aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/go/gofrontend/gogo-tree.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.9/gcc/go/gofrontend/gogo-tree.cc')
-rw-r--r--gcc-4.9/gcc/go/gofrontend/gogo-tree.cc2319
1 files changed, 2319 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/go/gofrontend/gogo-tree.cc b/gcc-4.9/gcc/go/gofrontend/gogo-tree.cc
new file mode 100644
index 000000000..1950090b9
--- /dev/null
+++ b/gcc-4.9/gcc/go/gofrontend/gogo-tree.cc
@@ -0,0 +1,2319 @@
+// gogo-tree.cc -- convert Go frontend Gogo IR to gcc trees.
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "go-system.h"
+
+#include "toplev.h"
+#include "tree.h"
+#include "stringpool.h"
+#include "stor-layout.h"
+#include "varasm.h"
+#include "gimple-expr.h"
+#include "gimplify.h"
+#include "tree-iterator.h"
+#include "cgraph.h"
+#include "langhooks.h"
+#include "convert.h"
+#include "output.h"
+#include "diagnostic.h"
+#include "go-c.h"
+
+#include "types.h"
+#include "expressions.h"
+#include "statements.h"
+#include "runtime.h"
+#include "backend.h"
+#include "gogo.h"
+
+// Whether we have seen any errors.
+
+bool
+saw_errors()
+{
+ return errorcount != 0 || sorrycount != 0;
+}
+
+// A helper function.
+
+static inline tree
+get_identifier_from_string(const std::string& str)
+{
+ return get_identifier_with_length(str.data(), str.length());
+}
+
+// Builtin functions.
+
+static std::map<std::string, tree> builtin_functions;
+
+// Define a builtin function. BCODE is the builtin function code
+// defined by builtins.def. NAME is the name of the builtin function.
+// LIBNAME is the name of the corresponding library function, and is
+// NULL if there isn't one. FNTYPE is the type of the function.
+// CONST_P is true if the function has the const attribute.
+
+static void
+define_builtin(built_in_function bcode, const char* name, const char* libname,
+ tree fntype, bool const_p)
+{
+ tree decl = add_builtin_function(name, fntype, bcode, BUILT_IN_NORMAL,
+ libname, NULL_TREE);
+ if (const_p)
+ TREE_READONLY(decl) = 1;
+ set_builtin_decl(bcode, decl, true);
+ builtin_functions[name] = decl;
+ if (libname != NULL)
+ {
+ decl = add_builtin_function(libname, fntype, bcode, BUILT_IN_NORMAL,
+ NULL, NULL_TREE);
+ if (const_p)
+ TREE_READONLY(decl) = 1;
+ builtin_functions[libname] = decl;
+ }
+}
+
+// Create trees for implicit builtin functions.
+
+void
+Gogo::define_builtin_function_trees()
+{
+ /* We need to define the fetch_and_add functions, since we use them
+ for ++ and --. */
+ tree t = go_type_for_size(BITS_PER_UNIT, 1);
+ tree p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
+ define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_1, "__sync_fetch_and_add_1", NULL,
+ build_function_type_list(t, p, t, NULL_TREE), false);
+
+ t = go_type_for_size(BITS_PER_UNIT * 2, 1);
+ p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
+ define_builtin (BUILT_IN_SYNC_ADD_AND_FETCH_2, "__sync_fetch_and_add_2", NULL,
+ build_function_type_list(t, p, t, NULL_TREE), false);
+
+ t = go_type_for_size(BITS_PER_UNIT * 4, 1);
+ p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
+ define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_4, "__sync_fetch_and_add_4", NULL,
+ build_function_type_list(t, p, t, NULL_TREE), false);
+
+ t = go_type_for_size(BITS_PER_UNIT * 8, 1);
+ p = build_pointer_type(build_qualified_type(t, TYPE_QUAL_VOLATILE));
+ define_builtin(BUILT_IN_SYNC_ADD_AND_FETCH_8, "__sync_fetch_and_add_8", NULL,
+ build_function_type_list(t, p, t, NULL_TREE), false);
+
+ // We use __builtin_expect for magic import functions.
+ define_builtin(BUILT_IN_EXPECT, "__builtin_expect", NULL,
+ build_function_type_list(long_integer_type_node,
+ long_integer_type_node,
+ long_integer_type_node,
+ NULL_TREE),
+ true);
+
+ // We use __builtin_memcmp for struct comparisons.
+ define_builtin(BUILT_IN_MEMCMP, "__builtin_memcmp", "memcmp",
+ build_function_type_list(integer_type_node,
+ const_ptr_type_node,
+ const_ptr_type_node,
+ size_type_node,
+ NULL_TREE),
+ false);
+
+ // We provide some functions for the math library.
+ tree math_function_type = build_function_type_list(double_type_node,
+ double_type_node,
+ NULL_TREE);
+ tree math_function_type_long =
+ build_function_type_list(long_double_type_node, long_double_type_node,
+ long_double_type_node, NULL_TREE);
+ tree math_function_type_two = build_function_type_list(double_type_node,
+ double_type_node,
+ double_type_node,
+ NULL_TREE);
+ tree math_function_type_long_two =
+ build_function_type_list(long_double_type_node, long_double_type_node,
+ long_double_type_node, NULL_TREE);
+ define_builtin(BUILT_IN_ACOS, "__builtin_acos", "acos",
+ math_function_type, true);
+ define_builtin(BUILT_IN_ACOSL, "__builtin_acosl", "acosl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_ASIN, "__builtin_asin", "asin",
+ math_function_type, true);
+ define_builtin(BUILT_IN_ASINL, "__builtin_asinl", "asinl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_ATAN, "__builtin_atan", "atan",
+ math_function_type, true);
+ define_builtin(BUILT_IN_ATANL, "__builtin_atanl", "atanl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_ATAN2, "__builtin_atan2", "atan2",
+ math_function_type_two, true);
+ define_builtin(BUILT_IN_ATAN2L, "__builtin_atan2l", "atan2l",
+ math_function_type_long_two, true);
+ define_builtin(BUILT_IN_CEIL, "__builtin_ceil", "ceil",
+ math_function_type, true);
+ define_builtin(BUILT_IN_CEILL, "__builtin_ceill", "ceill",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_COS, "__builtin_cos", "cos",
+ math_function_type, true);
+ define_builtin(BUILT_IN_COSL, "__builtin_cosl", "cosl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_EXP, "__builtin_exp", "exp",
+ math_function_type, true);
+ define_builtin(BUILT_IN_EXPL, "__builtin_expl", "expl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_EXPM1, "__builtin_expm1", "expm1",
+ math_function_type, true);
+ define_builtin(BUILT_IN_EXPM1L, "__builtin_expm1l", "expm1l",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_FABS, "__builtin_fabs", "fabs",
+ math_function_type, true);
+ define_builtin(BUILT_IN_FABSL, "__builtin_fabsl", "fabsl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_FLOOR, "__builtin_floor", "floor",
+ math_function_type, true);
+ define_builtin(BUILT_IN_FLOORL, "__builtin_floorl", "floorl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_FMOD, "__builtin_fmod", "fmod",
+ math_function_type_two, true);
+ define_builtin(BUILT_IN_FMODL, "__builtin_fmodl", "fmodl",
+ math_function_type_long_two, true);
+ define_builtin(BUILT_IN_LDEXP, "__builtin_ldexp", "ldexp",
+ build_function_type_list(double_type_node,
+ double_type_node,
+ integer_type_node,
+ NULL_TREE),
+ true);
+ define_builtin(BUILT_IN_LDEXPL, "__builtin_ldexpl", "ldexpl",
+ build_function_type_list(long_double_type_node,
+ long_double_type_node,
+ integer_type_node,
+ NULL_TREE),
+ true);
+ define_builtin(BUILT_IN_LOG, "__builtin_log", "log",
+ math_function_type, true);
+ define_builtin(BUILT_IN_LOGL, "__builtin_logl", "logl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_LOG1P, "__builtin_log1p", "log1p",
+ math_function_type, true);
+ define_builtin(BUILT_IN_LOG1PL, "__builtin_log1pl", "log1pl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_LOG10, "__builtin_log10", "log10",
+ math_function_type, true);
+ define_builtin(BUILT_IN_LOG10L, "__builtin_log10l", "log10l",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_LOG2, "__builtin_log2", "log2",
+ math_function_type, true);
+ define_builtin(BUILT_IN_LOG2L, "__builtin_log2l", "log2l",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_SIN, "__builtin_sin", "sin",
+ math_function_type, true);
+ define_builtin(BUILT_IN_SINL, "__builtin_sinl", "sinl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_SQRT, "__builtin_sqrt", "sqrt",
+ math_function_type, true);
+ define_builtin(BUILT_IN_SQRTL, "__builtin_sqrtl", "sqrtl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_TAN, "__builtin_tan", "tan",
+ math_function_type, true);
+ define_builtin(BUILT_IN_TANL, "__builtin_tanl", "tanl",
+ math_function_type_long, true);
+ define_builtin(BUILT_IN_TRUNC, "__builtin_trunc", "trunc",
+ math_function_type, true);
+ define_builtin(BUILT_IN_TRUNCL, "__builtin_truncl", "truncl",
+ math_function_type_long, true);
+
+ // We use __builtin_return_address in the thunk we build for
+ // functions which call recover.
+ define_builtin(BUILT_IN_RETURN_ADDRESS, "__builtin_return_address", NULL,
+ build_function_type_list(ptr_type_node,
+ unsigned_type_node,
+ NULL_TREE),
+ false);
+
+ // The compiler uses __builtin_trap for some exception handling
+ // cases.
+ define_builtin(BUILT_IN_TRAP, "__builtin_trap", NULL,
+ build_function_type(void_type_node, void_list_node),
+ false);
+}
+
+// Get the name to use for the import control function. If there is a
+// global function or variable, then we know that that name must be
+// unique in the link, and we use it as the basis for our name.
