aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/fortran/expr.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/fortran/expr.c')
-rw-r--r--gcc-4.8.1/gcc/fortran/expr.c4901
1 files changed, 0 insertions, 4901 deletions
diff --git a/gcc-4.8.1/gcc/fortran/expr.c b/gcc-4.8.1/gcc/fortran/expr.c
deleted file mode 100644
index d16bdb090..000000000
--- a/gcc-4.8.1/gcc/fortran/expr.c
+++ /dev/null
@@ -1,4901 +0,0 @@
-/* Routines for manipulation of expression nodes.
- Copyright (C) 2000-2013 Free Software Foundation, Inc.
- Contributed by Andy Vaught
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "gfortran.h"
-#include "arith.h"
-#include "match.h"
-#include "target-memory.h" /* for gfc_convert_boz */
-#include "constructor.h"
-
-
-/* The following set of functions provide access to gfc_expr* of
- various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
-
- There are two functions available elsewhere that provide
- slightly different flavours of variables. Namely:
- expr.c (gfc_get_variable_expr)
- symbol.c (gfc_lval_expr_from_sym)
- TODO: Merge these functions, if possible. */
-
-/* Get a new expression node. */
-
-gfc_expr *
-gfc_get_expr (void)
-{
- gfc_expr *e;
-
- e = XCNEW (gfc_expr);
- gfc_clear_ts (&e->ts);
- e->shape = NULL;
- e->ref = NULL;
- e->symtree = NULL;
- return e;
-}
-
-
-/* Get a new expression node that is an array constructor
- of given type and kind. */
-
-gfc_expr *
-gfc_get_array_expr (bt type, int kind, locus *where)
-{
- gfc_expr *e;
-
- e = gfc_get_expr ();
- e->expr_type = EXPR_ARRAY;
- e->value.constructor = NULL;
- e->rank = 1;
- e->shape = NULL;
-
- e->ts.type = type;
- e->ts.kind = kind;
- if (where)
- e->where = *where;
-
- return e;
-}
-
-
-/* Get a new expression node that is the NULL expression. */
-
-gfc_expr *
-gfc_get_null_expr (locus *where)
-{
- gfc_expr *e;
-
- e = gfc_get_expr ();
- e->expr_type = EXPR_NULL;
- e->ts.type = BT_UNKNOWN;
-
- if (where)
- e->where = *where;
-
- return e;
-}
-
-
-/* Get a new expression node that is an operator expression node. */
-
-gfc_expr *
-gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
- gfc_expr *op1, gfc_expr *op2)
-{
- gfc_expr *e;
-
- e = gfc_get_expr ();
- e->expr_type = EXPR_OP;
- e->value.op.op = op;
- e->value.op.op1 = op1;
- e->value.op.op2 = op2;
-
- if (where)
- e->where = *where;
-
- return e;
-}
-
-
-/* Get a new expression node that is an structure constructor
- of given type and kind. */
-
-gfc_expr *
-gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
-{
- gfc_expr *e;
-
- e = gfc_get_expr ();
- e->expr_type = EXPR_STRUCTURE;
- e->value.constructor = NULL;
-
- e->ts.type = type;
- e->ts.kind = kind;
- if (where)
- e->where = *where;
-
- return e;
-}
-
-
-/* Get a new expression node that is an constant of given type and kind. */
-
-gfc_expr *
-gfc_get_constant_expr (bt type, int kind, locus *where)
-{
- gfc_expr *e;
-
- if (!where)
- gfc_internal_error ("gfc_get_constant_expr(): locus 'where' cannot be NULL");
-
- e = gfc_get_expr ();
-
- e->expr_type = EXPR_CONSTANT;
- e->ts.type = type;
- e->ts.kind = kind;
- e->where = *where;
-
- switch (type)
- {
- case BT_INTEGER:
- mpz_init (e->value.integer);
- break;
-
- case BT_REAL:
- gfc_set_model_kind (kind);
- mpfr_init (e->value.real);
- break;
-
- case BT_COMPLEX:
- gfc_set_model_kind (kind);
- mpc_init2 (e->value.complex, mpfr_get_default_prec());
- break;
-
- default:
- break;
- }
-
- return e;
-}
-
-
-/* Get a new expression node that is an string constant.
- If no string is passed, a string of len is allocated,
- blanked and null-terminated. */
-
-gfc_expr *
-gfc_get_character_expr (int kind, locus *where, const char *src, int len)
-{
- gfc_expr *e;
- gfc_char_t *dest;
-
- if (!src)
- {
- dest = gfc_get_wide_string (len + 1);
- gfc_wide_memset (dest, ' ', len);
- dest[len] = '\0';
- }
- else
- dest = gfc_char_to_widechar (src);
-
- e = gfc_get_constant_expr (BT_CHARACTER, kind,
- where ? where : &gfc_current_locus);
- e->value.character.string = dest;
- e->value.character.length = len;
-
- return e;
-}
-
-
-/* Get a new expression node that is an integer constant. */
-
-gfc_expr *
-gfc_get_int_expr (int kind, locus *where, int value)
-{
- gfc_expr *p;
- p = gfc_get_constant_expr (BT_INTEGER, kind,
- where ? where : &gfc_current_locus);
-
- mpz_set_si (p->value.integer, value);
-
- return p;
-}
-
-
-/* Get a new expression node that is a logical constant. */
-
-gfc_expr *
-gfc_get_logical_expr (int kind, locus *where, bool value)
-{
- gfc_expr *p;
- p = gfc_get_constant_expr (BT_LOGICAL, kind,
- where ? where : &gfc_current_locus);
-
- p->value.logical = value;
-
- return p;
-}
-
-
-gfc_expr *
-gfc_get_iokind_expr (locus *where, io_kind k)
-{
- gfc_expr *e;
-
- /* Set the types to something compatible with iokind. This is needed to
- get through gfc_free_expr later since iokind really has no Basic Type,
- BT, of its own. */
-
- e = gfc_get_expr ();
- e->expr_type = EXPR_CONSTANT;
- e->ts.type = BT_LOGICAL;
- e->value.iokind = k;
- e->where = *where;
-
- return e;
-}
-
-
-/* Given an expression pointer, return a copy of the expression. This
- subroutine is recursive. */
-
-gfc_expr *
-gfc_copy_expr (gfc_expr *p)
-{
- gfc_expr *q;
- gfc_char_t *s;
- char *c;
-
- if (p == NULL)
- return NULL;
-
- q = gfc_get_expr ();
- *q = *p;
-
- switch (q->expr_type)
- {
- case EXPR_SUBSTRING:
- s = gfc_get_wide_string (p->value.character.length + 1);
- q->value.character.string = s;
- memcpy (s, p->value.character.string,
- (p->value.character.length + 1) * sizeof (gfc_char_t));
- break;
-
- case EXPR_CONSTANT:
- /* Copy target representation, if it exists. */
- if (p->representation.string)
- {
- c = XCNEWVEC (char, p->representation.length + 1);
- q->representation.string = c;
- memcpy (c, p->representation.string, (p->representation.length + 1));
- }
-
- /* Copy the values of any pointer components of p->value. */
- switch (q->ts.type)
- {
- case BT_INTEGER:
- mpz_init_set (q->value.integer, p->value.integer);
- break;
-
- case BT_REAL:
- gfc_set_model_kind (q->ts.kind);
- mpfr_init (q->value.real);
- mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- gfc_set_model_kind (q->ts.kind);
- mpc_init2 (q->value.complex, mpfr_get_default_prec());
- mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
- break;
-
- case BT_CHARACTER:
- if (p->representation.string)
- q->value.character.string
- = gfc_char_to_widechar (q->representation.string);
- else
- {
- s = gfc_get_wide_string (p->value.character.length + 1);
- q->value.character.string = s;
-
- /* This is the case for the C_NULL_CHAR named constant. */
- if (p->value.character.length == 0
- && (p->ts.is_c_interop || p->ts.is_iso_c))
- {
- *s = '\0';
- /* Need to set the length to 1 to make sure the NUL
- terminator is copied. */
- q->value.character.length = 1;
- }
- else
- memcpy (s, p->value.character.string,
- (p->value.character.length + 1) * sizeof (gfc_char_t));
- }
- break;
-
- case BT_HOLLERITH:
- case BT_LOGICAL:
- case BT_DERIVED:
- case BT_CLASS:
- case BT_ASSUMED:
- break; /* Already done. */
-
- case BT_PROCEDURE:
- case BT_VOID:
- /* Should never be reached. */
- case BT_UNKNOWN:
- gfc_internal_error ("gfc_copy_expr(): Bad expr node");
- /* Not reached. */
- }
-
- break;
-
- case EXPR_OP:
- switch (q->value.op.op)
- {
- case INTRINSIC_NOT:
- case INTRINSIC_PARENTHESES:
- case INTRINSIC_UPLUS:
- case INTRINSIC_UMINUS:
- q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
- break;
-
- default: /* Binary operators. */
- q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
- q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
- break;
- }
-
- break;
-
- case EXPR_FUNCTION:
- q->value.function.actual =
- gfc_copy_actual_arglist (p->value.function.actual);
- break;
-
- case EXPR_COMPCALL:
- case EXPR_PPC:
- q->value.compcall.actual =
- gfc_copy_actual_arglist (p->value.compcall.actual);
- q->value.compcall.tbp = p->value.compcall.tbp;
- break;
-
- case EXPR_STRUCTURE:
- case EXPR_ARRAY:
- q->value.constructor = gfc_constructor_copy (p->value.constructor);
- break;
-
- case EXPR_VARIABLE:
- case EXPR_NULL:
- break;
- }
-
- q->shape = gfc_copy_shape (p->shape, p->rank);
-
- q->ref = gfc_copy_ref (p->ref);
-
- return q;
-}
-
-
-void
-gfc_clear_shape (mpz_t *shape, int rank)
-{
- int i;
-
- for (i = 0; i < rank; i++)
- mpz_clear (shape[i]);
-}
-
-
-void
-gfc_free_shape (mpz_t **shape, int rank)
-{
- if (*shape == NULL)
- return;
-
- gfc_clear_shape (*shape, rank);
- free (*shape);
- *shape = NULL;
-}
-
-
-/* Workhorse function for gfc_free_expr() that frees everything
- beneath an expression node, but not the node itself. This is
- useful when we want to simplify a node and replace it with
- something else or the expression node belongs to another structure. */
-
-static void
-free_expr0 (gfc_expr *e)
-{
- switch (e->expr_type)
- {
- case EXPR_CONSTANT:
- /* Free any parts of the value that need freeing. */
- switch (e->ts.type)
- {
- case BT_INTEGER:
- mpz_clear (e->value.integer);
- break;
-
- case BT_REAL:
- mpfr_clear (e->value.real);
- break;
-
- case BT_CHARACTER:
- free (e->value.character.string);
- break;
-
- case BT_COMPLEX:
- mpc_clear (e->value.complex);
- break;
-
- default:
- break;
- }
-
- /* Free the representation. */
- free (e->representation.string);
-
- break;
-
- case EXPR_OP:
- if (e->value.op.op1 != NULL)
- gfc_free_expr (e->value.op.op1);
- if (e->value.op.op2 != NULL)
- gfc_free_expr (e->value.op.op2);
- break;
-
- case EXPR_FUNCTION:
- gfc_free_actual_arglist (e->value.function.actual);
- break;
-
- case EXPR_COMPCALL:
- case EXPR_PPC:
- gfc_free_actual_arglist (e->value.compcall.actual);
- break;
-
- case EXPR_VARIABLE:
- break;
-
- case EXPR_ARRAY:
- case EXPR_STRUCTURE:
- gfc_constructor_free (e->value.constructor);
- break;
-
- case EXPR_SUBSTRING:
- free (e->value.character.string);
- break;
-
- case EXPR_NULL:
- break;
-
- default:
- gfc_internal_error ("free_expr0(): Bad expr type");
- }
-
- /* Free a shape array. */
- gfc_free_shape (&e->shape, e->rank);
-
- gfc_free_ref_list (e->ref);
-
- memset (e, '\0', sizeof (gfc_expr));
-}
-
-
-/* Free an expression node and everything beneath it. */
-
-void
-gfc_free_expr (gfc_expr *e)
-{
- if (e == NULL)
- return;
- free_expr0 (e);
- free (e);
-}
-
-
-/* Free an argument list and everything below it. */
-
-void
-gfc_free_actual_arglist (gfc_actual_arglist *a1)
-{
- gfc_actual_arglist *a2;
-
- while (a1)
- {
- a2 = a1->next;
- gfc_free_expr (a1->expr);
- free (a1);
- a1 = a2;
- }
-}
-
-
-/* Copy an arglist structure and all of the arguments. */
-
-gfc_actual_arglist *
-gfc_copy_actual_arglist (gfc_actual_arglist *p)
-{
- gfc_actual_arglist *head, *tail, *new_arg;
-
- head = tail = NULL;
-
- for (; p; p = p->next)
- {
- new_arg = gfc_get_actual_arglist ();
- *new_arg = *p;
-
- new_arg->expr = gfc_copy_expr (p->expr);
- new_arg->next = NULL;
-
- if (head == NULL)
- head = new_arg;
- else
- tail->next = new_arg;
-
- tail = new_arg;
- }
-
- return head;
-}
-
-
-/* Free a list of reference structures. */
-
-void
-gfc_free_ref_list (gfc_ref *p)
-{
- gfc_ref *q;
- int i;
-
- for (; p; p = q)
- {
- q = p->next;
-
- switch (p->type)
- {
- case REF_ARRAY:
- for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
- {
- gfc_free_expr (p->u.ar.start[i]);
- gfc_free_expr (p->u.ar.end[i]);
- gfc_free_expr (p->u.ar.stride[i]);
- }
-
- break;
-
- case REF_SUBSTRING:
- gfc_free_expr (p->u.ss.start);
- gfc_free_expr (p->u.ss.end);
- break;
-
- case REF_COMPONENT:
- break;
- }
-
- free (p);
- }
-}
-
-
-/* Graft the *src expression onto the *dest subexpression. */
-
-void
-gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
-{
- free_expr0 (dest);
- *dest = *src;
- free (src);
-}
-
-
-/* Try to extract an integer constant from the passed expression node.
- Returns an error message or NULL if the result is set. It is
- tempting to generate an error and return SUCCESS or FAILURE, but
- failure is OK for some callers. */
-
-const char *
-gfc_extract_int (gfc_expr *expr, int *result)
-{
- if (expr->expr_type != EXPR_CONSTANT)
- return _("Constant expression required at %C");
-
- if (expr->ts.type != BT_INTEGER)
- return _("Integer expression required at %C");
-
- if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
- || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
- {
- return _("Integer value too large in expression at %C");
- }
-
- *result = (int) mpz_get_si (expr->value.integer);
-
- return NULL;
-}
-
-
-/* Recursively copy a list of reference structures. */
-
-gfc_ref *
-gfc_copy_ref (gfc_ref *src)
-{
- gfc_array_ref *ar;
- gfc_ref *dest;
-
- if (src == NULL)
- return NULL;
-
- dest = gfc_get_ref ();
- dest->type = src->type;
-
- switch (src->type)
- {
- case REF_ARRAY:
- ar = gfc_copy_array_ref (&src->u.ar);
- dest->u.ar = *ar;
- free (ar);
- break;
-
- case REF_COMPONENT:
- dest->u.c = src->u.c;
- break;
-
- case REF_SUBSTRING:
- dest->u.ss = src->u.ss;
- dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
- dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
- break;
- }
-
- dest->next = gfc_copy_ref (src->next);
-
- return dest;
-}
-
-
-/* Detect whether an expression has any vector index array references. */
-
-int
-gfc_has_vector_index (gfc_expr *e)
-{
- gfc_ref *ref;
- int i;
- for (ref = e->ref; ref; ref = ref->next)
- if (ref->type == REF_ARRAY)
- for (i = 0; i < ref->u.ar.dimen; i++)
- if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
- return 1;
- return 0;
-}
-
-
-/* Copy a shape array. */
-
-mpz_t *
-gfc_copy_shape (mpz_t *shape, int rank)
-{
- mpz_t *new_shape;
- int n;
-
- if (shape == NULL)
- return NULL;
-
- new_shape = gfc_get_shape (rank);
-
- for (n = 0; n < rank; n++)
- mpz_init_set (new_shape[n], shape[n]);
-
- return new_shape;
-}
-
-
-/* Copy a shape array excluding dimension N, where N is an integer
- constant expression. Dimensions are numbered in Fortran style --
- starting with ONE.
