aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/fortran/arith.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/fortran/arith.c')
-rw-r--r--gcc-4.8.1/gcc/fortran/arith.c2369
1 files changed, 0 insertions, 2369 deletions
diff --git a/gcc-4.8.1/gcc/fortran/arith.c b/gcc-4.8.1/gcc/fortran/arith.c
deleted file mode 100644
index 83a9e3c24..000000000
--- a/gcc-4.8.1/gcc/fortran/arith.c
+++ /dev/null
@@ -1,2369 +0,0 @@
-/* Compiler arithmetic
- Copyright (C) 2000-2013 Free Software Foundation, Inc.
- Contributed by Andy Vaught
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* Since target arithmetic must be done on the host, there has to
- be some way of evaluating arithmetic expressions as the host
- would evaluate them. We use the GNU MP library and the MPFR
- library to do arithmetic, and this file provides the interface. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "flags.h"
-#include "gfortran.h"
-#include "arith.h"
-#include "target-memory.h"
-#include "constructor.h"
-
-/* MPFR does not have a direct replacement for mpz_set_f() from GMP.
- It's easily implemented with a few calls though. */
-
-void
-gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where)
-{
- mp_exp_t e;
-
- if (mpfr_inf_p (x) || mpfr_nan_p (x))
- {
- gfc_error ("Conversion of an Infinity or Not-a-Number at %L "
- "to INTEGER", where);
- mpz_set_ui (z, 0);
- return;
- }
-
- e = mpfr_get_z_exp (z, x);
-
- if (e > 0)
- mpz_mul_2exp (z, z, e);
- else
- mpz_tdiv_q_2exp (z, z, -e);
-}
-
-
-/* Set the model number precision by the requested KIND. */
-
-void
-gfc_set_model_kind (int kind)
-{
- int index = gfc_validate_kind (BT_REAL, kind, false);
- int base2prec;
-
- base2prec = gfc_real_kinds[index].digits;
- if (gfc_real_kinds[index].radix != 2)
- base2prec *= gfc_real_kinds[index].radix / 2;
- mpfr_set_default_prec (base2prec);
-}
-
-
-/* Set the model number precision from mpfr_t x. */
-
-void
-gfc_set_model (mpfr_t x)
-{
- mpfr_set_default_prec (mpfr_get_prec (x));
-}
-
-
-/* Given an arithmetic error code, return a pointer to a string that
- explains the error. */
-
-static const char *
-gfc_arith_error (arith code)
-{
- const char *p;
-
- switch (code)
- {
- case ARITH_OK:
- p = _("Arithmetic OK at %L");
- break;
- case ARITH_OVERFLOW:
- p = _("Arithmetic overflow at %L");
- break;
- case ARITH_UNDERFLOW:
- p = _("Arithmetic underflow at %L");
- break;
- case ARITH_NAN:
- p = _("Arithmetic NaN at %L");
- break;
- case ARITH_DIV0:
- p = _("Division by zero at %L");
- break;
- case ARITH_INCOMMENSURATE:
- p = _("Array operands are incommensurate at %L");
- break;
- case ARITH_ASYMMETRIC:
- p =
- _("Integer outside symmetric range implied by Standard Fortran at %L");
- break;
- default:
- gfc_internal_error ("gfc_arith_error(): Bad error code");
- }
-
- return p;
-}
-
-
-/* Get things ready to do math. */
-
-void
-gfc_arith_init_1 (void)
-{
- gfc_integer_info *int_info;
- gfc_real_info *real_info;
- mpfr_t a, b;
- int i;
-
- mpfr_set_default_prec (128);
- mpfr_init (a);
-
- /* Convert the minimum and maximum values for each kind into their
- GNU MP representation. */
- for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
- {
- /* Huge */
- mpz_init (int_info->huge);
- mpz_set_ui (int_info->huge, int_info->radix);
- mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits);
- mpz_sub_ui (int_info->huge, int_info->huge, 1);
-
- /* These are the numbers that are actually representable by the
- target. For bases other than two, this needs to be changed. */
- if (int_info->radix != 2)
- gfc_internal_error ("Fix min_int calculation");
-
- /* See PRs 13490 and 17912, related to integer ranges.
- The pedantic_min_int exists for range checking when a program
- is compiled with -pedantic, and reflects the belief that
- Standard Fortran requires integers to be symmetrical, i.e.
- every negative integer must have a representable positive
- absolute value, and vice versa. */
-
- mpz_init (int_info->pedantic_min_int);
- mpz_neg (int_info->pedantic_min_int, int_info->huge);
-
- mpz_init (int_info->min_int);
- mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
-
- /* Range */
- mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
- mpfr_log10 (a, a, GFC_RND_MODE);
- mpfr_trunc (a, a);
- int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
- }
-
- mpfr_clear (a);
-
- for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
- {
- gfc_set_model_kind (real_info->kind);
-
- mpfr_init (a);
- mpfr_init (b);
-
- /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b */
- /* 1 - b**(-p) */
- mpfr_init (real_info->huge);
- mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE);
- mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
- mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE);
- mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE);
-
- /* b**(emax-1) */
- mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
- mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE);
-
- /* (1 - b**(-p)) * b**(emax-1) */
- mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE);
-
- /* (1 - b**(-p)) * b**(emax-1) * b */
- mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix,
- GFC_RND_MODE);
-
- /* tiny(x) = b**(emin-1) */
- mpfr_init (real_info->tiny);
- mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE);
- mpfr_pow_si (real_info->tiny, real_info->tiny,
- real_info->min_exponent - 1, GFC_RND_MODE);
-
- /* subnormal (x) = b**(emin - digit) */
- mpfr_init (real_info->subnormal);
- mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE);
- mpfr_pow_si (real_info->subnormal, real_info->subnormal,
- real_info->min_exponent - real_info->digits, GFC_RND_MODE);
-
- /* epsilon(x) = b**(1-p) */
- mpfr_init (real_info->epsilon);
- mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE);
- mpfr_pow_si (real_info->epsilon, real_info->epsilon,
- 1 - real_info->digits, GFC_RND_MODE);
