aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-ssa-loop-im.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-ssa-loop-im.c')
-rw-r--r--gcc-4.8.1/gcc/tree-ssa-loop-im.c2644
1 files changed, 0 insertions, 2644 deletions
diff --git a/gcc-4.8.1/gcc/tree-ssa-loop-im.c b/gcc-4.8.1/gcc/tree-ssa-loop-im.c
deleted file mode 100644
index 78ad07330..000000000
--- a/gcc-4.8.1/gcc/tree-ssa-loop-im.c
+++ /dev/null
@@ -1,2644 +0,0 @@
-/* Loop invariant motion.
- Copyright (C) 2003-2013 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "basic-block.h"
-#include "gimple-pretty-print.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "domwalk.h"
-#include "params.h"
-#include "tree-pass.h"
-#include "flags.h"
-#include "hashtab.h"
-#include "tree-affine.h"
-#include "pointer-set.h"
-#include "tree-ssa-propagate.h"
-
-/* TODO: Support for predicated code motion. I.e.
-
- while (1)
- {
- if (cond)
- {
- a = inv;
- something;
- }
- }
-
- Where COND and INV are invariants, but evaluating INV may trap or be
- invalid from some other reason if !COND. This may be transformed to
-
- if (cond)
- a = inv;
- while (1)
- {
- if (cond)
- something;
- } */
-
-/* A type for the list of statements that have to be moved in order to be able
- to hoist an invariant computation. */
-
-struct depend
-{
- gimple stmt;
- struct depend *next;
-};
-
-/* The auxiliary data kept for each statement. */
-
-struct lim_aux_data
-{
- struct loop *max_loop; /* The outermost loop in that the statement
- is invariant. */
-
- struct loop *tgt_loop; /* The loop out of that we want to move the
- invariant. */
-
- struct loop *always_executed_in;
- /* The outermost loop for that we are sure
- the statement is executed if the loop
- is entered. */
-
- unsigned cost; /* Cost of the computation performed by the
- statement. */
-
- struct depend *depends; /* List of statements that must be also hoisted
- out of the loop when this statement is
- hoisted; i.e. those that define the operands
- of the statement and are inside of the
- MAX_LOOP loop. */
-};
-
-/* Maps statements to their lim_aux_data. */
-
-static struct pointer_map_t *lim_aux_data_map;
-
-/* Description of a memory reference location. */
-
-typedef struct mem_ref_loc
-{
- tree *ref; /* The reference itself. */
- gimple stmt; /* The statement in that it occurs. */
-} *mem_ref_loc_p;
-
-
-/* The list of memory reference locations in a loop. */
-
-typedef struct mem_ref_locs
-{
- vec<mem_ref_loc_p> locs;
-} *mem_ref_locs_p;
-
-
-/* Description of a memory reference. */
-
-typedef struct mem_ref
-{
- tree mem; /* The memory itself. */
- unsigned id; /* ID assigned to the memory reference
- (its index in memory_accesses.refs_list) */
- hashval_t hash; /* Its hash value. */
- bitmap stored; /* The set of loops in that this memory location
- is stored to. */
- vec<mem_ref_locs_p> accesses_in_loop;
- /* The locations of the accesses. Vector
- indexed by the loop number. */
-
- /* The following sets are computed on demand. We keep both set and
- its complement, so that we know whether the information was
- already computed or not. */
- bitmap indep_loop; /* The set of loops in that the memory
- reference is independent, meaning:
- If it is stored in the loop, this store
- is independent on all other loads and
- stores.
- If it is only loaded, then it is independent
- on all stores in the loop. */
- bitmap dep_loop; /* The complement of INDEP_LOOP. */
-
- bitmap indep_ref; /* The set of memory references on that
- this reference is independent. */
- bitmap dep_ref; /* The complement of INDEP_REF. */
-} *mem_ref_p;
-
-
-
-
-/* Description of memory accesses in loops. */
-
-static struct
-{
- /* The hash table of memory references accessed in loops. */
- htab_t refs;
-
- /* The list of memory references. */
- vec<mem_ref_p> refs_list;
-
- /* The set of memory references accessed in each loop. */
- vec<bitmap> refs_in_loop;
-
- /* The set of memory references accessed in each loop, including
- subloops. */
- vec<bitmap> all_refs_in_loop;
-
- /* The set of memory references stored in each loop, including
- subloops. */
- vec<bitmap> all_refs_stored_in_loop;
-
- /* Cache for expanding memory addresses. */
- struct pointer_map_t *ttae_cache;
-} memory_accesses;
-
-/* Obstack for the bitmaps in the above data structures. */
-static bitmap_obstack lim_bitmap_obstack;
-
-static bool ref_indep_loop_p (struct loop *, mem_ref_p);
-
-/* Minimum cost of an expensive expression. */
-#define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
-
-/* The outermost loop for which execution of the header guarantees that the
- block will be executed. */
-#define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
-#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
-
-/* Whether the reference was analyzable. */
-#define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
-
-static struct lim_aux_data *
-init_lim_data (gimple stmt)
-{
- void **p = pointer_map_insert (lim_aux_data_map, stmt);
-
- *p = XCNEW (struct lim_aux_data);
- return (struct lim_aux_data *) *p;
-}
-
-static struct lim_aux_data *
-get_lim_data (gimple stmt)
-{
- void **p = pointer_map_contains (lim_aux_data_map, stmt);
- if (!p)
- return NULL;
-
- return (struct lim_aux_data *) *p;
-}
-
-/* Releases the memory occupied by DATA. */
-
-static void
-free_lim_aux_data (struct lim_aux_data *data)
-{
- struct depend *dep, *next;
-
- for (dep = data->depends; dep; dep = next)
- {
- next = dep->next;
- free (dep);
- }
- free (data);
-}
-
-static void
-clear_lim_data (gimple stmt)
-{
- void **p = pointer_map_contains (lim_aux_data_map, stmt);
- if (!p)
- return;
-
- free_lim_aux_data ((struct lim_aux_data *) *p);
- *p = NULL;
-}
-
-/* Calls CBCK for each index in memory reference ADDR_P. There are two
- kinds situations handled; in each of these cases, the memory reference
- and DATA are passed to the callback:
-
- Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
- pass the pointer to the index to the callback.
-
- Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
- pointer to addr to the callback.
-
- If the callback returns false, the whole search stops and false is returned.
- Otherwise the function returns true after traversing through the whole
- reference *ADDR_P. */
-
-bool
-for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
-{
- tree *nxt, *idx;
-
- for (; ; addr_p = nxt)
- {
- switch (TREE_CODE (*addr_p))
- {
- case SSA_NAME:
- return cbck (*addr_p, addr_p, data);
-
- case MEM_REF:
- nxt = &TREE_OPERAND (*addr_p, 0);
- return cbck (*addr_p, nxt, data);
-
- case BIT_FIELD_REF:
- case VIEW_CONVERT_EXPR:
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- nxt = &TREE_OPERAND (*addr_p, 0);
- break;
-
- case COMPONENT_REF:
- /* If the component has varying offset, it behaves like index
- as well. */
- idx = &TREE_OPERAND (*addr_p, 2);
- if (*idx
- && !cbck (*addr_p, idx, data))
- return false;
-
- nxt = &TREE_OPERAND (*addr_p, 0);
- break;
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- nxt = &TREE_OPERAND (*addr_p, 0);
- if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
- return false;
- break;
-
- case VAR_DECL:
- case PARM_DECL:
- case CONST_DECL:
- case STRING_CST:
- case RESULT_DECL:
- case VECTOR_CST:
- case COMPLEX_CST:
- case INTEGER_CST:
- case REAL_CST:
- case FIXED_CST:
- case CONSTRUCTOR:
- return true;
-
- case ADDR_EXPR:
- gcc_assert (is_gimple_min_invariant (*addr_p));
- return true;
-
- case TARGET_MEM_REF:
- idx = &TMR_BASE (*addr_p);
- if (*idx
- && !cbck (*addr_p, idx, data))
- return false;
- idx = &TMR_INDEX (*addr_p);
- if (*idx
- && !cbck (*addr_p, idx, data))
- return false;
- idx = &TMR_INDEX2 (*addr_p);
- if (*idx
- && !cbck (*addr_p, idx, data))
- return false;
- return true;
-
- default:
- gcc_unreachable ();
- }
- }
-}
-
-/* If it is possible to hoist the statement STMT unconditionally,
- returns MOVE_POSSIBLE.
- If it is possible to hoist the statement STMT, but we must avoid making
- it executed if it would not be executed in the original program (e.g.
- because it may trap), return MOVE_PRESERVE_EXECUTION.
