aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/cselib.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/cselib.c')
-rw-r--r--gcc-4.8.1/gcc/cselib.c2862
1 files changed, 0 insertions, 2862 deletions
diff --git a/gcc-4.8.1/gcc/cselib.c b/gcc-4.8.1/gcc/cselib.c
deleted file mode 100644
index f2021b985..000000000
--- a/gcc-4.8.1/gcc/cselib.c
+++ /dev/null
@@ -1,2862 +0,0 @@
-/* Common subexpression elimination library for GNU compiler.
- Copyright (C) 1987-2013 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-
-#include "rtl.h"
-#include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */
-#include "tm_p.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "function.h"
-#include "emit-rtl.h"
-#include "diagnostic-core.h"
-#include "ggc.h"
-#include "hashtab.h"
-#include "dumpfile.h"
-#include "cselib.h"
-#include "valtrack.h"
-#include "params.h"
-#include "alloc-pool.h"
-#include "target.h"
-#include "bitmap.h"
-
-/* A list of cselib_val structures. */
-struct elt_list {
- struct elt_list *next;
- cselib_val *elt;
-};
-
-static bool cselib_record_memory;
-static bool cselib_preserve_constants;
-static bool cselib_any_perm_equivs;
-static int entry_and_rtx_equal_p (const void *, const void *);
-static hashval_t get_value_hash (const void *);
-static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
-static void new_elt_loc_list (cselib_val *, rtx);
-static void unchain_one_value (cselib_val *);
-static void unchain_one_elt_list (struct elt_list **);
-static void unchain_one_elt_loc_list (struct elt_loc_list **);
-static int discard_useless_locs (void **, void *);
-static int discard_useless_values (void **, void *);
-static void remove_useless_values (void);
-static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
-static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
-static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
-static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
-static cselib_val *cselib_lookup_mem (rtx, int);
-static void cselib_invalidate_regno (unsigned int, enum machine_mode);
-static void cselib_invalidate_mem (rtx);
-static void cselib_record_set (rtx, cselib_val *, cselib_val *);
-static void cselib_record_sets (rtx);
-
-struct expand_value_data
-{
- bitmap regs_active;
- cselib_expand_callback callback;
- void *callback_arg;
- bool dummy;
-};
-
-static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
-
-/* There are three ways in which cselib can look up an rtx:
- - for a REG, the reg_values table (which is indexed by regno) is used
- - for a MEM, we recursively look up its address and then follow the
- addr_list of that value
- - for everything else, we compute a hash value and go through the hash
- table. Since different rtx's can still have the same hash value,
- this involves walking the table entries for a given value and comparing
- the locations of the entries with the rtx we are looking up. */
-
-/* A table that enables us to look up elts by their value. */
-static htab_t cselib_hash_table;
-
-/* This is a global so we don't have to pass this through every function.
- It is used in new_elt_loc_list to set SETTING_INSN. */
-static rtx cselib_current_insn;
-
-/* The unique id that the next create value will take. */
-static unsigned int next_uid;
-
-/* The number of registers we had when the varrays were last resized. */
-static unsigned int cselib_nregs;
-
-/* Count values without known locations, or with only locations that
- wouldn't have been known except for debug insns. Whenever this
- grows too big, we remove these useless values from the table.
-
- Counting values with only debug values is a bit tricky. We don't
- want to increment n_useless_values when we create a value for a
- debug insn, for this would get n_useless_values out of sync, but we
- want increment it if all locs in the list that were ever referenced
- in nondebug insns are removed from the list.
-
- In the general case, once we do that, we'd have to stop accepting
- nondebug expressions in the loc list, to avoid having two values
- equivalent that, without debug insns, would have been made into
- separate values. However, because debug insns never introduce
- equivalences themselves (no assignments), the only means for
- growing loc lists is through nondebug assignments. If the locs
- also happen to be referenced in debug insns, it will work just fine.
-
- A consequence of this is that there's at most one debug-only loc in
- each loc list. If we keep it in the first entry, testing whether
- we have a debug-only loc list takes O(1).
-
- Furthermore, since any additional entry in a loc list containing a
- debug loc would have to come from an assignment (nondebug) that
- references both the initial debug loc and the newly-equivalent loc,
- the initial debug loc would be promoted to a nondebug loc, and the
- loc list would not contain debug locs any more.
-
- So the only case we have to be careful with in order to keep
- n_useless_values in sync between debug and nondebug compilations is
- to avoid incrementing n_useless_values when removing the single loc
- from a value that turns out to not appear outside debug values. We
- increment n_useless_debug_values instead, and leave such values
- alone until, for other reasons, we garbage-collect useless
- values. */
-static int n_useless_values;
-static int n_useless_debug_values;
-
-/* Count values whose locs have been taken exclusively from debug
- insns for the entire life of the value. */
-static int n_debug_values;
-
-/* Number of useless values before we remove them from the hash table. */
-#define MAX_USELESS_VALUES 32
-
-/* This table maps from register number to values. It does not
- contain pointers to cselib_val structures, but rather elt_lists.
- The purpose is to be able to refer to the same register in
- different modes. The first element of the list defines the mode in
- which the register was set; if the mode is unknown or the value is
- no longer valid in that mode, ELT will be NULL for the first
- element. */
-static struct elt_list **reg_values;
-static unsigned int reg_values_size;
-#define REG_VALUES(i) reg_values[i]
-
-/* The largest number of hard regs used by any entry added to the
- REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
-static unsigned int max_value_regs;
-
-/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
- in cselib_clear_table() for fast emptying. */
-static unsigned int *used_regs;
-static unsigned int n_used_regs;
-
-/* We pass this to cselib_invalidate_mem to invalidate all of
- memory for a non-const call instruction. */
-static GTY(()) rtx callmem;
-
-/* Set by discard_useless_locs if it deleted the last location of any
- value. */
-static int values_became_useless;
-
-/* Used as stop element of the containing_mem list so we can check
- presence in the list by checking the next pointer. */
-static cselib_val dummy_val;
-
-/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
- that is constant through the whole function and should never be
- eliminated. */
-static cselib_val *cfa_base_preserved_val;
-static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
-
-/* Used to list all values that contain memory reference.
- May or may not contain the useless values - the list is compacted
- each time memory is invalidated. */
-static cselib_val *first_containing_mem = &dummy_val;
-static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
-
-/* If nonnull, cselib will call this function before freeing useless
- VALUEs. A VALUE is deemed useless if its "locs" field is null. */
-void (*cselib_discard_hook) (cselib_val *);
-
-/* If nonnull, cselib will call this function before recording sets or
- even clobbering outputs of INSN. All the recorded sets will be
- represented in the array sets[n_sets]. new_val_min can be used to
- tell whether values present in sets are introduced by this
- instruction. */
-void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
- int n_sets);
-
-#define PRESERVED_VALUE_P(RTX) \
- (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
-
-#define SP_BASED_VALUE_P(RTX) \
- (RTL_FLAG_CHECK1("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
-
-
-
-/* Allocate a struct elt_list and fill in its two elements with the
- arguments. */
-
-static inline struct elt_list *
-new_elt_list (struct elt_list *next, cselib_val *elt)
-{
- struct elt_list *el;
- el = (struct elt_list *) pool_alloc (elt_list_pool);
- el->next = next;
- el->elt = elt;
- return el;
-}
-
-/* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
- list. */
-
-static inline void
-new_elt_loc_list (cselib_val *val, rtx loc)
-{
- struct elt_loc_list *el, *next = val->locs;
-
- gcc_checking_assert (!next || !next->setting_insn
- || !DEBUG_INSN_P (next->setting_insn)
- || cselib_current_insn == next->setting_insn);
-
- /* If we're creating the first loc in a debug insn context, we've
- just created a debug value. Count it. */
- if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
- n_debug_values++;
-
- val = canonical_cselib_val (val);
- next = val->locs;
-
- if (GET_CODE (loc) == VALUE)
- {
- loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
-
- gcc_checking_assert (PRESERVED_VALUE_P (loc)
- == PRESERVED_VALUE_P (val->val_rtx));
-
- if (val->val_rtx == loc)
- return;
