aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-if-conv.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-if-conv.c')
-rw-r--r--gcc-4.8.1/gcc/tree-if-conv.c1875
1 files changed, 0 insertions, 1875 deletions
diff --git a/gcc-4.8.1/gcc/tree-if-conv.c b/gcc-4.8.1/gcc/tree-if-conv.c
deleted file mode 100644
index 95d0394fc..000000000
--- a/gcc-4.8.1/gcc/tree-if-conv.c
+++ /dev/null
@@ -1,1875 +0,0 @@
-/* If-conversion for vectorizer.
- Copyright (C) 2004-2013 Free Software Foundation, Inc.
- Contributed by Devang Patel <dpatel@apple.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* This pass implements a tree level if-conversion of loops. Its
- initial goal is to help the vectorizer to vectorize loops with
- conditions.
-
- A short description of if-conversion:
-
- o Decide if a loop is if-convertible or not.
- o Walk all loop basic blocks in breadth first order (BFS order).
- o Remove conditional statements (at the end of basic block)
- and propagate condition into destination basic blocks'
- predicate list.
- o Replace modify expression with conditional modify expression
- using current basic block's condition.
- o Merge all basic blocks
- o Replace phi nodes with conditional modify expr
- o Merge all basic blocks into header
-
- Sample transformation:
-
- INPUT
- -----
-
- # i_23 = PHI <0(0), i_18(10)>;
- <L0>:;
- j_15 = A[i_23];
- if (j_15 > 41) goto <L1>; else goto <L17>;
-
- <L17>:;
- goto <bb 3> (<L3>);
-
- <L1>:;
-
- # iftmp.2_4 = PHI <0(8), 42(2)>;
- <L3>:;
- A[i_23] = iftmp.2_4;
- i_18 = i_23 + 1;
- if (i_18 <= 15) goto <L19>; else goto <L18>;
-
- <L19>:;
- goto <bb 1> (<L0>);
-
- <L18>:;
-
- OUTPUT
- ------
-
- # i_23 = PHI <0(0), i_18(10)>;
- <L0>:;
- j_15 = A[i_23];
-
- <L3>:;
- iftmp.2_4 = j_15 > 41 ? 42 : 0;
- A[i_23] = iftmp.2_4;
- i_18 = i_23 + 1;
- if (i_18 <= 15) goto <L19>; else goto <L18>;
-
- <L19>:;
- goto <bb 1> (<L0>);
-
- <L18>:;
-*/
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "flags.h"
-#include "basic-block.h"
-#include "gimple-pretty-print.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "tree-chrec.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "tree-pass.h"
-#include "dbgcnt.h"
-
-/* List of basic blocks in if-conversion-suitable order. */
-static basic_block *ifc_bbs;
-
-/* Structure used to predicate basic blocks. This is attached to the
- ->aux field of the BBs in the loop to be if-converted. */
-typedef struct bb_predicate_s {
-
- /* The condition under which this basic block is executed. */
- tree predicate;
-
- /* PREDICATE is gimplified, and the sequence of statements is
- recorded here, in order to avoid the duplication of computations
- that occur in previous conditions. See PR44483. */
- gimple_seq predicate_gimplified_stmts;
-} *bb_predicate_p;
-
-/* Returns true when the basic block BB has a predicate. */
-
-static inline bool
-bb_has_predicate (basic_block bb)
-{
- return bb->aux != NULL;
-}
-
-/* Returns the gimplified predicate for basic block BB. */
-
-static inline tree
-bb_predicate (basic_block bb)
-{
- return ((bb_predicate_p) bb->aux)->predicate;
-}
-
-/* Sets the gimplified predicate COND for basic block BB. */
-
-static inline void
-set_bb_predicate (basic_block bb, tree cond)
-{
- gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
- && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
- || is_gimple_condexpr (cond));
- ((bb_predicate_p) bb->aux)->predicate = cond;
-}
-
-/* Returns the sequence of statements of the gimplification of the
- predicate for basic block BB. */
-
-static inline gimple_seq
-bb_predicate_gimplified_stmts (basic_block bb)
-{
- return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
-}
-
-/* Sets the sequence of statements STMTS of the gimplification of the
- predicate for basic block BB. */
-
-static inline void
-set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
-{
- ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
-}
-
-/* Adds the sequence of statements STMTS to the sequence of statements
- of the predicate for basic block BB. */
-
-static inline void
-add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
-{
- gimple_seq_add_seq
- (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
-}
-
-/* Initializes to TRUE the predicate of basic block BB. */
-
-static inline void
-init_bb_predicate (basic_block bb)
-{
- bb->aux = XNEW (struct bb_predicate_s);
- set_bb_predicate_gimplified_stmts (bb, NULL);
- set_bb_predicate (bb, boolean_true_node);
-}
-
-/* Free the predicate of basic block BB. */
-
-static inline void
-free_bb_predicate (basic_block bb)
-{
- gimple_seq stmts;
-
- if (!bb_has_predicate (bb))
- return;
-
- /* Release the SSA_NAMEs created for the gimplification of the
- predicate. */
- stmts = bb_predicate_gimplified_stmts (bb);
- if (stmts)
- {
- gimple_stmt_iterator i;
-
- for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
- free_stmt_operands (gsi_stmt (i));
- }
-
- free (bb->aux);
- bb->aux = NULL;
-}
-
-/* Free the predicate of BB and reinitialize it with the true
- predicate. */
-
-static inline void
-reset_bb_predicate (basic_block bb)
-{
- free_bb_predicate (bb);
- init_bb_predicate (bb);
-}
-
-/* Returns a new SSA_NAME of type TYPE that is assigned the value of
- the expression EXPR. Inserts the statement created for this
- computation before GSI and leaves the iterator GSI at the same