+
+const std::string&
+Gogo::get_init_fn_name()
+{
+ if (this->init_fn_name_.empty())
+ {
+ go_assert(this->package_ != NULL);
+ if (this->is_main_package())
+ {
+ // Use a name which the runtime knows.
+ this->init_fn_name_ = "__go_init_main";
+ }
+ else
+ {
+ std::string s = this->pkgpath_symbol();
+ s.append("..import");
+ this->init_fn_name_ = s;
+ }
+ }
+
+ return this->init_fn_name_;
+}
+
+// Add statements to INIT_STMT_LIST which run the initialization
+// functions for imported packages. This is only used for the "main"
+// package.
+
+void
+Gogo::init_imports(tree* init_stmt_list)
+{
+ go_assert(this->is_main_package());
+
+ if (this->imported_init_fns_.empty())
+ return;
+
+ tree fntype = build_function_type(void_type_node, void_list_node);
+
+ // We must call them in increasing priority order.
+ std::vector<Import_init> v;
+ for (std::set<Import_init>::const_iterator p =
+ this->imported_init_fns_.begin();
+ p != this->imported_init_fns_.end();
+ ++p)
+ v.push_back(*p);
+ std::sort(v.begin(), v.end());
+
+ for (std::vector<Import_init>::const_iterator p = v.begin();
+ p != v.end();
+ ++p)
+ {
+ std::string user_name = p->package_name() + ".init";
+ tree decl = build_decl(UNKNOWN_LOCATION, FUNCTION_DECL,
+ get_identifier_from_string(user_name),
+ fntype);
+ const std::string& init_name(p->init_name());
+ SET_DECL_ASSEMBLER_NAME(decl, get_identifier_from_string(init_name));
+ TREE_PUBLIC(decl) = 1;
+ DECL_EXTERNAL(decl) = 1;
+ append_to_statement_list(build_call_expr(decl, 0), init_stmt_list);
+ }
+}
+
+// Register global variables with the garbage collector. We need to
+// register all variables which can hold a pointer value. They become
+// roots during the mark phase. We build a struct that is easy to
+// hook into a list of roots.
+
+// struct __go_gc_root_list
+// {
+// struct __go_gc_root_list* __next;
+// struct __go_gc_root
+// {
+// void* __decl;
+// size_t __size;
+// } __roots[];
+// };
+
+// The last entry in the roots array has a NULL decl field.
+
+void
+Gogo::register_gc_vars(const std::vector<Named_object*>& var_gc,
+ tree* init_stmt_list)
+{
+ if (var_gc.empty())
+ return;
+
+ size_t count = var_gc.size();
+
+ tree root_type = Gogo::builtin_struct(NULL, "__go_gc_root", NULL_TREE, 2,
+ "__next",
+ ptr_type_node,
+ "__size",
+ sizetype);
+
+ tree index_type = build_index_type(size_int(count));
+ tree array_type = build_array_type(root_type, index_type);
+
+ tree root_list_type = make_node(RECORD_TYPE);
+ root_list_type = Gogo::builtin_struct(NULL, "__go_gc_root_list",
+ root_list_type, 2,
+ "__next",
+ build_pointer_type(root_list_type),
+ "__roots",
+ array_type);
+
+ // Build an initialier for the __roots array.
+
+ vec<constructor_elt, va_gc> *roots_init;
+ vec_alloc(roots_init, count + 1);
+
+ size_t i = 0;
+ for (std::vector<Named_object*>::const_iterator p = var_gc.begin();
+ p != var_gc.end();
+ ++p, ++i)
+ {
+ vec<constructor_elt, va_gc> *init;
+ vec_alloc(init, 2);
+
+ constructor_elt empty = {NULL, NULL};
+ constructor_elt* elt = init->quick_push(empty);
+ tree field = TYPE_FIELDS(root_type);
+ elt->index = field;
+ Bvariable* bvar = (*p)->get_backend_variable(this, NULL);
+ tree decl = var_to_tree(bvar);
+ go_assert(TREE_CODE(decl) == VAR_DECL);
+ elt->value = build_fold_addr_expr(decl);
+
+ elt = init->quick_push(empty);
+ field = DECL_CHAIN(field);
+ elt->index = field;
+ elt->value = DECL_SIZE_UNIT(decl);
+
+ elt = roots_init->quick_push(empty);
+ elt->index = size_int(i);
+ elt->value = build_constructor(root_type, init);
+ }
+
+ // The list ends with a NULL entry.
+
+ vec<constructor_elt, va_gc> *init;
+ vec_alloc(init, 2);
+
+ constructor_elt empty = {NULL, NULL};
+ constructor_elt* elt = init->quick_push(empty);
+ tree field = TYPE_FIELDS(root_type);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
+
+ elt = init->quick_push(empty);
+ field = DECL_CHAIN(field);
+ elt->index = field;
+ elt->value = size_zero_node;
+
+ elt = roots_init->quick_push(empty);
+ elt->index = size_int(i);
+ elt->value = build_constructor(root_type, init);
+
+ // Build a constructor for the struct.
+
+ vec<constructor_elt, va_gc> *root_list_init;
+ vec_alloc(root_list_init, 2);
+
+ elt = root_list_init->quick_push(empty);
+ field = TYPE_FIELDS(root_list_type);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
+
+ elt = root_list_init->quick_push(empty);
+ field = DECL_CHAIN(field);
+ elt->index = field;
+ elt->value = build_constructor(array_type, roots_init);
+
+ // Build a decl to register.
+
+ tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL,
+ create_tmp_var_name("gc"), root_list_type);
+ DECL_EXTERNAL(decl) = 0;
+ TREE_PUBLIC(decl) = 0;
+ TREE_STATIC(decl) = 1;
+ DECL_ARTIFICIAL(decl) = 1;
+ DECL_INITIAL(decl) = build_constructor(root_list_type, root_list_init);
+ rest_of_decl_compilation(decl, 1, 0);
+
+ static tree register_gc_fndecl;
+ tree call = Gogo::call_builtin(&register_gc_fndecl,
+ Linemap::predeclared_location(),
+ "__go_register_gc_roots",
+ 1,
+ void_type_node,
+ build_pointer_type(root_list_type),
+ build_fold_addr_expr(decl));
+ if (call != error_mark_node)
+ append_to_statement_list(call, init_stmt_list);
+}
+
+// Build the decl for the initialization function.
+
+tree
+Gogo::initialization_function_decl()
+{
+ // The tedious details of building your own function. There doesn't
+ // seem to be a helper function for this.
+ std::string name = this->package_name() + ".init";
+ tree fndecl = build_decl(this->package_->location().gcc_location(),
+ FUNCTION_DECL, get_identifier_from_string(name),
+ build_function_type(void_type_node,
+ void_list_node));
+ const std::string& asm_name(this->get_init_fn_name());
+ SET_DECL_ASSEMBLER_NAME(fndecl, get_identifier_from_string(asm_name));
+
+ tree resdecl = build_decl(this->package_->location().gcc_location(),
+ RESULT_DECL, NULL_TREE, void_type_node);
+ DECL_ARTIFICIAL(resdecl) = 1;
+ DECL_CONTEXT(resdecl) = fndecl;
+ DECL_RESULT(fndecl) = resdecl;
+
+ TREE_STATIC(fndecl) = 1;
+ TREE_USED(fndecl) = 1;
+ DECL_ARTIFICIAL(fndecl) = 1;
+ TREE_PUBLIC(fndecl) = 1;
+
+ DECL_INITIAL(fndecl) = make_node(BLOCK);
+ TREE_USED(DECL_INITIAL(fndecl)) = 1;
+
+ return fndecl;
+}
+
+// Create the magic initialization function. INIT_STMT_LIST is the
+// code that it needs to run.
+
+void
+Gogo::write_initialization_function(tree fndecl, tree init_stmt_list)
+{
+ // Make sure that we thought we needed an initialization function,
+ // as otherwise we will not have reported it in the export data.
+ go_assert(this->is_main_package() || this->need_init_fn_);
+
+ if (fndecl == NULL_TREE)
+ fndecl = this->initialization_function_decl();
+
+ DECL_SAVED_TREE(fndecl) = init_stmt_list;
+
+ if (DECL_STRUCT_FUNCTION(fndecl) == NULL)
+ push_struct_function(fndecl);
+ else
+ push_cfun(DECL_STRUCT_FUNCTION(fndecl));
+ cfun->function_start_locus = this->package_->location().gcc_location();
+ cfun->function_end_locus = cfun->function_start_locus;
+
+ gimplify_function_tree(fndecl);
+
+ cgraph_add_new_function(fndecl, false);
+
+ pop_cfun();
+}
+
+// Search for references to VAR in any statements or called functions.
+
+class Find_var : public Traverse
+{
+ public:
+ // A hash table we use to avoid looping. The index is the name of a
+ // named object. We only look through objects defined in this
+ // package.
+ typedef Unordered_set(const void*) Seen_objects;
+
+ Find_var(Named_object* var, Seen_objects* seen_objects)
+ : Traverse(traverse_expressions),
+ var_(var), seen_objects_(seen_objects), found_(false)
+ { }
+
+ // Whether the variable was found.
+ bool
+ found() const
+ { return this->found_; }
+
+ int
+ expression(Expression**);
+
+ private:
+ // The variable we are looking for.
+ Named_object* var_;
+ // Names of objects we have already seen.
+ Seen_objects* seen_objects_;
+ // True if the variable was found.
+ bool found_;
+};
+
+// See if EXPR refers to VAR, looking through function calls and
+// variable initializations.
+
+int
+Find_var::expression(Expression** pexpr)
+{
+ Expression* e = *pexpr;
+
+ Var_expression* ve = e->var_expression();
+ if (ve != NULL)
+ {
+ Named_object* v = ve->named_object();
+ if (v == this->var_)
+ {
+ this->found_ = true;
+ return TRAVERSE_EXIT;
+ }
+
+ if (v->is_variable() && v->package() == NULL)
+ {
+ Expression* init = v->var_value()->init();
+ if (init != NULL)
+ {
+ std::pair<Seen_objects::iterator, bool> ins =
+ this->seen_objects_->insert(v);
+ if (ins.second)
+ {
+ // This is the first time we have seen this name.
