aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-parloops.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-parloops.c')
-rw-r--r--gcc-4.8.1/gcc/tree-parloops.c2219
1 files changed, 0 insertions, 2219 deletions
diff --git a/gcc-4.8.1/gcc/tree-parloops.c b/gcc-4.8.1/gcc/tree-parloops.c
deleted file mode 100644
index d7b846ae7..000000000
--- a/gcc-4.8.1/gcc/tree-parloops.c
+++ /dev/null
@@ -1,2219 +0,0 @@
-/* Loop autoparallelization.
- Copyright (C) 2006-2013 Free Software Foundation, Inc.
- Contributed by Sebastian Pop <pop@cri.ensmp.fr>
- Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "gimple-pretty-print.h"
-#include "tree-pass.h"
-#include "langhooks.h"
-#include "tree-vectorizer.h"
-
-/* This pass tries to distribute iterations of loops into several threads.
- The implementation is straightforward -- for each loop we test whether its
- iterations are independent, and if it is the case (and some additional
- conditions regarding profitability and correctness are satisfied), we
- add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
- machinery do its job.
-
- The most of the complexity is in bringing the code into shape expected
- by the omp expanders:
- -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
- variable and that the exit test is at the start of the loop body
- -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
- variables by accesses through pointers, and breaking up ssa chains
- by storing the values incoming to the parallelized loop to a structure
- passed to the new function as an argument (something similar is done
- in omp gimplification, unfortunately only a small part of the code
- can be shared).
-
- TODO:
- -- if there are several parallelizable loops in a function, it may be
- possible to generate the threads just once (using synchronization to
- ensure that cross-loop dependences are obeyed).
- -- handling of common reduction patterns for outer loops.
-
- More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
-/*
- Reduction handling:
- currently we use vect_force_simple_reduction() to detect reduction patterns.
- The code transformation will be introduced by an example.
-
-
-parloop
-{
- int sum=1;
-
- for (i = 0; i < N; i++)
- {
- x[i] = i + 3;
- sum+=x[i];
- }
-}
-
-gimple-like code:
-header_bb:
-
- # sum_29 = PHI <sum_11(5), 1(3)>
- # i_28 = PHI <i_12(5), 0(3)>
- D.1795_8 = i_28 + 3;
- x[i_28] = D.1795_8;
- sum_11 = D.1795_8 + sum_29;
- i_12 = i_28 + 1;
- if (N_6(D) > i_12)
- goto header_bb;
-
-
-exit_bb:
-
- # sum_21 = PHI <sum_11(4)>
- printf (&"%d"[0], sum_21);
-
-
-after reduction transformation (only relevant parts):
-
-parloop
-{
-
-....
-
-
- # Storing the initial value given by the user. #
-
- .paral_data_store.32.sum.27 = 1;
-
- #pragma omp parallel num_threads(4)
-
- #pragma omp for schedule(static)
-
- # The neutral element corresponding to the particular
- reduction's operation, e.g. 0 for PLUS_EXPR,
- 1 for MULT_EXPR, etc. replaces the user's initial value. #
-
- # sum.27_29 = PHI <sum.27_11, 0>
-
- sum.27_11 = D.1827_8 + sum.27_29;
-
- GIMPLE_OMP_CONTINUE
-
- # Adding this reduction phi is done at create_phi_for_local_result() #
- # sum.27_56 = PHI <sum.27_11, 0>
- GIMPLE_OMP_RETURN
-
- # Creating the atomic operation is done at
- create_call_for_reduction_1() #
-
- #pragma omp atomic_load
- D.1839_59 = *&.paral_data_load.33_51->reduction.23;
- D.1840_60 = sum.27_56 + D.1839_59;
- #pragma omp atomic_store (D.1840_60);
-
- GIMPLE_OMP_RETURN
-
- # collecting the result after the join of the threads is done at
- create_loads_for_reductions().
- The value computed by the threads is loaded from the
- shared struct. #
-
-
- .paral_data_load.33_52 = &.paral_data_store.32;
- sum_37 = .paral_data_load.33_52->sum.27;
- sum_43 = D.1795_41 + sum_37;
-
- exit bb:
- # sum_21 = PHI <sum_43, sum_26>
- printf (&"%d"[0], sum_21);
-
-...
-
-}
-
-*/
-
-/* Minimal number of iterations of a loop that should be executed in each
- thread. */
-#define MIN_PER_THREAD 100
-
-/* Element of the hashtable, representing a
- reduction in the current loop. */
-struct reduction_info
-{
- gimple reduc_stmt; /* reduction statement. */
- gimple reduc_phi; /* The phi node defining the reduction. */
- enum tree_code reduction_code;/* code for the reduction operation. */
- unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
- result. */
- gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
- of the reduction variable when existing the loop. */
- tree initial_value; /* The initial value of the reduction var before entering the loop. */
- tree field; /* the name of the field in the parloop data structure intended for reduction. */
- tree init; /* reduction initialization value. */
- gimple new_phi; /* (helper field) Newly created phi node whose result
- will be passed to the atomic operation. Represents
- the local result each thread computed for the reduction
- operation. */
-};
-
-/* Equality and hash functions for hashtab code. */
-
-static int
-reduction_info_eq (const void *aa, const void *bb)
-{
- const struct reduction_info *a = (const struct reduction_info *) aa;
- const struct reduction_info *b = (const struct reduction_info *) bb;
-
- return (a->reduc_phi == b->reduc_phi);
-}
-
-static hashval_t
-reduction_info_hash (const void *aa)
-{
- const struct reduction_info *a = (const struct reduction_info *) aa;
-
- return a->reduc_version;
-}
-
-static struct reduction_info *
-reduction_phi (htab_t reduction_list, gimple phi)
-{
- struct reduction_info tmpred, *red;
-
- if (htab_elements (reduction_list) == 0 || phi == NULL)
- return NULL;
-
- tmpred.reduc_phi = phi;
- tmpred.reduc_version = gimple_uid (phi);
- red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
-
- return red;
-}
-
-/* Element of hashtable of names to copy. */
-
-struct name_to_copy_elt
-{
- unsigned version; /* The version of the name to copy. */
- tree new_name; /* The new name used in the copy. */
- tree field; /* The field of the structure used to pass the
- value. */
-};
-
-/* Equality and hash functions for hashtab code. */
-
-static int
-name_to_copy_elt_eq (const void *aa, const void *bb)
-{
- const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
- const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
-
- return a->version == b->version;
-}
-
-static hashval_t
-name_to_copy_elt_hash (const void *aa)
-{
- const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
-
- return (hashval_t) a->version;
-}
-
-/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
- matrix. Rather than use floats, we simply keep a single DENOMINATOR that
- represents the denominator for every element in the matrix. */
-typedef struct lambda_trans_matrix_s
-{
- lambda_matrix matrix;
- int rowsize;
- int colsize;
- int denominator;
-} *lambda_trans_matrix;
-#define LTM_MATRIX(T) ((T)->matrix)
-#define LTM_ROWSIZE(T) ((T)->rowsize)
-#define LTM_COLSIZE(T) ((T)->colsize)
-#define LTM_DENOMINATOR(T) ((T)->denominator)
-
-/* Allocate a new transformation matrix. */
-
-static lambda_trans_matrix
-lambda_trans_matrix_new (int colsize, int rowsize,
- struct obstack * lambda_obstack)
-{
- lambda_trans_matrix ret;
-
- ret = (lambda_trans_matrix)
- obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
- LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
- LTM_ROWSIZE (ret) = rowsize;
- LTM_COLSIZE (ret) = colsize;
- LTM_DENOMINATOR (ret) = 1;
- return ret;
-}
-
-/* Multiply a vector VEC by a matrix MAT.