- statement. */
-
-static tree
-ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
-{
- tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
- gimple stmt = gimple_build_assign (new_name, expr);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
- return new_name;
-}
-
-/* Return true when COND is a true predicate. */
-
-static inline bool
-is_true_predicate (tree cond)
-{
- return (cond == NULL_TREE
- || cond == boolean_true_node
- || integer_onep (cond));
-}
-
-/* Returns true when BB has a predicate that is not trivial: true or
- NULL_TREE. */
-
-static inline bool
-is_predicated (basic_block bb)
-{
- return !is_true_predicate (bb_predicate (bb));
-}
-
-/* Parses the predicate COND and returns its comparison code and
- operands OP0 and OP1. */
-
-static enum tree_code
-parse_predicate (tree cond, tree *op0, tree *op1)
-{
- gimple s;
-
- if (TREE_CODE (cond) == SSA_NAME
- && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
- {
- if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
- {
- *op0 = gimple_assign_rhs1 (s);
- *op1 = gimple_assign_rhs2 (s);
- return gimple_assign_rhs_code (s);
- }
-
- else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
- {
- tree op = gimple_assign_rhs1 (s);
- tree type = TREE_TYPE (op);
- enum tree_code code = parse_predicate (op, op0, op1);
-
- return code == ERROR_MARK ? ERROR_MARK
- : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
- }
-
- return ERROR_MARK;
- }
-
- if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
- {
- *op0 = TREE_OPERAND (cond, 0);
- *op1 = TREE_OPERAND (cond, 1);
- return TREE_CODE (cond);
- }
-
- return ERROR_MARK;
-}
-
-/* Returns the fold of predicate C1 OR C2 at location LOC. */
-
-static tree
-fold_or_predicates (location_t loc, tree c1, tree c2)
-{
- tree op1a, op1b, op2a, op2b;
- enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
- enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
-
- if (code1 != ERROR_MARK && code2 != ERROR_MARK)
- {
- tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
- code2, op2a, op2b);
- if (t)
- return t;
- }
-
- return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
-}
-
-/* Returns true if N is either a constant or a SSA_NAME. */
-
-static bool
-constant_or_ssa_name (tree n)
-{
- switch (TREE_CODE (n))
- {
- case SSA_NAME:
- case INTEGER_CST:
- case REAL_CST:
- case COMPLEX_CST:
- case VECTOR_CST:
- return true;
- default:
- return false;
- }
-}
-
-/* Returns either a COND_EXPR or the folded expression if the folded
- expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
- a constant or a SSA_NAME. */
-
-static tree
-fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
-{
- tree rhs1, lhs1, cond_expr;
- cond_expr = fold_ternary (COND_EXPR, type, cond,
- rhs, lhs);
-
- if (cond_expr == NULL_TREE)
- return build3 (COND_EXPR, type, cond, rhs, lhs);
-
- STRIP_USELESS_TYPE_CONVERSION (cond_expr);
-
- if (constant_or_ssa_name (cond_expr))
- return cond_expr;
-
- if (TREE_CODE (cond_expr) == ABS_EXPR)
- {
- rhs1 = TREE_OPERAND (cond_expr, 1);
- STRIP_USELESS_TYPE_CONVERSION (rhs1);
- if (constant_or_ssa_name (rhs1))
- return build1 (ABS_EXPR, type, rhs1);
- }
-
- if (TREE_CODE (cond_expr) == MIN_EXPR
- || TREE_CODE (cond_expr) == MAX_EXPR)
- {
- lhs1 = TREE_OPERAND (cond_expr, 0);
- STRIP_USELESS_TYPE_CONVERSION (lhs1);
- rhs1 = TREE_OPERAND (cond_expr, 1);
- STRIP_USELESS_TYPE_CONVERSION (rhs1);
- if (constant_or_ssa_name (rhs1)
- && constant_or_ssa_name (lhs1))
- return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
- }
- return build3 (COND_EXPR, type, cond, rhs, lhs);
-}
-
-/* Add condition NC to the predicate list of basic block BB. */
-
-static inline void
-add_to_predicate_list (basic_block bb, tree nc)
-{
- tree bc, *tp;
-
- if (is_true_predicate (nc))
- return;
-
- if (!is_predicated (bb))
- bc = nc;
- else
- {
- bc = bb_predicate (bb);
- bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
- if (is_true_predicate (bc))
- {
- reset_bb_predicate (bb);
- return;
- }
- }
-
- /* Allow a TRUTH_NOT_EXPR around the main predicate. */
- if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
- tp = &TREE_OPERAND (bc, 0);
- else
- tp = &bc;
- if (!is_gimple_condexpr (*tp))
- {
- gimple_seq stmts;
- *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
- add_bb_predicate_gimplified_stmts (bb, stmts);
- }
- set_bb_predicate (bb, bc);
-}
-
-/* Add the condition COND to the previous condition PREV_COND, and add
- this to the predicate list of the destination of edge E. LOOP is
- the loop to be if-converted. */
-
-static void
-add_to_dst_predicate_list (struct loop *loop, edge e,
- tree prev_cond, tree cond)
-{
- if (!flow_bb_inside_loop_p (loop, e->dest))
- return;
-
- if (!is_true_predicate (prev_cond))
- cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- prev_cond, cond);
-
- add_to_predicate_list (e->dest, cond);
-}
-
-/* Return true if one of the successor edges of BB exits LOOP. */
-
-static bool
-bb_with_exit_edge_p (struct loop *loop, basic_block bb)
-{
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (loop_exit_edge_p (loop, e))
- return true;
-
- return false;
-}
-
-/* Return true when PHI is if-convertible. PHI is part of loop LOOP
- and it belongs to basic block BB.
-
- PHI is not if-convertible if:
- - it has more than 2 arguments.