- Otherwise return MOVE_IMPOSSIBLE. */
-
-enum move_pos
-movement_possibility (gimple stmt)
-{
- tree lhs;
- enum move_pos ret = MOVE_POSSIBLE;
-
- if (flag_unswitch_loops
- && gimple_code (stmt) == GIMPLE_COND)
- {
- /* If we perform unswitching, force the operands of the invariant
- condition to be moved out of the loop. */
- return MOVE_POSSIBLE;
- }
-
- if (gimple_code (stmt) == GIMPLE_PHI
- && gimple_phi_num_args (stmt) <= 2
- && !virtual_operand_p (gimple_phi_result (stmt))
- && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
- return MOVE_POSSIBLE;
-
- if (gimple_get_lhs (stmt) == NULL_TREE)
- return MOVE_IMPOSSIBLE;
-
- if (gimple_vdef (stmt))
- return MOVE_IMPOSSIBLE;
-
- if (stmt_ends_bb_p (stmt)
- || gimple_has_volatile_ops (stmt)
- || gimple_has_side_effects (stmt)
- || stmt_could_throw_p (stmt))
- return MOVE_IMPOSSIBLE;
-
- if (is_gimple_call (stmt))
- {
- /* While pure or const call is guaranteed to have no side effects, we
- cannot move it arbitrarily. Consider code like
-
- char *s = something ();
-
- while (1)
- {
- if (s)
- t = strlen (s);
- else
- t = 0;
- }
-
- Here the strlen call cannot be moved out of the loop, even though
- s is invariant. In addition to possibly creating a call with
- invalid arguments, moving out a function call that is not executed
- may cause performance regressions in case the call is costly and
- not executed at all. */
- ret = MOVE_PRESERVE_EXECUTION;
- lhs = gimple_call_lhs (stmt);
- }
- else if (is_gimple_assign (stmt))
- lhs = gimple_assign_lhs (stmt);
- else
- return MOVE_IMPOSSIBLE;
-
- if (TREE_CODE (lhs) == SSA_NAME
- && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
- return MOVE_IMPOSSIBLE;
-
- if (TREE_CODE (lhs) != SSA_NAME
- || gimple_could_trap_p (stmt))
- return MOVE_PRESERVE_EXECUTION;
-
- /* Non local loads in a transaction cannot be hoisted out. Well,
- unless the load happens on every path out of the loop, but we
- don't take this into account yet. */
- if (flag_tm
- && gimple_in_transaction (stmt)
- && gimple_assign_single_p (stmt))
- {
- tree rhs = gimple_assign_rhs1 (stmt);
- if (DECL_P (rhs) && is_global_var (rhs))
- {
- if (dump_file)
- {
- fprintf (dump_file, "Cannot hoist conditional load of ");
- print_generic_expr (dump_file, rhs, TDF_SLIM);
- fprintf (dump_file, " because it is in a transaction.\n");
- }
- return MOVE_IMPOSSIBLE;
- }
- }
-
- return ret;
-}
-
-/* Suppose that operand DEF is used inside the LOOP. Returns the outermost
- loop to that we could move the expression using DEF if it did not have
- other operands, i.e. the outermost loop enclosing LOOP in that the value
- of DEF is invariant. */
-
-static struct loop *
-outermost_invariant_loop (tree def, struct loop *loop)
-{
- gimple def_stmt;
- basic_block def_bb;
- struct loop *max_loop;
- struct lim_aux_data *lim_data;
-
- if (!def)
- return superloop_at_depth (loop, 1);
-
- if (TREE_CODE (def) != SSA_NAME)
- {
- gcc_assert (is_gimple_min_invariant (def));
- return superloop_at_depth (loop, 1);
- }
-
- def_stmt = SSA_NAME_DEF_STMT (def);
- def_bb = gimple_bb (def_stmt);
- if (!def_bb)
- return superloop_at_depth (loop, 1);
-
- max_loop = find_common_loop (loop, def_bb->loop_father);
-
- lim_data = get_lim_data (def_stmt);
- if (lim_data != NULL && lim_data->max_loop != NULL)
- max_loop = find_common_loop (max_loop,
- loop_outer (lim_data->max_loop));
- if (max_loop == loop)
- return NULL;
- max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
-
- return max_loop;
-}
-
-/* DATA is a structure containing information associated with a statement
- inside LOOP. DEF is one of the operands of this statement.
-
- Find the outermost loop enclosing LOOP in that value of DEF is invariant
- and record this in DATA->max_loop field. If DEF itself is defined inside
- this loop as well (i.e. we need to hoist it out of the loop if we want
- to hoist the statement represented by DATA), record the statement in that
- DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
- add the cost of the computation of DEF to the DATA->cost.
-
- If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
-
-static bool
-add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
- bool add_cost)
-{
- gimple def_stmt = SSA_NAME_DEF_STMT (def);
- basic_block def_bb = gimple_bb (def_stmt);
- struct loop *max_loop;
- struct depend *dep;
- struct lim_aux_data *def_data;
-
- if (!def_bb)
- return true;
-
- max_loop = outermost_invariant_loop (def, loop);
- if (!max_loop)
- return false;
-
- if (flow_loop_nested_p (data->max_loop, max_loop))
- data->max_loop = max_loop;
-
- def_data = get_lim_data (def_stmt);
- if (!def_data)
- return true;
-
- if (add_cost
- /* Only add the cost if the statement defining DEF is inside LOOP,
- i.e. if it is likely that by moving the invariants dependent
- on it, we will be able to avoid creating a new register for
- it (since it will be only used in these dependent invariants). */
- && def_bb->loop_father == loop)
- data->cost += def_data->cost;
-
- dep = XNEW (struct depend);
- dep->stmt = def_stmt;
- dep->next = data->depends;
- data->depends = dep;
-
- return true;
-}
-
-/* Returns an estimate for a cost of statement STMT. The values here
- are just ad-hoc constants, similar to costs for inlining. */
-
-static unsigned
-stmt_cost (gimple stmt)
-{
- /* Always try to create possibilities for unswitching. */
- if (gimple_code (stmt) == GIMPLE_COND
- || gimple_code (stmt) == GIMPLE_PHI)
- return LIM_EXPENSIVE;
-
- /* We should be hoisting calls if possible. */
- if (is_gimple_call (stmt))
- {
- tree fndecl;
-
- /* Unless the call is a builtin_constant_p; this always folds to a
- constant, so moving it is useless. */
- fndecl = gimple_call_fndecl (stmt);
- if (fndecl
- && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
- && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
- return 0;
-
- return LIM_EXPENSIVE;
- }
-
- /* Hoisting memory references out should almost surely be a win. */
- if (gimple_references_memory_p (stmt))
- return LIM_EXPENSIVE;
-
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- return 1;
-
- switch (gimple_assign_rhs_code (stmt))
- {
- case MULT_EXPR:
- case WIDEN_MULT_EXPR:
- case WIDEN_MULT_PLUS_EXPR:
- case WIDEN_MULT_MINUS_EXPR:
- case DOT_PROD_EXPR:
- case FMA_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case EXACT_DIV_EXPR:
- case CEIL_MOD_EXPR:
- case FLOOR_MOD_EXPR:
- case ROUND_MOD_EXPR:
- case TRUNC_MOD_EXPR:
- case RDIV_EXPR:
- /* Division and multiplication are usually expensive. */
- return LIM_EXPENSIVE;
-
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- case WIDEN_LSHIFT_EXPR:
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- /* Shifts and rotates are usually expensive. */
- return LIM_EXPENSIVE;
-
- case CONSTRUCTOR:
- /* Make vector construction cost proportional to the number
- of elements. */
- return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
-
- case SSA_NAME:
- case PAREN_EXPR:
- /* Whether or not something is wrapped inside a PAREN_EXPR
- should not change move cost. Nor should an intermediate
- unpropagated SSA name copy. */
- return 0;
-
- default:
- return 1;
- }
-}
-
-/* Finds the outermost loop between OUTER and LOOP in that the memory reference
- REF is independent. If REF is not independent in LOOP, NULL is returned
- instead. */
-
-static struct loop *
-outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
-{
- struct loop *aloop;
-
- if (bitmap_bit_p (ref->stored, loop->num))
- return NULL;
-
- for (aloop = outer;
- aloop != loop;
- aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
- if (!bitmap_bit_p (ref->stored, aloop->num)
- && ref_indep_loop_p (aloop, ref))
- return aloop;
-
- if (ref_indep_loop_p (loop, ref))
- return loop;
- else
- return NULL;
-}
-
-/* If there is a simple load or store to a memory reference in STMT, returns
- the location of the memory reference, and sets IS_STORE according to whether
- it is a store or load. Otherwise, returns NULL. */
-
-static tree *
-simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
-{
- tree *lhs, *rhs;
-
- /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
- if (!gimple_assign_single_p (stmt))
- return NULL;
-
- lhs = gimple_assign_lhs_ptr (stmt);
- rhs = gimple_assign_rhs1_ptr (stmt);
-
- if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
- {
- *is_store = false;
- return rhs;
- }
- else if (gimple_vdef (stmt)
- && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
- {
- *is_store = true;
- return lhs;
- }
- else
- return NULL;
-}
-
-/* Returns the memory reference contained in STMT. */
-
-static mem_ref_p
-mem_ref_in_stmt (gimple stmt)
-{
- bool store;
- tree *mem = simple_mem_ref_in_stmt (stmt, &store);
- hashval_t hash;
- mem_ref_p ref;
-
- if (!mem)
- return NULL;
- gcc_assert (!store);
-
- hash = iterative_hash_expr (*mem, 0);
- ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
-
- gcc_assert (ref != NULL);
- return ref;
-}
-
-/* From a controlling predicate in DOM determine the arguments from
- the PHI node PHI that are chosen if the predicate evaluates to
- true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
- they are non-NULL. Returns true if the arguments can be determined,
- else return false. */
-
-static bool
-extract_true_false_args_from_phi (basic_block dom, gimple phi,
- tree *true_arg_p, tree *false_arg_p)
-{
- basic_block bb = gimple_bb (phi);
- edge true_edge, false_edge, tem;
- tree arg0 = NULL_TREE, arg1 = NULL_TREE;
-
- /* We have to verify that one edge into the PHI node is dominated
- by the true edge of the predicate block and the other edge
- dominated by the false edge. This ensures that the PHI argument
- we are going to take is completely determined by the path we
- take from the predicate block.