- MAT is an M*N matrix, and VEC is a vector with length N. The result
- is stored in DEST which must be a vector of length M. */
-
-static void
-lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
- lambda_vector vec, lambda_vector dest)
-{
- int i, j;
-
- lambda_vector_clear (dest, m);
- for (i = 0; i < m; i++)
- for (j = 0; j < n; j++)
- dest[i] += matrix[i][j] * vec[j];
-}
-
-/* Return true if TRANS is a legal transformation matrix that respects
- the dependence vectors in DISTS and DIRS. The conservative answer
- is false.
-
- "Wolfe proves that a unimodular transformation represented by the
- matrix T is legal when applied to a loop nest with a set of
- lexicographically non-negative distance vectors RDG if and only if
- for each vector d in RDG, (T.d >= 0) is lexicographically positive.
- i.e.: if and only if it transforms the lexicographically positive
- distance vectors to lexicographically positive vectors. Note that
- a unimodular matrix must transform the zero vector (and only it) to
- the zero vector." S.Muchnick. */
-
-static bool
-lambda_transform_legal_p (lambda_trans_matrix trans,
- int nb_loops,
- vec<ddr_p> dependence_relations)
-{
- unsigned int i, j;
- lambda_vector distres;
- struct data_dependence_relation *ddr;
-
- gcc_assert (LTM_COLSIZE (trans) == nb_loops
- && LTM_ROWSIZE (trans) == nb_loops);
-
- /* When there are no dependences, the transformation is correct. */
- if (dependence_relations.length () == 0)
- return true;
-
- ddr = dependence_relations[0];
- if (ddr == NULL)
- return true;
-
- /* When there is an unknown relation in the dependence_relations, we
- know that it is no worth looking at this loop nest: give up. */
- if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- return false;
-
- distres = lambda_vector_new (nb_loops);
-
- /* For each distance vector in the dependence graph. */
- FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
- {
- /* Don't care about relations for which we know that there is no
- dependence, nor about read-read (aka. output-dependences):
- these data accesses can happen in any order. */
- if (DDR_ARE_DEPENDENT (ddr) == chrec_known
- || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
- continue;
-
- /* Conservatively answer: "this transformation is not valid". */
- if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- return false;
-
- /* If the dependence could not be captured by a distance vector,
- conservatively answer that the transform is not valid. */
- if (DDR_NUM_DIST_VECTS (ddr) == 0)
- return false;
-
- /* Compute trans.dist_vect */
- for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
- {
- lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
- DDR_DIST_VECT (ddr, j), distres);
-
- if (!lambda_vector_lexico_pos (distres, nb_loops))
- return false;
- }
- }
- return true;
-}
-
-/* Data dependency analysis. Returns true if the iterations of LOOP
- are independent on each other (that is, if we can execute them
- in parallel). */
-
-static bool
-loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
-{
- vec<loop_p> loop_nest;
- vec<ddr_p> dependence_relations;
- vec<data_reference_p> datarefs;
- lambda_trans_matrix trans;
- bool ret = false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Considering loop %d\n", loop->num);
- if (!loop->inner)
- fprintf (dump_file, "loop is innermost\n");
- else
- fprintf (dump_file, "loop NOT innermost\n");
- }
-
- /* Check for problems with dependences. If the loop can be reversed,
- the iterations are independent. */
- datarefs.create (10);
- dependence_relations.create (10 * 10);
- loop_nest.create (3);
- if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
- &dependence_relations))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
- ret = false;
- goto end;
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_data_dependence_relations (dump_file, dependence_relations);
-
- trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
- LTM_MATRIX (trans)[0][0] = -1;
-
- if (lambda_transform_legal_p (trans, 1, dependence_relations))
- {
- ret = true;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " SUCCESS: may be parallelized\n");
- }
- else if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- " FAILED: data dependencies exist across iterations\n");
-
- end:
- loop_nest.release ();
- free_dependence_relations (dependence_relations);
- free_data_refs (datarefs);
-
- return ret;
-}
-
-/* Return true when LOOP contains basic blocks marked with the
- BB_IRREDUCIBLE_LOOP flag. */
-
-static inline bool
-loop_has_blocks_with_irreducible_flag (struct loop *loop)
-{
- unsigned i;
- basic_block *bbs = get_loop_body_in_dom_order (loop);
- bool res = true;
-
- for (i = 0; i < loop->num_nodes; i++)
- if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
- goto end;
-
- res = false;
- end:
- free (bbs);
- return res;
-}
-
-/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
- The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
- to their addresses that can be reused. The address of OBJ is known to
- be invariant in the whole function. Other needed statements are placed
- right before GSI. */
-
-static tree
-take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
- gimple_stmt_iterator *gsi)
-{
- int uid;
- void **dslot;
- struct int_tree_map ielt, *nielt;
- tree *var_p, name, addr;
- gimple stmt;
- gimple_seq stmts;
-
- /* Since the address of OBJ is invariant, the trees may be shared.
- Avoid rewriting unrelated parts of the code. */
- obj = unshare_expr (obj);
- for (var_p = &obj;
- handled_component_p (*var_p);
- var_p = &TREE_OPERAND (*var_p, 0))
- continue;
-
- /* Canonicalize the access to base on a MEM_REF. */
- if (DECL_P (*var_p))
- *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
-
- /* Assign a canonical SSA name to the address of the base decl used
- in the address and share it for all accesses and addresses based
- on it. */
- uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
- ielt.uid = uid;
- dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
- if (!*dslot)
- {
- if (gsi == NULL)
- return NULL;
- addr = TREE_OPERAND (*var_p, 0);
- name = make_temp_ssa_name (TREE_TYPE (addr), NULL,
- get_name (TREE_OPERAND
- (TREE_OPERAND (*var_p, 0), 0)));
- stmt = gimple_build_assign (name, addr);
- gsi_insert_on_edge_immediate (entry, stmt);
-
- nielt = XNEW (struct int_tree_map);
- nielt->uid = uid;
- nielt->to = name;
- *dslot = nielt;
- }
- else
- name = ((struct int_tree_map *) *dslot)->to;
-
- /* Express the address in terms of the canonical SSA name. */
- TREE_OPERAND (*var_p, 0) = name;
- if (gsi == NULL)
- return build_fold_addr_expr_with_type (obj, type);
-
- name = force_gimple_operand (build_addr (obj, current_function_decl),
- &stmts, true, NULL_TREE);
- if (!gimple_seq_empty_p (stmts))
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
-
- if (!useless_type_conversion_p (type, TREE_TYPE (name)))
- {
- name = force_gimple_operand (fold_convert (type, name), &stmts, true,
- NULL_TREE);
- if (!gimple_seq_empty_p (stmts))
- gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
- }
-
- return name;
-}
-
-/* Callback for htab_traverse. Create the initialization statement
- for reduction described in SLOT, and place it at the preheader of
- the loop described in DATA. */
-
-static int
-initialize_reductions (void **slot, void *data)
-{
- tree init, c;
- tree bvar, type, arg;
- edge e;
-
- struct reduction_info *const reduc = (struct reduction_info *) *slot;
- struct loop *loop = (struct loop *) data;
-
- /* Create initialization in preheader:
- reduction_variable = initialization value of reduction. */
-
- /* In the phi node at the header, replace the argument coming
- from the preheader with the reduction initialization value. */
-
- /* Create a new variable to initialize the reduction. */
- type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
- bvar = create_tmp_var (type, "reduction");
-
- c = build_omp_clause (gimple_location (reduc->reduc_stmt),
- OMP_CLAUSE_REDUCTION);
- OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
- OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
-
- init = omp_reduction_init (c, TREE_TYPE (bvar));
- reduc->init = init;
-
- /* Replace the argument representing the initialization value
- with the initialization value for the reduction (neutral
- element for the particular operation, e.g. 0 for PLUS_EXPR,
- 1 for MULT_EXPR, etc).