-
- When the flag_tree_loop_if_convert_stores is not set, PHI is not
- if-convertible if:
- - a virtual PHI is immediately used in another PHI node,
- - there is a virtual PHI in a BB other than the loop->header. */
-
-static bool
-if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
-{
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "-------------------------\n");
- print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
- }
-
- if (bb != loop->header && gimple_phi_num_args (phi) != 2)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "More than two phi node args.\n");
- return false;
- }
-
- if (flag_tree_loop_if_convert_stores)
- return true;
-
- /* When the flag_tree_loop_if_convert_stores is not set, check
- that there are no memory writes in the branches of the loop to be
- if-converted. */
- if (virtual_operand_p (gimple_phi_result (phi)))
- {
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- if (bb != loop->header)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Virtual phi not on loop->header.\n");
- return false;
- }
-
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
- {
- if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Difficult to handle this virtual phi.\n");
- return false;
- }
- }
- }
-
- return true;
-}
-
-/* Records the status of a data reference. This struct is attached to
- each DR->aux field. */
-
-struct ifc_dr {
- /* -1 when not initialized, 0 when false, 1 when true. */
- int written_at_least_once;
-
- /* -1 when not initialized, 0 when false, 1 when true. */
- int rw_unconditionally;
-};
-
-#define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
-#define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
-#define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
-
-/* Returns true when the memory references of STMT are read or written
- unconditionally. In other words, this function returns true when
- for every data reference A in STMT there exist other accesses to
- a data reference with the same base with predicates that add up (OR-up) to
- the true predicate: this ensures that the data reference A is touched
- (read or written) on every iteration of the if-converted loop. */
-
-static bool
-memrefs_read_or_written_unconditionally (gimple stmt,
- vec<data_reference_p> drs)
-{
- int i, j;
- data_reference_p a, b;
- tree ca = bb_predicate (gimple_bb (stmt));
-
- for (i = 0; drs.iterate (i, &a); i++)
- if (DR_STMT (a) == stmt)
- {
- bool found = false;
- int x = DR_RW_UNCONDITIONALLY (a);
-
- if (x == 0)
- return false;
-
- if (x == 1)
- continue;
-
- for (j = 0; drs.iterate (j, &b); j++)
- {
- tree ref_base_a = DR_REF (a);
- tree ref_base_b = DR_REF (b);
-
- if (DR_STMT (b) == stmt)
- continue;
-
- while (TREE_CODE (ref_base_a) == COMPONENT_REF
- || TREE_CODE (ref_base_a) == IMAGPART_EXPR
- || TREE_CODE (ref_base_a) == REALPART_EXPR)
- ref_base_a = TREE_OPERAND (ref_base_a, 0);
-
- while (TREE_CODE (ref_base_b) == COMPONENT_REF
- || TREE_CODE (ref_base_b) == IMAGPART_EXPR
- || TREE_CODE (ref_base_b) == REALPART_EXPR)
- ref_base_b = TREE_OPERAND (ref_base_b, 0);
-
- if (!operand_equal_p (ref_base_a, ref_base_b, 0))
- {
- tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
-
- if (DR_RW_UNCONDITIONALLY (b) == 1
- || is_true_predicate (cb)
- || is_true_predicate (ca
- = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
- {
- DR_RW_UNCONDITIONALLY (a) = 1;
- DR_RW_UNCONDITIONALLY (b) = 1;
- found = true;
- break;
- }
- }
- }
-
- if (!found)
- {
- DR_RW_UNCONDITIONALLY (a) = 0;
- return false;
- }
- }
-
- return true;
-}
-
-/* Returns true when the memory references of STMT are unconditionally
- written. In other words, this function returns true when for every
- data reference A written in STMT, there exist other writes to the
- same data reference with predicates that add up (OR-up) to the true
- predicate: this ensures that the data reference A is written on
- every iteration of the if-converted loop. */
-
-static bool
-write_memrefs_written_at_least_once (gimple stmt,
- vec<data_reference_p> drs)
-{
- int i, j;
- data_reference_p a, b;
- tree ca = bb_predicate (gimple_bb (stmt));
-
- for (i = 0; drs.iterate (i, &a); i++)
- if (DR_STMT (a) == stmt
- && DR_IS_WRITE (a))
- {
- bool found = false;
- int x = DR_WRITTEN_AT_LEAST_ONCE (a);
-
- if (x == 0)
- return false;
-
- if (x == 1)
- continue;
-
- for (j = 0; drs.iterate (j, &b); j++)
- if (DR_STMT (b) != stmt
- && DR_IS_WRITE (b)
- && same_data_refs_base_objects (a, b))
- {
- tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
-
- if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
- || is_true_predicate (cb)
- || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
- ca, cb)))
- {
- DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
- DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
- found = true;
- break;
- }
- }
-
- if (!found)
- {
- DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
- return false;
- }
- }
-
- return true;
-}
-
-/* Return true when the memory references of STMT won't trap in the
- if-converted code. There are two things that we have to check for:
-
- - writes to memory occur to writable memory: if-conversion of
- memory writes transforms the conditional memory writes into
- unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
- into "A[i] = cond ? foo : A[i]", and as the write to memory may not
- be executed at all in the original code, it may be a readonly
- memory. To check that A is not const-qualified, we check that
- there exists at least an unconditional write to A in the current
- function.
-
- - reads or writes to memory are valid memory accesses for every
- iteration. To check that the memory accesses are correctly formed
- and that we are allowed to read and write in these locations, we
- check that the memory accesses to be if-converted occur at every
- iteration unconditionally. */
-
-static bool
-ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
-{
- return write_memrefs_written_at_least_once (stmt, refs)
- && memrefs_read_or_written_unconditionally (stmt, refs);
-}
-
-/* Wrapper around gimple_could_trap_p refined for the needs of the
- if-conversion. Try to prove that the memory accesses of STMT could
- not trap in the innermost loop containing STMT. */
-
-static bool
-ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
-{
- if (gimple_vuse (stmt)
- && !gimple_could_trap_p_1 (stmt, false, false)
- && ifcvt_memrefs_wont_trap (stmt, refs))
- return false;
-
- return gimple_could_trap_p (stmt);
-}
-
-/* Return true when STMT is if-convertible.
