aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/config/alpha/alpha.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/config/alpha/alpha.c')
-rw-r--r--gcc-4.8.1/gcc/config/alpha/alpha.c9884
1 files changed, 0 insertions, 9884 deletions
diff --git a/gcc-4.8.1/gcc/config/alpha/alpha.c b/gcc-4.8.1/gcc/config/alpha/alpha.c
deleted file mode 100644
index 6926055f2..000000000
--- a/gcc-4.8.1/gcc/config/alpha/alpha.c
+++ /dev/null
@@ -1,9884 +0,0 @@
-/* Subroutines used for code generation on the DEC Alpha.
- Copyright (C) 1992-2013 Free Software Foundation, Inc.
- Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "insn-config.h"
-#include "conditions.h"
-#include "output.h"
-#include "insn-attr.h"
-#include "flags.h"
-#include "recog.h"
-#include "expr.h"
-#include "optabs.h"
-#include "reload.h"
-#include "obstack.h"
-#include "except.h"
-#include "function.h"
-#include "diagnostic-core.h"
-#include "ggc.h"
-#include "tm_p.h"
-#include "target.h"
-#include "target-def.h"
-#include "common/common-target.h"
-#include "debug.h"
-#include "langhooks.h"
-#include "splay-tree.h"
-#include "gimple.h"
-#include "tree-flow.h"
-#include "tree-stdarg.h"
-#include "tm-constrs.h"
-#include "df.h"
-#include "libfuncs.h"
-#include "opts.h"
-#include "params.h"
-
-/* Specify which cpu to schedule for. */
-enum processor_type alpha_tune;
-
-/* Which cpu we're generating code for. */
-enum processor_type alpha_cpu;
-
-static const char * const alpha_cpu_name[] =
-{
- "ev4", "ev5", "ev6"
-};
-
-/* Specify how accurate floating-point traps need to be. */
-
-enum alpha_trap_precision alpha_tp;
-
-/* Specify the floating-point rounding mode. */
-
-enum alpha_fp_rounding_mode alpha_fprm;
-
-/* Specify which things cause traps. */
-
-enum alpha_fp_trap_mode alpha_fptm;
-
-/* Nonzero if inside of a function, because the Alpha asm can't
- handle .files inside of functions. */
-
-static int inside_function = FALSE;
-
-/* The number of cycles of latency we should assume on memory reads. */
-
-int alpha_memory_latency = 3;
-
-/* Whether the function needs the GP. */
-
-static int alpha_function_needs_gp;
-
-/* The assembler name of the current function. */
-
-static const char *alpha_fnname;
-
-/* The next explicit relocation sequence number. */
-extern GTY(()) int alpha_next_sequence_number;
-int alpha_next_sequence_number = 1;
-
-/* The literal and gpdisp sequence numbers for this insn, as printed
- by %# and %* respectively. */
-extern GTY(()) int alpha_this_literal_sequence_number;
-extern GTY(()) int alpha_this_gpdisp_sequence_number;
-int alpha_this_literal_sequence_number;
-int alpha_this_gpdisp_sequence_number;
-
-/* Costs of various operations on the different architectures. */
-
-struct alpha_rtx_cost_data
-{
- unsigned char fp_add;
- unsigned char fp_mult;
- unsigned char fp_div_sf;
- unsigned char fp_div_df;
- unsigned char int_mult_si;
- unsigned char int_mult_di;
- unsigned char int_shift;
- unsigned char int_cmov;
- unsigned short int_div;
-};
-
-static struct alpha_rtx_cost_data const alpha_rtx_cost_data[PROCESSOR_MAX] =
-{
- { /* EV4 */
- COSTS_N_INSNS (6), /* fp_add */
- COSTS_N_INSNS (6), /* fp_mult */
- COSTS_N_INSNS (34), /* fp_div_sf */
- COSTS_N_INSNS (63), /* fp_div_df */
- COSTS_N_INSNS (23), /* int_mult_si */
- COSTS_N_INSNS (23), /* int_mult_di */
- COSTS_N_INSNS (2), /* int_shift */
- COSTS_N_INSNS (2), /* int_cmov */
- COSTS_N_INSNS (97), /* int_div */
- },
- { /* EV5 */
- COSTS_N_INSNS (4), /* fp_add */
- COSTS_N_INSNS (4), /* fp_mult */
- COSTS_N_INSNS (15), /* fp_div_sf */
- COSTS_N_INSNS (22), /* fp_div_df */
- COSTS_N_INSNS (8), /* int_mult_si */
- COSTS_N_INSNS (12), /* int_mult_di */
- COSTS_N_INSNS (1) + 1, /* int_shift */
- COSTS_N_INSNS (1), /* int_cmov */
- COSTS_N_INSNS (83), /* int_div */
- },
- { /* EV6 */
- COSTS_N_INSNS (4), /* fp_add */
- COSTS_N_INSNS (4), /* fp_mult */
- COSTS_N_INSNS (12), /* fp_div_sf */
- COSTS_N_INSNS (15), /* fp_div_df */
- COSTS_N_INSNS (7), /* int_mult_si */
- COSTS_N_INSNS (7), /* int_mult_di */
- COSTS_N_INSNS (1), /* int_shift */
- COSTS_N_INSNS (2), /* int_cmov */
- COSTS_N_INSNS (86), /* int_div */
- },
-};
-
-/* Similar but tuned for code size instead of execution latency. The
- extra +N is fractional cost tuning based on latency. It's used to
- encourage use of cheaper insns like shift, but only if there's just
- one of them. */
-
-static struct alpha_rtx_cost_data const alpha_rtx_cost_size =
-{
- COSTS_N_INSNS (1), /* fp_add */
- COSTS_N_INSNS (1), /* fp_mult */
- COSTS_N_INSNS (1), /* fp_div_sf */
- COSTS_N_INSNS (1) + 1, /* fp_div_df */
- COSTS_N_INSNS (1) + 1, /* int_mult_si */
- COSTS_N_INSNS (1) + 2, /* int_mult_di */
- COSTS_N_INSNS (1), /* int_shift */
- COSTS_N_INSNS (1), /* int_cmov */
- COSTS_N_INSNS (6), /* int_div */
-};
-
-/* Get the number of args of a function in one of two ways. */
-#if TARGET_ABI_OPEN_VMS
-#define NUM_ARGS crtl->args.info.num_args
-#else
-#define NUM_ARGS crtl->args.info
-#endif
-
-#define REG_PV 27
-#define REG_RA 26
-
-/* Declarations of static functions. */
-static struct machine_function *alpha_init_machine_status (void);
-static rtx alpha_emit_xfloating_compare (enum rtx_code *, rtx, rtx);
-
-#if TARGET_ABI_OPEN_VMS
-static void alpha_write_linkage (FILE *, const char *);
-static bool vms_valid_pointer_mode (enum machine_mode);
-#else
-#define vms_patch_builtins() gcc_unreachable()
-#endif
-
-#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
-/* Implement TARGET_MANGLE_TYPE. */
-
-static const char *
-alpha_mangle_type (const_tree type)
-{
- if (TYPE_MAIN_VARIANT (type) == long_double_type_node
- && TARGET_LONG_DOUBLE_128)
- return "g";
-
- /* For all other types, use normal C++ mangling. */
- return NULL;
-}
-#endif
-
-/* Parse target option strings. */
-
-static void
-alpha_option_override (void)
-{
- static const struct cpu_table {
- const char *const name;
- const enum processor_type processor;
- const int flags;
- const unsigned short line_size; /* in bytes */
- const unsigned short l1_size; /* in kb. */
- const unsigned short l2_size; /* in kb. */
- } cpu_table[] = {
- /* EV4/LCA45 had 8k L1 caches; EV45 had 16k L1 caches.