- We can only use BB dominance checks below if the destination of
- the true/false edges are dominated by their edge, thus only
- have a single predecessor. */
- extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
- tem = EDGE_PRED (bb, 0);
- if (tem == true_edge
- || (single_pred_p (true_edge->dest)
- && (tem->src == true_edge->dest
- || dominated_by_p (CDI_DOMINATORS,
- tem->src, true_edge->dest))))
- arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
- else if (tem == false_edge
- || (single_pred_p (false_edge->dest)
- && (tem->src == false_edge->dest
- || dominated_by_p (CDI_DOMINATORS,
- tem->src, false_edge->dest))))
- arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
- else
- return false;
- tem = EDGE_PRED (bb, 1);
- if (tem == true_edge
- || (single_pred_p (true_edge->dest)
- && (tem->src == true_edge->dest
- || dominated_by_p (CDI_DOMINATORS,
- tem->src, true_edge->dest))))
- arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
- else if (tem == false_edge
- || (single_pred_p (false_edge->dest)
- && (tem->src == false_edge->dest
- || dominated_by_p (CDI_DOMINATORS,
- tem->src, false_edge->dest))))
- arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
- else
- return false;
- if (!arg0 || !arg1)
- return false;
-
- if (true_arg_p)
- *true_arg_p = arg0;
- if (false_arg_p)
- *false_arg_p = arg1;
-
- return true;
-}
-
-/* Determine the outermost loop to that it is possible to hoist a statement
- STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
- the outermost loop in that the value computed by STMT is invariant.
- If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
- we preserve the fact whether STMT is executed. It also fills other related
- information to LIM_DATA (STMT).
-
- The function returns false if STMT cannot be hoisted outside of the loop it
- is defined in, and true otherwise. */
-
-static bool
-determine_max_movement (gimple stmt, bool must_preserve_exec)
-{
- basic_block bb = gimple_bb (stmt);
- struct loop *loop = bb->loop_father;
- struct loop *level;
- struct lim_aux_data *lim_data = get_lim_data (stmt);
- tree val;
- ssa_op_iter iter;
-
- if (must_preserve_exec)
- level = ALWAYS_EXECUTED_IN (bb);
- else
- level = superloop_at_depth (loop, 1);
- lim_data->max_loop = level;
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- use_operand_p use_p;
- unsigned min_cost = UINT_MAX;
- unsigned total_cost = 0;
- struct lim_aux_data *def_data;
-
- /* We will end up promoting dependencies to be unconditionally
- evaluated. For this reason the PHI cost (and thus the
- cost we remove from the loop by doing the invariant motion)
- is that of the cheapest PHI argument dependency chain. */
- FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
- {
- val = USE_FROM_PTR (use_p);
- if (TREE_CODE (val) != SSA_NAME)
- continue;
- if (!add_dependency (val, lim_data, loop, false))
- return false;
- def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
- if (def_data)
- {
- min_cost = MIN (min_cost, def_data->cost);
- total_cost += def_data->cost;
- }
- }
-
- lim_data->cost += min_cost;
-
- if (gimple_phi_num_args (stmt) > 1)
- {
- basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
- gimple cond;
- if (gsi_end_p (gsi_last_bb (dom)))
- return false;
- cond = gsi_stmt (gsi_last_bb (dom));
- if (gimple_code (cond) != GIMPLE_COND)
- return false;
- /* Verify that this is an extended form of a diamond and
- the PHI arguments are completely controlled by the
- predicate in DOM. */
- if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
- return false;
-
- /* Fold in dependencies and cost of the condition. */
- FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
- {
- if (!add_dependency (val, lim_data, loop, false))
- return false;
- def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
- if (def_data)
- total_cost += def_data->cost;
- }
-
- /* We want to avoid unconditionally executing very expensive
- operations. As costs for our dependencies cannot be
- negative just claim we are not invariand for this case.
- We also are not sure whether the control-flow inside the
- loop will vanish. */
- if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
- && !(min_cost != 0
- && total_cost / min_cost <= 2))
- return false;
-
- /* Assume that the control-flow in the loop will vanish.
- ??? We should verify this and not artificially increase
- the cost if that is not the case. */
- lim_data->cost += stmt_cost (stmt);
- }
-
- return true;
- }
- else
- FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
- if (!add_dependency (val, lim_data, loop, true))
- return false;
-
- if (gimple_vuse (stmt))
- {
- mem_ref_p ref = mem_ref_in_stmt (stmt);
-
- if (ref)
- {
- lim_data->max_loop
- = outermost_indep_loop (lim_data->max_loop, loop, ref);
- if (!lim_data->max_loop)
- return false;
- }
- else
- {
- if ((val = gimple_vuse (stmt)) != NULL_TREE)
- {
- if (!add_dependency (val, lim_data, loop, false))
- return false;
- }
- }
- }
-
- lim_data->cost += stmt_cost (stmt);
-
- return true;
-}
-
-/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
- and that one of the operands of this statement is computed by STMT.
- Ensure that STMT (together with all the statements that define its
- operands) is hoisted at least out of the loop LEVEL. */
-
-static void
-set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
-{
- struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
- struct depend *dep;
- struct lim_aux_data *lim_data;
-
- stmt_loop = find_common_loop (orig_loop, stmt_loop);
- lim_data = get_lim_data (stmt);
- if (lim_data != NULL && lim_data->tgt_loop != NULL)
- stmt_loop = find_common_loop (stmt_loop,
- loop_outer (lim_data->tgt_loop));
- if (flow_loop_nested_p (stmt_loop, level))
- return;
-
- gcc_assert (level == lim_data->max_loop
- || flow_loop_nested_p (lim_data->max_loop, level));
-
- lim_data->tgt_loop = level;
- for (dep = lim_data->depends; dep; dep = dep->next)
- set_level (dep->stmt, orig_loop, level);
-}
-
-/* Determines an outermost loop from that we want to hoist the statement STMT.
- For now we chose the outermost possible loop. TODO -- use profiling
- information to set it more sanely. */
-
-static void
-set_profitable_level (gimple stmt)
-{
- set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
-}
-
-/* Returns true if STMT is a call that has side effects. */
-
-static bool
-nonpure_call_p (gimple stmt)
-{
- if (gimple_code (stmt) != GIMPLE_CALL)
- return false;
-
- return gimple_has_side_effects (stmt);
-}
-
-/* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
-
-static gimple
-rewrite_reciprocal (gimple_stmt_iterator *bsi)
-{
- gimple stmt, stmt1, stmt2;
- tree name, lhs, type;
- tree real_one;
- gimple_stmt_iterator gsi;
-
- stmt = gsi_stmt (*bsi);
- lhs = gimple_assign_lhs (stmt);
- type = TREE_TYPE (lhs);
-
- real_one = build_one_cst (type);
-
- name = make_temp_ssa_name (type, NULL, "reciptmp");
- stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
- gimple_assign_rhs2 (stmt));
-
- stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
- gimple_assign_rhs1 (stmt));
-
- /* Replace division stmt with reciprocal and multiply stmts.