+ if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ }
+ }
+
+ // We traverse the code of any function we see. Note that this
+ // means that we will traverse the code of a function whose address
+ // is taken even if it is not called.
+ Func_expression* fe = e->func_expression();
+ if (fe != NULL)
+ {
+ const Named_object* f = fe->named_object();
+ if (f->is_function() && f->package() == NULL)
+ {
+ std::pair<Seen_objects::iterator, bool> ins =
+ this->seen_objects_->insert(f);
+ if (ins.second)
+ {
+ // This is the first time we have seen this name.
+ if (f->func_value()->block()->traverse(this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ }
+
+ Temporary_reference_expression* tre = e->temporary_reference_expression();
+ if (tre != NULL)
+ {
+ Temporary_statement* ts = tre->statement();
+ Expression* init = ts->init();
+ if (init != NULL)
+ {
+ std::pair<Seen_objects::iterator, bool> ins =
+ this->seen_objects_->insert(ts);
+ if (ins.second)
+ {
+ // This is the first time we have seen this temporary
+ // statement.
+ if (Expression::traverse(&init, this) == TRAVERSE_EXIT)
+ return TRAVERSE_EXIT;
+ }
+ }
+ }
+
+ return TRAVERSE_CONTINUE;
+}
+
+// Return true if EXPR, PREINIT, or DEP refers to VAR.
+
+static bool
+expression_requires(Expression* expr, Block* preinit, Named_object* dep,
+ Named_object* var)
+{
+ Find_var::Seen_objects seen_objects;
+ Find_var find_var(var, &seen_objects);
+ if (expr != NULL)
+ Expression::traverse(&expr, &find_var);
+ if (preinit != NULL)
+ preinit->traverse(&find_var);
+ if (dep != NULL)
+ {
+ Expression* init = dep->var_value()->init();
+ if (init != NULL)
+ Expression::traverse(&init, &find_var);
+ if (dep->var_value()->has_pre_init())
+ dep->var_value()->preinit()->traverse(&find_var);
+ }
+
+ return find_var.found();
+}
+
+// Sort variable initializations. If the initialization expression
+// for variable A refers directly or indirectly to the initialization
+// expression for variable B, then we must initialize B before A.
+
+class Var_init
+{
+ public:
+ Var_init()
+ : var_(NULL), init_(NULL_TREE)
+ { }
+
+ Var_init(Named_object* var, tree init)
+ : var_(var), init_(init)
+ { }
+
+ // Return the variable.
+ Named_object*
+ var() const
+ { return this->var_; }
+
+ // Return the initialization expression.
+ tree
+ init() const
+ { return this->init_; }
+
+ private:
+ // The variable being initialized.
+ Named_object* var_;
+ // The initialization expression to run.
+ tree init_;
+};
+
+typedef std::list<Var_init> Var_inits;
+
+// Sort the variable initializations. The rule we follow is that we
+// emit them in the order they appear in the array, except that if the
+// initialization expression for a variable V1 depends upon another
+// variable V2 then we initialize V1 after V2.
+
+static void
+sort_var_inits(Gogo* gogo, Var_inits* var_inits)
+{
+ typedef std::pair<Named_object*, Named_object*> No_no;
+ typedef std::map<No_no, bool> Cache;
+ Cache cache;
+
+ Var_inits ready;
+ while (!var_inits->empty())
+ {
+ Var_inits::iterator p1 = var_inits->begin();
+ Named_object* var = p1->var();
+ Expression* init = var->var_value()->init();
+ Block* preinit = var->var_value()->preinit();
+ Named_object* dep = gogo->var_depends_on(var->var_value());
+
+ // Start walking through the list to see which variables VAR
+ // needs to wait for.
+ Var_inits::iterator p2 = p1;
+ ++p2;
+
+ for (; p2 != var_inits->end(); ++p2)
+ {
+ Named_object* p2var = p2->var();
+ No_no key(var, p2var);
+ std::pair<Cache::iterator, bool> ins =
+ cache.insert(std::make_pair(key, false));
+ if (ins.second)
+ ins.first->second = expression_requires(init, preinit, dep, p2var);
+ if (ins.first->second)
+ {
+ // Check for cycles.
+ key = std::make_pair(p2var, var);
+ ins = cache.insert(std::make_pair(key, false));
+ if (ins.second)
+ ins.first->second =
+ expression_requires(p2var->var_value()->init(),
+ p2var->var_value()->preinit(),
+ gogo->var_depends_on(p2var->var_value()),
+ var);
+ if (ins.first->second)
+ {
+ error_at(var->location(),
+ ("initialization expressions for %qs and "
+ "%qs depend upon each other"),
+ var->message_name().c_str(),
+ p2var->message_name().c_str());
+ inform(p2->var()->location(), "%qs defined here",
+ p2var->message_name().c_str());
+ p2 = var_inits->end();
+ }
+ else
+ {
+ // We can't emit P1 until P2 is emitted. Move P1.
+ Var_inits::iterator p3 = p2;
+ ++p3;
+ var_inits->splice(p3, *var_inits, p1);
+ }
+ break;
+ }
+ }
+
+ if (p2 == var_inits->end())
+ {
+ // VAR does not depends upon any other initialization expressions.
+
+ // Check for a loop of VAR on itself. We only do this if
+ // INIT is not NULL and there is no dependency; when INIT is
+ // NULL, it means that PREINIT sets VAR, which we will
+ // interpret as a loop.
+ if (init != NULL && dep == NULL
+ && expression_requires(init, preinit, NULL, var))
+ error_at(var->location(),
+ "initialization expression for %qs depends upon itself",
+ var->message_name().c_str());
+ ready.splice(ready.end(), *var_inits, p1);
+ }
+ }
+
+ // Now READY is the list in the desired initialization order.
+ var_inits->swap(ready);
+}
+
+// Write out the global definitions.
+
+void
+Gogo::write_globals()
+{
+ this->build_interface_method_tables();
+
+ Bindings* bindings = this->current_bindings();
+
+ for (Bindings::const_declarations_iterator p = bindings->begin_declarations();
+ p != bindings->end_declarations();
+ ++p)
+ {
+ // If any function declarations needed a descriptor, make sure
+ // we build it.
+ Named_object* no = p->second;
+ if (no->is_function_declaration())
+ no->func_declaration_value()->build_backend_descriptor(this);
+ }
+
+ size_t count_definitions = bindings->size_definitions();
+ size_t count = count_definitions;
+
+ tree* vec = new tree[count];
+
+ tree init_fndecl = NULL_TREE;
+ tree init_stmt_list = NULL_TREE;
+
+ if (this->is_main_package())
+ this->init_imports(&init_stmt_list);
+
+ // A list of variable initializations.
+ Var_inits var_inits;
+
+ // A list of variables which need to be registered with the garbage
+ // collector.
+ std::vector<Named_object*> var_gc;
+ var_gc.reserve(count);
+
+ tree var_init_stmt_list = NULL_TREE;
+ size_t i = 0;
+ for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
+ p != bindings->end_definitions();
+ ++p, ++i)
+ {
+ Named_object* no = *p;
+
+ go_assert(i < count);
+
+ go_assert(!no->is_type_declaration() && !no->is_function_declaration());
+ // There is nothing to do for a package.
+ if (no->is_package())
+ {
+ --i;
+ --count;
+ continue;
+ }
+
+ // There is nothing to do for an object which was imported from
+ // a different package into the global scope.
+ if (no->package() != NULL)
+ {
+ --i;
+ --count;
+ continue;
+ }
+
+ // Skip blank named functions and constants.
+ if ((no->is_function() && no->func_value()->is_sink())
+ || (no->is_const() && no->const_value()->is_sink()))
+ {
+ --i;
+ --count;
+ continue;
+ }
+
+ // There is nothing useful we can output for constants which
+ // have ideal or non-integral type.
+ if (no->is_const())
+ {
+ Type* type = no->const_value()->type();
+ if (type == NULL)
+ type = no->const_value()->expr()->type();
+ if (type->is_abstract() || type->integer_type() == NULL)
+ {
+ --i;
+ --count;
+ continue;
+ }
+ }
+
+ if (!no->is_variable())
+ {
+ vec[i] = no->get_tree(this, NULL);
+ if (vec[i] == error_mark_node)
+ {
+ go_assert(saw_errors());
+ --i;
+ --count;
+ continue;
+ }
+ }
+ else
+ {
+ Bvariable* var = no->get_backend_variable(this, NULL);
+ vec[i] = var_to_tree(var);
+ if (vec[i] == error_mark_node)
+ {
+ go_assert(saw_errors());
+ --i;
+ --count;
+ continue;
+ }
+
+ // Check for a sink variable, which may be used to run an
+ // initializer purely for its side effects.
+ bool is_sink = no->name()[0] == '_' && no->name()[1] == '.';
+
+ tree var_init_tree = NULL_TREE;
+ if (!no->var_value()->has_pre_init())
+ {
+ tree init = no->var_value()->get_init_tree(this, NULL);
+ if (init == error_mark_node)
+ go_assert(saw_errors());
+ else if (init == NULL_TREE)
+ ;
+ else if (TREE_CONSTANT(init))
+ {
+ if (expression_requires(no->var_value()->init(), NULL,
+ this->var_depends_on(no->var_value()),
+ no))
+ error_at(no->location(),
+ "initialization expression for %qs depends "
+ "upon itself",
+ no->message_name().c_str());
+ this->backend()->global_variable_set_init(var,
+ tree_to_expr(init));
+ }
+ else if (is_sink
+ || int_size_in_bytes(TREE_TYPE(init)) == 0
+ || int_size_in_bytes(TREE_TYPE(vec[i])) == 0)
+ var_init_tree = init;
+ else
+ var_init_tree = fold_build2_loc(no->location().gcc_location(),
+ MODIFY_EXPR, void_type_node,
+ vec[i], init);
+ }
+ else
+ {
+ // We are going to create temporary variables which
+ // means that we need an fndecl.