- EV4/EV45 had 128k to 16M 32-byte direct Bcache. LCA45
- had 64k to 8M 8-byte direct Bcache. */
- { "ev4", PROCESSOR_EV4, 0, 32, 8, 8*1024 },
- { "21064", PROCESSOR_EV4, 0, 32, 8, 8*1024 },
- { "ev45", PROCESSOR_EV4, 0, 32, 16, 16*1024 },
-
- /* EV5 or EV56 had 8k 32 byte L1, 96k 32 or 64 byte L2,
- and 1M to 16M 64 byte L3 (not modeled).
- PCA56 had 16k 64-byte cache; PCA57 had 32k Icache.
- PCA56 had 8k 64-byte cache; PCA57 had 16k Dcache. */
- { "ev5", PROCESSOR_EV5, 0, 32, 8, 96 },
- { "21164", PROCESSOR_EV5, 0, 32, 8, 96 },
- { "ev56", PROCESSOR_EV5, MASK_BWX, 32, 8, 96 },
- { "21164a", PROCESSOR_EV5, MASK_BWX, 32, 8, 96 },
- { "pca56", PROCESSOR_EV5, MASK_BWX|MASK_MAX, 64, 16, 4*1024 },
- { "21164PC",PROCESSOR_EV5, MASK_BWX|MASK_MAX, 64, 16, 4*1024 },
- { "21164pc",PROCESSOR_EV5, MASK_BWX|MASK_MAX, 64, 16, 4*1024 },
-
- /* EV6 had 64k 64 byte L1, 1M to 16M Bcache. */
- { "ev6", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX, 64, 64, 16*1024 },
- { "21264", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX, 64, 64, 16*1024 },
- { "ev67", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX,
- 64, 64, 16*1024 },
- { "21264a", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX,
- 64, 64, 16*1024 }
- };
-
- int const ct_size = ARRAY_SIZE (cpu_table);
- int line_size = 0, l1_size = 0, l2_size = 0;
- int i;
-
-#ifdef SUBTARGET_OVERRIDE_OPTIONS
- SUBTARGET_OVERRIDE_OPTIONS;
-#endif
-
- /* Default to full IEEE compliance mode for Go language. */
- if (strcmp (lang_hooks.name, "GNU Go") == 0
- && !(target_flags_explicit & MASK_IEEE))
- target_flags |= MASK_IEEE;
-
- alpha_fprm = ALPHA_FPRM_NORM;
- alpha_tp = ALPHA_TP_PROG;
- alpha_fptm = ALPHA_FPTM_N;
-
- if (TARGET_IEEE)
- {
- alpha_tp = ALPHA_TP_INSN;
- alpha_fptm = ALPHA_FPTM_SU;
- }
- if (TARGET_IEEE_WITH_INEXACT)
- {
- alpha_tp = ALPHA_TP_INSN;
- alpha_fptm = ALPHA_FPTM_SUI;
- }
-
- if (alpha_tp_string)
- {
- if (! strcmp (alpha_tp_string, "p"))
- alpha_tp = ALPHA_TP_PROG;
- else if (! strcmp (alpha_tp_string, "f"))
- alpha_tp = ALPHA_TP_FUNC;
- else if (! strcmp (alpha_tp_string, "i"))
- alpha_tp = ALPHA_TP_INSN;
- else
- error ("bad value %qs for -mtrap-precision switch", alpha_tp_string);
- }
-
- if (alpha_fprm_string)
- {
- if (! strcmp (alpha_fprm_string, "n"))
- alpha_fprm = ALPHA_FPRM_NORM;
- else if (! strcmp (alpha_fprm_string, "m"))
- alpha_fprm = ALPHA_FPRM_MINF;
- else if (! strcmp (alpha_fprm_string, "c"))
- alpha_fprm = ALPHA_FPRM_CHOP;
- else if (! strcmp (alpha_fprm_string,"d"))
- alpha_fprm = ALPHA_FPRM_DYN;
- else
- error ("bad value %qs for -mfp-rounding-mode switch",
- alpha_fprm_string);
- }
-
- if (alpha_fptm_string)
- {
- if (strcmp (alpha_fptm_string, "n") == 0)
- alpha_fptm = ALPHA_FPTM_N;
- else if (strcmp (alpha_fptm_string, "u") == 0)
- alpha_fptm = ALPHA_FPTM_U;
- else if (strcmp (alpha_fptm_string, "su") == 0)
- alpha_fptm = ALPHA_FPTM_SU;
- else if (strcmp (alpha_fptm_string, "sui") == 0)
- alpha_fptm = ALPHA_FPTM_SUI;
- else
- error ("bad value %qs for -mfp-trap-mode switch", alpha_fptm_string);
- }
-
- if (alpha_cpu_string)
- {
- for (i = 0; i < ct_size; i++)
- if (! strcmp (alpha_cpu_string, cpu_table [i].name))
- {
- alpha_tune = alpha_cpu = cpu_table[i].processor;
- line_size = cpu_table[i].line_size;
- l1_size = cpu_table[i].l1_size;
- l2_size = cpu_table[i].l2_size;
- target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX);
- target_flags |= cpu_table[i].flags;
- break;
- }
- if (i == ct_size)
- error ("bad value %qs for -mcpu switch", alpha_cpu_string);
- }
-
- if (alpha_tune_string)
- {
- for (i = 0; i < ct_size; i++)
- if (! strcmp (alpha_tune_string, cpu_table [i].name))
- {
- alpha_tune = cpu_table[i].processor;
- line_size = cpu_table[i].line_size;
- l1_size = cpu_table[i].l1_size;
- l2_size = cpu_table[i].l2_size;
- break;
- }
- if (i == ct_size)
- error ("bad value %qs for -mtune switch", alpha_tune_string);
- }
-
- if (line_size)
- maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, line_size,
- global_options.x_param_values,
- global_options_set.x_param_values);
- if (l1_size)
- maybe_set_param_value (PARAM_L1_CACHE_SIZE, l1_size,
- global_options.x_param_values,
- global_options_set.x_param_values);
- if (l2_size)
- maybe_set_param_value (PARAM_L2_CACHE_SIZE, l2_size,
- global_options.x_param_values,
- global_options_set.x_param_values);
-
- /* Do some sanity checks on the above options. */
-
- if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
- && alpha_tp != ALPHA_TP_INSN && alpha_cpu != PROCESSOR_EV6)
- {
- warning (0, "fp software completion requires -mtrap-precision=i");
- alpha_tp = ALPHA_TP_INSN;
- }
-
- if (alpha_cpu == PROCESSOR_EV6)
- {
- /* Except for EV6 pass 1 (not released), we always have precise
- arithmetic traps. Which means we can do software completion
- without minding trap shadows. */
- alpha_tp = ALPHA_TP_PROG;
- }
-
- if (TARGET_FLOAT_VAX)
- {
- if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
- {
- warning (0, "rounding mode not supported for VAX floats");
- alpha_fprm = ALPHA_FPRM_NORM;
- }
- if (alpha_fptm == ALPHA_FPTM_SUI)
- {
- warning (0, "trap mode not supported for VAX floats");
- alpha_fptm = ALPHA_FPTM_SU;
- }
- if (target_flags_explicit & MASK_LONG_DOUBLE_128)
- warning (0, "128-bit long double not supported for VAX floats");
- target_flags &= ~MASK_LONG_DOUBLE_128;
- }
-
- {
- char *end;
- int lat;
-
- if (!alpha_mlat_string)
- alpha_mlat_string = "L1";
-
- if (ISDIGIT ((unsigned char)alpha_mlat_string[0])
- && (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
- ;
- else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
- && ISDIGIT ((unsigned char)alpha_mlat_string[1])
- && alpha_mlat_string[2] == '\0')
- {
- static int const cache_latency[][4] =
- {
- { 3, 30, -1 }, /* ev4 -- Bcache is a guess */
- { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
- { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */
- };
-
- lat = alpha_mlat_string[1] - '0';
- if (lat <= 0 || lat > 3 || cache_latency[alpha_tune][lat-1] == -1)
- {
- warning (0, "L%d cache latency unknown for %s",
- lat, alpha_cpu_name[alpha_tune]);
- lat = 3;
- }
- else
- lat = cache_latency[alpha_tune][lat-1];
- }
- else if (! strcmp (alpha_mlat_string, "main"))
- {
- /* Most current memories have about 370ns latency. This is
- a reasonable guess for a fast cpu. */
- lat = 150;
- }
- else
- {
- warning (0, "bad value %qs for -mmemory-latency", alpha_mlat_string);
- lat = 3;
- }
-
- alpha_memory_latency = lat;
- }
-
- /* Default the definition of "small data" to 8 bytes. */
- if (!global_options_set.x_g_switch_value)
- g_switch_value = 8;
-
- /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */
- if (flag_pic == 1)
- target_flags |= MASK_SMALL_DATA;
- else if (flag_pic == 2)
- target_flags &= ~MASK_SMALL_DATA;
-
- /* Align labels and loops for optimal branching. */
- /* ??? Kludge these by not doing anything if we don't optimize. */
- if (optimize > 0)
- {
- if (align_loops <= 0)
- align_loops = 16;
- if (align_jumps <= 0)
- align_jumps = 16;
- }
- if (align_functions <= 0)
- align_functions = 16;
-
- /* Register variables and functions with the garbage collector. */
-
- /* Set up function hooks. */
- init_machine_status = alpha_init_machine_status;
-
- /* Tell the compiler when we're using VAX floating point. */
- if (TARGET_FLOAT_VAX)
- {
- REAL_MODE_FORMAT (SFmode) = &vax_f_format;
- REAL_MODE_FORMAT (DFmode) = &vax_g_format;
- REAL_MODE_FORMAT (TFmode) = NULL;
- }
-
-#ifdef TARGET_DEFAULT_LONG_DOUBLE_128
- if (!(target_flags_explicit & MASK_LONG_DOUBLE_128))
- target_flags |= MASK_LONG_DOUBLE_128;
-#endif
-}
-
-/* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
-
-int
-zap_mask (HOST_WIDE_INT value)
-{
- int i;
-
- for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
- i++, value >>= 8)
- if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
- return 0;
-
- return 1;
-}
-
-/* Return true if OP is valid for a particular TLS relocation.