- else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
- {
- /* Reverse the insertion. */
- new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
- return;
- }
-
- gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
-
- if (CSELIB_VAL_PTR (loc)->locs)
- {
- /* Bring all locs from LOC to VAL. */
- for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
- {
- /* Adjust values that have LOC as canonical so that VAL
- becomes their canonical. */
- if (el->loc && GET_CODE (el->loc) == VALUE)
- {
- gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
- == loc);
- CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
- }
- }
- el->next = val->locs;
- next = val->locs = CSELIB_VAL_PTR (loc)->locs;
- }
-
- if (CSELIB_VAL_PTR (loc)->addr_list)
- {
- /* Bring in addr_list into canonical node. */
- struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
- while (last->next)
- last = last->next;
- last->next = val->addr_list;
- val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
- CSELIB_VAL_PTR (loc)->addr_list = NULL;
- }
-
- if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
- && val->next_containing_mem == NULL)
- {
- /* Add VAL to the containing_mem list after LOC. LOC will
- be removed when we notice it doesn't contain any
- MEMs. */
- val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
- CSELIB_VAL_PTR (loc)->next_containing_mem = val;
- }
-
- /* Chain LOC back to VAL. */
- el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
- el->loc = val->val_rtx;
- el->setting_insn = cselib_current_insn;
- el->next = NULL;
- CSELIB_VAL_PTR (loc)->locs = el;
- }
-
- el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
- el->loc = loc;
- el->setting_insn = cselib_current_insn;
- el->next = next;
- val->locs = el;
-}
-
-/* Promote loc L to a nondebug cselib_current_insn if L is marked as
- originating from a debug insn, maintaining the debug values
- count. */
-
-static inline void
-promote_debug_loc (struct elt_loc_list *l)
-{
- if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
- && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
- {
- n_debug_values--;
- l->setting_insn = cselib_current_insn;
- if (cselib_preserve_constants && l->next)
- {
- gcc_assert (l->next->setting_insn
- && DEBUG_INSN_P (l->next->setting_insn)
- && !l->next->next);
- l->next->setting_insn = cselib_current_insn;
- }
- else
- gcc_assert (!l->next);
- }
-}
-
-/* The elt_list at *PL is no longer needed. Unchain it and free its
- storage. */
-
-static inline void
-unchain_one_elt_list (struct elt_list **pl)
-{
- struct elt_list *l = *pl;
-
- *pl = l->next;
- pool_free (elt_list_pool, l);
-}
-
-/* Likewise for elt_loc_lists. */
-
-static void
-unchain_one_elt_loc_list (struct elt_loc_list **pl)
-{
- struct elt_loc_list *l = *pl;
-
- *pl = l->next;
- pool_free (elt_loc_list_pool, l);
-}
-
-/* Likewise for cselib_vals. This also frees the addr_list associated with
- V. */
-
-static void
-unchain_one_value (cselib_val *v)
-{
- while (v->addr_list)
- unchain_one_elt_list (&v->addr_list);
-
- pool_free (cselib_val_pool, v);
-}
-
-/* Remove all entries from the hash table. Also used during
- initialization. */
-
-void
-cselib_clear_table (void)
-{
- cselib_reset_table (1);
-}
-
-/* Return TRUE if V is a constant, a function invariant or a VALUE
- equivalence; FALSE otherwise. */
-
-static bool
-invariant_or_equiv_p (cselib_val *v)
-{
- struct elt_loc_list *l;
-
- if (v == cfa_base_preserved_val)
- return true;
-
- /* Keep VALUE equivalences around. */
- for (l = v->locs; l; l = l->next)
- if (GET_CODE (l->loc) == VALUE)
- return true;
-
- if (v->locs != NULL
- && v->locs->next == NULL)
- {
- if (CONSTANT_P (v->locs->loc)
- && (GET_CODE (v->locs->loc) != CONST
- || !references_value_p (v->locs->loc, 0)))
- return true;
- /* Although a debug expr may be bound to different expressions,
- we can preserve it as if it was constant, to get unification
- and proper merging within var-tracking. */
- if (GET_CODE (v->locs->loc) == DEBUG_EXPR
- || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
- || GET_CODE (v->locs->loc) == ENTRY_VALUE
- || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
- return true;
-
- /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
- if (GET_CODE (v->locs->loc) == PLUS
- && CONST_INT_P (XEXP (v->locs->loc, 1))
- && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
- && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
- return true;
- }
-
- return false;
-}
-
-/* Remove from hash table all VALUEs except constants, function
- invariants and VALUE equivalences. */
-
-static int
-preserve_constants_and_equivs (void **x, void *info ATTRIBUTE_UNUSED)
-{
- cselib_val *v = (cselib_val *)*x;
-
- if (!invariant_or_equiv_p (v))
- htab_clear_slot (cselib_hash_table, x);
- return 1;
-}
-
-/* Remove all entries from the hash table, arranging for the next
- value to be numbered NUM. */
-
-void
-cselib_reset_table (unsigned int num)
-{
- unsigned int i;
-
- max_value_regs = 0;
-
- if (cfa_base_preserved_val)
- {
- unsigned int regno = cfa_base_preserved_regno;
- unsigned int new_used_regs = 0;
- for (i = 0; i < n_used_regs; i++)
- if (used_regs[i] == regno)
- {
- new_used_regs = 1;
- continue;
- }
- else
- REG_VALUES (used_regs[i]) = 0;
- gcc_assert (new_used_regs == 1);
- n_used_regs = new_used_regs;
- used_regs[0] = regno;
- max_value_regs
- = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
- }
- else
- {
- for (i = 0; i < n_used_regs; i++)
- REG_VALUES (used_regs[i]) = 0;
- n_used_regs = 0;
- }
-
- if (cselib_preserve_constants)
- htab_traverse (cselib_hash_table, preserve_constants_and_equivs, NULL);
- else
- {
- htab_empty (cselib_hash_table);
- gcc_checking_assert (!cselib_any_perm_equivs);
- }
-
- n_useless_values = 0;
- n_useless_debug_values = 0;
- n_debug_values = 0;
-
- next_uid = num;
-
- first_containing_mem = &dummy_val;
-}
-
-/* Return the number of the next value that will be generated. */
-
-unsigned int
-cselib_get_next_uid (void)
-{
- return next_uid;
-}
-
-/* See the documentation of cselib_find_slot below. */
-static enum machine_mode find_slot_memmode;
-
-/* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
- INSERTing if requested. When X is part of the address of a MEM,
- MEMMODE should specify the mode of the MEM. While searching the
- table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
- in X can be resolved. */
-
-static void **
-cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
- enum machine_mode memmode)
-{
- void **slot;
- find_slot_memmode = memmode;
- slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
- find_slot_memmode = VOIDmode;
- return slot;
-}
-
-/* The equality test for our hash table. The first argument ENTRY is a table
- element (i.e. a cselib_val), while the second arg X is an rtx. We know
- that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
- CONST of an appropriate mode. */
-
-static int
-entry_and_rtx_equal_p (const void *entry, const void *x_arg)
-{
- struct elt_loc_list *l;
- const cselib_val *const v = (const cselib_val *) entry;
- rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
- enum machine_mode mode = GET_MODE (x);
-
- gcc_assert (!CONST_SCALAR_INT_P (x) && GET_CODE (x) != CONST_FIXED);
-
- if (mode != GET_MODE (v->val_rtx))
- return 0;
-
- /* Unwrap X if necessary. */
- if (GET_CODE (x) == CONST
- && (CONST_SCALAR_INT_P (XEXP (x, 0))
- || GET_CODE (XEXP (x, 0)) == CONST_FIXED))
- x = XEXP (x, 0);
-
- /* We don't guarantee that distinct rtx's have different hash values,
- so we need to do a comparison. */
- for (l = v->locs; l; l = l->next)
- if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
- {
- promote_debug_loc (l);
- return 1;
- }
-
- return 0;
-}
-
-/* The hash function for our hash table. The value is always computed with
- cselib_hash_rtx when adding an element; this function just extracts the
- hash value from a cselib_val structure. */
-
-static hashval_t
-get_value_hash (const void *entry)
-{
- const cselib_val *const v = (const cselib_val *) entry;
- return v->hash;
-}
-
-/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
- only return true for values which point to a cselib_val whose value
- element has been set to zero, which implies the cselib_val will be
- removed. */
-
-int
-references_value_p (const_rtx x, int only_useless)
-{
- const enum rtx_code code = GET_CODE (x);
- const char *fmt = GET_RTX_FORMAT (code);
- int i, j;
-
- if (GET_CODE (x) == VALUE
- && (! only_useless ||
- (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
- return 1;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
- return 1;
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- if (references_value_p (XVECEXP (x, i, j), only_useless))
- return 1;
- }
-
- return 0;
-}
-
-/* For all locations found in X, delete locations that reference useless
- values (i.e. values without any location). Called through
- htab_traverse. */
-
-static int
-discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
-{
- cselib_val *v = (cselib_val *)*x;
- struct elt_loc_list **p = &v->locs;
- bool had_locs = v->locs != NULL;
- rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
-
- while (*p)
- {
- if (references_value_p ((*p)->loc, 1))
- unchain_one_elt_loc_list (p);
- else
- p = &(*p)->next;
- }
-
- if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
- {