-
- GIMPLE_ASSIGN statement is not if-convertible if,
- - it is not movable,
- - it could trap,
- - LHS is not var decl. */
-
-static bool
-if_convertible_gimple_assign_stmt_p (gimple stmt,
- vec<data_reference_p> refs)
-{
- tree lhs = gimple_assign_lhs (stmt);
- basic_block bb;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "-------------------------\n");
- print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
- }
-
- if (!is_gimple_reg_type (TREE_TYPE (lhs)))
- return false;
-
- /* Some of these constrains might be too conservative. */
- if (stmt_ends_bb_p (stmt)
- || gimple_has_volatile_ops (stmt)
- || (TREE_CODE (lhs) == SSA_NAME
- && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
- || gimple_has_side_effects (stmt))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "stmt not suitable for ifcvt\n");
- return false;
- }
-
- if (flag_tree_loop_if_convert_stores)
- {
- if (ifcvt_could_trap_p (stmt, refs))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "tree could trap...\n");
- return false;
- }
- return true;
- }
-
- if (gimple_assign_rhs_could_trap_p (stmt))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "tree could trap...\n");
- return false;
- }
-
- bb = gimple_bb (stmt);
-
- if (TREE_CODE (lhs) != SSA_NAME
- && bb != bb->loop_father->header
- && !bb_with_exit_edge_p (bb->loop_father, bb))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "LHS is not var\n");
- print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
- }
- return false;
- }
-
- return true;
-}
-
-/* Return true when STMT is if-convertible.
-
- A statement is if-convertible if:
- - it is an if-convertible GIMPLE_ASSIGN,
- - it is a GIMPLE_LABEL or a GIMPLE_COND. */
-
-static bool
-if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs)
-{
- switch (gimple_code (stmt))
- {
- case GIMPLE_LABEL:
- case GIMPLE_DEBUG:
- case GIMPLE_COND:
- return true;
-
- case GIMPLE_ASSIGN:
- return if_convertible_gimple_assign_stmt_p (stmt, refs);
-
- case GIMPLE_CALL:
- {
- tree fndecl = gimple_call_fndecl (stmt);
- if (fndecl)
- {
- int flags = gimple_call_flags (stmt);
- if ((flags & ECF_CONST)
- && !(flags & ECF_LOOPING_CONST_OR_PURE)
- /* We can only vectorize some builtins at the moment,
- so restrict if-conversion to those. */
- && DECL_BUILT_IN (fndecl))
- return true;
- }
- return false;
- }
-
- default:
- /* Don't know what to do with 'em so don't do anything. */
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "don't know what to do\n");
- print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
- }
- return false;
- break;
- }
-
- return true;
-}
-
-/* Return true when BB post-dominates all its predecessors. */
-
-static bool
-bb_postdominates_preds (basic_block bb)
-{
- unsigned i;
-
- for (i = 0; i < EDGE_COUNT (bb->preds); i++)
- if (!dominated_by_p (CDI_POST_DOMINATORS, EDGE_PRED (bb, i)->src, bb))
- return false;
-
- return true;
-}
-
-/* Return true when BB is if-convertible. This routine does not check
- basic block's statements and phis.
-
- A basic block is not if-convertible if:
- - it is non-empty and it is after the exit block (in BFS order),
- - it is after the exit block but before the latch,
- - its edges are not normal.
-
- EXIT_BB is the basic block containing the exit of the LOOP. BB is
- inside LOOP. */
-
-static bool
-if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
-{
- edge e;
- edge_iterator ei;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "----------[%d]-------------\n", bb->index);
-
- if (EDGE_COUNT (bb->preds) > 2
- || EDGE_COUNT (bb->succs) > 2)
- return false;
-
- if (exit_bb)
- {
- if (bb != loop->latch)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "basic block after exit bb but before latch\n");
- return false;
- }
- else if (!empty_block_p (bb))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "non empty basic block after exit bb\n");
- return false;
- }
- else if (bb == loop->latch
- && bb != exit_bb
- && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "latch is not dominated by exit_block\n");
- return false;
- }
- }
-
- /* Be less adventurous and handle only normal edges. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Difficult to handle edges\n");
- return false;
- }
-
- if (EDGE_COUNT (bb->preds) == 2
- && bb != loop->header
- && !bb_postdominates_preds (bb))
- return false;
-
- return true;
-}
-
-/* Return true when all predecessor blocks of BB are visited. The
- VISITED bitmap keeps track of the visited blocks. */
-
-static bool
-pred_blocks_visited_p (basic_block bb, bitmap *visited)
-{
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!bitmap_bit_p (*visited, e->src->index))
- return false;
-
- return true;
-}
-
-/* Get body of a LOOP in suitable order for if-conversion. It is
- caller's responsibility to deallocate basic block list.
- If-conversion suitable order is, breadth first sort (BFS) order
- with an additional constraint: select a block only if all its
- predecessors are already selected. */
-
-static basic_block *
-get_loop_body_in_if_conv_order (const struct loop *loop)
-{
- basic_block *blocks, *blocks_in_bfs_order;
- basic_block bb;
- bitmap visited;
- unsigned int index = 0;
- unsigned int visited_count = 0;
-
- gcc_assert (loop->num_nodes);
- gcc_assert (loop->latch != EXIT_BLOCK_PTR);
-
- blocks = XCNEWVEC (basic_block, loop->num_nodes);
- visited = BITMAP_ALLOC (NULL);
-
- blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
-
- index = 0;
- while (index < loop->num_nodes)
- {
- bb = blocks_in_bfs_order [index];
-
- if (bb->flags & BB_IRREDUCIBLE_LOOP)
- {
- free (blocks_in_bfs_order);
- BITMAP_FREE (visited);
- free (blocks);
- return NULL;
- }
-
- if (!bitmap_bit_p (visited, bb->index))
- {
- if (pred_blocks_visited_p (bb, &visited)
- || bb == loop->header)
- {
- /* This block is now visited. */
- bitmap_set_bit (visited, bb->index);
- blocks[visited_count++] = bb;
- }
- }
-
- index++;
-
- if (index == loop->num_nodes
- && visited_count != loop->num_nodes)
- /* Not done yet. */
- index = 0;
- }
- free (blocks_in_bfs_order);
- BITMAP_FREE (visited);
- return blocks;
-}
-
-/* Returns true when the analysis of the predicates for all the basic
- blocks in LOOP succeeded.
