
+ exp->write_c_string("const ");
+ exp->write_string(name);
+ exp->write_c_string(" ");
+ if (!this->type_->is_abstract())
+ {
+ exp->write_type(this->type_);
+ exp->write_c_string(" ");
+ }
+ exp->write_c_string("= ");
+ this->expr()->export_expression(exp);
+ exp->write_c_string(";\n");
+}
+
+// Import a constant.
+
+void
+Named_constant::import_const(Import* imp, std::string* pname, Type** ptype,
+ Expression** pexpr)
+{
+ imp->require_c_string("const ");
+ *pname = imp->read_identifier();
+ imp->require_c_string(" ");
+ if (imp->peek_char() == '=')
+ *ptype = NULL;
+ else
+ {
+ *ptype = imp->read_type();
+ imp->require_c_string(" ");
+ }
+ imp->require_c_string("= ");
+ *pexpr = Expression::import_expression(imp);
+ imp->require_c_string(";\n");
+}
+
+// Add a method.
+
+Named_object*
+Type_declaration::add_method(const std::string& name, Function* function)
+{
+ Named_object* ret = Named_object::make_function(name, NULL, function);
+ this->methods_.push_back(ret);
+ return ret;
+}
+
+// Add a method declaration.
+
+Named_object*
+Type_declaration::add_method_declaration(const std::string& name,
+ Package* package,
+ Function_type* type,
+ Location location)
+{
+ Named_object* ret = Named_object::make_function_declaration(name, package,
+ type, location);
+ this->methods_.push_back(ret);
+ return ret;
+}
+
+// Return whether any methods ere defined.
+
+bool
+Type_declaration::has_methods() const
+{
+ return !this->methods_.empty();
+}
+
+// Define methods for the real type.
+
+void
+Type_declaration::define_methods(Named_type* nt)
+{
+ for (std::vector<Named_object*>::const_iterator p = this->methods_.begin();
+ p != this->methods_.end();
+ ++p)
+ nt->add_existing_method(*p);
+}
+
+// We are using the type. Return true if we should issue a warning.
+
+bool
+Type_declaration::using_type()
+{
+ bool ret = !this->issued_warning_;
+ this->issued_warning_ = true;
+ return ret;
+}
+
+// Class Unknown_name.
+
+// Set the real named object.
+
+void
+Unknown_name::set_real_named_object(Named_object* no)
+{
+ go_assert(this->real_named_object_ == NULL);
+ go_assert(!no->is_unknown());
+ this->real_named_object_ = no;
+}
+
+// Class Named_object.
+
+Named_object::Named_object(const std::string& name,
+ const Package* package,
+ Classification classification)
+ : name_(name), package_(package), classification_(classification),
+ tree_(NULL)
+{
+ if (Gogo::is_sink_name(name))
+ go_assert(classification == NAMED_OBJECT_SINK);
+}
+
+// Make an unknown name. This is used by the parser. The name must
+// be resolved later. Unknown names are only added in the current
+// package.
+
+Named_object*
+Named_object::make_unknown_name(const std::string& name,
+ Location location)
+{
+ Named_object* named_object = new Named_object(name, NULL,
+ NAMED_OBJECT_UNKNOWN);
+ Unknown_name* value = new Unknown_name(location);
+ named_object->u_.unknown_value = value;
+ return named_object;
+}
+
+// Make a constant.
+
+Named_object*
+Named_object::make_constant(const Typed_identifier& tid,
+ const Package* package, Expression* expr,
+ int iota_value)
+{
+ Named_object* named_object = new Named_object(tid.name(), package,
+ NAMED_OBJECT_CONST);
+ Named_constant* named_constant = new Named_constant(tid.type(), expr,
+ iota_value,
+ tid.location());
+ named_object->u_.const_value = named_constant;
+ return named_object;
+}
+
+// Make a named type.
+
+Named_object*
+Named_object::make_type(const std::string& name, const Package* package,
+ Type* type, Location location)
+{
+ Named_object* named_object = new Named_object(name, package,
+ NAMED_OBJECT_TYPE);
+ Named_type* named_type = Type::make_named_type(named_object, type, location);
+ named_object->u_.type_value = named_type;
+ return named_object;
+}
+
+// Make a type declaration.
