aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/config/rs6000/rs6000.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/config/rs6000/rs6000.h')
-rw-r--r--gcc-4.8.1/gcc/config/rs6000/rs6000.h2515
1 files changed, 0 insertions, 2515 deletions
diff --git a/gcc-4.8.1/gcc/config/rs6000/rs6000.h b/gcc-4.8.1/gcc/config/rs6000/rs6000.h
deleted file mode 100644
index b42f62ac7..000000000
--- a/gcc-4.8.1/gcc/config/rs6000/rs6000.h
+++ /dev/null
@@ -1,2515 +0,0 @@
-/* Definitions of target machine for GNU compiler, for IBM RS/6000.
- Copyright (C) 1992-2013 Free Software Foundation, Inc.
- Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published
- by the Free Software Foundation; either version 3, or (at your
- option) any later version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- License for more details.
-
- Under Section 7 of GPL version 3, you are granted additional
- permissions described in the GCC Runtime Library Exception, version
- 3.1, as published by the Free Software Foundation.
-
- You should have received a copy of the GNU General Public License and
- a copy of the GCC Runtime Library Exception along with this program;
- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- <http://www.gnu.org/licenses/>. */
-
-/* Note that some other tm.h files include this one and then override
- many of the definitions. */
-
-#ifndef RS6000_OPTS_H
-#include "config/rs6000/rs6000-opts.h"
-#endif
-
-/* Definitions for the object file format. These are set at
- compile-time. */
-
-#define OBJECT_XCOFF 1
-#define OBJECT_ELF 2
-#define OBJECT_PEF 3
-#define OBJECT_MACHO 4
-
-#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
-#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
-#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
-#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
-
-#ifndef TARGET_AIX
-#define TARGET_AIX 0
-#endif
-
-#ifndef TARGET_AIX_OS
-#define TARGET_AIX_OS 0
-#endif
-
-/* Control whether function entry points use a "dot" symbol when
- ABI_AIX. */
-#define DOT_SYMBOLS 1
-
-/* Default string to use for cpu if not specified. */
-#ifndef TARGET_CPU_DEFAULT
-#define TARGET_CPU_DEFAULT ((char *)0)
-#endif
-
-/* If configured for PPC405, support PPC405CR Erratum77. */
-#ifdef CONFIG_PPC405CR
-#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
-#else
-#define PPC405_ERRATUM77 0
-#endif
-
-#ifndef TARGET_PAIRED_FLOAT
-#define TARGET_PAIRED_FLOAT 0
-#endif
-
-#ifdef HAVE_AS_POPCNTB
-#define ASM_CPU_POWER5_SPEC "-mpower5"
-#else
-#define ASM_CPU_POWER5_SPEC "-mpower4"
-#endif
-
-#ifdef HAVE_AS_DFP
-#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
-#else
-#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
-#endif
-
-#ifdef HAVE_AS_POPCNTD
-#define ASM_CPU_POWER7_SPEC "-mpower7"
-#else
-#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
-#endif
-
-#ifdef HAVE_AS_POWER8
-#define ASM_CPU_POWER8_SPEC "-mpower8"
-#else
-#define ASM_CPU_POWER8_SPEC "-mpower4 -maltivec"
-#endif
-
-#ifdef HAVE_AS_DCI
-#define ASM_CPU_476_SPEC "-m476"
-#else
-#define ASM_CPU_476_SPEC "-mpower4"
-#endif
-
-/* Common ASM definitions used by ASM_SPEC among the various targets for
- handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
- provide the default assembler options if the user uses -mcpu=native, so if
- you make changes here, make them also there. */
-#define ASM_CPU_SPEC \
-"%{!mcpu*: \
- %{mpowerpc64*: -mppc64} \
- %{!mpowerpc64*: %(asm_default)}} \
-%{mcpu=native: %(asm_cpu_native)} \
-%{mcpu=cell: -mcell} \
-%{mcpu=power3: -mppc64} \
-%{mcpu=power4: -mpower4} \
-%{mcpu=power5: %(asm_cpu_power5)} \
-%{mcpu=power5+: %(asm_cpu_power5)} \
-%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
-%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
-%{mcpu=power7: %(asm_cpu_power7)} \
-%{mcpu=power8: %(asm_cpu_power8)} \
-%{mcpu=a2: -ma2} \
-%{mcpu=powerpc: -mppc} \
-%{mcpu=rs64a: -mppc64} \
-%{mcpu=401: -mppc} \
-%{mcpu=403: -m403} \
-%{mcpu=405: -m405} \
-%{mcpu=405fp: -m405} \
-%{mcpu=440: -m440} \
-%{mcpu=440fp: -m440} \
-%{mcpu=464: -m440} \
-%{mcpu=464fp: -m440} \
-%{mcpu=476: %(asm_cpu_476)} \
-%{mcpu=476fp: %(asm_cpu_476)} \
-%{mcpu=505: -mppc} \
-%{mcpu=601: -m601} \
-%{mcpu=602: -mppc} \
-%{mcpu=603: -mppc} \
-%{mcpu=603e: -mppc} \
-%{mcpu=ec603e: -mppc} \
-%{mcpu=604: -mppc} \
-%{mcpu=604e: -mppc} \
-%{mcpu=620: -mppc64} \
-%{mcpu=630: -mppc64} \
-%{mcpu=740: -mppc} \
-%{mcpu=750: -mppc} \
-%{mcpu=G3: -mppc} \
-%{mcpu=7400: -mppc -maltivec} \
-%{mcpu=7450: -mppc -maltivec} \
-%{mcpu=G4: -mppc -maltivec} \
-%{mcpu=801: -mppc} \
-%{mcpu=821: -mppc} \
-%{mcpu=823: -mppc} \
-%{mcpu=860: -mppc} \
-%{mcpu=970: -mpower4 -maltivec} \
-%{mcpu=G5: -mpower4 -maltivec} \
-%{mcpu=8540: -me500} \
-%{mcpu=8548: -me500} \
-%{mcpu=e300c2: -me300} \
-%{mcpu=e300c3: -me300} \
-%{mcpu=e500mc: -me500mc} \
-%{mcpu=e500mc64: -me500mc64} \
-%{mcpu=e5500: -me5500} \
-%{mcpu=e6500: -me6500} \
-%{maltivec: -maltivec} \
-%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
--many"
-
-#define CPP_DEFAULT_SPEC ""
-
-#define ASM_DEFAULT_SPEC ""
-
-/* This macro defines names of additional specifications to put in the specs
- that can be used in various specifications like CC1_SPEC. Its definition
- is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GCC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#define SUBTARGET_EXTRA_SPECS
-
-#define EXTRA_SPECS \
- { "cpp_default", CPP_DEFAULT_SPEC }, \
- { "asm_cpu", ASM_CPU_SPEC }, \
- { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
- { "asm_default", ASM_DEFAULT_SPEC }, \
- { "cc1_cpu", CC1_CPU_SPEC }, \
- { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
- { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
- { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
- { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
- { "asm_cpu_476", ASM_CPU_476_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-
-/* -mcpu=native handling only makes sense with compiler running on
- an PowerPC chip. If changing this condition, also change
- the condition in driver-rs6000.c. */
-#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
-/* In driver-rs6000.c. */
-extern const char *host_detect_local_cpu (int argc, const char **argv);
-#define EXTRA_SPEC_FUNCTIONS \
- { "local_cpu_detect", host_detect_local_cpu },
-#define HAVE_LOCAL_CPU_DETECT
-#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
-
-#else
-#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
-#endif
-
-#ifndef CC1_CPU_SPEC
-#ifdef HAVE_LOCAL_CPU_DETECT
-#define CC1_CPU_SPEC \
-"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
- %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
-#else
-#define CC1_CPU_SPEC ""
-#endif
-#endif
-
-/* Architecture type. */
-
-/* Define TARGET_MFCRF if the target assembler does not support the
- optional field operand for mfcr. */
-
-#ifndef HAVE_AS_MFCRF
-#undef TARGET_MFCRF
-#define TARGET_MFCRF 0
-#endif
-
-/* Define TARGET_POPCNTB if the target assembler does not support the
- popcount byte instruction. */
-
-#ifndef HAVE_AS_POPCNTB
-#undef TARGET_POPCNTB
-#define TARGET_POPCNTB 0
-#endif
-
-/* Define TARGET_FPRND if the target assembler does not support the
- fp rounding instructions. */
-
-#ifndef HAVE_AS_FPRND
-#undef TARGET_FPRND
-#define TARGET_FPRND 0
-#endif
-
-/* Define TARGET_CMPB if the target assembler does not support the
- cmpb instruction. */
-
-#ifndef HAVE_AS_CMPB
-#undef TARGET_CMPB
-#define TARGET_CMPB 0
-#endif
-
-/* Define TARGET_MFPGPR if the target assembler does not support the
- mffpr and mftgpr instructions. */
-
-#ifndef HAVE_AS_MFPGPR
-#undef TARGET_MFPGPR
-#define TARGET_MFPGPR 0
-#endif
-
-/* Define TARGET_DFP if the target assembler does not support decimal
- floating point instructions. */
-#ifndef HAVE_AS_DFP
-#undef TARGET_DFP
-#define TARGET_DFP 0
-#endif
-
-/* Define TARGET_POPCNTD if the target assembler does not support the
- popcount word and double word instructions. */
-
-#ifndef HAVE_AS_POPCNTD
-#undef TARGET_POPCNTD
-#define TARGET_POPCNTD 0
-#endif
-
-/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
- not, generate the lwsync code as an integer constant. */
-#ifdef HAVE_AS_LWSYNC
-#define TARGET_LWSYNC_INSTRUCTION 1
-#else
-#define TARGET_LWSYNC_INSTRUCTION 0
-#endif
-
-/* Define TARGET_TLS_MARKERS if the target assembler does not support
- arg markers for __tls_get_addr calls. */
-#ifndef HAVE_AS_TLS_MARKERS
-#undef TARGET_TLS_MARKERS
-#define TARGET_TLS_MARKERS 0
-#else
-#define TARGET_TLS_MARKERS tls_markers
-#endif
-
-#ifndef TARGET_SECURE_PLT
-#define TARGET_SECURE_PLT 0
-#endif
-
-#ifndef TARGET_CMODEL
-#define TARGET_CMODEL CMODEL_SMALL
-#endif
-
-#define TARGET_32BIT (! TARGET_64BIT)
-
-#ifndef HAVE_AS_TLS
-#define HAVE_AS_TLS 0
-#endif
-
-#ifndef TARGET_LINK_STACK
-#define TARGET_LINK_STACK 0
-#endif
-
-#ifndef SET_TARGET_LINK_STACK
-#define SET_TARGET_LINK_STACK(X) do { } while (0)
-#endif
-
-/* Return 1 for a symbol ref for a thread-local storage symbol. */
-#define RS6000_SYMBOL_REF_TLS_P(RTX) \
- (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
-
-#ifdef IN_LIBGCC2
-/* For libgcc2 we make sure this is a compile time constant */
-#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
-#undef TARGET_POWERPC64
-#define TARGET_POWERPC64 1
-#else
-#undef TARGET_POWERPC64
-#define TARGET_POWERPC64 0
-#endif
-#else
- /* The option machinery will define this. */
-#endif
-
-#define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
-
-/* FPU operations supported.
- Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
- also test TARGET_HARD_FLOAT. */
-#define TARGET_SINGLE_FLOAT 1
-#define TARGET_DOUBLE_FLOAT 1
-#define TARGET_SINGLE_FPU 0
-#define TARGET_SIMPLE_FPU 0
-#define TARGET_XILINX_FPU 0
-
-/* Recast the processor type to the cpu attribute. */
-#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
-
-/* Define generic processor types based upon current deployment. */
-#define PROCESSOR_COMMON PROCESSOR_PPC601
-#define PROCESSOR_POWERPC PROCESSOR_PPC604
-#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
-
-/* Define the default processor. This is overridden by other tm.h files. */
-#define PROCESSOR_DEFAULT PROCESSOR_PPC603
-#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
-
-/* Specify the dialect of assembler to use. Only new mnemonics are supported
- starting with GCC 4.8, i.e. just one dialect, but for backwards
- compatibility with older inline asm ASSEMBLER_DIALECT needs to be
- defined. */
-#define ASSEMBLER_DIALECT 1
-
-/* Debug support */
-#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
-#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
-#define MASK_DEBUG_REG 0x04 /* debug register handling */
-#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
-#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
-#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
-#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
-#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
- | MASK_DEBUG_ARG \
- | MASK_DEBUG_REG \
- | MASK_DEBUG_ADDR \
- | MASK_DEBUG_COST \
- | MASK_DEBUG_TARGET \
- | MASK_DEBUG_BUILTIN)
-
-#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
-#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
-#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
-#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
-#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
-#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
-#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
-
-extern enum rs6000_vector rs6000_vector_unit[];
-
-#define VECTOR_UNIT_NONE_P(MODE) \
- (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
-
-#define VECTOR_UNIT_VSX_P(MODE) \
- (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
-
-#define VECTOR_UNIT_ALTIVEC_P(MODE) \
- (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
-
-#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
- (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \
- || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
-
-/* Describe whether to use VSX loads or Altivec loads. For now, just use the
- same unit as the vector unit we are using, but we may want to migrate to
- using VSX style loads even for types handled by altivec. */
-extern enum rs6000_vector rs6000_vector_mem[];
-
-#define VECTOR_MEM_NONE_P(MODE) \
- (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
-
-#define VECTOR_MEM_VSX_P(MODE) \
- (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
-
-#define VECTOR_MEM_ALTIVEC_P(MODE) \
- (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
-
-#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
- (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \
- || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
-
-/* Return the alignment of a given vector type, which is set based on the
- vector unit use. VSX for instance can load 32 or 64 bit aligned words
- without problems, while Altivec requires 128-bit aligned vectors. */
-extern int rs6000_vector_align[];
-
-#define VECTOR_ALIGN(MODE) \
- ((rs6000_vector_align[(MODE)] != 0) \
- ? rs6000_vector_align[(MODE)] \
- : (int)GET_MODE_BITSIZE ((MODE)))
-
-/* Alignment options for fields in structures for sub-targets following
- AIX-like ABI.
- ALIGN_POWER word-aligns FP doubles (default AIX ABI).
- ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
-
- Override the macro definitions when compiling libobjc to avoid undefined
- reference to rs6000_alignment_flags due to library's use of GCC alignment
- macros which use the macros below. */
-
-#ifndef IN_TARGET_LIBS
-#define MASK_ALIGN_POWER 0x00000000
-#define MASK_ALIGN_NATURAL 0x00000001
-#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
-#else
-#define TARGET_ALIGN_NATURAL 0
-#endif
-
-#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
-#define TARGET_IEEEQUAD rs6000_ieeequad
-#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
-#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
-
-#define TARGET_SPE_ABI 0
-#define TARGET_SPE 0
-#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
-#define TARGET_FPRS 1
-#define TARGET_E500_SINGLE 0
-#define TARGET_E500_DOUBLE 0
-#define CHECK_E500_OPTIONS do { } while (0)
-
-/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
- Enable 32-bit fcfid's on any of the switches for newer ISA machines or
- XILINX. */
-#define TARGET_FCFID (TARGET_POWERPC64 \
- || TARGET_PPC_GPOPT /* 970/power4 */ \
- || TARGET_POPCNTB /* ISA 2.02 */ \
- || TARGET_CMPB /* ISA 2.05 */ \
- || TARGET_POPCNTD /* ISA 2.06 */ \
- || TARGET_XILINX_FPU)
-
-#define TARGET_FCTIDZ TARGET_FCFID
-#define TARGET_STFIWX TARGET_PPC_GFXOPT
-#define TARGET_LFIWAX TARGET_CMPB
-#define TARGET_LFIWZX TARGET_POPCNTD
-#define TARGET_FCFIDS TARGET_POPCNTD
-#define TARGET_FCFIDU TARGET_POPCNTD
-#define TARGET_FCFIDUS TARGET_POPCNTD
-#define TARGET_FCTIDUZ TARGET_POPCNTD
-#define TARGET_FCTIWUZ TARGET_POPCNTD
-
-/* In switching from using target_flags to using rs6000_isa_flags, the options
- machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
- OPTION_MASK_<xxx> back into MASK_<xxx>. */
-#define MASK_ALTIVEC OPTION_MASK_ALTIVEC
-#define MASK_CMPB OPTION_MASK_CMPB
-#define MASK_DFP OPTION_MASK_DFP
-#define MASK_DLMZB OPTION_MASK_DLMZB
-#define MASK_EABI OPTION_MASK_EABI
-#define MASK_FPRND OPTION_MASK_FPRND
-#define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
-#define MASK_ISEL OPTION_MASK_ISEL
-#define MASK_MFCRF OPTION_MASK_MFCRF
-#define MASK_MFPGPR OPTION_MASK_MFPGPR
-#define MASK_MULHW OPTION_MASK_MULHW
-#define MASK_MULTIPLE OPTION_MASK_MULTIPLE
-#define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
-#define MASK_POPCNTB OPTION_MASK_POPCNTB
-#define MASK_POPCNTD OPTION_MASK_POPCNTD
-#define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
-#define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
-#define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
-#define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
-#define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
-#define MASK_STRING OPTION_MASK_STRING
-#define MASK_UPDATE OPTION_MASK_UPDATE
-#define MASK_VSX OPTION_MASK_VSX
-
-#ifndef IN_LIBGCC2
-#define MASK_POWERPC64 OPTION_MASK_POWERPC64
-#endif
-
-#ifdef TARGET_64BIT
-#define MASK_64BIT OPTION_MASK_64BIT
-#endif
-
-#ifdef TARGET_RELOCATABLE
-#define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
-#endif
-
-#ifdef TARGET_LITTLE_ENDIAN
-#define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
-#endif
-
-#ifdef TARGET_MINIMAL_TOC
-#define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
-#endif
-
-#ifdef TARGET_REGNAMES
-#define MASK_REGNAMES OPTION_MASK_REGNAMES
-#endif
-
-#ifdef TARGET_PROTOTYPE
-#define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
-#endif
-
-/* Explicit ISA options that were set. */
-#define rs6000_isa_flags_explicit global_options_set.x_rs6000_isa_flags
-
-/* For power systems, we want to enable Altivec and VSX builtins even if the
- user did not use -maltivec or -mvsx to allow the builtins to be used inside
- of #pragma GCC target or the target attribute to change the code level for a
- given system. The SPE and Paired builtins are only enabled if you configure
- the compiler for those builtins, and those machines don't support altivec or
- VSX. */
-
-#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
- && ((TARGET_POWERPC64 \
- || TARGET_PPC_GPOPT /* 970/power4 */ \
- || TARGET_POPCNTB /* ISA 2.02 */ \
- || TARGET_CMPB /* ISA 2.05 */ \
- || TARGET_POPCNTD /* ISA 2.06 */ \
- || TARGET_ALTIVEC \
- || TARGET_VSX)))
-
-/* E500 cores only support plain "sync", not lwsync. */
-#define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
- || rs6000_cpu == PROCESSOR_PPC8548)
-
-
-/* Which machine supports the various reciprocal estimate instructions. */
-#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
- && TARGET_FPRS && TARGET_SINGLE_FLOAT)
-
-#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
- && TARGET_DOUBLE_FLOAT \
- && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
-
-#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
- && TARGET_FPRS && TARGET_SINGLE_FLOAT)
-
-#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
- && TARGET_DOUBLE_FLOAT \
- && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
-
-/* Whether the various reciprocal divide/square root estimate instructions
- exist, and whether we should automatically generate code for the instruction
- by default. */
-#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
-#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
-#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
-#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