-
- predicate_bbs first allocates the predicates of the basic blocks.
- These fields are then initialized with the tree expressions
- representing the predicates under which a basic block is executed
- in the LOOP. As the loop->header is executed at each iteration, it
- has the "true" predicate. Other statements executed under a
- condition are predicated with that condition, for example
-
- | if (x)
- | S1;
- | else
- | S2;
-
- S1 will be predicated with "x", and
- S2 will be predicated with "!x". */
-
-static bool
-predicate_bbs (loop_p loop)
-{
- unsigned int i;
-
- for (i = 0; i < loop->num_nodes; i++)
- init_bb_predicate (ifc_bbs[i]);
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = ifc_bbs[i];
- tree cond;
- gimple_stmt_iterator itr;
-
- /* The loop latch is always executed and has no extra conditions
- to be processed: skip it. */
- if (bb == loop->latch)
- {
- reset_bb_predicate (loop->latch);
- continue;
- }
-
- cond = bb_predicate (bb);
-
- for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
- {
- gimple stmt = gsi_stmt (itr);
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_LABEL:
- case GIMPLE_ASSIGN:
- case GIMPLE_CALL:
- case GIMPLE_DEBUG:
- break;
-
- case GIMPLE_COND:
- {
- tree c2;
- edge true_edge, false_edge;
- location_t loc = gimple_location (stmt);
- tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
- boolean_type_node,
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt));
-
- /* Add new condition into destination's predicate list. */
- extract_true_false_edges_from_block (gimple_bb (stmt),
- &true_edge, &false_edge);
-
- /* If C is true, then TRUE_EDGE is taken. */
- add_to_dst_predicate_list (loop, true_edge,
- unshare_expr (cond),
- unshare_expr (c));
-
- /* If C is false, then FALSE_EDGE is taken. */
- c2 = build1_loc (loc, TRUTH_NOT_EXPR,
- boolean_type_node, unshare_expr (c));
- add_to_dst_predicate_list (loop, false_edge,
- unshare_expr (cond), c2);
-
- cond = NULL_TREE;
- break;
- }
-
- default:
- /* Not handled yet in if-conversion. */
- return false;
- }
- }
-
- /* If current bb has only one successor, then consider it as an
- unconditional goto. */
- if (single_succ_p (bb))
- {
- basic_block bb_n = single_succ (bb);
-
- /* The successor bb inherits the predicate of its
- predecessor. If there is no predicate in the predecessor
- bb, then consider the successor bb as always executed. */
- if (cond == NULL_TREE)
- cond = boolean_true_node;
-
- add_to_predicate_list (bb_n, cond);
- }
- }
-
- /* The loop header is always executed. */
- reset_bb_predicate (loop->header);
- gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
- && bb_predicate_gimplified_stmts (loop->latch) == NULL);
-
- return true;
-}
-
-/* Return true when LOOP is if-convertible. This is a helper function
- for if_convertible_loop_p. REFS and DDRS are initialized and freed
- in if_convertible_loop_p. */
-
-static bool
-if_convertible_loop_p_1 (struct loop *loop,
- vec<loop_p> *loop_nest,
- vec<data_reference_p> *refs,
- vec<ddr_p> *ddrs)
-{
- bool res;
- unsigned int i;
- basic_block exit_bb = NULL;
-
- /* Don't if-convert the loop when the data dependences cannot be
- computed: the loop won't be vectorized in that case. */
- res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
- if (!res)
- return false;
-
- calculate_dominance_info (CDI_DOMINATORS);
- calculate_dominance_info (CDI_POST_DOMINATORS);
-
- /* Allow statements that can be handled during if-conversion. */
- ifc_bbs = get_loop_body_in_if_conv_order (loop);
- if (!ifc_bbs)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Irreducible loop\n");
- return false;
- }
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = ifc_bbs[i];
-
- if (!if_convertible_bb_p (loop, bb, exit_bb))
- return false;
-
- if (bb_with_exit_edge_p (loop, bb))
- exit_bb = bb;
- }
-
- res = predicate_bbs (loop);
- if (!res)
- return false;
-
- if (flag_tree_loop_if_convert_stores)
- {
- data_reference_p dr;
-
- for (i = 0; refs->iterate (i, &dr); i++)
- {
- dr->aux = XNEW (struct ifc_dr);
- DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
- DR_RW_UNCONDITIONALLY (dr) = -1;
- }
- }
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = ifc_bbs[i];
- gimple_stmt_iterator itr;
-
- for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
- if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
- return false;
-
- /* Check the if-convertibility of statements in predicated BBs. */
- if (is_predicated (bb))
- for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
- if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
- return false;
- }
-
- if (dump_file)
- fprintf (dump_file, "Applying if-conversion\n");
-
- return true;
-}
-
-/* Return true when LOOP is if-convertible.