+
+Named_object*
+Named_object::make_type_declaration(const std::string& name,
+ const Package* package,
+ Location location)
+{
+ Named_object* named_object = new Named_object(name, package,
+ NAMED_OBJECT_TYPE_DECLARATION);
+ Type_declaration* type_declaration = new Type_declaration(location);
+ named_object->u_.type_declaration = type_declaration;
+ return named_object;
+}
+
+// Make a variable.
+
+Named_object*
+Named_object::make_variable(const std::string& name, const Package* package,
+ Variable* variable)
+{
+ Named_object* named_object = new Named_object(name, package,
+ NAMED_OBJECT_VAR);
+ named_object->u_.var_value = variable;
+ return named_object;
+}
+
+// Make a result variable.
+
+Named_object*
+Named_object::make_result_variable(const std::string& name,
+ Result_variable* result)
+{
+ Named_object* named_object = new Named_object(name, NULL,
+ NAMED_OBJECT_RESULT_VAR);
+ named_object->u_.result_var_value = result;
+ return named_object;
+}
+
+// Make a sink. This is used for the special blank identifier _.
+
+Named_object*
+Named_object::make_sink()
+{
+ return new Named_object("_", NULL, NAMED_OBJECT_SINK);
+}
+
+// Make a named function.
+
+Named_object*
+Named_object::make_function(const std::string& name, const Package* package,
+ Function* function)
+{
+ Named_object* named_object = new Named_object(name, package,
+ NAMED_OBJECT_FUNC);
+ named_object->u_.func_value = function;
+ return named_object;
+}
+
+// Make a function declaration.
+
+Named_object*
+Named_object::make_function_declaration(const std::string& name,
+ const Package* package,
+ Function_type* fntype,
+ Location location)
+{
+ Named_object* named_object = new Named_object(name, package,
+ NAMED_OBJECT_FUNC_DECLARATION);
+ Function_declaration *func_decl = new Function_declaration(fntype, location);
+ named_object->u_.func_declaration_value = func_decl;
+ return named_object;
+}
+
+// Make a package.
+
+Named_object*
+Named_object::make_package(const std::string& alias, Package* package)
+{
+ Named_object* named_object = new Named_object(alias, NULL,
+ NAMED_OBJECT_PACKAGE);
+ named_object->u_.package_value = package;
+ return named_object;
+}
+
+// Return the name to use in an error message.
+
+std::string
+Named_object::message_name() const
+{
+ if (this->package_ == NULL)
+ return Gogo::message_name(this->name_);
+ std::string ret;
+ if (this->package_->has_package_name())
+ ret = this->package_->package_name();
+ else
+ ret = this->package_->pkgpath();
+ ret = Gogo::message_name(ret);
+ ret += '.';
+ ret += Gogo::message_name(this->name_);
+ return ret;
+}
+
+// Set the type when a declaration is defined.
+
+void
+Named_object::set_type_value(Named_type* named_type)
+{
+ go_assert(this->classification_ == NAMED_OBJECT_TYPE_DECLARATION);
+ Type_declaration* td = this->u_.type_declaration;
+ td->define_methods(named_type);
+ unsigned int index;
+ Named_object* in_function = td->in_function(&index);
+ if (in_function != NULL)
+ named_type->set_in_function(in_function, index);
+ delete td;
+ this->classification_ = NAMED_OBJECT_TYPE;
+ this->u_.type_value = named_type;
+}
+
+// Define a function which was previously declared.
+
+void
+Named_object::set_function_value(Function* function)
+{
+ go_assert(this->classification_ == NAMED_OBJECT_FUNC_DECLARATION);
+ if (this->func_declaration_value()->has_descriptor())
+ {
+ Expression* descriptor =
+ this->func_declaration_value()->descriptor(NULL, NULL);
+ function->set_descriptor(descriptor);
+ }
+ this->classification_ = NAMED_OBJECT_FUNC;
+ // FIXME: We should free the old value.
+ this->u_.func_value = function;
+}
+
+// Declare an unknown object as a type declaration.