- We are already guaranteed that OP is a CONST. */
-
-int
-tls_symbolic_operand_1 (rtx op, int size, int unspec)
-{
- op = XEXP (op, 0);
-
- if (GET_CODE (op) != UNSPEC || XINT (op, 1) != unspec)
- return 0;
- op = XVECEXP (op, 0, 0);
-
- if (GET_CODE (op) != SYMBOL_REF)
- return 0;
-
- switch (SYMBOL_REF_TLS_MODEL (op))
- {
- case TLS_MODEL_LOCAL_DYNAMIC:
- return unspec == UNSPEC_DTPREL && size == alpha_tls_size;
- case TLS_MODEL_INITIAL_EXEC:
- return unspec == UNSPEC_TPREL && size == 64;
- case TLS_MODEL_LOCAL_EXEC:
- return unspec == UNSPEC_TPREL && size == alpha_tls_size;
- default:
- gcc_unreachable ();
- }
-}
-
-/* Used by aligned_memory_operand and unaligned_memory_operand to
- resolve what reload is going to do with OP if it's a register. */
-
-rtx
-resolve_reload_operand (rtx op)
-{
- if (reload_in_progress)
- {
- rtx tmp = op;
- if (GET_CODE (tmp) == SUBREG)
- tmp = SUBREG_REG (tmp);
- if (REG_P (tmp)
- && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
- {
- op = reg_equiv_memory_loc (REGNO (tmp));
- if (op == 0)
- return 0;
- }
- }
- return op;
-}
-
-/* The scalar modes supported differs from the default check-what-c-supports
- version in that sometimes TFmode is available even when long double
- indicates only DFmode. */
-
-static bool
-alpha_scalar_mode_supported_p (enum machine_mode mode)
-{
- switch (mode)
- {
- case QImode:
- case HImode:
- case SImode:
- case DImode:
- case TImode: /* via optabs.c */
- return true;
-
- case SFmode:
- case DFmode:
- return true;
-
- case TFmode:
- return TARGET_HAS_XFLOATING_LIBS;
-
- default:
- return false;
- }
-}
-
-/* Alpha implements a couple of integer vector mode operations when
- TARGET_MAX is enabled. We do not check TARGET_MAX here, however,
- which allows the vectorizer to operate on e.g. move instructions,
- or when expand_vector_operations can do something useful. */
-
-static bool
-alpha_vector_mode_supported_p (enum machine_mode mode)
-{
- return mode == V8QImode || mode == V4HImode || mode == V2SImode;
-}
-
-/* Return 1 if this function can directly return via $26. */
-
-int
-direct_return (void)
-{
- return (TARGET_ABI_OSF
- && reload_completed
- && alpha_sa_size () == 0
- && get_frame_size () == 0
- && crtl->outgoing_args_size == 0
- && crtl->args.pretend_args_size == 0);
-}
-
-/* Return the TLS model to use for SYMBOL. */
-
-static enum tls_model
-tls_symbolic_operand_type (rtx symbol)
-{
- enum tls_model model;
-
- if (GET_CODE (symbol) != SYMBOL_REF)
- return TLS_MODEL_NONE;
- model = SYMBOL_REF_TLS_MODEL (symbol);
-
- /* Local-exec with a 64-bit size is the same code as initial-exec. */
- if (model == TLS_MODEL_LOCAL_EXEC && alpha_tls_size == 64)
- model = TLS_MODEL_INITIAL_EXEC;
-
- return model;
-}
-
-/* Return true if the function DECL will share the same GP as any
- function in the current unit of translation. */
-
-static bool
-decl_has_samegp (const_tree decl)
-{
- /* Functions that are not local can be overridden, and thus may
- not share the same gp. */
- if (!(*targetm.binds_local_p) (decl))
- return false;
-
- /* If -msmall-data is in effect, assume that there is only one GP
- for the module, and so any local symbol has this property. We
- need explicit relocations to be able to enforce this for symbols
- not defined in this unit of translation, however. */
- if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
- return true;
-
- /* Functions that are not external are defined in this UoT. */
- /* ??? Irritatingly, static functions not yet emitted are still
- marked "external". Apply this to non-static functions only. */
- return !TREE_PUBLIC (decl) || !DECL_EXTERNAL (decl);
-}
-
-/* Return true if EXP should be placed in the small data section. */
-
-static bool
-alpha_in_small_data_p (const_tree exp)
-{
- /* We want to merge strings, so we never consider them small data. */
- if (TREE_CODE (exp) == STRING_CST)
- return false;
-
- /* Functions are never in the small data area. Duh. */
- if (TREE_CODE (exp) == FUNCTION_DECL)
- return false;
-
- if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
- {
- const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
- if (strcmp (section, ".sdata") == 0
- || strcmp (section, ".sbss") == 0)
- return true;
- }
- else
- {
- HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
-
- /* If this is an incomplete type with size 0, then we can't put it
- in sdata because it might be too big when completed. */
- if (size > 0 && size <= g_switch_value)
- return true;
- }
-
- return false;
-}
-
-#if TARGET_ABI_OPEN_VMS
-static bool
-vms_valid_pointer_mode (enum machine_mode mode)
-{
- return (mode == SImode || mode == DImode);
-}
-
-static bool
-alpha_linkage_symbol_p (const char *symname)
-{
- int symlen = strlen (symname);
-
- if (symlen > 4)
- return strcmp (&symname [symlen - 4], "..lk") == 0;
-
- return false;
-}
-
-#define LINKAGE_SYMBOL_REF_P(X) \
- ((GET_CODE (X) == SYMBOL_REF \
- && alpha_linkage_symbol_p (XSTR (X, 0))) \
- || (GET_CODE (X) == CONST \
- && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
- && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0))))
-#endif
-
-/* legitimate_address_p recognizes an RTL expression that is a valid
- memory address for an instruction. The MODE argument is the
- machine mode for the MEM expression that wants to use this address.
