aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-ssa-reassoc.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-ssa-reassoc.c')
-rw-r--r--gcc-4.8.1/gcc/tree-ssa-reassoc.c4300
1 files changed, 0 insertions, 4300 deletions
diff --git a/gcc-4.8.1/gcc/tree-ssa-reassoc.c b/gcc-4.8.1/gcc/tree-ssa-reassoc.c
deleted file mode 100644
index 46994389e..000000000
--- a/gcc-4.8.1/gcc/tree-ssa-reassoc.c
+++ /dev/null
@@ -1,4300 +0,0 @@
-/* Reassociation for trees.
- Copyright (C) 2005-2013 Free Software Foundation, Inc.
- Contributed by Daniel Berlin <dan@dberlin.org>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "basic-block.h"
-#include "gimple-pretty-print.h"
-#include "tree-inline.h"
-#include "tree-flow.h"
-#include "gimple.h"
-#include "tree-iterator.h"
-#include "tree-pass.h"
-#include "alloc-pool.h"
-#include "vec.h"
-#include "langhooks.h"
-#include "pointer-set.h"
-#include "cfgloop.h"
-#include "flags.h"
-#include "target.h"
-#include "params.h"
-#include "diagnostic-core.h"
-
-/* This is a simple global reassociation pass. It is, in part, based
- on the LLVM pass of the same name (They do some things more/less
- than we do, in different orders, etc).
-
- It consists of five steps:
-
- 1. Breaking up subtract operations into addition + negate, where
- it would promote the reassociation of adds.
-
- 2. Left linearization of the expression trees, so that (A+B)+(C+D)
- becomes (((A+B)+C)+D), which is easier for us to rewrite later.
- During linearization, we place the operands of the binary
- expressions into a vector of operand_entry_t
-
- 3. Optimization of the operand lists, eliminating things like a +
- -a, a & a, etc.
-
- 3a. Combine repeated factors with the same occurrence counts
- into a __builtin_powi call that will later be optimized into
- an optimal number of multiplies.
-
- 4. Rewrite the expression trees we linearized and optimized so
- they are in proper rank order.
-
- 5. Repropagate negates, as nothing else will clean it up ATM.
-
- A bit of theory on #4, since nobody seems to write anything down
- about why it makes sense to do it the way they do it:
-
- We could do this much nicer theoretically, but don't (for reasons
- explained after how to do it theoretically nice :P).
-
- In order to promote the most redundancy elimination, you want
- binary expressions whose operands are the same rank (or
- preferably, the same value) exposed to the redundancy eliminator,
- for possible elimination.
-
- So the way to do this if we really cared, is to build the new op
- tree from the leaves to the roots, merging as you go, and putting the
- new op on the end of the worklist, until you are left with one
- thing on the worklist.
-
- IE if you have to rewrite the following set of operands (listed with
- rank in parentheses), with opcode PLUS_EXPR:
-
- a (1), b (1), c (1), d (2), e (2)
-
-
- We start with our merge worklist empty, and the ops list with all of
- those on it.
-
- You want to first merge all leaves of the same rank, as much as
- possible.
-
- So first build a binary op of
-
- mergetmp = a + b, and put "mergetmp" on the merge worklist.
-
- Because there is no three operand form of PLUS_EXPR, c is not going to
- be exposed to redundancy elimination as a rank 1 operand.
-
- So you might as well throw it on the merge worklist (you could also
- consider it to now be a rank two operand, and merge it with d and e,
- but in this case, you then have evicted e from a binary op. So at
- least in this situation, you can't win.)
-
- Then build a binary op of d + e
- mergetmp2 = d + e
-
- and put mergetmp2 on the merge worklist.
-
- so merge worklist = {mergetmp, c, mergetmp2}
-
- Continue building binary ops of these operations until you have only
- one operation left on the worklist.
-
- So we have
-
- build binary op
- mergetmp3 = mergetmp + c
-
- worklist = {mergetmp2, mergetmp3}
-
- mergetmp4 = mergetmp2 + mergetmp3
-
- worklist = {mergetmp4}
-
- because we have one operation left, we can now just set the original
- statement equal to the result of that operation.
-
- This will at least expose a + b and d + e to redundancy elimination
- as binary operations.
-
- For extra points, you can reuse the old statements to build the
- mergetmps, since you shouldn't run out.
-
- So why don't we do this?
-
- Because it's expensive, and rarely will help. Most trees we are
- reassociating have 3 or less ops. If they have 2 ops, they already
- will be written into a nice single binary op. If you have 3 ops, a
- single simple check suffices to tell you whether the first two are of the
- same rank. If so, you know to order it
-
- mergetmp = op1 + op2
- newstmt = mergetmp + op3
-
- instead of
- mergetmp = op2 + op3
- newstmt = mergetmp + op1
-
- If all three are of the same rank, you can't expose them all in a
- single binary operator anyway, so the above is *still* the best you
- can do.
-
- Thus, this is what we do. When we have three ops left, we check to see
- what order to put them in, and call it a day. As a nod to vector sum
- reduction, we check if any of the ops are really a phi node that is a
- destructive update for the associating op, and keep the destructive
- update together for vector sum reduction recognition. */
-
-
-/* Statistics */
-static struct
-{
- int linearized;
- int constants_eliminated;
- int ops_eliminated;
- int rewritten;
- int pows_encountered;
- int pows_created;
-} reassociate_stats;
-
-/* Operator, rank pair. */
-typedef struct operand_entry
-{
- unsigned int rank;
- int id;
- tree op;
- unsigned int count;
-} *operand_entry_t;
-
-static alloc_pool operand_entry_pool;
-
-/* This is used to assign a unique ID to each struct operand_entry
- so that qsort results are identical on different hosts. */
-static int next_operand_entry_id;
-
-/* Starting rank number for a given basic block, so that we can rank
- operations using unmovable instructions in that BB based on the bb
- depth. */
-static long *bb_rank;
-
-/* Operand->rank hashtable. */
-static struct pointer_map_t *operand_rank;
-
-/* Forward decls. */
-static long get_rank (tree);
-
-
-/* Bias amount for loop-carried phis. We want this to be larger than
- the depth of any reassociation tree we can see, but not larger than
- the rank difference between two blocks. */
-#define PHI_LOOP_BIAS (1 << 15)
-
-/* Rank assigned to a phi statement. If STMT is a loop-carried phi of
- an innermost loop, and the phi has only a single use which is inside
- the loop, then the rank is the block rank of the loop latch plus an
- extra bias for the loop-carried dependence. This causes expressions
- calculated into an accumulator variable to be independent for each
- iteration of the loop. If STMT is some other phi, the rank is the
- block rank of its containing block. */
-static long
-phi_rank (gimple stmt)
-{
- basic_block bb = gimple_bb (stmt);
- struct loop *father = bb->loop_father;
- tree res;
- unsigned i;
- use_operand_p use;
- gimple use_stmt;
-
- /* We only care about real loops (those with a latch). */
- if (!father->latch)
- return bb_rank[bb->index];
-
- /* Interesting phis must be in headers of innermost loops. */
- if (bb != father->header
- || father->inner)
- return bb_rank[bb->index];
-
- /* Ignore virtual SSA_NAMEs. */
- res = gimple_phi_result (stmt);
- if (virtual_operand_p (res))
- return bb_rank[bb->index];
-
- /* The phi definition must have a single use, and that use must be
- within the loop. Otherwise this isn't an accumulator pattern. */
- if (!single_imm_use (res, &use, &use_stmt)
- || gimple_bb (use_stmt)->loop_father != father)
- return bb_rank[bb->index];
-
- /* Look for phi arguments from within the loop. If found, bias this phi. */
- for (i = 0; i < gimple_phi_num_args (stmt); i++)
- {
- tree arg = gimple_phi_arg_def (stmt, i);
- if (TREE_CODE (arg) == SSA_NAME
- && !SSA_NAME_IS_DEFAULT_DEF (arg))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (arg);
- if (gimple_bb (def_stmt)->loop_father == father)
- return bb_rank[father->latch->index] + PHI_LOOP_BIAS;
- }
- }
-
- /* Must be an uninteresting phi. */
- return bb_rank[bb->index];
-}
-
-/* If EXP is an SSA_NAME defined by a PHI statement that represents a
- loop-carried dependence of an innermost loop, return TRUE; else
- return FALSE. */
-static bool
-loop_carried_phi (tree exp)
-{
- gimple phi_stmt;
- long block_rank;
-
- if (TREE_CODE (exp) != SSA_NAME
- || SSA_NAME_IS_DEFAULT_DEF (exp))
- return false;
-
- phi_stmt = SSA_NAME_DEF_STMT (exp);
-
- if (gimple_code (SSA_NAME_DEF_STMT (exp)) != GIMPLE_PHI)
- return false;
-
- /* Non-loop-carried phis have block rank. Loop-carried phis have
- an additional bias added in. If this phi doesn't have block rank,
- it's biased and should not be propagated. */
- block_rank = bb_rank[gimple_bb (phi_stmt)->index];
-
- if (phi_rank (phi_stmt) != block_rank)
- return true;
-
- return false;
-}
-
-/* Return the maximum of RANK and the rank that should be propagated
- from expression OP. For most operands, this is just the rank of OP.
- For loop-carried phis, the value is zero to avoid undoing the bias
- in favor of the phi. */
-static long
-propagate_rank (long rank, tree op)
-{
- long op_rank;
-
- if (loop_carried_phi (op))
- return rank;
-
- op_rank = get_rank (op);
-
- return MAX (rank, op_rank);
-}
-
-/* Look up the operand rank structure for expression E. */
-
-static inline long
-find_operand_rank (tree e)
-{
- void **slot = pointer_map_contains (operand_rank, e);
- return slot ? (long) (intptr_t) *slot : -1;
-}
-
-/* Insert {E,RANK} into the operand rank hashtable. */
-
-static inline void
-insert_operand_rank (tree e, long rank)
-{
- void **slot;
- gcc_assert (rank > 0);
- slot = pointer_map_insert (operand_rank, e);
- gcc_assert (!*slot);
- *slot = (void *) (intptr_t) rank;
-}
-
-/* Given an expression E, return the rank of the expression. */
-
-static long
-get_rank (tree e)
-{
- /* Constants have rank 0. */
- if (is_gimple_min_invariant (e))
- return 0;
-
- /* SSA_NAME's have the rank of the expression they are the result
- of.
- For globals and uninitialized values, the rank is 0.
- For function arguments, use the pre-setup rank.
- For PHI nodes, stores, asm statements, etc, we use the rank of
- the BB.
- For simple operations, the rank is the maximum rank of any of
- its operands, or the bb_rank, whichever is less.
- I make no claims that this is optimal, however, it gives good
- results. */
-
- /* We make an exception to the normal ranking system to break
- dependences of accumulator variables in loops. Suppose we
- have a simple one-block loop containing:
-
- x_1 = phi(x_0, x_2)
- b = a + x_1
- c = b + d
- x_2 = c + e
-
- As shown, each iteration of the calculation into x is fully
- dependent upon the iteration before it. We would prefer to
- see this in the form:
-
- x_1 = phi(x_0, x_2)
- b = a + d
- c = b + e
- x_2 = c + x_1
-
- If the loop is unrolled, the calculations of b and c from
- different iterations can be interleaved.
-
- To obtain this result during reassociation, we bias the rank
- of the phi definition x_1 upward, when it is recognized as an
- accumulator pattern. The artificial rank causes it to be
- added last, providing the desired independence. */
-
- if (TREE_CODE (e) == SSA_NAME)
- {
- gimple stmt;
- long rank;
- int i, n;
- tree op;
-
- if (SSA_NAME_IS_DEFAULT_DEF (e))
- return find_operand_rank (e);
-
- stmt = SSA_NAME_DEF_STMT (e);
- if (gimple_code (stmt) == GIMPLE_PHI)
- return phi_rank (stmt);
-
- if (!is_gimple_assign (stmt)
- || gimple_vdef (stmt))
- return bb_rank[gimple_bb (stmt)->index];
-
- /* If we already have a rank for this expression, use that. */
- rank = find_operand_rank (e);
- if (rank != -1)
- return rank;
-
- /* Otherwise, find the maximum rank for the operands. As an
- exception, remove the bias from loop-carried phis when propagating
- the rank so that dependent operations are not also biased. */
- rank = 0;
- if (gimple_assign_single_p (stmt))
- {
- tree rhs = gimple_assign_rhs1 (stmt);
- n = TREE_OPERAND_LENGTH (rhs);
- if (n == 0)
- rank = propagate_rank (rank, rhs);
- else
- {
- for (i = 0; i < n; i++)
- {
- op = TREE_OPERAND (rhs, i);
-
- if (op != NULL_TREE)
- rank = propagate_rank (rank, op);
- }
- }
- }
- else
- {
- n = gimple_num_ops (stmt);
- for (i = 1; i < n; i++)
- {
- op = gimple_op (stmt, i);
- gcc_assert (op);
- rank = propagate_rank (rank, op);
- }
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Rank for ");
- print_generic_expr (dump_file, e, 0);
- fprintf (dump_file, " is %ld\n", (rank + 1));
- }
-
- /* Note the rank in the hashtable so we don't recompute it. */
- insert_operand_rank (e, (rank + 1));
- return (rank + 1);
- }
-
- /* Globals, etc, are rank 0 */
- return 0;
-}
-
-
-/* We want integer ones to end up last no matter what, since they are
- the ones we can do the most with. */
-#define INTEGER_CONST_TYPE 1 << 3
-#define FLOAT_CONST_TYPE 1 << 2
-#define OTHER_CONST_TYPE 1 << 1
-
-/* Classify an invariant tree into integer, float, or other, so that
- we can sort them to be near other constants of the same type. */
-static inline int
-constant_type (tree t)
-{
- if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
- return INTEGER_CONST_TYPE;
- else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
- return FLOAT_CONST_TYPE;
- else
- return OTHER_CONST_TYPE;
-}
-
-/* qsort comparison function to sort operand entries PA and PB by rank
- so that the sorted array is ordered by rank in decreasing order. */
-static int
-sort_by_operand_rank (const void *pa, const void *pb)
-{
- const operand_entry_t oea = *(const operand_entry_t *)pa;
- const operand_entry_t oeb = *(const operand_entry_t *)pb;
-
- /* It's nicer for optimize_expression if constants that are likely
- to fold when added/multiplied//whatever are put next to each
- other. Since all constants have rank 0, order them by type. */
- if (oeb->rank == 0 && oea->rank == 0)
- {
- if (constant_type (oeb->op) != constant_type (oea->op))
- return constant_type (oeb->op) - constant_type (oea->op);
- else
- /* To make sorting result stable, we use unique IDs to determine
- order. */
- return oeb->id - oea->id;
- }
-
- /* Lastly, make sure the versions that are the same go next to each
- other. We use SSA_NAME_VERSION because it's stable. */
- if ((oeb->rank - oea->rank == 0)
- && TREE_CODE (oea->op) == SSA_NAME
- && TREE_CODE (oeb->op) == SSA_NAME)
- {
- if (SSA_NAME_VERSION (oeb->op) != SSA_NAME_VERSION (oea->op))
- return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
- else
- return oeb->id - oea->id;
- }
-
- if (oeb->rank != oea->rank)
- return oeb->rank - oea->rank;
- else
- return oeb->id - oea->id;
-}
-
-/* Add an operand entry to *OPS for the tree operand OP. */
-
-static void
-add_to_ops_vec (vec<operand_entry_t> *ops, tree op)
-{
- operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
-
- oe->op = op;
- oe->rank = get_rank (op);
- oe->id = next_operand_entry_id++;
- oe->count = 1;
- ops->safe_push (oe);
-}
-
-/* Add an operand entry to *OPS for the tree operand OP with repeat
- count REPEAT. */
-
-static void
-add_repeat_to_ops_vec (vec<operand_entry_t> *ops, tree op,
- HOST_WIDE_INT repeat)
-{
- operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
-
- oe->op = op;
- oe->rank = get_rank (op);
- oe->id = next_operand_entry_id++;
- oe->count = repeat;
- ops->safe_push (oe);
-
- reassociate_stats.pows_encountered++;
-}
-
-/* Return true if STMT is reassociable operation containing a binary
- operation with tree code CODE, and is inside LOOP. */
-
-static bool
-is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
-{
- basic_block bb = gimple_bb (stmt);
-
- if (gimple_bb (stmt) == NULL)
- return false;
-
- if (!flow_bb_inside_loop_p (loop, bb))
- return false;
-
- if (is_gimple_assign (stmt)
- && gimple_assign_rhs_code (stmt) == code
- && has_single_use (gimple_assign_lhs (stmt)))
- return true;
-
- return false;
-}
-
-
-/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
- operand of the negate operation. Otherwise, return NULL. */
-
-static tree
-get_unary_op (tree name, enum tree_code opcode)
-{
- gimple stmt = SSA_NAME_DEF_STMT (name);
-
- if (!is_gimple_assign (stmt))
- return NULL_TREE;
-
- if (gimple_assign_rhs_code (stmt) == opcode)
- return gimple_assign_rhs1 (stmt);
- return NULL_TREE;
-}
-
-/* If CURR and LAST are a pair of ops that OPCODE allows us to
- eliminate through equivalences, do so, remove them from OPS, and
- return true. Otherwise, return false. */
-
-static bool
-eliminate_duplicate_pair (enum tree_code opcode,
- vec<operand_entry_t> *ops,
- bool *all_done,
- unsigned int i,
- operand_entry_t curr,
- operand_entry_t last)
-{
-
- /* If we have two of the same op, and the opcode is & |, min, or max,
- we can eliminate one of them.