- Keep the old value in a new variable "reduction_initial",
- that will be taken in consideration after the parallel
- computing is done. */
-
- e = loop_preheader_edge (loop);
- arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
- /* Create new variable to hold the initial value. */
-
- SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
- (reduc->reduc_phi, loop_preheader_edge (loop)), init);
- reduc->initial_value = arg;
- return 1;
-}
-
-struct elv_data
-{
- struct walk_stmt_info info;
- edge entry;
- htab_t decl_address;
- gimple_stmt_iterator *gsi;
- bool changed;
- bool reset;
-};
-
-/* Eliminates references to local variables in *TP out of the single
- entry single exit region starting at DTA->ENTRY.
- DECL_ADDRESS contains addresses of the references that had their
- address taken already. If the expression is changed, CHANGED is
- set to true. Callback for walk_tree. */
-
-static tree
-eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
-{
- struct elv_data *const dta = (struct elv_data *) data;
- tree t = *tp, var, addr, addr_type, type, obj;
-
- if (DECL_P (t))
- {
- *walk_subtrees = 0;
-
- if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
- return NULL_TREE;
-
- type = TREE_TYPE (t);
- addr_type = build_pointer_type (type);
- addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
- dta->gsi);
- if (dta->gsi == NULL && addr == NULL_TREE)
- {
- dta->reset = true;
- return NULL_TREE;
- }
-
- *tp = build_simple_mem_ref (addr);
-
- dta->changed = true;
- return NULL_TREE;
- }
-
- if (TREE_CODE (t) == ADDR_EXPR)
- {
- /* ADDR_EXPR may appear in two contexts:
- -- as a gimple operand, when the address taken is a function invariant
- -- as gimple rhs, when the resulting address in not a function
- invariant
- We do not need to do anything special in the latter case (the base of
- the memory reference whose address is taken may be replaced in the
- DECL_P case). The former case is more complicated, as we need to
- ensure that the new address is still a gimple operand. Thus, it
- is not sufficient to replace just the base of the memory reference --
- we need to move the whole computation of the address out of the
- loop. */
- if (!is_gimple_val (t))
- return NULL_TREE;
-
- *walk_subtrees = 0;
- obj = TREE_OPERAND (t, 0);
- var = get_base_address (obj);
- if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
- return NULL_TREE;
-
- addr_type = TREE_TYPE (t);
- addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
- dta->gsi);
- if (dta->gsi == NULL && addr == NULL_TREE)
- {
- dta->reset = true;
- return NULL_TREE;
- }
- *tp = addr;
-
- dta->changed = true;
- return NULL_TREE;
- }
-
- if (!EXPR_P (t))
- *walk_subtrees = 0;
-
- return NULL_TREE;
-}
-
-/* Moves the references to local variables in STMT at *GSI out of the single
- entry single exit region starting at ENTRY. DECL_ADDRESS contains
- addresses of the references that had their address taken
- already. */
-
-static void
-eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
- htab_t decl_address)
-{
- struct elv_data dta;
- gimple stmt = gsi_stmt (*gsi);
-
- memset (&dta.info, '\0', sizeof (dta.info));
- dta.entry = entry;
- dta.decl_address = decl_address;
- dta.changed = false;
- dta.reset = false;
-
- if (gimple_debug_bind_p (stmt))
- {
- dta.gsi = NULL;
- walk_tree (gimple_debug_bind_get_value_ptr (stmt),
- eliminate_local_variables_1, &dta.info, NULL);
- if (dta.reset)
- {
- gimple_debug_bind_reset_value (stmt);
- dta.changed = true;
- }
- }
- else
- {
- dta.gsi = gsi;
- walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
- }
-
- if (dta.changed)
- update_stmt (stmt);
-}
-
-/* Eliminates the references to local variables from the single entry
- single exit region between the ENTRY and EXIT edges.
-
- This includes:
- 1) Taking address of a local variable -- these are moved out of the
- region (and temporary variable is created to hold the address if
- necessary).
-
- 2) Dereferencing a local variable -- these are replaced with indirect
- references. */
-
-static void
-eliminate_local_variables (edge entry, edge exit)
-{
- basic_block bb;
- vec<basic_block> body;
- body.create (3);
- unsigned i;
- gimple_stmt_iterator gsi;
- bool has_debug_stmt = false;
- htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
- free);
- basic_block entry_bb = entry->src;
- basic_block exit_bb = exit->dest;
-
- gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
-
- FOR_EACH_VEC_ELT (body, i, bb)
- if (bb != entry_bb && bb != exit_bb)
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- if (is_gimple_debug (gsi_stmt (gsi)))
- {
- if (gimple_debug_bind_p (gsi_stmt (gsi)))
- has_debug_stmt = true;
- }
- else
- eliminate_local_variables_stmt (entry, &gsi, decl_address);
-
- if (has_debug_stmt)
- FOR_EACH_VEC_ELT (body, i, bb)
- if (bb != entry_bb && bb != exit_bb)
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- if (gimple_debug_bind_p (gsi_stmt (gsi)))
- eliminate_local_variables_stmt (entry, &gsi, decl_address);
-
- htab_delete (decl_address);
- body.release ();
-}
-
-/* Returns true if expression EXPR is not defined between ENTRY and
- EXIT, i.e. if all its operands are defined outside of the region. */
-
-static bool
-expr_invariant_in_region_p (edge entry, edge exit, tree expr)
-{
- basic_block entry_bb = entry->src;
- basic_block exit_bb = exit->dest;
- basic_block def_bb;
-
- if (is_gimple_min_invariant (expr))
- return true;
-
- if (TREE_CODE (expr) == SSA_NAME)
- {
- def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
- if (def_bb
- && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
- && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
- return false;
-
- return true;
- }
-
- return false;
-}
-
-/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
- The copies are stored to NAME_COPIES, if NAME was already duplicated,
- its duplicate stored in NAME_COPIES is returned.