- The multiply stmt is not invariant, so update iterator
- and avoid rescanning. */
- gsi = *bsi;
- gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
- gsi_replace (&gsi, stmt2, true);
-
- /* Continue processing with invariant reciprocal statement. */
- return stmt1;
-}
-
-/* Check if the pattern at *BSI is a bittest of the form
- (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
-
-static gimple
-rewrite_bittest (gimple_stmt_iterator *bsi)
-{
- gimple stmt, use_stmt, stmt1, stmt2;
- tree lhs, name, t, a, b;
- use_operand_p use;
-
- stmt = gsi_stmt (*bsi);
- lhs = gimple_assign_lhs (stmt);
-
- /* Verify that the single use of lhs is a comparison against zero. */
- if (TREE_CODE (lhs) != SSA_NAME
- || !single_imm_use (lhs, &use, &use_stmt)
- || gimple_code (use_stmt) != GIMPLE_COND)
- return stmt;
- if (gimple_cond_lhs (use_stmt) != lhs
- || (gimple_cond_code (use_stmt) != NE_EXPR
- && gimple_cond_code (use_stmt) != EQ_EXPR)
- || !integer_zerop (gimple_cond_rhs (use_stmt)))
- return stmt;
-
- /* Get at the operands of the shift. The rhs is TMP1 & 1. */
- stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
- if (gimple_code (stmt1) != GIMPLE_ASSIGN)
- return stmt;
-
- /* There is a conversion in between possibly inserted by fold. */
- if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
- {
- t = gimple_assign_rhs1 (stmt1);
- if (TREE_CODE (t) != SSA_NAME
- || !has_single_use (t))
- return stmt;
- stmt1 = SSA_NAME_DEF_STMT (t);
- if (gimple_code (stmt1) != GIMPLE_ASSIGN)
- return stmt;
- }
-
- /* Verify that B is loop invariant but A is not. Verify that with
- all the stmt walking we are still in the same loop. */
- if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
- || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
- return stmt;
-
- a = gimple_assign_rhs1 (stmt1);
- b = gimple_assign_rhs2 (stmt1);
-
- if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
- && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
- {
- gimple_stmt_iterator rsi;
-
- /* 1 << B */
- t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
- build_int_cst (TREE_TYPE (a), 1), b);
- name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
- stmt1 = gimple_build_assign (name, t);
-
- /* A & (1 << B) */
- t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
- name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
- stmt2 = gimple_build_assign (name, t);
-
- /* Replace the SSA_NAME we compare against zero. Adjust
- the type of zero accordingly. */
- SET_USE (use, name);
- gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
-
- /* Don't use gsi_replace here, none of the new assignments sets
- the variable originally set in stmt. Move bsi to stmt1, and
- then remove the original stmt, so that we get a chance to
- retain debug info for it. */
- rsi = *bsi;
- gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
- gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
- gsi_remove (&rsi, true);
-
- return stmt1;
- }
-
- return stmt;
-}
-
-
-/* Determine the outermost loops in that statements in basic block BB are
- invariant, and record them to the LIM_DATA associated with the statements.
- Callback for walk_dominator_tree. */
-
-static void
-determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
- basic_block bb)
-{
- enum move_pos pos;
- gimple_stmt_iterator bsi;
- gimple stmt;
- bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
- struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
- struct lim_aux_data *lim_data;
-
- if (!loop_outer (bb->loop_father))
- return;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
- bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
-
- /* Look at PHI nodes, but only if there is at most two.
- ??? We could relax this further by post-processing the inserted
- code and transforming adjacent cond-exprs with the same predicate
- to control flow again. */
- bsi = gsi_start_phis (bb);
- if (!gsi_end_p (bsi)
- && ((gsi_next (&bsi), gsi_end_p (bsi))
- || (gsi_next (&bsi), gsi_end_p (bsi))))
- for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- stmt = gsi_stmt (bsi);
-
- pos = movement_possibility (stmt);
- if (pos == MOVE_IMPOSSIBLE)
- continue;
-
- lim_data = init_lim_data (stmt);
- lim_data->always_executed_in = outermost;
-
- if (!determine_max_movement (stmt, false))
- {
- lim_data->max_loop = NULL;
- continue;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- print_gimple_stmt (dump_file, stmt, 2, 0);
- fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
- loop_depth (lim_data->max_loop),
- lim_data->cost);
- }
-
- if (lim_data->cost >= LIM_EXPENSIVE)
- set_profitable_level (stmt);
- }
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- stmt = gsi_stmt (bsi);
-
- pos = movement_possibility (stmt);
- if (pos == MOVE_IMPOSSIBLE)
- {
- if (nonpure_call_p (stmt))
- {
- maybe_never = true;
- outermost = NULL;
- }
- /* Make sure to note always_executed_in for stores to make
- store-motion work. */
- else if (stmt_makes_single_store (stmt))
- {
- struct lim_aux_data *lim_data = init_lim_data (stmt);
- lim_data->always_executed_in = outermost;
- }
- continue;
- }
-
- if (is_gimple_assign (stmt)
- && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
- == GIMPLE_BINARY_RHS))
- {
- tree op0 = gimple_assign_rhs1 (stmt);
- tree op1 = gimple_assign_rhs2 (stmt);
- struct loop *ol1 = outermost_invariant_loop (op1,
- loop_containing_stmt (stmt));
-
- /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
- to be hoisted out of loop, saving expensive divide. */
- if (pos == MOVE_POSSIBLE
- && gimple_assign_rhs_code (stmt) == RDIV_EXPR
- && flag_unsafe_math_optimizations
- && !flag_trapping_math
- && ol1 != NULL
- && outermost_invariant_loop (op0, ol1) == NULL)
- stmt = rewrite_reciprocal (&bsi);
-
- /* If the shift count is invariant, convert (A >> B) & 1 to
- A & (1 << B) allowing the bit mask to be hoisted out of the loop
- saving an expensive shift. */
- if (pos == MOVE_POSSIBLE
- && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
- && integer_onep (op1)
- && TREE_CODE (op0) == SSA_NAME
- && has_single_use (op0))
- stmt = rewrite_bittest (&bsi);
- }
-
- lim_data = init_lim_data (stmt);
- lim_data->always_executed_in = outermost;
-
- if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
- continue;
-
- if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
- {
- lim_data->max_loop = NULL;
- continue;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- print_gimple_stmt (dump_file, stmt, 2, 0);
- fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
- loop_depth (lim_data->max_loop),
- lim_data->cost);
- }
-
- if (lim_data->cost >= LIM_EXPENSIVE)
- set_profitable_level (stmt);
- }
-}
-
-/* For each statement determines the outermost loop in that it is invariant,
- statements on whose motion it depends and the cost of the computation.
- This information is stored to the LIM_DATA structure associated with
- each statement. */
-
-static void
-determine_invariantness (void)
-{
- struct dom_walk_data walk_data;
-
- memset (&walk_data, 0, sizeof (struct dom_walk_data));
- walk_data.dom_direction = CDI_DOMINATORS;
- walk_data.before_dom_children = determine_invariantness_stmt;
-
- init_walk_dominator_tree (&walk_data);
- walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
- fini_walk_dominator_tree (&walk_data);
-}
-
-/* Hoist the statements in basic block BB out of the loops prescribed by
- data stored in LIM_DATA structures associated with each statement. Callback
- for walk_dominator_tree. */
-
-static void
-move_computations_stmt (struct dom_walk_data *dw_data,
- basic_block bb)
-{
- struct loop *level;
- gimple_stmt_iterator bsi;
- gimple stmt;
- unsigned cost = 0;
- struct lim_aux_data *lim_data;
-
- if (!loop_outer (bb->loop_father))
- return;
-
- for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
- {
- gimple new_stmt;
- stmt = gsi_stmt (bsi);
-
- lim_data = get_lim_data (stmt);
- if (lim_data == NULL)
- {
- gsi_next (&bsi);
- continue;
- }
-
- cost = lim_data->cost;
- level = lim_data->tgt_loop;
- clear_lim_data (stmt);
-
- if (!level)
- {
- gsi_next (&bsi);
- continue;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Moving PHI node\n");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
- cost, level->num);
- }
-
- if (gimple_phi_num_args (stmt) == 1)
- {
- tree arg = PHI_ARG_DEF (stmt, 0);
- new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
- gimple_phi_result (stmt),
- arg, NULL_TREE);
- SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
- }
- else