- LOOP is if-convertible if:
- - it is innermost,
- - it has two or more basic blocks,
- - it has only one exit,
- - loop header is not the exit edge,
- - if its basic blocks and phi nodes are if convertible. */
-
-static bool
-if_convertible_loop_p (struct loop *loop)
-{
- edge e;
- edge_iterator ei;
- bool res = false;
- vec<data_reference_p> refs;
- vec<ddr_p> ddrs;
- vec<loop_p> loop_nest;
-
- /* Handle only innermost loop. */
- if (!loop || loop->inner)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "not innermost loop\n");
- return false;
- }
-
- /* If only one block, no need for if-conversion. */
- if (loop->num_nodes <= 2)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "less than 2 basic blocks\n");
- return false;
- }
-
- /* More than one loop exit is too much to handle. */
- if (!single_exit (loop))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "multiple exits\n");
- return false;
- }
-
- /* If one of the loop header's edge is an exit edge then do not
- apply if-conversion. */
- FOR_EACH_EDGE (e, ei, loop->header->succs)
- if (loop_exit_edge_p (loop, e))
- return false;
-
- refs.create (5);
- ddrs.create (25);
- loop_nest.create (3);
- res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs);
-
- if (flag_tree_loop_if_convert_stores)
- {
- data_reference_p dr;
- unsigned int i;
-
- for (i = 0; refs.iterate (i, &dr); i++)
- free (dr->aux);
- }
-
- loop_nest.release ();
- free_data_refs (refs);
- free_dependence_relations (ddrs);
- return res;
-}
-
-/* Basic block BB has two predecessors. Using predecessor's bb
- predicate, set an appropriate condition COND for the PHI node
- replacement. Return the true block whose phi arguments are
- selected when cond is true. LOOP is the loop containing the
- if-converted region, GSI is the place to insert the code for the
- if-conversion. */
-
-static basic_block
-find_phi_replacement_condition (struct loop *loop,
- basic_block bb, tree *cond,
- gimple_stmt_iterator *gsi)
-{
- edge first_edge, second_edge;
- tree tmp_cond;
-
- gcc_assert (EDGE_COUNT (bb->preds) == 2);
- first_edge = EDGE_PRED (bb, 0);
- second_edge = EDGE_PRED (bb, 1);
-
- /* Use condition based on following criteria:
- 1)
- S1: x = !c ? a : b;
-
- S2: x = c ? b : a;
-
- S2 is preferred over S1. Make 'b' first_bb and use its condition.
-
- 2) Do not make loop header first_bb.
-
- 3)
- S1: x = !(c == d)? a : b;
-
- S21: t1 = c == d;
- S22: x = t1 ? b : a;
-
- S3: x = (c == d) ? b : a;
-
- S3 is preferred over S1 and S2*, Make 'b' first_bb and use
- its condition.
-
- 4) If pred B is dominated by pred A then use pred B's condition.
- See PR23115. */
-
- /* Select condition that is not TRUTH_NOT_EXPR. */
- tmp_cond = bb_predicate (first_edge->src);
- gcc_assert (tmp_cond);
-
- if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
- {
- edge tmp_edge;
-
- tmp_edge = first_edge;
- first_edge = second_edge;
- second_edge = tmp_edge;
- }
-
- /* Check if FIRST_BB is loop header or not and make sure that
- FIRST_BB does not dominate SECOND_BB. */
- if (first_edge->src == loop->header
- || dominated_by_p (CDI_DOMINATORS,
- second_edge->src, first_edge->src))
- {
- *cond = bb_predicate (second_edge->src);
-
- if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
- *cond = TREE_OPERAND (*cond, 0);
- else
- /* Select non loop header bb. */
- first_edge = second_edge;
- }
- else
- *cond = bb_predicate (first_edge->src);
-
- /* Gimplify the condition to a valid cond-expr conditonal operand. */
- *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
- is_gimple_condexpr, NULL_TREE,
- true, GSI_SAME_STMT);
-
- return first_edge->src;
-}
-
-/* Replace a scalar PHI node with a COND_EXPR using COND as condition.
- This routine does not handle PHI nodes with more than two
- arguments.
-
- For example,
- S1: A = PHI <x1(1), x2(5)>
- is converted into,
- S2: A = cond ? x1 : x2;
-
- The generated code is inserted at GSI that points to the top of
- basic block's statement list. When COND is true, phi arg from
- TRUE_BB is selected. */
-
-static void
-predicate_scalar_phi (gimple phi, tree cond,
- basic_block true_bb,
- gimple_stmt_iterator *gsi)
-{
- gimple new_stmt;
- basic_block bb;
- tree rhs, res, arg, scev;
-
- gcc_assert (gimple_code (phi) == GIMPLE_PHI
- && gimple_phi_num_args (phi) == 2);
-
- res = gimple_phi_result (phi);
- /* Do not handle virtual phi nodes. */
- if (virtual_operand_p (res))
- return;
-
- bb = gimple_bb (phi);
-
- if ((arg = degenerate_phi_result (phi))
- || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
- res))
- && !chrec_contains_undetermined (scev)
- && scev != res
- && (arg = gimple_phi_arg_def (phi, 0))))
- rhs = arg;
- else
- {
- tree arg_0, arg_1;
- /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
- if (EDGE_PRED (bb, 1)->src == true_bb)
- {
- arg_0 = gimple_phi_arg_def (phi, 1);
- arg_1 = gimple_phi_arg_def (phi, 0);
- }
- else
- {
- arg_0 = gimple_phi_arg_def (phi, 0);
- arg_1 = gimple_phi_arg_def (phi, 1);
- }
-
- gcc_checking_assert (bb == bb->loop_father->header
- || bb_postdominates_preds (bb));
-
- /* Build new RHS using selected condition and arguments. */
- rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
- arg_0, arg_1);
- }
-
- new_stmt = gimple_build_assign (res, rhs);
- SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
- gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
- update_stmt (new_stmt);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "new phi replacement stmt\n");
- print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