+ if (init_fndecl == NULL_TREE)
+ init_fndecl = this->initialization_function_decl();
+ if (DECL_STRUCT_FUNCTION(init_fndecl) == NULL)
+ push_struct_function(init_fndecl);
+ else
+ push_cfun(DECL_STRUCT_FUNCTION(init_fndecl));
+ tree var_decl = is_sink ? NULL_TREE : vec[i];
+ var_init_tree = no->var_value()->get_init_block(this, NULL,
+ var_decl);
+ pop_cfun();
+ }
+
+ if (var_init_tree != NULL_TREE && var_init_tree != error_mark_node)
+ {
+ if (no->var_value()->init() == NULL
+ && !no->var_value()->has_pre_init())
+ append_to_statement_list(var_init_tree, &var_init_stmt_list);
+ else
+ var_inits.push_back(Var_init(no, var_init_tree));
+ }
+ else if (this->var_depends_on(no->var_value()) != NULL)
+ {
+ // This variable is initialized from something that is
+ // not in its init or preinit. This variable needs to
+ // participate in dependency analysis sorting, in case
+ // some other variable depends on this one.
+ var_inits.push_back(Var_init(no, integer_zero_node));
+ }
+
+ if (!is_sink && no->var_value()->type()->has_pointer())
+ var_gc.push_back(no);
+ }
+ }
+
+ // Register global variables with the garbage collector.
+ this->register_gc_vars(var_gc, &init_stmt_list);
+
+ // Simple variable initializations, after all variables are
+ // registered.
+ append_to_statement_list(var_init_stmt_list, &init_stmt_list);
+
+ // Complex variable initializations, first sorting them into a
+ // workable order.
+ if (!var_inits.empty())
+ {
+ sort_var_inits(this, &var_inits);
+ for (Var_inits::const_iterator p = var_inits.begin();
+ p != var_inits.end();
+ ++p)
+ append_to_statement_list(p->init(), &init_stmt_list);
+ }
+
+ // After all the variables are initialized, call the "init"
+ // functions if there are any.
+ for (std::vector<Named_object*>::const_iterator p =
+ this->init_functions_.begin();
+ p != this->init_functions_.end();
+ ++p)
+ {
+ tree decl = (*p)->get_tree(this, NULL);
+ tree call = build_call_expr(decl, 0);
+ append_to_statement_list(call, &init_stmt_list);
+ }
+
+ // Set up a magic function to do all the initialization actions.
+ // This will be called if this package is imported.
+ if (init_stmt_list != NULL_TREE
+ || this->need_init_fn_
+ || this->is_main_package())
+ this->write_initialization_function(init_fndecl, init_stmt_list);
+
+ // We should not have seen any new bindings created during the
+ // conversion.
+ go_assert(count_definitions == this->current_bindings()->size_definitions());
+
+ // Pass everything back to the middle-end.
+
+ wrapup_global_declarations(vec, count);
+
+ finalize_compilation_unit();
+
+ check_global_declarations(vec, count);
+ emit_debug_global_declarations(vec, count);
+
+ delete[] vec;
+}
+
+// Get a tree for a named object.
+
+tree
+Named_object::get_tree(Gogo* gogo, Named_object* function)
+{
+ if (this->tree_ != NULL_TREE)
+ return this->tree_;
+
+ if (Gogo::is_erroneous_name(this->name_))
+ {
+ this->tree_ = error_mark_node;
+ return error_mark_node;
+ }
+
+ tree decl;
+ switch (this->classification_)
+ {
+ case NAMED_OBJECT_CONST:
+ {
+ Named_constant* named_constant = this->u_.const_value;
+ Translate_context subcontext(gogo, function, NULL, NULL);
+ tree expr_tree = named_constant->expr()->get_tree(&subcontext);
+ if (expr_tree == error_mark_node)
+ decl = error_mark_node;
+ else
+ {
+ Type* type = named_constant->type();
+ if (type != NULL && !type->is_abstract())
+ {
+ if (type->is_error())
+ expr_tree = error_mark_node;
+ else
+ {
+ Btype* btype = type->get_backend(gogo);
+ expr_tree = fold_convert(type_to_tree(btype), expr_tree);
+ }
+ }
+ if (expr_tree == error_mark_node)
+ decl = error_mark_node;
+ else if (INTEGRAL_TYPE_P(TREE_TYPE(expr_tree)))
+ {
+ tree name = get_identifier_from_string(this->get_id(gogo));
+ decl = build_decl(named_constant->location().gcc_location(),
+ CONST_DECL, name, TREE_TYPE(expr_tree));
+ DECL_INITIAL(decl) = expr_tree;
+ TREE_CONSTANT(decl) = 1;
+ TREE_READONLY(decl) = 1;
+ }
+ else
+ {
+ // A CONST_DECL is only for an enum constant, so we
+ // shouldn't use for non-integral types. Instead we
+ // just return the constant itself, rather than a
+ // decl.
+ decl = expr_tree;
+ }
+ }
+ }
+ break;
+
+ case NAMED_OBJECT_TYPE:
+ {
+ Named_type* named_type = this->u_.type_value;
+ tree type_tree = type_to_tree(named_type->get_backend(gogo));
+ if (type_tree == error_mark_node)
+ decl = error_mark_node;
+ else
+ {
+ decl = TYPE_NAME(type_tree);
+ go_assert(decl != NULL_TREE);
+
+ // We need to produce a type descriptor for every named
+ // type, and for a pointer to every named type, since
+ // other files or packages might refer to them. We need
+ // to do this even for hidden types, because they might
+ // still be returned by some function. Simply calling the
+ // type_descriptor method is enough to create the type
+ // descriptor, even though we don't do anything with it.
+ if (this->package_ == NULL)
+ {
+ named_type->
+ type_descriptor_pointer(gogo,
+ Linemap::predeclared_location());
+ Type* pn = Type::make_pointer_type(named_type);
+ pn->type_descriptor_pointer(gogo,
+ Linemap::predeclared_location());
+ }
+ }
+ }
+ break;
+
+ case NAMED_OBJECT_TYPE_DECLARATION:
+ error("reference to undefined type %qs",
+ this->message_name().c_str());
+ return error_mark_node;
+
+ case NAMED_OBJECT_VAR:
+ case NAMED_OBJECT_RESULT_VAR:
+ case NAMED_OBJECT_SINK:
+ go_unreachable();
+
+ case NAMED_OBJECT_FUNC:
+ {
+ Function* func = this->u_.func_value;
+ decl = function_to_tree(func->get_or_make_decl(gogo, this));
+ if (decl != error_mark_node)
+ {
+ if (func->block() != NULL)
+ {
+ if (DECL_STRUCT_FUNCTION(decl) == NULL)
+ push_struct_function(decl);
+ else
+ push_cfun(DECL_STRUCT_FUNCTION(decl));
+
+ cfun->function_start_locus = func->location().gcc_location();
+ cfun->function_end_locus =
+ func->block()->end_location().gcc_location();
+
+ func->build_tree(gogo, this);
+
+ gimplify_function_tree(decl);
+
+ cgraph_finalize_function(decl, true);
+
+ pop_cfun();
+ }
+ }
+ }
+ break;
+
+ case NAMED_OBJECT_ERRONEOUS:
+ decl = error_mark_node;
+ break;
+
+ default:
+ go_unreachable();
+ }
+
+ if (TREE_TYPE(decl) == error_mark_node)
+ decl = error_mark_node;
+
+ tree ret = decl;
+
+ this->tree_ = ret;
+
+ if (ret != error_mark_node)
+ go_preserve_from_gc(ret);
+
+ return ret;
+}
+
+// Get the initial value of a variable as a tree. This does not
+// consider whether the variable is in the heap--it returns the
+// initial value as though it were always stored in the stack.
+
+tree
+Variable::get_init_tree(Gogo* gogo, Named_object* function)
+{
+ go_assert(this->preinit_ == NULL);
+ if (this->init_ == NULL)
+ {
+ go_assert(!this->is_parameter_);
+ if (this->is_global_ || this->is_in_heap())
+ return NULL;
+ Btype* btype = this->type_->get_backend(gogo);
+ return expr_to_tree(gogo->backend()->zero_expression(btype));
+ }
+ else
+ {
+ Translate_context context(gogo, function, NULL, NULL);
+ tree rhs_tree = this->init_->get_tree(&context);
+ return Expression::convert_for_assignment(&context, this->type(),
+ this->init_->type(),
+ rhs_tree, this->location());
+ }
+}
+
+// Get the initial value of a variable when a block is required.
+// VAR_DECL is the decl to set; it may be NULL for a sink variable.
+
+tree
+Variable::get_init_block(Gogo* gogo, Named_object* function, tree var_decl)
+{
+ go_assert(this->preinit_ != NULL);
+
+ // We want to add the variable assignment to the end of the preinit
+ // block. The preinit block may have a TRY_FINALLY_EXPR and a
+ // TRY_CATCH_EXPR; if it does, we want to add to the end of the
+ // regular statements.
+
+ Translate_context context(gogo, function, NULL, NULL);
+ Bblock* bblock = this->preinit_->get_backend(&context);
+ tree block_tree = block_to_tree(bblock);
+ if (block_tree == error_mark_node)
+ return error_mark_node;
+ go_assert(TREE_CODE(block_tree) == BIND_EXPR);
+ tree statements = BIND_EXPR_BODY(block_tree);
+ while (statements != NULL_TREE
+ && (TREE_CODE(statements) == TRY_FINALLY_EXPR
+ || TREE_CODE(statements) == TRY_CATCH_EXPR))
+ statements = TREE_OPERAND(statements, 0);
+
+ // It's possible to have pre-init statements without an initializer
+ // if the pre-init statements set the variable.