- {
- basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
- gimple cond = gsi_stmt (gsi_last_bb (dom));
- tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
- /* Get the PHI arguments corresponding to the true and false
- edges of COND. */
- extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
- gcc_assert (arg0 && arg1);
- t = build2 (gimple_cond_code (cond), boolean_type_node,
- gimple_cond_lhs (cond), gimple_cond_rhs (cond));
- new_stmt = gimple_build_assign_with_ops (COND_EXPR,
- gimple_phi_result (stmt),
- t, arg0, arg1);
- SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
- *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
- }
- gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
- remove_phi_node (&bsi, false);
- }
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
- {
- edge e;
-
- stmt = gsi_stmt (bsi);
-
- lim_data = get_lim_data (stmt);
- if (lim_data == NULL)
- {
- gsi_next (&bsi);
- continue;
- }
-
- cost = lim_data->cost;
- level = lim_data->tgt_loop;
- clear_lim_data (stmt);
-
- if (!level)
- {
- gsi_next (&bsi);
- continue;
- }
-
- /* We do not really want to move conditionals out of the loop; we just
- placed it here to force its operands to be moved if necessary. */
- if (gimple_code (stmt) == GIMPLE_COND)
- continue;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Moving statement\n");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
- cost, level->num);
- }
-
- e = loop_preheader_edge (level);
- gcc_assert (!gimple_vdef (stmt));
- if (gimple_vuse (stmt))
- {
- /* The new VUSE is the one from the virtual PHI in the loop
- header or the one already present. */
- gimple_stmt_iterator gsi2;
- for (gsi2 = gsi_start_phis (e->dest);
- !gsi_end_p (gsi2); gsi_next (&gsi2))
- {
- gimple phi = gsi_stmt (gsi2);
- if (virtual_operand_p (gimple_phi_result (phi)))
- {
- gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
- break;
- }
- }
- }
- gsi_remove (&bsi, false);
- gsi_insert_on_edge (e, stmt);
- }
-}
-
-/* Hoist the statements out of the loops prescribed by data stored in
- LIM_DATA structures associated with each statement.*/
-
-static unsigned int
-move_computations (void)
-{
- struct dom_walk_data walk_data;
- unsigned int todo = 0;
-
- memset (&walk_data, 0, sizeof (struct dom_walk_data));
- walk_data.global_data = &todo;
- walk_data.dom_direction = CDI_DOMINATORS;
- walk_data.before_dom_children = move_computations_stmt;
-
- init_walk_dominator_tree (&walk_data);
- walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
- fini_walk_dominator_tree (&walk_data);
-
- gsi_commit_edge_inserts ();
- if (need_ssa_update_p (cfun))
- rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
-
- return todo;
-}
-
-/* Checks whether the statement defining variable *INDEX can be hoisted
- out of the loop passed in DATA. Callback for for_each_index. */
-
-static bool
-may_move_till (tree ref, tree *index, void *data)
-{
- struct loop *loop = (struct loop *) data, *max_loop;
-
- /* If REF is an array reference, check also that the step and the lower
- bound is invariant in LOOP. */
- if (TREE_CODE (ref) == ARRAY_REF)
- {
- tree step = TREE_OPERAND (ref, 3);
- tree lbound = TREE_OPERAND (ref, 2);
-
- max_loop = outermost_invariant_loop (step, loop);
- if (!max_loop)
- return false;
-
- max_loop = outermost_invariant_loop (lbound, loop);
- if (!max_loop)
- return false;
- }
-
- max_loop = outermost_invariant_loop (*index, loop);
- if (!max_loop)
- return false;
-
- return true;
-}
-
-/* If OP is SSA NAME, force the statement that defines it to be
- moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
-
-static void
-force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
-{
- gimple stmt;
-
- if (!op
- || is_gimple_min_invariant (op))
- return;
-
- gcc_assert (TREE_CODE (op) == SSA_NAME);
-
- stmt = SSA_NAME_DEF_STMT (op);
- if (gimple_nop_p (stmt))
- return;
-
- set_level (stmt, orig_loop, loop);
-}
-
-/* Forces statement defining invariants in REF (and *INDEX) to be moved out of
- the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
- for_each_index. */
-
-struct fmt_data
-{
- struct loop *loop;
- struct loop *orig_loop;
-};
-
-static bool
-force_move_till (tree ref, tree *index, void *data)
-{
- struct fmt_data *fmt_data = (struct fmt_data *) data;
-
- if (TREE_CODE (ref) == ARRAY_REF)
- {
- tree step = TREE_OPERAND (ref, 3);
- tree lbound = TREE_OPERAND (ref, 2);
-
- force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
- force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
- }
-
- force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
-
- return true;
-}
-
-/* A hash function for struct mem_ref object OBJ. */
-
-static hashval_t
-memref_hash (const void *obj)
-{
- const struct mem_ref *const mem = (const struct mem_ref *) obj;
-
- return mem->hash;
-}
-
-/* An equality function for struct mem_ref object OBJ1 with
- memory reference OBJ2. */
-
-static int
-memref_eq (const void *obj1, const void *obj2)
-{
- const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
-
- return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
-}
-
-/* Releases list of memory reference locations ACCS. */
-
-static void
-free_mem_ref_locs (mem_ref_locs_p accs)
-{
- unsigned i;
- mem_ref_loc_p loc;
-
- if (!accs)
- return;
-
- FOR_EACH_VEC_ELT (accs->locs, i, loc)
- free (loc);
- accs->locs.release ();
- free (accs);
-}
-
-/* A function to free the mem_ref object OBJ. */
-
-static void
-memref_free (struct mem_ref *mem)
-{
- unsigned i;
- mem_ref_locs_p accs;
-
- FOR_EACH_VEC_ELT (mem->accesses_in_loop, i, accs)
- free_mem_ref_locs (accs);
- mem->accesses_in_loop.release ();
-
- free (mem);
-}
-
-/* Allocates and returns a memory reference description for MEM whose hash
- value is HASH and id is ID. */
-
-static mem_ref_p
-mem_ref_alloc (tree mem, unsigned hash, unsigned id)
-{
- mem_ref_p ref = XNEW (struct mem_ref);
- ref->mem = mem;
- ref->id = id;
- ref->hash = hash;
- ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
- ref->indep_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
- ref->dep_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
- ref->indep_ref = BITMAP_ALLOC (&lim_bitmap_obstack);
- ref->dep_ref = BITMAP_ALLOC (&lim_bitmap_obstack);
- ref->accesses_in_loop.create (0);
-
- return ref;
-}
-
-/* Allocates and returns the new list of locations. */
-
-static mem_ref_locs_p
-mem_ref_locs_alloc (void)
-{
- mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
- accs->locs.create (0);
- return accs;
-}
-
-/* Records memory reference location *LOC in LOOP to the memory reference
- description REF. The reference occurs in statement STMT. */
-
-static void
-record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
-{
- mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
- mem_ref_locs_p accs;
- bitmap ril = memory_accesses.refs_in_loop[loop->num];
-
- if (ref->accesses_in_loop.length ()
- <= (unsigned) loop->num)
- ref->accesses_in_loop.safe_grow_cleared (loop->num + 1);
- accs = ref->accesses_in_loop[loop->num];
- if (!accs)
- {
- accs = mem_ref_locs_alloc ();
- ref->accesses_in_loop[loop->num] = accs;
- }
-
- aref->stmt = stmt;
- aref->ref = loc;
-
- accs->locs.safe_push (aref);
- bitmap_set_bit (ril, ref->id);
-}
-
-/* Marks reference REF as stored in LOOP. */
-
-static void
-mark_ref_stored (mem_ref_p ref, struct loop *loop)
-{
- for (;
- loop != current_loops->tree_root
- && !bitmap_bit_p (ref->stored, loop->num);
- loop = loop_outer (loop))
- bitmap_set_bit (ref->stored, loop->num);
-}
-
-/* Gathers memory references in statement STMT in LOOP, storing the
- information about them in the memory_accesses structure. Marks
- the vops accessed through unrecognized statements there as
- well. */
-
-static void
-gather_mem_refs_stmt (struct loop *loop, gimple stmt)
-{
- tree *mem = NULL;
- hashval_t hash;
- PTR *slot;
- mem_ref_p ref;
- bool is_stored;
- unsigned id;
-
- if (!gimple_vuse (stmt))
- return;
-
- mem = simple_mem_ref_in_stmt (stmt, &is_stored);
- if (!mem)
- {
- id = memory_accesses.refs_list.length ();
- ref = mem_ref_alloc (error_mark_node, 0, id);
- memory_accesses.refs_list.safe_push (ref);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
- print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
- }
- if (gimple_vdef (stmt))
- mark_ref_stored (ref, loop);
- record_mem_ref_loc (ref, loop, stmt, mem);
- return;
- }
-
- hash = iterative_hash_expr (*mem, 0);
- slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
-
- if (*slot)
- {
- ref = (mem_ref_p) *slot;