- if (setting_insn && DEBUG_INSN_P (setting_insn))
- n_useless_debug_values++;
- else
- n_useless_values++;
- values_became_useless = 1;
- }
- return 1;
-}
-
-/* If X is a value with no locations, remove it from the hashtable. */
-
-static int
-discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
-{
- cselib_val *v = (cselib_val *)*x;
-
- if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
- {
- if (cselib_discard_hook)
- cselib_discard_hook (v);
-
- CSELIB_VAL_PTR (v->val_rtx) = NULL;
- htab_clear_slot (cselib_hash_table, x);
- unchain_one_value (v);
- n_useless_values--;
- }
-
- return 1;
-}
-
-/* Clean out useless values (i.e. those which no longer have locations
- associated with them) from the hash table. */
-
-static void
-remove_useless_values (void)
-{
- cselib_val **p, *v;
-
- /* First pass: eliminate locations that reference the value. That in
- turn can make more values useless. */
- do
- {
- values_became_useless = 0;
- htab_traverse (cselib_hash_table, discard_useless_locs, 0);
- }
- while (values_became_useless);
-
- /* Second pass: actually remove the values. */
-
- p = &first_containing_mem;
- for (v = *p; v != &dummy_val; v = v->next_containing_mem)
- if (v->locs && v == canonical_cselib_val (v))
- {
- *p = v;
- p = &(*p)->next_containing_mem;
- }
- *p = &dummy_val;
-
- n_useless_values += n_useless_debug_values;
- n_debug_values -= n_useless_debug_values;
- n_useless_debug_values = 0;
-
- htab_traverse (cselib_hash_table, discard_useless_values, 0);
-
- gcc_assert (!n_useless_values);
-}
-
-/* Arrange for a value to not be removed from the hash table even if
- it becomes useless. */
-
-void
-cselib_preserve_value (cselib_val *v)
-{
- PRESERVED_VALUE_P (v->val_rtx) = 1;
-}
-
-/* Test whether a value is preserved. */
-
-bool
-cselib_preserved_value_p (cselib_val *v)
-{
- return PRESERVED_VALUE_P (v->val_rtx);
-}
-
-/* Arrange for a REG value to be assumed constant through the whole function,
- never invalidated and preserved across cselib_reset_table calls. */
-
-void
-cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
-{
- if (cselib_preserve_constants
- && v->locs
- && REG_P (v->locs->loc))
- {
- cfa_base_preserved_val = v;
- cfa_base_preserved_regno = regno;
- }
-}
-
-/* Clean all non-constant expressions in the hash table, but retain
- their values. */
-
-void
-cselib_preserve_only_values (void)
-{
- int i;
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- cselib_invalidate_regno (i, reg_raw_mode[i]);
-
- cselib_invalidate_mem (callmem);
-
- remove_useless_values ();
-
- gcc_assert (first_containing_mem == &dummy_val);
-}
-
-/* Arrange for a value to be marked as based on stack pointer
- for find_base_term purposes. */
-
-void
-cselib_set_value_sp_based (cselib_val *v)
-{
- SP_BASED_VALUE_P (v->val_rtx) = 1;
-}
-
-/* Test whether a value is based on stack pointer for
- find_base_term purposes. */
-
-bool
-cselib_sp_based_value_p (cselib_val *v)
-{
- return SP_BASED_VALUE_P (v->val_rtx);
-}
-
-/* Return the mode in which a register was last set. If X is not a
- register, return its mode. If the mode in which the register was
- set is not known, or the value was already clobbered, return
- VOIDmode. */
-
-enum machine_mode
-cselib_reg_set_mode (const_rtx x)
-{
- if (!REG_P (x))
- return GET_MODE (x);
-
- if (REG_VALUES (REGNO (x)) == NULL
- || REG_VALUES (REGNO (x))->elt == NULL)
- return VOIDmode;
-
- return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
-}
-
-/* Return nonzero if we can prove that X and Y contain the same value, taking
- our gathered information into account. */
-
-int
-rtx_equal_for_cselib_p (rtx x, rtx y)
-{
- return rtx_equal_for_cselib_1 (x, y, VOIDmode);
-}
-
-/* If x is a PLUS or an autoinc operation, expand the operation,
- storing the offset, if any, in *OFF. */
-
-static rtx
-autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
-{
- switch (GET_CODE (x))
- {
- case PLUS:
- *off = XEXP (x, 1);
- return XEXP (x, 0);
-
- case PRE_DEC:
- if (memmode == VOIDmode)
- return x;
-
- *off = GEN_INT (-GET_MODE_SIZE (memmode));
- return XEXP (x, 0);
- break;
-
- case PRE_INC:
- if (memmode == VOIDmode)
- return x;
-
- *off = GEN_INT (GET_MODE_SIZE (memmode));
- return XEXP (x, 0);
-
- case PRE_MODIFY:
- return XEXP (x, 1);
-
- case POST_DEC:
- case POST_INC:
- case POST_MODIFY:
- return XEXP (x, 0);
-
- default:
- return x;
- }
-}
-
-/* Return nonzero if we can prove that X and Y contain the same value,
- taking our gathered information into account. MEMMODE holds the
- mode of the enclosing MEM, if any, as required to deal with autoinc
- addressing modes. If X and Y are not (known to be) part of
- addresses, MEMMODE should be VOIDmode. */
-
-static int
-rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
-{
- enum rtx_code code;
- const char *fmt;
- int i;
-
- if (REG_P (x) || MEM_P (x))
- {
- cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
-
- if (e)
- x = e->val_rtx;
- }
-
- if (REG_P (y) || MEM_P (y))
- {
- cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
-
- if (e)
- y = e->val_rtx;
- }
-
- if (x == y)
- return 1;
-
- if (GET_CODE (x) == VALUE)
- {
- cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
- struct elt_loc_list *l;
-
- if (GET_CODE (y) == VALUE)
- return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
-
- for (l = e->locs; l; l = l->next)
- {
- rtx t = l->loc;
-
- /* Avoid infinite recursion. We know we have the canonical
- value, so we can just skip any values in the equivalence
- list. */
- if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
- continue;
- else if (rtx_equal_for_cselib_1 (t, y, memmode))
- return 1;
- }
-
- return 0;
- }
- else if (GET_CODE (y) == VALUE)
- {
- cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
- struct elt_loc_list *l;
-
- for (l = e->locs; l; l = l->next)
- {
- rtx t = l->loc;
-
- if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
- continue;
- else if (rtx_equal_for_cselib_1 (x, t, memmode))
- return 1;
- }
-
- return 0;
- }
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- if (GET_CODE (x) != GET_CODE (y))
- {
- rtx xorig = x, yorig = y;
- rtx xoff = NULL, yoff = NULL;
-
- x = autoinc_split (x, &xoff, memmode);
- y = autoinc_split (y, &yoff, memmode);
-
- if (!xoff != !yoff)
- return 0;
-
- if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
- return 0;
-
- /* Don't recurse if nothing changed. */
- if (x != xorig || y != yorig)
- return rtx_equal_for_cselib_1 (x, y, memmode);
-
- return 0;
- }
-
- /* These won't be handled correctly by the code below. */
- switch (GET_CODE (x))
- {
- case CONST_DOUBLE:
- case CONST_FIXED:
- case DEBUG_EXPR:
- return 0;
-
- case DEBUG_IMPLICIT_PTR:
- return DEBUG_IMPLICIT_PTR_DECL (x)
- == DEBUG_IMPLICIT_PTR_DECL (y);
-
- case DEBUG_PARAMETER_REF:
- return DEBUG_PARAMETER_REF_DECL (x)
- == DEBUG_PARAMETER_REF_DECL (y);
-
- case ENTRY_VALUE:
- /* ENTRY_VALUEs are function invariant, it is thus undesirable to
- use rtx_equal_for_cselib_1 to compare the operands. */
- return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
-
- case LABEL_REF:
- return XEXP (x, 0) == XEXP (y, 0);
-
- case MEM:
- /* We have to compare any autoinc operations in the addresses
- using this MEM's mode. */
- return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
-
- default:
- break;
- }
-
- code = GET_CODE (x);
- fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- int j;
-
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'n':
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'V':
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
- XVECEXP (y, i, j), memmode))
- return 0;
- break;
-
- case 'e':
- if (i == 1
- && targetm.commutative_p (x, UNKNOWN)
- && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
- && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
- return 1;
- if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
- return 0;
- break;
-
- case 'S':
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- case 'u':
- /* These are just backpointers, so they don't matter. */
- break;
-
- case '0':
- case 't':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- gcc_unreachable ();
- }
- }
- return 1;
-}
-
-/* We need to pass down the mode of constants through the hash table
- functions. For that purpose, wrap them in a CONST of the appropriate
- mode. */
-static rtx
-wrap_constant (enum machine_mode mode, rtx x)
-{
- if ((!CONST_SCALAR_INT_P (x)) && GET_CODE (x) != CONST_FIXED)
- return x;
- gcc_assert (mode != VOIDmode);
- return gen_rtx_CONST (mode, x);
-}
-
-/* Hash an rtx. Return 0 if we couldn't hash the rtx.
- For registers and memory locations, we look up their cselib_val structure
- and return its VALUE element.
- Possible reasons for return 0 are: the object is volatile, or we couldn't
- find a register or memory location in the table and CREATE is zero. If
- CREATE is nonzero, table elts are created for regs and mem.
- N.B. this hash function returns the same hash value for RTXes that
- differ only in the order of operands, thus it is suitable for comparisons
- that take commutativity into account.
- If we wanted to also support associative rules, we'd have to use a different
- strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
- MEMMODE indicates the mode of an enclosing MEM, and it's only
- used to compute autoinc values.