-
- /* range(x) = int(min(log10(huge(x)), -log10(tiny)) */
- mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
- mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
- mpfr_neg (b, b, GFC_RND_MODE);
-
- /* a = min(a, b) */
- mpfr_min (a, a, b, GFC_RND_MODE);
- mpfr_trunc (a, a);
- real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
-
- /* precision(x) = int((p - 1) * log10(b)) + k */
- mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
- mpfr_log10 (a, a, GFC_RND_MODE);
- mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
- mpfr_trunc (a, a);
- real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE);
-
- /* If the radix is an integral power of 10, add one to the precision. */
- for (i = 10; i <= real_info->radix; i *= 10)
- if (i == real_info->radix)
- real_info->precision++;
-
- mpfr_clears (a, b, NULL);
- }
-}
-
-
-/* Clean up, get rid of numeric constants. */
-
-void
-gfc_arith_done_1 (void)
-{
- gfc_integer_info *ip;
- gfc_real_info *rp;
-
- for (ip = gfc_integer_kinds; ip->kind; ip++)
- {
- mpz_clear (ip->min_int);
- mpz_clear (ip->pedantic_min_int);
- mpz_clear (ip->huge);
- }
-
- for (rp = gfc_real_kinds; rp->kind; rp++)
- mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL);
-
- mpfr_free_cache ();
-}
-
-
-/* Given a wide character value and a character kind, determine whether
- the character is representable for that kind. */
-bool
-gfc_check_character_range (gfc_char_t c, int kind)
-{
- /* As wide characters are stored as 32-bit values, they're all
- representable in UCS=4. */
- if (kind == 4)
- return true;
-
- if (kind == 1)
- return c <= 255 ? true : false;
-
- gcc_unreachable ();
-}
-
-
-/* Given an integer and a kind, make sure that the integer lies within
- the range of the kind. Returns ARITH_OK, ARITH_ASYMMETRIC or
- ARITH_OVERFLOW. */
-
-arith
-gfc_check_integer_range (mpz_t p, int kind)
-{
- arith result;
- int i;
-
- i = gfc_validate_kind (BT_INTEGER, kind, false);
- result = ARITH_OK;
-
- if (pedantic)
- {
- if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
- result = ARITH_ASYMMETRIC;
- }
-
-
- if (gfc_option.flag_range_check == 0)
- return result;
-
- if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
- || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0)
- result = ARITH_OVERFLOW;
-
- return result;
-}
-
-
-/* Given a real and a kind, make sure that the real lies within the
- range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or
- ARITH_UNDERFLOW. */
-
-static arith
-gfc_check_real_range (mpfr_t p, int kind)
-{
- arith retval;
- mpfr_t q;
- int i;
-
- i = gfc_validate_kind (BT_REAL, kind, false);
-
- gfc_set_model (p);
- mpfr_init (q);
- mpfr_abs (q, p, GFC_RND_MODE);
-
- retval = ARITH_OK;
-
- if (mpfr_inf_p (p))
- {
- if (gfc_option.flag_range_check != 0)
- retval = ARITH_OVERFLOW;
- }
- else if (mpfr_nan_p (p))
- {
- if (gfc_option.flag_range_check != 0)
- retval = ARITH_NAN;
- }
- else if (mpfr_sgn (q) == 0)
- {
- mpfr_clear (q);
- return retval;
- }
- else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
- {
- if (gfc_option.flag_range_check == 0)
- mpfr_set_inf (p, mpfr_sgn (p));
- else
- retval = ARITH_OVERFLOW;
- }
- else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0)
- {
- if (gfc_option.flag_range_check == 0)
- {
- if (mpfr_sgn (p) < 0)
- {
- mpfr_set_ui (p, 0, GFC_RND_MODE);
- mpfr_set_si (q, -1, GFC_RND_MODE);
- mpfr_copysign (p, p, q, GFC_RND_MODE);
- }
- else
- mpfr_set_ui (p, 0, GFC_RND_MODE);
- }
- else
- retval = ARITH_UNDERFLOW;
- }
- else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
- {
- mp_exp_t emin, emax;
- int en;
-
- /* Save current values of emin and emax. */
- emin = mpfr_get_emin ();
- emax = mpfr_get_emax ();
-
- /* Set emin and emax for the current model number. */
- en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1;
- mpfr_set_emin ((mp_exp_t) en);
- mpfr_set_emax ((mp_exp_t) gfc_real_kinds[i].max_exponent);
- mpfr_check_range (q, 0, GFC_RND_MODE);
- mpfr_subnormalize (q, 0, GFC_RND_MODE);
-
- /* Reset emin and emax. */
- mpfr_set_emin (emin);
- mpfr_set_emax (emax);
-
- /* Copy sign if needed. */
- if (mpfr_sgn (p) < 0)
- mpfr_neg (p, q, GMP_RNDN);
- else
- mpfr_set (p, q, GMP_RNDN);
- }
-
- mpfr_clear (q);
-
- return retval;
-}
-
-
-/* Low-level arithmetic functions. All of these subroutines assume
- that all operands are of the same type and return an operand of the
- same type. The other thing about these subroutines is that they
- can fail in various ways -- overflow, underflow, division by zero,
- zero raised to the zero, etc. */
-
-static arith
-gfc_arith_not (gfc_expr *op1, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where);
- result->value.logical = !op1->value.logical;
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
- &op1->where);
- result->value.logical = op1->value.logical && op2->value.logical;
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
- &op1->where);
- result->value.logical = op1->value.logical || op2->value.logical;
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
- &op1->where);
- result->value.logical = op1->value.logical == op2->value.logical;
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
- &op1->where);
- result->value.logical = op1->value.logical != op2->value.logical;
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-/* Make sure a constant numeric expression is within the range for
- its type and kind. Note that there's also a gfc_check_range(),
- but that one deals with the intrinsic RANGE function. */
-
-arith
-gfc_range_check (gfc_expr *e)
-{
- arith rc;
- arith rc2;
-
- switch (e->ts.type)
- {
- case BT_INTEGER:
- rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
- break;
-
- case BT_REAL:
- rc = gfc_check_real_range (e->value.real, e->ts.kind);
- if (rc == ARITH_UNDERFLOW)
- mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
- if (rc == ARITH_OVERFLOW)
- mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real));
- if (rc == ARITH_NAN)
- mpfr_set_nan (e->value.real);
- break;
-
- case BT_COMPLEX:
- rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind);
- if (rc == ARITH_UNDERFLOW)
- mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE);
- if (rc == ARITH_OVERFLOW)
- mpfr_set_inf (mpc_realref (e->value.complex),
- mpfr_sgn (mpc_realref (e->value.complex)));
- if (rc == ARITH_NAN)
- mpfr_set_nan (mpc_realref (e->value.complex));
-
- rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind);
- if (rc == ARITH_UNDERFLOW)
- mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE);
- if (rc == ARITH_OVERFLOW)
- mpfr_set_inf (mpc_imagref (e->value.complex),
- mpfr_sgn (mpc_imagref (e->value.complex)));
- if (rc == ARITH_NAN)
- mpfr_set_nan (mpc_imagref (e->value.complex));
-
- if (rc == ARITH_OK)
- rc = rc2;
- break;
-
- default:
- gfc_internal_error ("gfc_range_check(): Bad type");
- }
-
- return rc;
-}
-
-
-/* Several of the following routines use the same set of statements to
- check the validity of the result. Encapsulate the checking here. */
-
-static arith
-check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp)
-{
- arith val = rc;
-
- if (val == ARITH_UNDERFLOW)
- {
- if (gfc_option.warn_underflow)
- gfc_warning (gfc_arith_error (val), &x->where);
- val = ARITH_OK;
- }
-
- if (val == ARITH_ASYMMETRIC)
- {
- gfc_warning (gfc_arith_error (val), &x->where);
- val = ARITH_OK;
- }
-
- if (val != ARITH_OK)
- gfc_free_expr (r);
- else
- *rp = r;
-
- return val;
-}
-
-
-/* It may seem silly to have a subroutine that actually computes the
- unary plus of a constant, but it prevents us from making exceptions
- in the code elsewhere. Used for unary plus and parenthesized
- expressions. */
-
-static arith
-gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp)
-{
- *resultp = gfc_copy_expr (op1);
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
-
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- mpz_neg (result->value.integer, op1->value.integer);
- break;
-
- case BT_REAL:
- mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
- }
-
- rc = gfc_range_check (result);
-
- return check_result (rc, op1, result, resultp);
-}
-
-
-static arith
-gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
-
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
- break;
-
- case BT_REAL:
- mpfr_add (result->value.real, op1->value.real, op2->value.real,
- GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- mpc_add (result->value.complex, op1->value.complex, op2->value.complex,
- GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("gfc_arith_plus(): Bad basic type");
- }
-
- rc = gfc_range_check (result);
-
- return check_result (rc, op1, result, resultp);
-}
-
-
-static arith
-gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
-
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
- break;
-
- case BT_REAL:
- mpfr_sub (result->value.real, op1->value.real, op2->value.real,
- GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- mpc_sub (result->value.complex, op1->value.complex,
- op2->value.complex, GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("gfc_arith_minus(): Bad basic type");
- }
-
- rc = gfc_range_check (result);
-
- return check_result (rc, op1, result, resultp);
-}
-
-
-static arith
-gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
-
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
- break;
-
- case BT_REAL:
- mpfr_mul (result->value.real, op1->value.real, op2->value.real,
- GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- gfc_set_model (mpc_realref (op1->value.complex));
- mpc_mul (result->value.complex, op1->value.complex, op2->value.complex,
- GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("gfc_arith_times(): Bad basic type");
- }
-
- rc = gfc_range_check (result);
-
- return check_result (rc, op1, result, resultp);
-}
-
-
-static arith
-gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
- arith rc;
-
- rc = ARITH_OK;
-
- result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
-
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- if (mpz_sgn (op2->value.integer) == 0)
- {
- rc = ARITH_DIV0;
- break;
- }
-
- mpz_tdiv_q (result->value.integer, op1->value.integer,
- op2->value.integer);
- break;
-
- case BT_REAL:
- if (mpfr_sgn (op2->value.real) == 0 && gfc_option.flag_range_check == 1)
- {
- rc = ARITH_DIV0;
- break;
- }
-
- mpfr_div (result->value.real, op1->value.real, op2->value.real,
- GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0
- && gfc_option.flag_range_check == 1)
- {
- rc = ARITH_DIV0;
- break;
- }
-
- gfc_set_model (mpc_realref (op1->value.complex));
- if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0)
- {
- /* In Fortran, return (NaN + NaN I) for any zero divisor. See
- PR 40318. */
- mpfr_set_nan (mpc_realref (result->value.complex));
- mpfr_set_nan (mpc_imagref (result->value.complex));
- }
- else
- mpc_div (result->value.complex, op1->value.complex, op2->value.complex,
- GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("gfc_arith_divide(): Bad basic type");
- }
-
- if (rc == ARITH_OK)
- rc = gfc_range_check (result);
-
- return check_result (rc, op1, result, resultp);
-}
-
-/* Raise a number to a power. */
-
-static arith
-arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- int power_sign;
- gfc_expr *result;
- arith rc;
-
- rc = ARITH_OK;
- result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
-
- switch (op2->ts.type)
- {
- case BT_INTEGER:
- power_sign = mpz_sgn (op2->value.integer);
-
- if (power_sign == 0)
- {
- /* Handle something to the zeroth power. Since we're dealing
- with integral exponents, there is no ambiguity in the
- limiting procedure used to determine the value of 0**0. */
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- mpz_set_ui (result->value.integer, 1);
- break;
-