+
+void
+Named_object::declare_as_type()
+{
+ go_assert(this->classification_ == NAMED_OBJECT_UNKNOWN);
+ Unknown_name* unk = this->u_.unknown_value;
+ this->classification_ = NAMED_OBJECT_TYPE_DECLARATION;
+ this->u_.type_declaration = new Type_declaration(unk->location());
+ delete unk;
+}
+
+// Return the location of a named object.
+
+Location
+Named_object::location() const
+{
+ switch (this->classification_)
+ {
+ default:
+ case NAMED_OBJECT_UNINITIALIZED:
+ go_unreachable();
+
+ case NAMED_OBJECT_ERRONEOUS:
+ return Linemap::unknown_location();
+
+ case NAMED_OBJECT_UNKNOWN:
+ return this->unknown_value()->location();
+
+ case NAMED_OBJECT_CONST:
+ return this->const_value()->location();
+
+ case NAMED_OBJECT_TYPE:
+ return this->type_value()->location();
+
+ case NAMED_OBJECT_TYPE_DECLARATION:
+ return this->type_declaration_value()->location();
+
+ case NAMED_OBJECT_VAR:
+ return this->var_value()->location();
+
+ case NAMED_OBJECT_RESULT_VAR:
+ return this->result_var_value()->location();
+
+ case NAMED_OBJECT_SINK:
+ go_unreachable();
+
+ case NAMED_OBJECT_FUNC:
+ return this->func_value()->location();
+
+ case NAMED_OBJECT_FUNC_DECLARATION:
+ return this->func_declaration_value()->location();
+
+ case NAMED_OBJECT_PACKAGE:
+ return this->package_value()->location();
+ }
+}
+
+// Export a named object.
+
+void
+Named_object::export_named_object(Export* exp) const
+{
+ switch (this->classification_)
+ {
+ default:
+ case NAMED_OBJECT_UNINITIALIZED:
+ case NAMED_OBJECT_UNKNOWN:
+ go_unreachable();
+
+ case NAMED_OBJECT_ERRONEOUS:
+ break;
+
+ case NAMED_OBJECT_CONST:
+ this->const_value()->export_const(exp, this->name_);
+ break;
+
+ case NAMED_OBJECT_TYPE:
+ this->type_value()->export_named_type(exp, this->name_);
+ break;
+
+ case NAMED_OBJECT_TYPE_DECLARATION:
+ error_at(this->type_declaration_value()->location(),
+ "attempt to export %<%s%> which was declared but not defined",
+ this->message_name().c_str());
+ break;
+
+ case NAMED_OBJECT_FUNC_DECLARATION:
+ this->func_declaration_value()->export_func(exp, this->name_);
+ break;
+
+ case NAMED_OBJECT_VAR:
+ this->var_value()->export_var(exp, this->name_);
+ break;
+
+ case NAMED_OBJECT_RESULT_VAR:
+ case NAMED_OBJECT_SINK:
+ go_unreachable();
+
+ case NAMED_OBJECT_FUNC:
+ this->func_value()->export_func(exp, this->name_);
+ break;
+ }
+}
+
+// Convert a variable to the backend representation.
+
+Bvariable*
+Named_object::get_backend_variable(Gogo* gogo, Named_object* function)
+{
+ if (this->classification_ == NAMED_OBJECT_VAR)
+ return this->var_value()->get_backend_variable(gogo, function,
+ this->package_, this->name_);
+ else if (this->classification_ == NAMED_OBJECT_RESULT_VAR)
+ return this->result_var_value()->get_backend_variable(gogo, function,
+ this->name_);
+ else
+ go_unreachable();
+}
+
+
+// Return the external identifier for this object.
+
+std::string
+Named_object::get_id(Gogo* gogo)
+{
+ go_assert(!this->is_variable() && !this->is_result_variable());
+ std::string decl_name;
+ if (this->is_function_declaration()
+ && !this->func_declaration_value()->asm_name().empty())
+ decl_name = this->func_declaration_value()->asm_name();
+ else if (this->is_type()
+ && Linemap::is_predeclared_location(this->type_value()->location()))
+ {
+ // We don't need the package name for builtin types.