- We used to have a MODE argument for hashing for CONST_INTs, but that
- didn't make sense, since it caused spurious hash differences between
- (set (reg:SI 1) (const_int))
- (plus:SI (reg:SI 2) (reg:SI 1))
- and
- (plus:SI (reg:SI 2) (const_int))
- If the mode is important in any context, it must be checked specifically
- in a comparison anyway, since relying on hash differences is unsafe. */
-
-static unsigned int
-cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
-{
- cselib_val *e;
- int i, j;
- enum rtx_code code;
- const char *fmt;
- unsigned int hash = 0;
-
- code = GET_CODE (x);
- hash += (unsigned) code + (unsigned) GET_MODE (x);
-
- switch (code)
- {
- case VALUE:
- e = CSELIB_VAL_PTR (x);
- return e->hash;
-
- case MEM:
- case REG:
- e = cselib_lookup (x, GET_MODE (x), create, memmode);
- if (! e)
- return 0;
-
- return e->hash;
-
- case DEBUG_EXPR:
- hash += ((unsigned) DEBUG_EXPR << 7)
- + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
- return hash ? hash : (unsigned int) DEBUG_EXPR;
-
- case DEBUG_IMPLICIT_PTR:
- hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
- + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
- return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
-
- case DEBUG_PARAMETER_REF:
- hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
- + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
- return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
-
- case ENTRY_VALUE:
- /* ENTRY_VALUEs are function invariant, thus try to avoid
- recursing on argument if ENTRY_VALUE is one of the
- forms emitted by expand_debug_expr, otherwise
- ENTRY_VALUE hash would depend on the current value
- in some register or memory. */
- if (REG_P (ENTRY_VALUE_EXP (x)))
- hash += (unsigned int) REG
- + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
- + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
- else if (MEM_P (ENTRY_VALUE_EXP (x))
- && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
- hash += (unsigned int) MEM
- + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
- + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
- else
- hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
- return hash ? hash : (unsigned int) ENTRY_VALUE;
-
- case CONST_INT:
- hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
- return hash ? hash : (unsigned int) CONST_INT;
-
- case CONST_DOUBLE:
- /* This is like the general case, except that it only counts
- the integers representing the constant. */
- hash += (unsigned) code + (unsigned) GET_MODE (x);
- if (GET_MODE (x) != VOIDmode)
- hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
- else
- hash += ((unsigned) CONST_DOUBLE_LOW (x)
- + (unsigned) CONST_DOUBLE_HIGH (x));
- return hash ? hash : (unsigned int) CONST_DOUBLE;
-
- case CONST_FIXED:
- hash += (unsigned int) code + (unsigned int) GET_MODE (x);
- hash += fixed_hash (CONST_FIXED_VALUE (x));
- return hash ? hash : (unsigned int) CONST_FIXED;
-
- case CONST_VECTOR:
- {
- int units;
- rtx elt;
-
- units = CONST_VECTOR_NUNITS (x);
-
- for (i = 0; i < units; ++i)
- {
- elt = CONST_VECTOR_ELT (x, i);
- hash += cselib_hash_rtx (elt, 0, memmode);
- }
-
- return hash;
- }
-
- /* Assume there is only one rtx object for any given label. */
- case LABEL_REF:
- /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
- differences and differences between each stage's debugging dumps. */
- hash += (((unsigned int) LABEL_REF << 7)
- + CODE_LABEL_NUMBER (XEXP (x, 0)));
- return hash ? hash : (unsigned int) LABEL_REF;
-
- case SYMBOL_REF:
- {
- /* Don't hash on the symbol's address to avoid bootstrap differences.
- Different hash values may cause expressions to be recorded in
- different orders and thus different registers to be used in the
- final assembler. This also avoids differences in the dump files
- between various stages. */
- unsigned int h = 0;
- const unsigned char *p = (const unsigned char *) XSTR (x, 0);
-
- while (*p)
- h += (h << 7) + *p++; /* ??? revisit */
-
- hash += ((unsigned int) SYMBOL_REF << 7) + h;
- return hash ? hash : (unsigned int) SYMBOL_REF;
- }
-
- case PRE_DEC:
- case PRE_INC:
- /* We can't compute these without knowing the MEM mode. */
- gcc_assert (memmode != VOIDmode);
- i = GET_MODE_SIZE (memmode);
- if (code == PRE_DEC)
- i = -i;
- /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
- like (mem:MEMMODE (plus (reg) (const_int I))). */
- hash += (unsigned) PLUS - (unsigned)code
- + cselib_hash_rtx (XEXP (x, 0), create, memmode)
- + cselib_hash_rtx (GEN_INT (i), create, memmode);
- return hash ? hash : 1 + (unsigned) PLUS;
-
- case PRE_MODIFY:
- gcc_assert (memmode != VOIDmode);
- return cselib_hash_rtx (XEXP (x, 1), create, memmode);
-
- case POST_DEC:
- case POST_INC:
- case POST_MODIFY:
- gcc_assert (memmode != VOIDmode);
- return cselib_hash_rtx (XEXP (x, 0), create, memmode);
-
- case PC:
- case CC0:
- case CALL:
- case UNSPEC_VOLATILE:
- return 0;
-
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- return 0;
-
- break;
-
- default:
- break;
- }
-
- i = GET_RTX_LENGTH (code) - 1;
- fmt = GET_RTX_FORMAT (code);
- for (; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'e':
- {
- rtx tem = XEXP (x, i);
- unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
-
- if (tem_hash == 0)
- return 0;
-
- hash += tem_hash;
- }
- break;
- case 'E':
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- unsigned int tem_hash
- = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
-
- if (tem_hash == 0)
- return 0;
-
- hash += tem_hash;
- }
- break;
-
- case 's':
- {
- const unsigned char *p = (const unsigned char *) XSTR (x, i);
-
- if (p)
- while (*p)
- hash += *p++;
- break;
- }
-
- case 'i':
- hash += XINT (x, i);
- break;
-
- case '0':
- case 't':
- /* unused */
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-
- return hash ? hash : 1 + (unsigned int) GET_CODE (x);
-}
-
-/* Create a new value structure for VALUE and initialize it. The mode of the
- value is MODE. */
-
-static inline cselib_val *
-new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
-{
- cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
-
- gcc_assert (hash);
- gcc_assert (next_uid);
-
- e->hash = hash;
- e->uid = next_uid++;
- /* We use an alloc pool to allocate this RTL construct because it
- accounts for about 8% of the overall memory usage. We know
- precisely when we can have VALUE RTXen (when cselib is active)
- so we don't need to put them in garbage collected memory.
- ??? Why should a VALUE be an RTX in the first place? */
- e->val_rtx = (rtx) pool_alloc (value_pool);
- memset (e->val_rtx, 0, RTX_HDR_SIZE);
- PUT_CODE (e->val_rtx, VALUE);
- PUT_MODE (e->val_rtx, mode);
- CSELIB_VAL_PTR (e->val_rtx) = e;
- e->addr_list = 0;
- e->locs = 0;
- e->next_containing_mem = 0;
-
- if (dump_file && (dump_flags & TDF_CSELIB))
- {
- fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
- if (flag_dump_noaddr || flag_dump_unnumbered)
- fputs ("# ", dump_file);
- else
- fprintf (dump_file, "%p ", (void*)e);
- print_rtl_single (dump_file, x);
- fputc ('\n', dump_file);
- }
-
- return e;
-}
-
-/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
- contains the data at this address. X is a MEM that represents the
- value. Update the two value structures to represent this situation. */
-
-static void
-add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
-{
- struct elt_loc_list *l;
-
- addr_elt = canonical_cselib_val (addr_elt);
- mem_elt = canonical_cselib_val (mem_elt);
-
- /* Avoid duplicates. */
- for (l = mem_elt->locs; l; l = l->next)
- if (MEM_P (l->loc)
- && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
- {
- promote_debug_loc (l);
- return;
- }
-
- addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
- new_elt_loc_list (mem_elt,
- replace_equiv_address_nv (x, addr_elt->val_rtx));
- if (mem_elt->next_containing_mem == NULL)
- {
- mem_elt->next_containing_mem = first_containing_mem;
- first_containing_mem = mem_elt;
- }
-}
-
-/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
- If CREATE, make a new one if we haven't seen it before. */
-
-static cselib_val *
-cselib_lookup_mem (rtx x, int create)
-{
- enum machine_mode mode = GET_MODE (x);
- enum machine_mode addr_mode;
- void **slot;
- cselib_val *addr;
- cselib_val *mem_elt;
- struct elt_list *l;
-
- if (MEM_VOLATILE_P (x) || mode == BLKmode
- || !cselib_record_memory
- || (FLOAT_MODE_P (mode) && flag_float_store))
- return 0;
-
- addr_mode = GET_MODE (XEXP (x, 0));
- if (addr_mode == VOIDmode)
- addr_mode = Pmode;
-
- /* Look up the value for the address. */
- addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
- if (! addr)
- return 0;
-
- addr = canonical_cselib_val (addr);
- /* Find a value that describes a value of our mode at that address. */
- for (l = addr->addr_list; l; l = l->next)
- if (GET_MODE (l->elt->val_rtx) == mode)
- {
- promote_debug_loc (l->elt->locs);
- return l->elt;
- }
-
- if (! create)
- return 0;
-
- mem_elt = new_cselib_val (next_uid, mode, x);
- add_mem_for_addr (addr, mem_elt, x);
- slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
- INSERT, mode);
- *slot = mem_elt;
- return mem_elt;
-}
-
-/* Search through the possible substitutions in P. We prefer a non reg
- substitution because this allows us to expand the tree further. If
- we find, just a reg, take the lowest regno. There may be several
- non-reg results, we just take the first one because they will all
- expand to the same place. */
-
-static rtx
-expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
- int max_depth)
-{
- rtx reg_result = NULL;
- unsigned int regno = UINT_MAX;
- struct elt_loc_list *p_in = p;
-
- for (; p; p = p->next)
- {
- /* Return these right away to avoid returning stack pointer based
- expressions for frame pointer and vice versa, which is something
- that would confuse DSE. See the comment in cselib_expand_value_rtx_1
- for more details. */
- if (REG_P (p->loc)
- && (REGNO (p->loc) == STACK_POINTER_REGNUM
- || REGNO (p->loc) == FRAME_POINTER_REGNUM
- || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
- || REGNO (p->loc) == cfa_base_preserved_regno))
- return p->loc;
- /* Avoid infinite recursion trying to expand a reg into a
- the same reg. */
- if ((REG_P (p->loc))
- && (REGNO (p->loc) < regno)
- && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
- {
- reg_result = p->loc;
- regno = REGNO (p->loc);
- }
- /* Avoid infinite recursion and do not try to expand the
- value. */
- else if (GET_CODE (p->loc) == VALUE
- && CSELIB_VAL_PTR (p->loc)->locs == p_in)
- continue;
- else if (!REG_P (p->loc))
- {
- rtx result, note;
- if (dump_file && (dump_flags & TDF_CSELIB))
- {
- print_inline_rtx (dump_file, p->loc, 0);
- fprintf (dump_file, "\n");
- }
- if (GET_CODE (p->loc) == LO_SUM
- && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
- && p->setting_insn
- && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
- && XEXP (note, 0) == XEXP (p->loc, 1))
- return XEXP (p->loc, 1);
- result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
- if (result)
- return result;
- }
-
- }
-
- if (regno != UINT_MAX)
- {
- rtx result;
- if (dump_file && (dump_flags & TDF_CSELIB))
- fprintf (dump_file, "r%d\n", regno);
-
- result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
- if (result)
- return result;
- }
-
- if (dump_file && (dump_flags & TDF_CSELIB))
- {
- if (reg_result)
- {
- print_inline_rtx (dump_file, reg_result, 0);
- fprintf (dump_file, "\n");
- }
- else
- fprintf (dump_file, "NULL\n");
- }
- return reg_result;
-}
-
-
-/* Forward substitute and expand an expression out to its roots.