- case BT_REAL:
- mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE);
- break;
-
- default:
- gfc_internal_error ("arith_power(): Bad base");
- }
- }
- else
- {
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- {
- int power;
-
- /* First, we simplify the cases of op1 == 1, 0 or -1. */
- if (mpz_cmp_si (op1->value.integer, 1) == 0)
- {
- /* 1**op2 == 1 */
- mpz_set_si (result->value.integer, 1);
- }
- else if (mpz_cmp_si (op1->value.integer, 0) == 0)
- {
- /* 0**op2 == 0, if op2 > 0
- 0**op2 overflow, if op2 < 0 ; in that case, we
- set the result to 0 and return ARITH_DIV0. */
- mpz_set_si (result->value.integer, 0);
- if (mpz_cmp_si (op2->value.integer, 0) < 0)
- rc = ARITH_DIV0;
- }
- else if (mpz_cmp_si (op1->value.integer, -1) == 0)
- {
- /* (-1)**op2 == (-1)**(mod(op2,2)) */
- unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
- if (odd)
- mpz_set_si (result->value.integer, -1);
- else
- mpz_set_si (result->value.integer, 1);
- }
- /* Then, we take care of op2 < 0. */
- else if (mpz_cmp_si (op2->value.integer, 0) < 0)
- {
- /* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
- mpz_set_si (result->value.integer, 0);
- }
- else if (gfc_extract_int (op2, &power) != NULL)
- {
- /* If op2 doesn't fit in an int, the exponentiation will
- overflow, because op2 > 0 and abs(op1) > 1. */
- mpz_t max;
- int i;
- i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false);
-
- if (gfc_option.flag_range_check)
- rc = ARITH_OVERFLOW;
-
- /* Still, we want to give the same value as the
- processor. */
- mpz_init (max);
- mpz_add_ui (max, gfc_integer_kinds[i].huge, 1);
- mpz_mul_ui (max, max, 2);
- mpz_powm (result->value.integer, op1->value.integer,
- op2->value.integer, max);
- mpz_clear (max);
- }
- else
- mpz_pow_ui (result->value.integer, op1->value.integer,
- power);
- }
- break;
-
- case BT_REAL:
- mpfr_pow_z (result->value.real, op1->value.real,
- op2->value.integer, GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- mpc_pow_z (result->value.complex, op1->value.complex,
- op2->value.integer, GFC_MPC_RND_MODE);
- break;
-
- default:
- break;
- }
- }
- break;
-
- case BT_REAL:
-
- if (gfc_init_expr_flag)
- {
- if (gfc_notify_std (GFC_STD_F2003, "Noninteger "
- "exponent in an initialization "
- "expression at %L", &op2->where) == FAILURE)
- {
- gfc_free_expr (result);
- return ARITH_PROHIBIT;
- }
- }
-
- if (mpfr_cmp_si (op1->value.real, 0) < 0)
- {
- gfc_error ("Raising a negative REAL at %L to "
- "a REAL power is prohibited", &op1->where);
- gfc_free_expr (result);
- return ARITH_PROHIBIT;
- }
-
- mpfr_pow (result->value.real, op1->value.real, op2->value.real,
- GFC_RND_MODE);
- break;
-
- case BT_COMPLEX:
- {
- if (gfc_init_expr_flag)
- {
- if (gfc_notify_std (GFC_STD_F2003, "Noninteger "
- "exponent in an initialization "
- "expression at %L", &op2->where) == FAILURE)
- {
- gfc_free_expr (result);
- return ARITH_PROHIBIT;
- }
- }
-
- mpc_pow (result->value.complex, op1->value.complex,
- op2->value.complex, GFC_MPC_RND_MODE);
- }
- break;
- default:
- gfc_internal_error ("arith_power(): unknown type");
- }
-
- if (rc == ARITH_OK)
- rc = gfc_range_check (result);
-
- return check_result (rc, op1, result, resultp);
-}
-
-
-/* Concatenate two string constants. */
-
-static arith
-gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
- int len;
-
- gcc_assert (op1->ts.kind == op2->ts.kind);
- result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind,
- &op1->where);
-
- len = op1->value.character.length + op2->value.character.length;
-
- result->value.character.string = gfc_get_wide_string (len + 1);
- result->value.character.length = len;
-
- memcpy (result->value.character.string, op1->value.character.string,
- op1->value.character.length * sizeof (gfc_char_t));
-
- memcpy (&result->value.character.string[op1->value.character.length],
- op2->value.character.string,
- op2->value.character.length * sizeof (gfc_char_t));
-
- result->value.character.string[len] = '\0';
-
- *resultp = result;
-
- return ARITH_OK;
-}
-
-/* Comparison between real values; returns 0 if (op1 .op. op2) is true.
- This function mimics mpfr_cmp but takes NaN into account. */
-
-static int
-compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- int rc;
- switch (op)
- {
- case INTRINSIC_EQ:
- rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1;
- break;
- case INTRINSIC_GT:
- rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1;
- break;
- case INTRINSIC_GE:
- rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1;
- break;
- case INTRINSIC_LT:
- rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1;
- break;
- case INTRINSIC_LE:
- rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1;
- break;
- default:
- gfc_internal_error ("compare_real(): Bad operator");
- }
-
- return rc;
-}
-
-/* Comparison operators. Assumes that the two expression nodes
- contain two constants of the same type. The op argument is
- needed to handle NaN correctly. */
-
-int
-gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- int rc;
-
- switch (op1->ts.type)
- {
- case BT_INTEGER:
- rc = mpz_cmp (op1->value.integer, op2->value.integer);
- break;
-
- case BT_REAL:
- rc = compare_real (op1, op2, op);
- break;
-
- case BT_CHARACTER:
- rc = gfc_compare_string (op1, op2);
- break;
-
- case BT_LOGICAL:
- rc = ((!op1->value.logical && op2->value.logical)
- || (op1->value.logical && !op2->value.logical));
- break;
-
- default:
- gfc_internal_error ("gfc_compare_expr(): Bad basic type");
- }
-
- return rc;
-}
-
-
-/* Compare a pair of complex numbers. Naturally, this is only for
- equality and inequality. */
-
-static int
-compare_complex (gfc_expr *op1, gfc_expr *op2)
-{
- return mpc_cmp (op1->value.complex, op2->value.complex) == 0;
-}
-
-
-/* Given two constant strings and the inverse collating sequence, compare the
- strings. We return -1 for a < b, 0 for a == b and 1 for a > b.