+ decl_name = Gogo::unpack_hidden_name(this->name_);
+ }
+ else
+ {
+ std::string package_name;
+ if (this->package_ == NULL)
+ package_name = gogo->package_name();
+ else
+ package_name = this->package_->package_name();
+
+ // Note that this will be misleading if this is an unexported
+ // method generated for an embedded imported type. In that case
+ // the unexported method should have the package name of the
+ // package from which it is imported, but we are going to give
+ // it our package name. Fixing this would require knowing the
+ // package name, but we only know the package path. It might be
+ // better to use package paths here anyhow. This doesn't affect
+ // the assembler code, because we always set that name in
+ // Function::get_or_make_decl anyhow. FIXME.
+
+ decl_name = package_name + '.' + Gogo::unpack_hidden_name(this->name_);
+
+ Function_type* fntype;
+ if (this->is_function())
+ fntype = this->func_value()->type();
+ else if (this->is_function_declaration())
+ fntype = this->func_declaration_value()->type();
+ else
+ fntype = NULL;
+ if (fntype != NULL && fntype->is_method())
+ {
+ decl_name.push_back('.');
+ decl_name.append(fntype->receiver()->type()->mangled_name(gogo));
+ }
+ }
+ if (this->is_type())
+ {
+ unsigned int index;
+ const Named_object* in_function = this->type_value()->in_function(&index);
+ if (in_function != NULL)
+ {
+ decl_name += '$' + Gogo::unpack_hidden_name(in_function->name());
+ if (index > 0)
+ {
+ char buf[30];
+ snprintf(buf, sizeof buf, "%u", index);
+ decl_name += '$';
+ decl_name += buf;
+ }
+ }
+ }
+ return decl_name;
+}
+
+// Class Bindings.
+
+Bindings::Bindings(Bindings* enclosing)
+ : enclosing_(enclosing), named_objects_(), bindings_()
+{
+}
+
+// Clear imports.
+
+void
+Bindings::clear_file_scope(Gogo* gogo)
+{
+ Contour::iterator p = this->bindings_.begin();
+ while (p != this->bindings_.end())
+ {
+ bool keep;
+ if (p->second->package() != NULL)
+ keep = false;
+ else if (p->second->is_package())
+ keep = false;
+ else if (p->second->is_function()
+ && !p->second->func_value()->type()->is_method()
+ && Gogo::unpack_hidden_name(p->second->name()) == "init")
+ keep = false;
+ else
+ keep = true;
+
+ if (keep)
+ ++p;
+ else
+ {
+ gogo->add_file_block_name(p->second->name(), p->second->location());
+ p = this->bindings_.erase(p);
+ }
+ }
+}
+
+// Look up a symbol.
+
+Named_object*
+Bindings::lookup(const std::string& name) const
+{
+ Contour::const_iterator p = this->bindings_.find(name);
+ if (p != this->bindings_.end())
+ return p->second->resolve();
+ else if (this->enclosing_ != NULL)
+ return this->enclosing_->lookup(name);
+ else
+ return NULL;
+}
+
+// Look up a symbol locally.
+
+Named_object*
+Bindings::lookup_local(const std::string& name) const
+{
+ Contour::const_iterator p = this->bindings_.find(name);
+ if (p == this->bindings_.end())
+ return NULL;
+ return p->second;
+}
+
+// Remove an object from a set of bindings. This is used for a
+// special case in thunks for functions which call recover.
+
+void
+Bindings::remove_binding(Named_object* no)
+{
+ Contour::iterator pb = this->bindings_.find(no->name());
+ go_assert(pb != this->bindings_.end());
+ this->bindings_.erase(pb);
+ for (std::vector<Named_object*>::iterator pn = this->named_objects_.begin();
+ pn != this->named_objects_.end();
+ ++pn)
+ {
+ if (*pn == no)
+ {
+ this->named_objects_.erase(pn);
+ return;
+ }
+ }
+ go_unreachable();
+}
+
+// Add a method to the list of objects. This is not added to the
+// lookup table. This is so that we have a single list of objects
+// declared at the top level, which we walk through when it's time to
+// convert to trees.
+
+void
+Bindings::add_method(Named_object* method)
+{
+ this->named_objects_.push_back(method);
+}
+
+// Add a generic Named_object to a Contour.