- }
-}
-
-/* Replaces in LOOP all the scalar phi nodes other than those in the
- LOOP->header block with conditional modify expressions. */
-
-static void
-predicate_all_scalar_phis (struct loop *loop)
-{
- basic_block bb;
- unsigned int orig_loop_num_nodes = loop->num_nodes;
- unsigned int i;
-
- for (i = 1; i < orig_loop_num_nodes; i++)
- {
- gimple phi;
- tree cond = NULL_TREE;
- gimple_stmt_iterator gsi, phi_gsi;
- basic_block true_bb = NULL;
- bb = ifc_bbs[i];
-
- if (bb == loop->header)
- continue;
-
- phi_gsi = gsi_start_phis (bb);
- if (gsi_end_p (phi_gsi))
- continue;
-
- /* BB has two predecessors. Using predecessor's aux field, set
- appropriate condition for the PHI node replacement. */
- gsi = gsi_after_labels (bb);
- true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi);
-
- while (!gsi_end_p (phi_gsi))
- {
- phi = gsi_stmt (phi_gsi);
- predicate_scalar_phi (phi, cond, true_bb, &gsi);
- release_phi_node (phi);
- gsi_next (&phi_gsi);
- }
-
- set_phi_nodes (bb, NULL);
- }
-}
-
-/* Insert in each basic block of LOOP the statements produced by the
- gimplification of the predicates. */
-
-static void
-insert_gimplified_predicates (loop_p loop)
-{
- unsigned int i;
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = ifc_bbs[i];
- gimple_seq stmts;
-
- if (!is_predicated (bb))
- {
- /* Do not insert statements for a basic block that is not
- predicated. Also make sure that the predicate of the
- basic block is set to true. */
- reset_bb_predicate (bb);
- continue;
- }
-
- stmts = bb_predicate_gimplified_stmts (bb);
- if (stmts)
- {
- if (flag_tree_loop_if_convert_stores)
- {
- /* Insert the predicate of the BB just after the label,
- as the if-conversion of memory writes will use this
- predicate. */
- gimple_stmt_iterator gsi = gsi_after_labels (bb);
- gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
- }
- else
- {
- /* Insert the predicate of the BB at the end of the BB
- as this would reduce the register pressure: the only
- use of this predicate will be in successor BBs. */
- gimple_stmt_iterator gsi = gsi_last_bb (bb);
-
- if (gsi_end_p (gsi)
- || stmt_ends_bb_p (gsi_stmt (gsi)))
- gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
- else
- gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
- }
-
- /* Once the sequence is code generated, set it to NULL. */
- set_bb_predicate_gimplified_stmts (bb, NULL);
- }
- }
-}
-
-/* Predicate each write to memory in LOOP.
-
- This function transforms control flow constructs containing memory
- writes of the form:
-
- | for (i = 0; i < N; i++)
- | if (cond)
- | A[i] = expr;
-
- into the following form that does not contain control flow:
-
- | for (i = 0; i < N; i++)
- | A[i] = cond ? expr : A[i];
-
- The original CFG looks like this:
-
- | bb_0
- | i = 0
- | end_bb_0
- |
- | bb_1
- | if (i < N) goto bb_5 else goto bb_2
- | end_bb_1
- |
- | bb_2
- | cond = some_computation;
- | if (cond) goto bb_3 else goto bb_4
- | end_bb_2
- |
- | bb_3
- | A[i] = expr;
- | goto bb_4
- | end_bb_3
- |
- | bb_4
- | goto bb_1
- | end_bb_4
-
- insert_gimplified_predicates inserts the computation of the COND
- expression at the beginning of the destination basic block:
-
- | bb_0
- | i = 0
- | end_bb_0
- |
- | bb_1
- | if (i < N) goto bb_5 else goto bb_2
- | end_bb_1
- |
- | bb_2
- | cond = some_computation;
- | if (cond) goto bb_3 else goto bb_4
- | end_bb_2
- |
- | bb_3
- | cond = some_computation;
- | A[i] = expr;
- | goto bb_4
- | end_bb_3
- |
- | bb_4
- | goto bb_1
- | end_bb_4
-
- predicate_mem_writes is then predicating the memory write as follows:
-
- | bb_0
- | i = 0
- | end_bb_0
- |
- | bb_1
- | if (i < N) goto bb_5 else goto bb_2
- | end_bb_1
- |
- | bb_2
- | if (cond) goto bb_3 else goto bb_4
- | end_bb_2
- |
- | bb_3
- | cond = some_computation;
- | A[i] = cond ? expr : A[i];
- | goto bb_4
- | end_bb_3
- |
- | bb_4
- | goto bb_1
- | end_bb_4
-
- and finally combine_blocks removes the basic block boundaries making
- the loop vectorizable:
-
- | bb_0
- | i = 0
- | if (i < N) goto bb_5 else goto bb_1
- | end_bb_0
- |
- | bb_1
- | cond = some_computation;
- | A[i] = cond ? expr : A[i];
- | if (i < N) goto bb_5 else goto bb_4
- | end_bb_1
- |
- | bb_4
- | goto bb_1
- | end_bb_4
-*/
-
-static void
-predicate_mem_writes (loop_p loop)
-{
- unsigned int i, orig_loop_num_nodes = loop->num_nodes;
-
- for (i = 1; i < orig_loop_num_nodes; i++)
- {
- gimple_stmt_iterator gsi;
- basic_block bb = ifc_bbs[i];
- tree cond = bb_predicate (bb);
- bool swap;
- gimple stmt;
-
- if (is_true_predicate (cond))
- continue;
-
- swap = false;
- if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
- {
- swap = true;
- cond = TREE_OPERAND (cond, 0);
- }
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- if ((stmt = gsi_stmt (gsi))
- && gimple_assign_single_p (stmt)
- && gimple_vdef (stmt))
- {
- tree lhs = gimple_assign_lhs (stmt);
- tree rhs = gimple_assign_rhs1 (stmt);
- tree type = TREE_TYPE (lhs);
-
- lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
- rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
- if (swap)
- {
- tree tem = lhs;
- lhs = rhs;
- rhs = tem;
- }
- cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
- is_gimple_condexpr, NULL_TREE,
- true, GSI_SAME_STMT);
- rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
- gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
- update_stmt (stmt);
- }
- }
-}
-
-/* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
- other than the exit and latch of the LOOP. Also resets the
- GIMPLE_DEBUG information. */