-
- So, if the original shape array contains R elements
- { s1 ... sN-1 sN sN+1 ... sR-1 sR}
- the result contains R-1 elements:
- { s1 ... sN-1 sN+1 ... sR-1}
-
- If anything goes wrong -- N is not a constant, its value is out
- of range -- or anything else, just returns NULL. */
-
-mpz_t *
-gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
-{
- mpz_t *new_shape, *s;
- int i, n;
-
- if (shape == NULL
- || rank <= 1
- || dim == NULL
- || dim->expr_type != EXPR_CONSTANT
- || dim->ts.type != BT_INTEGER)
- return NULL;
-
- n = mpz_get_si (dim->value.integer);
- n--; /* Convert to zero based index. */
- if (n < 0 || n >= rank)
- return NULL;
-
- s = new_shape = gfc_get_shape (rank - 1);
-
- for (i = 0; i < rank; i++)
- {
- if (i == n)
- continue;
- mpz_init_set (*s, shape[i]);
- s++;
- }
-
- return new_shape;
-}
-
-
-/* Return the maximum kind of two expressions. In general, higher
- kind numbers mean more precision for numeric types. */
-
-int
-gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
-{
- return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
-}
-
-
-/* Returns nonzero if the type is numeric, zero otherwise. */
-
-static int
-numeric_type (bt type)
-{
- return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
-}
-
-
-/* Returns nonzero if the typespec is a numeric type, zero otherwise. */
-
-int
-gfc_numeric_ts (gfc_typespec *ts)
-{
- return numeric_type (ts->type);
-}
-
-
-/* Return an expression node with an optional argument list attached.
- A variable number of gfc_expr pointers are strung together in an
- argument list with a NULL pointer terminating the list. */
-
-gfc_expr *
-gfc_build_conversion (gfc_expr *e)
-{
- gfc_expr *p;
-
- p = gfc_get_expr ();
- p->expr_type = EXPR_FUNCTION;
- p->symtree = NULL;
- p->value.function.actual = NULL;
-
- p->value.function.actual = gfc_get_actual_arglist ();
- p->value.function.actual->expr = e;
-
- return p;
-}
-
-
-/* Given an expression node with some sort of numeric binary
- expression, insert type conversions required to make the operands
- have the same type. Conversion warnings are disabled if wconversion
- is set to 0.
-
- The exception is that the operands of an exponential don't have to
- have the same type. If possible, the base is promoted to the type
- of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
- 1.0**2 stays as it is. */
-
-void
-gfc_type_convert_binary (gfc_expr *e, int wconversion)
-{
- gfc_expr *op1, *op2;
-
- op1 = e->value.op.op1;
- op2 = e->value.op.op2;
-
- if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
- {
- gfc_clear_ts (&e->ts);
- return;
- }
-
- /* Kind conversions of same type. */
- if (op1->ts.type == op2->ts.type)
- {
- if (op1->ts.kind == op2->ts.kind)
- {
- /* No type conversions. */
- e->ts = op1->ts;
- goto done;
- }
-
- if (op1->ts.kind > op2->ts.kind)
- gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
- else
- gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
-
- e->ts = op1->ts;
- goto done;
- }
-
- /* Integer combined with real or complex. */
- if (op2->ts.type == BT_INTEGER)
- {
- e->ts = op1->ts;
-
- /* Special case for ** operator. */
- if (e->value.op.op == INTRINSIC_POWER)
- goto done;
-
- gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
- goto done;
- }
-
- if (op1->ts.type == BT_INTEGER)
- {
- e->ts = op2->ts;
- gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
- goto done;
- }
-
- /* Real combined with complex. */
- e->ts.type = BT_COMPLEX;
- if (op1->ts.kind > op2->ts.kind)
- e->ts.kind = op1->ts.kind;
- else
- e->ts.kind = op2->ts.kind;
- if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
- gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
- if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
- gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
-
-done:
- return;
-}
-
-
-/* Function to determine if an expression is constant or not. This
- function expects that the expression has already been simplified. */
-
-int
-gfc_is_constant_expr (gfc_expr *e)
-{
- gfc_constructor *c;
- gfc_actual_arglist *arg;
- gfc_symbol *sym;
-
- if (e == NULL)
- return 1;
-
- switch (e->expr_type)
- {
- case EXPR_OP:
- return (gfc_is_constant_expr (e->value.op.op1)
- && (e->value.op.op2 == NULL
- || gfc_is_constant_expr (e->value.op.op2)));
-
- case EXPR_VARIABLE:
- return 0;
-
- case EXPR_FUNCTION:
- case EXPR_PPC:
- case EXPR_COMPCALL:
- gcc_assert (e->symtree || e->value.function.esym
- || e->value.function.isym);
-
- /* Call to intrinsic with at least one argument. */
- if (e->value.function.isym && e->value.function.actual)
- {
- for (arg = e->value.function.actual; arg; arg = arg->next)
- if (!gfc_is_constant_expr (arg->expr))
- return 0;
- }
-
- /* Specification functions are constant. */
- /* F95, 7.1.6.2; F2003, 7.1.7 */
- sym = NULL;
- if (e->symtree)
- sym = e->symtree->n.sym;
- if (e->value.function.esym)
- sym = e->value.function.esym;
-
- if (sym
- && sym->attr.function
- && sym->attr.pure
- && !sym->attr.intrinsic
- && !sym->attr.recursive
- && sym->attr.proc != PROC_INTERNAL
- && sym->attr.proc != PROC_ST_FUNCTION
- && sym->attr.proc != PROC_UNKNOWN
- && gfc_sym_get_dummy_args (sym) == NULL)
- return 1;
-
- if (e->value.function.isym
- && (e->value.function.isym->elemental
- || e->value.function.isym->pure
- || e->value.function.isym->inquiry
- || e->value.function.isym->transformational))
- return 1;
-
- return 0;
-
- case EXPR_CONSTANT:
- case EXPR_NULL:
- return 1;
-
- case EXPR_SUBSTRING:
- return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
- && gfc_is_constant_expr (e->ref->u.ss.end));
-
- case EXPR_ARRAY:
- case EXPR_STRUCTURE:
- c = gfc_constructor_first (e->value.constructor);
- if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
- return gfc_constant_ac (e);
-
- for (; c; c = gfc_constructor_next (c))
- if (!gfc_is_constant_expr (c->expr))
- return 0;
-
- return 1;
-
-
- default:
- gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
- return 0;
- }
-}
-
-
-/* Is true if an array reference is followed by a component or substring
- reference. */
-bool
-is_subref_array (gfc_expr * e)
-{
- gfc_ref * ref;
- bool seen_array;
-
- if (e->expr_type != EXPR_VARIABLE)
- return false;
-
- if (e->symtree->n.sym->attr.subref_array_pointer)
- return true;
-
- seen_array = false;
- for (ref = e->ref; ref; ref = ref->next)
- {
- if (ref->type == REF_ARRAY
- && ref->u.ar.type != AR_ELEMENT)
- seen_array = true;
-
- if (seen_array
- && ref->type != REF_ARRAY)
- return seen_array;
- }
- return false;
-}
-
-
-/* Try to collapse intrinsic expressions. */
-
-static gfc_try
-simplify_intrinsic_op (gfc_expr *p, int type)
-{
- gfc_intrinsic_op op;
- gfc_expr *op1, *op2, *result;
-
- if (p->value.op.op == INTRINSIC_USER)
- return SUCCESS;
-
- op1 = p->value.op.op1;
- op2 = p->value.op.op2;
- op = p->value.op.op;
-
- if (gfc_simplify_expr (op1, type) == FAILURE)
- return FAILURE;
- if (gfc_simplify_expr (op2, type) == FAILURE)
- return FAILURE;
-
- if (!gfc_is_constant_expr (op1)
- || (op2 != NULL && !gfc_is_constant_expr (op2)))
- return SUCCESS;
-
- /* Rip p apart. */
- p->value.op.op1 = NULL;
- p->value.op.op2 = NULL;
-
- switch (op)
- {
- case INTRINSIC_PARENTHESES:
- result = gfc_parentheses (op1);
- break;
-
- case INTRINSIC_UPLUS:
- result = gfc_uplus (op1);
- break;
-
- case INTRINSIC_UMINUS:
- result = gfc_uminus (op1);
- break;
-
- case INTRINSIC_PLUS:
- result = gfc_add (op1, op2);
- break;
-
- case INTRINSIC_MINUS:
- result = gfc_subtract (op1, op2);
- break;
-
- case INTRINSIC_TIMES:
- result = gfc_multiply (op1, op2);
- break;
-
- case INTRINSIC_DIVIDE:
- result = gfc_divide (op1, op2);
- break;
-
- case INTRINSIC_POWER:
- result = gfc_power (op1, op2);
- break;
-
- case INTRINSIC_CONCAT:
- result = gfc_concat (op1, op2);
- break;
-
- case INTRINSIC_EQ:
- case INTRINSIC_EQ_OS:
- result = gfc_eq (op1, op2, op);
- break;
-
- case INTRINSIC_NE:
- case INTRINSIC_NE_OS:
- result = gfc_ne (op1, op2, op);
- break;
-
- case INTRINSIC_GT:
- case INTRINSIC_GT_OS:
- result = gfc_gt (op1, op2, op);
- break;
-
- case INTRINSIC_GE:
- case INTRINSIC_GE_OS:
- result = gfc_ge (op1, op2, op);
- break;
-
- case INTRINSIC_LT:
- case INTRINSIC_LT_OS:
- result = gfc_lt (op1, op2, op);
- break;
-
- case INTRINSIC_LE:
- case INTRINSIC_LE_OS:
- result = gfc_le (op1, op2, op);
- break;
-
- case INTRINSIC_NOT:
- result = gfc_not (op1);
- break;
-
- case INTRINSIC_AND:
- result = gfc_and (op1, op2);
- break;
-
- case INTRINSIC_OR:
- result = gfc_or (op1, op2);
- break;
-
- case INTRINSIC_EQV:
- result = gfc_eqv (op1, op2);
- break;
-
- case INTRINSIC_NEQV:
- result = gfc_neqv (op1, op2);
- break;
-
- default:
- gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
- }
-
- if (result == NULL)
- {
- gfc_free_expr (op1);
- gfc_free_expr (op2);
- return FAILURE;
- }
-
- result->rank = p->rank;
- result->where = p->where;
- gfc_replace_expr (p, result);
-
- return SUCCESS;
-}
-
-
-/* Subroutine to simplify constructor expressions. Mutually recursive
- with gfc_simplify_expr(). */
-
-static gfc_try
-simplify_constructor (gfc_constructor_base base, int type)
-{
- gfc_constructor *c;
- gfc_expr *p;
-
- for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
- {
- if (c->iterator
- && (gfc_simplify_expr (c->iterator->start, type) == FAILURE
- || gfc_simplify_expr (c->iterator->end, type) == FAILURE
- || gfc_simplify_expr (c->iterator->step, type) == FAILURE))
- return FAILURE;
-
- if (c->expr)
- {
- /* Try and simplify a copy. Replace the original if successful
- but keep going through the constructor at all costs. Not
- doing so can make a dog's dinner of complicated things. */
- p = gfc_copy_expr (c->expr);
-
- if (gfc_simplify_expr (p, type) == FAILURE)
- {
- gfc_free_expr (p);
- continue;
- }
-
- gfc_replace_expr (c->expr, p);
- }
- }
-
- return SUCCESS;
-}
-
-
-/* Pull a single array element out of an array constructor. */
-
-static gfc_try
-find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
- gfc_constructor **rval)
-{
- unsigned long nelemen;
- int i;
- mpz_t delta;
- mpz_t offset;
- mpz_t span;
- mpz_t tmp;
- gfc_constructor *cons;
- gfc_expr *e;
- gfc_try t;
-
- t = SUCCESS;
- e = NULL;
-
- mpz_init_set_ui (offset, 0);
- mpz_init (delta);
- mpz_init (tmp);
- mpz_init_set_ui (span, 1);
- for (i = 0; i < ar->dimen; i++)
- {
- if (gfc_reduce_init_expr (ar->as->lower[i]) == FAILURE
- || gfc_reduce_init_expr (ar->as->upper[i]) == FAILURE)
- {
- t = FAILURE;
- cons = NULL;
- goto depart;
- }
-
- e = gfc_copy_expr (ar->start[i]);
- if (e->expr_type != EXPR_CONSTANT)
- {
- cons = NULL;
- goto depart;
- }
-
- gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
- && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
-
- /* Check the bounds. */
- if ((ar->as->upper[i]
- && mpz_cmp (e->value.integer,
- ar->as->upper[i]->value.integer) > 0)
- || (mpz_cmp (e->value.integer,
- ar->as->lower[i]->value.integer) < 0))
- {
- gfc_error ("Index in dimension %d is out of bounds "
- "at %L", i + 1, &ar->c_where[i]);
- cons = NULL;
- t = FAILURE;
- goto depart;
- }
-
- mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
- mpz_mul (delta, delta, span);
- mpz_add (offset, offset, delta);
-
- mpz_set_ui (tmp, 1);
- mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
- mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
- mpz_mul (span, span, tmp);
- }
-
- for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
- cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
- {
- if (cons->iterator)
- {
- cons = NULL;
- goto depart;
- }
- }
-
-depart:
- mpz_clear (delta);
- mpz_clear (offset);
- mpz_clear (span);
- mpz_clear (tmp);
- if (e)
- gfc_free_expr (e);
- *rval = cons;
- return t;
-}
-
-
-/* Find a component of a structure constructor. */
-
-static gfc_constructor *
-find_component_ref (gfc_constructor_base base, gfc_ref *ref)
-{
- gfc_component *comp;
- gfc_component *pick;
- gfc_constructor *c = gfc_constructor_first (base);
-
- comp = ref->u.c.sym->components;
- pick = ref->u.c.component;
- while (comp != pick)
- {
- comp = comp->next;
- c = gfc_constructor_next (c);
- }
-
- return c;
-}
-
-
-/* Replace an expression with the contents of a constructor, removing
- the subobject reference in the process. */
-
-static void
-remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