- This is the opposite of common subexpression. Because local value
- numbering is such a weak optimization, the expanded expression is
- pretty much unique (not from a pointer equals point of view but
- from a tree shape point of view.
-
- This function returns NULL if the expansion fails. The expansion
- will fail if there is no value number for one of the operands or if
- one of the operands has been overwritten between the current insn
- and the beginning of the basic block. For instance x has no
- expansion in:
-
- r1 <- r1 + 3
- x <- r1 + 8
-
- REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
- It is clear on return. */
-
-rtx
-cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
-{
- struct expand_value_data evd;
-
- evd.regs_active = regs_active;
- evd.callback = NULL;
- evd.callback_arg = NULL;
- evd.dummy = false;
-
- return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
-}
-
-/* Same as cselib_expand_value_rtx, but using a callback to try to
- resolve some expressions. The CB function should return ORIG if it
- can't or does not want to deal with a certain RTX. Any other
- return value, including NULL, will be used as the expansion for
- VALUE, without any further changes. */
-
-rtx
-cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
- cselib_expand_callback cb, void *data)
-{
- struct expand_value_data evd;
-
- evd.regs_active = regs_active;
- evd.callback = cb;
- evd.callback_arg = data;
- evd.dummy = false;
-
- return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
-}
-
-/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
- or simplified. Useful to find out whether cselib_expand_value_rtx_cb
- would return NULL or non-NULL, without allocating new rtx. */
-
-bool
-cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
- cselib_expand_callback cb, void *data)
-{
- struct expand_value_data evd;
-
- evd.regs_active = regs_active;
- evd.callback = cb;
- evd.callback_arg = data;
- evd.dummy = true;
-
- return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
-}
-
-/* Internal implementation of cselib_expand_value_rtx and
- cselib_expand_value_rtx_cb. */
-
-static rtx
-cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
- int max_depth)
-{
- rtx copy, scopy;
- int i, j;
- RTX_CODE code;
- const char *format_ptr;
- enum machine_mode mode;
-
- code = GET_CODE (orig);
-
- /* For the context of dse, if we end up expand into a huge tree, we
- will not have a useful address, so we might as well just give up
- quickly. */
- if (max_depth <= 0)
- return NULL;
-
- switch (code)
- {
- case REG:
- {
- struct elt_list *l = REG_VALUES (REGNO (orig));
-
- if (l && l->elt == NULL)
- l = l->next;
- for (; l; l = l->next)
- if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
- {
- rtx result;
- unsigned regno = REGNO (orig);
-
- /* The only thing that we are not willing to do (this
- is requirement of dse and if others potential uses
- need this function we should add a parm to control
- it) is that we will not substitute the
- STACK_POINTER_REGNUM, FRAME_POINTER or the
- HARD_FRAME_POINTER.
-
- These expansions confuses the code that notices that
- stores into the frame go dead at the end of the
- function and that the frame is not effected by calls
- to subroutines. If you allow the
- STACK_POINTER_REGNUM substitution, then dse will
- think that parameter pushing also goes dead which is
- wrong. If you allow the FRAME_POINTER or the
- HARD_FRAME_POINTER then you lose the opportunity to
- make the frame assumptions. */
- if (regno == STACK_POINTER_REGNUM
- || regno == FRAME_POINTER_REGNUM
- || regno == HARD_FRAME_POINTER_REGNUM
- || regno == cfa_base_preserved_regno)
- return orig;
-
- bitmap_set_bit (evd->regs_active, regno);
-
- if (dump_file && (dump_flags & TDF_CSELIB))
- fprintf (dump_file, "expanding: r%d into: ", regno);
-
- result = expand_loc (l->elt->locs, evd, max_depth);
- bitmap_clear_bit (evd->regs_active, regno);
-
- if (result)
- return result;
- else
- return orig;
- }
- }
-
- CASE_CONST_ANY:
- case SYMBOL_REF:
- case CODE_LABEL:
- case PC:
- case CC0:
- case SCRATCH:
- /* SCRATCH must be shared because they represent distinct values. */
- return orig;
- case CLOBBER:
- if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
- return orig;
- break;
-
- case CONST:
- if (shared_const_p (orig))
- return orig;
- break;
-
- case SUBREG:
- {
- rtx subreg;
-
- if (evd->callback)
- {
- subreg = evd->callback (orig, evd->regs_active, max_depth,
- evd->callback_arg);
- if (subreg != orig)
- return subreg;
- }
-
- subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
- max_depth - 1);
- if (!subreg)
- return NULL;
- scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
- GET_MODE (SUBREG_REG (orig)),
- SUBREG_BYTE (orig));
- if (scopy == NULL
- || (GET_CODE (scopy) == SUBREG
- && !REG_P (SUBREG_REG (scopy))
- && !MEM_P (SUBREG_REG (scopy))))
- return NULL;
-
- return scopy;
- }
-
- case VALUE:
- {
- rtx result;
-
- if (dump_file && (dump_flags & TDF_CSELIB))
- {
- fputs ("\nexpanding ", dump_file);
- print_rtl_single (dump_file, orig);
- fputs (" into...", dump_file);
- }
-
- if (evd->callback)
- {
- result = evd->callback (orig, evd->regs_active, max_depth,
- evd->callback_arg);
-
- if (result != orig)
- return result;
- }
-
- result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
- return result;
- }
-
- case DEBUG_EXPR:
- if (evd->callback)
- return evd->callback (orig, evd->regs_active, max_depth,
- evd->callback_arg);
- return orig;
-
- default:
- break;
- }
-
- /* Copy the various flags, fields, and other information. We assume
- that all fields need copying, and then clear the fields that should
- not be copied. That is the sensible default behavior, and forces
- us to explicitly document why we are *not* copying a flag. */
- if (evd->dummy)
- copy = NULL;
- else
- copy = shallow_copy_rtx (orig);
-
- format_ptr = GET_RTX_FORMAT (code);
-
- for (i = 0; i < GET_RTX_LENGTH (code); i++)
- switch (*format_ptr++)
- {
- case 'e':
- if (XEXP (orig, i) != NULL)
- {
- rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
- max_depth - 1);
- if (!result)
- return NULL;
- if (copy)
- XEXP (copy, i) = result;
- }
- break;
-
- case 'E':
- case 'V':
- if (XVEC (orig, i) != NULL)
- {
- if (copy)
- XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
- for (j = 0; j < XVECLEN (orig, i); j++)
- {
- rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
- evd, max_depth - 1);
- if (!result)
- return NULL;
- if (copy)
- XVECEXP (copy, i, j) = result;
- }
- }
- break;
-
- case 't':
- case 'w':
- case 'i':
- case 's':
- case 'S':
- case 'T':
- case 'u':
- case 'B':
- case '0':
- /* These are left unchanged. */
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (evd->dummy)
- return orig;
-
- mode = GET_MODE (copy);
- /* If an operand has been simplified into CONST_INT, which doesn't
- have a mode and the mode isn't derivable from whole rtx's mode,
- try simplify_*_operation first with mode from original's operand
- and as a fallback wrap CONST_INT into gen_rtx_CONST. */
- scopy = copy;
- switch (GET_RTX_CLASS (code))
- {
- case RTX_UNARY:
- if (CONST_INT_P (XEXP (copy, 0))
- && GET_MODE (XEXP (orig, 0)) != VOIDmode)
- {
- scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
- GET_MODE (XEXP (orig, 0)));
- if (scopy)
- return scopy;
- }
- break;
- case RTX_COMM_ARITH:
- case RTX_BIN_ARITH:
- /* These expressions can derive operand modes from the whole rtx's mode. */
- break;
- case RTX_TERNARY:
- case RTX_BITFIELD_OPS:
- if (CONST_INT_P (XEXP (copy, 0))
- && GET_MODE (XEXP (orig, 0)) != VOIDmode)
- {
- scopy = simplify_ternary_operation (code, mode,
- GET_MODE (XEXP (orig, 0)),
- XEXP (copy, 0), XEXP (copy, 1),
- XEXP (copy, 2));
- if (scopy)
- return scopy;
- }
- break;
- case RTX_COMPARE:
- case RTX_COMM_COMPARE:
- if (CONST_INT_P (XEXP (copy, 0))
- && GET_MODE (XEXP (copy, 1)) == VOIDmode
- && (GET_MODE (XEXP (orig, 0)) != VOIDmode
- || GET_MODE (XEXP (orig, 1)) != VOIDmode))
- {
- scopy = simplify_relational_operation (code, mode,
- (GET_MODE (XEXP (orig, 0))
- != VOIDmode)
- ? GET_MODE (XEXP (orig, 0))
- : GET_MODE (XEXP (orig, 1)),
- XEXP (copy, 0),
- XEXP (copy, 1));
- if (scopy)
- return scopy;
- }
- break;
- default:
- break;
- }
- scopy = simplify_rtx (copy);
- if (scopy)
- return scopy;
- return copy;
-}
-
-/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
- with VALUE expressions. This way, it becomes independent of changes
- to registers and memory.