-
- Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
- duplicated, storing the copies in DECL_COPIES. */
-
-static tree
-separate_decls_in_region_name (tree name,
- htab_t name_copies, htab_t decl_copies,
- bool copy_name_p)
-{
- tree copy, var, var_copy;
- unsigned idx, uid, nuid;
- struct int_tree_map ielt, *nielt;
- struct name_to_copy_elt elt, *nelt;
- void **slot, **dslot;
-
- if (TREE_CODE (name) != SSA_NAME)
- return name;
-
- idx = SSA_NAME_VERSION (name);
- elt.version = idx;
- slot = htab_find_slot_with_hash (name_copies, &elt, idx,
- copy_name_p ? INSERT : NO_INSERT);
- if (slot && *slot)
- return ((struct name_to_copy_elt *) *slot)->new_name;
-
- if (copy_name_p)
- {
- copy = duplicate_ssa_name (name, NULL);
- nelt = XNEW (struct name_to_copy_elt);
- nelt->version = idx;
- nelt->new_name = copy;
- nelt->field = NULL_TREE;
- *slot = nelt;
- }
- else
- {
- gcc_assert (!slot);
- copy = name;
- }
-
- var = SSA_NAME_VAR (name);
- if (!var)
- return copy;
-
- uid = DECL_UID (var);
- ielt.uid = uid;
- dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
- if (!*dslot)
- {
- var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
- DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
- nielt = XNEW (struct int_tree_map);
- nielt->uid = uid;
- nielt->to = var_copy;
- *dslot = nielt;
-
- /* Ensure that when we meet this decl next time, we won't duplicate
- it again. */
- nuid = DECL_UID (var_copy);
- ielt.uid = nuid;
- dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
- gcc_assert (!*dslot);
- nielt = XNEW (struct int_tree_map);
- nielt->uid = nuid;
- nielt->to = var_copy;
- *dslot = nielt;
- }
- else
- var_copy = ((struct int_tree_map *) *dslot)->to;
-
- replace_ssa_name_symbol (copy, var_copy);
- return copy;
-}
-
-/* Finds the ssa names used in STMT that are defined outside the
- region between ENTRY and EXIT and replaces such ssa names with
- their duplicates. The duplicates are stored to NAME_COPIES. Base
- decls of all ssa names used in STMT (including those defined in
- LOOP) are replaced with the new temporary variables; the
- replacement decls are stored in DECL_COPIES. */
-
-static void
-separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
- htab_t name_copies, htab_t decl_copies)
-{
- use_operand_p use;
- def_operand_p def;
- ssa_op_iter oi;
- tree name, copy;
- bool copy_name_p;
-
- FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
- {
- name = DEF_FROM_PTR (def);
- gcc_assert (TREE_CODE (name) == SSA_NAME);
- copy = separate_decls_in_region_name (name, name_copies, decl_copies,
- false);
- gcc_assert (copy == name);
- }
-
- FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
- {
- name = USE_FROM_PTR (use);
- if (TREE_CODE (name) != SSA_NAME)
- continue;
-
- copy_name_p = expr_invariant_in_region_p (entry, exit, name);
- copy = separate_decls_in_region_name (name, name_copies, decl_copies,
- copy_name_p);
- SET_USE (use, copy);
- }
-}
-
-/* Finds the ssa names used in STMT that are defined outside the
- region between ENTRY and EXIT and replaces such ssa names with
- their duplicates. The duplicates are stored to NAME_COPIES. Base
- decls of all ssa names used in STMT (including those defined in
- LOOP) are replaced with the new temporary variables; the
- replacement decls are stored in DECL_COPIES. */
-
-static bool
-separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
- htab_t decl_copies)
-{
- use_operand_p use;
- ssa_op_iter oi;
- tree var, name;
- struct int_tree_map ielt;
- struct name_to_copy_elt elt;
- void **slot, **dslot;
-
- if (gimple_debug_bind_p (stmt))
- var = gimple_debug_bind_get_var (stmt);
- else if (gimple_debug_source_bind_p (stmt))
- var = gimple_debug_source_bind_get_var (stmt);
- else
- return true;
- if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
- return true;
- gcc_assert (DECL_P (var) && SSA_VAR_P (var));
- ielt.uid = DECL_UID (var);
- dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
- if (!dslot)
- return true;
- if (gimple_debug_bind_p (stmt))
- gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
- else if (gimple_debug_source_bind_p (stmt))
- gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
-
- FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
- {
- name = USE_FROM_PTR (use);
- if (TREE_CODE (name) != SSA_NAME)
- continue;
-
- elt.version = SSA_NAME_VERSION (name);
- slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
- if (!slot)
- {
- gimple_debug_bind_reset_value (stmt);
- update_stmt (stmt);
- break;
- }
-
- SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
- }
-
- return false;
-}
-
-/* Callback for htab_traverse. Adds a field corresponding to the reduction
- specified in SLOT. The type is passed in DATA. */
-
-static int
-add_field_for_reduction (void **slot, void *data)
-{
-
- struct reduction_info *const red = (struct reduction_info *) *slot;
- tree const type = (tree) data;
- tree var = gimple_assign_lhs (red->reduc_stmt);
- tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
- SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
-
- insert_field_into_struct (type, field);
-
- red->field = field;
-
- return 1;
-}
-
-/* Callback for htab_traverse. Adds a field corresponding to a ssa name
- described in SLOT. The type is passed in DATA. */
-
-static int
-add_field_for_name (void **slot, void *data)
-{
- struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
- tree type = (tree) data;
- tree name = ssa_name (elt->version);
- tree field = build_decl (UNKNOWN_LOCATION,
- FIELD_DECL, SSA_NAME_IDENTIFIER (name),
- TREE_TYPE (name));
-
- insert_field_into_struct (type, field);
- elt->field = field;
-
- return 1;
-}
-
-/* Callback for htab_traverse. A local result is the intermediate result
- computed by a single
- thread, or the initial value in case no iteration was executed.
- This function creates a phi node reflecting these values.
- The phi's result will be stored in NEW_PHI field of the
- reduction's data structure. */
-
-static int
-create_phi_for_local_result (void **slot, void *data)
-{
- struct reduction_info *const reduc = (struct reduction_info *) *slot;
- const struct loop *const loop = (const struct loop *) data;
- edge e;
- gimple new_phi;
- basic_block store_bb;
- tree local_res;
- source_location locus;
-
- /* STORE_BB is the block where the phi
- should be stored. It is the destination of the loop exit.
- (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
- store_bb = FALLTHRU_EDGE (loop->latch)->dest;
-
- /* STORE_BB has two predecessors. One coming from the loop
- (the reduction's result is computed at the loop),
- and another coming from a block preceding the loop,
- when no iterations
- are executed (the initial value should be taken). */
- if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
- e = EDGE_PRED (store_bb, 1);
- else
- e = EDGE_PRED (store_bb, 0);
- local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
- locus = gimple_location (reduc->reduc_stmt);
- new_phi = create_phi_node (local_res, store_bb);
- add_phi_arg (new_phi, reduc->init, e, locus);
- add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
- FALLTHRU_EDGE (loop->latch), locus);
- reduc->new_phi = new_phi;
-
- return 1;
-}
-
-struct clsn_data
-{
- tree store;
- tree load;
-
- basic_block store_bb;
- basic_block load_bb;
-};
-
-/* Callback for htab_traverse. Create an atomic instruction for the
- reduction described in SLOT.
- DATA annotates the place in memory the atomic operation relates to,
- and the basic block it needs to be generated in. */
-
-static int
-create_call_for_reduction_1 (void **slot, void *data)
-{
- struct reduction_info *const reduc = (struct reduction_info *) *slot;
- struct clsn_data *const clsn_data = (struct clsn_data *) data;
- gimple_stmt_iterator gsi;
- tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
- tree load_struct;
- basic_block bb;
- basic_block new_bb;
- edge e;
- tree t, addr, ref, x;
- tree tmp_load, name;
- gimple load;
-
- load_struct = build_simple_mem_ref (clsn_data->load);
- t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
-
- addr = build_addr (t, current_function_decl);
-
- /* Create phi node. */
- bb = clsn_data->load_bb;
-
- e = split_block (bb, t);
- new_bb = e->dest;
-
- tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
- tmp_load = make_ssa_name (tmp_load, NULL);
- load = gimple_build_omp_atomic_load (tmp_load, addr);
- SSA_NAME_DEF_STMT (tmp_load) = load;
- gsi = gsi_start_bb (new_bb);
- gsi_insert_after (&gsi, load, GSI_NEW_STMT);
-
- e = split_block (new_bb, load);
- new_bb = e->dest;
- gsi = gsi_start_bb (new_bb);
- ref = tmp_load;
- x = fold_build2 (reduc->reduction_code,
- TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
- PHI_RESULT (reduc->new_phi));
-
- name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
- GSI_CONTINUE_LINKING);
-
- gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
- return 1;
-}
-
-/* Create the atomic operation at the join point of the threads.
- REDUCTION_LIST describes the reductions in the LOOP.