-{
- gfc_expr *e;
-
- if (cons)
- {
- e = cons->expr;
- cons->expr = NULL;
- }
- else
- e = gfc_copy_expr (p);
- e->ref = p->ref->next;
- p->ref->next = NULL;
- gfc_replace_expr (p, e);
-}
-
-
-/* Pull an array section out of an array constructor. */
-
-static gfc_try
-find_array_section (gfc_expr *expr, gfc_ref *ref)
-{
- int idx;
- int rank;
- int d;
- int shape_i;
- int limit;
- long unsigned one = 1;
- bool incr_ctr;
- mpz_t start[GFC_MAX_DIMENSIONS];
- mpz_t end[GFC_MAX_DIMENSIONS];
- mpz_t stride[GFC_MAX_DIMENSIONS];
- mpz_t delta[GFC_MAX_DIMENSIONS];
- mpz_t ctr[GFC_MAX_DIMENSIONS];
- mpz_t delta_mpz;
- mpz_t tmp_mpz;
- mpz_t nelts;
- mpz_t ptr;
- gfc_constructor_base base;
- gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
- gfc_expr *begin;
- gfc_expr *finish;
- gfc_expr *step;
- gfc_expr *upper;
- gfc_expr *lower;
- gfc_try t;
-
- t = SUCCESS;
-
- base = expr->value.constructor;
- expr->value.constructor = NULL;
-
- rank = ref->u.ar.as->rank;
-
- if (expr->shape == NULL)
- expr->shape = gfc_get_shape (rank);
-
- mpz_init_set_ui (delta_mpz, one);
- mpz_init_set_ui (nelts, one);
- mpz_init (tmp_mpz);
-
- /* Do the initialization now, so that we can cleanup without
- keeping track of where we were. */
- for (d = 0; d < rank; d++)
- {
- mpz_init (delta[d]);
- mpz_init (start[d]);
- mpz_init (end[d]);
- mpz_init (ctr[d]);
- mpz_init (stride[d]);
- vecsub[d] = NULL;
- }
-
- /* Build the counters to clock through the array reference. */
- shape_i = 0;
- for (d = 0; d < rank; d++)
- {
- /* Make this stretch of code easier on the eye! */
- begin = ref->u.ar.start[d];
- finish = ref->u.ar.end[d];
- step = ref->u.ar.stride[d];
- lower = ref->u.ar.as->lower[d];
- upper = ref->u.ar.as->upper[d];
-
- if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
- {
- gfc_constructor *ci;
- gcc_assert (begin);
-
- if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
- {
- t = FAILURE;
- goto cleanup;
- }
-
- gcc_assert (begin->rank == 1);
- /* Zero-sized arrays have no shape and no elements, stop early. */
- if (!begin->shape)
- {
- mpz_init_set_ui (nelts, 0);
- break;
- }
-
- vecsub[d] = gfc_constructor_first (begin->value.constructor);
- mpz_set (ctr[d], vecsub[d]->expr->value.integer);
- mpz_mul (nelts, nelts, begin->shape[0]);
- mpz_set (expr->shape[shape_i++], begin->shape[0]);
-
- /* Check bounds. */
- for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
- {
- if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
- || mpz_cmp (ci->expr->value.integer,
- lower->value.integer) < 0)
- {
- gfc_error ("index in dimension %d is out of bounds "
- "at %L", d + 1, &ref->u.ar.c_where[d]);
- t = FAILURE;
- goto cleanup;
- }
- }
- }
- else
- {
- if ((begin && begin->expr_type != EXPR_CONSTANT)
- || (finish && finish->expr_type != EXPR_CONSTANT)
- || (step && step->expr_type != EXPR_CONSTANT))
- {
- t = FAILURE;
- goto cleanup;
- }
-
- /* Obtain the stride. */
- if (step)
- mpz_set (stride[d], step->value.integer);
- else
- mpz_set_ui (stride[d], one);
-
- if (mpz_cmp_ui (stride[d], 0) == 0)
- mpz_set_ui (stride[d], one);
-
- /* Obtain the start value for the index. */
- if (begin)
- mpz_set (start[d], begin->value.integer);
- else
- mpz_set (start[d], lower->value.integer);
-
- mpz_set (ctr[d], start[d]);
-
- /* Obtain the end value for the index. */
- if (finish)
- mpz_set (end[d], finish->value.integer);
- else
- mpz_set (end[d], upper->value.integer);
-
- /* Separate 'if' because elements sometimes arrive with
- non-null end. */
- if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
- mpz_set (end [d], begin->value.integer);
-
- /* Check the bounds. */
- if (mpz_cmp (ctr[d], upper->value.integer) > 0
- || mpz_cmp (end[d], upper->value.integer) > 0
- || mpz_cmp (ctr[d], lower->value.integer) < 0
- || mpz_cmp (end[d], lower->value.integer) < 0)
- {
- gfc_error ("index in dimension %d is out of bounds "
- "at %L", d + 1, &ref->u.ar.c_where[d]);
- t = FAILURE;
- goto cleanup;
- }
-
- /* Calculate the number of elements and the shape. */
- mpz_set (tmp_mpz, stride[d]);
- mpz_add (tmp_mpz, end[d], tmp_mpz);
- mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
- mpz_div (tmp_mpz, tmp_mpz, stride[d]);
- mpz_mul (nelts, nelts, tmp_mpz);
-
- /* An element reference reduces the rank of the expression; don't
- add anything to the shape array. */
- if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
- mpz_set (expr->shape[shape_i++], tmp_mpz);
- }
-
- /* Calculate the 'stride' (=delta) for conversion of the
- counter values into the index along the constructor. */
- mpz_set (delta[d], delta_mpz);
- mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
- mpz_add_ui (tmp_mpz, tmp_mpz, one);
- mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
- }
-
- mpz_init (ptr);
- cons = gfc_constructor_first (base);
-
- /* Now clock through the array reference, calculating the index in
- the source constructor and transferring the elements to the new
- constructor. */
- for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
- {
- mpz_init_set_ui (ptr, 0);
-
- incr_ctr = true;
- for (d = 0; d < rank; d++)
- {
- mpz_set (tmp_mpz, ctr[d]);
- mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
- mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
- mpz_add (ptr, ptr, tmp_mpz);
-
- if (!incr_ctr) continue;
-
- if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
- {
- gcc_assert(vecsub[d]);
-
- if (!gfc_constructor_next (vecsub[d]))
- vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
- else
- {
- vecsub[d] = gfc_constructor_next (vecsub[d]);
- incr_ctr = false;
- }
- mpz_set (ctr[d], vecsub[d]->expr->value.integer);
- }
- else
- {
- mpz_add (ctr[d], ctr[d], stride[d]);
-
- if (mpz_cmp_ui (stride[d], 0) > 0
- ? mpz_cmp (ctr[d], end[d]) > 0
- : mpz_cmp (ctr[d], end[d]) < 0)
- mpz_set (ctr[d], start[d]);
- else
- incr_ctr = false;
- }
- }
-
- limit = mpz_get_ui (ptr);
- if (limit >= gfc_option.flag_max_array_constructor)
- {
- gfc_error ("The number of elements in the array constructor "
- "at %L requires an increase of the allowed %d "
- "upper limit. See -fmax-array-constructor "
- "option", &expr->where,
- gfc_option.flag_max_array_constructor);
- return FAILURE;
- }
-
- cons = gfc_constructor_lookup (base, limit);
- gcc_assert (cons);
- gfc_constructor_append_expr (&expr->value.constructor,
- gfc_copy_expr (cons->expr), NULL);
- }
-
- mpz_clear (ptr);
-
-cleanup:
-
- mpz_clear (delta_mpz);
- mpz_clear (tmp_mpz);
- mpz_clear (nelts);
- for (d = 0; d < rank; d++)
- {
- mpz_clear (delta[d]);
- mpz_clear (start[d]);
- mpz_clear (end[d]);
- mpz_clear (ctr[d]);
- mpz_clear (stride[d]);
- }
- gfc_constructor_free (base);
- return t;
-}
-
-/* Pull a substring out of an expression. */
-
-static gfc_try
-find_substring_ref (gfc_expr *p, gfc_expr **newp)
-{
- int end;
- int start;
- int length;
- gfc_char_t *chr;
-
- if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
- || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
- return FAILURE;
-
- *newp = gfc_copy_expr (p);
- free ((*newp)->value.character.string);
-
- end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
- start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
- length = end - start + 1;
-
- chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
- (*newp)->value.character.length = length;
- memcpy (chr, &p->value.character.string[start - 1],
- length * sizeof (gfc_char_t));
- chr[length] = '\0';
- return SUCCESS;
-}
-
-
-
-/* Simplify a subobject reference of a constructor. This occurs when
- parameter variable values are substituted. */
-
-static gfc_try
-simplify_const_ref (gfc_expr *p)
-{
- gfc_constructor *cons, *c;
- gfc_expr *newp;
- gfc_ref *last_ref;
-
- while (p->ref)
- {
- switch (p->ref->type)
- {
- case REF_ARRAY:
- switch (p->ref->u.ar.type)
- {
- case AR_ELEMENT:
- /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
- will generate this. */
- if (p->expr_type != EXPR_ARRAY)
- {
- remove_subobject_ref (p, NULL);
- break;
- }
- if (find_array_element (p->value.constructor, &p->ref->u.ar,
- &cons) == FAILURE)
- return FAILURE;
-
- if (!cons)
- return SUCCESS;
-
- remove_subobject_ref (p, cons);
- break;
-
- case AR_SECTION:
- if (find_array_section (p, p->ref) == FAILURE)
- return FAILURE;
- p->ref->u.ar.type = AR_FULL;
-
- /* Fall through. */
-
- case AR_FULL:
- if (p->ref->next != NULL
- && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
- {
- for (c = gfc_constructor_first (p->value.constructor);
- c; c = gfc_constructor_next (c))
- {
- c->expr->ref = gfc_copy_ref (p->ref->next);
- if (simplify_const_ref (c->expr) == FAILURE)
- return FAILURE;
- }
-
- if (p->ts.type == BT_DERIVED
- && p->ref->next
- && (c = gfc_constructor_first (p->value.constructor)))
- {
- /* There may have been component references. */
- p->ts = c->expr->ts;
- }
-
- last_ref = p->ref;
- for (; last_ref->next; last_ref = last_ref->next) {};
-
- if (p->ts.type == BT_CHARACTER
- && last_ref->type == REF_SUBSTRING)
- {
- /* If this is a CHARACTER array and we possibly took
- a substring out of it, update the type-spec's
- character length according to the first element
- (as all should have the same length). */
- int string_len;
- if ((c = gfc_constructor_first (p->value.constructor)))
- {
- const gfc_expr* first = c->expr;
- gcc_assert (first->expr_type == EXPR_CONSTANT);
- gcc_assert (first->ts.type == BT_CHARACTER);
- string_len = first->value.character.length;
- }
- else
- string_len = 0;
-
- if (!p->ts.u.cl)
- p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
- NULL);
- else
- gfc_free_expr (p->ts.u.cl->length);
-
- p->ts.u.cl->length
- = gfc_get_int_expr (gfc_default_integer_kind,
- NULL, string_len);
- }
- }
- gfc_free_ref_list (p->ref);
- p->ref = NULL;
- break;
-
- default:
- return SUCCESS;
- }
-
- break;
-
- case REF_COMPONENT:
- cons = find_component_ref (p->value.constructor, p->ref);
- remove_subobject_ref (p, cons);
- break;
-
- case REF_SUBSTRING:
- if (find_substring_ref (p, &newp) == FAILURE)
- return FAILURE;
-
- gfc_replace_expr (p, newp);
- gfc_free_ref_list (p->ref);
- p->ref = NULL;
- break;
- }
- }
-
- return SUCCESS;
-}
-
-
-/* Simplify a chain of references. */
-
-static gfc_try
-simplify_ref_chain (gfc_ref *ref, int type)
-{
- int n;
-
- for (; ref; ref = ref->next)
- {
- switch (ref->type)
- {
- case REF_ARRAY:
- for (n = 0; n < ref->u.ar.dimen; n++)
- {
- if (gfc_simplify_expr (ref->u.ar.start[n], type) == FAILURE)
- return FAILURE;
- if (gfc_simplify_expr (ref->u.ar.end[n], type) == FAILURE)
- return FAILURE;
- if (gfc_simplify_expr (ref->u.ar.stride[n], type) == FAILURE)
- return FAILURE;
- }
- break;
-
- case REF_SUBSTRING:
- if (gfc_simplify_expr (ref->u.ss.start, type) == FAILURE)
- return FAILURE;
- if (gfc_simplify_expr (ref->u.ss.end, type) == FAILURE)
- return FAILURE;
- break;
-
- default:
- break;
- }
- }
- return SUCCESS;
-}
-
-
-/* Try to substitute the value of a parameter variable. */
-
-static gfc_try
-simplify_parameter_variable (gfc_expr *p, int type)
-{
- gfc_expr *e;
- gfc_try t;
-
- e = gfc_copy_expr (p->symtree->n.sym->value);
- if (e == NULL)
- return FAILURE;
-
- e->rank = p->rank;
-
- /* Do not copy subobject refs for constant. */
- if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
- e->ref = gfc_copy_ref (p->ref);
- t = gfc_simplify_expr (e, type);
-
- /* Only use the simplification if it eliminated all subobject references. */
- if (t == SUCCESS && !e->ref)
- gfc_replace_expr (p, e);
- else
- gfc_free_expr (e);
-
- return t;
-}
-
-/* Given an expression, simplify it by collapsing constant
- expressions. Most simplification takes place when the expression
- tree is being constructed. If an intrinsic function is simplified
- at some point, we get called again to collapse the result against
- other constants.
-
- We work by recursively simplifying expression nodes, simplifying
- intrinsic functions where possible, which can lead to further
- constant collapsing. If an operator has constant operand(s), we
- rip the expression apart, and rebuild it, hoping that it becomes
- something simpler.
-
- The expression type is defined for:
- 0 Basic expression parsing
- 1 Simplifying array constructors -- will substitute
- iterator values.
- Returns FAILURE on error, SUCCESS otherwise.