- X isn't actually modified; if modifications are needed, new rtl is
- allocated. However, the return value can share rtl with X.
- If X is within a MEM, MEMMODE must be the mode of the MEM. */
-
-rtx
-cselib_subst_to_values (rtx x, enum machine_mode memmode)
-{
- enum rtx_code code = GET_CODE (x);
- const char *fmt = GET_RTX_FORMAT (code);
- cselib_val *e;
- struct elt_list *l;
- rtx copy = x;
- int i;
-
- switch (code)
- {
- case REG:
- l = REG_VALUES (REGNO (x));
- if (l && l->elt == NULL)
- l = l->next;
- for (; l; l = l->next)
- if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
- return l->elt->val_rtx;
-
- gcc_unreachable ();
-
- case MEM:
- e = cselib_lookup_mem (x, 0);
- /* This used to happen for autoincrements, but we deal with them
- properly now. Remove the if stmt for the next release. */
- if (! e)
- {
- /* Assign a value that doesn't match any other. */
- e = new_cselib_val (next_uid, GET_MODE (x), x);
- }
- return e->val_rtx;
-
- case ENTRY_VALUE:
- e = cselib_lookup (x, GET_MODE (x), 0, memmode);
- if (! e)
- break;
- return e->val_rtx;
-
- CASE_CONST_ANY:
- return x;
-
- case PRE_DEC:
- case PRE_INC:
- gcc_assert (memmode != VOIDmode);
- i = GET_MODE_SIZE (memmode);
- if (code == PRE_DEC)
- i = -i;
- return cselib_subst_to_values (plus_constant (GET_MODE (x),
- XEXP (x, 0), i),
- memmode);
-
- case PRE_MODIFY:
- gcc_assert (memmode != VOIDmode);
- return cselib_subst_to_values (XEXP (x, 1), memmode);
-
- case POST_DEC:
- case POST_INC:
- case POST_MODIFY:
- gcc_assert (memmode != VOIDmode);
- return cselib_subst_to_values (XEXP (x, 0), memmode);
-
- default:
- break;
- }
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
-
- if (t != XEXP (x, i))
- {
- if (x == copy)
- copy = shallow_copy_rtx (x);
- XEXP (copy, i) = t;
- }
- }
- else if (fmt[i] == 'E')
- {
- int j;
-
- for (j = 0; j < XVECLEN (x, i); j++)
- {
- rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
-
- if (t != XVECEXP (x, i, j))
- {
- if (XVEC (x, i) == XVEC (copy, i))
- {
- if (x == copy)
- copy = shallow_copy_rtx (x);
- XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
- }
- XVECEXP (copy, i, j) = t;
- }
- }
- }
- }
-
- return copy;
-}
-
-/* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
-
-rtx
-cselib_subst_to_values_from_insn (rtx x, enum machine_mode memmode, rtx insn)
-{
- rtx ret;
- gcc_assert (!cselib_current_insn);
- cselib_current_insn = insn;
- ret = cselib_subst_to_values (x, memmode);
- cselib_current_insn = NULL;
- return ret;
-}
-
-/* Look up the rtl expression X in our tables and return the value it
- has. If CREATE is zero, we return NULL if we don't know the value.
- Otherwise, we create a new one if possible, using mode MODE if X
- doesn't have a mode (i.e. because it's a constant). When X is part
- of an address, MEMMODE should be the mode of the enclosing MEM if
- we're tracking autoinc expressions. */
-
-static cselib_val *
-cselib_lookup_1 (rtx x, enum machine_mode mode,
- int create, enum machine_mode memmode)
-{
- void **slot;
- cselib_val *e;
- unsigned int hashval;
-
- if (GET_MODE (x) != VOIDmode)
- mode = GET_MODE (x);
-
- if (GET_CODE (x) == VALUE)
- return CSELIB_VAL_PTR (x);
-
- if (REG_P (x))
- {
- struct elt_list *l;
- unsigned int i = REGNO (x);
-
- l = REG_VALUES (i);
- if (l && l->elt == NULL)
- l = l->next;
- for (; l; l = l->next)
- if (mode == GET_MODE (l->elt->val_rtx))
- {
- promote_debug_loc (l->elt->locs);
- return l->elt;
- }
-
- if (! create)
- return 0;
-
- if (i < FIRST_PSEUDO_REGISTER)
- {
- unsigned int n = hard_regno_nregs[i][mode];
-
- if (n > max_value_regs)
- max_value_regs = n;
- }
-
- e = new_cselib_val (next_uid, GET_MODE (x), x);
- new_elt_loc_list (e, x);
- if (REG_VALUES (i) == 0)
- {
- /* Maintain the invariant that the first entry of
- REG_VALUES, if present, must be the value used to set the
- register, or NULL. */
- used_regs[n_used_regs++] = i;
- REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
- }
- else if (cselib_preserve_constants
- && GET_MODE_CLASS (mode) == MODE_INT)
- {
- /* During var-tracking, try harder to find equivalences
- for SUBREGs. If a setter sets say a DImode register
- and user uses that register only in SImode, add a lowpart
- subreg location. */
- struct elt_list *lwider = NULL;
- l = REG_VALUES (i);
- if (l && l->elt == NULL)
- l = l->next;
- for (; l; l = l->next)
- if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
- && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
- > GET_MODE_SIZE (mode)
- && (lwider == NULL
- || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
- < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
- {
- struct elt_loc_list *el;
- if (i < FIRST_PSEUDO_REGISTER
- && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
- continue;
- for (el = l->elt->locs; el; el = el->next)
- if (!REG_P (el->loc))
- break;
- if (el)
- lwider = l;
- }
- if (lwider)
- {
- rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
- GET_MODE (lwider->elt->val_rtx));
- if (sub)
- new_elt_loc_list (e, sub);
- }
- }
- REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
- slot = cselib_find_slot (x, e->hash, INSERT, memmode);
- *slot = e;
- return e;
- }
-
- if (MEM_P (x))
- return cselib_lookup_mem (x, create);
-
- hashval = cselib_hash_rtx (x, create, memmode);
- /* Can't even create if hashing is not possible. */
- if (! hashval)
- return 0;
-
- slot = cselib_find_slot (wrap_constant (mode, x), hashval,
- create ? INSERT : NO_INSERT, memmode);
- if (slot == 0)
- return 0;
-
- e = (cselib_val *) *slot;
- if (e)
- return e;
-
- e = new_cselib_val (hashval, mode, x);
-
- /* We have to fill the slot before calling cselib_subst_to_values:
- the hash table is inconsistent until we do so, and
- cselib_subst_to_values will need to do lookups. */
- *slot = (void *) e;
- new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
- return e;
-}
-
-/* Wrapper for cselib_lookup, that indicates X is in INSN. */
-
-cselib_val *
-cselib_lookup_from_insn (rtx x, enum machine_mode mode,
- int create, enum machine_mode memmode, rtx insn)
-{
- cselib_val *ret;
-
- gcc_assert (!cselib_current_insn);
- cselib_current_insn = insn;
-
- ret = cselib_lookup (x, mode, create, memmode);
-
- cselib_current_insn = NULL;
-
- return ret;
-}
-
-/* Wrapper for cselib_lookup_1, that logs the lookup result and
- maintains invariants related with debug insns. */
-
-cselib_val *
-cselib_lookup (rtx x, enum machine_mode mode,
- int create, enum machine_mode memmode)
-{
- cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
-
- /* ??? Should we return NULL if we're not to create an entry, the
- found loc is a debug loc and cselib_current_insn is not DEBUG?