-
- For Alpha, we have either a constant address or the sum of a
- register and a constant address, or just a register. For DImode,
- any of those forms can be surrounded with an AND that clear the
- low-order three bits; this is an "unaligned" access. */
-
-static bool
-alpha_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
-{
- /* If this is an ldq_u type address, discard the outer AND. */
- if (mode == DImode
- && GET_CODE (x) == AND
- && CONST_INT_P (XEXP (x, 1))
- && INTVAL (XEXP (x, 1)) == -8)
- x = XEXP (x, 0);
-
- /* Discard non-paradoxical subregs. */
- if (GET_CODE (x) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (x))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
- x = SUBREG_REG (x);
-
- /* Unadorned general registers are valid. */
- if (REG_P (x)
- && (strict
- ? STRICT_REG_OK_FOR_BASE_P (x)
- : NONSTRICT_REG_OK_FOR_BASE_P (x)))
- return true;
-
- /* Constant addresses (i.e. +/- 32k) are valid. */
- if (CONSTANT_ADDRESS_P (x))
- return true;
-
-#if TARGET_ABI_OPEN_VMS
- if (LINKAGE_SYMBOL_REF_P (x))
- return true;
-#endif
-
- /* Register plus a small constant offset is valid. */
- if (GET_CODE (x) == PLUS)
- {
- rtx ofs = XEXP (x, 1);
- x = XEXP (x, 0);
-
- /* Discard non-paradoxical subregs. */
- if (GET_CODE (x) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (x))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
- x = SUBREG_REG (x);
-
- if (REG_P (x))
- {
- if (! strict
- && NONSTRICT_REG_OK_FP_BASE_P (x)
- && CONST_INT_P (ofs))
- return true;
- if ((strict
- ? STRICT_REG_OK_FOR_BASE_P (x)
- : NONSTRICT_REG_OK_FOR_BASE_P (x))
- && CONSTANT_ADDRESS_P (ofs))
- return true;
- }
- }
-
- /* If we're managing explicit relocations, LO_SUM is valid, as are small
- data symbols. Avoid explicit relocations of modes larger than word
- mode since i.e. $LC0+8($1) can fold around +/- 32k offset. */
- else if (TARGET_EXPLICIT_RELOCS
- && GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
- {
- if (small_symbolic_operand (x, Pmode))
- return true;
-
- if (GET_CODE (x) == LO_SUM)
- {
- rtx ofs = XEXP (x, 1);
- x = XEXP (x, 0);
-
- /* Discard non-paradoxical subregs. */
- if (GET_CODE (x) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (x))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
- x = SUBREG_REG (x);
-
- /* Must have a valid base register. */
- if (! (REG_P (x)
- && (strict
- ? STRICT_REG_OK_FOR_BASE_P (x)
- : NONSTRICT_REG_OK_FOR_BASE_P (x))))
- return false;
-
- /* The symbol must be local. */
- if (local_symbolic_operand (ofs, Pmode)
- || dtp32_symbolic_operand (ofs, Pmode)
- || tp32_symbolic_operand (ofs, Pmode))
- return true;
- }
- }
-
- return false;
-}
-
-/* Build the SYMBOL_REF for __tls_get_addr. */
-
-static GTY(()) rtx tls_get_addr_libfunc;
-
-static rtx
-get_tls_get_addr (void)
-{
- if (!tls_get_addr_libfunc)
- tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
- return tls_get_addr_libfunc;
-}
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address. */
-
-static rtx
-alpha_legitimize_address_1 (rtx x, rtx scratch, enum machine_mode mode)
-{
- HOST_WIDE_INT addend;
-
- /* If the address is (plus reg const_int) and the CONST_INT is not a
- valid offset, compute the high part of the constant and add it to
- the register. Then our address is (plus temp low-part-const). */
- if (GET_CODE (x) == PLUS
- && REG_P (XEXP (x, 0))
- && CONST_INT_P (XEXP (x, 1))
- && ! CONSTANT_ADDRESS_P (XEXP (x, 1)))
- {
- addend = INTVAL (XEXP (x, 1));
- x = XEXP (x, 0);
- goto split_addend;
- }
-
- /* If the address is (const (plus FOO const_int)), find the low-order
- part of the CONST_INT. Then load FOO plus any high-order part of the
- CONST_INT into a register. Our address is (plus reg low-part-const).
- This is done to reduce the number of GOT entries. */
- if (can_create_pseudo_p ()
- && GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
- {
- addend = INTVAL (XEXP (XEXP (x, 0), 1));
- x = force_reg (Pmode, XEXP (XEXP (x, 0), 0));
- goto split_addend;
- }
-
- /* If we have a (plus reg const), emit the load as in (2), then add
- the two registers, and finally generate (plus reg low-part-const) as
- our address. */
- if (can_create_pseudo_p ()
- && GET_CODE (x) == PLUS
- && REG_P (XEXP (x, 0))
- && GET_CODE (XEXP (x, 1)) == CONST
- && GET_CODE (XEXP (XEXP (x, 1), 0)) == PLUS
- && CONST_INT_P (XEXP (XEXP (XEXP (x, 1), 0), 1)))
- {
- addend = INTVAL (XEXP (XEXP (XEXP (x, 1), 0), 1));
- x = expand_simple_binop (Pmode, PLUS, XEXP (x, 0),
- XEXP (XEXP (XEXP (x, 1), 0), 0),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- goto split_addend;
- }
-
- /* If this is a local symbol, split the address into HIGH/LO_SUM parts.