- LD_ST_DATA describes the shared data structure where
- shared data is stored in and loaded from. */
-static void
-create_call_for_reduction (struct loop *loop, htab_t reduction_list,
- struct clsn_data *ld_st_data)
-{
- htab_traverse (reduction_list, create_phi_for_local_result, loop);
- /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
- ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
- htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
-}
-
-/* Callback for htab_traverse. Loads the final reduction value at the
- join point of all threads, and inserts it in the right place. */
-
-static int
-create_loads_for_reductions (void **slot, void *data)
-{
- struct reduction_info *const red = (struct reduction_info *) *slot;
- struct clsn_data *const clsn_data = (struct clsn_data *) data;
- gimple stmt;
- gimple_stmt_iterator gsi;
- tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
- tree load_struct;
- tree name;
- tree x;
-
- gsi = gsi_after_labels (clsn_data->load_bb);
- load_struct = build_simple_mem_ref (clsn_data->load);
- load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
- NULL_TREE);
-
- x = load_struct;
- name = PHI_RESULT (red->keep_res);
- stmt = gimple_build_assign (name, x);
- SSA_NAME_DEF_STMT (name) = stmt;
-
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
- !gsi_end_p (gsi); gsi_next (&gsi))
- if (gsi_stmt (gsi) == red->keep_res)
- {
- remove_phi_node (&gsi, false);
- return 1;
- }
- gcc_unreachable ();
-}
-
-/* Load the reduction result that was stored in LD_ST_DATA.
- REDUCTION_LIST describes the list of reductions that the
- loads should be generated for. */
-static void
-create_final_loads_for_reduction (htab_t reduction_list,
- struct clsn_data *ld_st_data)
-{
- gimple_stmt_iterator gsi;
- tree t;
- gimple stmt;
-
- gsi = gsi_after_labels (ld_st_data->load_bb);
- t = build_fold_addr_expr (ld_st_data->store);
- stmt = gimple_build_assign (ld_st_data->load, t);
-
- gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
- SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
-
- htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
-
-}
-
-/* Callback for htab_traverse. Store the neutral value for the
- particular reduction's operation, e.g. 0 for PLUS_EXPR,
- 1 for MULT_EXPR, etc. into the reduction field.
- The reduction is specified in SLOT. The store information is
- passed in DATA. */
-
-static int
-create_stores_for_reduction (void **slot, void *data)
-{
- struct reduction_info *const red = (struct reduction_info *) *slot;
- struct clsn_data *const clsn_data = (struct clsn_data *) data;
- tree t;
- gimple stmt;
- gimple_stmt_iterator gsi;
- tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
-
- gsi = gsi_last_bb (clsn_data->store_bb);
- t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
- stmt = gimple_build_assign (t, red->initial_value);
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- return 1;
-}
-
-/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
- store to a field of STORE in STORE_BB for the ssa name and its duplicate
- specified in SLOT. */
-
-static int
-create_loads_and_stores_for_name (void **slot, void *data)
-{
- struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
- struct clsn_data *const clsn_data = (struct clsn_data *) data;
- tree t;
- gimple stmt;
- gimple_stmt_iterator gsi;
- tree type = TREE_TYPE (elt->new_name);
- tree load_struct;
-
- gsi = gsi_last_bb (clsn_data->store_bb);
- t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
- stmt = gimple_build_assign (t, ssa_name (elt->version));
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- gsi = gsi_last_bb (clsn_data->load_bb);
- load_struct = build_simple_mem_ref (clsn_data->load);
- t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
- stmt = gimple_build_assign (elt->new_name, t);
- SSA_NAME_DEF_STMT (elt->new_name) = stmt;
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- return 1;
-}
-
-/* Moves all the variables used in LOOP and defined outside of it (including
- the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
- name) to a structure created for this purpose. The code
-
- while (1)
- {
- use (a);
- use (b);
- }
-
- is transformed this way:
-
- bb0:
- old.a = a;
- old.b = b;
-
- bb1:
- a' = new->a;
- b' = new->b;
- while (1)
- {
- use (a');
- use (b');
- }
-
- `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
- pointer `new' is intentionally not initialized (the loop will be split to a
- separate function later, and `new' will be initialized from its arguments).
- LD_ST_DATA holds information about the shared data structure used to pass
- information among the threads. It is initialized here, and
- gen_parallel_loop will pass it to create_call_for_reduction that
- needs this information. REDUCTION_LIST describes the reductions
- in LOOP. */
-
-static void
-separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
- tree *arg_struct, tree *new_arg_struct,
- struct clsn_data *ld_st_data)
-
-{
- basic_block bb1 = split_edge (entry);
- basic_block bb0 = single_pred (bb1);
- htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
- name_to_copy_elt_eq, free);
- htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
- free);
- unsigned i;
- tree type, type_name, nvar;
- gimple_stmt_iterator gsi;
- struct clsn_data clsn_data;
- vec<basic_block> body;
- body.create (3);
- basic_block bb;
- basic_block entry_bb = bb1;
- basic_block exit_bb = exit->dest;
- bool has_debug_stmt = false;
-
- entry = single_succ_edge (entry_bb);
- gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
-
- FOR_EACH_VEC_ELT (body, i, bb)
- {
- if (bb != entry_bb && bb != exit_bb)
- {
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
- name_copies, decl_copies);
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
-
- if (is_gimple_debug (stmt))
- has_debug_stmt = true;
- else
- separate_decls_in_region_stmt (entry, exit, stmt,
- name_copies, decl_copies);
- }
- }
- }
-
- /* Now process debug bind stmts. We must not create decls while
- processing debug stmts, so we defer their processing so as to
- make sure we will have debug info for as many variables as
- possible (all of those that were dealt with in the loop above),
- and discard those for which we know there's nothing we can
- do. */
- if (has_debug_stmt)
- FOR_EACH_VEC_ELT (body, i, bb)
- if (bb != entry_bb && bb != exit_bb)
- {
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
- {
- gimple stmt = gsi_stmt (gsi);
-
- if (is_gimple_debug (stmt))
- {
- if (separate_decls_in_region_debug (stmt, name_copies,
- decl_copies))
- {
- gsi_remove (&gsi, true);
- continue;
- }
- }
-
- gsi_next (&gsi);
- }
- }
-
- body.release ();
-
- if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
- {
- /* It may happen that there is nothing to copy (if there are only
- loop carried and external variables in the loop). */
- *arg_struct = NULL;
- *new_arg_struct = NULL;
- }
- else
- {
- /* Create the type for the structure to store the ssa names to. */
- type = lang_hooks.types.make_type (RECORD_TYPE);
- type_name = build_decl (UNKNOWN_LOCATION,
- TYPE_DECL, create_tmp_var_name (".paral_data"),
- type);
- TYPE_NAME (type) = type_name;
-
- htab_traverse (name_copies, add_field_for_name, type);
- if (reduction_list && htab_elements (reduction_list) > 0)
- {
- /* Create the fields for reductions. */
- htab_traverse (reduction_list, add_field_for_reduction,
- type);
- }
- layout_type (type);
-
- /* Create the loads and stores. */
- *arg_struct = create_tmp_var (type, ".paral_data_store");
- nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
- *new_arg_struct = make_ssa_name (nvar, NULL);
-
- ld_st_data->store = *arg_struct;
- ld_st_data->load = *new_arg_struct;
- ld_st_data->store_bb = bb0;
- ld_st_data->load_bb = bb1;
-
- htab_traverse (name_copies, create_loads_and_stores_for_name,
- ld_st_data);
-
- /* Load the calculation from memory (after the join of the threads). */
-
- if (reduction_list && htab_elements (reduction_list) > 0)
- {
- htab_traverse (reduction_list, create_stores_for_reduction,
- ld_st_data);
- clsn_data.load = make_ssa_name (nvar, NULL);
- clsn_data.load_bb = exit->dest;
- clsn_data.store = ld_st_data->store;
- create_final_loads_for_reduction (reduction_list, &clsn_data);
- }
- }
-
- htab_delete (decl_copies);
- htab_delete (name_copies);
-}
-
-/* Bitmap containing uids of functions created by parallelization. We cannot
- allocate it from the default obstack, as it must live across compilation
- of several functions; we make it gc allocated instead. */
-
-static GTY(()) bitmap parallelized_functions;
-
-/* Returns true if FN was created by create_loop_fn. */
-
-bool
-parallelized_function_p (tree fn)
-{
- if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
- return false;
-
- return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
-}
-
-/* Creates and returns an empty function that will receive the body of
- a parallelized loop. */
-
-static tree
-create_loop_fn (location_t loc)
-{
- char buf[100];
- char *tname;
- tree decl, type, name, t;
- struct function *act_cfun = cfun;
- static unsigned loopfn_num;
-
- loc = LOCATION_LOCUS (loc);
- snprintf (buf, 100, "%s.$loopfn", current_function_name ());
- ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
- clean_symbol_name (tname);
- name = get_identifier (tname);
- type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
-
- decl = build_decl (loc, FUNCTION_DECL, name, type);
- if (!parallelized_functions)
- parallelized_functions = BITMAP_GGC_ALLOC ();
- bitmap_set_bit (parallelized_functions, DECL_UID (decl));
-
- TREE_STATIC (decl) = 1;
- TREE_USED (decl) = 1;
- DECL_ARTIFICIAL (decl) = 1;
- DECL_IGNORED_P (decl) = 0;
- TREE_PUBLIC (decl) = 0;
- DECL_UNINLINABLE (decl) = 1;
- DECL_EXTERNAL (decl) = 0;
- DECL_CONTEXT (decl) = NULL_TREE;
- DECL_INITIAL (decl) = make_node (BLOCK);
-
- t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
- DECL_ARTIFICIAL (t) = 1;
- DECL_IGNORED_P (t) = 1;
- DECL_RESULT (decl) = t;
-
- t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
- ptr_type_node);
- DECL_ARTIFICIAL (t) = 1;
- DECL_ARG_TYPE (t) = ptr_type_node;
- DECL_CONTEXT (t) = decl;
- TREE_USED (t) = 1;
- DECL_ARGUMENTS (decl) = t;
-
- allocate_struct_function (decl, false);
-
- /* The call to allocate_struct_function clobbers CFUN, so we need to restore
- it. */
- set_cfun (act_cfun);
-
- return decl;
-}
-
-/* Moves the exit condition of LOOP to the beginning of its header, and
- duplicates the part of the last iteration that gets disabled to the
- exit of the loop. NIT is the number of iterations of the loop
- (used to initialize the variables in the duplicated part).