- If so, we should also avoid converting val to non-DEBUG; probably
- easiest setting cselib_current_insn to NULL before the call
- above. */
-
- if (dump_file && (dump_flags & TDF_CSELIB))
- {
- fputs ("cselib lookup ", dump_file);
- print_inline_rtx (dump_file, x, 2);
- fprintf (dump_file, " => %u:%u\n",
- ret ? ret->uid : 0,
- ret ? ret->hash : 0);
- }
-
- return ret;
-}
-
-/* Invalidate any entries in reg_values that overlap REGNO. This is called
- if REGNO is changing. MODE is the mode of the assignment to REGNO, which
- is used to determine how many hard registers are being changed. If MODE
- is VOIDmode, then only REGNO is being changed; this is used when
- invalidating call clobbered registers across a call. */
-
-static void
-cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
-{
- unsigned int endregno;
- unsigned int i;
-
- /* If we see pseudos after reload, something is _wrong_. */
- gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
- || reg_renumber[regno] < 0);
-
- /* Determine the range of registers that must be invalidated. For
- pseudos, only REGNO is affected. For hard regs, we must take MODE
- into account, and we must also invalidate lower register numbers
- if they contain values that overlap REGNO. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- gcc_assert (mode != VOIDmode);
-
- if (regno < max_value_regs)
- i = 0;
- else
- i = regno - max_value_regs;
-
- endregno = end_hard_regno (mode, regno);
- }
- else
- {
- i = regno;
- endregno = regno + 1;
- }
-
- for (; i < endregno; i++)
- {
- struct elt_list **l = &REG_VALUES (i);
-
- /* Go through all known values for this reg; if it overlaps the range
- we're invalidating, remove the value. */
- while (*l)
- {
- cselib_val *v = (*l)->elt;
- bool had_locs;
- rtx setting_insn;
- struct elt_loc_list **p;
- unsigned int this_last = i;
-
- if (i < FIRST_PSEUDO_REGISTER && v != NULL)
- this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
-
- if (this_last < regno || v == NULL
- || (v == cfa_base_preserved_val
- && i == cfa_base_preserved_regno))
- {
- l = &(*l)->next;
- continue;
- }
-
- /* We have an overlap. */
- if (*l == REG_VALUES (i))
- {
- /* Maintain the invariant that the first entry of
- REG_VALUES, if present, must be the value used to set
- the register, or NULL. This is also nice because
- then we won't push the same regno onto user_regs
- multiple times. */
- (*l)->elt = NULL;
- l = &(*l)->next;
- }
- else
- unchain_one_elt_list (l);
-
- v = canonical_cselib_val (v);
-
- had_locs = v->locs != NULL;
- setting_insn = v->locs ? v->locs->setting_insn : NULL;
-
- /* Now, we clear the mapping from value to reg. It must exist, so
- this code will crash intentionally if it doesn't. */
- for (p = &v->locs; ; p = &(*p)->next)
- {
- rtx x = (*p)->loc;
-
- if (REG_P (x) && REGNO (x) == i)
- {
- unchain_one_elt_loc_list (p);
- break;
- }
- }
-
- if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
- {
- if (setting_insn && DEBUG_INSN_P (setting_insn))
- n_useless_debug_values++;
- else
- n_useless_values++;
- }
- }
- }
-}
-
-/* Invalidate any locations in the table which are changed because of a
- store to MEM_RTX. If this is called because of a non-const call
- instruction, MEM_RTX is (mem:BLK const0_rtx). */
-
-static void
-cselib_invalidate_mem (rtx mem_rtx)
-{
- cselib_val **vp, *v, *next;
- int num_mems = 0;
- rtx mem_addr;
-
- mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
- mem_rtx = canon_rtx (mem_rtx);
-
- vp = &first_containing_mem;
- for (v = *vp; v != &dummy_val; v = next)
- {
- bool has_mem = false;
- struct elt_loc_list **p = &v->locs;
- bool had_locs = v->locs != NULL;
- rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
-
- while (*p)
- {
- rtx x = (*p)->loc;
- cselib_val *addr;
- struct elt_list **mem_chain;
-
- /* MEMs may occur in locations only at the top level; below
- that every MEM or REG is substituted by its VALUE. */
- if (!MEM_P (x))
- {
- p = &(*p)->next;
- continue;
- }
- if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
- && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx),
- mem_addr, x, NULL_RTX))
- {
- has_mem = true;
- num_mems++;
- p = &(*p)->next;
- continue;
- }
-
- /* This one overlaps. */
- /* We must have a mapping from this MEM's address to the
- value (E). Remove that, too. */
- addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
- addr = canonical_cselib_val (addr);
- gcc_checking_assert (v == canonical_cselib_val (v));
- mem_chain = &addr->addr_list;
- for (;;)
- {
- cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
-
- if (canon == v)
- {
- unchain_one_elt_list (mem_chain);
- break;
- }
-
- /* Record canonicalized elt. */
- (*mem_chain)->elt = canon;
-
- mem_chain = &(*mem_chain)->next;
- }
-
- unchain_one_elt_loc_list (p);
- }
-
- if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
- {
- if (setting_insn && DEBUG_INSN_P (setting_insn))
- n_useless_debug_values++;
- else
- n_useless_values++;
- }
-
- next = v->next_containing_mem;
- if (has_mem)
- {
- *vp = v;
- vp = &(*vp)->next_containing_mem;
- }
- else
- v->next_containing_mem = NULL;
- }
- *vp = &dummy_val;
-}
-
-/* Invalidate DEST, which is being assigned to or clobbered. */
-
-void
-cselib_invalidate_rtx (rtx dest)
-{
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
-
- if (REG_P (dest))
- cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
- else if (MEM_P (dest))
- cselib_invalidate_mem (dest);
-}
-
-/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
-
-static void
-cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
- void *data ATTRIBUTE_UNUSED)
-{
- cselib_invalidate_rtx (dest);
-}
-
-/* Record the result of a SET instruction. DEST is being set; the source
- contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
- describes its address. */
-
-static void
-cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
-{
- int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
-
- if (src_elt == 0 || side_effects_p (dest))
- return;
-
- if (dreg >= 0)
- {
- if (dreg < FIRST_PSEUDO_REGISTER)
- {
- unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
-
- if (n > max_value_regs)
- max_value_regs = n;
- }
-
- if (REG_VALUES (dreg) == 0)
- {
- used_regs[n_used_regs++] = dreg;
- REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
- }
- else
- {
- /* The register should have been invalidated. */
- gcc_assert (REG_VALUES (dreg)->elt == 0);
- REG_VALUES (dreg)->elt = src_elt;
- }
-
- if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
- n_useless_values--;
- new_elt_loc_list (src_elt, dest);
- }
- else if (MEM_P (dest) && dest_addr_elt != 0
- && cselib_record_memory)
- {
- if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
- n_useless_values--;
- add_mem_for_addr (dest_addr_elt, src_elt, dest);
- }
-}
-
-/* Make ELT and X's VALUE equivalent to each other at INSN. */
-
-void
-cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx insn)
-{
- cselib_val *nelt;
- rtx save_cselib_current_insn = cselib_current_insn;
-
- gcc_checking_assert (elt);
- gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
- gcc_checking_assert (!side_effects_p (x));
-
- cselib_current_insn = insn;
-
- nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
-
- if (nelt != elt)
- {
- cselib_any_perm_equivs = true;
-
- if (!PRESERVED_VALUE_P (nelt->val_rtx))
- cselib_preserve_value (nelt);
-
- new_elt_loc_list (nelt, elt->val_rtx);
- }
-
- cselib_current_insn = save_cselib_current_insn;
-}
-
-/* Return TRUE if any permanent equivalences have been recorded since
- the table was last initialized. */
-bool
-cselib_have_permanent_equivalences (void)
-{
- return cselib_any_perm_equivs;
-}
-
-/* There is no good way to determine how many elements there can be
- in a PARALLEL. Since it's fairly cheap, use a really large number. */
-#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
-
-struct cselib_record_autoinc_data
-{
- struct cselib_set *sets;
- int n_sets;
-};
-
-/* Callback for for_each_inc_dec. Records in ARG the SETs implied by
- autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
-
-static int
-cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
- rtx dest, rtx src, rtx srcoff, void *arg)
-{
- struct cselib_record_autoinc_data *data;
- data = (struct cselib_record_autoinc_data *)arg;
-
- data->sets[data->n_sets].dest = dest;
-
- if (srcoff)
- data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
- else
- data->sets[data->n_sets].src = src;
-
- data->n_sets++;
-
- return -1;
-}
-
-/* Record the effects of any sets and autoincs in INSN. */
-static void
-cselib_record_sets (rtx insn)
-{
- int n_sets = 0;
- int i;
- struct cselib_set sets[MAX_SETS];
- rtx body = PATTERN (insn);
- rtx cond = 0;
- int n_sets_before_autoinc;
- struct cselib_record_autoinc_data data;
-
- body = PATTERN (insn);
- if (GET_CODE (body) == COND_EXEC)
- {
- cond = COND_EXEC_TEST (body);
- body = COND_EXEC_CODE (body);
- }
-
- /* Find all sets. */
- if (GET_CODE (body) == SET)
- {
- sets[0].src = SET_SRC (body);
- sets[0].dest = SET_DEST (body);
- n_sets = 1;
- }
- else if (GET_CODE (body) == PARALLEL)
- {
- /* Look through the PARALLEL and record the values being
- set, if possible. Also handle any CLOBBERs. */
- for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
- {
- rtx x = XVECEXP (body, 0, i);
-
- if (GET_CODE (x) == SET)
- {
- sets[n_sets].src = SET_SRC (x);
- sets[n_sets].dest = SET_DEST (x);
- n_sets++;
- }
- }