+
+Named_object*
+Bindings::add_named_object_to_contour(Contour* contour,
+ Named_object* named_object)
+{
+ go_assert(named_object == named_object->resolve());
+ const std::string& name(named_object->name());
+ go_assert(!Gogo::is_sink_name(name));
+
+ std::pair<Contour::iterator, bool> ins =
+ contour->insert(std::make_pair(name, named_object));
+ if (!ins.second)
+ {
+ // The name was already there.
+ if (named_object->package() != NULL
+ && ins.first->second->package() == named_object->package()
+ && (ins.first->second->classification()
+ == named_object->classification()))
+ {
+ // This is a second import of the same object.
+ return ins.first->second;
+ }
+ ins.first->second = this->new_definition(ins.first->second,
+ named_object);
+ return ins.first->second;
+ }
+ else
+ {
+ // Don't push declarations on the list. We push them on when
+ // and if we find the definitions. That way we genericize the
+ // functions in order.
+ if (!named_object->is_type_declaration()
+ && !named_object->is_function_declaration()
+ && !named_object->is_unknown())
+ this->named_objects_.push_back(named_object);
+ return named_object;
+ }
+}
+
+// We had an existing named object OLD_OBJECT, and we've seen a new
+// one NEW_OBJECT with the same name. FIXME: This does not free the
+// new object when we don't need it.
+
+Named_object*
+Bindings::new_definition(Named_object* old_object, Named_object* new_object)
+{
+ if (new_object->is_erroneous() && !old_object->is_erroneous())
+ return new_object;
+
+ std::string reason;
+ switch (old_object->classification())
+ {
+ default:
+ case Named_object::NAMED_OBJECT_UNINITIALIZED:
+ go_unreachable();
+
+ case Named_object::NAMED_OBJECT_ERRONEOUS:
+ return old_object;
+
+ case Named_object::NAMED_OBJECT_UNKNOWN:
+ {
+ Named_object* real = old_object->unknown_value()->real_named_object();
+ if (real != NULL)
+ return this->new_definition(real, new_object);
+ go_assert(!new_object->is_unknown());
+ old_object->unknown_value()->set_real_named_object(new_object);
+ if (!new_object->is_type_declaration()
+ && !new_object->is_function_declaration())
+ this->named_objects_.push_back(new_object);
+ return new_object;
+ }
+
+ case Named_object::NAMED_OBJECT_CONST:
+ break;
+
+ case Named_object::NAMED_OBJECT_TYPE:
+ if (new_object->is_type_declaration())
+ return old_object;
+ break;
+
+ case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+ if (new_object->is_type_declaration())
+ return old_object;
+ if (new_object->is_type())
+ {
+ old_object->set_type_value(new_object->type_value());
+ new_object->type_value()->set_named_object(old_object);
+ this->named_objects_.push_back(old_object);
+ return old_object;
+ }
+ break;
+
+ case Named_object::NAMED_OBJECT_VAR:
+ case Named_object::NAMED_OBJECT_RESULT_VAR:
+ // We have already given an error in the parser for cases where
+ // one parameter or result variable redeclares another one.
+ if ((new_object->is_variable()
+ && new_object->var_value()->is_parameter())
+ || new_object->is_result_variable())
+ return old_object;
+ break;
+
+ case Named_object::NAMED_OBJECT_SINK:
+ go_unreachable();
+
+ case Named_object::NAMED_OBJECT_FUNC:
+ if (new_object->is_function_declaration())
+ {
+ if (!new_object->func_declaration_value()->asm_name().empty())
+ sorry("__asm__ for function definitions");
+ Function_type* old_type = old_object->func_value()->type();
+ Function_type* new_type =
+ new_object->func_declaration_value()->type();
+ if (old_type->is_valid_redeclaration(new_type, &reason))
+ return old_object;
+ }
+ break;
+
+ case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+ {
+ Function_type* old_type = old_object->func_declaration_value()->type();
+ if (new_object->is_function_declaration())
+ {
+ Function_type* new_type =
+ new_object->func_declaration_value()->type();
+ if (old_type->is_valid_redeclaration(new_type, &reason))
+ return old_object;
+ }
+ if (new_object->is_function())
+ {
+ Function_type* new_type = new_object->func_value()->type();
+ if (old_type->is_valid_redeclaration(new_type, &reason))
+ {
+ if (!old_object->func_declaration_value()->asm_name().empty())
+ sorry("__asm__ for function definitions");
+ old_object->set_function_value(new_object->func_value());
+ this->named_objects_.push_back(old_object);
+ return old_object;
+ }
+ }
+ }
+ break;
+
+ case Named_object::NAMED_OBJECT_PACKAGE:
+ break;
+ }
+
+ std::string n = old_object->message_name();
+ if (reason.empty())
+ error_at(new_object->location(), "redefinition of %qs", n.c_str());
+ else
+ error_at(new_object->location(), "redefinition of %qs: %s", n.c_str(),
+ reason.c_str());
+
+ inform(old_object->location(), "previous definition of %qs was here",
+ n.c_str());
+
+ return old_object;
+}
+
+// Add a named type.