- We use the processor's default collating sequence. */
-
-int
-gfc_compare_string (gfc_expr *a, gfc_expr *b)
-{
- int len, alen, blen, i;
- gfc_char_t ac, bc;
-
- alen = a->value.character.length;
- blen = b->value.character.length;
-
- len = MAX(alen, blen);
-
- for (i = 0; i < len; i++)
- {
- ac = ((i < alen) ? a->value.character.string[i] : ' ');
- bc = ((i < blen) ? b->value.character.string[i] : ' ');
-
- if (ac < bc)
- return -1;
- if (ac > bc)
- return 1;
- }
-
- /* Strings are equal */
- return 0;
-}
-
-
-int
-gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive)
-{
- int len, alen, blen, i;
- gfc_char_t ac, bc;
-
- alen = a->value.character.length;
- blen = strlen (b);
-
- len = MAX(alen, blen);
-
- for (i = 0; i < len; i++)
- {
- ac = ((i < alen) ? a->value.character.string[i] : ' ');
- bc = ((i < blen) ? b[i] : ' ');
-
- if (!case_sensitive)
- {
- ac = TOLOWER (ac);
- bc = TOLOWER (bc);
- }
-
- if (ac < bc)
- return -1;
- if (ac > bc)
- return 1;
- }
-
- /* Strings are equal */
- return 0;
-}
-
-
-/* Specific comparison subroutines. */
-
-static arith
-gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
- &op1->where);
- result->value.logical = (op1->ts.type == BT_COMPLEX)
- ? compare_complex (op1, op2)
- : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0);
-
- *resultp = result;
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
- &op1->where);
- result->value.logical = (op1->ts.type == BT_COMPLEX)
- ? !compare_complex (op1, op2)
- : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0);
-
- *resultp = result;
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
- &op1->where);
- result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0);
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
- &op1->where);
- result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0);
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
- &op1->where);
- result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0);
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
- &op1->where);
- result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0);
- *resultp = result;
-
- return ARITH_OK;
-}
-
-
-static arith
-reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
- gfc_expr **result)
-{
- gfc_constructor_base head;
- gfc_constructor *c;
- gfc_expr *r;
- arith rc;
-
- if (op->expr_type == EXPR_CONSTANT)
- return eval (op, result);
-
- rc = ARITH_OK;
- head = gfc_constructor_copy (op->value.constructor);
- for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
- {
- rc = reduce_unary (eval, c->expr, &r);
-
- if (rc != ARITH_OK)
- break;
-
- gfc_replace_expr (c->expr, r);
- }
-
- if (rc != ARITH_OK)
- gfc_constructor_free (head);
- else
- {
- gfc_constructor *c = gfc_constructor_first (head);
- r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
- &op->where);
- r->shape = gfc_copy_shape (op->shape, op->rank);
- r->rank = op->rank;
- r->value.constructor = head;
- *result = r;
- }
-
- return rc;
-}
-
-
-static arith
-reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
-{
- gfc_constructor_base head;
- gfc_constructor *c;
- gfc_expr *r;
- arith rc = ARITH_OK;
-
- head = gfc_constructor_copy (op1->value.constructor);
- for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
- {
- if (c->expr->expr_type == EXPR_CONSTANT)
- rc = eval (c->expr, op2, &r);
- else
- rc = reduce_binary_ac (eval, c->expr, op2, &r);
-
- if (rc != ARITH_OK)
- break;
-
- gfc_replace_expr (c->expr, r);
- }
-
- if (rc != ARITH_OK)
- gfc_constructor_free (head);
- else
- {
- gfc_constructor *c = gfc_constructor_first (head);
- r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
- &op1->where);
- r->shape = gfc_copy_shape (op1->shape, op1->rank);
- r->rank = op1->rank;
- r->value.constructor = head;
- *result = r;
- }
-
- return rc;
-}
-
-
-static arith
-reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
-{
- gfc_constructor_base head;
- gfc_constructor *c;
- gfc_expr *r;
- arith rc = ARITH_OK;
-
- head = gfc_constructor_copy (op2->value.constructor);
- for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
- {
- if (c->expr->expr_type == EXPR_CONSTANT)
- rc = eval (op1, c->expr, &r);
- else
- rc = reduce_binary_ca (eval, op1, c->expr, &r);
-
- if (rc != ARITH_OK)
- break;
-
- gfc_replace_expr (c->expr, r);
- }
-
- if (rc != ARITH_OK)
- gfc_constructor_free (head);
- else
- {
- gfc_constructor *c = gfc_constructor_first (head);
- r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
- &op2->where);
- r->shape = gfc_copy_shape (op2->shape, op2->rank);
- r->rank = op2->rank;
- r->value.constructor = head;
- *result = r;
- }
-
- return rc;
-}
-
-
-/* We need a forward declaration of reduce_binary. */
-static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2, gfc_expr **result);
-
-
-static arith
-reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
-{
- gfc_constructor_base head;
- gfc_constructor *c, *d;
- gfc_expr *r;
- arith rc = ARITH_OK;
-
- if (gfc_check_conformance (op1, op2,
- "elemental binary operation") != SUCCESS)
- return ARITH_INCOMMENSURATE;
-
- head = gfc_constructor_copy (op1->value.constructor);
- for (c = gfc_constructor_first (head),
- d = gfc_constructor_first (op2->value.constructor);
- c && d;
- c = gfc_constructor_next (c), d = gfc_constructor_next (d))
- {
- rc = reduce_binary (eval, c->expr, d->expr, &r);
- if (rc != ARITH_OK)
- break;
-
- gfc_replace_expr (c->expr, r);
- }
-
- if (c || d)
- rc = ARITH_INCOMMENSURATE;
-
- if (rc != ARITH_OK)
- gfc_constructor_free (head);
- else
- {
- gfc_constructor *c = gfc_constructor_first (head);
- r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
- &op1->where);
- r->shape = gfc_copy_shape (op1->shape, op1->rank);
- r->rank = op1->rank;
- r->value.constructor = head;
- *result = r;
- }
-
- return rc;
-}
-
-
-static arith
-reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
-{
- if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
- return eval (op1, op2, result);
-
- if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
- return reduce_binary_ca (eval, op1, op2, result);
-
- if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
- return reduce_binary_ac (eval, op1, op2, result);
-
- return reduce_binary_aa (eval, op1, op2, result);
-}
-
-
-typedef union
-{
- arith (*f2)(gfc_expr *, gfc_expr **);
- arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
-}
-eval_f;
-
-/* High level arithmetic subroutines. These subroutines go into
- eval_intrinsic(), which can do one of several things to its
- operands. If the operands are incompatible with the intrinsic
- operation, we return a node pointing to the operands and hope that
- an operator interface is found during resolution.