-
-extern unsigned char rs6000_recip_bits[];
-
-#define RS6000_RECIP_HAVE_RE_P(MODE) \
- (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
-
-#define RS6000_RECIP_AUTO_RE_P(MODE) \
- (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
-
-#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
- (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
-
-#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
- (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
-
-#define RS6000_RECIP_HIGH_PRECISION_P(MODE) \
- ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION)
-
-/* The default CPU for TARGET_OPTION_OVERRIDE. */
-#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
-
-/* Target pragma. */
-#define REGISTER_TARGET_PRAGMAS() do { \
- c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
- targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
- targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
- rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
-} while (0)
-
-/* Target #defines. */
-#define TARGET_CPU_CPP_BUILTINS() \
- rs6000_cpu_cpp_builtins (pfile)
-
-/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
- we're compiling for. Some configurations may need to override it. */
-#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
- do \
- { \
- if (BYTES_BIG_ENDIAN) \
- { \
- builtin_define ("__BIG_ENDIAN__"); \
- builtin_define ("_BIG_ENDIAN"); \
- builtin_assert ("machine=bigendian"); \
- } \
- else \
- { \
- builtin_define ("__LITTLE_ENDIAN__"); \
- builtin_define ("_LITTLE_ENDIAN"); \
- builtin_assert ("machine=littleendian"); \
- } \
- } \
- while (0)
-
-/* Target machine storage layout. */
-
-/* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type. */
-
-#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
- (MODE) = TARGET_32BIT ? SImode : DImode;
-
-/* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
-/* That is true on RS/6000. */
-#define BITS_BIG_ENDIAN 1
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is true on RS/6000. */
-#define BYTES_BIG_ENDIAN 1
-
-/* Define this if most significant word of a multiword number is lowest
- numbered.
-
- For RS/6000 we can decide arbitrarily since there are no machine
- instructions for them. Might as well be consistent with bits and bytes. */
-#define WORDS_BIG_ENDIAN 1
-
-#define MAX_BITS_PER_WORD 64
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
-#ifdef IN_LIBGCC2
-#define MIN_UNITS_PER_WORD UNITS_PER_WORD
-#else
-#define MIN_UNITS_PER_WORD 4
-#endif
-#define UNITS_PER_FP_WORD 8
-#define UNITS_PER_ALTIVEC_WORD 16
-#define UNITS_PER_VSX_WORD 16
-#define UNITS_PER_SPE_WORD 8
-#define UNITS_PER_PAIRED_WORD 8
-
-/* Type used for ptrdiff_t, as a string used in a declaration. */
-#define PTRDIFF_TYPE "int"
-
-/* Type used for size_t, as a string used in a declaration. */
-#define SIZE_TYPE "long unsigned int"
-
-/* Type used for wchar_t, as a string used in a declaration. */
-#define WCHAR_TYPE "short unsigned int"
-
-/* Width of wchar_t in bits. */
-#define WCHAR_TYPE_SIZE 16
-
-/* A C expression for the size in bits of the type `short' on the
- target machine. If you don't define this, the default is half a
- word. (If this would be less than one storage unit, it is
- rounded up to one unit.) */
-#define SHORT_TYPE_SIZE 16
-
-/* A C expression for the size in bits of the type `int' on the
- target machine. If you don't define this, the default is one
- word. */
-#define INT_TYPE_SIZE 32
-
-/* A C expression for the size in bits of the type `long' on the
- target machine. If you don't define this, the default is one
- word. */
-#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
-
-/* A C expression for the size in bits of the type `long long' on the
- target machine. If you don't define this, the default is two
- words. */
-#define LONG_LONG_TYPE_SIZE 64
-
-/* A C expression for the size in bits of the type `float' on the
- target machine. If you don't define this, the default is one
- word. */
-#define FLOAT_TYPE_SIZE 32
-
-/* A C expression for the size in bits of the type `double' on the
- target machine. If you don't define this, the default is two
- words. */
-#define DOUBLE_TYPE_SIZE 64
-
-/* A C expression for the size in bits of the type `long double' on
- the target machine. If you don't define this, the default is two
- words. */
-#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
-
-/* Define this to set long double type size to use in libgcc2.c, which can
- not depend on target_flags. */
-#ifdef __LONG_DOUBLE_128__
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
-#else
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
-#endif
-
-/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
-#define WIDEST_HARDWARE_FP_SIZE 64
-
-/* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
-extern unsigned rs6000_pointer_size;
-#define POINTER_SIZE rs6000_pointer_size
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY \
- ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
- ? 64 : 128)
-
-/* Allocation boundary (in *bits*) for the code of a function. */
-#define FUNCTION_BOUNDARY 32
-
-/* No data type wants to be aligned rounder than this. */
-#define BIGGEST_ALIGNMENT 128
-
-/* A C expression to compute the alignment for a variables in the
- local store. TYPE is the data type, and ALIGN is the alignment
- that the object would ordinarily have. */
-#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
- DATA_ALIGNMENT (TYPE, ALIGN)
-
-/* Alignment of field after `int : 0' in a structure. */
-#define EMPTY_FIELD_BOUNDARY 32
-
-/* Every structure's size must be a multiple of this. */
-#define STRUCTURE_SIZE_BOUNDARY 8
-
-/* A bit-field declared as `int' forces `int' alignment for the struct. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Make strings word-aligned so strcpy from constants will be faster.
- Make vector constants quadword aligned. */
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (STRICT_ALIGNMENT || !optimize_size) \
- && (ALIGN) < BITS_PER_WORD \
- ? BITS_PER_WORD \
- : (ALIGN))
-
-/* Make arrays of chars word-aligned for the same reasons.
- Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
- 64 bits. */
-#define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == VECTOR_TYPE \
- ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
- || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
- ? 64 : 128) \
- : ((TARGET_E500_DOUBLE \
- && TREE_CODE (TYPE) == REAL_TYPE \
- && TYPE_MODE (TYPE) == DFmode) \
- ? 64 \
- : (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
-
-/* Nonzero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 0
-
-/* Define this macro to be the value 1 if unaligned accesses have a cost
- many times greater than aligned accesses, for example if they are
- emulated in a trap handler. */
-/* Altivec vector memory instructions simply ignore the low bits; SPE vector
- memory instructions trap on unaligned accesses; VSX memory instructions are
- aligned to 4 or 8 bytes. */
-#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
- (STRICT_ALIGNMENT \
- || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
- || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
- && (ALIGN) < 32) \
- || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
-
-
-/* Standard register usage. */
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- RS/6000 has 32 fixed-point registers, 32 floating-point registers,
- a count register, a link register, and 8 condition register fields,
- which we view here as separate registers. AltiVec adds 32 vector
- registers and a VRsave register.
-
- In addition, the difference between the frame and argument pointers is
- a function of the number of registers saved, so we need to have a
- register for AP that will later be eliminated in favor of SP or FP.
- This is a normal register, but it is fixed.
-
- We also create a pseudo register for float/int conversions, that will
- really represent the memory location used. It is represented here as
- a register, in order to work around problems in allocating stack storage
- in inline functions.
-
- Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
- pointer, which is eventually eliminated in favor of SP or FP. */
-
-#define FIRST_PSEUDO_REGISTER 114
-
-/* This must be included for pre gcc 3.0 glibc compatibility. */
-#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
-
-/* Add 32 dwarf columns for synthetic SPE registers. */
-#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
-
-/* The SPE has an additional 32 synthetic registers, with DWARF debug
- info numbering for these registers starting at 1200. While eh_frame
- register numbering need not be the same as the debug info numbering,
- we choose to number these regs for eh_frame at 1200 too. This allows
- future versions of the rs6000 backend to add hard registers and
- continue to use the gcc hard register numbering for eh_frame. If the
- extra SPE registers in eh_frame were numbered starting from the
- current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
- changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
- avoid invalidating older SPE eh_frame info.