+
+Named_object*
+Bindings::add_named_type(Named_type* named_type)
+{
+ return this->add_named_object(named_type->named_object());
+}
+
+// Add a function.
+
+Named_object*
+Bindings::add_function(const std::string& name, const Package* package,
+ Function* function)
+{
+ return this->add_named_object(Named_object::make_function(name, package,
+ function));
+}
+
+// Add a function declaration.
+
+Named_object*
+Bindings::add_function_declaration(const std::string& name,
+ const Package* package,
+ Function_type* type,
+ Location location)
+{
+ Named_object* no = Named_object::make_function_declaration(name, package,
+ type, location);
+ return this->add_named_object(no);
+}
+
+// Define a type which was previously declared.
+
+void
+Bindings::define_type(Named_object* no, Named_type* type)
+{
+ no->set_type_value(type);
+ this->named_objects_.push_back(no);
+}
+
+// Mark all local variables as used. This is used for some types of
+// parse error.
+
+void
+Bindings::mark_locals_used()
+{
+ for (std::vector<Named_object*>::iterator p = this->named_objects_.begin();
+ p != this->named_objects_.end();
+ ++p)
+ if ((*p)->is_variable())
+ (*p)->var_value()->set_is_used();
+}
+
+// Traverse bindings.
+
+int
+Bindings::traverse(Traverse* traverse, bool is_global)
+{
+ unsigned int traverse_mask = traverse->traverse_mask();
+
+ // We don't use an iterator because we permit the traversal to add
+ // new global objects.
+ const unsigned int e_or_t = (Traverse::traverse_expressions
+ | Traverse::traverse_types);
+ const unsigned int e_or_t_or_s = (e_or_t
+ | Traverse::traverse_statements);
+ for (size_t i = 0; i < this->named_objects_.size(); ++i)
+ {
+ Named_object* p = this->named_objects_[i];
+ int t = TRAVERSE_CONTINUE;
+ switch (p->classification())
+ {
+ case Named_object::NAMED_OBJECT_CONST:
+ if ((traverse_mask & Traverse::traverse_constants) != 0)
+ t = traverse->constant(p, is_global);
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask & e_or_t) != 0)
+ {
+ Type* tc = p->const_value()->type();
+ if (tc != NULL
+ && Type::traverse(tc, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ t = p->const_value()->traverse_expression(traverse);
+ }
+ break;
+
+ case Named_object::NAMED_OBJECT_VAR:
+ case Named_object::NAMED_OBJECT_RESULT_VAR:
+ if ((traverse_mask & Traverse::traverse_variables) != 0)
+ t = traverse->variable(p);
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask & e_or_t) != 0)
+ {
+ if (p->is_result_variable()
+ || p->var_value()->has_type())
+ {
+ Type* tv = (p->is_variable()
+ ? p->var_value()->type()
+ : p->result_var_value()->type());
+ if (tv != NULL
+ && Type::traverse(tv, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask & e_or_t_or_s) != 0
+ && p->is_variable())
+ t = p->var_value()->traverse_expression(traverse, traverse_mask);
+ break;
+
+ case Named_object::NAMED_OBJECT_FUNC:
+ if ((traverse_mask & Traverse::traverse_functions) != 0)
+ t = traverse->function(p);
+
+ if (t == TRAVERSE_CONTINUE
+ && (traverse_mask
+ & (Traverse::traverse_variables
+ | Traverse::traverse_constants
+ | Traverse::traverse_functions
+ | Traverse::traverse_blocks
+ | Traverse::traverse_statements
+ | Traverse::traverse_expressions
+ | Traverse::traverse_types)) != 0)
+ t = p->func_value()->traverse(traverse);
+ break;
+
+ case Named_object::NAMED_OBJECT_PACKAGE:
+ // These are traversed in Gogo::traverse.