+ if (this->init_ != NULL)
+ {
+ tree rhs_tree = this->init_->get_tree(&context);
+ if (rhs_tree == error_mark_node)
+ return error_mark_node;
+ if (var_decl == NULL_TREE)
+ append_to_statement_list(rhs_tree, &statements);
+ else
+ {
+ tree val = Expression::convert_for_assignment(&context, this->type(),
+ this->init_->type(),
+ rhs_tree,
+ this->location());
+ if (val == error_mark_node)
+ return error_mark_node;
+ tree set = fold_build2_loc(this->location().gcc_location(),
+ MODIFY_EXPR, void_type_node, var_decl,
+ val);
+ append_to_statement_list(set, &statements);
+ }
+ }
+
+ return block_tree;
+}
+
+// Get the backend representation.
+
+Bfunction*
+Function_declaration::get_or_make_decl(Gogo* gogo, Named_object* no)
+{
+ if (this->fndecl_ == NULL)
+ {
+ // Let Go code use an asm declaration to pick up a builtin
+ // function.
+ if (!this->asm_name_.empty())
+ {
+ std::map<std::string, tree>::const_iterator p =
+ builtin_functions.find(this->asm_name_);
+ if (p != builtin_functions.end())
+ {
+ this->fndecl_ = tree_to_function(p->second);
+ return this->fndecl_;
+ }
+ }
+
+ std::string asm_name;
+ if (this->asm_name_.empty())
+ {
+ asm_name = (no->package() == NULL
+ ? gogo->pkgpath_symbol()
+ : no->package()->pkgpath_symbol());
+ asm_name.append(1, '.');
+ asm_name.append(Gogo::unpack_hidden_name(no->name()));
+ if (this->fntype_->is_method())
+ {
+ asm_name.append(1, '.');
+ Type* rtype = this->fntype_->receiver()->type();
+ asm_name.append(rtype->mangled_name(gogo));
+ }
+ }
+
+ Btype* functype = this->fntype_->get_backend_fntype(gogo);
+ this->fndecl_ =
+ gogo->backend()->function(functype, no->get_id(gogo), asm_name,
+ true, true, true, false, false,
+ this->location());
+ }
+
+ return this->fndecl_;
+}
+
+// Return the function's decl after it has been built.
+
+tree
+Function::get_decl() const
+{
+ go_assert(this->fndecl_ != NULL);
+ return function_to_tree(this->fndecl_);
+}
+
+// We always pass the receiver to a method as a pointer. If the
+// receiver is actually declared as a non-pointer type, then we copy
+// the value into a local variable, so that it has the right type. In
+// this function we create the real PARM_DECL to use, and set
+// DEC_INITIAL of the var_decl to be the value passed in.
+
+tree
+Function::make_receiver_parm_decl(Gogo* gogo, Named_object* no, tree var_decl)
+{
+ if (var_decl == error_mark_node)
+ return error_mark_node;
+ go_assert(TREE_CODE(var_decl) == VAR_DECL);
+ tree val_type = TREE_TYPE(var_decl);
+ bool is_in_heap = no->var_value()->is_in_heap();
+ if (is_in_heap)
+ {
+ go_assert(POINTER_TYPE_P(val_type));
+ val_type = TREE_TYPE(val_type);
+ }
+
+ source_location loc = DECL_SOURCE_LOCATION(var_decl);
+ std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
+ name += ".pointer";
+ tree id = get_identifier_from_string(name);
+ tree parm_decl = build_decl(loc, PARM_DECL, id, build_pointer_type(val_type));
+ DECL_CONTEXT(parm_decl) = current_function_decl;
+ DECL_ARG_TYPE(parm_decl) = TREE_TYPE(parm_decl);
+
+ go_assert(DECL_INITIAL(var_decl) == NULL_TREE);
+ tree init = build_fold_indirect_ref_loc(loc, parm_decl);
+
+ if (is_in_heap)
+ {
+ tree size = TYPE_SIZE_UNIT(val_type);
+ tree space = gogo->allocate_memory(no->var_value()->type(), size,
+ no->location());
+ space = save_expr(space);
+ space = fold_convert(build_pointer_type(val_type), space);
+ tree spaceref = build_fold_indirect_ref_loc(no->location().gcc_location(),
+ space);
+ TREE_THIS_NOTRAP(spaceref) = 1;
+ tree set = fold_build2_loc(loc, MODIFY_EXPR, void_type_node,
+ spaceref, init);
+ init = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(space), set, space);
+ }
+
+ DECL_INITIAL(var_decl) = init;
+
+ return parm_decl;
+}
+
+// If we take the address of a parameter, then we need to copy it into
+// the heap. We will access it as a local variable via an
+// indirection.
+
+tree
+Function::copy_parm_to_heap(Gogo* gogo, Named_object* no, tree var_decl)
+{
+ if (var_decl == error_mark_node)
+ return error_mark_node;
+ go_assert(TREE_CODE(var_decl) == VAR_DECL);
+ Location loc(DECL_SOURCE_LOCATION(var_decl));
+
+ std::string name = IDENTIFIER_POINTER(DECL_NAME(var_decl));
+ name += ".param";
+ tree id = get_identifier_from_string(name);
+
+ tree type = TREE_TYPE(var_decl);
+ go_assert(POINTER_TYPE_P(type));
+ type = TREE_TYPE(type);
+
+ tree parm_decl = build_decl(loc.gcc_location(), PARM_DECL, id, type);
+ DECL_CONTEXT(parm_decl) = current_function_decl;
+ DECL_ARG_TYPE(parm_decl) = type;
+
+ tree size = TYPE_SIZE_UNIT(type);
+ tree space = gogo->allocate_memory(no->var_value()->type(), size, loc);
+ space = save_expr(space);
+ space = fold_convert(TREE_TYPE(var_decl), space);
+ tree spaceref = build_fold_indirect_ref_loc(loc.gcc_location(), space);
+ TREE_THIS_NOTRAP(spaceref) = 1;
+ tree init = build2(COMPOUND_EXPR, TREE_TYPE(space),
+ build2(MODIFY_EXPR, void_type_node, spaceref, parm_decl),
+ space);
+ DECL_INITIAL(var_decl) = init;
+
+ return parm_decl;
+}
+
+// Get a tree for function code.
+
+void
+Function::build_tree(Gogo* gogo, Named_object* named_function)
+{
+ tree fndecl = this->get_decl();
+ go_assert(fndecl != NULL_TREE);
+
+ tree params = NULL_TREE;
+ tree* pp = &params;
+
+ tree declare_vars = NULL_TREE;
+ for (Bindings::const_definitions_iterator p =
+ this->block_->bindings()->begin_definitions();
+ p != this->block_->bindings()->end_definitions();
+ ++p)
+ {
+ if ((*p)->is_variable() && (*p)->var_value()->is_parameter())
+ {
+ Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
+ *pp = var_to_tree(bvar);
+
+ // We always pass the receiver to a method as a pointer. If
+ // the receiver is declared as a non-pointer type, then we
+ // copy the value into a local variable.
+ if ((*p)->var_value()->is_receiver()
+ && (*p)->var_value()->type()->points_to() == NULL)
+ {
+ tree parm_decl = this->make_receiver_parm_decl(gogo, *p, *pp);
+ tree var = *pp;
+ if (var != error_mark_node)
+ {
+ go_assert(TREE_CODE(var) == VAR_DECL);
+ DECL_CHAIN(var) = declare_vars;
+ declare_vars = var;
+ }
+ *pp = parm_decl;
+ }
+ else if ((*p)->var_value()->is_in_heap())
+ {
+ // If we take the address of a parameter, then we need
+ // to copy it into the heap.
+ tree parm_decl = this->copy_parm_to_heap(gogo, *p, *pp);
+ tree var = *pp;
+ if (var != error_mark_node)
+ {
+ go_assert(TREE_CODE(var) == VAR_DECL);
+ DECL_CHAIN(var) = declare_vars;
+ declare_vars = var;
+ }
+ *pp = parm_decl;
+ }
+
+ if (*pp != error_mark_node)
+ {
+ go_assert(TREE_CODE(*pp) == PARM_DECL);
+ pp = &DECL_CHAIN(*pp);
+ }
+ }
+ else if ((*p)->is_result_variable())
+ {
+ Bvariable* bvar = (*p)->get_backend_variable(gogo, named_function);
+ tree var_decl = var_to_tree(bvar);
+
+ Type* type = (*p)->result_var_value()->type();
+ tree init;
+ if (!(*p)->result_var_value()->is_in_heap())
+ {
+ Btype* btype = type->get_backend(gogo);
+ init = expr_to_tree(gogo->backend()->zero_expression(btype));
+ }
+ else
+ {
+ Location loc = (*p)->location();
+ tree type_tree = type_to_tree(type->get_backend(gogo));
+ tree space = gogo->allocate_memory(type,
+ TYPE_SIZE_UNIT(type_tree),
+ loc);
+ tree ptr_type_tree = build_pointer_type(type_tree);
+ init = fold_convert_loc(loc.gcc_location(), ptr_type_tree, space);
+ }
+
+ if (var_decl != error_mark_node)
+ {
+ go_assert(TREE_CODE(var_decl) == VAR_DECL);
+ DECL_INITIAL(var_decl) = init;
+ DECL_CHAIN(var_decl) = declare_vars;
+ declare_vars = var_decl;
+ }
+ }
+ }
+
+ *pp = NULL_TREE;
+
+ DECL_ARGUMENTS(fndecl) = params;
+
+ // If we need a closure variable, fetch it by calling a runtime
+ // function. The caller will have called __go_set_closure before
+ // the function call.
+ if (this->closure_var_ != NULL)
+ {
+ Bvariable* bvar =
+ this->closure_var_->get_backend_variable(gogo, named_function);
+ tree var_decl = var_to_tree(bvar);
+ if (var_decl != error_mark_node)
+ {
+ go_assert(TREE_CODE(var_decl) == VAR_DECL);
+ static tree get_closure_fndecl;
+ tree get_closure = Gogo::call_builtin(&get_closure_fndecl,
+ this->location_,
+ "__go_get_closure",
+ 0,
+ ptr_type_node);
+
+ // Mark the __go_get_closure function as pure, since it
+ // depends only on the global variable g.
