aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/crypto/rsa/rsa.go
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/crypto/rsa/rsa.go')
-rw-r--r--gcc-4.8.1/libgo/go/crypto/rsa/rsa.go521
1 files changed, 0 insertions, 521 deletions
diff --git a/gcc-4.8.1/libgo/go/crypto/rsa/rsa.go b/gcc-4.8.1/libgo/go/crypto/rsa/rsa.go
deleted file mode 100644
index 543070f90..000000000
--- a/gcc-4.8.1/libgo/go/crypto/rsa/rsa.go
+++ /dev/null
@@ -1,521 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package rsa implements RSA encryption as specified in PKCS#1.
-package rsa
-
-// TODO(agl): Add support for PSS padding.
-
-import (
- "crypto/rand"
- "crypto/subtle"
- "errors"
- "hash"
- "io"
- "math/big"
-)
-
-var bigZero = big.NewInt(0)
-var bigOne = big.NewInt(1)
-
-// A PublicKey represents the public part of an RSA key.
-type PublicKey struct {
- N *big.Int // modulus
- E int // public exponent
-}
-
-var (
- errPublicModulus = errors.New("crypto/rsa: missing public modulus")
- errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
- errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
-)
-
-// checkPub sanity checks the public key before we use it.
-// We require pub.E to fit into a 32-bit integer so that we
-// do not have different behavior depending on whether
-// int is 32 or 64 bits. See also
-// http://www.imperialviolet.org/2012/03/16/rsae.html.
-func checkPub(pub *PublicKey) error {
- if pub.N == nil {
- return errPublicModulus
- }
- if pub.E < 2 {
- return errPublicExponentSmall
- }
- if pub.E > 1<<31-1 {
- return errPublicExponentLarge
- }
- return nil
-}
-
-// A PrivateKey represents an RSA key
-type PrivateKey struct {
- PublicKey // public part.
- D *big.Int // private exponent
- Primes []*big.Int // prime factors of N, has >= 2 elements.
-
- // Precomputed contains precomputed values that speed up private
- // operations, if available.
- Precomputed PrecomputedValues
-}
-
-type PrecomputedValues struct {
- Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
- Qinv *big.Int // Q^-1 mod Q
-
- // CRTValues is used for the 3rd and subsequent primes. Due to a
- // historical accident, the CRT for the first two primes is handled
- // differently in PKCS#1 and interoperability is sufficiently
- // important that we mirror this.
- CRTValues []CRTValue
-}
-
-// CRTValue contains the precomputed chinese remainder theorem values.
-type CRTValue struct {
- Exp *big.Int // D mod (prime-1).
- Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
- R *big.Int // product of primes prior to this (inc p and q).
-}
-
-// Validate performs basic sanity checks on the key.
-// It returns nil if the key is valid, or else an error describing a problem.
-func (priv *PrivateKey) Validate() error {
- if err := checkPub(&priv.PublicKey); err != nil {
- return err
- }
-
- // Check that the prime factors are actually prime. Note that this is
- // just a sanity check. Since the random witnesses chosen by
- // ProbablyPrime are deterministic, given the candidate number, it's
- // easy for an attack to generate composites that pass this test.
- for _, prime := range priv.Primes {
- if !prime.ProbablyPrime(20) {
- return errors.New("crypto/rsa: prime factor is composite")
- }
- }
-
- // Check that Πprimes == n.
- modulus := new(big.Int).Set(bigOne)
- for _, prime := range priv.Primes {
- modulus.Mul(modulus, prime)
- }
- if modulus.Cmp(priv.N) != 0 {
- return errors.New("crypto/rsa: invalid modulus")
- }
-
- // Check that de ≡ 1 mod p-1, for each prime.
- // This implies that e is coprime to each p-1 as e has a multiplicative
- // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
- // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
- // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
- congruence := new(big.Int)
- de := new(big.Int).SetInt64(int64(priv.E))
- de.Mul(de, priv.D)
- for _, prime := range priv.Primes {
- pminus1 := new(big.Int).Sub(prime, bigOne)
- congruence.Mod(de, pminus1)
- if congruence.Cmp(bigOne) != 0 {
- return errors.New("crypto/rsa: invalid exponents")
- }
- }
- return nil
-}
-
-// GenerateKey generates an RSA keypair of the given bit size.
-func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
- return GenerateMultiPrimeKey(random, 2, bits)
-}
-
-// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
-// size, as suggested in [1]. Although the public keys are compatible
-// (actually, indistinguishable) from the 2-prime case, the private keys are
-// not. Thus it may not be possible to export multi-prime private keys in
-// certain formats or to subsequently import them into other code.
-//
-// Table 1 in [2] suggests maximum numbers of primes for a given size.