+ go_assert(is_global);
+ break;
+
+ case Named_object::NAMED_OBJECT_TYPE:
+ if ((traverse_mask & e_or_t) != 0)
+ t = Type::traverse(p->type_value(), traverse);
+ break;
+
+ case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
+ case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
+ case Named_object::NAMED_OBJECT_UNKNOWN:
+ case Named_object::NAMED_OBJECT_ERRONEOUS:
+ break;
+
+ case Named_object::NAMED_OBJECT_SINK:
+ default:
+ go_unreachable();
+ }
+
+ if (t == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+
+ // If we need to traverse types, check the function declarations,
+ // which have types. Also check any methods of a type declaration.
+ if ((traverse_mask & e_or_t) != 0)
+ {
+ for (Bindings::const_declarations_iterator p =
+ this->begin_declarations();
+ p != this->end_declarations();
+ ++p)
+ {
+ if (p->second->is_function_declaration())
+ {
+ if (Type::traverse(p->second->func_declaration_value()->type(),
+ traverse)
+ == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ else if (p->second->is_type_declaration())
+ {
+ const std::vector<Named_object*>* methods =
+ p->second->type_declaration_value()->methods();
+ for (std::vector<Named_object*>::const_iterator pm =
+ methods->begin();
+ pm != methods->end();
+ pm++)
+ {
+ Named_object* no = *pm;
+ Type *t;
+ if (no->is_function())
+ t = no->func_value()->type();
+ else if (no->is_function_declaration())
+ t = no->func_declaration_value()->type();
+ else
+ continue;
+ if (Type::traverse(t, traverse) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ }
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Class Label.
+
+// Clear any references to this label.
+
+void
+Label::clear_refs()
+{
+ for (std::vector<Bindings_snapshot*>::iterator p = this->refs_.begin();
+ p != this->refs_.end();
+ ++p)
+ delete *p;
+ this->refs_.clear();
+}
+
+// Get the backend representation for a label.
+
+Blabel*
+Label::get_backend_label(Translate_context* context)
+{
+ if (this->blabel_ == NULL)
+ {
+ Function* function = context->function()->func_value();
+ tree fndecl = function->get_decl();
+ Bfunction* bfunction = tree_to_function(fndecl);
+ this->blabel_ = context->backend()->label(bfunction, this->name_,
+ this->location_);
+ }
+ return this->blabel_;
+}
+
+// Return an expression for the address of this label.
+
+Bexpression*
+Label::get_addr(Translate_context* context, Location location)
+{
+ Blabel* label = this->get_backend_label(context);
+ return context->backend()->label_address(label, location);
+}
+
+// Class Unnamed_label.
+
+// Get the backend representation for an unnamed label.
+
+Blabel*
+Unnamed_label::get_blabel(Translate_context* context)
+{
+ if (this->blabel_ == NULL)
+ {
+ Function* function = context->function()->func_value();
+ tree fndecl = function->get_decl();
+ Bfunction* bfunction = tree_to_function(fndecl);
+ this->blabel_ = context->backend()->label(bfunction, "",
+ this->location_);
+ }
+ return this->blabel_;
+}
+
+// Return a statement which defines this unnamed label.
+
+Bstatement*
+Unnamed_label::get_definition(Translate_context* context)
+{
+ Blabel* blabel = this->get_blabel(context);
+ return context->backend()->label_definition_statement(blabel);
+}
+
+// Return a goto statement to this unnamed label.
+
+Bstatement*
+Unnamed_label::get_goto(Translate_context* context, Location location)
+{
+ Blabel* blabel = this->get_blabel(context);
+ return context->backend()->goto_statement(blabel, location);
+}
+
+// Class Package.