- If we have two of the same op, and the opcode is ^, we can
- eliminate both of them. */
-
- if (last && last->op == curr->op)
- {
- switch (opcode)
- {
- case MAX_EXPR:
- case MIN_EXPR:
- case BIT_IOR_EXPR:
- case BIT_AND_EXPR:
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, curr->op, 0);
- fprintf (dump_file, " [&|minmax] ");
- print_generic_expr (dump_file, last->op, 0);
- fprintf (dump_file, " -> ");
- print_generic_stmt (dump_file, last->op, 0);
- }
-
- ops->ordered_remove (i);
- reassociate_stats.ops_eliminated ++;
-
- return true;
-
- case BIT_XOR_EXPR:
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, curr->op, 0);
- fprintf (dump_file, " ^ ");
- print_generic_expr (dump_file, last->op, 0);
- fprintf (dump_file, " -> nothing\n");
- }
-
- reassociate_stats.ops_eliminated += 2;
-
- if (ops->length () == 2)
- {
- ops->create (0);
- add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (last->op)));
- *all_done = true;
- }
- else
- {
- ops->ordered_remove (i-1);
- ops->ordered_remove (i-1);
- }
-
- return true;
-
- default:
- break;
- }
- }
- return false;
-}
-
-static vec<tree> plus_negates;
-
-/* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
- expression, look in OPS for a corresponding positive operation to cancel
- it out. If we find one, remove the other from OPS, replace
- OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
- return false. */
-
-static bool
-eliminate_plus_minus_pair (enum tree_code opcode,
- vec<operand_entry_t> *ops,
- unsigned int currindex,
- operand_entry_t curr)
-{
- tree negateop;
- tree notop;
- unsigned int i;
- operand_entry_t oe;
-
- if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
- return false;
-
- negateop = get_unary_op (curr->op, NEGATE_EXPR);
- notop = get_unary_op (curr->op, BIT_NOT_EXPR);
- if (negateop == NULL_TREE && notop == NULL_TREE)
- return false;
-
- /* Any non-negated version will have a rank that is one less than
- the current rank. So once we hit those ranks, if we don't find
- one, we can stop. */
-
- for (i = currindex + 1;
- ops->iterate (i, &oe)
- && oe->rank >= curr->rank - 1 ;
- i++)
- {
- if (oe->op == negateop)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, negateop, 0);
- fprintf (dump_file, " + -");
- print_generic_expr (dump_file, oe->op, 0);
- fprintf (dump_file, " -> 0\n");
- }
-
- ops->ordered_remove (i);
- add_to_ops_vec (ops, build_zero_cst (TREE_TYPE (oe->op)));
- ops->ordered_remove (currindex);
- reassociate_stats.ops_eliminated ++;
-
- return true;
- }
- else if (oe->op == notop)
- {
- tree op_type = TREE_TYPE (oe->op);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, notop, 0);
- fprintf (dump_file, " + ~");
- print_generic_expr (dump_file, oe->op, 0);
- fprintf (dump_file, " -> -1\n");
- }
-
- ops->ordered_remove (i);
- add_to_ops_vec (ops, build_int_cst_type (op_type, -1));
- ops->ordered_remove (currindex);
- reassociate_stats.ops_eliminated ++;
-
- return true;
- }
- }
-
- /* CURR->OP is a negate expr in a plus expr: save it for later
- inspection in repropagate_negates(). */
- if (negateop != NULL_TREE)
- plus_negates.safe_push (curr->op);
-
- return false;
-}
-
-/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
- bitwise not expression, look in OPS for a corresponding operand to
- cancel it out. If we find one, remove the other from OPS, replace
- OPS[CURRINDEX] with 0, and return true. Otherwise, return
- false. */
-
-static bool
-eliminate_not_pairs (enum tree_code opcode,
- vec<operand_entry_t> *ops,
- unsigned int currindex,
- operand_entry_t curr)
-{
- tree notop;
- unsigned int i;
- operand_entry_t oe;
-
- if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
- || TREE_CODE (curr->op) != SSA_NAME)
- return false;
-
- notop = get_unary_op (curr->op, BIT_NOT_EXPR);
- if (notop == NULL_TREE)
- return false;
-
- /* Any non-not version will have a rank that is one less than
- the current rank. So once we hit those ranks, if we don't find
- one, we can stop. */
-
- for (i = currindex + 1;
- ops->iterate (i, &oe)
- && oe->rank >= curr->rank - 1;
- i++)
- {
- if (oe->op == notop)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, notop, 0);
- if (opcode == BIT_AND_EXPR)
- fprintf (dump_file, " & ~");
- else if (opcode == BIT_IOR_EXPR)
- fprintf (dump_file, " | ~");
- print_generic_expr (dump_file, oe->op, 0);
- if (opcode == BIT_AND_EXPR)
- fprintf (dump_file, " -> 0\n");
- else if (opcode == BIT_IOR_EXPR)
- fprintf (dump_file, " -> -1\n");
- }
-
- if (opcode == BIT_AND_EXPR)
- oe->op = build_zero_cst (TREE_TYPE (oe->op));
- else if (opcode == BIT_IOR_EXPR)
- oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
- TYPE_PRECISION (TREE_TYPE (oe->op)));
-
- reassociate_stats.ops_eliminated += ops->length () - 1;
- ops->truncate (0);
- ops->quick_push (oe);
- return true;
- }
- }
-
- return false;
-}
-
-/* Use constant value that may be present in OPS to try to eliminate
- operands. Note that this function is only really used when we've
- eliminated ops for other reasons, or merged constants. Across
- single statements, fold already does all of this, plus more. There
- is little point in duplicating logic, so I've only included the
- identities that I could ever construct testcases to trigger. */
-
-static void
-eliminate_using_constants (enum tree_code opcode,
- vec<operand_entry_t> *ops)
-{
- operand_entry_t oelast = ops->last ();
- tree type = TREE_TYPE (oelast->op);
-
- if (oelast->rank == 0
- && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
- {
- switch (opcode)
- {
- case BIT_AND_EXPR:
- if (integer_zerop (oelast->op))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found & 0, removing all other ops\n");
-
- reassociate_stats.ops_eliminated += ops->length () - 1;
-
- ops->truncate (0);
- ops->quick_push (oelast);
- return;
- }
- }
- else if (integer_all_onesp (oelast->op))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found & -1, removing\n");
- ops->pop ();
- reassociate_stats.ops_eliminated++;
- }
- }
- break;
- case BIT_IOR_EXPR:
- if (integer_all_onesp (oelast->op))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found | -1, removing all other ops\n");
-
- reassociate_stats.ops_eliminated += ops->length () - 1;
-
- ops->truncate (0);
- ops->quick_push (oelast);
- return;
- }
- }
- else if (integer_zerop (oelast->op))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found | 0, removing\n");
- ops->pop ();
- reassociate_stats.ops_eliminated++;
- }
- }
- break;
- case MULT_EXPR:
- if (integer_zerop (oelast->op)
- || (FLOAT_TYPE_P (type)
- && !HONOR_NANS (TYPE_MODE (type))
- && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
- && real_zerop (oelast->op)))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found * 0, removing all other ops\n");
-
- reassociate_stats.ops_eliminated += ops->length () - 1;
- ops->truncate (1);
- ops->quick_push (oelast);
- return;
- }
- }
- else if (integer_onep (oelast->op)
- || (FLOAT_TYPE_P (type)
- && !HONOR_SNANS (TYPE_MODE (type))
- && real_onep (oelast->op)))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found * 1, removing\n");
- ops->pop ();
- reassociate_stats.ops_eliminated++;
- return;
- }
- }
- break;
- case BIT_XOR_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- if (integer_zerop (oelast->op)
- || (FLOAT_TYPE_P (type)
- && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
- && fold_real_zero_addition_p (type, oelast->op,
- opcode == MINUS_EXPR)))
- {
- if (ops->length () != 1)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Found [|^+] 0, removing\n");
- ops->pop ();
- reassociate_stats.ops_eliminated++;
- return;
- }
- }
- break;
- default:
- break;
- }
- }
-}
-
-
-static void linearize_expr_tree (vec<operand_entry_t> *, gimple,
- bool, bool);
-
-/* Structure for tracking and counting operands. */
-typedef struct oecount_s {
- int cnt;
- int id;
- enum tree_code oecode;
- tree op;
-} oecount;
-
-
-/* The heap for the oecount hashtable and the sorted list of operands. */
-static vec<oecount> cvec;
-
-/* Hash function for oecount. */
-
-static hashval_t
-oecount_hash (const void *p)
-{
- const oecount *c = &cvec[(size_t)p - 42];
- return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
-}
-
-/* Comparison function for oecount. */
-
-static int
-oecount_eq (const void *p1, const void *p2)
-{
- const oecount *c1 = &cvec[(size_t)p1 - 42];
- const oecount *c2 = &cvec[(size_t)p2 - 42];
- return (c1->oecode == c2->oecode
- && c1->op == c2->op);
-}
-
-/* Comparison function for qsort sorting oecount elements by count. */
-
-static int
-oecount_cmp (const void *p1, const void *p2)
-{
- const oecount *c1 = (const oecount *)p1;
- const oecount *c2 = (const oecount *)p2;
- if (c1->cnt != c2->cnt)
- return c1->cnt - c2->cnt;
- else
- /* If counts are identical, use unique IDs to stabilize qsort. */
- return c1->id - c2->id;
-}
-
-/* Return TRUE iff STMT represents a builtin call that raises OP
- to some exponent. */
-
-static bool
-stmt_is_power_of_op (gimple stmt, tree op)
-{
- tree fndecl;
-
- if (!is_gimple_call (stmt))
- return false;
-
- fndecl = gimple_call_fndecl (stmt);
-
- if (!fndecl
- || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
- return false;
-
- switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
- {
- CASE_FLT_FN (BUILT_IN_POW):
- CASE_FLT_FN (BUILT_IN_POWI):
- return (operand_equal_p (gimple_call_arg (stmt, 0), op, 0));
-
- default:
- return false;
- }
-}
-
-/* Given STMT which is a __builtin_pow* call, decrement its exponent
- in place and return the result. Assumes that stmt_is_power_of_op
- was previously called for STMT and returned TRUE. */
-
-static HOST_WIDE_INT
-decrement_power (gimple stmt)
-{
- REAL_VALUE_TYPE c, cint;
- HOST_WIDE_INT power;
- tree arg1;
-
- switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
- {
- CASE_FLT_FN (BUILT_IN_POW):
- arg1 = gimple_call_arg (stmt, 1);
- c = TREE_REAL_CST (arg1);
- power = real_to_integer (&c) - 1;
- real_from_integer (&cint, VOIDmode, power, 0, 0);
- gimple_call_set_arg (stmt, 1, build_real (TREE_TYPE (arg1), cint));
- return power;
-
- CASE_FLT_FN (BUILT_IN_POWI):
- arg1 = gimple_call_arg (stmt, 1);
- power = TREE_INT_CST_LOW (arg1) - 1;
- gimple_call_set_arg (stmt, 1, build_int_cst (TREE_TYPE (arg1), power));
- return power;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Find the single immediate use of STMT's LHS, and replace it
- with OP. Remove STMT. If STMT's LHS is the same as *DEF,
- replace *DEF with OP as well. */
-
-static void
-propagate_op_to_single_use (tree op, gimple stmt, tree *def)
-{
- tree lhs;
- gimple use_stmt;
- use_operand_p use;
- gimple_stmt_iterator gsi;
-
- if (is_gimple_call (stmt))
- lhs = gimple_call_lhs (stmt);
- else
- lhs = gimple_assign_lhs (stmt);
-
- gcc_assert (has_single_use (lhs));
- single_imm_use (lhs, &use, &use_stmt);
- if (lhs == *def)
- *def = op;
- SET_USE (use, op);
- if (TREE_CODE (op) != SSA_NAME)
- update_stmt (use_stmt);
- gsi = gsi_for_stmt (stmt);
- unlink_stmt_vdef (stmt);
- gsi_remove (&gsi, true);
- release_defs (stmt);
-}
-
-/* Walks the linear chain with result *DEF searching for an operation
- with operand OP and code OPCODE removing that from the chain. *DEF
- is updated if there is only one operand but no operation left. */
-
-static void
-zero_one_operation (tree *def, enum tree_code opcode, tree op)
-{
- gimple stmt = SSA_NAME_DEF_STMT (*def);
-
- do
- {
- tree name;
-
- if (opcode == MULT_EXPR
- && stmt_is_power_of_op (stmt, op))
- {
- if (decrement_power (stmt) == 1)
- propagate_op_to_single_use (op, stmt, def);
- return;
- }
-
- name = gimple_assign_rhs1 (stmt);
-
- /* If this is the operation we look for and one of the operands
- is ours simply propagate the other operand into the stmts
- single use. */
- if (gimple_assign_rhs_code (stmt) == opcode
- && (name == op
- || gimple_assign_rhs2 (stmt) == op))
- {
- if (name == op)
- name = gimple_assign_rhs2 (stmt);
- propagate_op_to_single_use (name, stmt, def);
- return;
- }
-
- /* We might have a multiply of two __builtin_pow* calls, and
- the operand might be hiding in the rightmost one. */
- if (opcode == MULT_EXPR
- && gimple_assign_rhs_code (stmt) == opcode
- && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
- && has_single_use (gimple_assign_rhs2 (stmt)))
- {
- gimple stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
- if (stmt_is_power_of_op (stmt2, op))
- {
- if (decrement_power (stmt2) == 1)
- propagate_op_to_single_use (op, stmt2, def);
- return;
- }
- }
-
- /* Continue walking the chain. */
- gcc_assert (name != op
- && TREE_CODE (name) == SSA_NAME);
- stmt = SSA_NAME_DEF_STMT (name);
- }
- while (1);
-}
-
-/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
- the result. Places the statement after the definition of either
- OP1 or OP2. Returns the new statement. */
-
-static gimple
-build_and_add_sum (tree type, tree op1, tree op2, enum tree_code opcode)
-{
- gimple op1def = NULL, op2def = NULL;
- gimple_stmt_iterator gsi;
- tree op;
- gimple sum;
-
- /* Create the addition statement. */
- op = make_ssa_name (type, NULL);
- sum = gimple_build_assign_with_ops (opcode, op, op1, op2);
-
- /* Find an insertion place and insert. */
- if (TREE_CODE (op1) == SSA_NAME)
- op1def = SSA_NAME_DEF_STMT (op1);
- if (TREE_CODE (op2) == SSA_NAME)
- op2def = SSA_NAME_DEF_STMT (op2);
- if ((!op1def || gimple_nop_p (op1def))
- && (!op2def || gimple_nop_p (op2def)))
- {
- gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
- gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
- }
- else if ((!op1def || gimple_nop_p (op1def))
- || (op2def && !gimple_nop_p (op2def)
- && stmt_dominates_stmt_p (op1def, op2def)))
- {
- if (gimple_code (op2def) == GIMPLE_PHI)
- {
- gsi = gsi_after_labels (gimple_bb (op2def));
- gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
- }
- else
- {
- if (!stmt_ends_bb_p (op2def))
- {
- gsi = gsi_for_stmt (op2def);
- gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
- }
- else
- {
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
- if (e->flags & EDGE_FALLTHRU)
- gsi_insert_on_edge_immediate (e, sum);
- }
- }
- }
- else
- {
- if (gimple_code (op1def) == GIMPLE_PHI)
- {
- gsi = gsi_after_labels (gimple_bb (op1def));
- gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
- }
- else
- {
- if (!stmt_ends_bb_p (op1def))
- {
- gsi = gsi_for_stmt (op1def);
- gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
- }
- else
- {
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
- if (e->flags & EDGE_FALLTHRU)
- gsi_insert_on_edge_immediate (e, sum);
- }
- }
- }
- update_stmt (sum);
-
- return sum;
-}
-
-/* Perform un-distribution of divisions and multiplications.