-
- If the operands are compatible and are constants, then we try doing
- the arithmetic. We also handle the cases where either or both
- operands are array constructors. */
-
-static gfc_expr *
-eval_intrinsic (gfc_intrinsic_op op,
- eval_f eval, gfc_expr *op1, gfc_expr *op2)
-{
- gfc_expr temp, *result;
- int unary;
- arith rc;
-
- gfc_clear_ts (&temp.ts);
-
- switch (op)
- {
- /* Logical unary */
- case INTRINSIC_NOT:
- if (op1->ts.type != BT_LOGICAL)
- goto runtime;
-
- temp.ts.type = BT_LOGICAL;
- temp.ts.kind = gfc_default_logical_kind;
- unary = 1;
- break;
-
- /* Logical binary operators */
- case INTRINSIC_OR:
- case INTRINSIC_AND:
- case INTRINSIC_NEQV:
- case INTRINSIC_EQV:
- if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
- goto runtime;
-
- temp.ts.type = BT_LOGICAL;
- temp.ts.kind = gfc_default_logical_kind;
- unary = 0;
- break;
-
- /* Numeric unary */
- case INTRINSIC_UPLUS:
- case INTRINSIC_UMINUS:
- if (!gfc_numeric_ts (&op1->ts))
- goto runtime;
-
- temp.ts = op1->ts;
- unary = 1;
- break;
-
- case INTRINSIC_PARENTHESES:
- temp.ts = op1->ts;
- unary = 1;
- break;
-
- /* Additional restrictions for ordering relations. */
- case INTRINSIC_GE:
- case INTRINSIC_GE_OS:
- case INTRINSIC_LT:
- case INTRINSIC_LT_OS:
- case INTRINSIC_LE:
- case INTRINSIC_LE_OS:
- case INTRINSIC_GT:
- case INTRINSIC_GT_OS:
- if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
- {
- temp.ts.type = BT_LOGICAL;
- temp.ts.kind = gfc_default_logical_kind;
- goto runtime;
- }
-
- /* Fall through */
- case INTRINSIC_EQ:
- case INTRINSIC_EQ_OS:
- case INTRINSIC_NE:
- case INTRINSIC_NE_OS:
- if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
- {
- unary = 0;
- temp.ts.type = BT_LOGICAL;
- temp.ts.kind = gfc_default_logical_kind;
-
- /* If kind mismatch, exit and we'll error out later. */
- if (op1->ts.kind != op2->ts.kind)
- goto runtime;
-
- break;
- }
-
- /* Fall through */
- /* Numeric binary */
- case INTRINSIC_PLUS:
- case INTRINSIC_MINUS:
- case INTRINSIC_TIMES:
- case INTRINSIC_DIVIDE:
- case INTRINSIC_POWER:
- if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
- goto runtime;
-
- /* Insert any necessary type conversions to make the operands
- compatible. */
-
- temp.expr_type = EXPR_OP;
- gfc_clear_ts (&temp.ts);
- temp.value.op.op = op;
-
- temp.value.op.op1 = op1;
- temp.value.op.op2 = op2;
-
- gfc_type_convert_binary (&temp, 0);
-
- if (op == INTRINSIC_EQ || op == INTRINSIC_NE
- || op == INTRINSIC_GE || op == INTRINSIC_GT
- || op == INTRINSIC_LE || op == INTRINSIC_LT
- || op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS
- || op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS
- || op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS)
- {
- temp.ts.type = BT_LOGICAL;
- temp.ts.kind = gfc_default_logical_kind;
- }
-
- unary = 0;
- break;
-
- /* Character binary */
- case INTRINSIC_CONCAT:
- if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER
- || op1->ts.kind != op2->ts.kind)
- goto runtime;
-
- temp.ts.type = BT_CHARACTER;
- temp.ts.kind = op1->ts.kind;
- unary = 0;
- break;
-
- case INTRINSIC_USER:
- goto runtime;
-
- default:
- gfc_internal_error ("eval_intrinsic(): Bad operator");
- }
-
- if (op1->expr_type != EXPR_CONSTANT
- && (op1->expr_type != EXPR_ARRAY
- || !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1)))
- goto runtime;
-
- if (op2 != NULL
- && op2->expr_type != EXPR_CONSTANT
- && (op2->expr_type != EXPR_ARRAY
- || !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2)))
- goto runtime;
-
- if (unary)
- rc = reduce_unary (eval.f2, op1, &result);
- else
- rc = reduce_binary (eval.f3, op1, op2, &result);
-
-
- /* Something went wrong. */
- if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT)
- return NULL;
-
- if (rc != ARITH_OK)
- {
- gfc_error (gfc_arith_error (rc), &op1->where);
- return NULL;
- }
-
- gfc_free_expr (op1);
- gfc_free_expr (op2);
- return result;
-
-runtime:
- /* Create a run-time expression. */
- result = gfc_get_operator_expr (&op1->where, op, op1, op2);
- result->ts = temp.ts;
-
- return result;
-}
-
-
-/* Modify type of expression for zero size array. */
-
-static gfc_expr *
-eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op)
-{
- if (op == NULL)
- gfc_internal_error ("eval_type_intrinsic0(): op NULL");
-
- switch (iop)
- {
- case INTRINSIC_GE:
- case INTRINSIC_GE_OS:
- case INTRINSIC_LT:
- case INTRINSIC_LT_OS:
- case INTRINSIC_LE:
- case INTRINSIC_LE_OS:
- case INTRINSIC_GT:
- case INTRINSIC_GT_OS:
- case INTRINSIC_EQ:
- case INTRINSIC_EQ_OS:
- case INTRINSIC_NE:
- case INTRINSIC_NE_OS:
- op->ts.type = BT_LOGICAL;
- op->ts.kind = gfc_default_logical_kind;
- break;
-
- default:
- break;
- }
-
- return op;
-}
-
-
-/* Return nonzero if the expression is a zero size array. */
-
-static int
-gfc_zero_size_array (gfc_expr *e)
-{
- if (e->expr_type != EXPR_ARRAY)
- return 0;
-
- return e->value.constructor == NULL;
-}
-
-
-/* Reduce a binary expression where at least one of the operands
- involves a zero-length array. Returns NULL if neither of the
- operands is a zero-length array. */
-
-static gfc_expr *
-reduce_binary0 (gfc_expr *op1, gfc_expr *op2)
-{
- if (gfc_zero_size_array (op1))
- {
- gfc_free_expr (op2);
- return op1;
- }
-
- if (gfc_zero_size_array (op2))
- {
- gfc_free_expr (op1);
- return op2;
- }
-
- return NULL;
-}
-
-
-static gfc_expr *
-eval_intrinsic_f2 (gfc_intrinsic_op op,
- arith (*eval) (gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2)
-{
- gfc_expr *result;
- eval_f f;
-
- if (op2 == NULL)
- {
- if (gfc_zero_size_array (op1))
- return eval_type_intrinsic0 (op, op1);
- }
- else
- {
- result = reduce_binary0 (op1, op2);
- if (result != NULL)
- return eval_type_intrinsic0 (op, result);
- }
-
- f.f2 = eval;
- return eval_intrinsic (op, f, op1, op2);
-}
-
-
-static gfc_expr *
-eval_intrinsic_f3 (gfc_intrinsic_op op,
- arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
- gfc_expr *op1, gfc_expr *op2)
-{
- gfc_expr *result;
- eval_f f;
-
- result = reduce_binary0 (op1, op2);
- if (result != NULL)
- return eval_type_intrinsic0(op, result);