- NOTE: Will return SUCCESS even if the expression can not be simplified. */
-
-gfc_try
-gfc_simplify_expr (gfc_expr *p, int type)
-{
- gfc_actual_arglist *ap;
-
- if (p == NULL)
- return SUCCESS;
-
- switch (p->expr_type)
- {
- case EXPR_CONSTANT:
- case EXPR_NULL:
- break;
-
- case EXPR_FUNCTION:
- for (ap = p->value.function.actual; ap; ap = ap->next)
- if (gfc_simplify_expr (ap->expr, type) == FAILURE)
- return FAILURE;
-
- if (p->value.function.isym != NULL
- && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
- return FAILURE;
-
- break;
-
- case EXPR_SUBSTRING:
- if (simplify_ref_chain (p->ref, type) == FAILURE)
- return FAILURE;
-
- if (gfc_is_constant_expr (p))
- {
- gfc_char_t *s;
- int start, end;
-
- start = 0;
- if (p->ref && p->ref->u.ss.start)
- {
- gfc_extract_int (p->ref->u.ss.start, &start);
- start--; /* Convert from one-based to zero-based. */
- }
-
- end = p->value.character.length;
- if (p->ref && p->ref->u.ss.end)
- gfc_extract_int (p->ref->u.ss.end, &end);
-
- if (end < start)
- end = start;
-
- s = gfc_get_wide_string (end - start + 2);
- memcpy (s, p->value.character.string + start,
- (end - start) * sizeof (gfc_char_t));
- s[end - start + 1] = '\0'; /* TODO: C-style string. */
- free (p->value.character.string);
- p->value.character.string = s;
- p->value.character.length = end - start;
- p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
- p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
- NULL,
- p->value.character.length);
- gfc_free_ref_list (p->ref);
- p->ref = NULL;
- p->expr_type = EXPR_CONSTANT;
- }
- break;
-
- case EXPR_OP:
- if (simplify_intrinsic_op (p, type) == FAILURE)
- return FAILURE;
- break;
-
- case EXPR_VARIABLE:
- /* Only substitute array parameter variables if we are in an
- initialization expression, or we want a subsection. */
- if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
- && (gfc_init_expr_flag || p->ref
- || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
- {
- if (simplify_parameter_variable (p, type) == FAILURE)
- return FAILURE;
- break;
- }
-
- if (type == 1)
- {
- gfc_simplify_iterator_var (p);
- }
-
- /* Simplify subcomponent references. */
- if (simplify_ref_chain (p->ref, type) == FAILURE)
- return FAILURE;
-
- break;
-
- case EXPR_STRUCTURE:
- case EXPR_ARRAY:
- if (simplify_ref_chain (p->ref, type) == FAILURE)
- return FAILURE;
-
- if (simplify_constructor (p->value.constructor, type) == FAILURE)
- return FAILURE;
-
- if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
- && p->ref->u.ar.type == AR_FULL)
- gfc_expand_constructor (p, false);
-
- if (simplify_const_ref (p) == FAILURE)
- return FAILURE;
-
- break;
-
- case EXPR_COMPCALL:
- case EXPR_PPC:
- gcc_unreachable ();
- break;
- }
-
- return SUCCESS;
-}
-
-
-/* Returns the type of an expression with the exception that iterator
- variables are automatically integers no matter what else they may
- be declared as. */
-
-static bt
-et0 (gfc_expr *e)
-{
- if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e) == SUCCESS)
- return BT_INTEGER;
-
- return e->ts.type;
-}
-
-
-/* Scalarize an expression for an elemental intrinsic call. */
-
-static gfc_try
-scalarize_intrinsic_call (gfc_expr *e)
-{
- gfc_actual_arglist *a, *b;
- gfc_constructor_base ctor;
- gfc_constructor *args[5];
- gfc_constructor *ci, *new_ctor;
- gfc_expr *expr, *old;
- int n, i, rank[5], array_arg;
-
- /* Find which, if any, arguments are arrays. Assume that the old
- expression carries the type information and that the first arg
- that is an array expression carries all the shape information.*/
- n = array_arg = 0;
- a = e->value.function.actual;
- for (; a; a = a->next)
- {
- n++;
- if (a->expr->expr_type != EXPR_ARRAY)
- continue;
- array_arg = n;
- expr = gfc_copy_expr (a->expr);
- break;
- }
-
- if (!array_arg)
- return FAILURE;
-
- old = gfc_copy_expr (e);
-
- gfc_constructor_free (expr->value.constructor);
- expr->value.constructor = NULL;
- expr->ts = old->ts;
- expr->where = old->where;
- expr->expr_type = EXPR_ARRAY;
-
- /* Copy the array argument constructors into an array, with nulls
- for the scalars. */
- n = 0;
- a = old->value.function.actual;
- for (; a; a = a->next)
- {
- /* Check that this is OK for an initialization expression. */
- if (a->expr && gfc_check_init_expr (a->expr) == FAILURE)
- goto cleanup;
-
- rank[n] = 0;
- if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
- {
- rank[n] = a->expr->rank;
- ctor = a->expr->symtree->n.sym->value->value.constructor;
- args[n] = gfc_constructor_first (ctor);
- }
- else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
- {
- if (a->expr->rank)
- rank[n] = a->expr->rank;
- else
- rank[n] = 1;
- ctor = gfc_constructor_copy (a->expr->value.constructor);
- args[n] = gfc_constructor_first (ctor);
- }
- else
- args[n] = NULL;
-
- n++;
- }
-
-
- /* Using the array argument as the master, step through the array
- calling the function for each element and advancing the array
- constructors together. */
- for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
- {
- new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
- gfc_copy_expr (old), NULL);
-
- gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
- a = NULL;
- b = old->value.function.actual;
- for (i = 0; i < n; i++)
- {
- if (a == NULL)
- new_ctor->expr->value.function.actual
- = a = gfc_get_actual_arglist ();
- else
- {
- a->next = gfc_get_actual_arglist ();
- a = a->next;
- }
-
- if (args[i])
- a->expr = gfc_copy_expr (args[i]->expr);
- else
- a->expr = gfc_copy_expr (b->expr);
-
- b = b->next;
- }
-
- /* Simplify the function calls. If the simplification fails, the
- error will be flagged up down-stream or the library will deal
- with it. */
- gfc_simplify_expr (new_ctor->expr, 0);
-
- for (i = 0; i < n; i++)
- if (args[i])
- args[i] = gfc_constructor_next (args[i]);
-
- for (i = 1; i < n; i++)
- if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
- || (args[i] == NULL && args[array_arg - 1] != NULL)))
- goto compliance;
- }
-
- free_expr0 (e);
- *e = *expr;
- /* Free "expr" but not the pointers it contains. */
- free (expr);
- gfc_free_expr (old);
- return SUCCESS;
-
-compliance:
- gfc_error_now ("elemental function arguments at %C are not compliant");
-
-cleanup:
- gfc_free_expr (expr);
- gfc_free_expr (old);
- return FAILURE;
-}
-
-
-static gfc_try
-check_intrinsic_op (gfc_expr *e, gfc_try (*check_function) (gfc_expr *))
-{
- gfc_expr *op1 = e->value.op.op1;
- gfc_expr *op2 = e->value.op.op2;
-
- if ((*check_function) (op1) == FAILURE)
- return FAILURE;
-
- switch (e->value.op.op)
- {
- case INTRINSIC_UPLUS:
- case INTRINSIC_UMINUS:
- if (!numeric_type (et0 (op1)))
- goto not_numeric;
- break;
-
- case INTRINSIC_EQ:
- case INTRINSIC_EQ_OS:
- case INTRINSIC_NE:
- case INTRINSIC_NE_OS:
- case INTRINSIC_GT:
- case INTRINSIC_GT_OS:
- case INTRINSIC_GE:
- case INTRINSIC_GE_OS:
- case INTRINSIC_LT:
- case INTRINSIC_LT_OS:
- case INTRINSIC_LE:
- case INTRINSIC_LE_OS:
- if ((*check_function) (op2) == FAILURE)
- return FAILURE;
-
- if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
- && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
- {
- gfc_error ("Numeric or CHARACTER operands are required in "
- "expression at %L", &e->where);
- return FAILURE;
- }
- break;
-
- case INTRINSIC_PLUS:
- case INTRINSIC_MINUS:
- case INTRINSIC_TIMES:
- case INTRINSIC_DIVIDE:
- case INTRINSIC_POWER:
- if ((*check_function) (op2) == FAILURE)
- return FAILURE;
-
- if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
- goto not_numeric;
-
- break;
-
- case INTRINSIC_CONCAT:
- if ((*check_function) (op2) == FAILURE)
- return FAILURE;
-
- if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
- {
- gfc_error ("Concatenation operator in expression at %L "
- "must have two CHARACTER operands", &op1->where);
- return FAILURE;
- }
-
- if (op1->ts.kind != op2->ts.kind)
- {
- gfc_error ("Concat operator at %L must concatenate strings of the "
- "same kind", &e->where);
- return FAILURE;
- }
-
- break;
-
- case INTRINSIC_NOT:
- if (et0 (op1) != BT_LOGICAL)
- {
- gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
- "operand", &op1->where);
- return FAILURE;
- }
-
- break;
-
- case INTRINSIC_AND:
- case INTRINSIC_OR:
- case INTRINSIC_EQV:
- case INTRINSIC_NEQV:
- if ((*check_function) (op2) == FAILURE)
- return FAILURE;
-
- if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
- {
- gfc_error ("LOGICAL operands are required in expression at %L",
- &e->where);
- return FAILURE;
- }
-
- break;
-
- case INTRINSIC_PARENTHESES:
- break;
-
- default:
- gfc_error ("Only intrinsic operators can be used in expression at %L",
- &e->where);
- return FAILURE;
- }
-
- return SUCCESS;
-
-not_numeric:
- gfc_error ("Numeric operands are required in expression at %L", &e->where);
-
- return FAILURE;
-}
-
-/* F2003, 7.1.7 (3): In init expression, allocatable components
- must not be data-initialized. */
-static gfc_try
-check_alloc_comp_init (gfc_expr *e)
-{
- gfc_component *comp;
- gfc_constructor *ctor;
-
- gcc_assert (e->expr_type == EXPR_STRUCTURE);
- gcc_assert (e->ts.type == BT_DERIVED);
-
- for (comp = e->ts.u.derived->components,
- ctor = gfc_constructor_first (e->value.constructor);
- comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
- {
- if (comp->attr.allocatable
- && ctor->expr->expr_type != EXPR_NULL)
- {
- gfc_error("Invalid initialization expression for ALLOCATABLE "
- "component '%s' in structure constructor at %L",
- comp->name, &ctor->expr->where);
- return FAILURE;
- }
- }
-
- return SUCCESS;
-}
-
-static match
-check_init_expr_arguments (gfc_expr *e)
-{
- gfc_actual_arglist *ap;
-
- for (ap = e->value.function.actual; ap; ap = ap->next)
- if (gfc_check_init_expr (ap->expr) == FAILURE)
- return MATCH_ERROR;
-
- return MATCH_YES;
-}
-
-static gfc_try check_restricted (gfc_expr *);
-
-/* F95, 7.1.6.1, Initialization expressions, (7)
- F2003, 7.1.7 Initialization expression, (8) */
-
-static match
-check_inquiry (gfc_expr *e, int not_restricted)
-{
- const char *name;
- const char *const *functions;
-
- static const char *const inquiry_func_f95[] = {
- "lbound", "shape", "size", "ubound",
- "bit_size", "len", "kind",
- "digits", "epsilon", "huge", "maxexponent", "minexponent",
- "precision", "radix", "range", "tiny",
- NULL
- };
-
- static const char *const inquiry_func_f2003[] = {
- "lbound", "shape", "size", "ubound",
- "bit_size", "len", "kind",
- "digits", "epsilon", "huge", "maxexponent", "minexponent",
- "precision", "radix", "range", "tiny",
- "new_line", NULL
- };
-
- int i;
- gfc_actual_arglist *ap;
-
- if (!e->value.function.isym
- || !e->value.function.isym->inquiry)
- return MATCH_NO;
-
- /* An undeclared parameter will get us here (PR25018). */
- if (e->symtree == NULL)
- return MATCH_NO;
-
- name = e->symtree->n.sym->name;
-
- functions = (gfc_option.warn_std & GFC_STD_F2003)
- ? inquiry_func_f2003 : inquiry_func_f95;
-
- for (i = 0; functions[i]; i++)
- if (strcmp (functions[i], name) == 0)
- break;
-
- if (functions[i] == NULL)
- return MATCH_ERROR;
-
- /* At this point we have an inquiry function with a variable argument. The
- type of the variable might be undefined, but we need it now, because the
- arguments of these functions are not allowed to be undefined. */
-
- for (ap = e->value.function.actual; ap; ap = ap->next)
- {
- if (!ap->expr)
- continue;
-
- if (ap->expr->ts.type == BT_UNKNOWN)
- {
- if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
- && gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns)
- == FAILURE)
- return MATCH_NO;
-
- ap->expr->ts = ap->expr->symtree->n.sym->ts;
- }
-
- /* Assumed character length will not reduce to a constant expression
- with LEN, as required by the standard. */
- if (i == 5 && not_restricted
- && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
- && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
- || ap->expr->symtree->n.sym->ts.deferred))
- {
- gfc_error ("Assumed or deferred character length variable '%s' "
- " in constant expression at %L",
- ap->expr->symtree->n.sym->name,
- &ap->expr->where);
- return MATCH_ERROR;
- }
- else if (not_restricted && gfc_check_init_expr (ap->expr) == FAILURE)
- return MATCH_ERROR;
-
- if (not_restricted == 0
- && ap->expr->expr_type != EXPR_VARIABLE
- && check_restricted (ap->expr) == FAILURE)
- return MATCH_ERROR;
-
- if (not_restricted == 0
- && ap->expr->expr_type == EXPR_VARIABLE
- && ap->expr->symtree->n.sym->attr.dummy
- && ap->expr->symtree->n.sym->attr.optional)
- return MATCH_NO;
- }
-
- return MATCH_YES;
-}
-
-
-/* F95, 7.1.6.1, Initialization expressions, (5)
- F2003, 7.1.7 Initialization expression, (5) */
-
-static match
-check_transformational (gfc_expr *e)
-{
- static const char * const trans_func_f95[] = {
- "repeat", "reshape", "selected_int_kind",
- "selected_real_kind", "transfer", "trim", NULL
- };
-
- static const char * const trans_func_f2003[] = {
- "all", "any", "count", "dot_product", "matmul", "null", "pack",
- "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
- "selected_real_kind", "spread", "sum", "transfer", "transpose",
- "trim", "unpack", NULL
- };
-
- int i;
- const char *name;
- const char *const *functions;
-
- if (!e->value.function.isym
- || !e->value.function.isym->transformational)
- return MATCH_NO;
-
- name = e->symtree->n.sym->name;
-
- functions = (gfc_option.allow_std & GFC_STD_F2003)
- ? trans_func_f2003 : trans_func_f95;
-
- /* NULL() is dealt with below. */
- if (strcmp ("null", name) == 0)
- return MATCH_NO;
-
- for (i = 0; functions[i]; i++)
- if (strcmp (functions[i], name) == 0)
- break;
-
- if (functions[i] == NULL)
- {
- gfc_error("transformational intrinsic '%s' at %L is not permitted "
- "in an initialization expression", name, &e->where);
- return MATCH_ERROR;
- }
-
- return check_init_expr_arguments (e);
-}
-
-
-/* F95, 7.1.6.1, Initialization expressions, (6)
- F2003, 7.1.7 Initialization expression, (6) */
-
-static match
-check_null (gfc_expr *e)
-{
- if (strcmp ("null", e->symtree->n.sym->name) != 0)
- return MATCH_NO;
-
- return check_init_expr_arguments (e);
-}
-
-
-static match
-check_elemental (gfc_expr *e)
-{
- if (!e->value.function.isym
- || !e->value.function.isym->elemental)
- return MATCH_NO;
-
- if (e->ts.type != BT_INTEGER
- && e->ts.type != BT_CHARACTER
- && gfc_notify_std (GFC_STD_F2003, "Evaluation of "
- "nonstandard initialization expression at %L",
- &e->where) == FAILURE)
- return MATCH_ERROR;
-
- return check_init_expr_arguments (e);
-}
-
-
-static match
-check_conversion (gfc_expr *e)
-{
- if (!e->value.function.isym
- || !e->value.function.isym->conversion)
- return MATCH_NO;
-
- return check_init_expr_arguments (e);
-}
-
-
-/* Verify that an expression is an initialization expression. A side
- effect is that the expression tree is reduced to a single constant
- node if all goes well. This would normally happen when the
- expression is constructed but function references are assumed to be
- intrinsics in the context of initialization expressions. If
- FAILURE is returned an error message has been generated. */
-
-gfc_try
-gfc_check_init_expr (gfc_expr *e)
-{
- match m;
- gfc_try t;
-
- if (e == NULL)
- return SUCCESS;
-
- switch (e->expr_type)
- {
- case EXPR_OP:
- t = check_intrinsic_op (e, gfc_check_init_expr);
- if (t == SUCCESS)
- t = gfc_simplify_expr (e, 0);
-
- break;
-
- case EXPR_FUNCTION:
- t = FAILURE;
-
- {
- gfc_intrinsic_sym* isym;
- gfc_symbol* sym;
-
- sym = e->symtree->n.sym;
- if (!gfc_is_intrinsic (sym, 0, e->where)
- || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
- {
- gfc_error ("Function '%s' in initialization expression at %L "
- "must be an intrinsic function",
- e->symtree->n.sym->name, &e->where);
- break;
- }
-
- if ((m = check_conversion (e)) == MATCH_NO
- && (m = check_inquiry (e, 1)) == MATCH_NO
- && (m = check_null (e)) == MATCH_NO
- && (m = check_transformational (e)) == MATCH_NO
- && (m = check_elemental (e)) == MATCH_NO)
- {
- gfc_error ("Intrinsic function '%s' at %L is not permitted "
- "in an initialization expression",
- e->symtree->n.sym->name, &e->where);
- m = MATCH_ERROR;
- }
-
- if (m == MATCH_ERROR)
- return FAILURE;
-
- /* Try to scalarize an elemental intrinsic function that has an
- array argument. */
- isym = gfc_find_function (e->symtree->n.sym->name);
- if (isym && isym->elemental
- && (t = scalarize_intrinsic_call (e)) == SUCCESS)
- break;
- }
-
- if (m == MATCH_YES)
- t = gfc_simplify_expr (e, 0);
-
- break;
-
- case EXPR_VARIABLE:
- t = SUCCESS;
-
- if (gfc_check_iter_variable (e) == SUCCESS)
- break;
-
- if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
- {
- /* A PARAMETER shall not be used to define itself, i.e.