-
- We must map them here to avoid huge unwinder tables mostly consisting
- of unused space. */
-#define DWARF_REG_TO_UNWIND_COLUMN(r) \
- ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
-
-/* Use standard DWARF numbering for DWARF debugging information. */
-#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
-
-/* Use gcc hard register numbering for eh_frame. */
-#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
-
-/* Map register numbers held in the call frame info that gcc has
- collected using DWARF_FRAME_REGNUM to those that should be output in
- .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
- for .eh_frame, but use the numbers mandated by the various ABIs for
- .debug_frame. rs6000_emit_prologue has translated any combination of
- CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
- the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
-#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
- ((FOR_EH) ? (REGNO) \
- : (REGNO) == CR2_REGNO ? 64 \
- : DBX_REGISTER_NUMBER (REGNO))
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
-
- On RS/6000, r1 is used for the stack. On Darwin, r2 is available
- as a local register; for all other OS's r2 is the TOC pointer.
-
- cr5 is not supposed to be used.
-
- On System V implementations, r13 is fixed and not available for use. */
-
-#define FIXED_REGISTERS \
- {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
- /* AltiVec registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1 \
- , 1, 1, 1 \
-}
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
-#define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
- /* AltiVec registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1 \
- , 1, 1, 1 \
-}
-
-/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
- the entire set of `FIXED_REGISTERS' be included.
- (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
- This macro is optional. If not specified, it defaults to the value
- of `CALL_USED_REGISTERS'. */
-
-#define CALL_REALLY_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
- /* AltiVec registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0 \
- , 0, 0, 0 \
-}
-
-#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
-
-#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
-#define FIRST_SAVED_FP_REGNO (14+32)
-#define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
-
-/* List the order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS.
-
- We allocate in the following order:
- fp0 (not saved or used for anything)
- fp13 - fp2 (not saved; incoming fp arg registers)
- fp1 (not saved; return value)
- fp31 - fp14 (saved; order given to save least number)
- cr7, cr6 (not saved or special)
- cr1 (not saved, but used for FP operations)
- cr0 (not saved, but used for arithmetic operations)
- cr4, cr3, cr2 (saved)
- r9 (not saved; best for TImode)
- r10, r8-r4 (not saved; highest first for less conflict with params)
- r3 (not saved; return value register)
- r11 (not saved; later alloc to help shrink-wrap)
- r0 (not saved; cannot be base reg)
- r31 - r13 (saved; order given to save least number)
- r12 (not saved; if used for DImode or DFmode would use r13)
- ctr (not saved; when we have the choice ctr is better)
- lr (saved)
- cr5, r1, r2, ap, ca (fixed)
- v0 - v1 (not saved or used for anything)
- v13 - v3 (not saved; incoming vector arg registers)
- v2 (not saved; incoming vector arg reg; return value)
- v19 - v14 (not saved or used for anything)
- v31 - v20 (saved; order given to save least number)
- vrsave, vscr (fixed)
- spe_acc, spefscr (fixed)
- sfp (fixed)
-*/
-
-#if FIXED_R2 == 1
-#define MAYBE_R2_AVAILABLE
-#define MAYBE_R2_FIXED 2,
-#else
-#define MAYBE_R2_AVAILABLE 2,
-#define MAYBE_R2_FIXED
-#endif
-
-#if FIXED_R13 == 1
-#define EARLY_R12 12,
-#define LATE_R12
-#else
-#define EARLY_R12
-#define LATE_R12 12,
-#endif
-
-#define REG_ALLOC_ORDER \
- {32, \
- 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
- 33, \
- 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
- 50, 49, 48, 47, 46, \
- 75, 74, 69, 68, 72, 71, 70, \
- MAYBE_R2_AVAILABLE \
- 9, 10, 8, 7, 6, 5, 4, \
- 3, EARLY_R12 11, 0, \
- 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
- 18, 17, 16, 15, 14, 13, LATE_R12 \
- 66, 65, \
- 73, 1, MAYBE_R2_FIXED 67, 76, \
- /* AltiVec registers. */ \
- 77, 78, \
- 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
- 79, \
- 96, 95, 94, 93, 92, 91, \
- 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
- 109, 110, \
- 111, 112, 113 \
-}
-
-/* True if register is floating-point. */
-#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
-
-/* True if register is a condition register. */
-#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
-
-/* True if register is a condition register, but not cr0. */
-#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
-
-/* True if register is an integer register. */
-#define INT_REGNO_P(N) \
- ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
-
-/* SPE SIMD registers are just the GPRs. */
-#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
-
-/* PAIRED SIMD registers are just the FPRs. */
-#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
-
-/* True if register is the CA register. */
-#define CA_REGNO_P(N) ((N) == CA_REGNO)
-
-/* True if register is an AltiVec register. */
-#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
-
-/* True if register is a VSX register. */
-#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
-
-/* Alternate name for any vector register supporting floating point, no matter
- which instruction set(s) are available. */
-#define VFLOAT_REGNO_P(N) \
- (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
-
-/* Alternate name for any vector register supporting integer, no matter which
- instruction set(s) are available. */
-#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
-
-/* Alternate name for any vector register supporting logical operations, no
- matter which instruction set(s) are available. */
-#define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE. */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
-
-/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
- enough space to account for vectors in FP regs. However, TFmode/TDmode
- should not use VSX instructions to do a caller save. */
-#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
- (TARGET_VSX \
- && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
- && FP_REGNO_P (REGNO) \
- ? V2DFmode \
- : ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
- ? DFmode \
- : ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
- ? DImode \
- : choose_hard_reg_mode ((REGNO), (NREGS), false))
-
-#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
- (((TARGET_32BIT && TARGET_POWERPC64 \
- && (GET_MODE_SIZE (MODE) > 4) \
- && INT_REGNO_P (REGNO)) ? 1 : 0) \
- || (TARGET_VSX && FP_REGNO_P (REGNO) \
- && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
- && ((MODE) != TFmode)))
-
-#define VSX_VECTOR_MODE(MODE) \
- ((MODE) == V4SFmode \
- || (MODE) == V2DFmode) \
-
-#define ALTIVEC_VECTOR_MODE(MODE) \
- ((MODE) == V16QImode \
- || (MODE) == V8HImode \
- || (MODE) == V4SFmode \
- || (MODE) == V4SImode)
-
-#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
- (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
- || (MODE) == V2DImode)
-
-#define SPE_VECTOR_MODE(MODE) \
- ((MODE) == V4HImode \
- || (MODE) == V2SFmode \
- || (MODE) == V1DImode \
- || (MODE) == V2SImode)
-
-#define PAIRED_VECTOR_MODE(MODE) \
- ((MODE) == V2SFmode)
-
-/* Value is TRUE if hard register REGNO can hold a value of
- machine-mode MODE. */
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-#define MODES_TIEABLE_P(MODE1, MODE2) \
- (SCALAR_FLOAT_MODE_P (MODE1) \
- ? SCALAR_FLOAT_MODE_P (MODE2) \
- : SCALAR_FLOAT_MODE_P (MODE2) \
- ? SCALAR_FLOAT_MODE_P (MODE1) \
- : GET_MODE_CLASS (MODE1) == MODE_CC \
- ? GET_MODE_CLASS (MODE2) == MODE_CC \
- : GET_MODE_CLASS (MODE2) == MODE_CC \
- ? GET_MODE_CLASS (MODE1) == MODE_CC \
- : SPE_VECTOR_MODE (MODE1) \
- ? SPE_VECTOR_MODE (MODE2) \
- : SPE_VECTOR_MODE (MODE2) \
- ? SPE_VECTOR_MODE (MODE1) \
- : ALTIVEC_VECTOR_MODE (MODE1) \
- ? ALTIVEC_VECTOR_MODE (MODE2) \
- : ALTIVEC_VECTOR_MODE (MODE2) \
- ? ALTIVEC_VECTOR_MODE (MODE1) \
- : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
- ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
- : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
- ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
- : 1)
-
-/* Post-reload, we can't use any new AltiVec registers, as we already
- emitted the vrsave mask. */
-
-#define HARD_REGNO_RENAME_OK(SRC, DST) \
- (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
-
-/* Specify the cost of a branch insn; roughly the number of extra insns that
- should be added to avoid a branch.
-
- Set this to 3 on the RS/6000 since that is roughly the average cost of an
- unscheduled conditional branch. */
-
-#define BRANCH_COST(speed_p, predictable_p) 3
-
-/* Override BRANCH_COST heuristic which empirically produces worse
- performance for removing short circuiting from the logical ops. */
-
-#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
-
-/* A fixed register used at epilogue generation to address SPE registers
- with negative offsets. The 64-bit load/store instructions on the SPE
- only take positive offsets (and small ones at that), so we need to
- reserve a register for consing up negative offsets. */
-
-#define FIXED_SCRATCH 0
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 1
-
-/* Base register for access to local variables of the function. */
-#define HARD_FRAME_POINTER_REGNUM 31
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 113
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 67
-
-/* Place to put static chain when calling a function that requires it. */
-#define STATIC_CHAIN_REGNUM 11
-
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
-/* The RS/6000 has three types of registers, fixed-point, floating-point, and
- condition registers, plus three special registers, CTR, and the link
- register. AltiVec adds a vector register class. VSX registers overlap the
- FPR registers and the Altivec registers.