-//
-// [1] US patent 4405829 (1972, expired)
-// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
-func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
- priv = new(PrivateKey)
- priv.E = 65537
-
- if nprimes < 2 {
- return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
- }
-
- primes := make([]*big.Int, nprimes)
-
-NextSetOfPrimes:
- for {
- todo := bits
- for i := 0; i < nprimes; i++ {
- primes[i], err = rand.Prime(random, todo/(nprimes-i))
- if err != nil {
- return nil, err
- }
- todo -= primes[i].BitLen()
- }
-
- // Make sure that primes is pairwise unequal.
- for i, prime := range primes {
- for j := 0; j < i; j++ {
- if prime.Cmp(primes[j]) == 0 {
- continue NextSetOfPrimes
- }
- }
- }
-
- n := new(big.Int).Set(bigOne)
- totient := new(big.Int).Set(bigOne)
- pminus1 := new(big.Int)
- for _, prime := range primes {
- n.Mul(n, prime)
- pminus1.Sub(prime, bigOne)
- totient.Mul(totient, pminus1)
- }
- if n.BitLen() != bits {
- // This should never happen because crypto/rand should
- // set the top two bits in each prime.
- continue NextSetOfPrimes
- }
-
- g := new(big.Int)
- priv.D = new(big.Int)
- y := new(big.Int)
- e := big.NewInt(int64(priv.E))
- g.GCD(priv.D, y, e, totient)
-
- if g.Cmp(bigOne) == 0 {
- priv.D.Add(priv.D, totient)
- priv.Primes = primes
- priv.N = n
-
- break
- }
- }
-
- priv.Precompute()
- return
-}
-
-// incCounter increments a four byte, big-endian counter.
-func incCounter(c *[4]byte) {
- if c[3]++; c[3] != 0 {
- return
- }
- if c[2]++; c[2] != 0 {
- return
- }
- if c[1]++; c[1] != 0 {
- return
- }
- c[0]++
-}
-
-// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
-// specified in PKCS#1 v2.1.
-func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
- var counter [4]byte
- var digest []byte
-
- done := 0
- for done < len(out) {
- hash.Write(seed)
- hash.Write(counter[0:4])
- digest = hash.Sum(digest[:0])
- hash.Reset()
-
- for i := 0; i < len(digest) && done < len(out); i++ {
- out[done] ^= digest[i]
- done++
- }
- incCounter(&counter)
- }
-}
-
-// ErrMessageTooLong is returned when attempting to encrypt a message which is
-// too large for the size of the public key.
-var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
-
-func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
- e := big.NewInt(int64(pub.E))
- c.Exp(m, e, pub.N)
- return c
-}
-
-// EncryptOAEP encrypts the given message with RSA-OAEP.
-// The message must be no longer than the length of the public modulus less
-// twice the hash length plus 2.
-func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
- if err := checkPub(pub); err != nil {
- return nil, err
- }
- hash.Reset()
- k := (pub.N.BitLen() + 7) / 8
- if len(msg) > k-2*hash.Size()-2 {
- err = ErrMessageTooLong
- return
- }
-
- hash.Write(label)
- lHash := hash.Sum(nil)
- hash.Reset()
-
- em := make([]byte, k)
- seed := em[1 : 1+hash.Size()]
- db := em[1+hash.Size():]
-
- copy(db[0:hash.Size()], lHash)
- db[len(db)-len(msg)-1] = 1
- copy(db[len(db)-len(msg):], msg)
-
- _, err = io.ReadFull(random, seed)
- if err != nil {
- return
- }
-
- mgf1XOR(db, hash, seed)
- mgf1XOR(seed, hash, db)
-
- m := new(big.Int)
- m.SetBytes(em)
- c := encrypt(new(big.Int), pub, m)
- out = c.Bytes()
-
- if len(out) < k {
- // If the output is too small, we need to left-pad with zeros.
- t := make([]byte, k)
- copy(t[k-len(out):], out)
- out = t
- }
-
- return
-}
-
-// ErrDecryption represents a failure to decrypt a message.
-// It is deliberately vague to avoid adaptive attacks.
-var ErrDecryption = errors.New("crypto/rsa: decryption error")
-
-// ErrVerification represents a failure to verify a signature.
-// It is deliberately vague to avoid adaptive attacks.
-var ErrVerification = errors.New("crypto/rsa: verification error")
-
-// modInverse returns ia, the inverse of a in the multiplicative group of prime
-// order n. It requires that a be a member of the group (i.e. less than n).
-func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
- g := new(big.Int)
- x := new(big.Int)
- y := new(big.Int)
- g.GCD(x, y, a, n)
- if g.Cmp(bigOne) != 0 {
- // In this case, a and n aren't coprime and we cannot calculate
- // the inverse. This happens because the values of n are nearly
- // prime (being the product of two primes) rather than truly
- // prime.
- return
- }
-
- if x.Cmp(bigOne) < 0 {
- // 0 is not the multiplicative inverse of any element so, if x
- // < 1, then x is negative.
- x.Add(x, n)
- }
-
- return x, true
-}
-
-// Precompute performs some calculations that speed up private key operations
-// in the future.