- Avoid modes larger than word mode since i.e. $LC0+8($1) can fold
- around +/- 32k offset. */
- if (TARGET_EXPLICIT_RELOCS
- && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
- && symbolic_operand (x, Pmode))
- {
- rtx r0, r16, eqv, tga, tp, insn, dest, seq;
-
- switch (tls_symbolic_operand_type (x))
- {
- case TLS_MODEL_NONE:
- break;
-
- case TLS_MODEL_GLOBAL_DYNAMIC:
- start_sequence ();
-
- r0 = gen_rtx_REG (Pmode, 0);
- r16 = gen_rtx_REG (Pmode, 16);
- tga = get_tls_get_addr ();
- dest = gen_reg_rtx (Pmode);
- seq = GEN_INT (alpha_next_sequence_number++);
-
- emit_insn (gen_movdi_er_tlsgd (r16, pic_offset_table_rtx, x, seq));
- insn = gen_call_value_osf_tlsgd (r0, tga, seq);
- insn = emit_call_insn (insn);
- RTL_CONST_CALL_P (insn) = 1;
- use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
-
- insn = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insn, dest, r0, x);
- return dest;
-
- case TLS_MODEL_LOCAL_DYNAMIC:
- start_sequence ();
-
- r0 = gen_rtx_REG (Pmode, 0);
- r16 = gen_rtx_REG (Pmode, 16);
- tga = get_tls_get_addr ();
- scratch = gen_reg_rtx (Pmode);
- seq = GEN_INT (alpha_next_sequence_number++);
-
- emit_insn (gen_movdi_er_tlsldm (r16, pic_offset_table_rtx, seq));
- insn = gen_call_value_osf_tlsldm (r0, tga, seq);
- insn = emit_call_insn (insn);
- RTL_CONST_CALL_P (insn) = 1;
- use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
-
- insn = get_insns ();
- end_sequence ();
-
- eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
- UNSPEC_TLSLDM_CALL);
- emit_libcall_block (insn, scratch, r0, eqv);
-
- eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPREL);
- eqv = gen_rtx_CONST (Pmode, eqv);
-
- if (alpha_tls_size == 64)
- {
- dest = gen_reg_rtx (Pmode);
- emit_insn (gen_rtx_SET (VOIDmode, dest, eqv));
- emit_insn (gen_adddi3 (dest, dest, scratch));
- return dest;
- }
- if (alpha_tls_size == 32)
- {
- insn = gen_rtx_HIGH (Pmode, eqv);
- insn = gen_rtx_PLUS (Pmode, scratch, insn);
- scratch = gen_reg_rtx (Pmode);
- emit_insn (gen_rtx_SET (VOIDmode, scratch, insn));
- }
- return gen_rtx_LO_SUM (Pmode, scratch, eqv);
-
- case TLS_MODEL_INITIAL_EXEC:
- eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
- eqv = gen_rtx_CONST (Pmode, eqv);
- tp = gen_reg_rtx (Pmode);
- scratch = gen_reg_rtx (Pmode);
- dest = gen_reg_rtx (Pmode);
-
- emit_insn (gen_get_thread_pointerdi (tp));
- emit_insn (gen_rtx_SET (VOIDmode, scratch, eqv));
- emit_insn (gen_adddi3 (dest, tp, scratch));
- return dest;
-
- case TLS_MODEL_LOCAL_EXEC:
- eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
- eqv = gen_rtx_CONST (Pmode, eqv);
- tp = gen_reg_rtx (Pmode);
-
- emit_insn (gen_get_thread_pointerdi (tp));
- if (alpha_tls_size == 32)
- {
- insn = gen_rtx_HIGH (Pmode, eqv);
- insn = gen_rtx_PLUS (Pmode, tp, insn);
- tp = gen_reg_rtx (Pmode);
- emit_insn (gen_rtx_SET (VOIDmode, tp, insn));
- }
- return gen_rtx_LO_SUM (Pmode, tp, eqv);
-
- default:
- gcc_unreachable ();
- }
-
- if (local_symbolic_operand (x, Pmode))
- {
- if (small_symbolic_operand (x, Pmode))
- return x;
- else
- {
- if (can_create_pseudo_p ())
- scratch = gen_reg_rtx (Pmode);
- emit_insn (gen_rtx_SET (VOIDmode, scratch,
- gen_rtx_HIGH (Pmode, x)));
- return gen_rtx_LO_SUM (Pmode, scratch, x);
- }
- }
- }
-
- return NULL;
-
- split_addend:
- {
- HOST_WIDE_INT low, high;
-
- low = ((addend & 0xffff) ^ 0x8000) - 0x8000;
- addend -= low;
- high = ((addend & 0xffffffff) ^ 0x80000000) - 0x80000000;
- addend -= high;
-
- if (addend)
- x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (addend),
- (!can_create_pseudo_p () ? scratch : NULL_RTX),
- 1, OPTAB_LIB_WIDEN);
- if (high)
- x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (high),
- (!can_create_pseudo_p () ? scratch : NULL_RTX),
- 1, OPTAB_LIB_WIDEN);
-
- return plus_constant (Pmode, x, low);
- }
-}
-
-
-/* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. Return X or the new, valid address. */
-
-static rtx
-alpha_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
- enum machine_mode mode)
-{
- rtx new_x = alpha_legitimize_address_1 (x, NULL_RTX, mode);
- return new_x ? new_x : x;
-}
-
-/* Return true if ADDR has an effect that depends on the machine mode it
- is used for. On the Alpha this is true only for the unaligned modes.
- We can simplify the test since we know that the address must be valid. */
-
-static bool
-alpha_mode_dependent_address_p (const_rtx addr,
- addr_space_t as ATTRIBUTE_UNUSED)
-{
- return GET_CODE (addr) == AND;
-}
-
-/* Primarily this is required for TLS symbols, but given that our move
- patterns *ought* to be able to handle any symbol at any time, we
- should never be spilling symbolic operands to the constant pool, ever. */
-
-static bool
-alpha_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
-{
- enum rtx_code code = GET_CODE (x);
- return code == SYMBOL_REF || code == LABEL_REF || code == CONST;
-}
-
-/* We do not allow indirect calls to be optimized into sibling calls, nor
- can we allow a call to a function with a different GP to be optimized
- into a sibcall. */
-
-static bool
-alpha_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
-{
- /* Can't do indirect tail calls, since we don't know if the target
- uses the same GP. */
- if (!decl)
- return false;
-
- /* Otherwise, we can make a tail call if the target function shares
- the same GP. */
- return decl_has_samegp (decl);
-}
-
-int
-some_small_symbolic_operand_int (rtx *px, void *data ATTRIBUTE_UNUSED)
-{
- rtx x = *px;
-
- /* Don't re-split. */
- if (GET_CODE (x) == LO_SUM)
- return -1;
-
- return small_symbolic_operand (x, Pmode) != 0;
-}
-
-static int
-split_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
-{
- rtx x = *px;
-
- /* Don't re-split. */
- if (GET_CODE (x) == LO_SUM)
- return -1;
-
- if (small_symbolic_operand (x, Pmode))
- {
- x = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, x);
- *px = x;
- return -1;
- }
-
- return 0;
-}
-
-rtx
-split_small_symbolic_operand (rtx x)
-{
- x = copy_insn (x);
- for_each_rtx (&x, split_small_symbolic_operand_1, NULL);
- return x;
-}
-
-/* Indicate that INSN cannot be duplicated. This is true for any insn
- that we've marked with gpdisp relocs, since those have to stay in
- 1-1 correspondence with one another.
-
- Technically we could copy them if we could set up a mapping from one
- sequence number to another, across the set of insns to be duplicated.
- This seems overly complicated and error-prone since interblock motion
- from sched-ebb could move one of the pair of insns to a different block.
-
- Also cannot allow jsr insns to be duplicated. If they throw exceptions,
- then they'll be in a different block from their ldgp. Which could lead
- the bb reorder code to think that it would be ok to copy just the block
- containing the call and branch to the block containing the ldgp. */
-
-static bool
-alpha_cannot_copy_insn_p (rtx insn)
-{
- if (!reload_completed || !TARGET_EXPLICIT_RELOCS)
- return false;
- if (recog_memoized (insn) >= 0)
- return get_attr_cannot_copy (insn);
- else
- return false;
-}
-
-
-/* Try a machine-dependent way of reloading an illegitimate address
- operand. If we find one, push the reload and return the new rtx. */
-
-rtx
-alpha_legitimize_reload_address (rtx x,
- enum machine_mode mode ATTRIBUTE_UNUSED,
- int opnum, int type,
- int ind_levels ATTRIBUTE_UNUSED)
-{
- /* We must recognize output that we have already generated ourselves. */
- if (GET_CODE (x) == PLUS
- && GET_CODE (XEXP (x, 0)) == PLUS
- && REG_P (XEXP (XEXP (x, 0), 0))
- && CONST_INT_P (XEXP (XEXP (x, 0), 1))
- && CONST_INT_P (XEXP (x, 1)))
- {
- push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
- BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
- opnum, (enum reload_type) type);
- return x;
- }
-
- /* We wish to handle large displacements off a base register by
- splitting the addend across an ldah and the mem insn. This
- cuts number of extra insns needed from 3 to 1. */
- if (GET_CODE (x) == PLUS
- && REG_P (XEXP (x, 0))
- && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
- && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x, 0)))
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
- HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
- HOST_WIDE_INT high
- = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
-
- /* Check for 32-bit overflow. */
- if (high + low != val)
- return NULL_RTX;
-
- /* Reload the high part into a base reg; leave the low part
- in the mem directly. */
- x = gen_rtx_PLUS (GET_MODE (x),
- gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
- GEN_INT (high)),
- GEN_INT (low));
-
- push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
- BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
- opnum, (enum reload_type) type);
- return x;
- }
-
- return NULL_RTX;
-}
-
-/* Compute a (partial) cost for rtx X. Return true if the complete
- cost has been computed, and false if subexpressions should be
- scanned. In either case, *TOTAL contains the cost result. */
-
-static bool
-alpha_rtx_costs (rtx x, int code, int outer_code, int opno, int *total,
- bool speed)
-{
- enum machine_mode mode = GET_MODE (x);
- bool float_mode_p = FLOAT_MODE_P (mode);
- const struct alpha_rtx_cost_data *cost_data;
-
- if (!speed)
- cost_data = &alpha_rtx_cost_size;
- else
- cost_data = &alpha_rtx_cost_data[alpha_tune];
-
- switch (code)
- {
- case CONST_INT:
- /* If this is an 8-bit constant, return zero since it can be used
- nearly anywhere with no cost. If it is a valid operand for an
- ADD or AND, likewise return 0 if we know it will be used in that
- context. Otherwise, return 2 since it might be used there later.
