aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/libgfortran/m4/matmul.m4
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/libgfortran/m4/matmul.m4')
-rw-r--r--gcc-4.8/libgfortran/m4/matmul.m4378
1 files changed, 378 insertions, 0 deletions
diff --git a/gcc-4.8/libgfortran/m4/matmul.m4 b/gcc-4.8/libgfortran/m4/matmul.m4
new file mode 100644
index 000000000..33f29e607
--- /dev/null
+++ b/gcc-4.8/libgfortran/m4/matmul.m4
@@ -0,0 +1,378 @@
+`/* Implementation of the MATMUL intrinsic
+ Copyright (C) 2002-2013 Free Software Foundation, Inc.
+ Contributed by Paul Brook <paul@nowt.org>
+
+This file is part of the GNU Fortran runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+Libgfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#include "libgfortran.h"
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>'
+
+include(iparm.m4)dnl
+
+`#if defined (HAVE_'rtype_name`)
+
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we''`ll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const 'rtype_name` *, const 'rtype_name` *,
+ const int *, const 'rtype_name` *, const int *,
+ const 'rtype_name` *, 'rtype_name` *, const int *,
+ int, int);
+
+/* The order of loops is different in the case of plain matrix
+ multiplication C=MATMUL(A,B), and in the frequent special case where
+ the argument A is the temporary result of a TRANSPOSE intrinsic:
+ C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
+ looking at their strides.
+
+ The equivalent Fortran pseudo-code is:
+
+ DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
+ IF (.NOT.IS_TRANSPOSED(A)) THEN
+ C = 0
+ DO J=1,N
+ DO K=1,COUNT
+ DO I=1,M
+ C(I,J) = C(I,J)+A(I,K)*B(K,J)
+ ELSE
+ DO J=1,N
+ DO I=1,M
+ S = 0
+ DO K=1,COUNT
+ S = S+A(I,K)*B(K,J)
+ C(I,J) = S
+ ENDIF
+*/
+
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
+extern void matmul_'rtype_code` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
+export_proto(matmul_'rtype_code`);
+
+void
+matmul_'rtype_code` ('rtype` * const restrict retarray,
+ 'rtype` * const restrict a, 'rtype` * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const 'rtype_name` * restrict abase;
+ const 'rtype_name` * restrict bbase;
+ 'rtype_name` * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+ */
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmalloc (sizeof ('rtype_name`) * size0 ((array_t *) retarray));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+'
+sinclude(`matmul_asm_'rtype_code`.m4')dnl
+`
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+
+ /* Now that everything is set up, we''`re performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const 'rtype_name` one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ const 'rtype_name` * restrict bbase_y;
+ 'rtype_name` * restrict dest_y;
+ const 'rtype_name` * restrict abase_n;
+ 'rtype_name` bbase_yn;
+
+ if (rystride == xcount)
+ memset (dest, 0, (sizeof ('rtype_name`) * xcount * ycount));
+ else
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x + y*rystride] = ('rtype_name`)0;
+ }
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = bbase + y*bystride;
+ dest_y = dest + y*rystride;
+ for (n = 0; n < count; n++)
+ {
+ abase_n = abase + n*aystride;
+ bbase_yn = bbase_y[n];
+ for (x = 0; x < xcount; x++)
+ {
+ dest_y[x] += abase_n[x] * bbase_yn;
+ }
+ }
+ }
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const 'rtype_name` *restrict abase_x;
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` *restrict dest_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = ('rtype_name`)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const 'rtype_name` *restrict abase_x;
+ const 'rtype_name` *restrict bbase_y;
+ 'rtype_name` *restrict dest_y;
+ 'rtype_name` s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = ('rtype_name`) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+
+#endif'