- REAL, PARAMETER :: x = transfer(0, x)
- is invalid. */
- if (!e->symtree->n.sym->value)
- {
- gfc_error("PARAMETER '%s' is used at %L before its definition "
- "is complete", e->symtree->n.sym->name, &e->where);
- t = FAILURE;
- }
- else
- t = simplify_parameter_variable (e, 0);
-
- break;
- }
-
- if (gfc_in_match_data ())
- break;
-
- t = FAILURE;
-
- if (e->symtree->n.sym->as)
- {
- switch (e->symtree->n.sym->as->type)
- {
- case AS_ASSUMED_SIZE:
- gfc_error ("Assumed size array '%s' at %L is not permitted "
- "in an initialization expression",
- e->symtree->n.sym->name, &e->where);
- break;
-
- case AS_ASSUMED_SHAPE:
- gfc_error ("Assumed shape array '%s' at %L is not permitted "
- "in an initialization expression",
- e->symtree->n.sym->name, &e->where);
- break;
-
- case AS_DEFERRED:
- gfc_error ("Deferred array '%s' at %L is not permitted "
- "in an initialization expression",
- e->symtree->n.sym->name, &e->where);
- break;
-
- case AS_EXPLICIT:
- gfc_error ("Array '%s' at %L is a variable, which does "
- "not reduce to a constant expression",
- e->symtree->n.sym->name, &e->where);
- break;
-
- default:
- gcc_unreachable();
- }
- }
- else
- gfc_error ("Parameter '%s' at %L has not been declared or is "
- "a variable, which does not reduce to a constant "
- "expression", e->symtree->n.sym->name, &e->where);
-
- break;
-
- case EXPR_CONSTANT:
- case EXPR_NULL:
- t = SUCCESS;
- break;
-
- case EXPR_SUBSTRING:
- t = gfc_check_init_expr (e->ref->u.ss.start);
- if (t == FAILURE)
- break;
-
- t = gfc_check_init_expr (e->ref->u.ss.end);
- if (t == SUCCESS)
- t = gfc_simplify_expr (e, 0);
-
- break;
-
- case EXPR_STRUCTURE:
- t = e->ts.is_iso_c ? SUCCESS : FAILURE;
- if (t == SUCCESS)
- break;
-
- t = check_alloc_comp_init (e);
- if (t == FAILURE)
- break;
-
- t = gfc_check_constructor (e, gfc_check_init_expr);
- if (t == FAILURE)
- break;
-
- break;
-
- case EXPR_ARRAY:
- t = gfc_check_constructor (e, gfc_check_init_expr);
- if (t == FAILURE)
- break;
-
- t = gfc_expand_constructor (e, true);
- if (t == FAILURE)
- break;
-
- t = gfc_check_constructor_type (e);
- break;
-
- default:
- gfc_internal_error ("check_init_expr(): Unknown expression type");
- }
-
- return t;
-}
-
-/* Reduces a general expression to an initialization expression (a constant).
- This used to be part of gfc_match_init_expr.
- Note that this function doesn't free the given expression on FAILURE. */
-
-gfc_try
-gfc_reduce_init_expr (gfc_expr *expr)
-{
- gfc_try t;
-
- gfc_init_expr_flag = true;
- t = gfc_resolve_expr (expr);
- if (t == SUCCESS)
- t = gfc_check_init_expr (expr);
- gfc_init_expr_flag = false;
-
- if (t == FAILURE)
- return FAILURE;
-
- if (expr->expr_type == EXPR_ARRAY)
- {
- if (gfc_check_constructor_type (expr) == FAILURE)
- return FAILURE;
- if (gfc_expand_constructor (expr, true) == FAILURE)
- return FAILURE;
- }
-
- return SUCCESS;
-}
-
-
-/* Match an initialization expression. We work by first matching an
- expression, then reducing it to a constant. */
-
-match
-gfc_match_init_expr (gfc_expr **result)
-{
- gfc_expr *expr;
- match m;
- gfc_try t;
-
- expr = NULL;
-
- gfc_init_expr_flag = true;
-
- m = gfc_match_expr (&expr);
- if (m != MATCH_YES)
- {
- gfc_init_expr_flag = false;
- return m;
- }
-
- t = gfc_reduce_init_expr (expr);
- if (t != SUCCESS)
- {
- gfc_free_expr (expr);
- gfc_init_expr_flag = false;
- return MATCH_ERROR;
- }
-
- *result = expr;
- gfc_init_expr_flag = false;
-
- return MATCH_YES;
-}
-
-
-/* Given an actual argument list, test to see that each argument is a
- restricted expression and optionally if the expression type is
- integer or character. */
-
-static gfc_try
-restricted_args (gfc_actual_arglist *a)
-{
- for (; a; a = a->next)
- {
- if (check_restricted (a->expr) == FAILURE)
- return FAILURE;
- }
-
- return SUCCESS;
-}
-
-
-/************* Restricted/specification expressions *************/
-
-
-/* Make sure a non-intrinsic function is a specification function. */
-
-static gfc_try
-external_spec_function (gfc_expr *e)
-{
- gfc_symbol *f;
-
- f = e->value.function.esym;
-
- if (f->attr.proc == PROC_ST_FUNCTION)
- {
- gfc_error ("Specification function '%s' at %L cannot be a statement "
- "function", f->name, &e->where);
- return FAILURE;
- }
-
- if (f->attr.proc == PROC_INTERNAL)
- {
- gfc_error ("Specification function '%s' at %L cannot be an internal "
- "function", f->name, &e->where);
- return FAILURE;
- }
-
- if (!f->attr.pure && !f->attr.elemental)
- {
- gfc_error ("Specification function '%s' at %L must be PURE", f->name,
- &e->where);
- return FAILURE;
- }
-
- if (f->attr.recursive)
- {
- gfc_error ("Specification function '%s' at %L cannot be RECURSIVE",
- f->name, &e->where);
- return FAILURE;
- }
-
- return restricted_args (e->value.function.actual);
-}
-
-
-/* Check to see that a function reference to an intrinsic is a
- restricted expression. */
-
-static gfc_try
-restricted_intrinsic (gfc_expr *e)
-{
- /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
- if (check_inquiry (e, 0) == MATCH_YES)
- return SUCCESS;
-
- return restricted_args (e->value.function.actual);
-}
-
-
-/* Check the expressions of an actual arglist. Used by check_restricted. */
-
-static gfc_try
-check_arglist (gfc_actual_arglist* arg, gfc_try (*checker) (gfc_expr*))
-{
- for (; arg; arg = arg->next)
- if (checker (arg->expr) == FAILURE)
- return FAILURE;
-
- return SUCCESS;
-}
-
-
-/* Check the subscription expressions of a reference chain with a checking
- function; used by check_restricted. */
-
-static gfc_try
-check_references (gfc_ref* ref, gfc_try (*checker) (gfc_expr*))
-{
- int dim;
-
- if (!ref)
- return SUCCESS;
-
- switch (ref->type)
- {
- case REF_ARRAY:
- for (dim = 0; dim != ref->u.ar.dimen; ++dim)
- {
- if (checker (ref->u.ar.start[dim]) == FAILURE)
- return FAILURE;
- if (checker (ref->u.ar.end[dim]) == FAILURE)
- return FAILURE;
- if (checker (ref->u.ar.stride[dim]) == FAILURE)
- return FAILURE;
- }
- break;
-
- case REF_COMPONENT:
- /* Nothing needed, just proceed to next reference. */
- break;
-
- case REF_SUBSTRING:
- if (checker (ref->u.ss.start) == FAILURE)
- return FAILURE;
- if (checker (ref->u.ss.end) == FAILURE)
- return FAILURE;
- break;
-
- default:
- gcc_unreachable ();
- break;
- }
-
- return check_references (ref->next, checker);
-}
-
-
-/* Verify that an expression is a restricted expression. Like its
- cousin check_init_expr(), an error message is generated if we
- return FAILURE. */
-
-static gfc_try
-check_restricted (gfc_expr *e)
-{
- gfc_symbol* sym;
- gfc_try t;
-
- if (e == NULL)
- return SUCCESS;
-
- switch (e->expr_type)
- {
- case EXPR_OP:
- t = check_intrinsic_op (e, check_restricted);
- if (t == SUCCESS)
- t = gfc_simplify_expr (e, 0);
-
- break;
-
- case EXPR_FUNCTION:
- if (e->value.function.esym)
- {
- t = check_arglist (e->value.function.actual, &check_restricted);
- if (t == SUCCESS)
- t = external_spec_function (e);
- }
- else
- {
- if (e->value.function.isym && e->value.function.isym->inquiry)
- t = SUCCESS;
- else
- t = check_arglist (e->value.function.actual, &check_restricted);
-
- if (t == SUCCESS)
- t = restricted_intrinsic (e);
- }
- break;
-
- case EXPR_VARIABLE:
- sym = e->symtree->n.sym;
- t = FAILURE;
-
- /* If a dummy argument appears in a context that is valid for a
- restricted expression in an elemental procedure, it will have
- already been simplified away once we get here. Therefore we
- don't need to jump through hoops to distinguish valid from
- invalid cases. */
- if (sym->attr.dummy && sym->ns == gfc_current_ns
- && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
- {
- gfc_error ("Dummy argument '%s' not allowed in expression at %L",
- sym->name, &e->where);
- break;
- }
-
- if (sym->attr.optional)
- {
- gfc_error ("Dummy argument '%s' at %L cannot be OPTIONAL",
- sym->name, &e->where);
- break;
- }
-
- if (sym->attr.intent == INTENT_OUT)
- {
- gfc_error ("Dummy argument '%s' at %L cannot be INTENT(OUT)",
- sym->name, &e->where);
- break;
- }
-
- /* Check reference chain if any. */
- if (check_references (e->ref, &check_restricted) == FAILURE)
- break;
-
- /* gfc_is_formal_arg broadcasts that a formal argument list is being
- processed in resolve.c(resolve_formal_arglist). This is done so
- that host associated dummy array indices are accepted (PR23446).
- This mechanism also does the same for the specification expressions
- of array-valued functions. */
- if (e->error
- || sym->attr.in_common
- || sym->attr.use_assoc
- || sym->attr.dummy
- || sym->attr.implied_index
- || sym->attr.flavor == FL_PARAMETER
- || (sym->ns && sym->ns == gfc_current_ns->parent)
- || (sym->ns && gfc_current_ns->parent
- && sym->ns == gfc_current_ns->parent->parent)
- || (sym->ns->proc_name != NULL
- && sym->ns->proc_name->attr.flavor == FL_MODULE)
- || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
- {
- t = SUCCESS;
- break;
- }
-
- gfc_error ("Variable '%s' cannot appear in the expression at %L",
- sym->name, &e->where);
- /* Prevent a repetition of the error. */
- e->error = 1;
- break;
-
- case EXPR_NULL:
- case EXPR_CONSTANT:
- t = SUCCESS;
- break;
-
- case EXPR_SUBSTRING:
- t = gfc_specification_expr (e->ref->u.ss.start);
- if (t == FAILURE)
- break;
-
- t = gfc_specification_expr (e->ref->u.ss.end);
- if (t == SUCCESS)
- t = gfc_simplify_expr (e, 0);
-
- break;
-
- case EXPR_STRUCTURE:
- t = gfc_check_constructor (e, check_restricted);
- break;
-
- case EXPR_ARRAY:
- t = gfc_check_constructor (e, check_restricted);
- break;
-
- default:
- gfc_internal_error ("check_restricted(): Unknown expression type");
- }
-
- return t;
-}
-
-
-/* Check to see that an expression is a specification expression. If
- we return FAILURE, an error has been generated. */
-
-gfc_try
-gfc_specification_expr (gfc_expr *e)
-{
- gfc_component *comp;
-
- if (e == NULL)
- return SUCCESS;
-
- if (e->ts.type != BT_INTEGER)
- {
- gfc_error ("Expression at %L must be of INTEGER type, found %s",
- &e->where, gfc_basic_typename (e->ts.type));
- return FAILURE;
- }
-
- comp = gfc_get_proc_ptr_comp (e);
- if (e->expr_type == EXPR_FUNCTION
- && !e->value.function.isym
- && !e->value.function.esym
- && !gfc_pure (e->symtree->n.sym)
- && (!comp || !comp->attr.pure))
- {
- gfc_error ("Function '%s' at %L must be PURE",
- e->symtree->n.sym->name, &e->where);
- /* Prevent repeat error messages. */
- e->symtree->n.sym->attr.pure = 1;
- return FAILURE;
- }
-
- if (e->rank != 0)
- {
- gfc_error ("Expression at %L must be scalar", &e->where);
- return FAILURE;
- }
-
- if (gfc_simplify_expr (e, 0) == FAILURE)
- return FAILURE;
-
- return check_restricted (e);
-}
-
-
-/************** Expression conformance checks. *************/
-
-/* Given two expressions, make sure that the arrays are conformable. */
-
-gfc_try
-gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
-{
- int op1_flag, op2_flag, d;
- mpz_t op1_size, op2_size;
- gfc_try t;
-
- va_list argp;
- char buffer[240];
-
- if (op1->rank == 0 || op2->rank == 0)
- return SUCCESS;
-
- va_start (argp, optype_msgid);
- vsnprintf (buffer, 240, optype_msgid, argp);
- va_end (argp);
-
- if (op1->rank != op2->rank)
- {
- gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
- op1->rank, op2->rank, &op1->where);
- return FAILURE;
- }
-
- t = SUCCESS;
-
- for (d = 0; d < op1->rank; d++)
- {
- op1_flag = gfc_array_dimen_size (op1, d, &op1_size) == SUCCESS;
- op2_flag = gfc_array_dimen_size (op2, d, &op2_size) == SUCCESS;
-
- if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
- {
- gfc_error ("Different shape for %s at %L on dimension %d "
- "(%d and %d)", _(buffer), &op1->where, d + 1,
- (int) mpz_get_si (op1_size),
- (int) mpz_get_si (op2_size));
-
- t = FAILURE;
- }
-
- if (op1_flag)
- mpz_clear (op1_size);
- if (op2_flag)
- mpz_clear (op2_size);
-
- if (t == FAILURE)
- return FAILURE;
- }
-
- return SUCCESS;
-}
-
-
-/* Given an assignable expression and an arbitrary expression, make
- sure that the assignment can take place. */
-
-gfc_try
-gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
-{
- gfc_symbol *sym;
- gfc_ref *ref;
- int has_pointer;
-
- sym = lvalue->symtree->n.sym;
-
- /* See if this is the component or subcomponent of a pointer. */
- has_pointer = sym->attr.pointer;
- for (ref = lvalue->ref; ref; ref = ref->next)
- if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
- {
- has_pointer = 1;
- break;
- }
-
- /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
- variable local to a function subprogram. Its existence begins when
- execution of the function is initiated and ends when execution of the
- function is terminated...
- Therefore, the left hand side is no longer a variable, when it is: */
- if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
- && !sym->attr.external)
- {
- bool bad_proc;
- bad_proc = false;
-
- /* (i) Use associated; */
- if (sym->attr.use_assoc)
- bad_proc = true;
-
- /* (ii) The assignment is in the main program; or */
- if (gfc_current_ns->proc_name->attr.is_main_program)
- bad_proc = true;
-
- /* (iii) A module or internal procedure... */
- if ((gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
- || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
- && gfc_current_ns->parent
- && (!(gfc_current_ns->parent->proc_name->attr.function
- || gfc_current_ns->parent->proc_name->attr.subroutine)
- || gfc_current_ns->parent->proc_name->attr.is_main_program))
- {
- /* ... that is not a function... */
- if (!gfc_current_ns->proc_name->attr.function)
- bad_proc = true;
-
- /* ... or is not an entry and has a different name. */
- if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
- bad_proc = true;
- }
-
- /* (iv) Host associated and not the function symbol or the
- parent result. This picks up sibling references, which
- cannot be entries. */
- if (!sym->attr.entry
- && sym->ns == gfc_current_ns->parent
- && sym != gfc_current_ns->proc_name
- && sym != gfc_current_ns->parent->proc_name->result)
- bad_proc = true;
-
- if (bad_proc)
- {
- gfc_error ("'%s' at %L is not a VALUE", sym->name, &lvalue->where);
- return FAILURE;
- }
- }
-
- if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
- {
- gfc_error ("Incompatible ranks %d and %d in assignment at %L",
- lvalue->rank, rvalue->rank, &lvalue->where);
- return FAILURE;
- }
-
- if (lvalue->ts.type == BT_UNKNOWN)
- {
- gfc_error ("Variable type is UNKNOWN in assignment at %L",
- &lvalue->where);
- return FAILURE;
- }
-
- if (rvalue->expr_type == EXPR_NULL)
- {
- if (has_pointer && (ref == NULL || ref->next == NULL)
- && lvalue->symtree->n.sym->attr.data)
- return SUCCESS;
- else
- {
- gfc_error ("NULL appears on right-hand side in assignment at %L",
- &rvalue->where);
- return FAILURE;
- }
- }
-
- /* This is possibly a typo: x = f() instead of x => f(). */
- if (gfc_option.warn_surprising
- && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer)
- gfc_warning ("POINTER-valued function appears on right-hand side of "
- "assignment at %L", &rvalue->where);
-
- /* Check size of array assignments. */
- if (lvalue->rank != 0 && rvalue->rank != 0
- && gfc_check_conformance (lvalue, rvalue, "array assignment") != SUCCESS)
- return FAILURE;
-
- if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
- && lvalue->symtree->n.sym->attr.data
- && gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
- "initialize non-integer variable '%s'",
- &rvalue->where, lvalue->symtree->n.sym->name)
- == FAILURE)
- return FAILURE;
- else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
- && gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
- "a DATA statement and outside INT/REAL/DBLE/CMPLX",
- &rvalue->where) == FAILURE)
- return FAILURE;
-
- /* Handle the case of a BOZ literal on the RHS. */
- if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
- {
- int rc;
- if (gfc_option.warn_surprising)
- gfc_warning ("BOZ literal at %L is bitwise transferred "
- "non-integer symbol '%s'", &rvalue->where,
- lvalue->symtree->n.sym->name);
- if (!gfc_convert_boz (rvalue, &lvalue->ts))
- return FAILURE;
- if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
- {
- if (rc == ARITH_UNDERFLOW)
- gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
- ". This check can be disabled with the option "
- "-fno-range-check", &rvalue->where);
- else if (rc == ARITH_OVERFLOW)
- gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
- ". This check can be disabled with the option "
- "-fno-range-check", &rvalue->where);
- else if (rc == ARITH_NAN)
- gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
- ". This check can be disabled with the option "
- "-fno-range-check", &rvalue->where);
- return FAILURE;
- }
- }
-
- /* Warn about type-changing conversions for REAL or COMPLEX constants.