- A * X + B * X is transformed into (A + B) * X and A / X + B / X
- to (A + B) / X for real X.
-
- The algorithm is organized as follows.
-
- - First we walk the addition chain *OPS looking for summands that
- are defined by a multiplication or a real division. This results
- in the candidates bitmap with relevant indices into *OPS.
-
- - Second we build the chains of multiplications or divisions for
- these candidates, counting the number of occurrences of (operand, code)
- pairs in all of the candidates chains.
-
- - Third we sort the (operand, code) pairs by number of occurrence and
- process them starting with the pair with the most uses.
-
- * For each such pair we walk the candidates again to build a
- second candidate bitmap noting all multiplication/division chains
- that have at least one occurrence of (operand, code).
-
- * We build an alternate addition chain only covering these
- candidates with one (operand, code) operation removed from their
- multiplication/division chain.
-
- * The first candidate gets replaced by the alternate addition chain
- multiplied/divided by the operand.
-
- * All candidate chains get disabled for further processing and
- processing of (operand, code) pairs continues.
-
- The alternate addition chains built are re-processed by the main
- reassociation algorithm which allows optimizing a * x * y + b * y * x
- to (a + b ) * x * y in one invocation of the reassociation pass. */
-
-static bool
-undistribute_ops_list (enum tree_code opcode,
- vec<operand_entry_t> *ops, struct loop *loop)
-{
- unsigned int length = ops->length ();
- operand_entry_t oe1;
- unsigned i, j;
- sbitmap candidates, candidates2;
- unsigned nr_candidates, nr_candidates2;
- sbitmap_iterator sbi0;
- vec<operand_entry_t> *subops;
- htab_t ctable;
- bool changed = false;
- int next_oecount_id = 0;
-
- if (length <= 1
- || opcode != PLUS_EXPR)
- return false;
-
- /* Build a list of candidates to process. */
- candidates = sbitmap_alloc (length);
- bitmap_clear (candidates);
- nr_candidates = 0;
- FOR_EACH_VEC_ELT (*ops, i, oe1)
- {
- enum tree_code dcode;
- gimple oe1def;
-
- if (TREE_CODE (oe1->op) != SSA_NAME)
- continue;
- oe1def = SSA_NAME_DEF_STMT (oe1->op);
- if (!is_gimple_assign (oe1def))
- continue;
- dcode = gimple_assign_rhs_code (oe1def);
- if ((dcode != MULT_EXPR
- && dcode != RDIV_EXPR)
- || !is_reassociable_op (oe1def, dcode, loop))
- continue;
-
- bitmap_set_bit (candidates, i);
- nr_candidates++;
- }
-
- if (nr_candidates < 2)
- {
- sbitmap_free (candidates);
- return false;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "searching for un-distribute opportunities ");
- print_generic_expr (dump_file,
- (*ops)[bitmap_first_set_bit (candidates)]->op, 0);
- fprintf (dump_file, " %d\n", nr_candidates);
- }
-
- /* Build linearized sub-operand lists and the counting table. */
- cvec.create (0);
- ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
- /* ??? Macro arguments cannot have multi-argument template types in
- them. This typedef is needed to workaround that limitation. */
- typedef vec<operand_entry_t> vec_operand_entry_t_heap;
- subops = XCNEWVEC (vec_operand_entry_t_heap, ops->length ());
- EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
- {
- gimple oedef;
- enum tree_code oecode;
- unsigned j;
-
- oedef = SSA_NAME_DEF_STMT ((*ops)[i]->op);
- oecode = gimple_assign_rhs_code (oedef);
- linearize_expr_tree (&subops[i], oedef,
- associative_tree_code (oecode), false);
-
- FOR_EACH_VEC_ELT (subops[i], j, oe1)
- {
- oecount c;
- void **slot;
- size_t idx;
- c.oecode = oecode;
- c.cnt = 1;
- c.id = next_oecount_id++;
- c.op = oe1->op;
- cvec.safe_push (c);
- idx = cvec.length () + 41;
- slot = htab_find_slot (ctable, (void *)idx, INSERT);
- if (!*slot)
- {
- *slot = (void *)idx;
- }
- else
- {
- cvec.pop ();
- cvec[(size_t)*slot - 42].cnt++;
- }
- }
- }
- htab_delete (ctable);
-
- /* Sort the counting table. */
- cvec.qsort (oecount_cmp);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- oecount *c;
- fprintf (dump_file, "Candidates:\n");
- FOR_EACH_VEC_ELT (cvec, j, c)
- {
- fprintf (dump_file, " %u %s: ", c->cnt,
- c->oecode == MULT_EXPR
- ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
- print_generic_expr (dump_file, c->op, 0);
- fprintf (dump_file, "\n");
- }
- }
-
- /* Process the (operand, code) pairs in order of most occurence. */
- candidates2 = sbitmap_alloc (length);
- while (!cvec.is_empty ())
- {
- oecount *c = &cvec.last ();
- if (c->cnt < 2)
- break;
-
- /* Now collect the operands in the outer chain that contain
- the common operand in their inner chain. */
- bitmap_clear (candidates2);
- nr_candidates2 = 0;
- EXECUTE_IF_SET_IN_BITMAP (candidates, 0, i, sbi0)
- {
- gimple oedef;
- enum tree_code oecode;
- unsigned j;
- tree op = (*ops)[i]->op;
-
- /* If we undistributed in this chain already this may be
- a constant. */
- if (TREE_CODE (op) != SSA_NAME)
- continue;
-
- oedef = SSA_NAME_DEF_STMT (op);
- oecode = gimple_assign_rhs_code (oedef);
- if (oecode != c->oecode)
- continue;
-
- FOR_EACH_VEC_ELT (subops[i], j, oe1)
- {
- if (oe1->op == c->op)
- {
- bitmap_set_bit (candidates2, i);
- ++nr_candidates2;
- break;
- }
- }
- }
-
- if (nr_candidates2 >= 2)
- {
- operand_entry_t oe1, oe2;
- gimple prod;
- int first = bitmap_first_set_bit (candidates2);
-
- /* Build the new addition chain. */
- oe1 = (*ops)[first];
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Building (");
- print_generic_expr (dump_file, oe1->op, 0);
- }
- zero_one_operation (&oe1->op, c->oecode, c->op);
- EXECUTE_IF_SET_IN_BITMAP (candidates2, first+1, i, sbi0)
- {
- gimple sum;
- oe2 = (*ops)[i];
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " + ");
- print_generic_expr (dump_file, oe2->op, 0);
- }
- zero_one_operation (&oe2->op, c->oecode, c->op);
- sum = build_and_add_sum (TREE_TYPE (oe1->op),
- oe1->op, oe2->op, opcode);
- oe2->op = build_zero_cst (TREE_TYPE (oe2->op));
- oe2->rank = 0;
- oe1->op = gimple_get_lhs (sum);
- }
-
- /* Apply the multiplication/division. */
- prod = build_and_add_sum (TREE_TYPE (oe1->op),
- oe1->op, c->op, c->oecode);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
- print_generic_expr (dump_file, c->op, 0);
- fprintf (dump_file, "\n");
- }
-
- /* Record it in the addition chain and disable further
- undistribution with this op. */
- oe1->op = gimple_assign_lhs (prod);
- oe1->rank = get_rank (oe1->op);
- subops[first].release ();
-
- changed = true;
- }
-
- cvec.pop ();
- }
-
- for (i = 0; i < ops->length (); ++i)
- subops[i].release ();
- free (subops);
- cvec.release ();
- sbitmap_free (candidates);
- sbitmap_free (candidates2);
-
- return changed;
-}
-
-/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
- expression, examine the other OPS to see if any of them are comparisons
- of the same values, which we may be able to combine or eliminate.
- For example, we can rewrite (a < b) | (a == b) as (a <= b). */
-
-static bool
-eliminate_redundant_comparison (enum tree_code opcode,
- vec<operand_entry_t> *ops,
- unsigned int currindex,
- operand_entry_t curr)
-{
- tree op1, op2;
- enum tree_code lcode, rcode;
- gimple def1, def2;
- int i;
- operand_entry_t oe;
-
- if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
- return false;
-
- /* Check that CURR is a comparison. */
- if (TREE_CODE (curr->op) != SSA_NAME)
- return false;
- def1 = SSA_NAME_DEF_STMT (curr->op);
- if (!is_gimple_assign (def1))
- return false;
- lcode = gimple_assign_rhs_code (def1);
- if (TREE_CODE_CLASS (lcode) != tcc_comparison)
- return false;
- op1 = gimple_assign_rhs1 (def1);
- op2 = gimple_assign_rhs2 (def1);
-
- /* Now look for a similar comparison in the remaining OPS. */
- for (i = currindex + 1; ops->iterate (i, &oe); i++)
- {
- tree t;
-
- if (TREE_CODE (oe->op) != SSA_NAME)
- continue;
- def2 = SSA_NAME_DEF_STMT (oe->op);
- if (!is_gimple_assign (def2))
- continue;
- rcode = gimple_assign_rhs_code (def2);
- if (TREE_CODE_CLASS (rcode) != tcc_comparison)
- continue;
-
- /* If we got here, we have a match. See if we can combine the
- two comparisons. */
- if (opcode == BIT_IOR_EXPR)
- t = maybe_fold_or_comparisons (lcode, op1, op2,
- rcode, gimple_assign_rhs1 (def2),
- gimple_assign_rhs2 (def2));
- else
- t = maybe_fold_and_comparisons (lcode, op1, op2,
- rcode, gimple_assign_rhs1 (def2),
- gimple_assign_rhs2 (def2));
- if (!t)
- continue;
-
- /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
- always give us a boolean_type_node value back. If the original
- BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
- we need to convert. */
- if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
- t = fold_convert (TREE_TYPE (curr->op), t);
-
- if (TREE_CODE (t) != INTEGER_CST
- && !operand_equal_p (t, curr->op, 0))
- {
- enum tree_code subcode;
- tree newop1, newop2;
- if (!COMPARISON_CLASS_P (t))
- continue;
- extract_ops_from_tree (t, &subcode, &newop1, &newop2);
- STRIP_USELESS_TYPE_CONVERSION (newop1);
- STRIP_USELESS_TYPE_CONVERSION (newop2);
- if (!is_gimple_val (newop1) || !is_gimple_val (newop2))
- continue;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Equivalence: ");
- print_generic_expr (dump_file, curr->op, 0);
- fprintf (dump_file, " %s ", op_symbol_code (opcode));
- print_generic_expr (dump_file, oe->op, 0);
- fprintf (dump_file, " -> ");
- print_generic_expr (dump_file, t, 0);
- fprintf (dump_file, "\n");
- }
-
- /* Now we can delete oe, as it has been subsumed by the new combined
- expression t. */
- ops->ordered_remove (i);
- reassociate_stats.ops_eliminated ++;
-
- /* If t is the same as curr->op, we're done. Otherwise we must
- replace curr->op with t. Special case is if we got a constant
- back, in which case we add it to the end instead of in place of
- the current entry. */
- if (TREE_CODE (t) == INTEGER_CST)
- {
- ops->ordered_remove (currindex);
- add_to_ops_vec (ops, t);
- }
- else if (!operand_equal_p (t, curr->op, 0))
- {
- gimple sum;
- enum tree_code subcode;
- tree newop1;
- tree newop2;
- gcc_assert (COMPARISON_CLASS_P (t));
- extract_ops_from_tree (t, &subcode, &newop1, &newop2);
- STRIP_USELESS_TYPE_CONVERSION (newop1);
- STRIP_USELESS_TYPE_CONVERSION (newop2);
- gcc_checking_assert (is_gimple_val (newop1)
- && is_gimple_val (newop2));
- sum = build_and_add_sum (TREE_TYPE (t), newop1, newop2, subcode);
- curr->op = gimple_get_lhs (sum);
- }
- return true;
- }
-
- return false;
-}
-
-/* Perform various identities and other optimizations on the list of
- operand entries, stored in OPS. The tree code for the binary
- operation between all the operands is OPCODE. */
-
-static void
-optimize_ops_list (enum tree_code opcode,
- vec<operand_entry_t> *ops)
-{
- unsigned int length = ops->length ();
- unsigned int i;
- operand_entry_t oe;
- operand_entry_t oelast = NULL;
- bool iterate = false;
-
- if (length == 1)
- return;
-
- oelast = ops->last ();
-
- /* If the last two are constants, pop the constants off, merge them
- and try the next two. */
- if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
- {
- operand_entry_t oelm1 = (*ops)[length - 2];
-
- if (oelm1->rank == 0
- && is_gimple_min_invariant (oelm1->op)
- && useless_type_conversion_p (TREE_TYPE (oelm1->op),
- TREE_TYPE (oelast->op)))
- {
- tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
- oelm1->op, oelast->op);
-
- if (folded && is_gimple_min_invariant (folded))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Merging constants\n");
-
- ops->pop ();
- ops->pop ();
-
- add_to_ops_vec (ops, folded);
- reassociate_stats.constants_eliminated++;
-
- optimize_ops_list (opcode, ops);
- return;
- }
- }
- }
-
- eliminate_using_constants (opcode, ops);
- oelast = NULL;
-
- for (i = 0; ops->iterate (i, &oe);)
- {
- bool done = false;
-
- if (eliminate_not_pairs (opcode, ops, i, oe))
- return;
- if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
- || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
- || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
- {
- if (done)
- return;
- iterate = true;
- oelast = NULL;
- continue;
- }
- oelast = oe;
- i++;
- }
-
- length = ops->length ();
- oelast = ops->last ();
-
- if (iterate)
- optimize_ops_list (opcode, ops);
-}
-
-/* The following functions are subroutines to optimize_range_tests and allow
- it to try to change a logical combination of comparisons into a range
- test.