-
- f.f3 = eval;
- return eval_intrinsic (op, f, op1, op2);
-}
-
-
-gfc_expr *
-gfc_parentheses (gfc_expr *op)
-{
- if (gfc_is_constant_expr (op))
- return op;
-
- return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity,
- op, NULL);
-}
-
-gfc_expr *
-gfc_uplus (gfc_expr *op)
-{
- return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL);
-}
-
-
-gfc_expr *
-gfc_uminus (gfc_expr *op)
-{
- return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
-}
-
-
-gfc_expr *
-gfc_add (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
-}
-
-
-gfc_expr *
-gfc_subtract (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
-}
-
-
-gfc_expr *
-gfc_multiply (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
-}
-
-
-gfc_expr *
-gfc_divide (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
-}
-
-
-gfc_expr *
-gfc_power (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2);
-}
-
-
-gfc_expr *
-gfc_concat (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
-}
-
-
-gfc_expr *
-gfc_and (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
-}
-
-
-gfc_expr *
-gfc_or (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
-}
-
-
-gfc_expr *
-gfc_not (gfc_expr *op1)
-{
- return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
-}
-
-
-gfc_expr *
-gfc_eqv (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
-}
-
-
-gfc_expr *
-gfc_neqv (gfc_expr *op1, gfc_expr *op2)
-{
- return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
-}
-
-
-gfc_expr *
-gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2);
-}
-
-
-gfc_expr *
-gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2);
-}
-
-
-gfc_expr *
-gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2);
-}
-
-
-gfc_expr *
-gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2);
-}
-
-
-gfc_expr *
-gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2);
-}
-
-
-gfc_expr *
-gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
-{
- return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2);
-}
-
-
-/* Convert an integer string to an expression node. */
-
-gfc_expr *
-gfc_convert_integer (const char *buffer, int kind, int radix, locus *where)
-{
- gfc_expr *e;
- const char *t;
-
- e = gfc_get_constant_expr (BT_INTEGER, kind, where);
- /* A leading plus is allowed, but not by mpz_set_str. */
- if (buffer[0] == '+')
- t = buffer + 1;
- else
- t = buffer;
- mpz_set_str (e->value.integer, t, radix);
-
- return e;
-}
-
-
-/* Convert a real string to an expression node. */
-
-gfc_expr *
-gfc_convert_real (const char *buffer, int kind, locus *where)
-{
- gfc_expr *e;
-
- e = gfc_get_constant_expr (BT_REAL, kind, where);
- mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE);
-
- return e;
-}
-
-
-/* Convert a pair of real, constant expression nodes to a single
- complex expression node. */
-
-gfc_expr *
-gfc_convert_complex (gfc_expr *real, gfc_expr *imag, int kind)
-{
- gfc_expr *e;
-
- e = gfc_get_constant_expr (BT_COMPLEX, kind, &real->where);
- mpc_set_fr_fr (e->value.complex, real->value.real, imag->value.real,
- GFC_MPC_RND_MODE);
-
- return e;
-}
-
-
-/******* Simplification of intrinsic functions with constant arguments *****/
-
-
-/* Deal with an arithmetic error. */
-
-static void
-arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where)
-{
- switch (rc)
- {
- case ARITH_OK:
- gfc_error ("Arithmetic OK converting %s to %s at %L",
- gfc_typename (from), gfc_typename (to), where);
- break;
- case ARITH_OVERFLOW:
- gfc_error ("Arithmetic overflow converting %s to %s at %L. This check "
- "can be disabled with the option -fno-range-check",
- gfc_typename (from), gfc_typename (to), where);
- break;
- case ARITH_UNDERFLOW:
- gfc_error ("Arithmetic underflow converting %s to %s at %L. This check "
- "can be disabled with the option -fno-range-check",
- gfc_typename (from), gfc_typename (to), where);
- break;
- case ARITH_NAN:
- gfc_error ("Arithmetic NaN converting %s to %s at %L. This check "
- "can be disabled with the option -fno-range-check",
- gfc_typename (from), gfc_typename (to), where);
- break;
- case ARITH_DIV0:
- gfc_error ("Division by zero converting %s to %s at %L",
- gfc_typename (from), gfc_typename (to), where);
- break;
- case ARITH_INCOMMENSURATE:
- gfc_error ("Array operands are incommensurate converting %s to %s at %L",
- gfc_typename (from), gfc_typename (to), where);
- break;
- case ARITH_ASYMMETRIC:
- gfc_error ("Integer outside symmetric range implied by Standard Fortran"
- " converting %s to %s at %L",
- gfc_typename (from), gfc_typename (to), where);
- break;
- default:
- gfc_internal_error ("gfc_arith_error(): Bad error code");
- }
-
- /* TODO: Do something about the error, i.e., throw exception, return
- NaN, etc. */
-}
-
-
-/* Convert integers to integers. */
-
-gfc_expr *
-gfc_int2int (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
-
- mpz_set (result->value.integer, src->value.integer);
-
- if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
- {
- if (rc == ARITH_ASYMMETRIC)
- {
- gfc_warning (gfc_arith_error (rc), &src->where);
- }
- else
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
- }
-
- return result;
-}
-
-
-/* Convert integers to reals. */
-
-gfc_expr *
-gfc_int2real (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
-
- mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
-
- if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert default integer to default complex. */
-
-gfc_expr *
-gfc_int2complex (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
-
- mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE);
-
- if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind))
- != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert default real to default integer. */
-
-gfc_expr *
-gfc_real2int (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
-
- gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where);
-
- if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert real to real. */
-
-gfc_expr *
-gfc_real2real (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
-
- mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
-
- rc = gfc_check_real_range (result->value.real, kind);
-
- if (rc == ARITH_UNDERFLOW)
- {
- if (gfc_option.warn_underflow)
- gfc_warning (gfc_arith_error (rc), &src->where);
- mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
- }
- else if (rc != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert real to complex. */
-
-gfc_expr *
-gfc_real2complex (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
-
- mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE);
-
- rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
-
- if (rc == ARITH_UNDERFLOW)
- {
- if (gfc_option.warn_underflow)
- gfc_warning (gfc_arith_error (rc), &src->where);
- mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
- }
- else if (rc != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert complex to integer. */
-
-gfc_expr *
-gfc_complex2int (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
-
- gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex),
- &src->where);
-
- if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert complex to real. */
-
-gfc_expr *
-gfc_complex2real (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
-
- mpc_real (result->value.real, src->value.complex, GFC_RND_MODE);
-
- rc = gfc_check_real_range (result->value.real, kind);
-
- if (rc == ARITH_UNDERFLOW)
- {
- if (gfc_option.warn_underflow)
- gfc_warning (gfc_arith_error (rc), &src->where);
- mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
- }
- if (rc != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Convert complex to complex. */
-
-gfc_expr *
-gfc_complex2complex (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- arith rc;
-
- result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
-
- mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE);
-
- rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
-
- if (rc == ARITH_UNDERFLOW)
- {
- if (gfc_option.warn_underflow)
- gfc_warning (gfc_arith_error (rc), &src->where);
- mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
- }
- else if (rc != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind);
-
- if (rc == ARITH_UNDERFLOW)
- {
- if (gfc_option.warn_underflow)
- gfc_warning (gfc_arith_error (rc), &src->where);
- mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE);
- }
- else if (rc != ARITH_OK)
- {
- arith_error (rc, &src->ts, &result->ts, &src->where);
- gfc_free_expr (result);
- return NULL;
- }
-
- return result;
-}
-
-
-/* Logical kind conversion. */
-
-gfc_expr *
-gfc_log2log (gfc_expr *src, int kind)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
- result->value.logical = src->value.logical;
-
- return result;
-}
-
-
-/* Convert logical to integer. */
-
-gfc_expr *
-gfc_log2int (gfc_expr *src, int kind)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
- mpz_set_si (result->value.integer, src->value.logical);
-
- return result;
-}
-
-
-/* Convert integer to logical. */
-
-gfc_expr *
-gfc_int2log (gfc_expr *src, int kind)
-{
- gfc_expr *result;
-
- result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
- result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
-
- return result;
-}
-
-
-/* Helper function to set the representation in a Hollerith conversion.
- This assumes that the ts.type and ts.kind of the result have already
- been set. */
-
-static void
-hollerith2representation (gfc_expr *result, gfc_expr *src)
-{
- int src_len, result_len;
-
- src_len = src->representation.length - src->ts.u.pad;
- result_len = gfc_target_expr_size (result);
-
- if (src_len > result_len)
- {
- gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
- &src->where, gfc_typename(&result->ts));
- }
-
- result->representation.string = XCNEWVEC (char, result_len + 1);
- memcpy (result->representation.string, src->representation.string,
- MIN (result_len, src_len));
-
- if (src_len < result_len)
- memset (&result->representation.string[src_len], ' ', result_len - src_len);
-
- result->representation.string[result_len] = '\0'; /* For debugger */
- result->representation.length = result_len;
-}
-
-
-/* Convert Hollerith to integer. The constant will be padded or truncated. */
-
-gfc_expr *
-gfc_hollerith2int (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
-
- hollerith2representation (result, src);
- gfc_interpret_integer (kind, (unsigned char *) result->representation.string,
- result->representation.length, result->value.integer);
-
- return result;
-}
-
-
-/* Convert Hollerith to real. The constant will be padded or truncated. */
-
-gfc_expr *
-gfc_hollerith2real (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
-
- hollerith2representation (result, src);
- gfc_interpret_float (kind, (unsigned char *) result->representation.string,
- result->representation.length, result->value.real);
-
- return result;
-}
-
-
-/* Convert Hollerith to complex. The constant will be padded or truncated. */
-
-gfc_expr *
-gfc_hollerith2complex (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
-
- hollerith2representation (result, src);
- gfc_interpret_complex (kind, (unsigned char *) result->representation.string,
- result->representation.length, result->value.complex);
-
- return result;
-}
-
-
-/* Convert Hollerith to character. */
-
-gfc_expr *
-gfc_hollerith2character (gfc_expr *src, int kind)
-{
- gfc_expr *result;
-
- result = gfc_copy_expr (src);
- result->ts.type = BT_CHARACTER;
- result->ts.kind = kind;
-
- result->value.character.length = result->representation.length;
- result->value.character.string
- = gfc_char_to_widechar (result->representation.string);
-
- return result;
-}
-
-
-/* Convert Hollerith to logical. The constant will be padded or truncated. */
-
-gfc_expr *
-gfc_hollerith2logical (gfc_expr *src, int kind)
-{
- gfc_expr *result;
- result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
-
- hollerith2representation (result, src);
- gfc_interpret_logical (kind, (unsigned char *) result->representation.string,
- result->representation.length, &result->value.logical);
-
- return result;
-}