-
- However, r0 is special in that it cannot be used as a base register.
- So make a class for registers valid as base registers.
-
- Also, cr0 is the only condition code register that can be used in
- arithmetic insns, so make a separate class for it. */
-
-enum reg_class
-{
- NO_REGS,
- BASE_REGS,
- GENERAL_REGS,
- FLOAT_REGS,
- ALTIVEC_REGS,
- VSX_REGS,
- VRSAVE_REGS,
- VSCR_REGS,
- SPE_ACC_REGS,
- SPEFSCR_REGS,
- NON_SPECIAL_REGS,
- LINK_REGS,
- CTR_REGS,
- LINK_OR_CTR_REGS,
- SPECIAL_REGS,
- SPEC_OR_GEN_REGS,
- CR0_REGS,
- CR_REGS,
- NON_FLOAT_REGS,
- CA_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ \
- "NO_REGS", \
- "BASE_REGS", \
- "GENERAL_REGS", \
- "FLOAT_REGS", \
- "ALTIVEC_REGS", \
- "VSX_REGS", \
- "VRSAVE_REGS", \
- "VSCR_REGS", \
- "SPE_ACC_REGS", \
- "SPEFSCR_REGS", \
- "NON_SPECIAL_REGS", \
- "LINK_REGS", \
- "CTR_REGS", \
- "LINK_OR_CTR_REGS", \
- "SPECIAL_REGS", \
- "SPEC_OR_GEN_REGS", \
- "CR0_REGS", \
- "CR_REGS", \
- "NON_FLOAT_REGS", \
- "CA_REGS", \
- "ALL_REGS" \
-}
-
-/* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
-#define REG_CLASS_CONTENTS \
-{ \
- { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
- { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
- { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
- { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
- { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
- { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
- { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
- { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
- { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
- { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
- { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
- { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
- { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
- { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
- { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
- { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
- { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
- { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
- { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
- { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
- { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0003ffff } /* ALL_REGS */ \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
-
-#if ENABLE_CHECKING
-#define REGNO_REG_CLASS(REGNO) \
- (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
- rs6000_regno_regclass[(REGNO)])
-
-#else
-#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
-#endif
-
-/* Register classes for various constraints that are based on the target
- switches. */
-enum r6000_reg_class_enum {
- RS6000_CONSTRAINT_d, /* fpr registers for double values */
- RS6000_CONSTRAINT_f, /* fpr registers for single values */
- RS6000_CONSTRAINT_v, /* Altivec registers */
- RS6000_CONSTRAINT_wa, /* Any VSX register */
- RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
- RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
- RS6000_CONSTRAINT_ws, /* VSX register for DF */
- RS6000_CONSTRAINT_MAX
-};
-
-extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
-
-/* The class value for index registers, and the one for base regs. */
-#define INDEX_REG_CLASS GENERAL_REGS
-#define BASE_REG_CLASS BASE_REGS
-
-/* Return whether a given register class can hold VSX objects. */
-#define VSX_REG_CLASS_P(CLASS) \
- ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
-
-/* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
-
- On the RS/6000, we have to return NO_REGS when we want to reload a
- floating-point CONST_DOUBLE to force it to be copied to memory.
-
- We also don't want to reload integer values into floating-point
- registers if we can at all help it. In fact, this can
- cause reload to die, if it tries to generate a reload of CTR
- into a FP register and discovers it doesn't have the memory location
- required.
-
- ??? Would it be a good idea to have reload do the converse, that is
- try to reload floating modes into FP registers if possible?
- */
-
-#define PREFERRED_RELOAD_CLASS(X,CLASS) \
- rs6000_preferred_reload_class_ptr (X, CLASS)
-
-/* Return the register class of a scratch register needed to copy IN into
- or out of a register in CLASS in MODE. If it can be done directly,
- NO_REGS is returned. */
-
-#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
- rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
-
-/* If we are copying between FP or AltiVec registers and anything
- else, we need a memory location. The exception is when we are
- targeting ppc64 and the move to/from fpr to gpr instructions
- are available.*/
-
-#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
- rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
-
-/* For cpus that cannot load/store SDmode values from the 64-bit
- FP registers without using a full 64-bit load/store, we need
- to allocate a full 64-bit stack slot for them. */
-
-#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
- rs6000_secondary_memory_needed_rtx (MODE)
-
-/* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS.
-
- On RS/6000, this is the size of MODE in words, except in the FP regs, where
- a single reg is enough for two words, unless we have VSX, where the FP
- registers can hold 128 bits. */
-#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
-
-/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
-
-#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
- rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Offsets recorded in opcodes are a multiple of this alignment factor. */
-#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
-
-/* Define this to nonzero if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame.
-
- On the RS/6000, we grow upwards, from the area after the outgoing
- arguments. */
-#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 || flag_asan != 0)
-
-/* Size of the outgoing register save area */
-#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
- || DEFAULT_ABI == ABI_DARWIN) \
- ? (TARGET_64BIT ? 64 : 32) \
- : 0)
-
-/* Size of the fixed area on the stack */
-#define RS6000_SAVE_AREA \
- (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
- << (TARGET_64BIT ? 1 : 0))
-
-/* MEM representing address to save the TOC register */
-#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
- plus_constant (Pmode, stack_pointer_rtx, \
- (TARGET_32BIT ? 20 : 40)))
-
-/* Align an address */
-#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated.
-
- On the RS/6000, the frame pointer is the same as the stack pointer,
- except for dynamic allocations. So we start after the fixed area and
- outgoing parameter area. */
-
-#define STARTING_FRAME_OFFSET \
- (FRAME_GROWS_DOWNWARD \
- ? 0 \
- : (RS6000_ALIGN (crtl->outgoing_args_size, \
- (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
- + RS6000_SAVE_AREA))
-
-/* Offset from the stack pointer register to an item dynamically
- allocated on the stack, e.g., by `alloca'.
-
- The default value for this macro is `STACK_POINTER_OFFSET' plus the
- length of the outgoing arguments. The default is correct for most
- machines. See `function.c' for details. */
-#define STACK_DYNAMIC_OFFSET(FUNDECL) \
- (RS6000_ALIGN (crtl->outgoing_args_size, \
- (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
- + (STACK_POINTER_OFFSET))
-
-/* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On RS/6000, don't define this because there are no push insns. */
-/* #define PUSH_ROUNDING(BYTES) */
-
-/* Offset of first parameter from the argument pointer register value.
- On the RS/6000, we define the argument pointer to the start of the fixed
- area. */
-#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
-
-/* Offset from the argument pointer register value to the top of
- stack. This is different from FIRST_PARM_OFFSET because of the
- register save area. */
-#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
-
-/* Define this if stack space is still allocated for a parameter passed
- in a register. The value is the number of bytes allocated to this
- area. */
-#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
-
-/* Define this if the above stack space is to be considered part of the
- space allocated by the caller. */
-#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
-
-/* This is the difference between the logical top of stack and the actual sp.
-
- For the RS/6000, sp points past the fixed area. */
-#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
-
-/* Define this if the maximum size of all the outgoing args is to be
- accumulated and pushed during the prologue. The amount can be
- found in the variable crtl->outgoing_args_size. */
-#define ACCUMULATE_OUTGOING_ARGS 1
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
-
-/* DRAFT_V4_STRUCT_RET defaults off. */
-#define DRAFT_V4_STRUCT_RET 0
-
-/* Let TARGET_RETURN_IN_MEMORY control what happens. */
-#define DEFAULT_PCC_STRUCT_RETURN 0
-
-/* Mode of stack savearea.
- FUNCTION is VOIDmode because calling convention maintains SP.
- BLOCK needs Pmode for SP.
- NONLOCAL needs twice Pmode to maintain both backchain and SP. */
-#define STACK_SAVEAREA_MODE(LEVEL) \
- (LEVEL == SAVE_FUNCTION ? VOIDmode \
- : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
-
-/* Minimum and maximum general purpose registers used to hold arguments. */
-#define GP_ARG_MIN_REG 3
-#define GP_ARG_MAX_REG 10
-#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
-
-/* Minimum and maximum floating point registers used to hold arguments. */
-#define FP_ARG_MIN_REG 33
-#define FP_ARG_AIX_MAX_REG 45
-#define FP_ARG_V4_MAX_REG 40
-#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
- || DEFAULT_ABI == ABI_DARWIN) \
- ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
-#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
-
-/* Minimum and maximum AltiVec registers used to hold arguments. */
-#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
-#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
-#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
-
-/* Return registers */
-#define GP_ARG_RETURN GP_ARG_MIN_REG
-#define FP_ARG_RETURN FP_ARG_MIN_REG
-#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
-
-/* Flags for the call/call_value rtl operations set up by function_arg */
-#define CALL_NORMAL 0x00000000 /* no special processing */
-/* Bits in 0x00000001 are unused. */
-#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
-#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
-#define CALL_LONG 0x00000008 /* always call indirect */
-#define CALL_LIBCALL 0x00000010 /* libcall */
-
-/* We don't have prologue and epilogue functions to save/restore
- everything for most ABIs. */
-#define WORLD_SAVE_P(INFO) 0
-
-/* 1 if N is a possible register number for a function value
- as seen by the caller.