-
- For example, both
- X == 2 || X == 5 || X == 3 || X == 4
- and
- X >= 2 && X <= 5
- are converted to
- (unsigned) (X - 2) <= 3
-
- For more information see comments above fold_test_range in fold-const.c,
- this implementation is for GIMPLE. */
-
-struct range_entry
-{
- tree exp;
- tree low;
- tree high;
- bool in_p;
- bool strict_overflow_p;
- unsigned int idx, next;
-};
-
-/* This is similar to make_range in fold-const.c, but on top of
- GIMPLE instead of trees. If EXP is non-NULL, it should be
- an SSA_NAME and STMT argument is ignored, otherwise STMT
- argument should be a GIMPLE_COND. */
-
-static void
-init_range_entry (struct range_entry *r, tree exp, gimple stmt)
-{
- int in_p;
- tree low, high;
- bool is_bool, strict_overflow_p;
-
- r->exp = NULL_TREE;
- r->in_p = false;
- r->strict_overflow_p = false;
- r->low = NULL_TREE;
- r->high = NULL_TREE;
- if (exp != NULL_TREE
- && (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp))))
- return;
-
- /* Start with simply saying "EXP != 0" and then look at the code of EXP
- and see if we can refine the range. Some of the cases below may not
- happen, but it doesn't seem worth worrying about this. We "continue"
- the outer loop when we've changed something; otherwise we "break"
- the switch, which will "break" the while. */
- low = exp ? build_int_cst (TREE_TYPE (exp), 0) : boolean_false_node;
- high = low;
- in_p = 0;
- strict_overflow_p = false;
- is_bool = false;
- if (exp == NULL_TREE)
- is_bool = true;
- else if (TYPE_PRECISION (TREE_TYPE (exp)) == 1)
- {
- if (TYPE_UNSIGNED (TREE_TYPE (exp)))
- is_bool = true;
- else
- return;
- }
- else if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
- is_bool = true;
-
- while (1)
- {
- enum tree_code code;
- tree arg0, arg1, exp_type;
- tree nexp;
- location_t loc;
-
- if (exp != NULL_TREE)
- {
- if (TREE_CODE (exp) != SSA_NAME)
- break;
-
- stmt = SSA_NAME_DEF_STMT (exp);
- if (!is_gimple_assign (stmt))
- break;
-
- code = gimple_assign_rhs_code (stmt);
- arg0 = gimple_assign_rhs1 (stmt);
- arg1 = gimple_assign_rhs2 (stmt);
- exp_type = TREE_TYPE (exp);
- }
- else
- {
- code = gimple_cond_code (stmt);
- arg0 = gimple_cond_lhs (stmt);
- arg1 = gimple_cond_rhs (stmt);
- exp_type = boolean_type_node;
- }
-
- if (TREE_CODE (arg0) != SSA_NAME)
- break;
- loc = gimple_location (stmt);
- switch (code)
- {
- case BIT_NOT_EXPR:
- if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
- {
- in_p = !in_p;
- exp = arg0;
- continue;
- }
- break;
- case SSA_NAME:
- exp = arg0;
- continue;
- CASE_CONVERT:
- if (is_bool)
- goto do_default;
- if (TYPE_PRECISION (TREE_TYPE (arg0)) == 1)
- {
- if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
- is_bool = true;
- else
- return;
- }
- else if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE)
- is_bool = true;
- goto do_default;
- case EQ_EXPR:
- case NE_EXPR:
- case LT_EXPR:
- case LE_EXPR:
- case GE_EXPR:
- case GT_EXPR:
- is_bool = true;
- /* FALLTHRU */
- default:
- if (!is_bool)
- return;
- do_default:
- nexp = make_range_step (loc, code, arg0, arg1, exp_type,
- &low, &high, &in_p,
- &strict_overflow_p);
- if (nexp != NULL_TREE)
- {
- exp = nexp;
- gcc_assert (TREE_CODE (exp) == SSA_NAME);
- continue;
- }
- break;
- }
- break;
- }
- if (is_bool)
- {
- r->exp = exp;
- r->in_p = in_p;
- r->low = low;
- r->high = high;
- r->strict_overflow_p = strict_overflow_p;
- }
-}
-
-/* Comparison function for qsort. Sort entries
- without SSA_NAME exp first, then with SSA_NAMEs sorted
- by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
- by increasing ->low and if ->low is the same, by increasing
- ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
- maximum. */
-
-static int
-range_entry_cmp (const void *a, const void *b)
-{
- const struct range_entry *p = (const struct range_entry *) a;
- const struct range_entry *q = (const struct range_entry *) b;
-
- if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
- {
- if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
- {
- /* Group range_entries for the same SSA_NAME together. */
- if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
- return -1;
- else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
- return 1;
- /* If ->low is different, NULL low goes first, then by
- ascending low. */
- if (p->low != NULL_TREE)
- {
- if (q->low != NULL_TREE)
- {
- tree tem = fold_binary (LT_EXPR, boolean_type_node,
- p->low, q->low);
- if (tem && integer_onep (tem))
- return -1;
- tem = fold_binary (GT_EXPR, boolean_type_node,
- p->low, q->low);
- if (tem && integer_onep (tem))
- return 1;
- }
- else
- return 1;
- }
- else if (q->low != NULL_TREE)
- return -1;
- /* If ->high is different, NULL high goes last, before that by
- ascending high. */
- if (p->high != NULL_TREE)
- {
- if (q->high != NULL_TREE)
- {
- tree tem = fold_binary (LT_EXPR, boolean_type_node,
- p->high, q->high);
- if (tem && integer_onep (tem))
- return -1;
- tem = fold_binary (GT_EXPR, boolean_type_node,
- p->high, q->high);
- if (tem && integer_onep (tem))
- return 1;
- }
- else
- return -1;
- }
- else if (p->high != NULL_TREE)
- return 1;
- /* If both ranges are the same, sort below by ascending idx. */
- }
- else
- return 1;
- }
- else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
- return -1;
-
- if (p->idx < q->idx)
- return -1;
- else
- {
- gcc_checking_assert (p->idx > q->idx);
- return 1;
- }
-}
-
-/* Helper routine of optimize_range_test.
- [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
- RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
- OPCODE and OPS are arguments of optimize_range_tests. Return
- true if the range merge has been successful.
- If OPCODE is ERROR_MARK, this is called from within
- maybe_optimize_range_tests and is performing inter-bb range optimization.
- Changes should be then performed right away, and whether an op is
- BIT_AND_EXPR or BIT_IOR_EXPR is found in oe->rank. */
-
-static bool
-update_range_test (struct range_entry *range, struct range_entry *otherrange,
- unsigned int count, enum tree_code opcode,
- vec<operand_entry_t> *ops, tree exp, bool in_p,
- tree low, tree high, bool strict_overflow_p)
-{
- operand_entry_t oe = (*ops)[range->idx];
- tree op = oe->op;
- gimple stmt = op ? SSA_NAME_DEF_STMT (op) : last_stmt (BASIC_BLOCK (oe->id));
- location_t loc = gimple_location (stmt);
- tree optype = op ? TREE_TYPE (op) : boolean_type_node;
- tree tem = build_range_check (loc, optype, exp, in_p, low, high);
- enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
- gimple_stmt_iterator gsi;
-
- if (tem == NULL_TREE)
- return false;
-
- if (strict_overflow_p && issue_strict_overflow_warning (wc))
- warning_at (loc, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur "
- "when simplifying range test");
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- struct range_entry *r;
- fprintf (dump_file, "Optimizing range tests ");
- print_generic_expr (dump_file, range->exp, 0);
- fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
- print_generic_expr (dump_file, range->low, 0);
- fprintf (dump_file, ", ");
- print_generic_expr (dump_file, range->high, 0);
- fprintf (dump_file, "]");
- for (r = otherrange; r < otherrange + count; r++)
- {
- fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
- print_generic_expr (dump_file, r->low, 0);
- fprintf (dump_file, ", ");
- print_generic_expr (dump_file, r->high, 0);
- fprintf (dump_file, "]");
- }
- fprintf (dump_file, "\n into ");
- print_generic_expr (dump_file, tem, 0);
- fprintf (dump_file, "\n");
- }
-
- if (opcode == BIT_IOR_EXPR
- || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
- tem = invert_truthvalue_loc (loc, tem);
-
- tem = fold_convert_loc (loc, optype, tem);
- gsi = gsi_for_stmt (stmt);
- tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
- GSI_SAME_STMT);
-
- /* If doing inter-bb range test optimization, update the
- stmts immediately. Start with changing the first range test
- immediate use to the new value (TEM), or, if the first range
- test is a GIMPLE_COND stmt, change that condition. */
- if (opcode == ERROR_MARK)
- {
- if (op)
- {
- imm_use_iterator iter;
- use_operand_p use_p;
- gimple use_stmt;
-
- FOR_EACH_IMM_USE_STMT (use_stmt, iter, op)
- {
- if (is_gimple_debug (use_stmt))
- continue;
- FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
- SET_USE (use_p, tem);
- update_stmt (use_stmt);
- }
- }
- else
- {
- gimple_cond_set_code (stmt, NE_EXPR);
- gimple_cond_set_lhs (stmt, tem);
- gimple_cond_set_rhs (stmt, boolean_false_node);
- update_stmt (stmt);
- }
- }
- oe->op = tem;
- range->exp = exp;
- range->low = low;
- range->high = high;
- range->in_p = in_p;
- range->strict_overflow_p = false;
-
- for (range = otherrange; range < otherrange + count; range++)
- {
- oe = (*ops)[range->idx];
- /* Now change all the other range test immediate uses, so that
- those tests will be optimized away. */
- if (opcode == ERROR_MARK)
- {
- if (oe->op)
- {
- imm_use_iterator iter;
- use_operand_p use_p;
- gimple use_stmt;
-
- FOR_EACH_IMM_USE_STMT (use_stmt, iter, oe->op)
- {
- if (is_gimple_debug (use_stmt))
- continue;
- /* If imm use of _8 is a statement like _7 = _8 | _9;,
- adjust it into _7 = _9;. */
- if (is_gimple_assign (use_stmt)
- && gimple_assign_rhs_code (use_stmt) == oe->rank)
- {
- tree expr = NULL_TREE;
- if (oe->op == gimple_assign_rhs1 (use_stmt))
- expr = gimple_assign_rhs2 (use_stmt);
- else if (oe->op == gimple_assign_rhs2 (use_stmt))
- expr = gimple_assign_rhs1 (use_stmt);
- if (expr
- && expr != oe->op
- && TREE_CODE (expr) == SSA_NAME)
- {
- gimple_stmt_iterator gsi2 = gsi_for_stmt (use_stmt);
- gimple_assign_set_rhs_with_ops (&gsi2, SSA_NAME,
- expr, NULL_TREE);
- update_stmt (use_stmt);
- continue;
- }
- }
- /* If imm use of _8 is a statement like _7 = (int) _8;,
- adjust it into _7 = 0; or _7 = 1;. */
- if (gimple_assign_cast_p (use_stmt)
- && oe->op == gimple_assign_rhs1 (use_stmt))
- {
- tree lhs = gimple_assign_lhs (use_stmt);
- if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
- {
- gimple_stmt_iterator gsi2
- = gsi_for_stmt (use_stmt);
- tree expr = build_int_cst (TREE_TYPE (lhs),
- oe->rank == BIT_IOR_EXPR
- ? 0 : 1);
- gimple_assign_set_rhs_with_ops (&gsi2,
- INTEGER_CST,
- expr, NULL_TREE);
- update_stmt (use_stmt);
- continue;
- }
- }
- /* Otherwise replace the use with 0 or 1. */
- FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
- SET_USE (use_p,
- build_int_cst (TREE_TYPE (oe->op),
- oe->rank == BIT_IOR_EXPR
- ? 0 : 1));
- update_stmt (use_stmt);
- }
- }
- else
- {
- /* If range test was a GIMPLE_COND, simply change it
- into an always false or always true condition. */
- stmt = last_stmt (BASIC_BLOCK (oe->id));
- if (oe->rank == BIT_IOR_EXPR)
- gimple_cond_make_false (stmt);
- else
- gimple_cond_make_true (stmt);
- update_stmt (stmt);
- }
- }
- oe->op = error_mark_node;
- range->exp = NULL_TREE;
- }
- return true;
-}
-
-/* Optimize range tests, similarly how fold_range_test optimizes
- it on trees. The tree code for the binary
- operation between all the operands is OPCODE.
- If OPCODE is ERROR_MARK, optimize_range_tests is called from within
- maybe_optimize_range_tests for inter-bb range optimization.
- In that case if oe->op is NULL, oe->id is bb->index whose
- GIMPLE_COND is && or ||ed into the test, and oe->rank says
- the actual opcode. */
-
-static void
-optimize_range_tests (enum tree_code opcode,
- vec<operand_entry_t> *ops)
-{
- unsigned int length = ops->length (), i, j, first;
- operand_entry_t oe;
- struct range_entry *ranges;
- bool any_changes = false;
-
- if (length == 1)
- return;
-
- ranges = XNEWVEC (struct range_entry, length);
- for (i = 0; i < length; i++)
- {
- oe = (*ops)[i];
- ranges[i].idx = i;
- init_range_entry (ranges + i, oe->op,
- oe->op ? NULL : last_stmt (BASIC_BLOCK (oe->id)));
- /* For | invert it now, we will invert it again before emitting
- the optimized expression. */
- if (opcode == BIT_IOR_EXPR
- || (opcode == ERROR_MARK && oe->rank == BIT_IOR_EXPR))
- ranges[i].in_p = !ranges[i].in_p;
- }
-
- qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
- for (i = 0; i < length; i++)
- if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
- break;
-
- /* Try to merge ranges. */
- for (first = i; i < length; i++)
- {
- tree low = ranges[i].low;
- tree high = ranges[i].high;
- int in_p = ranges[i].in_p;
- bool strict_overflow_p = ranges[i].strict_overflow_p;
- int update_fail_count = 0;
-
- for (j = i + 1; j < length; j++)
- {
- if (ranges[i].exp != ranges[j].exp)
- break;
- if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
- ranges[j].in_p, ranges[j].low, ranges[j].high))
- break;
- strict_overflow_p |= ranges[j].strict_overflow_p;
- }
-
- if (j == i + 1)
- continue;
-
- if (update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode,
- ops, ranges[i].exp, in_p, low, high,
- strict_overflow_p))
- {
- i = j - 1;
- any_changes = true;
- }
- /* Avoid quadratic complexity if all merge_ranges calls would succeed,
- while update_range_test would fail. */
- else if (update_fail_count == 64)
- i = j - 1;
- else
- ++update_fail_count;
- }
-
- /* Optimize X == CST1 || X == CST2
- if popcount (CST1 ^ CST2) == 1 into
- (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
- Similarly for ranges. E.g.