- If lvalue and rvalue are mixed REAL and complex, gfc_compare_types
- will warn anyway, so there is no need to to so here. */
-
- if (rvalue->expr_type == EXPR_CONSTANT && lvalue->ts.type == rvalue->ts.type
- && (lvalue->ts.type == BT_REAL || lvalue->ts.type == BT_COMPLEX))
- {
- if (lvalue->ts.kind < rvalue->ts.kind && gfc_option.gfc_warn_conversion)
- {
- /* As a special bonus, don't warn about REAL rvalues which are not
- changed by the conversion if -Wconversion is specified. */
- if (rvalue->ts.type == BT_REAL && mpfr_number_p (rvalue->value.real))
- {
- /* Calculate the difference between the constant and the rounded
- value and check it against zero. */
- mpfr_t rv, diff;
- gfc_set_model_kind (lvalue->ts.kind);
- mpfr_init (rv);
- gfc_set_model_kind (rvalue->ts.kind);
- mpfr_init (diff);
-
- mpfr_set (rv, rvalue->value.real, GFC_RND_MODE);
- mpfr_sub (diff, rv, rvalue->value.real, GFC_RND_MODE);
-
- if (!mpfr_zero_p (diff))
- gfc_warning ("Change of value in conversion from "
- " %s to %s at %L", gfc_typename (&rvalue->ts),
- gfc_typename (&lvalue->ts), &rvalue->where);
-
- mpfr_clear (rv);
- mpfr_clear (diff);
- }
- else
- gfc_warning ("Possible change of value in conversion from %s "
- "to %s at %L",gfc_typename (&rvalue->ts),
- gfc_typename (&lvalue->ts), &rvalue->where);
-
- }
- else if (gfc_option.warn_conversion_extra
- && lvalue->ts.kind > rvalue->ts.kind)
- {
- gfc_warning ("Conversion from %s to %s at %L",
- gfc_typename (&rvalue->ts),
- gfc_typename (&lvalue->ts), &rvalue->where);
- }
- }
-
- if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
- return SUCCESS;
-
- /* Only DATA Statements come here. */
- if (!conform)
- {
- /* Numeric can be converted to any other numeric. And Hollerith can be
- converted to any other type. */
- if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
- || rvalue->ts.type == BT_HOLLERITH)
- return SUCCESS;
-
- if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
- return SUCCESS;
-
- gfc_error ("Incompatible types in DATA statement at %L; attempted "
- "conversion of %s to %s", &lvalue->where,
- gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
-
- return FAILURE;
- }
-
- /* Assignment is the only case where character variables of different
- kind values can be converted into one another. */
- if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
- {
- if (lvalue->ts.kind != rvalue->ts.kind)
- gfc_convert_chartype (rvalue, &lvalue->ts);
-
- return SUCCESS;
- }
-
- return gfc_convert_type (rvalue, &lvalue->ts, 1);
-}
-
-
-/* Check that a pointer assignment is OK. We first check lvalue, and
- we only check rvalue if it's not an assignment to NULL() or a
- NULLIFY statement. */
-
-gfc_try
-gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
-{
- symbol_attribute attr, lhs_attr;
- gfc_ref *ref;
- bool is_pure, is_implicit_pure, rank_remap;
- int proc_pointer;
-
- lhs_attr = gfc_expr_attr (lvalue);
- if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer)
- {
- gfc_error ("Pointer assignment target is not a POINTER at %L",
- &lvalue->where);
- return FAILURE;
- }
-
- if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc
- && !lhs_attr.proc_pointer)
- {
- gfc_error ("'%s' in the pointer assignment at %L cannot be an "
- "l-value since it is a procedure",
- lvalue->symtree->n.sym->name, &lvalue->where);
- return FAILURE;
- }
-
- proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
-
- rank_remap = false;
- for (ref = lvalue->ref; ref; ref = ref->next)
- {
- if (ref->type == REF_COMPONENT)
- proc_pointer = ref->u.c.component->attr.proc_pointer;
-
- if (ref->type == REF_ARRAY && ref->next == NULL)
- {
- int dim;
-
- if (ref->u.ar.type == AR_FULL)
- break;
-
- if (ref->u.ar.type != AR_SECTION)
- {
- gfc_error ("Expected bounds specification for '%s' at %L",
- lvalue->symtree->n.sym->name, &lvalue->where);
- return FAILURE;
- }
-
- if (gfc_notify_std (GFC_STD_F2003,"Bounds "
- "specification for '%s' in pointer assignment "
- "at %L", lvalue->symtree->n.sym->name,
- &lvalue->where) == FAILURE)
- return FAILURE;
-
- /* When bounds are given, all lbounds are necessary and either all
- or none of the upper bounds; no strides are allowed. If the
- upper bounds are present, we may do rank remapping. */
- for (dim = 0; dim < ref->u.ar.dimen; ++dim)
- {
- if (!ref->u.ar.start[dim]
- || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
- {
- gfc_error ("Lower bound has to be present at %L",
- &lvalue->where);
- return FAILURE;
- }
- if (ref->u.ar.stride[dim])
- {
- gfc_error ("Stride must not be present at %L",
- &lvalue->where);
- return FAILURE;
- }
-
- if (dim == 0)
- rank_remap = (ref->u.ar.end[dim] != NULL);
- else
- {
- if ((rank_remap && !ref->u.ar.end[dim])
- || (!rank_remap && ref->u.ar.end[dim]))
- {
- gfc_error ("Either all or none of the upper bounds"
- " must be specified at %L", &lvalue->where);
- return FAILURE;
- }
- }
- }
- }
- }
-
- is_pure = gfc_pure (NULL);
- is_implicit_pure = gfc_implicit_pure (NULL);
-
- /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
- kind, etc for lvalue and rvalue must match, and rvalue must be a
- pure variable if we're in a pure function. */
- if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
- return SUCCESS;
-
- /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
- if (lvalue->expr_type == EXPR_VARIABLE
- && gfc_is_coindexed (lvalue))
- {
- gfc_ref *ref;
- for (ref = lvalue->ref; ref; ref = ref->next)
- if (ref->type == REF_ARRAY && ref->u.ar.codimen)
- {
- gfc_error ("Pointer object at %L shall not have a coindex",
- &lvalue->where);
- return FAILURE;
- }
- }
-
- /* Checks on rvalue for procedure pointer assignments. */
- if (proc_pointer)
- {
- char err[200];
- gfc_symbol *s1,*s2;
- gfc_component *comp;
- const char *name;
-
- attr = gfc_expr_attr (rvalue);
- if (!((rvalue->expr_type == EXPR_NULL)
- || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
- || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
- || (rvalue->expr_type == EXPR_VARIABLE
- && attr.flavor == FL_PROCEDURE)))
- {
- gfc_error ("Invalid procedure pointer assignment at %L",
- &rvalue->where);
- return FAILURE;
- }
- if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
- {
- /* Check for intrinsics. */
- gfc_symbol *sym = rvalue->symtree->n.sym;
- if (!sym->attr.intrinsic
- && (gfc_is_intrinsic (sym, 0, sym->declared_at)
- || gfc_is_intrinsic (sym, 1, sym->declared_at)))
- {
- sym->attr.intrinsic = 1;
- gfc_resolve_intrinsic (sym, &rvalue->where);
- attr = gfc_expr_attr (rvalue);
- }
- /* Check for result of embracing function. */
- if (sym == gfc_current_ns->proc_name
- && sym->attr.function && sym->result == sym)
- {
- gfc_error ("Function result '%s' is invalid as proc-target "
- "in procedure pointer assignment at %L",
- sym->name, &rvalue->where);
- return FAILURE;
- }
- }
- if (attr.abstract)
- {
- gfc_error ("Abstract interface '%s' is invalid "
- "in procedure pointer assignment at %L",
- rvalue->symtree->name, &rvalue->where);
- return FAILURE;
- }
- /* Check for F08:C729. */
- if (attr.flavor == FL_PROCEDURE)
- {
- if (attr.proc == PROC_ST_FUNCTION)
- {
- gfc_error ("Statement function '%s' is invalid "
- "in procedure pointer assignment at %L",
- rvalue->symtree->name, &rvalue->where);
- return FAILURE;
- }
- if (attr.proc == PROC_INTERNAL &&
- gfc_notify_std (GFC_STD_F2008, "Internal procedure "
- "'%s' is invalid in procedure pointer assignment "
- "at %L", rvalue->symtree->name, &rvalue->where)
- == FAILURE)
- return FAILURE;
- if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
- attr.subroutine) == 0)
- {
- gfc_error ("Intrinsic '%s' at %L is invalid in procedure pointer "
- "assignment", rvalue->symtree->name, &rvalue->where);
- return FAILURE;
- }
- }
- /* Check for F08:C730. */
- if (attr.elemental && !attr.intrinsic)
- {
- gfc_error ("Nonintrinsic elemental procedure '%s' is invalid "
- "in procedure pointer assignment at %L",
- rvalue->symtree->name, &rvalue->where);
- return FAILURE;
- }
-
- /* Ensure that the calling convention is the same. As other attributes
- such as DLLEXPORT may differ, one explicitly only tests for the
- calling conventions. */
- if (rvalue->expr_type == EXPR_VARIABLE
- && lvalue->symtree->n.sym->attr.ext_attr
- != rvalue->symtree->n.sym->attr.ext_attr)
- {
- symbol_attribute calls;
-
- calls.ext_attr = 0;
- gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
- gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
- gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
-
- if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
- != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
- {
- gfc_error ("Mismatch in the procedure pointer assignment "
- "at %L: mismatch in the calling convention",
- &rvalue->where);
- return FAILURE;
- }
- }
-
- comp = gfc_get_proc_ptr_comp (lvalue);
- if (comp)
- s1 = comp->ts.interface;
- else
- {
- s1 = lvalue->symtree->n.sym;
- if (s1->ts.interface)
- s1 = s1->ts.interface;
- }
-
- comp = gfc_get_proc_ptr_comp (rvalue);
- if (comp)
- {
- if (rvalue->expr_type == EXPR_FUNCTION)
- {
- s2 = comp->ts.interface->result;
- name = s2->name;
- }
- else
- {
- s2 = comp->ts.interface;
- name = comp->name;
- }
- }
- else if (rvalue->expr_type == EXPR_FUNCTION)
- {
- if (rvalue->value.function.esym)
- s2 = rvalue->value.function.esym->result;
- else
- s2 = rvalue->symtree->n.sym->result;
-
- name = s2->name;
- }
- else
- {
- s2 = rvalue->symtree->n.sym;
- name = s2->name;
- }
-
- if (s2 && s2->attr.proc_pointer && s2->ts.interface)
- s2 = s2->ts.interface;
-
- if (s1 == s2 || !s1 || !s2)
- return SUCCESS;
-
- if (!gfc_compare_interfaces (s1, s2, name, 0, 1,
- err, sizeof(err), NULL, NULL))
- {
- gfc_error ("Interface mismatch in procedure pointer assignment "
- "at %L: %s", &rvalue->where, err);
- return FAILURE;
- }
-
- if (!gfc_compare_interfaces (s2, s1, name, 0, 1,
- err, sizeof(err), NULL, NULL))
- {
- gfc_error ("Interface mismatch in procedure pointer assignment "
- "at %L: %s", &rvalue->where, err);
- return FAILURE;
- }
-
- return SUCCESS;
- }
-
- if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
- {
- /* Check for F03:C717. */
- if (UNLIMITED_POLY (rvalue)
- && !(UNLIMITED_POLY (lvalue)
- || (lvalue->ts.type == BT_DERIVED
- && (lvalue->ts.u.derived->attr.is_bind_c
- || lvalue->ts.u.derived->attr.sequence))))
- gfc_error ("Data-pointer-object &L must be unlimited "
- "polymorphic, a sequence derived type or of a "
- "type with the BIND attribute assignment at %L "
- "to be compatible with an unlimited polymorphic "
- "target", &lvalue->where);
- else
- gfc_error ("Different types in pointer assignment at %L; "
- "attempted assignment of %s to %s", &lvalue->where,
- gfc_typename (&rvalue->ts),
- gfc_typename (&lvalue->ts));
- return FAILURE;
- }
-
- if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
- {
- gfc_error ("Different kind type parameters in pointer "
- "assignment at %L", &lvalue->where);
- return FAILURE;
- }
-
- if (lvalue->rank != rvalue->rank && !rank_remap)
- {
- gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
- return FAILURE;
- }
-
- /* Make sure the vtab is present. */
- if (lvalue->ts.type == BT_CLASS && rvalue->ts.type == BT_DERIVED)
- gfc_find_derived_vtab (rvalue->ts.u.derived);
- else if (UNLIMITED_POLY (lvalue) && !UNLIMITED_POLY (rvalue))
- gfc_find_intrinsic_vtab (&rvalue->ts);
-
- /* Check rank remapping. */
- if (rank_remap)
- {
- mpz_t lsize, rsize;
-
- /* If this can be determined, check that the target must be at least as
- large as the pointer assigned to it is. */
- if (gfc_array_size (lvalue, &lsize) == SUCCESS
- && gfc_array_size (rvalue, &rsize) == SUCCESS
- && mpz_cmp (rsize, lsize) < 0)
- {
- gfc_error ("Rank remapping target is smaller than size of the"
- " pointer (%ld < %ld) at %L",
- mpz_get_si (rsize), mpz_get_si (lsize),
- &lvalue->where);
- return FAILURE;
- }
-
- /* The target must be either rank one or it must be simply contiguous
- and F2008 must be allowed. */
- if (rvalue->rank != 1)
- {
- if (!gfc_is_simply_contiguous (rvalue, true))
- {
- gfc_error ("Rank remapping target must be rank 1 or"
- " simply contiguous at %L", &rvalue->where);
- return FAILURE;
- }
- if (gfc_notify_std (GFC_STD_F2008, "Rank remapping"
- " target is not rank 1 at %L", &rvalue->where)
- == FAILURE)
- return FAILURE;
- }
- }
-
- /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
- if (rvalue->expr_type == EXPR_NULL)
- return SUCCESS;
-
- if (lvalue->ts.type == BT_CHARACTER)
- {
- gfc_try t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
- if (t == FAILURE)
- return FAILURE;
- }
-
- if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
- lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
-
- attr = gfc_expr_attr (rvalue);
-
- if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
- {
- gfc_error ("Target expression in pointer assignment "
- "at %L must deliver a pointer result",
- &rvalue->where);
- return FAILURE;
- }
-
- if (!attr.target && !attr.pointer)
- {
- gfc_error ("Pointer assignment target is neither TARGET "
- "nor POINTER at %L", &rvalue->where);
- return FAILURE;
- }
-
- if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
- {
- gfc_error ("Bad target in pointer assignment in PURE "
- "procedure at %L", &rvalue->where);