+ DECL_PURE_P(get_closure_fndecl) = 1;
+
+ get_closure = fold_convert_loc(this->location_.gcc_location(),
+ TREE_TYPE(var_decl), get_closure);
+ DECL_INITIAL(var_decl) = get_closure;
+ DECL_CHAIN(var_decl) = declare_vars;
+ declare_vars = var_decl;
+ }
+ }
+
+ if (this->block_ != NULL)
+ {
+ go_assert(DECL_INITIAL(fndecl) == NULL_TREE);
+
+ // Declare variables if necessary.
+ tree bind = NULL_TREE;
+ tree defer_init = NULL_TREE;
+ if (declare_vars != NULL_TREE || this->defer_stack_ != NULL)
+ {
+ tree block = make_node(BLOCK);
+ BLOCK_SUPERCONTEXT(block) = fndecl;
+ DECL_INITIAL(fndecl) = block;
+ BLOCK_VARS(block) = declare_vars;
+ TREE_USED(block) = 1;
+
+ bind = build3(BIND_EXPR, void_type_node, BLOCK_VARS(block),
+ NULL_TREE, block);
+ TREE_SIDE_EFFECTS(bind) = 1;
+
+ if (this->defer_stack_ != NULL)
+ {
+ Translate_context dcontext(gogo, named_function, this->block_,
+ tree_to_block(bind));
+ Bstatement* bdi = this->defer_stack_->get_backend(&dcontext);
+ defer_init = stat_to_tree(bdi);
+ }
+ }
+
+ // Build the trees for all the statements in the function.
+ Translate_context context(gogo, named_function, NULL, NULL);
+ Bblock* bblock = this->block_->get_backend(&context);
+ tree code = block_to_tree(bblock);
+
+ tree init = NULL_TREE;
+ tree except = NULL_TREE;
+ tree fini = NULL_TREE;
+
+ // Initialize variables if necessary.
+ for (tree v = declare_vars; v != NULL_TREE; v = DECL_CHAIN(v))
+ {
+ tree dv = build1(DECL_EXPR, void_type_node, v);
+ SET_EXPR_LOCATION(dv, DECL_SOURCE_LOCATION(v));
+ append_to_statement_list(dv, &init);
+ }
+
+ // If we have a defer stack, initialize it at the start of a
+ // function.
+ if (defer_init != NULL_TREE && defer_init != error_mark_node)
+ {
+ SET_EXPR_LOCATION(defer_init,
+ this->block_->start_location().gcc_location());
+ append_to_statement_list(defer_init, &init);
+
+ // Clean up the defer stack when we leave the function.
+ this->build_defer_wrapper(gogo, named_function, &except, &fini);
+ }
+
+ if (code != NULL_TREE && code != error_mark_node)
+ {
+ if (init != NULL_TREE)
+ code = build2(COMPOUND_EXPR, void_type_node, init, code);
+ if (except != NULL_TREE)
+ code = build2(TRY_CATCH_EXPR, void_type_node, code,
+ build2(CATCH_EXPR, void_type_node, NULL, except));
+ if (fini != NULL_TREE)
+ code = build2(TRY_FINALLY_EXPR, void_type_node, code, fini);
+ }
+
+ // Stick the code into the block we built for the receiver, if
+ // we built on.
+ if (bind != NULL_TREE && code != NULL_TREE && code != error_mark_node)
+ {
+ BIND_EXPR_BODY(bind) = code;
+ code = bind;
+ }
+
+ DECL_SAVED_TREE(fndecl) = code;
+ }
+
+ // If we created a descriptor for the function, make sure we emit it.
+ if (this->descriptor_ != NULL)
+ {
+ Translate_context context(gogo, NULL, NULL, NULL);
+ this->descriptor_->get_tree(&context);
+ }
+}
+
+// Build the wrappers around function code needed if the function has
+// any defer statements. This sets *EXCEPT to an exception handler
+// and *FINI to a finally handler.
+
+void
+Function::build_defer_wrapper(Gogo* gogo, Named_object* named_function,
+ tree *except, tree *fini)
+{
+ Location end_loc = this->block_->end_location();
+
+ // Add an exception handler. This is used if a panic occurs. Its
+ // purpose is to stop the stack unwinding if a deferred function
+ // calls recover. There are more details in
+ // libgo/runtime/go-unwind.c.
+
+ tree stmt_list = NULL_TREE;
+
+ Expression* call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
+ this->defer_stack(end_loc));
+ Translate_context context(gogo, named_function, NULL, NULL);
+ tree call_tree = call->get_tree(&context);
+ if (call_tree != error_mark_node)
+ append_to_statement_list(call_tree, &stmt_list);
+
+ tree retval = this->return_value(gogo, named_function, end_loc, &stmt_list);
+ tree set;
+ if (retval == NULL_TREE)
+ set = NULL_TREE;
+ else
+ set = fold_build2_loc(end_loc.gcc_location(), MODIFY_EXPR, void_type_node,
+ DECL_RESULT(this->get_decl()), retval);
+ tree ret_stmt = fold_build1_loc(end_loc.gcc_location(), RETURN_EXPR,
+ void_type_node, set);
+ append_to_statement_list(ret_stmt, &stmt_list);
+
+ go_assert(*except == NULL_TREE);
+ *except = stmt_list;
+
+ // Add some finally code to run the defer functions. This is used
+ // both in the normal case, when no panic occurs, and also if a
+ // panic occurs to run any further defer functions. Of course, it
+ // is possible for a defer function to call panic which should be
+ // caught by another defer function. To handle that we use a loop.
+ // finish:
+ // try { __go_undefer(); } catch { __go_check_defer(); goto finish; }
+ // if (return values are named) return named_vals;
+
+ stmt_list = NULL;
+
+ tree label = create_artificial_label(end_loc.gcc_location());
+ tree define_label = fold_build1_loc(end_loc.gcc_location(), LABEL_EXPR,
+ void_type_node, label);
+ append_to_statement_list(define_label, &stmt_list);
+
+ call = Runtime::make_call(Runtime::UNDEFER, end_loc, 1,
+ this->defer_stack(end_loc));
+ tree undefer = call->get_tree(&context);
+
+ call = Runtime::make_call(Runtime::CHECK_DEFER, end_loc, 1,
+ this->defer_stack(end_loc));
+ tree defer = call->get_tree(&context);
+
+ if (undefer == error_mark_node || defer == error_mark_node)
+ return;
+
+ tree jump = fold_build1_loc(end_loc.gcc_location(), GOTO_EXPR, void_type_node,
+ label);
+ tree catch_body = build2(COMPOUND_EXPR, void_type_node, defer, jump);
+ catch_body = build2(CATCH_EXPR, void_type_node, NULL, catch_body);
+ tree try_catch = build2(TRY_CATCH_EXPR, void_type_node, undefer, catch_body);
+
+ append_to_statement_list(try_catch, &stmt_list);
+
+ if (this->type_->results() != NULL
+ && !this->type_->results()->empty()
+ && !this->type_->results()->front().name().empty())
+ {
+ // If the result variables are named, and we are returning from
+ // this function rather than panicing through it, we need to
+ // return them again, because they might have been changed by a
+ // defer function. The runtime routines set the defer_stack
+ // variable to true if we are returning from this function.
+ retval = this->return_value(gogo, named_function, end_loc,
+ &stmt_list);
+ set = fold_build2_loc(end_loc.gcc_location(), MODIFY_EXPR, void_type_node,
+ DECL_RESULT(this->get_decl()), retval);
+ ret_stmt = fold_build1_loc(end_loc.gcc_location(), RETURN_EXPR,
+ void_type_node, set);
+
+ Expression* ref =
+ Expression::make_temporary_reference(this->defer_stack_, end_loc);
+ tree tref = ref->get_tree(&context);
+ tree s = build3_loc(end_loc.gcc_location(), COND_EXPR, void_type_node,
+ tref, ret_stmt, NULL_TREE);
+
+ append_to_statement_list(s, &stmt_list);
+
+ }
+
+ go_assert(*fini == NULL_TREE);
+ *fini = stmt_list;
+}
+
+// Return the value to assign to DECL_RESULT(this->get_decl()). This may
+// also add statements to STMT_LIST, which need to be executed before
+// the assignment. This is used for a return statement with no
+// explicit values.
+
+tree
+Function::return_value(Gogo* gogo, Named_object* named_function,
+ Location location, tree* stmt_list) const
+{
+ const Typed_identifier_list* results = this->type_->results();
+ if (results == NULL || results->empty())
+ return NULL_TREE;
+
+ go_assert(this->results_ != NULL);
+ if (this->results_->size() != results->size())
+ {
+ go_assert(saw_errors());
+ return error_mark_node;
+ }
+
+ tree retval;
+ if (results->size() == 1)
+ {
+ Bvariable* bvar =
+ this->results_->front()->get_backend_variable(gogo,
+ named_function);
+ tree ret = var_to_tree(bvar);
+ if (this->results_->front()->result_var_value()->is_in_heap())
+ ret = build_fold_indirect_ref_loc(location.gcc_location(), ret);
+ return ret;
+ }
+ else
+ {
+ tree rettype = TREE_TYPE(DECL_RESULT(this->get_decl()));
+ retval = create_tmp_var(rettype, "RESULT");
+ tree field = TYPE_FIELDS(rettype);
+ int index = 0;
+ for (Typed_identifier_list::const_iterator pr = results->begin();
+ pr != results->end();
+ ++pr, ++index, field = DECL_CHAIN(field))
+ {
+ go_assert(field != NULL);
+ Named_object* no = (*this->results_)[index];
+ Bvariable* bvar = no->get_backend_variable(gogo, named_function);
+ tree val = var_to_tree(bvar);
+ if (no->result_var_value()->is_in_heap())
+ val = build_fold_indirect_ref_loc(location.gcc_location(), val);
+ tree set = fold_build2_loc(location.gcc_location(), MODIFY_EXPR,
+ void_type_node,
+ build3(COMPONENT_REF, TREE_TYPE(field),
+ retval, field, NULL_TREE),
+ val);
+ append_to_statement_list(set, stmt_list);
+ }
+ return retval;
+ }
+}
+
+// Build the descriptor for a function declaration. This won't
+// necessarily happen if the package has just a declaration for the
+// function and no other reference to it, but we may still need the
+// descriptor for references from other packages.