-
- TODO: the common case is that latch of the loop is empty and immediately
- follows the loop exit. In this case, it would be better not to copy the
- body of the loop, but only move the entry of the loop directly before the
- exit check and increase the number of iterations of the loop by one.
- This may need some additional preconditioning in case NIT = ~0.
- REDUCTION_LIST describes the reductions in LOOP. */
-
-static void
-transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
-{
- basic_block *bbs, *nbbs, ex_bb, orig_header;
- unsigned n;
- bool ok;
- edge exit = single_dom_exit (loop), hpred;
- tree control, control_name, res, t;
- gimple phi, nphi, cond_stmt, stmt, cond_nit;
- gimple_stmt_iterator gsi;
- tree nit_1;
-
- split_block_after_labels (loop->header);
- orig_header = single_succ (loop->header);
- hpred = single_succ_edge (loop->header);
-
- cond_stmt = last_stmt (exit->src);
- control = gimple_cond_lhs (cond_stmt);
- gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
-
- /* Make sure that we have phi nodes on exit for all loop header phis
- (create_parallel_loop requires that). */
- for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- phi = gsi_stmt (gsi);
- res = PHI_RESULT (phi);
- t = copy_ssa_name (res, phi);
- SET_PHI_RESULT (phi, t);
- nphi = create_phi_node (res, orig_header);
- add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
-
- if (res == control)
- {
- gimple_cond_set_lhs (cond_stmt, t);
- update_stmt (cond_stmt);
- control = t;
- }
- }
-
- bbs = get_loop_body_in_dom_order (loop);
-
- for (n = 0; bbs[n] != exit->src; n++)
- continue;
- nbbs = XNEWVEC (basic_block, n);
- ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
- bbs + 1, n, nbbs);
- gcc_assert (ok);
- free (bbs);
- ex_bb = nbbs[0];
- free (nbbs);
-
- /* Other than reductions, the only gimple reg that should be copied
- out of the loop is the control variable. */
- exit = single_dom_exit (loop);
- control_name = NULL_TREE;
- for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
- {
- phi = gsi_stmt (gsi);
- res = PHI_RESULT (phi);
- if (virtual_operand_p (res))
- {
- gsi_next (&gsi);
- continue;
- }
-
- /* Check if it is a part of reduction. If it is,
- keep the phi at the reduction's keep_res field. The
- PHI_RESULT of this phi is the resulting value of the reduction
- variable when exiting the loop. */
-
- if (htab_elements (reduction_list) > 0)
- {
- struct reduction_info *red;
-
- tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
- red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
- if (red)
- {
- red->keep_res = phi;
- gsi_next (&gsi);
- continue;
- }
- }
- gcc_assert (control_name == NULL_TREE
- && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
- control_name = res;
- remove_phi_node (&gsi, false);
- }
- gcc_assert (control_name != NULL_TREE);
-
- /* Initialize the control variable to number of iterations
- according to the rhs of the exit condition. */
- gsi = gsi_after_labels (ex_bb);
- cond_nit = last_stmt (exit->src);
- nit_1 = gimple_cond_rhs (cond_nit);
- nit_1 = force_gimple_operand_gsi (&gsi,
- fold_convert (TREE_TYPE (control_name), nit_1),
- false, NULL_TREE, false, GSI_SAME_STMT);
- stmt = gimple_build_assign (control_name, nit_1);
- gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
- SSA_NAME_DEF_STMT (control_name) = stmt;
-}
-
-/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
- LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
- NEW_DATA is the variable that should be initialized from the argument
- of LOOP_FN. N_THREADS is the requested number of threads. Returns the
- basic block containing GIMPLE_OMP_PARALLEL tree. */
-
-static basic_block
-create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
- tree new_data, unsigned n_threads, location_t loc)
-{
- gimple_stmt_iterator gsi;
- basic_block bb, paral_bb, for_bb, ex_bb;
- tree t, param;
- gimple stmt, for_stmt, phi, cond_stmt;
- tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
- edge exit, nexit, guard, end, e;
-
- /* Prepare the GIMPLE_OMP_PARALLEL statement. */
- bb = loop_preheader_edge (loop)->src;
- paral_bb = single_pred (bb);
- gsi = gsi_last_bb (paral_bb);
-
- t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
- OMP_CLAUSE_NUM_THREADS_EXPR (t)
- = build_int_cst (integer_type_node, n_threads);
- stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
- gimple_set_location (stmt, loc);
-
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- /* Initialize NEW_DATA. */
- if (data)
- {
- gsi = gsi_after_labels (bb);
-
- param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
- stmt = gimple_build_assign (param, build_fold_addr_expr (data));
- gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
- SSA_NAME_DEF_STMT (param) = stmt;
-
- stmt = gimple_build_assign (new_data,
- fold_convert (TREE_TYPE (new_data), param));
- gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
- SSA_NAME_DEF_STMT (new_data) = stmt;
- }
-
- /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
- bb = split_loop_exit_edge (single_dom_exit (loop));
- gsi = gsi_last_bb (bb);
- stmt = gimple_build_omp_return (false);
- gimple_set_location (stmt, loc);
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- /* Extract data for GIMPLE_OMP_FOR. */
- gcc_assert (loop->header == single_dom_exit (loop)->src);
- cond_stmt = last_stmt (loop->header);
-
- cvar = gimple_cond_lhs (cond_stmt);
- cvar_base = SSA_NAME_VAR (cvar);
- phi = SSA_NAME_DEF_STMT (cvar);
- cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
- initvar = copy_ssa_name (cvar, NULL);
- SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
- initvar);
- cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
-
- gsi = gsi_last_nondebug_bb (loop->latch);
- gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
- gsi_remove (&gsi, true);
-
- /* Prepare cfg. */
- for_bb = split_edge (loop_preheader_edge (loop));
- ex_bb = split_loop_exit_edge (single_dom_exit (loop));
- extract_true_false_edges_from_block (loop->header, &nexit, &exit);
- gcc_assert (exit == single_dom_exit (loop));
-
- guard = make_edge (for_bb, ex_bb, 0);
- single_succ_edge (loop->latch)->flags = 0;
- end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
- for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- source_location locus;
- tree def;
- phi = gsi_stmt (gsi);
- stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
-
- def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
- locus = gimple_phi_arg_location_from_edge (stmt,
- loop_preheader_edge (loop));
- add_phi_arg (phi, def, guard, locus);
-
- def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
- locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
- add_phi_arg (phi, def, end, locus);
- }
- e = redirect_edge_and_branch (exit, nexit->dest);
- PENDING_STMT (e) = NULL;
-
- /* Emit GIMPLE_OMP_FOR. */
- gimple_cond_set_lhs (cond_stmt, cvar_base);
- type = TREE_TYPE (cvar);
- t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
- OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
-
- for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
- gimple_set_location (for_stmt, loc);
- gimple_omp_for_set_index (for_stmt, 0, initvar);
- gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
- gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
- gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
- gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