- id = ref->id;
- }
- else
- {
- id = memory_accesses.refs_list.length ();
- ref = mem_ref_alloc (*mem, hash, id);
- memory_accesses.refs_list.safe_push (ref);
- *slot = ref;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Memory reference %u: ", id);
- print_generic_expr (dump_file, ref->mem, TDF_SLIM);
- fprintf (dump_file, "\n");
- }
- }
-
- if (is_stored)
- mark_ref_stored (ref, loop);
-
- record_mem_ref_loc (ref, loop, stmt, mem);
- return;
-}
-
-/* Gathers memory references in loops. */
-
-static void
-gather_mem_refs_in_loops (void)
-{
- gimple_stmt_iterator bsi;
- basic_block bb;
- struct loop *loop;
- loop_iterator li;
- bitmap lrefs, alrefs, alrefso;
-
- FOR_EACH_BB (bb)
- {
- loop = bb->loop_father;
- if (loop == current_loops->tree_root)
- continue;
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- gather_mem_refs_stmt (loop, gsi_stmt (bsi));
- }
-
- /* Propagate the information about accessed memory references up
- the loop hierarchy. */
- FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
- {
- lrefs = memory_accesses.refs_in_loop[loop->num];
- alrefs = memory_accesses.all_refs_in_loop[loop->num];
- bitmap_ior_into (alrefs, lrefs);
-
- if (loop_outer (loop) == current_loops->tree_root)
- continue;
-
- alrefso = memory_accesses.all_refs_in_loop[loop_outer (loop)->num];
- bitmap_ior_into (alrefso, alrefs);
- }
-}
-
-/* Create a mapping from virtual operands to references that touch them
- in LOOP. */
-
-static void
-create_vop_ref_mapping_loop (struct loop *loop)
-{
- bitmap refs = memory_accesses.refs_in_loop[loop->num];
- struct loop *sloop;
- bitmap_iterator bi;
- unsigned i;
- mem_ref_p ref;
-
- EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
- {
- ref = memory_accesses.refs_list[i];
- for (sloop = loop; sloop != current_loops->tree_root;
- sloop = loop_outer (sloop))
- if (bitmap_bit_p (ref->stored, loop->num))
- {
- bitmap refs_stored
- = memory_accesses.all_refs_stored_in_loop[sloop->num];
- bitmap_set_bit (refs_stored, ref->id);
- }
- }
-}
-
-/* For each non-clobbered virtual operand and each loop, record the memory
- references in this loop that touch the operand. */
-
-static void
-create_vop_ref_mapping (void)
-{
- loop_iterator li;
- struct loop *loop;
-
- FOR_EACH_LOOP (li, loop, 0)
- {
- create_vop_ref_mapping_loop (loop);
- }
-}
-
-/* Gathers information about memory accesses in the loops. */
-
-static void
-analyze_memory_references (void)
-{
- unsigned i;
- bitmap empty;
-
- memory_accesses.refs = htab_create (100, memref_hash, memref_eq, NULL);
- memory_accesses.refs_list.create (0);
- memory_accesses.refs_in_loop.create (number_of_loops ());
- memory_accesses.all_refs_in_loop.create (number_of_loops ());
- memory_accesses.all_refs_stored_in_loop.create (number_of_loops ());
-
- for (i = 0; i < number_of_loops (); i++)
- {
- empty = BITMAP_ALLOC (&lim_bitmap_obstack);
- memory_accesses.refs_in_loop.quick_push (empty);
- empty = BITMAP_ALLOC (&lim_bitmap_obstack);
- memory_accesses.all_refs_in_loop.quick_push (empty);
- empty = BITMAP_ALLOC (&lim_bitmap_obstack);
- memory_accesses.all_refs_stored_in_loop.quick_push (empty);
- }
-
- memory_accesses.ttae_cache = NULL;
-
- gather_mem_refs_in_loops ();
- create_vop_ref_mapping ();
-}
-
-/* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
- tree_to_aff_combination_expand. */
-
-static bool
-mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
-{
- /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
- object and their offset differ in such a way that the locations cannot
- overlap, then they cannot alias. */
- double_int size1, size2;
- aff_tree off1, off2;
-
- /* Perform basic offset and type-based disambiguation. */
- if (!refs_may_alias_p (mem1, mem2))
- return false;
-
- /* The expansion of addresses may be a bit expensive, thus we only do
- the check at -O2 and higher optimization levels. */
- if (optimize < 2)
- return true;
-
- get_inner_reference_aff (mem1, &off1, &size1);
- get_inner_reference_aff (mem2, &off2, &size2);
- aff_combination_expand (&off1, ttae_cache);
- aff_combination_expand (&off2, ttae_cache);
- aff_combination_scale (&off1, double_int_minus_one);
- aff_combination_add (&off2, &off1);
-
- if (aff_comb_cannot_overlap_p (&off2, size1, size2))
- return false;
-
- return true;
-}
-
-/* Rewrites location LOC by TMP_VAR. */
-
-static void
-rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
-{
- *loc->ref = tmp_var;
- update_stmt (loc->stmt);
-}
-
-/* Adds all locations of REF in LOOP and its subloops to LOCS. */
-
-static void
-get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
- vec<mem_ref_loc_p> *locs)
-{
- mem_ref_locs_p accs;
- unsigned i;
- mem_ref_loc_p loc;
- bitmap refs = memory_accesses.all_refs_in_loop[loop->num];
- struct loop *subloop;
-
- if (!bitmap_bit_p (refs, ref->id))
- return;
-
- if (ref->accesses_in_loop.length ()
- > (unsigned) loop->num)
- {
- accs = ref->accesses_in_loop[loop->num];
- if (accs)
- {
- FOR_EACH_VEC_ELT (accs->locs, i, loc)
- locs->safe_push (loc);
- }
- }
-
- for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
- get_all_locs_in_loop (subloop, ref, locs);
-}
-
-/* Rewrites all references to REF in LOOP by variable TMP_VAR. */
-
-static void
-rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
-{
- unsigned i;
- mem_ref_loc_p loc;
- vec<mem_ref_loc_p> locs = vNULL;
-
- get_all_locs_in_loop (loop, ref, &locs);
- FOR_EACH_VEC_ELT (locs, i, loc)
- rewrite_mem_ref_loc (loc, tmp_var);
- locs.release ();
-}
-
-/* The name and the length of the currently generated variable
- for lsm. */
-#define MAX_LSM_NAME_LENGTH 40
-static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
-static int lsm_tmp_name_length;
-
-/* Adds S to lsm_tmp_name. */
-
-static void
-lsm_tmp_name_add (const char *s)
-{
- int l = strlen (s) + lsm_tmp_name_length;
- if (l > MAX_LSM_NAME_LENGTH)
- return;
-
- strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
- lsm_tmp_name_length = l;
-}
-
-/* Stores the name for temporary variable that replaces REF to
- lsm_tmp_name. */
-
-static void
-gen_lsm_tmp_name (tree ref)
-{
- const char *name;
-
- switch (TREE_CODE (ref))
- {
- case MEM_REF:
- case TARGET_MEM_REF:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- lsm_tmp_name_add ("_");
- break;
-
- case ADDR_EXPR:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- break;
-
- case BIT_FIELD_REF:
- case VIEW_CONVERT_EXPR:
- case ARRAY_RANGE_REF:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- break;
-
- case REALPART_EXPR:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- lsm_tmp_name_add ("_RE");
- break;
-
- case IMAGPART_EXPR:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- lsm_tmp_name_add ("_IM");
- break;
-
- case COMPONENT_REF:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- lsm_tmp_name_add ("_");
- name = get_name (TREE_OPERAND (ref, 1));
- if (!name)
- name = "F";
- lsm_tmp_name_add (name);
- break;
-
- case ARRAY_REF:
- gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
- lsm_tmp_name_add ("_I");
- break;
-
- case SSA_NAME:
- case VAR_DECL:
- case PARM_DECL:
- name = get_name (ref);
- if (!name)
- name = "D";
- lsm_tmp_name_add (name);
- break;
-
- case STRING_CST:
- lsm_tmp_name_add ("S");
- break;
-
- case RESULT_DECL:
- lsm_tmp_name_add ("R");
- break;
-
- case INTEGER_CST:
- /* Nothing. */
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Determines name for temporary variable that replaces REF.
- The name is accumulated into the lsm_tmp_name variable.
- N is added to the name of the temporary. */
-
-char *
-get_lsm_tmp_name (tree ref, unsigned n)
-{
- char ns[2];
-
- lsm_tmp_name_length = 0;
- gen_lsm_tmp_name (ref);
- lsm_tmp_name_add ("_lsm");
- if (n < 10)
- {
- ns[0] = '0' + n;
- ns[1] = 0;
- lsm_tmp_name_add (ns);
- }
- return lsm_tmp_name;
-}
-
-struct prev_flag_edges {
- /* Edge to insert new flag comparison code. */
- edge append_cond_position;
-
- /* Edge for fall through from previous flag comparison. */
- edge last_cond_fallthru;
-};
-
-/* Helper function for execute_sm. Emit code to store TMP_VAR into
- MEM along edge EX.
-
- The store is only done if MEM has changed. We do this so no
- changes to MEM occur on code paths that did not originally store
- into it.
-
- The common case for execute_sm will transform:
-
- for (...) {
- if (foo)
- stuff;
- else
- MEM = TMP_VAR;
- }
-
- into:
-
- lsm = MEM;
- for (...) {
- if (foo)
- stuff;
- else
- lsm = TMP_VAR;
- }
- MEM = lsm;
-
- This function will generate:
-
- lsm = MEM;
-
- lsm_flag = false;
- ...