-
-static void
-remove_conditions_and_labels (loop_p loop)
-{
- gimple_stmt_iterator gsi;
- unsigned int i;
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = ifc_bbs[i];
-
- if (bb_with_exit_edge_p (loop, bb)
- || bb == loop->latch)
- continue;
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
- switch (gimple_code (gsi_stmt (gsi)))
- {
- case GIMPLE_COND:
- case GIMPLE_LABEL:
- gsi_remove (&gsi, true);
- break;
-
- case GIMPLE_DEBUG:
- /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
- if (gimple_debug_bind_p (gsi_stmt (gsi)))
- {
- gimple_debug_bind_reset_value (gsi_stmt (gsi));
- update_stmt (gsi_stmt (gsi));
- }
- gsi_next (&gsi);
- break;
-
- default:
- gsi_next (&gsi);
- }
- }
-}
-
-/* Combine all the basic blocks from LOOP into one or two super basic
- blocks. Replace PHI nodes with conditional modify expressions. */
-
-static void
-combine_blocks (struct loop *loop)
-{
- basic_block bb, exit_bb, merge_target_bb;
- unsigned int orig_loop_num_nodes = loop->num_nodes;
- unsigned int i;
- edge e;
- edge_iterator ei;
-
- remove_conditions_and_labels (loop);
- insert_gimplified_predicates (loop);
- predicate_all_scalar_phis (loop);
-
- if (flag_tree_loop_if_convert_stores)
- predicate_mem_writes (loop);
-
- /* Merge basic blocks: first remove all the edges in the loop,
- except for those from the exit block. */
- exit_bb = NULL;
- for (i = 0; i < orig_loop_num_nodes; i++)
- {
- bb = ifc_bbs[i];
- free_bb_predicate (bb);
- if (bb_with_exit_edge_p (loop, bb))
- {
- gcc_assert (exit_bb == NULL);
- exit_bb = bb;
- }
- }
- gcc_assert (exit_bb != loop->latch);
-
- for (i = 1; i < orig_loop_num_nodes; i++)
- {
- bb = ifc_bbs[i];
-
- for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
- {
- if (e->src == exit_bb)
- ei_next (&ei);
- else
- remove_edge (e);
- }
- }
-
- if (exit_bb != NULL)
- {
- if (exit_bb != loop->header)
- {
- /* Connect this node to loop header. */
- make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
- set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
- }
-
- /* Redirect non-exit edges to loop->latch. */
- FOR_EACH_EDGE (e, ei, exit_bb->succs)
- {
- if (!loop_exit_edge_p (loop, e))
- redirect_edge_and_branch (e, loop->latch);
- }
- set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
- }
- else
- {
- /* If the loop does not have an exit, reconnect header and latch. */
- make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
- set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
- }
-
- merge_target_bb = loop->header;
- for (i = 1; i < orig_loop_num_nodes; i++)
- {
- gimple_stmt_iterator gsi;
- gimple_stmt_iterator last;
-
- bb = ifc_bbs[i];
-
- if (bb == exit_bb || bb == loop->latch)
- continue;
-
- /* Make stmts member of loop->header. */
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
-
- /* Update stmt list. */
- last = gsi_last_bb (merge_target_bb);
- gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
- set_bb_seq (bb, NULL);
-
- delete_basic_block (bb);
- }
-
- /* If possible, merge loop header to the block with the exit edge.
- This reduces the number of basic blocks to two, to please the
- vectorizer that handles only loops with two nodes. */
- if (exit_bb
- && exit_bb != loop->header
- && can_merge_blocks_p (loop->header, exit_bb))
- merge_blocks (loop->header, exit_bb);
-
- free (ifc_bbs);
- ifc_bbs = NULL;
-
- /* Post-dominators are corrupt now. */
- free_dominance_info (CDI_POST_DOMINATORS);
-}
-
-/* If-convert LOOP when it is legal. For the moment this pass has no
- profitability analysis. Returns true when something changed. */
-
-static bool
-tree_if_conversion (struct loop *loop)
-{
- bool changed = false;
- ifc_bbs = NULL;
-
- if (!if_convertible_loop_p (loop)
- || !dbg_cnt (if_conversion_tree))
- goto cleanup;
-
- /* Now all statements are if-convertible. Combine all the basic
- blocks into one huge basic block doing the if-conversion
- on-the-fly. */
- combine_blocks (loop);
-
- if (flag_tree_loop_if_convert_stores)
- mark_virtual_operands_for_renaming (cfun);
-
- changed = true;
-
- cleanup:
- if (ifc_bbs)
- {
- unsigned int i;
-
- for (i = 0; i < loop->num_nodes; i++)
- free_bb_predicate (ifc_bbs[i]);
-
- free (ifc_bbs);
- ifc_bbs = NULL;
- }
-
- return changed;
-}
-
-/* Tree if-conversion pass management. */
-
-static unsigned int
-main_tree_if_conversion (void)
-{
- loop_iterator li;
- struct loop *loop;
- bool changed = false;
- unsigned todo = 0;
-
- if (number_of_loops () <= 1)
- return 0;
-
- FOR_EACH_LOOP (li, loop, 0)
- changed |= tree_if_conversion (loop);
-
- if (changed)
- todo |= TODO_cleanup_cfg;
-
- if (changed && flag_tree_loop_if_convert_stores)
- todo |= TODO_update_ssa_only_virtuals;
-
- free_dominance_info (CDI_POST_DOMINATORS);
-
-#ifdef ENABLE_CHECKING
- {
- basic_block bb;
- FOR_EACH_BB (bb)
- gcc_assert (!bb->aux);
- }
-#endif
-
- return todo;
-}
-
-/* Returns true when the if-conversion pass is enabled. */
-
-static bool
-gate_tree_if_conversion (void)
-{
- return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
- || flag_tree_loop_if_convert == 1
- || flag_tree_loop_if_convert_stores == 1);
-}
-
-struct gimple_opt_pass pass_if_conversion =
-{
- {
- GIMPLE_PASS,
- "ifcvt", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- gate_tree_if_conversion, /* gate */
- main_tree_if_conversion, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_NONE, /* tv_id */
- PROP_cfg | PROP_ssa, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_verify_stmts | TODO_verify_flow
- /* todo_flags_finish */
- }
-};