- cvar_base,
- build_int_cst (type, 1)));
-
- gsi = gsi_last_bb (for_bb);
- gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
- SSA_NAME_DEF_STMT (initvar) = for_stmt;
-
- /* Emit GIMPLE_OMP_CONTINUE. */
- gsi = gsi_last_bb (loop->latch);
- stmt = gimple_build_omp_continue (cvar_next, cvar);
- gimple_set_location (stmt, loc);
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
- SSA_NAME_DEF_STMT (cvar_next) = stmt;
-
- /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
- gsi = gsi_last_bb (ex_bb);
- stmt = gimple_build_omp_return (true);
- gimple_set_location (stmt, loc);
- gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
-
- /* After the above dom info is hosed. Re-compute it. */
- free_dominance_info (CDI_DOMINATORS);
- calculate_dominance_info (CDI_DOMINATORS);
-
- return paral_bb;
-}
-
-/* Generates code to execute the iterations of LOOP in N_THREADS
- threads in parallel.
-
- NITER describes number of iterations of LOOP.
- REDUCTION_LIST describes the reductions existent in the LOOP. */
-
-static void
-gen_parallel_loop (struct loop *loop, htab_t reduction_list,
- unsigned n_threads, struct tree_niter_desc *niter)
-{
- loop_iterator li;
- tree many_iterations_cond, type, nit;
- tree arg_struct, new_arg_struct;
- gimple_seq stmts;
- basic_block parallel_head;
- edge entry, exit;
- struct clsn_data clsn_data;
- unsigned prob;
- location_t loc;
- gimple cond_stmt;
- unsigned int m_p_thread=2;
-
- /* From
-
- ---------------------------------------------------------------------
- loop
- {
- IV = phi (INIT, IV + STEP)
- BODY1;
- if (COND)
- break;
- BODY2;
- }
- ---------------------------------------------------------------------
-
- with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
- we generate the following code:
-
- ---------------------------------------------------------------------
-
- if (MAY_BE_ZERO
- || NITER < MIN_PER_THREAD * N_THREADS)
- goto original;
-
- BODY1;
- store all local loop-invariant variables used in body of the loop to DATA.
- GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
- load the variables from DATA.
- GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
- BODY2;
- BODY1;
- GIMPLE_OMP_CONTINUE;
- GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
- GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
- goto end;
-
- original:
- loop
- {
- IV = phi (INIT, IV + STEP)
- BODY1;
- if (COND)
- break;
- BODY2;
- }
-
- end:
-
- */
-
- /* Create two versions of the loop -- in the old one, we know that the
- number of iterations is large enough, and we will transform it into the
- loop that will be split to loop_fn, the new one will be used for the
- remaining iterations. */
-
- /* We should compute a better number-of-iterations value for outer loops.
- That is, if we have
-
- for (i = 0; i < n; ++i)
- for (j = 0; j < m; ++j)
- ...
-
- we should compute nit = n * m, not nit = n.
- Also may_be_zero handling would need to be adjusted. */
-
- type = TREE_TYPE (niter->niter);
- nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
- NULL_TREE);
- if (stmts)
- gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
-
- if (loop->inner)
- m_p_thread=2;
- else
- m_p_thread=MIN_PER_THREAD;
-
- many_iterations_cond =
- fold_build2 (GE_EXPR, boolean_type_node,
- nit, build_int_cst (type, m_p_thread * n_threads));
-
- many_iterations_cond
- = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- invert_truthvalue (unshare_expr (niter->may_be_zero)),
- many_iterations_cond);
- many_iterations_cond
- = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
- if (stmts)
- gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
- if (!is_gimple_condexpr (many_iterations_cond))
- {
- many_iterations_cond
- = force_gimple_operand (many_iterations_cond, &stmts,
- true, NULL_TREE);
- if (stmts)
- gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
- }
-
- initialize_original_copy_tables ();
-
- /* We assume that the loop usually iterates a lot. */
- prob = 4 * REG_BR_PROB_BASE / 5;
- loop_version (loop, many_iterations_cond, NULL,
- prob, prob, REG_BR_PROB_BASE - prob, true);
- update_ssa (TODO_update_ssa);
- free_original_copy_tables ();
-
- /* Base all the induction variables in LOOP on a single control one. */
- canonicalize_loop_ivs (loop, &nit, true);
-
- /* Ensure that the exit condition is the first statement in the loop. */
- transform_to_exit_first_loop (loop, reduction_list, nit);
-
- /* Generate initializations for reductions. */
- if (htab_elements (reduction_list) > 0)
- htab_traverse (reduction_list, initialize_reductions, loop);
-
- /* Eliminate the references to local variables from the loop. */
- gcc_assert (single_exit (loop));
- entry = loop_preheader_edge (loop);
- exit = single_dom_exit (loop);
-
- eliminate_local_variables (entry, exit);
- /* In the old loop, move all variables non-local to the loop to a structure
- and back, and create separate decls for the variables used in loop. */
- separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
- &new_arg_struct, &clsn_data);
-
- /* Create the parallel constructs. */
- loc = UNKNOWN_LOCATION;
- cond_stmt = last_stmt (loop->header);
- if (cond_stmt)
- loc = gimple_location (cond_stmt);
- parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
- new_arg_struct, n_threads, loc);
- if (htab_elements (reduction_list) > 0)
- create_call_for_reduction (loop, reduction_list, &clsn_data);
-
- scev_reset ();
-
- /* Cancel the loop (it is simpler to do it here rather than to teach the
- expander to do it). */
- cancel_loop_tree (loop);
-
- /* Free loop bound estimations that could contain references to
- removed statements. */
- FOR_EACH_LOOP (li, loop, 0)
- free_numbers_of_iterations_estimates_loop (loop);
-
- /* Expand the parallel constructs. We do it directly here instead of running
- a separate expand_omp pass, since it is more efficient, and less likely to
- cause troubles with further analyses not being able to deal with the
- OMP trees. */
-
- omp_expand_local (parallel_head);
-}
-
-/* Returns true when LOOP contains vector phi nodes. */
-
-static bool
-loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
-{
- unsigned i;
- basic_block *bbs = get_loop_body_in_dom_order (loop);
- gimple_stmt_iterator gsi;
- bool res = true;
-
- for (i = 0; i < loop->num_nodes; i++)
- for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
- if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
- goto end;
-
- res = false;
- end:
- free (bbs);
- return res;
-}
-
-/* Create a reduction_info struct, initialize it with REDUC_STMT
- and PHI, insert it to the REDUCTION_LIST. */
-
-static void
-build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
-{
- PTR *slot;
- struct reduction_info *new_reduction;
-
- gcc_assert (reduc_stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "Detected reduction. reduction stmt is: \n");
- print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
- fprintf (dump_file, "\n");
- }
-
- new_reduction = XCNEW (struct reduction_info);
-
- new_reduction->reduc_stmt = reduc_stmt;
- new_reduction->reduc_phi = phi;
- new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
- new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
- slot = htab_find_slot (reduction_list, new_reduction, INSERT);
- *slot = new_reduction;
-}
-
-/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
-
-static int