-func (priv *PrivateKey) Precompute() {
- if priv.Precomputed.Dp != nil {
- return
- }
-
- priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
- priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
-
- priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
- priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
-
- priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
-
- r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
- priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
- for i := 2; i < len(priv.Primes); i++ {
- prime := priv.Primes[i]
- values := &priv.Precomputed.CRTValues[i-2]
-
- values.Exp = new(big.Int).Sub(prime, bigOne)
- values.Exp.Mod(priv.D, values.Exp)
-
- values.R = new(big.Int).Set(r)
- values.Coeff = new(big.Int).ModInverse(r, prime)
-
- r.Mul(r, prime)
- }
-}
-
-// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
-// random source is given, RSA blinding is used.
-func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
- // TODO(agl): can we get away with reusing blinds?
- if c.Cmp(priv.N) > 0 {
- err = ErrDecryption
- return
- }
-
- var ir *big.Int
- if random != nil {
- // Blinding enabled. Blinding involves multiplying c by r^e.
- // Then the decryption operation performs (m^e * r^e)^d mod n
- // which equals mr mod n. The factor of r can then be removed
- // by multiplying by the multiplicative inverse of r.
-
- var r *big.Int
-
- for {
- r, err = rand.Int(random, priv.N)
- if err != nil {
- return
- }
- if r.Cmp(bigZero) == 0 {
- r = bigOne
- }
- var ok bool
- ir, ok = modInverse(r, priv.N)
- if ok {
- break
- }
- }
- bigE := big.NewInt(int64(priv.E))
- rpowe := new(big.Int).Exp(r, bigE, priv.N)
- cCopy := new(big.Int).Set(c)
- cCopy.Mul(cCopy, rpowe)
- cCopy.Mod(cCopy, priv.N)
- c = cCopy
- }
-
- if priv.Precomputed.Dp == nil {
- m = new(big.Int).Exp(c, priv.D, priv.N)
- } else {
- // We have the precalculated values needed for the CRT.
- m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
- m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
- m.Sub(m, m2)
- if m.Sign() < 0 {
- m.Add(m, priv.Primes[0])
- }
- m.Mul(m, priv.Precomputed.Qinv)
- m.Mod(m, priv.Primes[0])
- m.Mul(m, priv.Primes[1])
- m.Add(m, m2)
-
- for i, values := range priv.Precomputed.CRTValues {
- prime := priv.Primes[2+i]
- m2.Exp(c, values.Exp, prime)
- m2.Sub(m2, m)
- m2.Mul(m2, values.Coeff)
- m2.Mod(m2, prime)
- if m2.Sign() < 0 {
- m2.Add(m2, prime)
- }
- m2.Mul(m2, values.R)
- m.Add(m, m2)
- }
- }
-
- if ir != nil {
- // Unblind.
- m.Mul(m, ir)
- m.Mod(m, priv.N)
- }
-
- return
-}
-
-// DecryptOAEP decrypts ciphertext using RSA-OAEP.
-// If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
-func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return nil, err
- }
- k := (priv.N.BitLen() + 7) / 8
- if len(ciphertext) > k ||
- k < hash.Size()*2+2 {
- err = ErrDecryption
- return
- }
-
- c := new(big.Int).SetBytes(ciphertext)
-
- m, err := decrypt(random, priv, c)
- if err != nil {
- return
- }
-
- hash.Write(label)
- lHash := hash.Sum(nil)
- hash.Reset()
-
- // Converting the plaintext number to bytes will strip any
- // leading zeros so we may have to left pad. We do this unconditionally
- // to avoid leaking timing information. (Although we still probably
- // leak the number of leading zeros. It's not clear that we can do
- // anything about this.)
- em := leftPad(m.Bytes(), k)
-
- firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
-
- seed := em[1 : hash.Size()+1]
- db := em[hash.Size()+1:]
-
- mgf1XOR(seed, hash, db)
- mgf1XOR(db, hash, seed)
-
- lHash2 := db[0:hash.Size()]
-
- // We have to validate the plaintext in constant time in order to avoid
- // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
- // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
- // v2.0. In J. Kilian, editor, Advances in Cryptology.
- lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
-
- // The remainder of the plaintext must be zero or more 0x00, followed
- // by 0x01, followed by the message.
- // lookingForIndex: 1 iff we are still looking for the 0x01
- // index: the offset of the first 0x01 byte
- // invalid: 1 iff we saw a non-zero byte before the 0x01.
- var lookingForIndex, index, invalid int
- lookingForIndex = 1
- rest := db[hash.Size():]
-
- for i := 0; i < len(rest); i++ {
- equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
- equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
- index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
- lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
- invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
- }
-
- if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
- err = ErrDecryption
- return
- }
-
- msg = rest[index+1:]
- return
-}
-
-// leftPad returns a new slice of length size. The contents of input are right
-// aligned in the new slice.
-func leftPad(input []byte, size int) (out []byte) {
- n := len(input)
- if n > size {
- n = size
- }
- out = make([]byte, size)
- copy(out[len(out)-n:], input)
- return
-}