- X != 2 && X != 3 && X != 10 && X != 11
- will be transformed by the above loop into
- (X - 2U) <= 1U && (X - 10U) <= 1U
- and this loop can transform that into
- ((X & ~8) - 2U) <= 1U. */
- for (i = first; i < length; i++)
- {
- tree lowi, highi, lowj, highj, type, lowxor, highxor, tem, exp;
-
- if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
- continue;
- type = TREE_TYPE (ranges[i].exp);
- if (!INTEGRAL_TYPE_P (type))
- continue;
- lowi = ranges[i].low;
- if (lowi == NULL_TREE)
- lowi = TYPE_MIN_VALUE (type);
- highi = ranges[i].high;
- if (highi == NULL_TREE)
- continue;
- for (j = i + 1; j < length && j < i + 64; j++)
- {
- if (ranges[j].exp == NULL_TREE)
- continue;
- if (ranges[i].exp != ranges[j].exp)
- break;
- if (ranges[j].in_p)
- continue;
- lowj = ranges[j].low;
- if (lowj == NULL_TREE)
- continue;
- highj = ranges[j].high;
- if (highj == NULL_TREE)
- highj = TYPE_MAX_VALUE (type);
- tem = fold_binary (GT_EXPR, boolean_type_node,
- lowj, highi);
- if (tem == NULL_TREE || !integer_onep (tem))
- continue;
- lowxor = fold_binary (BIT_XOR_EXPR, type, lowi, lowj);
- if (lowxor == NULL_TREE || TREE_CODE (lowxor) != INTEGER_CST)
- continue;
- gcc_checking_assert (!integer_zerop (lowxor));
- tem = fold_binary (MINUS_EXPR, type, lowxor,
- build_int_cst (type, 1));
- if (tem == NULL_TREE)
- continue;
- tem = fold_binary (BIT_AND_EXPR, type, lowxor, tem);
- if (tem == NULL_TREE || !integer_zerop (tem))
- continue;
- highxor = fold_binary (BIT_XOR_EXPR, type, highi, highj);
- if (!tree_int_cst_equal (lowxor, highxor))
- continue;
- tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
- exp = fold_build2 (BIT_AND_EXPR, type, ranges[i].exp, tem);
- lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
- highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
- if (update_range_test (ranges + i, ranges + j, 1, opcode, ops, exp,
- ranges[i].in_p, lowj, highj,
- ranges[i].strict_overflow_p
- || ranges[j].strict_overflow_p))
- {
- any_changes = true;
- break;
- }
- }
- }
-
- if (any_changes && opcode != ERROR_MARK)
- {
- j = 0;
- FOR_EACH_VEC_ELT (*ops, i, oe)
- {
- if (oe->op == error_mark_node)
- continue;
- else if (i != j)
- (*ops)[j] = oe;
- j++;
- }
- ops->truncate (j);
- }
-
- XDELETEVEC (ranges);
-}
-
-/* Return true if STMT is a cast like:
- <bb N>:
- ...
- _123 = (int) _234;
-
- <bb M>:
- # _345 = PHI <_123(N), 1(...), 1(...)>
- where _234 has bool type, _123 has single use and
- bb N has a single successor M. This is commonly used in
- the last block of a range test. */
-
-static bool
-final_range_test_p (gimple stmt)
-{
- basic_block bb, rhs_bb;
- edge e;
- tree lhs, rhs;
- use_operand_p use_p;
- gimple use_stmt;
-
- if (!gimple_assign_cast_p (stmt))
- return false;
- bb = gimple_bb (stmt);
- if (!single_succ_p (bb))
- return false;
- e = single_succ_edge (bb);
- if (e->flags & EDGE_COMPLEX)
- return false;
-
- lhs = gimple_assign_lhs (stmt);
- rhs = gimple_assign_rhs1 (stmt);
- if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || TREE_CODE (rhs) != SSA_NAME
- || TREE_CODE (TREE_TYPE (rhs)) != BOOLEAN_TYPE)
- return false;
-
- /* Test whether lhs is consumed only by a PHI in the only successor bb. */
- if (!single_imm_use (lhs, &use_p, &use_stmt))
- return false;
-
- if (gimple_code (use_stmt) != GIMPLE_PHI
- || gimple_bb (use_stmt) != e->dest)
- return false;
-
- /* And that the rhs is defined in the same loop. */
- rhs_bb = gimple_bb (SSA_NAME_DEF_STMT (rhs));
- if (rhs_bb == NULL
- || !flow_bb_inside_loop_p (loop_containing_stmt (stmt), rhs_bb))
- return false;
-
- return true;
-}
-
-/* Return true if BB is suitable basic block for inter-bb range test
- optimization. If BACKWARD is true, BB should be the only predecessor
- of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
- or compared with to find a common basic block to which all conditions
- branch to if true resp. false. If BACKWARD is false, TEST_BB should
- be the only predecessor of BB. */
-
-static bool
-suitable_cond_bb (basic_block bb, basic_block test_bb, basic_block *other_bb,
- bool backward)
-{
- edge_iterator ei, ei2;
- edge e, e2;
- gimple stmt;
- gimple_stmt_iterator gsi;
- bool other_edge_seen = false;
- bool is_cond;
-
- if (test_bb == bb)
- return false;
- /* Check last stmt first. */
- stmt = last_stmt (bb);
- if (stmt == NULL
- || (gimple_code (stmt) != GIMPLE_COND
- && (backward || !final_range_test_p (stmt)))
- || gimple_visited_p (stmt)
- || stmt_could_throw_p (stmt)
- || *other_bb == bb)
- return false;
- is_cond = gimple_code (stmt) == GIMPLE_COND;
- if (is_cond)
- {
- /* If last stmt is GIMPLE_COND, verify that one of the succ edges
- goes to the next bb (if BACKWARD, it is TEST_BB), and the other
- to *OTHER_BB (if not set yet, try to find it out). */
- if (EDGE_COUNT (bb->succs) != 2)
- return false;
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
- return false;
- if (e->dest == test_bb)
- {
- if (backward)
- continue;
- else
- return false;
- }
- if (e->dest == bb)
- return false;
- if (*other_bb == NULL)
- {
- FOR_EACH_EDGE (e2, ei2, test_bb->succs)
- if (!(e2->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
- return false;
- else if (e->dest == e2->dest)
- *other_bb = e->dest;
- if (*other_bb == NULL)
- return false;
- }
- if (e->dest == *other_bb)
- other_edge_seen = true;
- else if (backward)
- return false;
- }
- if (*other_bb == NULL || !other_edge_seen)
- return false;
- }
- else if (single_succ (bb) != *other_bb)
- return false;
-
- /* Now check all PHIs of *OTHER_BB. */
- e = find_edge (bb, *other_bb);
- e2 = find_edge (test_bb, *other_bb);
- for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple phi = gsi_stmt (gsi);
- /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
- corresponding to BB and TEST_BB predecessor must be the same. */
- if (!operand_equal_p (gimple_phi_arg_def (phi, e->dest_idx),
- gimple_phi_arg_def (phi, e2->dest_idx), 0))
- {
- /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
- one of the PHIs should have the lhs of the last stmt in
- that block as PHI arg and that PHI should have 0 or 1
- corresponding to it in all other range test basic blocks
- considered. */
- if (!is_cond)
- {
- if (gimple_phi_arg_def (phi, e->dest_idx)
- == gimple_assign_lhs (stmt)
- && (integer_zerop (gimple_phi_arg_def (phi, e2->dest_idx))
- || integer_onep (gimple_phi_arg_def (phi,
- e2->dest_idx))))
- continue;
- }
- else
- {
- gimple test_last = last_stmt (test_bb);
- if (gimple_code (test_last) != GIMPLE_COND
- && gimple_phi_arg_def (phi, e2->dest_idx)
- == gimple_assign_lhs (test_last)
- && (integer_zerop (gimple_phi_arg_def (phi, e->dest_idx))
- || integer_onep (gimple_phi_arg_def (phi, e->dest_idx))))
- continue;
- }
-
- return false;
- }
- }
- return true;
-}
-
-/* Return true if BB doesn't have side-effects that would disallow
- range test optimization, all SSA_NAMEs set in the bb are consumed
- in the bb and there are no PHIs. */
-
-static bool
-no_side_effect_bb (basic_block bb)
-{
- gimple_stmt_iterator gsi;
- gimple last;
-
- if (!gimple_seq_empty_p (phi_nodes (bb)))
- return false;
- last = last_stmt (bb);
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- tree lhs;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- if (is_gimple_debug (stmt))
- continue;
- if (gimple_has_side_effects (stmt))
- return false;
- if (stmt == last)
- return true;
- if (!is_gimple_assign (stmt))
- return false;
- lhs = gimple_assign_lhs (stmt);
- if (TREE_CODE (lhs) != SSA_NAME)
- return false;
- if (gimple_assign_rhs_could_trap_p (stmt))
- return false;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
- {
- gimple use_stmt = USE_STMT (use_p);
- if (is_gimple_debug (use_stmt))
- continue;
- if (gimple_bb (use_stmt) != bb)
- return false;
- }
- }
- return false;
-}
-
-/* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
- return true and fill in *OPS recursively. */
-
-static bool
-get_ops (tree var, enum tree_code code, vec<operand_entry_t> *ops,
- struct loop *loop)
-{
- gimple stmt = SSA_NAME_DEF_STMT (var);
- tree rhs[2];
- int i;
-
- if (!is_reassociable_op (stmt, code, loop))
- return false;
-
- rhs[0] = gimple_assign_rhs1 (stmt);
- rhs[1] = gimple_assign_rhs2 (stmt);
- gimple_set_visited (stmt, true);
- for (i = 0; i < 2; i++)
- if (TREE_CODE (rhs[i]) == SSA_NAME
- && !get_ops (rhs[i], code, ops, loop)
- && has_single_use (rhs[i]))
- {
- operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
-
- oe->op = rhs[i];
- oe->rank = code;
- oe->id = 0;
- oe->count = 1;
- ops->safe_push (oe);
- }
- return true;
-}
-
-/* Inter-bb range test optimization. */
-
-static void
-maybe_optimize_range_tests (gimple stmt)
-{
- basic_block first_bb = gimple_bb (stmt);
- basic_block last_bb = first_bb;
- basic_block other_bb = NULL;
- basic_block bb;
- edge_iterator ei;
- edge e;
- vec<operand_entry_t> ops = vNULL;
-
- /* Consider only basic blocks that end with GIMPLE_COND or
- a cast statement satisfying final_range_test_p. All
- but the last bb in the first_bb .. last_bb range
- should end with GIMPLE_COND. */
- if (gimple_code (stmt) == GIMPLE_COND)
- {
- if (EDGE_COUNT (first_bb->succs) != 2)
- return;
- }
- else if (final_range_test_p (stmt))
- other_bb = single_succ (first_bb);
- else
- return;
-
- if (stmt_could_throw_p (stmt))
- return;
-
- /* As relative ordering of post-dominator sons isn't fixed,
- maybe_optimize_range_tests can be called first on any
- bb in the range we want to optimize. So, start searching
- backwards, if first_bb can be set to a predecessor. */
- while (single_pred_p (first_bb))
- {
- basic_block pred_bb = single_pred (first_bb);
- if (!suitable_cond_bb (pred_bb, first_bb, &other_bb, true))
- break;
- if (!no_side_effect_bb (first_bb))
- break;
- first_bb = pred_bb;
- }
- /* If first_bb is last_bb, other_bb hasn't been computed yet.
- Before starting forward search in last_bb successors, find
- out the other_bb. */
- if (first_bb == last_bb)
- {
- other_bb = NULL;
- /* As non-GIMPLE_COND last stmt always terminates the range,
- if forward search didn't discover anything, just give up. */
- if (gimple_code (stmt) != GIMPLE_COND)
- return;
- /* Look at both successors. Either it ends with a GIMPLE_COND
- and satisfies suitable_cond_bb, or ends with a cast and
- other_bb is that cast's successor. */
- FOR_EACH_EDGE (e, ei, first_bb->succs)
- if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
- || e->dest == first_bb)
- return;
- else if (single_pred_p (e->dest))
- {
- stmt = last_stmt (e->dest);
- if (stmt
- && gimple_code (stmt) == GIMPLE_COND
- && EDGE_COUNT (e->dest->succs) == 2)
- {
- if (suitable_cond_bb (first_bb, e->dest, &other_bb, true))
- break;
- else
- other_bb = NULL;
- }
- else if (stmt
- && final_range_test_p (stmt)
- && find_edge (first_bb, single_succ (e->dest)))
- {
- other_bb = single_succ (e->dest);
- if (other_bb == first_bb)
- other_bb = NULL;
- }
- }
- if (other_bb == NULL)
- return;
- }
- /* Now do the forward search, moving last_bb to successor bbs
- that aren't other_bb. */
- while (EDGE_COUNT (last_bb->succs) == 2)
- {
- FOR_EACH_EDGE (e, ei, last_bb->succs)
- if (e->dest != other_bb)
- break;
- if (e == NULL)
- break;
- if (!single_pred_p (e->dest))
- break;
- if (!suitable_cond_bb (e->dest, last_bb, &other_bb, false))
- break;
- if (!no_side_effect_bb (e->dest))
- break;
- last_bb = e->dest;
- }
- if (first_bb == last_bb)
- return;
- /* Here basic blocks first_bb through last_bb's predecessor
- end with GIMPLE_COND, all of them have one of the edges to
- other_bb and another to another block in the range,
- all blocks except first_bb don't have side-effects and
- last_bb ends with either GIMPLE_COND, or cast satisfying
- final_range_test_p. */
- for (bb = last_bb; ; bb = single_pred (bb))
- {
- enum tree_code code;
- tree lhs, rhs;
-
- e = find_edge (bb, other_bb);
- stmt = last_stmt (bb);
- gimple_set_visited (stmt, true);
- if (gimple_code (stmt) != GIMPLE_COND)
- {
- use_operand_p use_p;
- gimple phi;
- edge e2;
- unsigned int d;
-
- lhs = gimple_assign_lhs (stmt);
- rhs = gimple_assign_rhs1 (stmt);
- gcc_assert (bb == last_bb);
-
- /* stmt is
- _123 = (int) _234;
-
- followed by:
- <bb M>:
- # _345 = PHI <_123(N), 1(...), 1(...)>
-
- or 0 instead of 1. If it is 0, the _234
- range test is anded together with all the
- other range tests, if it is 1, it is ored with
- them. */
- single_imm_use (lhs, &use_p, &phi);
- gcc_assert (gimple_code (phi) == GIMPLE_PHI);
- e2 = find_edge (first_bb, other_bb);
- d = e2->dest_idx;
- gcc_assert (gimple_phi_arg_def (phi, e->dest_idx) == lhs);
- if (integer_zerop (gimple_phi_arg_def (phi, d)))
- code = BIT_AND_EXPR;
- else
- {
- gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi, d)));
- code = BIT_IOR_EXPR;
- }
-
- /* If _234 SSA_NAME_DEF_STMT is
- _234 = _567 | _789;
- (or &, corresponding to 1/0 in the phi arguments,
- push into ops the individual range test arguments
- of the bitwise or resp. and, recursively. */
- if (!get_ops (rhs, code, &ops,
- loop_containing_stmt (stmt))
- && has_single_use (rhs))
- {
- /* Otherwise, push the _234 range test itself. */
- operand_entry_t oe
- = (operand_entry_t) pool_alloc (operand_entry_pool);
-
- oe->op = rhs;
- oe->rank = code;
- oe->id = 0;
- oe->count = 1;
- ops.safe_push (oe);
- }
- continue;
- }
- /* Otherwise stmt is GIMPLE_COND. */
- code = gimple_cond_code (stmt);
- lhs = gimple_cond_lhs (stmt);
- rhs = gimple_cond_rhs (stmt);
- if (TREE_CODE (lhs) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- && ((code != EQ_EXPR && code != NE_EXPR)
- || rhs != boolean_false_node
- /* Either push into ops the individual bitwise
- or resp. and operands, depending on which
- edge is other_bb. */
- || !get_ops (lhs, (((e->flags & EDGE_TRUE_VALUE) == 0)
- ^ (code == EQ_EXPR))
- ? BIT_AND_EXPR : BIT_IOR_EXPR, &ops,
- loop_containing_stmt (stmt))))
- {
- /* Or push the GIMPLE_COND stmt itself. */
- operand_entry_t oe
- = (operand_entry_t) pool_alloc (operand_entry_pool);
-
- oe->op = NULL;
- oe->rank = (e->flags & EDGE_TRUE_VALUE)
- ? BIT_IOR_EXPR : BIT_AND_EXPR;
- /* oe->op = NULL signs that there is no SSA_NAME
- for the range test, and oe->id instead is the
- basic block number, at which's end the GIMPLE_COND
- is. */
- oe->id = bb->index;
- oe->count = 1;
- ops.safe_push (oe);
- }
- if (bb == first_bb)
- break;
- }
- if (ops.length () > 1)
- optimize_range_tests (ERROR_MARK, &ops);
- ops.release ();
-}
-
-/* Return true if OPERAND is defined by a PHI node which uses the LHS
- of STMT in it's operands. This is also known as a "destructive
- update" operation. */
-
-static bool
-is_phi_for_stmt (gimple stmt, tree operand)
-{
- gimple def_stmt;
- tree lhs;
- use_operand_p arg_p;
- ssa_op_iter i;
-
- if (TREE_CODE (operand) != SSA_NAME)
- return false;
-
- lhs = gimple_assign_lhs (stmt);
-
- def_stmt = SSA_NAME_DEF_STMT (operand);
- if (gimple_code (def_stmt) != GIMPLE_PHI)
- return false;
-
- FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
- if (lhs == USE_FROM_PTR (arg_p))
- return true;
- return false;
-}
-
-/* Remove def stmt of VAR if VAR has zero uses and recurse
- on rhs1 operand if so. */
-
-static void
-remove_visited_stmt_chain (tree var)
-{
- gimple stmt;
- gimple_stmt_iterator gsi;
-
- while (1)
- {
- if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
- return;
- stmt = SSA_NAME_DEF_STMT (var);
- if (is_gimple_assign (stmt) && gimple_visited_p (stmt))
- {
- var = gimple_assign_rhs1 (stmt);
- gsi = gsi_for_stmt (stmt);
- gsi_remove (&gsi, true);
- release_defs (stmt);
- }
- else
- return;
- }
-}
-
-/* This function checks three consequtive operands in
- passed operands vector OPS starting from OPINDEX and
- swaps two operands if it is profitable for binary operation
- consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
-
- We pair ops with the same rank if possible.