- All other constants take at least two insns. */
- if (INTVAL (x) >= 0 && INTVAL (x) < 256)
- {
- *total = 0;
- return true;
- }
- /* FALLTHRU */
-
- case CONST_DOUBLE:
- if (x == CONST0_RTX (mode))
- *total = 0;
- else if ((outer_code == PLUS && add_operand (x, VOIDmode))
- || (outer_code == AND && and_operand (x, VOIDmode)))
- *total = 0;
- else if (add_operand (x, VOIDmode) || and_operand (x, VOIDmode))
- *total = 2;
- else
- *total = COSTS_N_INSNS (2);
- return true;
-
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- if (TARGET_EXPLICIT_RELOCS && small_symbolic_operand (x, VOIDmode))
- *total = COSTS_N_INSNS (outer_code != MEM);
- else if (TARGET_EXPLICIT_RELOCS && local_symbolic_operand (x, VOIDmode))
- *total = COSTS_N_INSNS (1 + (outer_code != MEM));
- else if (tls_symbolic_operand_type (x))
- /* Estimate of cost for call_pal rduniq. */
- /* ??? How many insns do we emit here? More than one... */
- *total = COSTS_N_INSNS (15);
- else
- /* Otherwise we do a load from the GOT. */
- *total = COSTS_N_INSNS (!speed ? 1 : alpha_memory_latency);
- return true;
-
- case HIGH:
- /* This is effectively an add_operand. */
- *total = 2;
- return true;
-
- case PLUS:
- case MINUS:
- if (float_mode_p)
- *total = cost_data->fp_add;
- else if (GET_CODE (XEXP (x, 0)) == MULT
- && const48_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
- {
- *total = (rtx_cost (XEXP (XEXP (x, 0), 0),
- (enum rtx_code) outer_code, opno, speed)
- + rtx_cost (XEXP (x, 1),
- (enum rtx_code) outer_code, opno, speed)
- + COSTS_N_INSNS (1));
- return true;
- }
- return false;
-
- case MULT:
- if (float_mode_p)
- *total = cost_data->fp_mult;
- else if (mode == DImode)
- *total = cost_data->int_mult_di;
- else
- *total = cost_data->int_mult_si;
- return false;
-
- case ASHIFT:
- if (CONST_INT_P (XEXP (x, 1))
- && INTVAL (XEXP (x, 1)) <= 3)
- {
- *total = COSTS_N_INSNS (1);
- return false;
- }
- /* FALLTHRU */
-
- case ASHIFTRT:
- case LSHIFTRT:
- *total = cost_data->int_shift;
- return false;
-
- case IF_THEN_ELSE:
- if (float_mode_p)
- *total = cost_data->fp_add;
- else
- *total = cost_data->int_cmov;
- return false;
-
- case DIV:
- case UDIV:
- case MOD:
- case UMOD:
- if (!float_mode_p)
- *total = cost_data->int_div;
- else if (mode == SFmode)
- *total = cost_data->fp_div_sf;
- else
- *total = cost_data->fp_div_df;
- return false;
-
- case MEM:
- *total = COSTS_N_INSNS (!speed ? 1 : alpha_memory_latency);
- return true;
-
- case NEG:
- if (! float_mode_p)
- {
- *total = COSTS_N_INSNS (1);
- return false;
- }
- /* FALLTHRU */
-
- case ABS:
- if (! float_mode_p)
- {
- *total = COSTS_N_INSNS (1) + cost_data->int_cmov;
- return false;
- }
- /* FALLTHRU */
-
- case FLOAT:
- case UNSIGNED_FLOAT:
- case FIX:
- case UNSIGNED_FIX:
- case FLOAT_TRUNCATE:
- *total = cost_data->fp_add;
- return false;
-
- case FLOAT_EXTEND:
- if (MEM_P (XEXP (x, 0)))
- *total = 0;
- else
- *total = cost_data->fp_add;
- return false;
-
- default:
- return false;
- }
-}
-
-/* REF is an alignable memory location. Place an aligned SImode
- reference into *PALIGNED_MEM and the number of bits to shift into
- *PBITNUM. SCRATCH is a free register for use in reloading out
- of range stack slots. */
-
-void
-get_aligned_mem (rtx ref, rtx *paligned_mem, rtx *pbitnum)
-{
- rtx base;
- HOST_WIDE_INT disp, offset;
-
- gcc_assert (MEM_P (ref));
-
- if (reload_in_progress
- && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
- {
- base = find_replacement (&XEXP (ref, 0));
- gcc_assert (memory_address_p (GET_MODE (ref), base));
- }
- else
- base = XEXP (ref, 0);
-
- if (GET_CODE (base) == PLUS)
- disp = INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
- else
- disp = 0;
-
- /* Find the byte offset within an aligned word. If the memory itself is
- claimed to be aligned, believe it. Otherwise, aligned_memory_operand
- will have examined the base register and determined it is aligned, and
- thus displacements from it are naturally alignable. */
- if (MEM_ALIGN (ref) >= 32)
- offset = 0;
- else
- offset = disp & 3;
-
- /* The location should not cross aligned word boundary. */
- gcc_assert (offset + GET_MODE_SIZE (GET_MODE (ref))
- <= GET_MODE_SIZE (SImode));
-
- /* Access the entire aligned word. */
- *paligned_mem = widen_memory_access (ref, SImode, -offset);
-
- /* Convert the byte offset within the word to a bit offset. */
- offset *= BITS_PER_UNIT;
- *pbitnum = GEN_INT (offset);
-}
-
-/* Similar, but just get the address. Handle the two reload cases.
- Add EXTRA_OFFSET to the address we return. */
-
-rtx
-get_unaligned_address (rtx ref)
-{
- rtx base;
- HOST_WIDE_INT offset = 0;
-
- gcc_assert (MEM_P (ref));
-
- if (reload_in_progress
- && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
- {
- base = find_replacement (&XEXP (ref, 0));
-
- gcc_assert (memory_address_p (GET_MODE (ref), base));
- }
- else
- base = XEXP (ref, 0);
-
- if (GET_CODE (base) == PLUS)
- offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
-
- return plus_constant (Pmode, base, offset);
-}
-
-/* Compute a value X, such that X & 7 == (ADDR + OFS) & 7.