- }
-
- if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
- gfc_current_ns->proc_name->attr.implicit_pure = 0;
-
-
- if (gfc_has_vector_index (rvalue))
- {
- gfc_error ("Pointer assignment with vector subscript "
- "on rhs at %L", &rvalue->where);
- return FAILURE;
- }
-
- if (attr.is_protected && attr.use_assoc
- && !(attr.pointer || attr.proc_pointer))
- {
- gfc_error ("Pointer assignment target has PROTECTED "
- "attribute at %L", &rvalue->where);
- return FAILURE;
- }
-
- /* F2008, C725. For PURE also C1283. */
- if (rvalue->expr_type == EXPR_VARIABLE
- && gfc_is_coindexed (rvalue))
- {
- gfc_ref *ref;
- for (ref = rvalue->ref; ref; ref = ref->next)
- if (ref->type == REF_ARRAY && ref->u.ar.codimen)
- {
- gfc_error ("Data target at %L shall not have a coindex",
- &rvalue->where);
- return FAILURE;
- }
- }
-
- /* Warn if it is the LHS pointer may lives longer than the RHS target. */
- if (gfc_option.warn_target_lifetime
- && rvalue->expr_type == EXPR_VARIABLE
- && !rvalue->symtree->n.sym->attr.save
- && !attr.pointer && !rvalue->symtree->n.sym->attr.host_assoc
- && !rvalue->symtree->n.sym->attr.in_common
- && !rvalue->symtree->n.sym->attr.use_assoc
- && !rvalue->symtree->n.sym->attr.dummy)
- {
- bool warn;
- gfc_namespace *ns;
-
- warn = lvalue->symtree->n.sym->attr.dummy
- || lvalue->symtree->n.sym->attr.result
- || lvalue->symtree->n.sym->attr.function
- || (lvalue->symtree->n.sym->attr.host_assoc
- && lvalue->symtree->n.sym->ns
- != rvalue->symtree->n.sym->ns)
- || lvalue->symtree->n.sym->attr.use_assoc
- || lvalue->symtree->n.sym->attr.in_common;
-
- if (rvalue->symtree->n.sym->ns->proc_name
- && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
- && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
- for (ns = rvalue->symtree->n.sym->ns;
- ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
- ns = ns->parent)
- if (ns->parent == lvalue->symtree->n.sym->ns)
- warn = true;
-
- if (warn)
- gfc_warning ("Pointer at %L in pointer assignment might outlive the "
- "pointer target", &lvalue->where);
- }
-
- return SUCCESS;
-}
-
-
-/* Relative of gfc_check_assign() except that the lvalue is a single
- symbol. Used for initialization assignments. */
-
-gfc_try
-gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue)
-{
- gfc_expr lvalue;
- gfc_try r;
- bool pointer, proc_pointer;
-
- memset (&lvalue, '\0', sizeof (gfc_expr));
-
- lvalue.expr_type = EXPR_VARIABLE;
- lvalue.ts = sym->ts;
- if (sym->as)
- lvalue.rank = sym->as->rank;
- lvalue.symtree = XCNEW (gfc_symtree);
- lvalue.symtree->n.sym = sym;
- lvalue.where = sym->declared_at;
-
- if (comp)
- {
- lvalue.ref = gfc_get_ref ();
- lvalue.ref->type = REF_COMPONENT;
- lvalue.ref->u.c.component = comp;
- lvalue.ref->u.c.sym = sym;
- lvalue.ts = comp->ts;
- lvalue.rank = comp->as ? comp->as->rank : 0;
- lvalue.where = comp->loc;
- pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)
- ? CLASS_DATA (comp)->attr.class_pointer : comp->attr.pointer;
- proc_pointer = comp->attr.proc_pointer;
- }
- else
- {
- pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)
- ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
- proc_pointer = sym->attr.proc_pointer;
- }
-
- if (pointer || proc_pointer)
- r = gfc_check_pointer_assign (&lvalue, rvalue);
- else
- r = gfc_check_assign (&lvalue, rvalue, 1);
-
- free (lvalue.symtree);
-
- if (r == FAILURE)
- return r;
-
- if (pointer && rvalue->expr_type != EXPR_NULL)
- {
- /* F08:C461. Additional checks for pointer initialization. */
- symbol_attribute attr;
- attr = gfc_expr_attr (rvalue);
- if (attr.allocatable)
- {
- gfc_error ("Pointer initialization target at %L "
- "must not be ALLOCATABLE", &rvalue->where);
- return FAILURE;
- }
- if (!attr.target || attr.pointer)
- {
- gfc_error ("Pointer initialization target at %L "
- "must have the TARGET attribute", &rvalue->where);
- return FAILURE;
- }
-
- if (!attr.save && rvalue->expr_type == EXPR_VARIABLE
- && rvalue->symtree->n.sym->ns->proc_name
- && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program)
- {
- rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT;
- attr.save = SAVE_IMPLICIT;
- }
-
- if (!attr.save)
- {
- gfc_error ("Pointer initialization target at %L "
- "must have the SAVE attribute", &rvalue->where);
- return FAILURE;
- }
- }
-
- if (proc_pointer && rvalue->expr_type != EXPR_NULL)
- {
- /* F08:C1220. Additional checks for procedure pointer initialization. */
- symbol_attribute attr = gfc_expr_attr (rvalue);
- if (attr.proc_pointer)
- {
- gfc_error ("Procedure pointer initialization target at %L "
- "may not be a procedure pointer", &rvalue->where);
- return FAILURE;
- }
- }
-
- return SUCCESS;
-}
-
-
-/* Check for default initializer; sym->value is not enough
- as it is also set for EXPR_NULL of allocatables. */
-
-bool
-gfc_has_default_initializer (gfc_symbol *der)
-{
- gfc_component *c;
-
- gcc_assert (der->attr.flavor == FL_DERIVED);
- for (c = der->components; c; c = c->next)
- if (c->ts.type == BT_DERIVED)
- {
- if (!c->attr.pointer
- && gfc_has_default_initializer (c->ts.u.derived))
- return true;
- if (c->attr.pointer && c->initializer)
- return true;
- }
- else
- {
- if (c->initializer)
- return true;
- }
-
- return false;
-}
-
-
-/* Get an expression for a default initializer. */
-
-gfc_expr *
-gfc_default_initializer (gfc_typespec *ts)
-{
- gfc_expr *init;
- gfc_component *comp;
-
- /* See if we have a default initializer in this, but not in nested
- types (otherwise we could use gfc_has_default_initializer()). */
- for (comp = ts->u.derived->components; comp; comp = comp->next)
- if (comp->initializer || comp->attr.allocatable
- || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
- && CLASS_DATA (comp)->attr.allocatable))
- break;
-
- if (!comp)
- return NULL;
-
- init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
- &ts->u.derived->declared_at);
- init->ts = *ts;
-
- for (comp = ts->u.derived->components; comp; comp = comp->next)
- {
- gfc_constructor *ctor = gfc_constructor_get();
-
- if (comp->initializer)
- {
- ctor->expr = gfc_copy_expr (comp->initializer);
- if ((comp->ts.type != comp->initializer->ts.type
- || comp->ts.kind != comp->initializer->ts.kind)
- && !comp->attr.pointer && !comp->attr.proc_pointer)
- gfc_convert_type_warn (ctor->expr, &comp->ts, 2, false);
- }
-
- if (comp->attr.allocatable
- || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
- {
- ctor->expr = gfc_get_expr ();
- ctor->expr->expr_type = EXPR_NULL;
- ctor->expr->ts = comp->ts;
- }
-
- gfc_constructor_append (&init->value.constructor, ctor);
- }
-
- return init;
-}
-
-
-/* Given a symbol, create an expression node with that symbol as a
- variable. If the symbol is array valued, setup a reference of the
- whole array. */
-
-gfc_expr *
-gfc_get_variable_expr (gfc_symtree *var)
-{
- gfc_expr *e;
-
- e = gfc_get_expr ();
- e->expr_type = EXPR_VARIABLE;
- e->symtree = var;
- e->ts = var->n.sym->ts;
-
- if ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
- || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
- && CLASS_DATA (var->n.sym)->as))
- {
- e->rank = var->n.sym->ts.type == BT_CLASS
- ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
- e->ref = gfc_get_ref ();
- e->ref->type = REF_ARRAY;
- e->ref->u.ar.type = AR_FULL;
- e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
- ? CLASS_DATA (var->n.sym)->as
- : var->n.sym->as);
- }
-
- return e;
-}
-
-
-/* Adds a full array reference to an expression, as needed. */
-
-void
-gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as)
-{
- gfc_ref *ref;
- for (ref = e->ref; ref; ref = ref->next)
- if (!ref->next)
- break;
- if (ref)
- {
- ref->next = gfc_get_ref ();
- ref = ref->next;
- }
- else
- {
- e->ref = gfc_get_ref ();
- ref = e->ref;
- }
- ref->type = REF_ARRAY;
- ref->u.ar.type = AR_FULL;
- ref->u.ar.dimen = e->rank;
- ref->u.ar.where = e->where;
- ref->u.ar.as = as;
-}
-
-
-gfc_expr *
-gfc_lval_expr_from_sym (gfc_symbol *sym)
-{
- gfc_expr *lval;
- lval = gfc_get_expr ();
- lval->expr_type = EXPR_VARIABLE;
- lval->where = sym->declared_at;
- lval->ts = sym->ts;
- lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
-
- /* It will always be a full array. */
- lval->rank = sym->as ? sym->as->rank : 0;
- if (lval->rank)
- gfc_add_full_array_ref (lval, sym->ts.type == BT_CLASS ?
- CLASS_DATA (sym)->as : sym->as);
- return lval;
-}
-
-
-/* Returns the array_spec of a full array expression. A NULL is
- returned otherwise. */
-gfc_array_spec *
-gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
-{
- gfc_array_spec *as;
- gfc_ref *ref;
-
- if (expr->rank == 0)
- return NULL;
-
- /* Follow any component references. */
- if (expr->expr_type == EXPR_VARIABLE
- || expr->expr_type == EXPR_CONSTANT)
- {
- as = expr->symtree->n.sym->as;
- for (ref = expr->ref; ref; ref = ref->next)
- {
- switch (ref->type)
- {
- case REF_COMPONENT:
- as = ref->u.c.component->as;
- continue;
-
- case REF_SUBSTRING:
- continue;
-
- case REF_ARRAY:
- {
- switch (ref->u.ar.type)
- {
- case AR_ELEMENT:
- case AR_SECTION:
- case AR_UNKNOWN:
- as = NULL;
- continue;
-
- case AR_FULL:
- break;
- }
- break;
- }
- }
- }
- }
- else
- as = NULL;
-
- return as;
-}
-
-
-/* General expression traversal function. */
-
-bool
-gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
- bool (*func)(gfc_expr *, gfc_symbol *, int*),
- int f)
-{
- gfc_array_ref ar;
- gfc_ref *ref;
- gfc_actual_arglist *args;
- gfc_constructor *c;
- int i;
-
- if (!expr)
- return false;
-
- if ((*func) (expr, sym, &f))
- return true;
-
- if (expr->ts.type == BT_CHARACTER
- && expr->ts.u.cl
- && expr->ts.u.cl->length
- && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
- && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
- return true;
-
- switch (expr->expr_type)
- {
- case EXPR_PPC:
- case EXPR_COMPCALL:
- case EXPR_FUNCTION:
- for (args = expr->value.function.actual; args; args = args->next)
- {
- if (gfc_traverse_expr (args->expr, sym, func, f))
- return true;
- }
- break;
-
- case EXPR_VARIABLE:
- case EXPR_CONSTANT:
- case EXPR_NULL:
- case EXPR_SUBSTRING:
- break;
-
- case EXPR_STRUCTURE:
- case EXPR_ARRAY:
- for (c = gfc_constructor_first (expr->value.constructor);
- c; c = gfc_constructor_next (c))
- {
- if (gfc_traverse_expr (c->expr, sym, func, f))
- return true;
- if (c->iterator)
- {
- if (gfc_traverse_expr (c->iterator->var, sym, func, f))
- return true;
- if (gfc_traverse_expr (c->iterator->start, sym, func, f))
- return true;
- if (gfc_traverse_expr (c->iterator->end, sym, func, f))
- return true;
- if (gfc_traverse_expr (c->iterator->step, sym, func, f))
- return true;
- }
- }
- break;
-
- case EXPR_OP:
- if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
- return true;
- if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
- return true;
- break;
-
- default:
- gcc_unreachable ();
- break;
- }
-
- ref = expr->ref;
- while (ref != NULL)
- {
- switch (ref->type)
- {
- case REF_ARRAY:
- ar = ref->u.ar;
- for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
- {
- if (gfc_traverse_expr (ar.start[i], sym, func, f))
- return true;
- if (gfc_traverse_expr (ar.end[i], sym, func, f))
- return true;
- if (gfc_traverse_expr (ar.stride[i], sym, func, f))
- return true;
- }
- break;
-
- case REF_SUBSTRING:
- if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
- return true;
- if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
- return true;
- break;
-
- case REF_COMPONENT:
- if (ref->u.c.component->ts.type == BT_CHARACTER
- && ref->u.c.component->ts.u.cl
- && ref->u.c.component->ts.u.cl->length
- && ref->u.c.component->ts.u.cl->length->expr_type
- != EXPR_CONSTANT
- && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
- sym, func, f))
- return true;
-
- if (ref->u.c.component->as)
- for (i = 0; i < ref->u.c.component->as->rank
- + ref->u.c.component->as->corank; i++)
- {
- if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
- sym, func, f))
- return true;
- if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
- sym, func, f))
- return true;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
- ref = ref->next;
- }
- return false;
-}
-
-/* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
-
-static bool
-expr_set_symbols_referenced (gfc_expr *expr,
- gfc_symbol *sym ATTRIBUTE_UNUSED,
- int *f ATTRIBUTE_UNUSED)
-{
- if (expr->expr_type != EXPR_VARIABLE)
- return false;
- gfc_set_sym_referenced (expr->symtree->n.sym);
- return false;
-}
-
-void
-gfc_expr_set_symbols_referenced (gfc_expr *expr)
-{
- gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
-}
-
-
-/* Determine if an expression is a procedure pointer component and return
- the component in that case. Otherwise return NULL. */
-
-gfc_component *
-gfc_get_proc_ptr_comp (gfc_expr *expr)
-{
- gfc_ref *ref;
-
- if (!expr || !expr->ref)
- return NULL;
-
- ref = expr->ref;
- while (ref->next)
- ref = ref->next;
-
- if (ref->type == REF_COMPONENT
- && ref->u.c.component->attr.proc_pointer)
- return ref->u.c.component;
-
- return NULL;
-}
-
-
-/* Determine if an expression is a procedure pointer component. */
-
-bool
-gfc_is_proc_ptr_comp (gfc_expr *expr)
-{
- return (gfc_get_proc_ptr_comp (expr) != NULL);
-}
-
-
-/* Walk an expression tree and check each variable encountered for being typed.