-
- The alternative we try is to see if STMT is a destructive
- update style statement, which is like:
- b = phi (a, ...)
- a = c + b;
- In that case, we want to use the destructive update form to
- expose the possible vectorizer sum reduction opportunity.
- In that case, the third operand will be the phi node. This
- check is not performed if STMT is null.
-
- We could, of course, try to be better as noted above, and do a
- lot of work to try to find these opportunities in >3 operand
- cases, but it is unlikely to be worth it. */
-
-static void
-swap_ops_for_binary_stmt (vec<operand_entry_t> ops,
- unsigned int opindex, gimple stmt)
-{
- operand_entry_t oe1, oe2, oe3;
-
- oe1 = ops[opindex];
- oe2 = ops[opindex + 1];
- oe3 = ops[opindex + 2];
-
- if ((oe1->rank == oe2->rank
- && oe2->rank != oe3->rank)
- || (stmt && is_phi_for_stmt (stmt, oe3->op)
- && !is_phi_for_stmt (stmt, oe1->op)
- && !is_phi_for_stmt (stmt, oe2->op)))
- {
- struct operand_entry temp = *oe3;
- oe3->op = oe1->op;
- oe3->rank = oe1->rank;
- oe1->op = temp.op;
- oe1->rank= temp.rank;
- }
- else if ((oe1->rank == oe3->rank
- && oe2->rank != oe3->rank)
- || (stmt && is_phi_for_stmt (stmt, oe2->op)
- && !is_phi_for_stmt (stmt, oe1->op)
- && !is_phi_for_stmt (stmt, oe3->op)))
- {
- struct operand_entry temp = *oe2;
- oe2->op = oe1->op;
- oe2->rank = oe1->rank;
- oe1->op = temp.op;
- oe1->rank= temp.rank;
- }
-}
-
-/* Recursively rewrite our linearized statements so that the operators
- match those in OPS[OPINDEX], putting the computation in rank
- order. */
-
-static void
-rewrite_expr_tree (gimple stmt, unsigned int opindex,
- vec<operand_entry_t> ops, bool moved)
-{
- tree rhs1 = gimple_assign_rhs1 (stmt);
- tree rhs2 = gimple_assign_rhs2 (stmt);
- operand_entry_t oe;
-
- /* If we have three operands left, then we want to make sure the ones
- that get the double binary op are chosen wisely. */
- if (opindex + 3 == ops.length ())
- swap_ops_for_binary_stmt (ops, opindex, stmt);
-
- /* The final recursion case for this function is that you have
- exactly two operations left.
- If we had one exactly one op in the entire list to start with, we
- would have never called this function, and the tail recursion
- rewrites them one at a time. */
- if (opindex + 2 == ops.length ())
- {
- operand_entry_t oe1, oe2;
-
- oe1 = ops[opindex];
- oe2 = ops[opindex + 1];
-
- if (rhs1 != oe1->op || rhs2 != oe2->op)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- gimple_assign_set_rhs1 (stmt, oe1->op);
- gimple_assign_set_rhs2 (stmt, oe2->op);
- update_stmt (stmt);
- if (rhs1 != oe1->op && rhs1 != oe2->op)
- remove_visited_stmt_chain (rhs1);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
- }
- return;
- }
-
- /* If we hit here, we should have 3 or more ops left. */
- gcc_assert (opindex + 2 < ops.length ());
-
- /* Rewrite the next operator. */
- oe = ops[opindex];
-
- if (oe->op != rhs2)
- {
- if (!moved)
- {
- gimple_stmt_iterator gsinow, gsirhs1;
- gimple stmt1 = stmt, stmt2;
- unsigned int count;
-
- gsinow = gsi_for_stmt (stmt);
- count = ops.length () - opindex - 2;
- while (count-- != 0)
- {
- stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
- gsirhs1 = gsi_for_stmt (stmt2);
- gsi_move_before (&gsirhs1, &gsinow);
- gsi_prev (&gsinow);
- stmt1 = stmt2;
- }
- moved = true;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- gimple_assign_set_rhs2 (stmt, oe->op);
- update_stmt (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
- }
- /* Recurse on the LHS of the binary operator, which is guaranteed to
- be the non-leaf side. */
- rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
-}
-
-/* Find out how many cycles we need to compute statements chain.
- OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
- maximum number of independent statements we may execute per cycle. */
-
-static int
-get_required_cycles (int ops_num, int cpu_width)
-{
- int res;
- int elog;
- unsigned int rest;
-
- /* While we have more than 2 * cpu_width operands
- we may reduce number of operands by cpu_width
- per cycle. */
- res = ops_num / (2 * cpu_width);
-
- /* Remained operands count may be reduced twice per cycle
- until we have only one operand. */
- rest = (unsigned)(ops_num - res * cpu_width);
- elog = exact_log2 (rest);
- if (elog >= 0)
- res += elog;
- else
- res += floor_log2 (rest) + 1;
-
- return res;
-}
-
-/* Returns an optimal number of registers to use for computation of
- given statements. */
-
-static int
-get_reassociation_width (int ops_num, enum tree_code opc,
- enum machine_mode mode)
-{
- int param_width = PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH);
- int width;
- int width_min;
- int cycles_best;
-
- if (param_width > 0)
- width = param_width;
- else
- width = targetm.sched.reassociation_width (opc, mode);
-
- if (width == 1)
- return width;
-
- /* Get the minimal time required for sequence computation. */
- cycles_best = get_required_cycles (ops_num, width);
-
- /* Check if we may use less width and still compute sequence for
- the same time. It will allow us to reduce registers usage.
- get_required_cycles is monotonically increasing with lower width
- so we can perform a binary search for the minimal width that still
- results in the optimal cycle count. */
- width_min = 1;
- while (width > width_min)
- {
- int width_mid = (width + width_min) / 2;
-
- if (get_required_cycles (ops_num, width_mid) == cycles_best)
- width = width_mid;
- else if (width_min < width_mid)
- width_min = width_mid;
- else
- break;
- }
-
- return width;
-}
-
-/* Recursively rewrite our linearized statements so that the operators
- match those in OPS[OPINDEX], putting the computation in rank
- order and trying to allow operations to be executed in
- parallel. */
-
-static void
-rewrite_expr_tree_parallel (gimple stmt, int width,
- vec<operand_entry_t> ops)
-{
- enum tree_code opcode = gimple_assign_rhs_code (stmt);
- int op_num = ops.length ();
- int stmt_num = op_num - 1;
- gimple *stmts = XALLOCAVEC (gimple, stmt_num);
- int op_index = op_num - 1;
- int stmt_index = 0;
- int ready_stmts_end = 0;
- int i = 0;
- tree last_rhs1 = gimple_assign_rhs1 (stmt);
-
- /* We start expression rewriting from the top statements.
- So, in this loop we create a full list of statements
- we will work with. */
- stmts[stmt_num - 1] = stmt;
- for (i = stmt_num - 2; i >= 0; i--)
- stmts[i] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts[i+1]));
-
- for (i = 0; i < stmt_num; i++)
- {
- tree op1, op2;
-
- /* Determine whether we should use results of
- already handled statements or not. */
- if (ready_stmts_end == 0
- && (i - stmt_index >= width || op_index < 1))
- ready_stmts_end = i;
-
- /* Now we choose operands for the next statement. Non zero
- value in ready_stmts_end means here that we should use
- the result of already generated statements as new operand. */
- if (ready_stmts_end > 0)
- {
- op1 = gimple_assign_lhs (stmts[stmt_index++]);
- if (ready_stmts_end > stmt_index)
- op2 = gimple_assign_lhs (stmts[stmt_index++]);
- else if (op_index >= 0)
- op2 = ops[op_index--]->op;
- else
- {
- gcc_assert (stmt_index < i);
- op2 = gimple_assign_lhs (stmts[stmt_index++]);
- }
-
- if (stmt_index >= ready_stmts_end)
- ready_stmts_end = 0;
- }
- else
- {
- if (op_index > 1)
- swap_ops_for_binary_stmt (ops, op_index - 2, NULL);
- op2 = ops[op_index--]->op;
- op1 = ops[op_index--]->op;
- }
-
- /* If we emit the last statement then we should put
- operands into the last statement. It will also
- break the loop. */
- if (op_index < 0 && stmt_index == i)
- i = stmt_num - 1;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_gimple_stmt (dump_file, stmts[i], 0, 0);
- }
-
- /* We keep original statement only for the last one. All
- others are recreated. */
- if (i == stmt_num - 1)
- {
- gimple_assign_set_rhs1 (stmts[i], op1);
- gimple_assign_set_rhs2 (stmts[i], op2);
- update_stmt (stmts[i]);
- }
- else
- stmts[i] = build_and_add_sum (TREE_TYPE (last_rhs1), op1, op2, opcode);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_gimple_stmt (dump_file, stmts[i], 0, 0);
- }
- }
-
- remove_visited_stmt_chain (last_rhs1);
-}
-
-/* Transform STMT, which is really (A +B) + (C + D) into the left
- linear form, ((A+B)+C)+D.
- Recurse on D if necessary. */
-
-static void
-linearize_expr (gimple stmt)
-{
- gimple_stmt_iterator gsinow, gsirhs;
- gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
- gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
- enum tree_code rhscode = gimple_assign_rhs_code (stmt);
- gimple newbinrhs = NULL;
- struct loop *loop = loop_containing_stmt (stmt);
-
- gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
- && is_reassociable_op (binrhs, rhscode, loop));
-
- gsinow = gsi_for_stmt (stmt);
- gsirhs = gsi_for_stmt (binrhs);
- gsi_move_before (&gsirhs, &gsinow);
-
- gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
- gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
- gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
-
- if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
- newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Linearized: ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- reassociate_stats.linearized++;
- update_stmt (binrhs);
- update_stmt (binlhs);
- update_stmt (stmt);
-
- gimple_set_visited (stmt, true);
- gimple_set_visited (binlhs, true);
- gimple_set_visited (binrhs, true);
-
- /* Tail recurse on the new rhs if it still needs reassociation. */
- if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
- /* ??? This should probably be linearize_expr (newbinrhs) but I don't
- want to change the algorithm while converting to tuples. */
- linearize_expr (stmt);
-}
-
-/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
- it. Otherwise, return NULL. */
-
-static gimple
-get_single_immediate_use (tree lhs)
-{
- use_operand_p immuse;
- gimple immusestmt;
-
- if (TREE_CODE (lhs) == SSA_NAME
- && single_imm_use (lhs, &immuse, &immusestmt)
- && is_gimple_assign (immusestmt))
- return immusestmt;
-
- return NULL;
-}
-
-/* Recursively negate the value of TONEGATE, and return the SSA_NAME
- representing the negated value. Insertions of any necessary
- instructions go before GSI.