- X is always returned in a register. */
-
-rtx
-get_unaligned_offset (rtx addr, HOST_WIDE_INT ofs)
-{
- if (GET_CODE (addr) == PLUS)
- {
- ofs += INTVAL (XEXP (addr, 1));
- addr = XEXP (addr, 0);
- }
-
- return expand_simple_binop (Pmode, PLUS, addr, GEN_INT (ofs & 7),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
-}
-
-/* On the Alpha, all (non-symbolic) constants except zero go into
- a floating-point register via memory. Note that we cannot
- return anything that is not a subset of RCLASS, and that some
- symbolic constants cannot be dropped to memory. */
-
-enum reg_class
-alpha_preferred_reload_class(rtx x, enum reg_class rclass)
-{
- /* Zero is present in any register class. */
- if (x == CONST0_RTX (GET_MODE (x)))
- return rclass;
-
- /* These sorts of constants we can easily drop to memory. */
- if (CONST_INT_P (x)
- || GET_CODE (x) == CONST_DOUBLE
- || GET_CODE (x) == CONST_VECTOR)
- {
- if (rclass == FLOAT_REGS)
- return NO_REGS;
- if (rclass == ALL_REGS)
- return GENERAL_REGS;
- return rclass;
- }
-
- /* All other kinds of constants should not (and in the case of HIGH
- cannot) be dropped to memory -- instead we use a GENERAL_REGS
- secondary reload. */
- if (CONSTANT_P (x))
- return (rclass == ALL_REGS ? GENERAL_REGS : rclass);
-
- return rclass;
-}
-
-/* Inform reload about cases where moving X with a mode MODE to a register in
- RCLASS requires an extra scratch or immediate register. Return the class
- needed for the immediate register. */
-
-static reg_class_t
-alpha_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
- enum machine_mode mode, secondary_reload_info *sri)
-{
- enum reg_class rclass = (enum reg_class) rclass_i;
-
- /* Loading and storing HImode or QImode values to and from memory
- usually requires a scratch register. */
- if (!TARGET_BWX && (mode == QImode || mode == HImode || mode == CQImode))
- {
- if (any_memory_operand (x, mode))
- {
- if (in_p)
- {
- if (!aligned_memory_operand (x, mode))
- sri->icode = direct_optab_handler (reload_in_optab, mode);
- }
- else
- sri->icode = direct_optab_handler (reload_out_optab, mode);
- return NO_REGS;
- }
- }
-
- /* We also cannot do integral arithmetic into FP regs, as might result
- from register elimination into a DImode fp register. */
- if (rclass == FLOAT_REGS)
- {
- if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND)
- return GENERAL_REGS;
- if (in_p && INTEGRAL_MODE_P (mode)
- && !MEM_P (x) && !REG_P (x) && !CONST_INT_P (x))
- return GENERAL_REGS;
- }
-
- return NO_REGS;
-}
-
-/* Subfunction of the following function. Update the flags of any MEM
- found in part of X. */
-
-static int
-alpha_set_memflags_1 (rtx *xp, void *data)
-{
- rtx x = *xp, orig = (rtx) data;
-
- if (!MEM_P (x))
- return 0;
-
- MEM_VOLATILE_P (x) = MEM_VOLATILE_P (orig);
- MEM_NOTRAP_P (x) = MEM_NOTRAP_P (orig);
- MEM_READONLY_P (x) = MEM_READONLY_P (orig);
-
- /* Sadly, we cannot use alias sets because the extra aliasing
- produced by the AND interferes. Given that two-byte quantities
- are the only thing we would be able to differentiate anyway,
- there does not seem to be any point in convoluting the early
- out of the alias check. */
-
- return -1;
-}
-
-/* Given SEQ, which is an INSN list, look for any MEMs in either
- a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and
- volatile flags from REF into each of the MEMs found. If REF is not
- a MEM, don't do anything. */
-
-void
-alpha_set_memflags (rtx seq, rtx ref)
-{
- rtx insn;
-
- if (!MEM_P (ref))
- return;
-
- /* This is only called from alpha.md, after having had something
- generated from one of the insn patterns. So if everything is
- zero, the pattern is already up-to-date. */
- if (!MEM_VOLATILE_P (ref)
- && !MEM_NOTRAP_P (ref)
- && !MEM_READONLY_P (ref))
- return;
-
- for (insn = seq; insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- for_each_rtx (&PATTERN (insn), alpha_set_memflags_1, (void *) ref);
- else
- gcc_unreachable ();
-}
-
-static rtx alpha_emit_set_const (rtx, enum machine_mode, HOST_WIDE_INT,
- int, bool);
-
-/* Internal routine for alpha_emit_set_const to check for N or below insns.
- If NO_OUTPUT is true, then we only check to see if N insns are possible,
- and return pc_rtx if successful. */
-
-static rtx
-alpha_emit_set_const_1 (rtx target, enum machine_mode mode,
- HOST_WIDE_INT c, int n, bool no_output)
-{
- HOST_WIDE_INT new_const;
- int i, bits;
- /* Use a pseudo if highly optimizing and still generating RTL. */
- rtx subtarget
- = (flag_expensive_optimizations && can_create_pseudo_p () ? 0 : target);
- rtx temp, insn;
-
- /* If this is a sign-extended 32-bit constant, we can do this in at most
- three insns, so do it if we have enough insns left. We always have
- a sign-extended 32-bit constant when compiling on a narrow machine. */
-
- if (HOST_BITS_PER_WIDE_INT != 64
- || c >> 31 == -1 || c >> 31 == 0)
- {
- HOST_WIDE_INT low = ((c & 0xffff) ^ 0x8000) - 0x8000;
- HOST_WIDE_INT tmp1 = c - low;
- HOST_WIDE_INT high = (((tmp1 >> 16) & 0xffff) ^ 0x8000) - 0x8000;
- HOST_WIDE_INT extra = 0;
-
- /* If HIGH will be interpreted as negative but the constant is
- positive, we must adjust it to do two ldha insns. */
-
- if ((high & 0x8000) != 0 && c >= 0)
- {
- extra = 0x4000;
- tmp1 -= 0x40000000;
- high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
- }
-
- if (c == low || (low == 0 && extra == 0))
- {
- /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
- but that meant that we can't handle INT_MIN on 32-bit machines
- (like NT/Alpha), because we recurse indefinitely through
- emit_move_insn to gen_movdi. So instead, since we know exactly
- what we want, create it explicitly. */
-
- if (no_output)
- return pc_rtx;
- if (target == NULL)
- target = gen_reg_rtx (mode);
- emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
- return target;
- }
- else if (n >= 2 + (extra != 0))
- {
- if (no_output)
- return pc_rtx;
- if (!can_create_pseudo_p ())
- {
- emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (high << 16)));
- temp = target;
- }
- else
- temp = copy_to_suggested_reg (GEN_INT (high << 16),
- subtarget, mode);
-
- /* As of 2002-02-23, addsi3 is only available when not optimizing.
- This means that if we go through expand_binop, we'll try to
- generate extensions, etc, which will require new pseudos, which
- will fail during some split phases. The SImode add patterns
- still exist, but are not named. So build the insns by hand. */
-
- if (extra != 0)
- {
- if (! subtarget)
- subtarget = gen_reg_rtx (mode);
- insn = gen_rtx_PLUS (mode, temp, GEN_INT (extra << 16));
- insn = gen_rtx_SET (VOIDmode, subtarget, insn);
- emit_insn (insn);
- temp = subtarget;
- }
-
- if (target == NULL)
- target = gen_reg_rtx (mode);
- insn = gen_rtx_PLUS (mode, temp, GEN_INT (low));
- insn = gen_rtx_SET (VOIDmode, target, insn);
- emit_insn (insn);
- return target;
- }
- }
-
- /* If we couldn't do it that way, try some other methods. But if we have
- no instructions left, don't bother. Likewise, if this is SImode and
- we can't make pseudos, we can't do anything since the expand_binop
- and expand_unop calls will widen and try to make pseudos. */
-
- if (n == 1 || (mode == SImode && !can_create_pseudo_p ()))
- return 0;
-
- /* Next, see if we can load a related constant and then shift and possibly
- negate it to get the constant we want. Try this once each increasing
- numbers of insns. */
-
- for (i = 1; i < n; i++)
- {
- /* First, see if minus some low bits, we've an easy load of
- high bits. */
-
- new_const = ((c & 0xffff) ^ 0x8000) - 0x8000;
- if (new_const != 0)
- {
- temp = alpha_emit_set_const (subtarget, mode, c - new_const, i, no_output);
- if (temp)
- {
- if (no_output)
- return temp;
- return expand_binop (mode, add_optab, temp, GEN_INT (new_const),
- target, 0, OPTAB_WIDEN);
- }
- }
-
- /* Next try complementing. */
- temp = alpha_emit_set_const (subtarget, mode, ~c, i, no_output);
- if (temp)
- {
- if (no_output)
- return temp;
- return expand_unop (mode, one_cmpl_optab, temp, target, 0);
- }
-
- /* Next try to form a constant and do a left shift. We can do this
- if some low-order bits are zero; the exact_log2 call below tells
- us that information. The bits we are shifting out could be any
- value, but here we'll just try the 0- and sign-extended forms of
- the constant. To try to increase the chance of having the same
- constant in more than one insn, start at the highest number of
- bits to shift, but try all possibilities in case a ZAPNOT will
- be useful. */
-
- bits = exact_log2 (c & -c);
- if (bits > 0)
- for (; bits > 0; bits--)
- {
- new_const = c >> bits;
- temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output);
- if (!temp && c < 0)
- {
- new_const = (unsigned HOST_WIDE_INT)c >> bits;
- temp = alpha_emit_set_const (subtarget, mode, new_const,
- i, no_output);
- }
- if (temp)
- {
- if (no_output)
- return temp;
- return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
- target, 0, OPTAB_WIDEN);
- }
- }
-
- /* Now try high-order zero bits. Here we try the shifted-in bits as
- all zero and all ones. Be careful to avoid shifting outside the
- mode and to avoid shifting outside the host wide int size. */
- /* On narrow hosts, don't shift a 1 into the high bit, since we'll
- confuse the recursive call and set all of the high 32 bits. */
-
- bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
- - floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64));
- if (bits > 0)
- for (; bits > 0; bits--)
- {
- new_const = c << bits;
- temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output);
- if (!temp)
- {
- new_const = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1);
- temp = alpha_emit_set_const (subtarget, mode, new_const,
- i, no_output);
- }
- if (temp)
- {
- if (no_output)
- return temp;
- return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
- target, 1, OPTAB_WIDEN);
- }
- }
-
- /* Now try high-order 1 bits. We get that with a sign-extension.