-
- On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
-#define FUNCTION_VALUE_REGNO_P(N) \
- ((N) == GP_ARG_RETURN \
- || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
- || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
-
-/* 1 if N is a possible register number for function argument passing.
- On RS/6000, these are r3-r10 and fp1-fp13.
- On AltiVec, v2 - v13 are used for passing vectors. */
-#define FUNCTION_ARG_REGNO_P(N) \
- ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
- || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
- && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
- || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
- && TARGET_HARD_FLOAT && TARGET_FPRS))
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the RS/6000, this is a structure. The first element is the number of
- total argument words, the second is used to store the next
- floating-point register number, and the third says how many more args we
- have prototype types for.
-
- For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
- the next available GP register, `fregno' is the next available FP
- register, and `words' is the number of words used on the stack.
-
- The varargs/stdarg support requires that this structure's size
- be a multiple of sizeof(int). */
-
-typedef struct rs6000_args
-{
- int words; /* # words used for passing GP registers */
- int fregno; /* next available FP register */
- int vregno; /* next available AltiVec register */
- int nargs_prototype; /* # args left in the current prototype */
- int prototype; /* Whether a prototype was defined */
- int stdarg; /* Whether function is a stdarg function. */
- int call_cookie; /* Do special things for this call */
- int sysv_gregno; /* next available GP register */
- int intoffset; /* running offset in struct (darwin64) */
- int use_stack; /* any part of struct on stack (darwin64) */
- int floats_in_gpr; /* count of SFmode floats taking up
- GPR space (darwin64) */
- int named; /* false for varargs params */
- int escapes; /* if function visible outside tu */
-} CUMULATIVE_ARGS;
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
- init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
- N_NAMED_ARGS, FNDECL, VOIDmode)
-
-/* Similar, but when scanning the definition of a procedure. We always
- set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
-
-#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
- init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
- 1000, current_function_decl, VOIDmode)
-
-/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
-
-#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
- init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
- 0, NULL_TREE, MODE)
-
-/* If defined, a C expression which determines whether, and in which
- direction, to pad out an argument with extra space. The value
- should be of type `enum direction': either `upward' to pad above
- the argument, `downward' to pad below, or `none' to inhibit
- padding. */
-
-#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
-
-#define PAD_VARARGS_DOWN \
- (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) \
- output_function_profiler ((FILE), (LABELNO));
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. No definition is equivalent to
- always zero.
-
- On the RS/6000, this is nonzero because we can restore the stack from
- its backpointer, which we maintain. */
-#define EXIT_IGNORE_STACK 1
-
-/* Define this macro as a C expression that is nonzero for registers
- that are used by the epilogue or the return' pattern. The stack
- and frame pointer registers are already be assumed to be used as
- needed. */
-
-#define EPILOGUE_USES(REGNO) \
- ((reload_completed && (REGNO) == LR_REGNO) \
- || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
- || (crtl->calls_eh_return \
- && TARGET_AIX \
- && (REGNO) == 2))
-
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
-
-/* Definitions for __builtin_return_address and __builtin_frame_address.
- __builtin_return_address (0) should give link register (65), enable
- this. */
-/* This should be uncommented, so that the link register is used, but
- currently this would result in unmatched insns and spilling fixed
- registers so we'll leave it for another day. When these problems are
- taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
- (mrs) */
-/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
-
-/* Number of bytes into the frame return addresses can be found. See
- rs6000_stack_info in rs6000.c for more information on how the different
- abi's store the return address. */
-#define RETURN_ADDRESS_OFFSET \
- ((DEFAULT_ABI == ABI_AIX \
- || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
- (DEFAULT_ABI == ABI_V4) ? 4 : \
- (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
-
-/* The current return address is in link register (65). The return address
- of anything farther back is accessed normally at an offset of 8 from the
- frame pointer. */
-#define RETURN_ADDR_RTX(COUNT, FRAME) \
- (rs6000_return_addr (COUNT, FRAME))
-
-
-/* Definitions for register eliminations.
-
- We have two registers that can be eliminated on the RS/6000. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer.
-
- In addition, we use the elimination mechanism to see if r30 is needed
- Initially we assume that it isn't. If it is, we spill it. This is done
- by making it an eliminable register. We replace it with itself so that
- if it isn't needed, then existing uses won't be modified. */
-
-/* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
-#define ELIMINABLE_REGS \
-{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
-
-/* Addressing modes, and classification of registers for them. */
-
-#define HAVE_PRE_DECREMENT 1
-#define HAVE_PRE_INCREMENT 1
-#define HAVE_PRE_MODIFY_DISP 1
-#define HAVE_PRE_MODIFY_REG 1
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in reginfo.c during register
- allocation. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
-((REGNO) < FIRST_PSEUDO_REGISTER \
- ? (REGNO) <= 31 || (REGNO) == 67 \
- || (REGNO) == FRAME_POINTER_REGNUM \
- : (reg_renumber[REGNO] >= 0 \
- && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
- || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
-
-#define REGNO_OK_FOR_BASE_P(REGNO) \
-((REGNO) < FIRST_PSEUDO_REGISTER \
- ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
- || (REGNO) == FRAME_POINTER_REGNUM \
- : (reg_renumber[REGNO] > 0 \
- && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
- || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
-
-/* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg in the non-strict case. */
-#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
- ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
- || REGNO_OK_FOR_INDEX_P (REGNO (X)))
-
-/* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg in the non-strict case. */
-#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
- ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
- || REGNO_OK_FOR_BASE_P (REGNO (X)))
-
-
-/* Maximum number of registers that can appear in a valid memory address. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-/* Recognize any constant value that is a valid address. */
-
-#define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
-#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
-#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
- && EASY_VECTOR_15((n) >> 1) \
- && ((n) & 1) == 0)
-
-#define EASY_VECTOR_MSB(n,mode) \
- (((unsigned HOST_WIDE_INT)n) == \
- ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
-
-
-/* Try a machine-dependent way of reloading an illegitimate address
- operand. If we find one, push the reload and jump to WIN. This
- macro is used in only one place: `find_reloads_address' in reload.c.
-
- Implemented on rs6000 by rs6000_legitimize_reload_address.
- Note that (X) is evaluated twice; this is safe in current usage. */
-
-#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
-do { \
- int win; \
- (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
- (int)(TYPE), (IND_LEVELS), &win); \
- if ( win ) \
- goto WIN; \
-} while (0)
-
-#define FIND_BASE_TERM rs6000_find_base_term
-
-/* The register number of the register used to address a table of
- static data addresses in memory. In some cases this register is
- defined by a processor's "application binary interface" (ABI).
- When this macro is defined, RTL is generated for this register
- once, as with the stack pointer and frame pointer registers. If
- this macro is not defined, it is up to the machine-dependent files
- to allocate such a register (if necessary). */
-
-#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
-#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
-
-#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
-
-/* Define this macro if the register defined by
- `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
- this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
-
-/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
-
-/* A C expression that is nonzero if X is a legitimate immediate
- operand on the target machine when generating position independent
- code. You can assume that X satisfies `CONSTANT_P', so you need
- not check this. You can also assume FLAG_PIC is true, so you need
- not check it either. You need not define this macro if all
- constants (including `SYMBOL_REF') can be immediate operands when
- generating position independent code. */
-
-/* #define LEGITIMATE_PIC_OPERAND_P (X) */
-
-/* Define this if some processing needs to be done immediately before
- emitting code for an insn. */
-
-#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
- rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE SImode
-
-/* Define as C expression which evaluates to nonzero if the tablejump
- instruction expects the table to contain offsets from the address of the
- table.
- Do not define this if the table should contain absolute addresses. */
-#define CASE_VECTOR_PC_RELATIVE 1
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 0
-
-/* An integer expression for the size in bits of the largest integer machine
- mode that should actually be used. */
-
-/* Allow pairs of registers to be used, which is the intent of the default. */
-#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
-#define MAX_MOVE_MAX 8
-
-/* Nonzero if access to memory by bytes is no faster than for words.
- Also nonzero if doing byte operations (specifically shifts) in registers
- is undesirable. */
-#define SLOW_BYTE_ACCESS 1
-
-/* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
-#define WORD_REGISTER_OPERATIONS
-
-/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, UNKNOWN if none. */
-#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
-
-/* Define if loading short immediate values into registers sign extends. */
-#define SHORT_IMMEDIATES_SIGN_EXTEND
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
-#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
- ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
-
-/* The CTZ patterns return -1 for input of zero. */
-#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-extern unsigned rs6000_pmode;
-#define Pmode ((enum machine_mode)rs6000_pmode)
-
-/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
-#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
-
-/* Mode of a function address in a call instruction (for indexing purposes).
- Doesn't matter on RS/6000. */
-#define FUNCTION_MODE SImode
-
-/* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
-#define NO_FUNCTION_CSE
-
-/* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits.