- This function is recursive in that, if you hand it "a_5" as the
- value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
- transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
-
-static tree
-negate_value (tree tonegate, gimple_stmt_iterator *gsi)
-{
- gimple negatedefstmt= NULL;
- tree resultofnegate;
-
- /* If we are trying to negate a name, defined by an add, negate the
- add operands instead. */
- if (TREE_CODE (tonegate) == SSA_NAME)
- negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
- if (TREE_CODE (tonegate) == SSA_NAME
- && is_gimple_assign (negatedefstmt)
- && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
- && has_single_use (gimple_assign_lhs (negatedefstmt))
- && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
- {
- gimple_stmt_iterator gsi;
- tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
- tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
-
- gsi = gsi_for_stmt (negatedefstmt);
- rhs1 = negate_value (rhs1, &gsi);
- gimple_assign_set_rhs1 (negatedefstmt, rhs1);
-
- gsi = gsi_for_stmt (negatedefstmt);
- rhs2 = negate_value (rhs2, &gsi);
- gimple_assign_set_rhs2 (negatedefstmt, rhs2);
-
- update_stmt (negatedefstmt);
- return gimple_assign_lhs (negatedefstmt);
- }
-
- tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
- resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
- NULL_TREE, true, GSI_SAME_STMT);
- return resultofnegate;
-}
-
-/* Return true if we should break up the subtract in STMT into an add
- with negate. This is true when we the subtract operands are really
- adds, or the subtract itself is used in an add expression. In
- either case, breaking up the subtract into an add with negate
- exposes the adds to reassociation. */
-
-static bool
-should_break_up_subtract (gimple stmt)
-{
- tree lhs = gimple_assign_lhs (stmt);
- tree binlhs = gimple_assign_rhs1 (stmt);
- tree binrhs = gimple_assign_rhs2 (stmt);
- gimple immusestmt;
- struct loop *loop = loop_containing_stmt (stmt);
-
- if (TREE_CODE (binlhs) == SSA_NAME
- && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
- return true;
-
- if (TREE_CODE (binrhs) == SSA_NAME
- && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
- return true;
-
- if (TREE_CODE (lhs) == SSA_NAME
- && (immusestmt = get_single_immediate_use (lhs))
- && is_gimple_assign (immusestmt)
- && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
- || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
- return true;
- return false;
-}
-
-/* Transform STMT from A - B into A + -B. */
-
-static void
-break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
-{
- tree rhs1 = gimple_assign_rhs1 (stmt);
- tree rhs2 = gimple_assign_rhs2 (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Breaking up subtract ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- rhs2 = negate_value (rhs2, gsip);
- gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
- update_stmt (stmt);
-}
-
-/* Determine whether STMT is a builtin call that raises an SSA name
- to an integer power and has only one use. If so, and this is early
- reassociation and unsafe math optimizations are permitted, place
- the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
- If any of these conditions does not hold, return FALSE. */
-
-static bool
-acceptable_pow_call (gimple stmt, tree *base, HOST_WIDE_INT *exponent)
-{
- tree fndecl, arg1;
- REAL_VALUE_TYPE c, cint;
-
- if (!first_pass_instance
- || !flag_unsafe_math_optimizations
- || !is_gimple_call (stmt)
- || !has_single_use (gimple_call_lhs (stmt)))
- return false;
-
- fndecl = gimple_call_fndecl (stmt);
-
- if (!fndecl
- || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
- return false;
-
- switch (DECL_FUNCTION_CODE (fndecl))
- {
- CASE_FLT_FN (BUILT_IN_POW):
- *base = gimple_call_arg (stmt, 0);
- arg1 = gimple_call_arg (stmt, 1);
-
- if (TREE_CODE (arg1) != REAL_CST)
- return false;
-
- c = TREE_REAL_CST (arg1);
-
- if (REAL_EXP (&c) > HOST_BITS_PER_WIDE_INT)
- return false;
-
- *exponent = real_to_integer (&c);
- real_from_integer (&cint, VOIDmode, *exponent,
- *exponent < 0 ? -1 : 0, 0);
- if (!real_identical (&c, &cint))
- return false;
-
- break;
-
- CASE_FLT_FN (BUILT_IN_POWI):
- *base = gimple_call_arg (stmt, 0);
- arg1 = gimple_call_arg (stmt, 1);
-
- if (!host_integerp (arg1, 0))
- return false;
-
- *exponent = TREE_INT_CST_LOW (arg1);
- break;
-
- default:
- return false;
- }
-
- /* Expanding negative exponents is generally unproductive, so we don't
- complicate matters with those. Exponents of zero and one should
- have been handled by expression folding. */
- if (*exponent < 2 || TREE_CODE (*base) != SSA_NAME)
- return false;
-
- return true;
-}
-
-/* Recursively linearize a binary expression that is the RHS of STMT.
- Place the operands of the expression tree in the vector named OPS. */
-
-static void
-linearize_expr_tree (vec<operand_entry_t> *ops, gimple stmt,
- bool is_associative, bool set_visited)
-{
- tree binlhs = gimple_assign_rhs1 (stmt);
- tree binrhs = gimple_assign_rhs2 (stmt);
- gimple binlhsdef = NULL, binrhsdef = NULL;
- bool binlhsisreassoc = false;
- bool binrhsisreassoc = false;
- enum tree_code rhscode = gimple_assign_rhs_code (stmt);
- struct loop *loop = loop_containing_stmt (stmt);
- tree base = NULL_TREE;
- HOST_WIDE_INT exponent = 0;
-
- if (set_visited)
- gimple_set_visited (stmt, true);
-
- if (TREE_CODE (binlhs) == SSA_NAME)
- {
- binlhsdef = SSA_NAME_DEF_STMT (binlhs);
- binlhsisreassoc = (is_reassociable_op (binlhsdef, rhscode, loop)
- && !stmt_could_throw_p (binlhsdef));
- }
-
- if (TREE_CODE (binrhs) == SSA_NAME)
- {
- binrhsdef = SSA_NAME_DEF_STMT (binrhs);
- binrhsisreassoc = (is_reassociable_op (binrhsdef, rhscode, loop)
- && !stmt_could_throw_p (binrhsdef));
- }
-
- /* If the LHS is not reassociable, but the RHS is, we need to swap
- them. If neither is reassociable, there is nothing we can do, so
- just put them in the ops vector. If the LHS is reassociable,
- linearize it. If both are reassociable, then linearize the RHS
- and the LHS. */
-
- if (!binlhsisreassoc)
- {
- tree temp;
-
- /* If this is not a associative operation like division, give up. */
- if (!is_associative)
- {
- add_to_ops_vec (ops, binrhs);
- return;
- }
-
- if (!binrhsisreassoc)
- {
- if (rhscode == MULT_EXPR
- && TREE_CODE (binrhs) == SSA_NAME
- && acceptable_pow_call (binrhsdef, &base, &exponent))
- {
- add_repeat_to_ops_vec (ops, base, exponent);
- gimple_set_visited (binrhsdef, true);
- }
- else
- add_to_ops_vec (ops, binrhs);
-
- if (rhscode == MULT_EXPR
- && TREE_CODE (binlhs) == SSA_NAME
- && acceptable_pow_call (binlhsdef, &base, &exponent))
- {
- add_repeat_to_ops_vec (ops, base, exponent);
- gimple_set_visited (binlhsdef, true);
- }
- else
- add_to_ops_vec (ops, binlhs);
-
- return;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "swapping operands of ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- swap_tree_operands (stmt,
- gimple_assign_rhs1_ptr (stmt),
- gimple_assign_rhs2_ptr (stmt));
- update_stmt (stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " is now ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- /* We want to make it so the lhs is always the reassociative op,
- so swap. */
- temp = binlhs;
- binlhs = binrhs;
- binrhs = temp;
- }
- else if (binrhsisreassoc)
- {
- linearize_expr (stmt);
- binlhs = gimple_assign_rhs1 (stmt);
- binrhs = gimple_assign_rhs2 (stmt);
- }
-
- gcc_assert (TREE_CODE (binrhs) != SSA_NAME
- || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
- rhscode, loop));
- linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
- is_associative, set_visited);
-
- if (rhscode == MULT_EXPR
- && TREE_CODE (binrhs) == SSA_NAME
- && acceptable_pow_call (SSA_NAME_DEF_STMT (binrhs), &base, &exponent))
- {
- add_repeat_to_ops_vec (ops, base, exponent);
- gimple_set_visited (SSA_NAME_DEF_STMT (binrhs), true);
- }
- else
- add_to_ops_vec (ops, binrhs);
-}
-
-/* Repropagate the negates back into subtracts, since no other pass
- currently does it. */
-
-static void
-repropagate_negates (void)
-{
- unsigned int i = 0;
- tree negate;
-
- FOR_EACH_VEC_ELT (plus_negates, i, negate)
- {
- gimple user = get_single_immediate_use (negate);
-
- if (!user || !is_gimple_assign (user))
- continue;
-
- /* The negate operand can be either operand of a PLUS_EXPR
- (it can be the LHS if the RHS is a constant for example).
-
- Force the negate operand to the RHS of the PLUS_EXPR, then
- transform the PLUS_EXPR into a MINUS_EXPR. */
- if (gimple_assign_rhs_code (user) == PLUS_EXPR)
- {
- /* If the negated operand appears on the LHS of the
- PLUS_EXPR, exchange the operands of the PLUS_EXPR
- to force the negated operand to the RHS of the PLUS_EXPR. */
- if (gimple_assign_rhs1 (user) == negate)
- {
- swap_tree_operands (user,
- gimple_assign_rhs1_ptr (user),
- gimple_assign_rhs2_ptr (user));
- }
-
- /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
- the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
- if (gimple_assign_rhs2 (user) == negate)
- {
- tree rhs1 = gimple_assign_rhs1 (user);
- tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
- gimple_stmt_iterator gsi = gsi_for_stmt (user);
- gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
- update_stmt (user);
- }
- }
- else if (gimple_assign_rhs_code (user) == MINUS_EXPR)
- {
- if (gimple_assign_rhs1 (user) == negate)
- {
- /* We have
- x = -a
- y = x - b
- which we transform into
- x = a + b
- y = -x .
- This pushes down the negate which we possibly can merge
- into some other operation, hence insert it into the
- plus_negates vector. */
- gimple feed = SSA_NAME_DEF_STMT (negate);
- tree a = gimple_assign_rhs1 (feed);
- tree rhs2 = gimple_assign_rhs2 (user);
- gimple_stmt_iterator gsi = gsi_for_stmt (feed), gsi2;
- gimple_replace_lhs (feed, negate);
- gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, a, rhs2);
- update_stmt (gsi_stmt (gsi));
- gsi2 = gsi_for_stmt (user);
- gimple_assign_set_rhs_with_ops (&gsi2, NEGATE_EXPR, negate, NULL);
- update_stmt (gsi_stmt (gsi2));
- gsi_move_before (&gsi, &gsi2);
- plus_negates.safe_push (gimple_assign_lhs (gsi_stmt (gsi2)));
- }
- else
- {
- /* Transform "x = -a; y = b - x" into "y = b + a", getting
- rid of one operation. */
- gimple feed = SSA_NAME_DEF_STMT (negate);
- tree a = gimple_assign_rhs1 (feed);
- tree rhs1 = gimple_assign_rhs1 (user);
- gimple_stmt_iterator gsi = gsi_for_stmt (user);
- gimple_assign_set_rhs_with_ops (&gsi, PLUS_EXPR, rhs1, a);
- update_stmt (gsi_stmt (gsi));
- }
- }
- }
-}
-
-/* Returns true if OP is of a type for which we can do reassociation.
- That is for integral or non-saturating fixed-point types, and for
- floating point type when associative-math is enabled. */
-
-static bool
-can_reassociate_p (tree op)
-{
- tree type = TREE_TYPE (op);
- if ((INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
- || NON_SAT_FIXED_POINT_TYPE_P (type)
- || (flag_associative_math && FLOAT_TYPE_P (type)))
- return true;
- return false;
-}
-
-/* Break up subtract operations in block BB.
-
- We do this top down because we don't know whether the subtract is
- part of a possible chain of reassociation except at the top.
-
- IE given
- d = f + g
- c = a + e
- b = c - d
- q = b - r
- k = t - q
-
- we want to break up k = t - q, but we won't until we've transformed q
- = b - r, which won't be broken up until we transform b = c - d.
-
- En passant, clear the GIMPLE visited flag on every statement. */
-
-static void
-break_up_subtract_bb (basic_block bb)
-{
- gimple_stmt_iterator gsi;
- basic_block son;
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- gimple_set_visited (stmt, false);
-
- if (!is_gimple_assign (stmt)
- || !can_reassociate_p (gimple_assign_lhs (stmt)))
- continue;
-
- /* Look for simple gimple subtract operations. */
- if (gimple_assign_rhs_code (stmt) == MINUS_EXPR)
- {
- if (!can_reassociate_p (gimple_assign_rhs1 (stmt))
- || !can_reassociate_p (gimple_assign_rhs2 (stmt)))
- continue;
-
- /* Check for a subtract used only in an addition. If this
- is the case, transform it into add of a negate for better
- reassociation. IE transform C = A-B into C = A + -B if C
- is only used in an addition. */
- if (should_break_up_subtract (stmt))
- break_up_subtract (stmt, &gsi);
- }
- else if (gimple_assign_rhs_code (stmt) == NEGATE_EXPR
- && can_reassociate_p (gimple_assign_rhs1 (stmt)))
- plus_negates.safe_push (gimple_assign_lhs (stmt));
- }
- for (son = first_dom_son (CDI_DOMINATORS, bb);
- son;
- son = next_dom_son (CDI_DOMINATORS, son))
- break_up_subtract_bb (son);
-}
-
-/* Used for repeated factor analysis. */
-struct repeat_factor_d
-{
- /* An SSA name that occurs in a multiply chain. */
- tree factor;
-
- /* Cached rank of the factor. */
- unsigned rank;
-
- /* Number of occurrences of the factor in the chain. */
- HOST_WIDE_INT count;
-
- /* An SSA name representing the product of this factor and
- all factors appearing later in the repeated factor vector. */
- tree repr;
-};
-
-typedef struct repeat_factor_d repeat_factor, *repeat_factor_t;
-typedef const struct repeat_factor_d *const_repeat_factor_t;
-
-
-static vec<repeat_factor> repeat_factor_vec;
-
-/* Used for sorting the repeat factor vector. Sort primarily by
- ascending occurrence count, secondarily by descending rank. */
-
-static int
-compare_repeat_factors (const void *x1, const void *x2)
-{
- const_repeat_factor_t rf1 = (const_repeat_factor_t) x1;
- const_repeat_factor_t rf2 = (const_repeat_factor_t) x2;
-
- if (rf1->count != rf2->count)
- return rf1->count - rf2->count;
-
- return rf2->rank - rf1->rank;
-}
-
-/* Look for repeated operands in OPS in the multiply tree rooted at
- STMT. Replace them with an optimal sequence of multiplies and powi
- builtin calls, and remove the used operands from OPS. Return an
- SSA name representing the value of the replacement sequence. */
-
-static tree
-attempt_builtin_powi (gimple stmt, vec<operand_entry_t> *ops)
-{
- unsigned i, j, vec_len;
- int ii;
- operand_entry_t oe;
- repeat_factor_t rf1, rf2;
- repeat_factor rfnew;
- tree result = NULL_TREE;
- tree target_ssa, iter_result;
- tree type = TREE_TYPE (gimple_get_lhs (stmt));
- tree powi_fndecl = mathfn_built_in (type, BUILT_IN_POWI);
- gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
- gimple mul_stmt, pow_stmt;
-
- /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
- target. */
- if (!powi_fndecl)
- return NULL_TREE;
-
- /* Allocate the repeated factor vector. */
- repeat_factor_vec.create (10);
-
- /* Scan the OPS vector for all SSA names in the product and build
- up a vector of occurrence counts for each factor. */
- FOR_EACH_VEC_ELT (*ops, i, oe)
- {
- if (TREE_CODE (oe->op) == SSA_NAME)
- {
- FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
- {
- if (rf1->factor == oe->op)
- {
- rf1->count += oe->count;
- break;
- }
- }
-
- if (j >= repeat_factor_vec.length ())
- {
- rfnew.factor = oe->op;
- rfnew.rank = oe->rank;
- rfnew.count = oe->count;
- rfnew.repr = NULL_TREE;
- repeat_factor_vec.safe_push (rfnew);
- }
- }
- }
-
- /* Sort the repeated factor vector by (a) increasing occurrence count,
- and (b) decreasing rank. */
- repeat_factor_vec.qsort (compare_repeat_factors);
-
- /* It is generally best to combine as many base factors as possible
- into a product before applying __builtin_powi to the result.
- However, the sort order chosen for the repeated factor vector
- allows us to cache partial results for the product of the base
- factors for subsequent use. When we already have a cached partial
- result from a previous iteration, it is best to make use of it
- before looking for another __builtin_pow opportunity.
-
- As an example, consider x * x * y * y * y * z * z * z * z.