-set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- struct reduction_info *const red = (struct reduction_info *) *slot;
- gimple_set_uid (red->reduc_phi, red->reduc_version);
- return 1;
-}
-
-/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
-
-static void
-gather_scalar_reductions (loop_p loop, htab_t reduction_list)
-{
- gimple_stmt_iterator gsi;
- loop_vec_info simple_loop_info;
-
- simple_loop_info = vect_analyze_loop_form (loop);
-
- for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple phi = gsi_stmt (gsi);
- affine_iv iv;
- tree res = PHI_RESULT (phi);
- bool double_reduc;
-
- if (virtual_operand_p (res))
- continue;
-
- if (!simple_iv (loop, loop, res, &iv, true)
- && simple_loop_info)
- {
- gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
- phi, true,
- &double_reduc);
- if (reduc_stmt && !double_reduc)
- build_new_reduction (reduction_list, reduc_stmt, phi);
- }
- }
- destroy_loop_vec_info (simple_loop_info, true);
-
- /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
- and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
- only now. */
- htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
-}
-
-/* Try to initialize NITER for code generation part. */
-
-static bool
-try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
-{
- edge exit = single_dom_exit (loop);
-
- gcc_assert (exit);
-
- /* We need to know # of iterations, and there should be no uses of values
- defined inside loop outside of it, unless the values are invariants of
- the loop. */
- if (!number_of_iterations_exit (loop, exit, niter, false))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " FAILED: number of iterations not known\n");
- return false;
- }
-
- return true;
-}
-
-/* Try to initialize REDUCTION_LIST for code generation part.
- REDUCTION_LIST describes the reductions. */
-
-static bool
-try_create_reduction_list (loop_p loop, htab_t reduction_list)
-{
- edge exit = single_dom_exit (loop);
- gimple_stmt_iterator gsi;
-
- gcc_assert (exit);
-
- gather_scalar_reductions (loop, reduction_list);
-
-
- for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple phi = gsi_stmt (gsi);
- struct reduction_info *red;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- gimple reduc_phi;
- tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
-
- if (!virtual_operand_p (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "phi is ");
- print_gimple_stmt (dump_file, phi, 0, 0);
- fprintf (dump_file, "arg of phi to exit: value ");
- print_generic_expr (dump_file, val, 0);
- fprintf (dump_file, " used outside loop\n");
- fprintf (dump_file,
- " checking if it a part of reduction pattern: \n");
- }
- if (htab_elements (reduction_list) == 0)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- " FAILED: it is not a part of reduction.\n");
- return false;
- }
- reduc_phi = NULL;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
- {
- if (!gimple_debug_bind_p (USE_STMT (use_p))
- && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
- {
- reduc_phi = USE_STMT (use_p);
- break;
- }
- }
- red = reduction_phi (reduction_list, reduc_phi);
- if (red == NULL)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- " FAILED: it is not a part of reduction.\n");
- return false;
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "reduction phi is ");
- print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
- fprintf (dump_file, "reduction stmt is ");
- print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
- }
- }
- }
-
- /* The iterations of the loop may communicate only through bivs whose
- iteration space can be distributed efficiently. */
- for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple phi = gsi_stmt (gsi);
- tree def = PHI_RESULT (phi);
- affine_iv iv;
-
- if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
- {
- struct reduction_info *red;
-
- red = reduction_phi (reduction_list, phi);
- if (red == NULL)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- " FAILED: scalar dependency between iterations\n");
- return false;
- }
- }
- }
-
-
- return true;
-}
-
-/* Detect parallel loops and generate parallel code using libgomp
- primitives. Returns true if some loop was parallelized, false
- otherwise. */
-
-bool
-parallelize_loops (void)
-{
- unsigned n_threads = flag_tree_parallelize_loops;
- bool changed = false;
- struct loop *loop;
- struct tree_niter_desc niter_desc;
- loop_iterator li;
- htab_t reduction_list;
- struct obstack parloop_obstack;
- HOST_WIDE_INT estimated;
- LOC loop_loc;
-
- /* Do not parallelize loops in the functions created by parallelization. */
- if (parallelized_function_p (cfun->decl))
- return false;
- if (cfun->has_nonlocal_label)
- return false;
-
- gcc_obstack_init (&parloop_obstack);
- reduction_list = htab_create (10, reduction_info_hash,
- reduction_info_eq, free);
- init_stmt_vec_info_vec ();
-
- FOR_EACH_LOOP (li, loop, 0)
- {
- htab_empty (reduction_list);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
- if (loop->inner)
- fprintf (dump_file, "loop %d is not innermost\n",loop->num);
- else
- fprintf (dump_file, "loop %d is innermost\n",loop->num);
- }
-
- /* If we use autopar in graphite pass, we use its marked dependency
- checking results. */
- if (flag_loop_parallelize_all && !loop->can_be_parallel)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "loop is not parallel according to graphite\n");
- continue;
- }
-
- if (!single_dom_exit (loop))
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "loop is !single_dom_exit\n");
-
- continue;
- }
-
- if (/* And of course, the loop must be parallelizable. */
- !can_duplicate_loop_p (loop)
- || loop_has_blocks_with_irreducible_flag (loop)
- || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
- /* FIXME: the check for vector phi nodes could be removed. */
- || loop_has_vector_phi_nodes (loop))
- continue;
-
- estimated = estimated_stmt_executions_int (loop);
- if (estimated == -1)
- estimated = max_stmt_executions_int (loop);
- /* FIXME: Bypass this check as graphite doesn't update the
- count and frequency correctly now. */
- if (!flag_loop_parallelize_all
- && ((estimated != -1
- && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
- /* Do not bother with loops in cold areas. */
- || optimize_loop_nest_for_size_p (loop)))
- continue;
-
- if (!try_get_loop_niter (loop, &niter_desc))
- continue;
-
- if (!try_create_reduction_list (loop, reduction_list))
- continue;
-
- if (!flag_loop_parallelize_all
- && !loop_parallel_p (loop, &parloop_obstack))
- continue;
-
- changed = true;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- if (loop->inner)
- fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
- else
- fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
- loop_loc = find_loop_location (loop);
- if (loop_loc != UNKNOWN_LOC)
- fprintf (dump_file, "\nloop at %s:%d: ",
- LOC_FILE (loop_loc), LOC_LINE (loop_loc));
- }
- gen_parallel_loop (loop, reduction_list,
- n_threads, &niter_desc);
-#ifdef ENABLE_CHECKING
- verify_flow_info ();
- verify_loop_structure ();
- verify_loop_closed_ssa (true);
-#endif
- }
-
- free_stmt_vec_info_vec ();
- htab_delete (reduction_list);
- obstack_free (&parloop_obstack, NULL);
-
- /* Parallelization will cause new function calls to be inserted through
- which local variables will escape. Reset the points-to solution
- for ESCAPED. */
- if (changed)
- pt_solution_reset (&cfun->gimple_df->escaped);
-
- return changed;
-}
-
-#include "gt-tree-parloops.h"