-
- The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
- have been dropped from the PowerPC architecture. */
-#define SHIFT_COUNT_TRUNCATED 0
-
-/* Adjust the length of an INSN. LENGTH is the currently-computed length and
- should be adjusted to reflect any required changes. This macro is used when
- there is some systematic length adjustment required that would be difficult
- to express in the length attribute. */
-
-/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
-
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a
- COMPARE, return the mode to be used for the comparison. For
- floating-point, CCFPmode should be used. CCUNSmode should be used
- for unsigned comparisons. CCEQmode should be used when we are
- doing an inequality comparison on the result of a
- comparison. CCmode should be used in all other cases. */
-
-#define SELECT_CC_MODE(OP,X,Y) \
- (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
- : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
- : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
- ? CCEQmode : CCmode))
-
-/* Can the condition code MODE be safely reversed? This is safe in
- all cases on this port, because at present it doesn't use the
- trapping FP comparisons (fcmpo). */
-#define REVERSIBLE_CC_MODE(MODE) 1
-
-/* Given a condition code and a mode, return the inverse condition. */
-#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
-
-
-/* Control the assembler format that we output. */
-
-/* A C string constant describing how to begin a comment in the target
- assembler language. The compiler assumes that the comment will end at
- the end of the line. */
-#define ASM_COMMENT_START " #"
-
-/* Flag to say the TOC is initialized */
-extern int toc_initialized;
-
-/* Macro to output a special constant pool entry. Go to WIN if we output
- it. Otherwise, it is written the usual way.
-
- On the RS/6000, toc entries are handled this way. */
-
-#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
-{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
- { \
- output_toc (FILE, X, LABELNO, MODE); \
- goto WIN; \
- } \
-}
-
-#ifdef HAVE_GAS_WEAK
-#define RS6000_WEAK 1
-#else
-#define RS6000_WEAK 0
-#endif
-
-#if RS6000_WEAK
-/* Used in lieu of ASM_WEAKEN_LABEL. */
-#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
- do \
- { \
- fputs ("\t.weak\t", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
- && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
- { \
- if (TARGET_XCOFF) \
- fputs ("[DS]", (FILE)); \
- fputs ("\n\t.weak\t.", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- } \
- fputc ('\n', (FILE)); \
- if (VAL) \
- { \
- ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
- if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
- && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
- { \
- fputs ("\t.set\t.", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- fputs (",.", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
- fputc ('\n', (FILE)); \
- } \
- } \
- } \
- while (0)
-#endif
-
-#if HAVE_GAS_WEAKREF
-#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
- do \
- { \
- fputs ("\t.weakref\t", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- fputs (", ", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
- if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
- && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
- { \
- fputs ("\n\t.weakref\t.", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- fputs (", .", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
- } \
- fputc ('\n', (FILE)); \
- } while (0)
-#endif
-
-/* This implements the `alias' attribute. */
-#undef ASM_OUTPUT_DEF_FROM_DECLS
-#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
- do \
- { \
- const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
- const char *name = IDENTIFIER_POINTER (TARGET); \
- if (TREE_CODE (DECL) == FUNCTION_DECL \
- && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
- { \
- if (TREE_PUBLIC (DECL)) \
- { \
- if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
- { \
- fputs ("\t.globl\t.", FILE); \
- RS6000_OUTPUT_BASENAME (FILE, alias); \
- putc ('\n', FILE); \
- } \
- } \
- else if (TARGET_XCOFF) \
- { \
- fputs ("\t.lglobl\t.", FILE); \
- RS6000_OUTPUT_BASENAME (FILE, alias); \
- putc ('\n', FILE); \
- } \
- fputs ("\t.set\t.", FILE); \
- RS6000_OUTPUT_BASENAME (FILE, alias); \
- fputs (",.", FILE); \
- RS6000_OUTPUT_BASENAME (FILE, name); \
- fputc ('\n', FILE); \
- } \
- ASM_OUTPUT_DEF (FILE, alias, name); \
- } \
- while (0)
-
-#define TARGET_ASM_FILE_START rs6000_file_start
-
-/* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
-#define ASM_APP_ON ""
-
-/* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
-#define ASM_APP_OFF ""
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
-
-#define REGISTER_NAMES \
-{ \
- &rs6000_reg_names[ 0][0], /* r0 */ \
- &rs6000_reg_names[ 1][0], /* r1 */ \
- &rs6000_reg_names[ 2][0], /* r2 */ \
- &rs6000_reg_names[ 3][0], /* r3 */ \
- &rs6000_reg_names[ 4][0], /* r4 */ \
- &rs6000_reg_names[ 5][0], /* r5 */ \
- &rs6000_reg_names[ 6][0], /* r6 */ \
- &rs6000_reg_names[ 7][0], /* r7 */ \
- &rs6000_reg_names[ 8][0], /* r8 */ \
- &rs6000_reg_names[ 9][0], /* r9 */ \
- &rs6000_reg_names[10][0], /* r10 */ \
- &rs6000_reg_names[11][0], /* r11 */ \
- &rs6000_reg_names[12][0], /* r12 */ \
- &rs6000_reg_names[13][0], /* r13 */ \
- &rs6000_reg_names[14][0], /* r14 */ \
- &rs6000_reg_names[15][0], /* r15 */ \
- &rs6000_reg_names[16][0], /* r16 */ \
- &rs6000_reg_names[17][0], /* r17 */ \
- &rs6000_reg_names[18][0], /* r18 */ \
- &rs6000_reg_names[19][0], /* r19 */ \
- &rs6000_reg_names[20][0], /* r20 */ \
- &rs6000_reg_names[21][0], /* r21 */ \
- &rs6000_reg_names[22][0], /* r22 */ \
- &rs6000_reg_names[23][0], /* r23 */ \
- &rs6000_reg_names[24][0], /* r24 */ \
- &rs6000_reg_names[25][0], /* r25 */ \
- &rs6000_reg_names[26][0], /* r26 */ \
- &rs6000_reg_names[27][0], /* r27 */ \
- &rs6000_reg_names[28][0], /* r28 */ \
- &rs6000_reg_names[29][0], /* r29 */ \
- &rs6000_reg_names[30][0], /* r30 */ \
- &rs6000_reg_names[31][0], /* r31 */ \
- \
- &rs6000_reg_names[32][0], /* fr0 */ \
- &rs6000_reg_names[33][0], /* fr1 */ \
- &rs6000_reg_names[34][0], /* fr2 */ \
- &rs6000_reg_names[35][0], /* fr3 */ \
- &rs6000_reg_names[36][0], /* fr4 */ \
- &rs6000_reg_names[37][0], /* fr5 */ \
- &rs6000_reg_names[38][0], /* fr6 */ \
- &rs6000_reg_names[39][0], /* fr7 */ \
- &rs6000_reg_names[40][0], /* fr8 */ \
- &rs6000_reg_names[41][0], /* fr9 */ \
- &rs6000_reg_names[42][0], /* fr10 */ \
- &rs6000_reg_names[43][0], /* fr11 */ \
- &rs6000_reg_names[44][0], /* fr12 */ \
- &rs6000_reg_names[45][0], /* fr13 */ \
- &rs6000_reg_names[46][0], /* fr14 */ \
- &rs6000_reg_names[47][0], /* fr15 */ \
- &rs6000_reg_names[48][0], /* fr16 */ \
- &rs6000_reg_names[49][0], /* fr17 */ \
- &rs6000_reg_names[50][0], /* fr18 */ \
- &rs6000_reg_names[51][0], /* fr19 */ \
- &rs6000_reg_names[52][0], /* fr20 */ \
- &rs6000_reg_names[53][0], /* fr21 */ \
- &rs6000_reg_names[54][0], /* fr22 */ \
- &rs6000_reg_names[55][0], /* fr23 */ \
- &rs6000_reg_names[56][0], /* fr24 */ \
- &rs6000_reg_names[57][0], /* fr25 */ \
- &rs6000_reg_names[58][0], /* fr26 */ \
- &rs6000_reg_names[59][0], /* fr27 */ \
- &rs6000_reg_names[60][0], /* fr28 */ \
- &rs6000_reg_names[61][0], /* fr29 */ \
- &rs6000_reg_names[62][0], /* fr30 */ \
- &rs6000_reg_names[63][0], /* fr31 */ \
- \
- &rs6000_reg_names[64][0], /* was mq */ \
- &rs6000_reg_names[65][0], /* lr */ \
- &rs6000_reg_names[66][0], /* ctr */ \
- &rs6000_reg_names[67][0], /* ap */ \
- \
- &rs6000_reg_names[68][0], /* cr0 */ \
- &rs6000_reg_names[69][0], /* cr1 */ \
- &rs6000_reg_names[70][0], /* cr2 */ \
- &rs6000_reg_names[71][0], /* cr3 */ \
- &rs6000_reg_names[72][0], /* cr4 */ \
- &rs6000_reg_names[73][0], /* cr5 */ \
- &rs6000_reg_names[74][0], /* cr6 */ \
- &rs6000_reg_names[75][0], /* cr7 */ \
- \
- &rs6000_reg_names[76][0], /* ca */ \
- \
- &rs6000_reg_names[77][0], /* v0 */ \
- &rs6000_reg_names[78][0], /* v1 */ \
- &rs6000_reg_names[79][0], /* v2 */ \
- &rs6000_reg_names[80][0], /* v3 */ \
- &rs6000_reg_names[81][0], /* v4 */ \
- &rs6000_reg_names[82][0], /* v5 */ \
- &rs6000_reg_names[83][0], /* v6 */ \
- &rs6000_reg_names[84][0], /* v7 */ \
- &rs6000_reg_names[85][0], /* v8 */ \
- &rs6000_reg_names[86][0], /* v9 */ \
- &rs6000_reg_names[87][0], /* v10 */ \
- &rs6000_reg_names[88][0], /* v11 */ \
- &rs6000_reg_names[89][0], /* v12 */ \
- &rs6000_reg_names[90][0], /* v13 */ \
- &rs6000_reg_names[91][0], /* v14 */ \
- &rs6000_reg_names[92][0], /* v15 */ \
- &rs6000_reg_names[93][0], /* v16 */ \
- &rs6000_reg_names[94][0], /* v17 */ \
- &rs6000_reg_names[95][0], /* v18 */ \
- &rs6000_reg_names[96][0], /* v19 */ \
- &rs6000_reg_names[97][0], /* v20 */ \
- &rs6000_reg_names[98][0], /* v21 */ \
- &rs6000_reg_names[99][0], /* v22 */ \
- &rs6000_reg_names[100][0], /* v23 */ \
- &rs6000_reg_names[101][0], /* v24 */ \
- &rs6000_reg_names[102][0], /* v25 */ \
- &rs6000_reg_names[103][0], /* v26 */ \
- &rs6000_reg_names[104][0], /* v27 */ \
- &rs6000_reg_names[105][0], /* v28 */ \
- &rs6000_reg_names[106][0], /* v29 */ \
- &rs6000_reg_names[107][0], /* v30 */ \
- &rs6000_reg_names[108][0], /* v31 */ \
- &rs6000_reg_names[109][0], /* vrsave */ \
- &rs6000_reg_names[110][0], /* vscr */ \
- &rs6000_reg_names[111][0], /* spe_acc */ \
- &rs6000_reg_names[112][0], /* spefscr */ \
- &rs6000_reg_names[113][0], /* sfp */ \
-}
-
-/* Table of additional register names to use in user input. */
-
-#define ADDITIONAL_REGISTER_NAMES \
- {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
- {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
- {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
- {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
- {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
- {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
- {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
- {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
- {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
- {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
- {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
- {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
- {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
- {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
- {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
- {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
- {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