+
+Package::Package(const std::string& pkgpath, Location location)
+ : pkgpath_(pkgpath), pkgpath_symbol_(Gogo::pkgpath_for_symbol(pkgpath)),
+ package_name_(), bindings_(new Bindings(NULL)), priority_(0),
+ location_(location), used_(false), is_imported_(false),
+ uses_sink_alias_(false)
+{
+ go_assert(!pkgpath.empty());
+
+}
+
+// Set the package name.
+
+void
+Package::set_package_name(const std::string& package_name, Location location)
+{
+ go_assert(!package_name.empty());
+ if (this->package_name_.empty())
+ this->package_name_ = package_name;
+ else if (this->package_name_ != package_name)
+ error_at(location,
+ "saw two different packages with the same package path %s: %s, %s",
+ this->pkgpath_.c_str(), this->package_name_.c_str(),
+ package_name.c_str());
+}
+
+// Set the priority. We may see multiple priorities for an imported
+// package; we want to use the largest one.
+
+void
+Package::set_priority(int priority)
+{
+ if (priority > this->priority_)
+ this->priority_ = priority;
+}
+
+// Determine types of constants. Everything else in a package
+// (variables, function declarations) should already have a fixed
+// type. Constants may have abstract types.
+
+void
+Package::determine_types()
+{
+ Bindings* bindings = this->bindings_;
+ for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+ p != bindings->end_definitions();
+ ++p)
+ {
+ if ((*p)->is_const())
+ (*p)->const_value()->determine_type();
+ }
+}
+
+// Class Traverse.
+
+// Destructor.
+
+Traverse::~Traverse()
+{
+ if (this->types_seen_ != NULL)
+ delete this->types_seen_;
+ if (this->expressions_seen_ != NULL)
+ delete this->expressions_seen_;
+}
+
+// Record that we are looking at a type, and return true if we have
+// already seen it.
+
+bool
+Traverse::remember_type(const Type* type)
+{
+ if (type->is_error_type())
+ return true;
+ go_assert((this->traverse_mask() & traverse_types) != 0
+ || (this->traverse_mask() & traverse_expressions) != 0);
+ // We mostly only have to remember named types. But it turns out
+ // that an interface type can refer to itself without using a name
+ // by relying on interface inheritance, as in
+ // type I interface { F() interface{I} }
+ if (type->classification() != Type::TYPE_NAMED
+ && type->classification() != Type::TYPE_INTERFACE)
+ return false;
+ if (this->types_seen_ == NULL)
+ this->types_seen_ = new Types_seen();
+ std::pair<Types_seen::iterator, bool> ins = this->types_seen_->insert(type);
+ return !ins.second;
+}
+
+// Record that we are looking at an expression, and return true if we
+// have already seen it.
+
+bool
+Traverse::remember_expression(const Expression* expression)
+{
+ go_assert((this->traverse_mask() & traverse_types) != 0
+ || (this->traverse_mask() & traverse_expressions) != 0);
+ if (this->expressions_seen_ == NULL)
+ this->expressions_seen_ = new Expressions_seen();
+ std::pair<Expressions_seen::iterator, bool> ins =
+ this->expressions_seen_->insert(expression);
+ return !ins.second;
+}
+
+// The default versions of these functions should never be called: the
+// traversal mask indicates which functions may be called.
+
+int
+Traverse::variable(Named_object*)
+{
+ go_unreachable();
+}
+
+int
+Traverse::constant(Named_object*, bool)
+{
+ go_unreachable();
+}
+
+int
+Traverse::function(Named_object*)
+{
+ go_unreachable();
+}
+
+int
+Traverse::block(Block*)
+{
+ go_unreachable();
+}
+
+int
+Traverse::statement(Block*, size_t*, Statement*)
+{
+ go_unreachable();
+}
+
+int
+Traverse::expression(Expression**)
+{
+ go_unreachable();
+}
+
+int
+Traverse::type(Type*)
+{
+ go_unreachable();
+}
+
+// Class Statement_inserter.
+
+void
+Statement_inserter::insert(Statement* s)
+{
+ if (this->block_ != NULL)
+ {
+ go_assert(this->pindex_ != NULL);
+ this->block_->insert_statement_before(*this->pindex_, s);
+ ++*this->pindex_;
+ }
+ else if (this->var_ != NULL)
+ this->var_->add_preinit_statement(this->gogo_, s);
+ else
+ go_assert(saw_errors());
+}