+void
+Function_declaration::build_backend_descriptor(Gogo* gogo)
+{
+ if (this->descriptor_ != NULL)
+ {
+ Translate_context context(gogo, NULL, NULL, NULL);
+ this->descriptor_->get_tree(&context);
+ }
+}
+
+// Return the integer type to use for a size.
+
+GO_EXTERN_C
+tree
+go_type_for_size(unsigned int bits, int unsignedp)
+{
+ const char* name;
+ switch (bits)
+ {
+ case 8:
+ name = unsignedp ? "uint8" : "int8";
+ break;
+ case 16:
+ name = unsignedp ? "uint16" : "int16";
+ break;
+ case 32:
+ name = unsignedp ? "uint32" : "int32";
+ break;
+ case 64:
+ name = unsignedp ? "uint64" : "int64";
+ break;
+ default:
+ if (bits == POINTER_SIZE && unsignedp)
+ name = "uintptr";
+ else
+ return NULL_TREE;
+ }
+ Type* type = Type::lookup_integer_type(name);
+ return type_to_tree(type->get_backend(go_get_gogo()));
+}
+
+// Return the type to use for a mode.
+
+GO_EXTERN_C
+tree
+go_type_for_mode(enum machine_mode mode, int unsignedp)
+{
+ // FIXME: This static_cast should be in machmode.h.
+ enum mode_class mc = static_cast<enum mode_class>(GET_MODE_CLASS(mode));
+ if (mc == MODE_INT)
+ return go_type_for_size(GET_MODE_BITSIZE(mode), unsignedp);
+ else if (mc == MODE_FLOAT)
+ {
+ Type* type;
+ switch (GET_MODE_BITSIZE (mode))
+ {
+ case 32:
+ type = Type::lookup_float_type("float32");
+ break;
+ case 64:
+ type = Type::lookup_float_type("float64");
+ break;
+ default:
+ // We have to check for long double in order to support
+ // i386 excess precision.
+ if (mode == TYPE_MODE(long_double_type_node))
+ return long_double_type_node;
+ return NULL_TREE;
+ }
+ return type_to_tree(type->get_backend(go_get_gogo()));
+ }
+ else if (mc == MODE_COMPLEX_FLOAT)
+ {
+ Type *type;
+ switch (GET_MODE_BITSIZE (mode))
+ {
+ case 64:
+ type = Type::lookup_complex_type("complex64");
+ break;
+ case 128:
+ type = Type::lookup_complex_type("complex128");
+ break;
+ default:
+ // We have to check for long double in order to support
+ // i386 excess precision.
+ if (mode == TYPE_MODE(complex_long_double_type_node))
+ return complex_long_double_type_node;
+ return NULL_TREE;
+ }
+ return type_to_tree(type->get_backend(go_get_gogo()));
+ }
+ else
+ return NULL_TREE;
+}
+
+// Return a tree which allocates SIZE bytes which will holds value of
+// type TYPE.
+
+tree
+Gogo::allocate_memory(Type* type, tree size, Location location)
+{
+ // If the package imports unsafe, then it may play games with
+ // pointers that look like integers.
+ if (this->imported_unsafe_ || type->has_pointer())
+ {
+ static tree new_fndecl;
+ return Gogo::call_builtin(&new_fndecl,
+ location,
+ "__go_new",
+ 1,
+ ptr_type_node,
+ sizetype,
+ size);
+ }
+ else
+ {
+ static tree new_nopointers_fndecl;
+ return Gogo::call_builtin(&new_nopointers_fndecl,
+ location,
+ "__go_new_nopointers",
+ 1,
+ ptr_type_node,
+ sizetype,
+ size);
+ }
+}
+
+// Build a builtin struct with a list of fields. The name is
+// STRUCT_NAME. STRUCT_TYPE is NULL_TREE or an empty RECORD_TYPE
+// node; this exists so that the struct can have fields which point to
+// itself. If PTYPE is not NULL, store the result in *PTYPE. There
+// are NFIELDS fields. Each field is a name (a const char*) followed
+// by a type (a tree).
+
+tree
+Gogo::builtin_struct(tree* ptype, const char* struct_name, tree struct_type,
+ int nfields, ...)
+{
+ if (ptype != NULL && *ptype != NULL_TREE)
+ return *ptype;
+
+ va_list ap;
+ va_start(ap, nfields);
+
+ tree fields = NULL_TREE;
+ for (int i = 0; i < nfields; ++i)
+ {
+ const char* field_name = va_arg(ap, const char*);
+ tree type = va_arg(ap, tree);
+ if (type == error_mark_node)
+ {
+ if (ptype != NULL)
+ *ptype = error_mark_node;
+ return error_mark_node;
+ }
+ tree field = build_decl(BUILTINS_LOCATION, FIELD_DECL,
+ get_identifier(field_name), type);
+ DECL_CHAIN(field) = fields;
+ fields = field;
+ }
+
+ va_end(ap);
+
+ if (struct_type == NULL_TREE)
+ struct_type = make_node(RECORD_TYPE);
+ finish_builtin_struct(struct_type, struct_name, fields, NULL_TREE);
+
+ if (ptype != NULL)
+ {
+ go_preserve_from_gc(struct_type);
+ *ptype = struct_type;
+ }
+
+ return struct_type;
+}
+
+// Return a type to use for pointer to const char for a string.
+
+tree
+Gogo::const_char_pointer_type_tree()
+{
+ static tree type;
+ if (type == NULL_TREE)
+ {
+ tree const_char_type = build_qualified_type(unsigned_char_type_node,
+ TYPE_QUAL_CONST);
+ type = build_pointer_type(const_char_type);
+ go_preserve_from_gc(type);
+ }
+ return type;
+}
+
+// Return a tree for a string constant.
+
+tree
+Gogo::string_constant_tree(const std::string& val)
+{
+ tree index_type = build_index_type(size_int(val.length()));
+ tree const_char_type = build_qualified_type(unsigned_char_type_node,
+ TYPE_QUAL_CONST);
+ tree string_type = build_array_type(const_char_type, index_type);
+ string_type = build_variant_type_copy(string_type);
+ TYPE_STRING_FLAG(string_type) = 1;
+ tree string_val = build_string(val.length(), val.data());
+ TREE_TYPE(string_val) = string_type;
+ return string_val;
+}
+
+// Return a tree for a Go string constant.
+
+tree
+Gogo::go_string_constant_tree(const std::string& val)
+{
+ tree string_type = type_to_tree(Type::make_string_type()->get_backend(this));
+
+ vec<constructor_elt, va_gc> *init;
+ vec_alloc(init, 2);
+
+ constructor_elt empty = {NULL, NULL};
+ constructor_elt* elt = init->quick_push(empty);
+ tree field = TYPE_FIELDS(string_type);
+ go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__data") == 0);
+ elt->index = field;
+ tree str = Gogo::string_constant_tree(val);
+ elt->value = fold_convert(TREE_TYPE(field),
+ build_fold_addr_expr(str));
+
+ elt = init->quick_push(empty);
+ field = DECL_CHAIN(field);
+ go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__length") == 0);
+ elt->index = field;
+ elt->value = build_int_cst_type(TREE_TYPE(field), val.length());
+
+ tree constructor = build_constructor(string_type, init);
+ TREE_READONLY(constructor) = 1;
+ TREE_CONSTANT(constructor) = 1;
+
+ return constructor;
+}
+
+// Return a tree for a pointer to a Go string constant. This is only
+// used for type descriptors, so we return a pointer to a constant
+// decl.
+
+tree
+Gogo::ptr_go_string_constant_tree(const std::string& val)
+{
+ tree pval = this->go_string_constant_tree(val);
+
+ tree decl = build_decl(UNKNOWN_LOCATION, VAR_DECL,
+ create_tmp_var_name("SP"), TREE_TYPE(pval));
+ DECL_EXTERNAL(decl) = 0;
+ TREE_PUBLIC(decl) = 0;
+ TREE_USED(decl) = 1;
+ TREE_READONLY(decl) = 1;
+ TREE_CONSTANT(decl) = 1;
+ TREE_STATIC(decl) = 1;
+ DECL_ARTIFICIAL(decl) = 1;
+ DECL_INITIAL(decl) = pval;
+ rest_of_decl_compilation(decl, 1, 0);
+
+ return build_fold_addr_expr(decl);
+}
+
+// Build a constructor for a slice. SLICE_TYPE_TREE is the type of
+// the slice. VALUES is the value pointer and COUNT is the number of
+// entries. If CAPACITY is not NULL, it is the capacity; otherwise
+// the capacity and the count are the same.
+
+tree
+Gogo::slice_constructor(tree slice_type_tree, tree values, tree count,
+ tree capacity)
+{
+ go_assert(TREE_CODE(slice_type_tree) == RECORD_TYPE);
+
+ vec<constructor_elt, va_gc> *init;
+ vec_alloc(init, 3);
+
+ tree field = TYPE_FIELDS(slice_type_tree);
+ go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
+ constructor_elt empty = {NULL, NULL};
+ constructor_elt* elt = init->quick_push(empty);
+ elt->index = field;
+ go_assert(TYPE_MAIN_VARIANT(TREE_TYPE(field))
+ == TYPE_MAIN_VARIANT(TREE_TYPE(values)));
+ elt->value = values;
+
+ count = fold_convert(sizetype, count);
+ if (capacity == NULL_TREE)
+ {
+ count = save_expr(count);
+ capacity = count;
+ }
+
+ field = DECL_CHAIN(field);
+ go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
+ elt = init->quick_push(empty);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), count);
+
+ field = DECL_CHAIN(field);
+ go_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
+ elt = init->quick_push(empty);
+ elt->index = field;
+ elt->value = fold_convert(TREE_TYPE(field), capacity);
+
+ return build_constructor(slice_type_tree, init);
+}
+
+// Build an interface method table for a type: a list of function
+// pointers, one for each interface method. This is used for
+// interfaces.