- {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
- {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
- {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
- {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
- {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
- {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
- {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
- {"vrsave", 109}, {"vscr", 110}, \
- {"spe_acc", 111}, {"spefscr", 112}, \
- /* no additional names for: lr, ctr, ap */ \
- {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
- {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
- {"cc", 68}, {"sp", 1}, {"toc", 2}, \
- /* CA is only part of XER, but we do not model the other parts (yet). */ \
- {"xer", 76}, \
- /* VSX registers overlaid on top of FR, Altivec registers */ \
- {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
- {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
- {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
- {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
- {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
- {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
- {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
- {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
- {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
- {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
- {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
- {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
- {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
- {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
- {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
- {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
- do { char buf[100]; \
- fputs ("\t.long ", FILE); \
- ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
- assemble_name (FILE, buf); \
- putc ('-', FILE); \
- ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
- assemble_name (FILE, buf); \
- putc ('\n', FILE); \
- } while (0)
-
-/* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
-#define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", (LOG))
-
-/* How to align the given loop. */
-#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
-
-/* Pick up the return address upon entry to a procedure. Used for
- dwarf2 unwind information. This also enables the table driven
- mechanism. */
-
-#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
-#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
-
-/* Describe how we implement __builtin_eh_return. */
-#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
-#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
-
-/* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
-#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
-/* Define which CODE values are valid. */
-
-#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
-
-/* Print a memory address as an operand to reference that memory location. */
-
-#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
-
-/* uncomment for disabling the corresponding default options */
-/* #define MACHINE_no_sched_interblock */
-/* #define MACHINE_no_sched_speculative */
-/* #define MACHINE_no_sched_speculative_load */
-
-/* General flags. */
-extern int frame_pointer_needed;
-
-/* Classification of the builtin functions as to which switches enable the
- builtin, and what attributes it should have. We used to use the target
- flags macros, but we've run out of bits, so we now map the options into new
- settings used here. */
-
-/* Builtin attributes. */
-#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
-#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
-#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
-#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
-#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
-#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
-#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
-#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
-#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
-
-#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
-#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
-#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
-#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
-#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
-
-/* Miscellaneous information. */
-#define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */
-
-/* Convenience macros to document the instruction type. */
-#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
-#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
-
-/* Builtin targets. For now, we reuse the masks for those options that are in
- target flags, and pick two random bits for SPE and paired which aren't in
- target_flags. */
-#define RS6000_BTM_ALWAYS 0 /* Always enabled. */
-#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
-#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
-#define RS6000_BTM_SPE MASK_STRING /* E500 */
-#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
-#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
-#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
-#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
-#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
-#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
-#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
-
-#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
- | RS6000_BTM_VSX \
- | RS6000_BTM_FRE \
- | RS6000_BTM_FRES \
- | RS6000_BTM_FRSQRTE \
- | RS6000_BTM_FRSQRTES \
- | RS6000_BTM_POPCNTD \
- | RS6000_BTM_CELL)
-
-/* Define builtin enum index. */
-
-#undef RS6000_BUILTIN_1
-#undef RS6000_BUILTIN_2
-#undef RS6000_BUILTIN_3
-#undef RS6000_BUILTIN_A
-#undef RS6000_BUILTIN_D
-#undef RS6000_BUILTIN_E
-#undef RS6000_BUILTIN_P
-#undef RS6000_BUILTIN_Q
-#undef RS6000_BUILTIN_S
-#undef RS6000_BUILTIN_X
-
-#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
-
-enum rs6000_builtins
-{
-#include "rs6000-builtin.def"
-
- RS6000_BUILTIN_COUNT
-};
-
-#undef RS6000_BUILTIN_1
-#undef RS6000_BUILTIN_2
-#undef RS6000_BUILTIN_3
-#undef RS6000_BUILTIN_A
-#undef RS6000_BUILTIN_D
-#undef RS6000_BUILTIN_E
-#undef RS6000_BUILTIN_P
-#undef RS6000_BUILTIN_Q
-#undef RS6000_BUILTIN_S
-#undef RS6000_BUILTIN_X
-
-enum rs6000_builtin_type_index
-{
- RS6000_BTI_NOT_OPAQUE,
- RS6000_BTI_opaque_V2SI,
- RS6000_BTI_opaque_V2SF,
- RS6000_BTI_opaque_p_V2SI,
- RS6000_BTI_opaque_V4SI,
- RS6000_BTI_V16QI,
- RS6000_BTI_V2SI,
- RS6000_BTI_V2SF,
- RS6000_BTI_V2DI,
- RS6000_BTI_V2DF,
- RS6000_BTI_V4HI,
- RS6000_BTI_V4SI,
- RS6000_BTI_V4SF,
- RS6000_BTI_V8HI,
- RS6000_BTI_unsigned_V16QI,
- RS6000_BTI_unsigned_V8HI,
- RS6000_BTI_unsigned_V4SI,
- RS6000_BTI_unsigned_V2DI,
- RS6000_BTI_bool_char, /* __bool char */
- RS6000_BTI_bool_short, /* __bool short */
- RS6000_BTI_bool_int, /* __bool int */
- RS6000_BTI_bool_long, /* __bool long */
- RS6000_BTI_pixel, /* __pixel */
- RS6000_BTI_bool_V16QI, /* __vector __bool char */
- RS6000_BTI_bool_V8HI, /* __vector __bool short */
- RS6000_BTI_bool_V4SI, /* __vector __bool int */
- RS6000_BTI_bool_V2DI, /* __vector __bool long */
- RS6000_BTI_pixel_V8HI, /* __vector __pixel */
- RS6000_BTI_long, /* long_integer_type_node */
- RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
- RS6000_BTI_long_long, /* long_long_integer_type_node */
- RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
- RS6000_BTI_INTQI, /* intQI_type_node */
- RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
- RS6000_BTI_INTHI, /* intHI_type_node */
- RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
- RS6000_BTI_INTSI, /* intSI_type_node */
- RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
- RS6000_BTI_INTDI, /* intDI_type_node */
- RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
- RS6000_BTI_float, /* float_type_node */
- RS6000_BTI_double, /* double_type_node */
- RS6000_BTI_void, /* void_type_node */
- RS6000_BTI_MAX
-};
-
-
-#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
-#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
-#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
-#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
-#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
-#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
-#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
-#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
-#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
-#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
-#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
-#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
-#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
-#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
-#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
-#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
-#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
-#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
-#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
-#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
-#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
-#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
-#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
-#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
-#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
-#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
-#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
-
-#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
-#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
-#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
-#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
-#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
-#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
-#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
-#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
-#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
-#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
-#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
-#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
-#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
-#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
-#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
-
-extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
-extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
-