- }
-
- if (n_sets == 1
- && MEM_P (sets[0].src)
- && !cselib_record_memory
- && MEM_READONLY_P (sets[0].src))
- {
- rtx note = find_reg_equal_equiv_note (insn);
-
- if (note && CONSTANT_P (XEXP (note, 0)))
- sets[0].src = XEXP (note, 0);
- }
-
- data.sets = sets;
- data.n_sets = n_sets_before_autoinc = n_sets;
- for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
- n_sets = data.n_sets;
-
- /* Look up the values that are read. Do this before invalidating the
- locations that are written. */
- for (i = 0; i < n_sets; i++)
- {
- rtx dest = sets[i].dest;
-
- /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
- the low part after invalidating any knowledge about larger modes. */
- if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
- sets[i].dest = dest = XEXP (dest, 0);
-
- /* We don't know how to record anything but REG or MEM. */
- if (REG_P (dest)
- || (MEM_P (dest) && cselib_record_memory))
- {
- rtx src = sets[i].src;
- if (cond)
- src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
- sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
- if (MEM_P (dest))
- {
- enum machine_mode address_mode = get_address_mode (dest);
-
- sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
- address_mode, 1,
- GET_MODE (dest));
- }
- else
- sets[i].dest_addr_elt = 0;
- }
- }
-
- if (cselib_record_sets_hook)
- cselib_record_sets_hook (insn, sets, n_sets);
-
- /* Invalidate all locations written by this insn. Note that the elts we
- looked up in the previous loop aren't affected, just some of their
- locations may go away. */
- note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
-
- for (i = n_sets_before_autoinc; i < n_sets; i++)
- cselib_invalidate_rtx (sets[i].dest);
-
- /* If this is an asm, look for duplicate sets. This can happen when the
- user uses the same value as an output multiple times. This is valid
- if the outputs are not actually used thereafter. Treat this case as
- if the value isn't actually set. We do this by smashing the destination
- to pc_rtx, so that we won't record the value later. */
- if (n_sets >= 2 && asm_noperands (body) >= 0)
- {
- for (i = 0; i < n_sets; i++)
- {
- rtx dest = sets[i].dest;
- if (REG_P (dest) || MEM_P (dest))
- {
- int j;
- for (j = i + 1; j < n_sets; j++)
- if (rtx_equal_p (dest, sets[j].dest))
- {
- sets[i].dest = pc_rtx;
- sets[j].dest = pc_rtx;
- }
- }
- }
- }
-
- /* Now enter the equivalences in our tables. */
- for (i = 0; i < n_sets; i++)
- {
- rtx dest = sets[i].dest;
- if (REG_P (dest)
- || (MEM_P (dest) && cselib_record_memory))
- cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
- }
-}
-
-/* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
-
-bool
-fp_setter_insn (rtx insn)
-{
- rtx expr, pat = NULL_RTX;
-
- if (!RTX_FRAME_RELATED_P (insn))
- return false;
-
- expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
- if (expr)
- pat = XEXP (expr, 0);
- if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
- return false;
-
- /* Don't return true for frame pointer restores in the epilogue. */
- if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
- return false;
- return true;
-}
-
-/* Record the effects of INSN. */
-
-void
-cselib_process_insn (rtx insn)
-{
- int i;
- rtx x;
-
- cselib_current_insn = insn;
-
- /* Forget everything at a CODE_LABEL, a volatile insn, or a setjmp. */
- if ((LABEL_P (insn)
- || (CALL_P (insn)
- && find_reg_note (insn, REG_SETJMP, NULL))
- || (NONJUMP_INSN_P (insn)
- && volatile_insn_p (PATTERN (insn))))
- && !cselib_preserve_constants)
- {
- cselib_reset_table (next_uid);
- cselib_current_insn = NULL_RTX;
- return;
- }
-
- if (! INSN_P (insn))
- {
- cselib_current_insn = NULL_RTX;
- return;
- }
-
- /* If this is a call instruction, forget anything stored in a
- call clobbered register, or, if this is not a const call, in
- memory. */
- if (CALL_P (insn))
- {
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i]
- || (REG_VALUES (i) && REG_VALUES (i)->elt
- && HARD_REGNO_CALL_PART_CLOBBERED (i,
- GET_MODE (REG_VALUES (i)->elt->val_rtx))))
- cselib_invalidate_regno (i, reg_raw_mode[i]);
-
- /* Since it is not clear how cselib is going to be used, be
- conservative here and treat looping pure or const functions
- as if they were regular functions. */
- if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
- || !(RTL_CONST_OR_PURE_CALL_P (insn)))
- cselib_invalidate_mem (callmem);
- }
-
- cselib_record_sets (insn);
-
- /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
- after we have processed the insn. */
- if (CALL_P (insn))
- {
- for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
- if (GET_CODE (XEXP (x, 0)) == CLOBBER)
- cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
- /* Flush evertything on setjmp. */
- if (cselib_preserve_constants
- && find_reg_note (insn, REG_SETJMP, NULL))
- {
- cselib_preserve_only_values ();
- cselib_reset_table (next_uid);
- }
- }
-
- /* On setter of the hard frame pointer if frame_pointer_needed,
- invalidate stack_pointer_rtx, so that sp and {,h}fp based
- VALUEs are distinct. */
- if (reload_completed
- && frame_pointer_needed
- && fp_setter_insn (insn))
- cselib_invalidate_rtx (stack_pointer_rtx);
-
- cselib_current_insn = NULL_RTX;
-
- if (n_useless_values > MAX_USELESS_VALUES
- /* remove_useless_values is linear in the hash table size. Avoid
- quadratic behavior for very large hashtables with very few
- useless elements. */
- && ((unsigned int)n_useless_values
- > (cselib_hash_table->n_elements
- - cselib_hash_table->n_deleted
- - n_debug_values) / 4))
- remove_useless_values ();
-}
-
-/* Initialize cselib for one pass. The caller must also call
- init_alias_analysis. */
-
-void
-cselib_init (int record_what)
-{
- elt_list_pool = create_alloc_pool ("elt_list",
- sizeof (struct elt_list), 10);
- elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
- sizeof (struct elt_loc_list), 10);
- cselib_val_pool = create_alloc_pool ("cselib_val_list",
- sizeof (cselib_val), 10);
- value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
- cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
- cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
- cselib_any_perm_equivs = false;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
- see canon_true_dependence. This is only created once. */
- if (! callmem)
- callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
-
- cselib_nregs = max_reg_num ();
-
- /* We preserve reg_values to allow expensive clearing of the whole thing.
- Reallocate it however if it happens to be too large. */
- if (!reg_values || reg_values_size < cselib_nregs
- || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
- {
- free (reg_values);
- /* Some space for newly emit instructions so we don't end up
- reallocating in between passes. */
- reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
- reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
- }
- used_regs = XNEWVEC (unsigned int, cselib_nregs);
- n_used_regs = 0;
- cselib_hash_table = htab_create (31, get_value_hash,
- entry_and_rtx_equal_p, NULL);
- next_uid = 1;
-}
-
-/* Called when the current user is done with cselib. */
-
-void
-cselib_finish (void)
-{
- cselib_discard_hook = NULL;
- cselib_preserve_constants = false;
- cselib_any_perm_equivs = false;
- cfa_base_preserved_val = NULL;
- cfa_base_preserved_regno = INVALID_REGNUM;
- free_alloc_pool (elt_list_pool);
- free_alloc_pool (elt_loc_list_pool);
- free_alloc_pool (cselib_val_pool);
- free_alloc_pool (value_pool);
- cselib_clear_table ();
- htab_delete (cselib_hash_table);
- free (used_regs);
- used_regs = 0;
- cselib_hash_table = 0;
- n_useless_values = 0;
- n_useless_debug_values = 0;
- n_debug_values = 0;
- next_uid = 0;
-}
-
-/* Dump the cselib_val *X to FILE *info. */
-
-static int
-dump_cselib_val (void **x, void *info)
-{
- cselib_val *v = (cselib_val *)*x;
- FILE *out = (FILE *)info;
- bool need_lf = true;
-
- print_inline_rtx (out, v->val_rtx, 0);
-
- if (v->locs)
- {
- struct elt_loc_list *l = v->locs;
- if (need_lf)
- {
- fputc ('\n', out);
- need_lf = false;
- }
- fputs (" locs:", out);
- do
- {
- if (l->setting_insn)
- fprintf (out, "\n from insn %i ",
- INSN_UID (l->setting_insn));
- else
- fprintf (out, "\n ");
- print_inline_rtx (out, l->loc, 4);
- }
- while ((l = l->next));
- fputc ('\n', out);
- }
- else
- {
- fputs (" no locs", out);
- need_lf = true;
- }
-
- if (v->addr_list)
- {
- struct elt_list *e = v->addr_list;
- if (need_lf)
- {
- fputc ('\n', out);
- need_lf = false;
- }
- fputs (" addr list:", out);
- do
- {
- fputs ("\n ", out);
- print_inline_rtx (out, e->elt->val_rtx, 2);
- }
- while ((e = e->next));
- fputc ('\n', out);
- }
- else
- {
- fputs (" no addrs", out);
- need_lf = true;
- }
-
- if (v->next_containing_mem == &dummy_val)
- fputs (" last mem\n", out);
- else if (v->next_containing_mem)
- {
- fputs (" next mem ", out);
- print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
- fputc ('\n', out);
- }
- else if (need_lf)
- fputc ('\n', out);
-
- return 1;
-}
-
-/* Dump to OUT everything in the CSELIB table. */
-
-void
-dump_cselib_table (FILE *out)
-{
- fprintf (out, "cselib hash table:\n");
- htab_traverse (cselib_hash_table, dump_cselib_val, out);
- if (first_containing_mem != &dummy_val)
- {
- fputs ("first mem ", out);
- print_inline_rtx (out, first_containing_mem->val_rtx, 2);
- fputc ('\n', out);
- }
- fprintf (out, "next uid %i\n", next_uid);
-}
-
-#include "gt-cselib.h"