+
+tree
+Gogo::interface_method_table_for_type(const Interface_type* interface,
+ Type* type, bool is_pointer)
+{
+ const Typed_identifier_list* interface_methods = interface->methods();
+ go_assert(!interface_methods->empty());
+
+ std::string mangled_name = ((is_pointer ? "__go_pimt__" : "__go_imt_")
+ + interface->mangled_name(this)
+ + "__"
+ + type->mangled_name(this));
+
+ tree id = get_identifier_from_string(mangled_name);
+
+ // See whether this interface has any hidden methods.
+ bool has_hidden_methods = false;
+ for (Typed_identifier_list::const_iterator p = interface_methods->begin();
+ p != interface_methods->end();
+ ++p)
+ {
+ if (Gogo::is_hidden_name(p->name()))
+ {
+ has_hidden_methods = true;
+ break;
+ }
+ }
+
+ // We already know that the named type is convertible to the
+ // interface. If the interface has hidden methods, and the named
+ // type is defined in a different package, then the interface
+ // conversion table will be defined by that other package.
+ if (has_hidden_methods
+ && type->named_type() != NULL
+ && type->named_type()->named_object()->package() != NULL)
+ {
+ tree array_type = build_array_type(const_ptr_type_node, NULL);
+ tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
+ TREE_READONLY(decl) = 1;
+ TREE_CONSTANT(decl) = 1;
+ TREE_PUBLIC(decl) = 1;
+ DECL_EXTERNAL(decl) = 1;
+ go_preserve_from_gc(decl);
+ return decl;
+ }
+
+ size_t count = interface_methods->size();
+ vec<constructor_elt, va_gc> *pointers;
+ vec_alloc(pointers, count + 1);
+
+ // The first element is the type descriptor.
+ constructor_elt empty = {NULL, NULL};
+ constructor_elt* elt = pointers->quick_push(empty);
+ elt->index = size_zero_node;
+ Type* td_type;
+ if (!is_pointer)
+ td_type = type;
+ else
+ td_type = Type::make_pointer_type(type);
+
+ Location loc = Linemap::predeclared_location();
+ Bexpression* tdp_bexpr = td_type->type_descriptor_pointer(this, loc);
+ tree tdp = expr_to_tree(tdp_bexpr);
+ elt->value = fold_convert(const_ptr_type_node, tdp);
+
+ Named_type* nt = type->named_type();
+ Struct_type* st = type->struct_type();
+ go_assert(nt != NULL || st != NULL);
+ size_t i = 1;
+ for (Typed_identifier_list::const_iterator p = interface_methods->begin();
+ p != interface_methods->end();
+ ++p, ++i)
+ {
+ bool is_ambiguous;
+ Method* m;
+ if (nt != NULL)
+ m = nt->method_function(p->name(), &is_ambiguous);
+ else
+ m = st->method_function(p->name(), &is_ambiguous);
+ go_assert(m != NULL);
+
+ Named_object* no = m->named_object();
+ Bfunction* bf;
+ if (no->is_function())
+ bf = no->func_value()->get_or_make_decl(this, no);
+ else if (no->is_function_declaration())
+ bf = no->func_declaration_value()->get_or_make_decl(this, no);
+ else
+ go_unreachable();
+ tree fndecl = build_fold_addr_expr(function_to_tree(bf));
+
+ elt = pointers->quick_push(empty);
+ elt->index = size_int(i);
+ elt->value = fold_convert(const_ptr_type_node, fndecl);
+ }
+ go_assert(i == count + 1);
+
+ tree array_type = build_array_type(const_ptr_type_node,
+ build_index_type(size_int(count)));
+ tree constructor = build_constructor(array_type, pointers);
+
+ tree decl = build_decl(BUILTINS_LOCATION, VAR_DECL, id, array_type);
+ TREE_STATIC(decl) = 1;
+ TREE_USED(decl) = 1;
+ TREE_READONLY(decl) = 1;
+ TREE_CONSTANT(decl) = 1;
+ DECL_INITIAL(decl) = constructor;
+
+ // If the interface type has hidden methods, and the table is for a
+ // named type, then this is the only definition of the table.
+ // Otherwise it is a comdat table which may be defined in multiple
+ // packages.
+ if (has_hidden_methods && type->named_type() != NULL)
+ TREE_PUBLIC(decl) = 1;
+ else
+ {
+ make_decl_one_only(decl, DECL_ASSEMBLER_NAME(decl));
+ resolve_unique_section(decl, 1, 0);
+ }
+
+ rest_of_decl_compilation(decl, 1, 0);
+
+ go_preserve_from_gc(decl);
+
+ return decl;
+}
+
+// Mark a function as a builtin library function.
+
+void
+Gogo::mark_fndecl_as_builtin_library(tree fndecl)
+{
+ DECL_EXTERNAL(fndecl) = 1;
+ TREE_PUBLIC(fndecl) = 1;
+ DECL_ARTIFICIAL(fndecl) = 1;
+ TREE_NOTHROW(fndecl) = 1;
+ DECL_VISIBILITY(fndecl) = VISIBILITY_DEFAULT;
+ DECL_VISIBILITY_SPECIFIED(fndecl) = 1;
+}
+
+// Build a call to a builtin function.
+
+tree
+Gogo::call_builtin(tree* pdecl, Location location, const char* name,
+ int nargs, tree rettype, ...)
+{
+ if (rettype == error_mark_node)
+ return error_mark_node;
+
+ tree* types = new tree[nargs];
+ tree* args = new tree[nargs];
+
+ va_list ap;
+ va_start(ap, rettype);
+ for (int i = 0; i < nargs; ++i)
+ {
+ types[i] = va_arg(ap, tree);
+ args[i] = va_arg(ap, tree);
+ if (types[i] == error_mark_node || args[i] == error_mark_node)
+ {
+ delete[] types;
+ delete[] args;
+ return error_mark_node;
+ }
+ }
+ va_end(ap);
+
+ if (*pdecl == NULL_TREE)
+ {
+ tree fnid = get_identifier(name);
+
+ tree argtypes = NULL_TREE;
+ tree* pp = &argtypes;
+ for (int i = 0; i < nargs; ++i)
+ {
+ *pp = tree_cons(NULL_TREE, types[i], NULL_TREE);
+ pp = &TREE_CHAIN(*pp);
+ }
+ *pp = void_list_node;
+
+ tree fntype = build_function_type(rettype, argtypes);
+
+ *pdecl = build_decl(BUILTINS_LOCATION, FUNCTION_DECL, fnid, fntype);
+ Gogo::mark_fndecl_as_builtin_library(*pdecl);
+ go_preserve_from_gc(*pdecl);
+ }
+
+ tree fnptr = build_fold_addr_expr(*pdecl);
+ if (CAN_HAVE_LOCATION_P(fnptr))
+ SET_EXPR_LOCATION(fnptr, location.gcc_location());
+
+ tree ret = build_call_array(rettype, fnptr, nargs, args);
+ SET_EXPR_LOCATION(ret, location.gcc_location());
+
+ delete[] types;
+ delete[] args;
+
+ return ret;
+}
+
+// Return a tree for receiving a value of type TYPE_TREE on CHANNEL.
+// TYPE_DESCRIPTOR_TREE is the channel's type descriptor. This does a
+// blocking receive and returns the value read from the channel.
+
+tree
+Gogo::receive_from_channel(tree type_tree, tree type_descriptor_tree,
+ tree channel, Location location)
+{
+ if (type_tree == error_mark_node || channel == error_mark_node)
+ return error_mark_node;
+
+ if (int_size_in_bytes(type_tree) <= 8
+ && !AGGREGATE_TYPE_P(type_tree)
+ && !FLOAT_TYPE_P(type_tree))
+ {
+ static tree receive_small_fndecl;
+ tree call = Gogo::call_builtin(&receive_small_fndecl,
+ location,
+ "__go_receive_small",
+ 2,
+ uint64_type_node,
+ TREE_TYPE(type_descriptor_tree),
+ type_descriptor_tree,
+ ptr_type_node,
+ channel);
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This can panic if there are too many operations on a closed
+ // channel.
+ TREE_NOTHROW(receive_small_fndecl) = 0;
+ int bitsize = GET_MODE_BITSIZE(TYPE_MODE(type_tree));
+ tree int_type_tree = go_type_for_size(bitsize, 1);
+ return fold_convert_loc(location.gcc_location(), type_tree,
+ fold_convert_loc(location.gcc_location(),
+ int_type_tree, call));
+ }
+ else
+ {
+ tree tmp = create_tmp_var(type_tree, get_name(type_tree));
+ DECL_IGNORED_P(tmp) = 0;
+ TREE_ADDRESSABLE(tmp) = 1;
+ tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
+ SET_EXPR_LOCATION(make_tmp, location.gcc_location());
+ tree tmpaddr = build_fold_addr_expr(tmp);
+ tmpaddr = fold_convert(ptr_type_node, tmpaddr);
+ static tree receive_big_fndecl;
+ tree call = Gogo::call_builtin(&receive_big_fndecl,
+ location,
+ "__go_receive_big",
+ 3,
+ void_type_node,
+ TREE_TYPE(type_descriptor_tree),
+ type_descriptor_tree,
+ ptr_type_node,
+ channel,
+ ptr_type_node,
+ tmpaddr);
+ if (call == error_mark_node)
+ return error_mark_node;
+ // This can panic if there are too many operations on a closed
+ // channel.
+ TREE_NOTHROW(receive_big_fndecl) = 0;
+ return build2(COMPOUND_EXPR, type_tree, make_tmp,
+ build2(COMPOUND_EXPR, type_tree, call, tmp));
+ }
+}