- for (...) {
- if (foo)
- stuff;
- else {
- lsm = TMP_VAR;
- lsm_flag = true;
- }
- }
- if (lsm_flag) <--
- MEM = lsm; <--
-*/
-
-static void
-execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
-{
- basic_block new_bb, then_bb, old_dest;
- bool loop_has_only_one_exit;
- edge then_old_edge, orig_ex = ex;
- gimple_stmt_iterator gsi;
- gimple stmt;
- struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
-
- /* ?? Insert store after previous store if applicable. See note
- below. */
- if (prev_edges)
- ex = prev_edges->append_cond_position;
-
- loop_has_only_one_exit = single_pred_p (ex->dest);
-
- if (loop_has_only_one_exit)
- ex = split_block_after_labels (ex->dest);
-
- old_dest = ex->dest;
- new_bb = split_edge (ex);
- then_bb = create_empty_bb (new_bb);
- if (current_loops && new_bb->loop_father)
- add_bb_to_loop (then_bb, new_bb->loop_father);
-
- gsi = gsi_start_bb (new_bb);
- stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
- NULL_TREE, NULL_TREE);
- gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
-
- gsi = gsi_start_bb (then_bb);
- /* Insert actual store. */
- stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
- gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
-
- make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
- make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
- then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
-
- set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
-
- if (prev_edges)
- {
- basic_block prevbb = prev_edges->last_cond_fallthru->src;
- redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
- set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
- set_immediate_dominator (CDI_DOMINATORS, old_dest,
- recompute_dominator (CDI_DOMINATORS, old_dest));
- }
-
- /* ?? Because stores may alias, they must happen in the exact
- sequence they originally happened. Save the position right after
- the (_lsm) store we just created so we can continue appending after
- it and maintain the original order. */
- {
- struct prev_flag_edges *p;
-
- if (orig_ex->aux)
- orig_ex->aux = NULL;
- alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
- p = (struct prev_flag_edges *) orig_ex->aux;
- p->append_cond_position = then_old_edge;
- p->last_cond_fallthru = find_edge (new_bb, old_dest);
- orig_ex->aux = (void *) p;
- }
-
- if (!loop_has_only_one_exit)
- for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple phi = gsi_stmt (gsi);
- unsigned i;
-
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- if (gimple_phi_arg_edge (phi, i)->src == new_bb)
- {
- tree arg = gimple_phi_arg_def (phi, i);
- add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
- update_stmt (phi);
- }
- }
- /* Remove the original fall through edge. This was the
- single_succ_edge (new_bb). */
- EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
-}
-
-/* Helper function for execute_sm. On every location where REF is
- set, set an appropriate flag indicating the store. */
-
-static tree
-execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
-{
- unsigned i;
- mem_ref_loc_p loc;
- tree flag;
- vec<mem_ref_loc_p> locs = vNULL;
- char *str = get_lsm_tmp_name (ref->mem, ~0);
-
- lsm_tmp_name_add ("_flag");
- flag = create_tmp_reg (boolean_type_node, str);
- get_all_locs_in_loop (loop, ref, &locs);
- FOR_EACH_VEC_ELT (locs, i, loc)
- {
- gimple_stmt_iterator gsi;
- gimple stmt;
-
- /* Only set the flag for writes. */
- if (is_gimple_assign (loc->stmt)
- && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
- {
- gsi = gsi_for_stmt (loc->stmt);
- stmt = gimple_build_assign (flag, boolean_true_node);
- gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
- }
- }
- locs.release ();
- return flag;
-}
-
-/* Executes store motion of memory reference REF from LOOP.
- Exits from the LOOP are stored in EXITS. The initialization of the
- temporary variable is put to the preheader of the loop, and assignments
- to the reference from the temporary variable are emitted to exits. */
-
-static void
-execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
-{
- tree tmp_var, store_flag;
- unsigned i;
- gimple load;
- struct fmt_data fmt_data;
- edge ex, latch_edge;
- struct lim_aux_data *lim_data;
- bool multi_threaded_model_p = false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Executing store motion of ");
- print_generic_expr (dump_file, ref->mem, 0);
- fprintf (dump_file, " from loop %d\n", loop->num);
- }
-
- tmp_var = create_tmp_reg (TREE_TYPE (ref->mem),
- get_lsm_tmp_name (ref->mem, ~0));
-
- fmt_data.loop = loop;
- fmt_data.orig_loop = loop;
- for_each_index (&ref->mem, force_move_till, &fmt_data);
-
- if (block_in_transaction (loop_preheader_edge (loop)->src)
- || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
- multi_threaded_model_p = true;
-
- if (multi_threaded_model_p)
- store_flag = execute_sm_if_changed_flag_set (loop, ref);
-
- rewrite_mem_refs (loop, ref, tmp_var);
-
- /* Emit the load code into the latch, so that we are sure it will
- be processed after all dependencies. */
- latch_edge = loop_latch_edge (loop);
-
- /* FIXME/TODO: For the multi-threaded variant, we could avoid this
- load altogether, since the store is predicated by a flag. We
- could, do the load only if it was originally in the loop. */
- load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
- lim_data = init_lim_data (load);
- lim_data->max_loop = loop;
- lim_data->tgt_loop = loop;
- gsi_insert_on_edge (latch_edge, load);
-
- if (multi_threaded_model_p)
- {
- load = gimple_build_assign (store_flag, boolean_false_node);
- lim_data = init_lim_data (load);
- lim_data->max_loop = loop;
- lim_data->tgt_loop = loop;
- gsi_insert_on_edge (latch_edge, load);
- }
-
- /* Sink the store to every exit from the loop. */
- FOR_EACH_VEC_ELT (exits, i, ex)
- if (!multi_threaded_model_p)
- {
- gimple store;
- store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
- gsi_insert_on_edge (ex, store);
- }
- else
- execute_sm_if_changed (ex, ref->mem, tmp_var, store_flag);
-}
-
-/* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
- edges of the LOOP. */
-
-static void
-hoist_memory_references (struct loop *loop, bitmap mem_refs,
- vec<edge> exits)
-{
- mem_ref_p ref;
- unsigned i;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
- {
- ref = memory_accesses.refs_list[i];
- execute_sm (loop, exits, ref);
- }
-}
-
-/* Returns true if REF is always accessed in LOOP. If STORED_P is true
- make sure REF is always stored to in LOOP. */
-
-static bool
-ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
-{
- vec<mem_ref_loc_p> locs = vNULL;
- unsigned i;
- mem_ref_loc_p loc;
- bool ret = false;
- struct loop *must_exec;
- tree base;
-
- base = get_base_address (ref->mem);
- if (INDIRECT_REF_P (base)
- || TREE_CODE (base) == MEM_REF)
- base = TREE_OPERAND (base, 0);
-
- get_all_locs_in_loop (loop, ref, &locs);
- FOR_EACH_VEC_ELT (locs, i, loc)
- {
- if (!get_lim_data (loc->stmt))
- continue;
-
- /* If we require an always executed store make sure the statement
- stores to the reference. */
- if (stored_p)
- {
- tree lhs;
- if (!gimple_get_lhs (loc->stmt))
- continue;
- lhs = get_base_address (gimple_get_lhs (loc->stmt));
- if (!lhs)
- continue;
- if (INDIRECT_REF_P (lhs)
- || TREE_CODE (lhs) == MEM_REF)
- lhs = TREE_OPERAND (lhs, 0);
- if (lhs != base)
- continue;
- }
-
- must_exec = get_lim_data (loc->stmt)->always_executed_in;
- if (!must_exec)
- continue;
-
- if (must_exec == loop
- || flow_loop_nested_p (must_exec, loop))
- {
- ret = true;
- break;
- }
- }
- locs.release ();
-
- return ret;
-}
-
-/* Returns true if REF1 and REF2 are independent. */
-
-static bool
-refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
-{
- if (ref1 == ref2
- || bitmap_bit_p (ref1->indep_ref, ref2->id))
- return true;
- if (bitmap_bit_p (ref1->dep_ref, ref2->id))
- return false;
- if (!MEM_ANALYZABLE (ref1)
- || !MEM_ANALYZABLE (ref2))
- return false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Querying dependency of refs %u and %u: ",
- ref1->id, ref2->id);
-
- if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
- &memory_accesses.ttae_cache))
- {
- bitmap_set_bit (ref1->dep_ref, ref2->id);
- bitmap_set_bit (ref2->dep_ref, ref1->id);
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "dependent.\n");
- return false;
- }
- else
- {
- bitmap_set_bit (ref1->indep_ref, ref2->id);
- bitmap_set_bit (ref2->indep_ref, ref1->id);
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "independent.\n");
- return true;
- }
-}
-
-/* Records the information whether REF is independent in LOOP (according
- to INDEP). */
-
-static void
-record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
-{
- if (indep)
- bitmap_set_bit (ref->indep_loop, loop->num);
- else
- bitmap_set_bit (ref->dep_loop, loop->num);
-}
-
-/* Returns true if REF is independent on all other memory references in
- LOOP. */
-
-static bool
-ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
-{
- bitmap refs_to_check;
- unsigned i;
- bitmap_iterator bi;
- bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
- mem_ref_p aref;
-
- if (stored)
- refs_to_check = memory_accesses.all_refs_in_loop[loop->num];
- else
- refs_to_check = memory_accesses.all_refs_stored_in_loop[loop->num];
-
- EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
- {
- aref = memory_accesses.refs_list[i];
- if (!MEM_ANALYZABLE (aref)
- || !refs_independent_p (ref, aref))
- {
- ret = false;
- record_indep_loop (loop, aref, false);
- break;
- }
- }
-
- return ret;
-}
-
-/* Returns true if REF is independent on all other memory references in
- LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
-
-static bool
-ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
-{
- bool ret;
-
- if (bitmap_bit_p (ref->indep_loop, loop->num))
- return true;
- if (bitmap_bit_p (ref->dep_loop, loop->num))
- return false;
-
- ret = ref_indep_loop_p_1 (loop, ref);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
- ref->id, loop->num, ret ? "independent" : "dependent");
-
- record_indep_loop (loop, ref, ret);
-
- return ret;
-}
-
-/* Returns true if we can perform store motion of REF from LOOP. */
-
-static bool
-can_sm_ref_p (struct loop *loop, mem_ref_p ref)
-{
- tree base;
-
- /* Can't hoist unanalyzable refs. */
- if (!MEM_ANALYZABLE (ref))
- return false;
-
- /* Unless the reference is stored in the loop, there is nothing to do. */
- if (!bitmap_bit_p (ref->stored, loop->num))
- return false;
-
- /* It should be movable. */
- if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
- || TREE_THIS_VOLATILE (ref->mem)
- || !for_each_index (&ref->mem, may_move_till, loop))
- return false;
-
- /* If it can throw fail, we do not properly update EH info. */
- if (tree_could_throw_p (ref->mem))
- return false;
-
- /* If it can trap, it must be always executed in LOOP.