- If strict is not set, a top-level variable is tolerated untyped in -std=gnu
- mode as is a basic arithmetic expression using those; this is for things in
- legacy-code like:
-
- INTEGER :: arr(n), n
- INTEGER :: arr(n + 1), n
-
- The namespace is needed for IMPLICIT typing. */
-
-static gfc_namespace* check_typed_ns;
-
-static bool
-expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
- int* f ATTRIBUTE_UNUSED)
-{
- gfc_try t;
-
- if (e->expr_type != EXPR_VARIABLE)
- return false;
-
- gcc_assert (e->symtree);
- t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
- true, e->where);
-
- return (t == FAILURE);
-}
-
-gfc_try
-gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
-{
- bool error_found;
-
- /* If this is a top-level variable or EXPR_OP, do the check with strict given
- to us. */
- if (!strict)
- {
- if (e->expr_type == EXPR_VARIABLE && !e->ref)
- return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
-
- if (e->expr_type == EXPR_OP)
- {
- gfc_try t = SUCCESS;
-
- gcc_assert (e->value.op.op1);
- t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
-
- if (t == SUCCESS && e->value.op.op2)
- t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
-
- return t;
- }
- }
-
- /* Otherwise, walk the expression and do it strictly. */
- check_typed_ns = ns;
- error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
-
- return error_found ? FAILURE : SUCCESS;
-}
-
-
-bool
-gfc_ref_this_image (gfc_ref *ref)
-{
- int n;
-
- gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
-
- for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
- if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
- return false;
-
- return true;
-}
-
-
-bool
-gfc_is_coindexed (gfc_expr *e)
-{
- gfc_ref *ref;
-
- for (ref = e->ref; ref; ref = ref->next)
- if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
- return !gfc_ref_this_image (ref);
-
- return false;
-}
-
-
-/* Coarrays are variables with a corank but not being coindexed. However, also
- the following is a coarray: A subobject of a coarray is a coarray if it does
- not have any cosubscripts, vector subscripts, allocatable component
- selection, or pointer component selection. (F2008, 2.4.7) */
-
-bool
-gfc_is_coarray (gfc_expr *e)
-{
- gfc_ref *ref;
- gfc_symbol *sym;
- gfc_component *comp;
- bool coindexed;
- bool coarray;
- int i;
-
- if (e->expr_type != EXPR_VARIABLE)
- return false;
-
- coindexed = false;
- sym = e->symtree->n.sym;
-
- if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
- coarray = CLASS_DATA (sym)->attr.codimension;
- else
- coarray = sym->attr.codimension;
-
- for (ref = e->ref; ref; ref = ref->next)
- switch (ref->type)
- {
- case REF_COMPONENT:
- comp = ref->u.c.component;
- if (comp->ts.type == BT_CLASS && comp->attr.class_ok
- && (CLASS_DATA (comp)->attr.class_pointer
- || CLASS_DATA (comp)->attr.allocatable))
- {
- coindexed = false;
- coarray = CLASS_DATA (comp)->attr.codimension;
- }
- else if (comp->attr.pointer || comp->attr.allocatable)
- {
- coindexed = false;
- coarray = comp->attr.codimension;
- }
- break;
-
- case REF_ARRAY:
- if (!coarray)
- break;
-
- if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
- {
- coindexed = true;
- break;
- }
-
- for (i = 0; i < ref->u.ar.dimen; i++)
- if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
- {
- coarray = false;
- break;
- }
- break;
-
- case REF_SUBSTRING:
- break;
- }
-
- return coarray && !coindexed;
-}
-
-
-int
-gfc_get_corank (gfc_expr *e)
-{
- int corank;
- gfc_ref *ref;
-
- if (!gfc_is_coarray (e))
- return 0;
-
- if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
- corank = e->ts.u.derived->components->as
- ? e->ts.u.derived->components->as->corank : 0;
- else
- corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
-
- for (ref = e->ref; ref; ref = ref->next)
- {
- if (ref->type == REF_ARRAY)
- corank = ref->u.ar.as->corank;
- gcc_assert (ref->type != REF_SUBSTRING);
- }
-
- return corank;
-}
-
-
-/* Check whether the expression has an ultimate allocatable component.
- Being itself allocatable does not count. */
-bool
-gfc_has_ultimate_allocatable (gfc_expr *e)
-{
- gfc_ref *ref, *last = NULL;
-
- if (e->expr_type != EXPR_VARIABLE)
- return false;
-
- for (ref = e->ref; ref; ref = ref->next)
- if (ref->type == REF_COMPONENT)
- last = ref;
-
- if (last && last->u.c.component->ts.type == BT_CLASS)
- return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
- else if (last && last->u.c.component->ts.type == BT_DERIVED)
- return last->u.c.component->ts.u.derived->attr.alloc_comp;
- else if (last)
- return false;
-
- if (e->ts.type == BT_CLASS)
- return CLASS_DATA (e)->attr.alloc_comp;
- else if (e->ts.type == BT_DERIVED)
- return e->ts.u.derived->attr.alloc_comp;
- else
- return false;
-}
-
-
-/* Check whether the expression has an pointer component.
- Being itself a pointer does not count. */
-bool
-gfc_has_ultimate_pointer (gfc_expr *e)
-{
- gfc_ref *ref, *last = NULL;
-
- if (e->expr_type != EXPR_VARIABLE)
- return false;
-
- for (ref = e->ref; ref; ref = ref->next)
- if (ref->type == REF_COMPONENT)
- last = ref;
-
- if (last && last->u.c.component->ts.type == BT_CLASS)
- return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
- else if (last && last->u.c.component->ts.type == BT_DERIVED)
- return last->u.c.component->ts.u.derived->attr.pointer_comp;
- else if (last)
- return false;
-
- if (e->ts.type == BT_CLASS)
- return CLASS_DATA (e)->attr.pointer_comp;
- else if (e->ts.type == BT_DERIVED)
- return e->ts.u.derived->attr.pointer_comp;
- else
- return false;
-}
-
-
-/* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
- Note: A scalar is not regarded as "simply contiguous" by the standard.
- if bool is not strict, some further checks are done - for instance,
- a "(::1)" is accepted. */
-
-bool
-gfc_is_simply_contiguous (gfc_expr *expr, bool strict)
-{
- bool colon;
- int i;
- gfc_array_ref *ar = NULL;
- gfc_ref *ref, *part_ref = NULL;
- gfc_symbol *sym;
-
- if (expr->expr_type == EXPR_FUNCTION)
- return expr->value.function.esym
- ? expr->value.function.esym->result->attr.contiguous : false;
- else if (expr->expr_type != EXPR_VARIABLE)
- return false;
-
- if (expr->rank == 0)
- return false;
-
- for (ref = expr->ref; ref; ref = ref->next)
- {
- if (ar)
- return false; /* Array shall be last part-ref. */
-
- if (ref->type == REF_COMPONENT)
- part_ref = ref;
- else if (ref->type == REF_SUBSTRING)
- return false;
- else if (ref->u.ar.type != AR_ELEMENT)
- ar = &ref->u.ar;
- }
-
- sym = expr->symtree->n.sym;
- if (expr->ts.type != BT_CLASS
- && ((part_ref
- && !part_ref->u.c.component->attr.contiguous
- && part_ref->u.c.component->attr.pointer)
- || (!part_ref
- && !sym->attr.contiguous
- && (sym->attr.pointer
- || sym->as->type == AS_ASSUMED_RANK
- || sym->as->type == AS_ASSUMED_SHAPE))))
- return false;
-
- if (!ar || ar->type == AR_FULL)
- return true;
-
- gcc_assert (ar->type == AR_SECTION);
-
- /* Check for simply contiguous array */
- colon = true;
- for (i = 0; i < ar->dimen; i++)
- {
- if (ar->dimen_type[i] == DIMEN_VECTOR)
- return false;
-
- if (ar->dimen_type[i] == DIMEN_ELEMENT)
- {
- colon = false;
- continue;
- }
-
- gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
-
-
- /* If the previous section was not contiguous, that's an error,
- unless we have effective only one element and checking is not
- strict. */
- if (!colon && (strict || !ar->start[i] || !ar->end[i]
- || ar->start[i]->expr_type != EXPR_CONSTANT
- || ar->end[i]->expr_type != EXPR_CONSTANT
- || mpz_cmp (ar->start[i]->value.integer,
- ar->end[i]->value.integer) != 0))
- return false;
-
- /* Following the standard, "(::1)" or - if known at compile time -
- "(lbound:ubound)" are not simply contiguous; if strict
- is false, they are regarded as simply contiguous. */
- if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
- || ar->stride[i]->ts.type != BT_INTEGER
- || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
- return false;
-
- if (ar->start[i]
- && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
- || !ar->as->lower[i]
- || ar->as->lower[i]->expr_type != EXPR_CONSTANT
- || mpz_cmp (ar->start[i]->value.integer,
- ar->as->lower[i]->value.integer) != 0))
- colon = false;
-
- if (ar->end[i]
- && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
- || !ar->as->upper[i]
- || ar->as->upper[i]->expr_type != EXPR_CONSTANT
- || mpz_cmp (ar->end[i]->value.integer,
- ar->as->upper[i]->value.integer) != 0))
- colon = false;
- }
-
- return true;
-}
-
-
-/* Build call to an intrinsic procedure. The number of arguments has to be
- passed (rather than ending the list with a NULL value) because we may
- want to add arguments but with a NULL-expression. */
-
-gfc_expr*
-gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name,
- locus where, unsigned numarg, ...)
-{
- gfc_expr* result;
- gfc_actual_arglist* atail;
- gfc_intrinsic_sym* isym;
- va_list ap;
- unsigned i;
- const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s"), name);
-
- isym = gfc_intrinsic_function_by_id (id);
- gcc_assert (isym);
-
- result = gfc_get_expr ();
- result->expr_type = EXPR_FUNCTION;
- result->ts = isym->ts;
- result->where = where;
- result->value.function.name = mangled_name;
- result->value.function.isym = isym;
-
- gfc_get_sym_tree (mangled_name, ns, &result->symtree, false);
- gfc_commit_symbol (result->symtree->n.sym);
- gcc_assert (result->symtree
- && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
- || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
- result->symtree->n.sym->intmod_sym_id = id;
- result->symtree->n.sym->attr.flavor = FL_PROCEDURE;
- result->symtree->n.sym->attr.intrinsic = 1;
-
- va_start (ap, numarg);
- atail = NULL;
- for (i = 0; i < numarg; ++i)
- {
- if (atail)
- {
- atail->next = gfc_get_actual_arglist ();
- atail = atail->next;
- }
- else
- atail = result->value.function.actual = gfc_get_actual_arglist ();
-
- atail->expr = va_arg (ap, gfc_expr*);
- }
- va_end (ap);
-
- return result;
-}
-
-
-/* Check if an expression may appear in a variable definition context
- (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
- This is called from the various places when resolving
- the pieces that make up such a context.
- If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do
- variables), some checks are not performed.
-
- Optionally, a possible error message can be suppressed if context is NULL
- and just the return status (SUCCESS / FAILURE) be requested. */
-
-gfc_try
-gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
- bool own_scope, const char* context)
-{
- gfc_symbol* sym = NULL;
- bool is_pointer;
- bool check_intentin;
- bool ptr_component;
- bool unlimited;
- symbol_attribute attr;
- gfc_ref* ref;
-
- if (e->expr_type == EXPR_VARIABLE)
- {
- gcc_assert (e->symtree);
- sym = e->symtree->n.sym;
- }
- else if (e->expr_type == EXPR_FUNCTION)
- {
- gcc_assert (e->symtree);
- sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
- }
-
- unlimited = e->ts.type == BT_CLASS && UNLIMITED_POLY (sym);
-
- attr = gfc_expr_attr (e);
- if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
- {
- if (!(gfc_option.allow_std & GFC_STD_F2008))
- {
- if (context)
- gfc_error ("Fortran 2008: Pointer functions in variable definition"
- " context (%s) at %L", context, &e->where);
- return FAILURE;
- }
- }
- else if (e->expr_type != EXPR_VARIABLE)
- {
- if (context)
- gfc_error ("Non-variable expression in variable definition context (%s)"
- " at %L", context, &e->where);
- return FAILURE;
- }
-
- if (!pointer && sym->attr.flavor == FL_PARAMETER)
- {
- if (context)
- gfc_error ("Named constant '%s' in variable definition context (%s)"
- " at %L", sym->name, context, &e->where);
- return FAILURE;
- }
- if (!pointer && sym->attr.flavor != FL_VARIABLE
- && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
- && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
- {
- if (context)
- gfc_error ("'%s' in variable definition context (%s) at %L is not"
- " a variable", sym->name, context, &e->where);
- return FAILURE;
- }
-
- /* Find out whether the expr is a pointer; this also means following
- component references to the last one. */
- is_pointer = (attr.pointer || attr.proc_pointer);
- if (pointer && !is_pointer && !unlimited)
- {
- if (context)
- gfc_error ("Non-POINTER in pointer association context (%s)"
- " at %L", context, &e->where);
- return FAILURE;
- }
-
- /* F2008, C1303. */
- if (!alloc_obj
- && (attr.lock_comp
- || (e->ts.type == BT_DERIVED
- && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
- && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
- {
- if (context)
- gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
- context, &e->where);
- return FAILURE;
- }
-
- /* INTENT(IN) dummy argument. Check this, unless the object itself is the
- component of sub-component of a pointer; we need to distinguish
- assignment to a pointer component from pointer-assignment to a pointer
- component. Note that (normal) assignment to procedure pointers is not
- possible. */
- check_intentin = !own_scope;
- ptr_component = (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
- ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
- for (ref = e->ref; ref && check_intentin; ref = ref->next)
- {
- if (ptr_component && ref->type == REF_COMPONENT)
- check_intentin = false;
- if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
- {
- ptr_component = true;
- if (!pointer)
- check_intentin = false;
- }
- }
- if (check_intentin && sym->attr.intent == INTENT_IN)
- {
- if (pointer && is_pointer)
- {
- if (context)
- gfc_error ("Dummy argument '%s' with INTENT(IN) in pointer"
- " association context (%s) at %L",
- sym->name, context, &e->where);
- return FAILURE;
- }
- if (!pointer && !is_pointer && !sym->attr.pointer)
- {
- if (context)
- gfc_error ("Dummy argument '%s' with INTENT(IN) in variable"
- " definition context (%s) at %L",
- sym->name, context, &e->where);
- return FAILURE;
- }
- }
-
- /* PROTECTED and use-associated. */
- if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
- {
- if (pointer && is_pointer)
- {
- if (context)
- gfc_error ("Variable '%s' is PROTECTED and can not appear in a"
- " pointer association context (%s) at %L",
- sym->name, context, &e->where);
- return FAILURE;
- }
- if (!pointer && !is_pointer)
- {
- if (context)
- gfc_error ("Variable '%s' is PROTECTED and can not appear in a"
- " variable definition context (%s) at %L",
- sym->name, context, &e->where);
- return FAILURE;
- }
- }
-
- /* Variable not assignable from a PURE procedure but appears in
- variable definition context. */
- if (!pointer && !own_scope && gfc_pure (NULL) && gfc_impure_variable (sym))
- {
- if (context)
- gfc_error ("Variable '%s' can not appear in a variable definition"
- " context (%s) at %L in PURE procedure",
- sym->name, context, &e->where);
- return FAILURE;
- }
-
- if (!pointer && context && gfc_implicit_pure (NULL)
- && gfc_impure_variable (sym))
- {
- gfc_namespace *ns;
- gfc_symbol *sym;
-
- for (ns = gfc_current_ns; ns; ns = ns->parent)
- {
- sym = ns->proc_name;
- if (sym == NULL)
- break;
- if (sym->attr.flavor == FL_PROCEDURE)
- {
- sym->attr.implicit_pure = 0;
- break;
- }
- }
- }
- /* Check variable definition context for associate-names. */
- if (!pointer && sym->assoc)
- {
- const char* name;
- gfc_association_list* assoc;
-
- gcc_assert (sym->assoc->target);
-
- /* If this is a SELECT TYPE temporary (the association is used internally
- for SELECT TYPE), silently go over to the target. */
- if (sym->attr.select_type_temporary)
- {
- gfc_expr* t = sym->assoc->target;
-
- gcc_assert (t->expr_type == EXPR_VARIABLE);
- name = t->symtree->name;
-
- if (t->symtree->n.sym->assoc)
- assoc = t->symtree->n.sym->assoc;
- else
- assoc = sym->assoc;
- }
- else
- {
- name = sym->name;
- assoc = sym->assoc;
- }
- gcc_assert (name && assoc);
-
- /* Is association to a valid variable? */
- if (!assoc->variable)
- {
- if (context)
- {
- if (assoc->target->expr_type == EXPR_VARIABLE)
- gfc_error ("'%s' at %L associated to vector-indexed target can"
- " not be used in a variable definition context (%s)",
- name, &e->where, context);
- else
- gfc_error ("'%s' at %L associated to expression can"
- " not be used in a variable definition context (%s)",
- name, &e->where, context);
- }
- return FAILURE;
- }
-
- /* Target must be allowed to appear in a variable definition context. */
- if (gfc_check_vardef_context (assoc->target, pointer, false, false, NULL)
- == FAILURE)
- {
- if (context)
- gfc_error ("Associate-name '%s' can not appear in a variable"
- " definition context (%s) at %L because its target"
- " at %L can not, either",
- name, context, &e->where,
- &assoc->target->where);
- return FAILURE;
- }
- }
-
- return SUCCESS;
-}