- We want to first compose the product x * y * z, raise it to the
- second power, then multiply this by y * z, and finally multiply
- by z. This can be done in 5 multiplies provided we cache y * z
- for use in both expressions:
-
- t1 = y * z
- t2 = t1 * x
- t3 = t2 * t2
- t4 = t1 * t3
- result = t4 * z
-
- If we instead ignored the cached y * z and first multiplied by
- the __builtin_pow opportunity z * z, we would get the inferior:
-
- t1 = y * z
- t2 = t1 * x
- t3 = t2 * t2
- t4 = z * z
- t5 = t3 * t4
- result = t5 * y */
-
- vec_len = repeat_factor_vec.length ();
-
- /* Repeatedly look for opportunities to create a builtin_powi call. */
- while (true)
- {
- HOST_WIDE_INT power;
-
- /* First look for the largest cached product of factors from
- preceding iterations. If found, create a builtin_powi for
- it if the minimum occurrence count for its factors is at
- least 2, or just use this cached product as our next
- multiplicand if the minimum occurrence count is 1. */
- FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
- {
- if (rf1->repr && rf1->count > 0)
- break;
- }
-
- if (j < vec_len)
- {
- power = rf1->count;
-
- if (power == 1)
- {
- iter_result = rf1->repr;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- unsigned elt;
- repeat_factor_t rf;
- fputs ("Multiplying by cached product ", dump_file);
- for (elt = j; elt < vec_len; elt++)
- {
- rf = &repeat_factor_vec[elt];
- print_generic_expr (dump_file, rf->factor, 0);
- if (elt < vec_len - 1)
- fputs (" * ", dump_file);
- }
- fputs ("\n", dump_file);
- }
- }
- else
- {
- iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
- pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
- build_int_cst (integer_type_node,
- power));
- gimple_call_set_lhs (pow_stmt, iter_result);
- gimple_set_location (pow_stmt, gimple_location (stmt));
- gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- unsigned elt;
- repeat_factor_t rf;
- fputs ("Building __builtin_pow call for cached product (",
- dump_file);
- for (elt = j; elt < vec_len; elt++)
- {
- rf = &repeat_factor_vec[elt];
- print_generic_expr (dump_file, rf->factor, 0);
- if (elt < vec_len - 1)
- fputs (" * ", dump_file);
- }
- fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n",
- power);
- }
- }
- }
- else
- {
- /* Otherwise, find the first factor in the repeated factor
- vector whose occurrence count is at least 2. If no such
- factor exists, there are no builtin_powi opportunities
- remaining. */
- FOR_EACH_VEC_ELT (repeat_factor_vec, j, rf1)
- {
- if (rf1->count >= 2)
- break;
- }
-
- if (j >= vec_len)
- break;
-
- power = rf1->count;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- unsigned elt;
- repeat_factor_t rf;
- fputs ("Building __builtin_pow call for (", dump_file);
- for (elt = j; elt < vec_len; elt++)
- {
- rf = &repeat_factor_vec[elt];
- print_generic_expr (dump_file, rf->factor, 0);
- if (elt < vec_len - 1)
- fputs (" * ", dump_file);
- }
- fprintf (dump_file, ")^"HOST_WIDE_INT_PRINT_DEC"\n", power);
- }
-
- reassociate_stats.pows_created++;
-
- /* Visit each element of the vector in reverse order (so that
- high-occurrence elements are visited first, and within the
- same occurrence count, lower-ranked elements are visited
- first). Form a linear product of all elements in this order
- whose occurrencce count is at least that of element J.
- Record the SSA name representing the product of each element
- with all subsequent elements in the vector. */
- if (j == vec_len - 1)
- rf1->repr = rf1->factor;
- else
- {
- for (ii = vec_len - 2; ii >= (int)j; ii--)
- {
- tree op1, op2;
-
- rf1 = &repeat_factor_vec[ii];
- rf2 = &repeat_factor_vec[ii + 1];
-
- /* Init the last factor's representative to be itself. */
- if (!rf2->repr)
- rf2->repr = rf2->factor;
-
- op1 = rf1->factor;
- op2 = rf2->repr;
-
- target_ssa = make_temp_ssa_name (type, NULL, "reassocpow");
- mul_stmt = gimple_build_assign_with_ops (MULT_EXPR,
- target_ssa,
- op1, op2);
- gimple_set_location (mul_stmt, gimple_location (stmt));
- gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
- rf1->repr = target_ssa;
-
- /* Don't reprocess the multiply we just introduced. */
- gimple_set_visited (mul_stmt, true);
- }
- }
-
- /* Form a call to __builtin_powi for the maximum product
- just formed, raised to the power obtained earlier. */
- rf1 = &repeat_factor_vec[j];
- iter_result = make_temp_ssa_name (type, NULL, "reassocpow");
- pow_stmt = gimple_build_call (powi_fndecl, 2, rf1->repr,
- build_int_cst (integer_type_node,
- power));
- gimple_call_set_lhs (pow_stmt, iter_result);
- gimple_set_location (pow_stmt, gimple_location (stmt));
- gsi_insert_before (&gsi, pow_stmt, GSI_SAME_STMT);
- }
-
- /* If we previously formed at least one other builtin_powi call,
- form the product of this one and those others. */
- if (result)
- {
- tree new_result = make_temp_ssa_name (type, NULL, "reassocpow");
- mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_result,
- result, iter_result);
- gimple_set_location (mul_stmt, gimple_location (stmt));
- gsi_insert_before (&gsi, mul_stmt, GSI_SAME_STMT);
- gimple_set_visited (mul_stmt, true);
- result = new_result;
- }
- else
- result = iter_result;
-
- /* Decrement the occurrence count of each element in the product
- by the count found above, and remove this many copies of each
- factor from OPS. */
- for (i = j; i < vec_len; i++)
- {
- unsigned k = power;
- unsigned n;
-
- rf1 = &repeat_factor_vec[i];
- rf1->count -= power;
-
- FOR_EACH_VEC_ELT_REVERSE (*ops, n, oe)
- {
- if (oe->op == rf1->factor)
- {
- if (oe->count <= k)
- {
- ops->ordered_remove (n);
- k -= oe->count;
-
- if (k == 0)
- break;
- }
- else
- {
- oe->count -= k;
- break;
- }
- }
- }
- }
- }
-
- /* At this point all elements in the repeated factor vector have a
- remaining occurrence count of 0 or 1, and those with a count of 1
- don't have cached representatives. Re-sort the ops vector and
- clean up. */
- ops->qsort (sort_by_operand_rank);
- repeat_factor_vec.release ();
-
- /* Return the final product computed herein. Note that there may
- still be some elements with single occurrence count left in OPS;
- those will be handled by the normal reassociation logic. */
- return result;
-}
-
-/* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
-
-static void
-transform_stmt_to_copy (gimple_stmt_iterator *gsi, gimple stmt, tree new_rhs)
-{
- tree rhs1;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- rhs1 = gimple_assign_rhs1 (stmt);
- gimple_assign_set_rhs_from_tree (gsi, new_rhs);
- update_stmt (stmt);
- remove_visited_stmt_chain (rhs1);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-}
-
-/* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
-
-static void
-transform_stmt_to_multiply (gimple_stmt_iterator *gsi, gimple stmt,
- tree rhs1, tree rhs2)
-{
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Transforming ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-
- gimple_assign_set_rhs_with_ops (gsi, MULT_EXPR, rhs1, rhs2);
- update_stmt (gsi_stmt (*gsi));
- remove_visited_stmt_chain (rhs1);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " into ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- }
-}
-
-/* Reassociate expressions in basic block BB and its post-dominator as
- children. */
-
-static void
-reassociate_bb (basic_block bb)
-{
- gimple_stmt_iterator gsi;
- basic_block son;
- gimple stmt = last_stmt (bb);
-
- if (stmt && !gimple_visited_p (stmt))
- maybe_optimize_range_tests (stmt);
-
- for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
- {
- stmt = gsi_stmt (gsi);
-
- if (is_gimple_assign (stmt)
- && !stmt_could_throw_p (stmt))
- {
- tree lhs, rhs1, rhs2;
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
-
- /* If this is not a gimple binary expression, there is
- nothing for us to do with it. */
- if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
- continue;
-
- /* If this was part of an already processed statement,
- we don't need to touch it again. */
- if (gimple_visited_p (stmt))
- {
- /* This statement might have become dead because of previous
- reassociations. */
- if (has_zero_uses (gimple_get_lhs (stmt)))
- {
- gsi_remove (&gsi, true);
- release_defs (stmt);
- /* We might end up removing the last stmt above which
- places the iterator to the end of the sequence.
- Reset it to the last stmt in this case which might
- be the end of the sequence as well if we removed
- the last statement of the sequence. In which case
- we need to bail out. */
- if (gsi_end_p (gsi))
- {
- gsi = gsi_last_bb (bb);
- if (gsi_end_p (gsi))
- break;
- }
- }
- continue;
- }
-
- lhs = gimple_assign_lhs (stmt);
- rhs1 = gimple_assign_rhs1 (stmt);
- rhs2 = gimple_assign_rhs2 (stmt);
-
- /* For non-bit or min/max operations we can't associate
- all types. Verify that here. */
- if (rhs_code != BIT_IOR_EXPR
- && rhs_code != BIT_AND_EXPR
- && rhs_code != BIT_XOR_EXPR
- && rhs_code != MIN_EXPR
- && rhs_code != MAX_EXPR
- && (!can_reassociate_p (lhs)
- || !can_reassociate_p (rhs1)
- || !can_reassociate_p (rhs2)))
- continue;
-
- if (associative_tree_code (rhs_code))
- {
- vec<operand_entry_t> ops = vNULL;
- tree powi_result = NULL_TREE;
-
- /* There may be no immediate uses left by the time we
- get here because we may have eliminated them all. */
- if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
- continue;
-
- gimple_set_visited (stmt, true);
- linearize_expr_tree (&ops, stmt, true, true);
- ops.qsort (sort_by_operand_rank);
- optimize_ops_list (rhs_code, &ops);
- if (undistribute_ops_list (rhs_code, &ops,
- loop_containing_stmt (stmt)))
- {
- ops.qsort (sort_by_operand_rank);
- optimize_ops_list (rhs_code, &ops);
- }
-
- if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
- optimize_range_tests (rhs_code, &ops);
-
- if (first_pass_instance
- && rhs_code == MULT_EXPR
- && flag_unsafe_math_optimizations)
- powi_result = attempt_builtin_powi (stmt, &ops);
-
- /* If the operand vector is now empty, all operands were
- consumed by the __builtin_powi optimization. */
- if (ops.length () == 0)
- transform_stmt_to_copy (&gsi, stmt, powi_result);
- else if (ops.length () == 1)
- {
- tree last_op = ops.last ()->op;
-
- if (powi_result)
- transform_stmt_to_multiply (&gsi, stmt, last_op,
- powi_result);
- else
- transform_stmt_to_copy (&gsi, stmt, last_op);
- }
- else
- {
- enum machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
- int ops_num = ops.length ();
- int width = get_reassociation_width (ops_num, rhs_code, mode);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Width = %d was chosen for reassociation\n", width);
-
- if (width > 1
- && ops.length () > 3)
- rewrite_expr_tree_parallel (stmt, width, ops);
- else
- rewrite_expr_tree (stmt, 0, ops, false);
-
- /* If we combined some repeated factors into a
- __builtin_powi call, multiply that result by the
- reassociated operands. */
- if (powi_result)
- {
- gimple mul_stmt;
- tree type = TREE_TYPE (gimple_get_lhs (stmt));
- tree target_ssa = make_temp_ssa_name (type, NULL,
- "reassocpow");
- gimple_set_lhs (stmt, target_ssa);
- update_stmt (stmt);
- mul_stmt = gimple_build_assign_with_ops (MULT_EXPR, lhs,
- powi_result,
- target_ssa);
- gimple_set_location (mul_stmt, gimple_location (stmt));
- gsi_insert_after (&gsi, mul_stmt, GSI_NEW_STMT);
- }
- }
-
- ops.release ();
- }
- }
- }
- for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
- son;
- son = next_dom_son (CDI_POST_DOMINATORS, son))
- reassociate_bb (son);
-}
-
-void dump_ops_vector (FILE *file, vec<operand_entry_t> ops);
-void debug_ops_vector (vec<operand_entry_t> ops);
-
-/* Dump the operand entry vector OPS to FILE. */
-
-void
-dump_ops_vector (FILE *file, vec<operand_entry_t> ops)
-{
- operand_entry_t oe;
- unsigned int i;
-
- FOR_EACH_VEC_ELT (ops, i, oe)
- {
- fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
- print_generic_expr (file, oe->op, 0);
- }
-}
-
-/* Dump the operand entry vector OPS to STDERR. */
-
-DEBUG_FUNCTION void
-debug_ops_vector (vec<operand_entry_t> ops)
-{
- dump_ops_vector (stderr, ops);
-}
-
-static void
-do_reassoc (void)
-{
- break_up_subtract_bb (ENTRY_BLOCK_PTR);
- reassociate_bb (EXIT_BLOCK_PTR);
-}
-
-/* Initialize the reassociation pass. */
-
-static void
-init_reassoc (void)
-{
- int i;
- long rank = 2;
- int *bbs = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
-
- /* Find the loops, so that we can prevent moving calculations in
- them. */
- loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
-
- memset (&reassociate_stats, 0, sizeof (reassociate_stats));
-
- operand_entry_pool = create_alloc_pool ("operand entry pool",
- sizeof (struct operand_entry), 30);
- next_operand_entry_id = 0;
-
- /* Reverse RPO (Reverse Post Order) will give us something where
- deeper loops come later. */
- pre_and_rev_post_order_compute (NULL, bbs, false);
- bb_rank = XCNEWVEC (long, last_basic_block);
- operand_rank = pointer_map_create ();
-
- /* Give each default definition a distinct rank. This includes
- parameters and the static chain. Walk backwards over all
- SSA names so that we get proper rank ordering according
- to tree_swap_operands_p. */
- for (i = num_ssa_names - 1; i > 0; --i)
- {
- tree name = ssa_name (i);
- if (name && SSA_NAME_IS_DEFAULT_DEF (name))
- insert_operand_rank (name, ++rank);
- }
-
- /* Set up rank for each BB */
- for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
- bb_rank[bbs[i]] = ++rank << 16;
-
- free (bbs);
- calculate_dominance_info (CDI_POST_DOMINATORS);
- plus_negates = vNULL;
-}
-
-/* Cleanup after the reassociation pass, and print stats if
- requested. */
-
-static void
-fini_reassoc (void)
-{
- statistics_counter_event (cfun, "Linearized",
- reassociate_stats.linearized);
- statistics_counter_event (cfun, "Constants eliminated",
- reassociate_stats.constants_eliminated);
- statistics_counter_event (cfun, "Ops eliminated",
- reassociate_stats.ops_eliminated);
- statistics_counter_event (cfun, "Statements rewritten",
- reassociate_stats.rewritten);
- statistics_counter_event (cfun, "Built-in pow[i] calls encountered",
- reassociate_stats.pows_encountered);
- statistics_counter_event (cfun, "Built-in powi calls created",
- reassociate_stats.pows_created);
-
- pointer_map_destroy (operand_rank);
- free_alloc_pool (operand_entry_pool);
- free (bb_rank);
- plus_negates.release ();
- free_dominance_info (CDI_POST_DOMINATORS);
- loop_optimizer_finalize ();
-}
-
-/* Gate and execute functions for Reassociation. */
-
-static unsigned int
-execute_reassoc (void)
-{
- init_reassoc ();
-
- do_reassoc ();
- repropagate_negates ();
-
- fini_reassoc ();
- return 0;
-}
-
-static bool
-gate_tree_ssa_reassoc (void)
-{
- return flag_tree_reassoc != 0;
-}
-
-struct gimple_opt_pass pass_reassoc =
-{
- {
- GIMPLE_PASS,
- "reassoc", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- gate_tree_ssa_reassoc, /* gate */
- execute_reassoc, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_REASSOC, /* tv_id */
- PROP_cfg | PROP_ssa, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_verify_ssa
- | TODO_update_ssa_only_virtuals
- | TODO_verify_flow
- | TODO_ggc_collect /* todo_flags_finish */
- }
-};