- Readonly memory locations may trap when storing to them, but
- tree_could_trap_p is a predicate for rvalues, so check that
- explicitly. */
- base = get_base_address (ref->mem);
- if ((tree_could_trap_p (ref->mem)
- || (DECL_P (base) && TREE_READONLY (base)))
- && !ref_always_accessed_p (loop, ref, true))
- return false;
-
- /* And it must be independent on all other memory references
- in LOOP. */
- if (!ref_indep_loop_p (loop, ref))
- return false;
-
- return true;
-}
-
-/* Marks the references in LOOP for that store motion should be performed
- in REFS_TO_SM. SM_EXECUTED is the set of references for that store
- motion was performed in one of the outer loops. */
-
-static void
-find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
-{
- bitmap refs = memory_accesses.all_refs_in_loop[loop->num];
- unsigned i;
- bitmap_iterator bi;
- mem_ref_p ref;
-
- EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
- {
- ref = memory_accesses.refs_list[i];
- if (can_sm_ref_p (loop, ref))
- bitmap_set_bit (refs_to_sm, i);
- }
-}
-
-/* Checks whether LOOP (with exits stored in EXITS array) is suitable
- for a store motion optimization (i.e. whether we can insert statement
- on its exits). */
-
-static bool
-loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
- vec<edge> exits)
-{
- unsigned i;
- edge ex;
-
- FOR_EACH_VEC_ELT (exits, i, ex)
- if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
- return false;
-
- return true;
-}
-
-/* Try to perform store motion for all memory references modified inside
- LOOP. SM_EXECUTED is the bitmap of the memory references for that
- store motion was executed in one of the outer loops. */
-
-static void
-store_motion_loop (struct loop *loop, bitmap sm_executed)
-{
- vec<edge> exits = get_loop_exit_edges (loop);
- struct loop *subloop;
- bitmap sm_in_loop = BITMAP_ALLOC (NULL);
-
- if (loop_suitable_for_sm (loop, exits))
- {
- find_refs_for_sm (loop, sm_executed, sm_in_loop);
- hoist_memory_references (loop, sm_in_loop, exits);
- }
- exits.release ();
-
- bitmap_ior_into (sm_executed, sm_in_loop);
- for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
- store_motion_loop (subloop, sm_executed);
- bitmap_and_compl_into (sm_executed, sm_in_loop);
- BITMAP_FREE (sm_in_loop);
-}
-
-/* Try to perform store motion for all memory references modified inside
- loops. */
-
-static void
-store_motion (void)
-{
- struct loop *loop;
- bitmap sm_executed = BITMAP_ALLOC (NULL);
-
- for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
- store_motion_loop (loop, sm_executed);
-
- BITMAP_FREE (sm_executed);
- gsi_commit_edge_inserts ();
-}
-
-/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
- for each such basic block bb records the outermost loop for that execution
- of its header implies execution of bb. CONTAINS_CALL is the bitmap of
- blocks that contain a nonpure call. */
-
-static void
-fill_always_executed_in (struct loop *loop, sbitmap contains_call)
-{
- basic_block bb = NULL, *bbs, last = NULL;
- unsigned i;
- edge e;
- struct loop *inn_loop = loop;
-
- if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
- {
- bbs = get_loop_body_in_dom_order (loop);
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- edge_iterator ei;
- bb = bbs[i];
-
- if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
- last = bb;
-
- if (bitmap_bit_p (contains_call, bb->index))
- break;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (!flow_bb_inside_loop_p (loop, e->dest))
- break;
- if (e)
- break;
-
- /* A loop might be infinite (TODO use simple loop analysis
- to disprove this if possible). */
- if (bb->flags & BB_IRREDUCIBLE_LOOP)
- break;
-
- if (!flow_bb_inside_loop_p (inn_loop, bb))
- break;
-
- if (bb->loop_father->header == bb)
- {
- if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
- break;
-
- /* In a loop that is always entered we may proceed anyway.
- But record that we entered it and stop once we leave it. */
- inn_loop = bb->loop_father;
- }
- }
-
- while (1)
- {
- SET_ALWAYS_EXECUTED_IN (last, loop);
- if (last == loop->header)
- break;
- last = get_immediate_dominator (CDI_DOMINATORS, last);
- }
-
- free (bbs);
- }
-
- for (loop = loop->inner; loop; loop = loop->next)
- fill_always_executed_in (loop, contains_call);
-}
-
-/* Compute the global information needed by the loop invariant motion pass. */
-
-static void
-tree_ssa_lim_initialize (void)
-{
- sbitmap contains_call = sbitmap_alloc (last_basic_block);
- gimple_stmt_iterator bsi;
- struct loop *loop;
- basic_block bb;
-
- bitmap_obstack_initialize (&lim_bitmap_obstack);
-
- bitmap_clear (contains_call);
- FOR_EACH_BB (bb)
- {
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- if (nonpure_call_p (gsi_stmt (bsi)))
- break;
- }
-
- if (!gsi_end_p (bsi))
- bitmap_set_bit (contains_call, bb->index);
- }
-
- for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
- fill_always_executed_in (loop, contains_call);
-
- sbitmap_free (contains_call);
-
- lim_aux_data_map = pointer_map_create ();
-
- if (flag_tm)
- compute_transaction_bits ();
-
- alloc_aux_for_edges (0);
-}
-
-/* Cleans up after the invariant motion pass. */
-
-static void
-tree_ssa_lim_finalize (void)
-{
- basic_block bb;
- unsigned i;
- mem_ref_p ref;
-
- free_aux_for_edges ();
-
- FOR_EACH_BB (bb)
- SET_ALWAYS_EXECUTED_IN (bb, NULL);
-
- bitmap_obstack_release (&lim_bitmap_obstack);
- pointer_map_destroy (lim_aux_data_map);
-
- htab_delete (memory_accesses.refs);
-
- FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
- memref_free (ref);
- memory_accesses.refs_list.release ();
-
- memory_accesses.refs_in_loop.release ();
- memory_accesses.all_refs_in_loop.release ();
- memory_accesses.all_refs_stored_in_loop.release ();
-
- if (memory_accesses.ttae_cache)
- free_affine_expand_cache (&memory_accesses.ttae_cache);
-}
-
-/* Moves invariants from loops. Only "expensive" invariants are moved out --
- i.e. those that are likely to be win regardless of the register pressure. */
-
-unsigned int
-tree_ssa_lim (void)
-{
- unsigned int todo;
-
- tree_ssa_lim_initialize ();
-
- /* Gathers information about memory accesses in the loops. */
- analyze_memory_references ();
-
- /* For each statement determine the outermost loop in that it is
- invariant and cost for computing the invariant. */
- determine_invariantness ();
-
- /* Execute store motion. Force the necessary invariants to be moved
- out of the loops as well. */
- store_motion ();
-
- /* Move the expressions that are expensive enough. */
- todo = move_computations ();
-
- tree_ssa_lim_finalize ();
-
- return todo;
-}