- But one bit isn't enough here. Be careful to avoid shifting outside
- the mode and to avoid shifting outside the host wide int size. */
-
- bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
- - floor_log2 (~ c) - 2);
- if (bits > 0)
- for (; bits > 0; bits--)
- {
- new_const = c << bits;
- temp = alpha_emit_set_const (subtarget, mode, new_const, i, no_output);
- if (!temp)
- {
- new_const = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1);
- temp = alpha_emit_set_const (subtarget, mode, new_const,
- i, no_output);
- }
- if (temp)
- {
- if (no_output)
- return temp;
- return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
- target, 0, OPTAB_WIDEN);
- }
- }
- }
-
-#if HOST_BITS_PER_WIDE_INT == 64
- /* Finally, see if can load a value into the target that is the same as the
- constant except that all bytes that are 0 are changed to be 0xff. If we
- can, then we can do a ZAPNOT to obtain the desired constant. */
-
- new_const = c;
- for (i = 0; i < 64; i += 8)
- if ((new_const & ((HOST_WIDE_INT) 0xff << i)) == 0)
- new_const |= (HOST_WIDE_INT) 0xff << i;
-
- /* We are only called for SImode and DImode. If this is SImode, ensure that
- we are sign extended to a full word. */
-
- if (mode == SImode)
- new_const = ((new_const & 0xffffffff) ^ 0x80000000) - 0x80000000;
-
- if (new_const != c)
- {
- temp = alpha_emit_set_const (subtarget, mode, new_const, n - 1, no_output);
- if (temp)
- {
- if (no_output)
- return temp;
- return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new_const),
- target, 0, OPTAB_WIDEN);
- }
- }
-#endif
-
- return 0;
-}
-
-/* Try to output insns to set TARGET equal to the constant C if it can be
- done in less than N insns. Do all computations in MODE. Returns the place
- where the output has been placed if it can be done and the insns have been
- emitted. If it would take more than N insns, zero is returned and no
- insns and emitted. */
-
-static rtx
-alpha_emit_set_const (rtx target, enum machine_mode mode,
- HOST_WIDE_INT c, int n, bool no_output)
-{
- enum machine_mode orig_mode = mode;
- rtx orig_target = target;
- rtx result = 0;
- int i;
-
- /* If we can't make any pseudos, TARGET is an SImode hard register, we
- can't load this constant in one insn, do this in DImode. */
- if (!can_create_pseudo_p () && mode == SImode
- && REG_P (target) && REGNO (target) < FIRST_PSEUDO_REGISTER)
- {
- result = alpha_emit_set_const_1 (target, mode, c, 1, no_output);
- if (result)
- return result;
-
- target = no_output ? NULL : gen_lowpart (DImode, target);
- mode = DImode;
- }
- else if (mode == V8QImode || mode == V4HImode || mode == V2SImode)
- {
- target = no_output ? NULL : gen_lowpart (DImode, target);
- mode = DImode;
- }
-
- /* Try 1 insn, then 2, then up to N. */
- for (i = 1; i <= n; i++)
- {
- result = alpha_emit_set_const_1 (target, mode, c, i, no_output);
- if (result)
- {
- rtx insn, set;
-
- if (no_output)
- return result;
-
- insn = get_last_insn ();
- set = single_set (insn);
- if (! CONSTANT_P (SET_SRC (set)))
- set_unique_reg_note (get_last_insn (), REG_EQUAL, GEN_INT (c));
- break;
- }
- }
-
- /* Allow for the case where we changed the mode of TARGET. */
- if (result)
- {
- if (result == target)
- result = orig_target;
- else if (mode != orig_mode)
- result = gen_lowpart (orig_mode, result);
- }
-
- return result;
-}
-
-/* Having failed to find a 3 insn sequence in alpha_emit_set_const,
- fall back to a straight forward decomposition. We do this to avoid
- exponential run times encountered when looking for longer sequences
- with alpha_emit_set_const. */
-
-static rtx
-alpha_emit_set_long_const (rtx target, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
-{
- HOST_WIDE_INT d1, d2, d3, d4;
-
- /* Decompose the entire word */
-#if HOST_BITS_PER_WIDE_INT >= 64
- gcc_assert (c2 == -(c1 < 0));
- d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
- c1 -= d1;
- d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
- c1 = (c1 - d2) >> 32;
- d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
- c1 -= d3;
- d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
- gcc_assert (c1 == d4);
-#else
- d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
- c1 -= d1;
- d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
- gcc_assert (c1 == d2);
- c2 += (d2 < 0);
- d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
- c2 -= d3;
- d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
- gcc_assert (c2 == d4);
-#endif
-
- /* Construct the high word */
- if (d4)
- {
- emit_move_insn (target, GEN_INT (d4));
- if (d3)
- emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
- }
- else
- emit_move_insn (target, GEN_INT (d3));
-
- /* Shift it into place */
- emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
-
- /* Add in the low bits. */
- if (d2)
- emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
- if (d1)
- emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
-
- return target;
-}
-
-/* Given an integral CONST_INT, CONST_DOUBLE, or CONST_VECTOR, return
- the low 64 bits. */
-
-static void
-alpha_extract_integer (rtx x, HOST_WIDE_INT *p0, HOST_WIDE_INT *p1)
-{
- HOST_WIDE_INT i0, i1;
-
- if (GET_CODE (x) == CONST_VECTOR)
- x = simplify_subreg (DImode, x, GET_MODE (x), 0);
-
-
- if (CONST_INT_P (x))
- {
- i0 = INTVAL (x);
- i1 = -(i0 < 0);
- }
- else if (HOST_BITS_PER_WIDE_INT >= 64)
- {
- i0 = CONST_DOUBLE_LOW (x);
- i1 = -(i0 < 0);
- }
- else
- {
- i0 = CONST_DOUBLE_LOW (x);
- i1 = CONST_DOUBLE_HIGH (x);
- }
-
- *p0 = i0;
- *p1 = i1;
-}
-
-/* Implement TARGET_LEGITIMATE_CONSTANT_P. This is all constants for which
- we are willing to load the value into a register via a move pattern.
- Normally this is all symbolic constants, integral constants that
- take three or fewer instructions, and floating-point zero. */
-
-bool
-alpha_legitimate_constant_p (enum machine_mode mode, rtx x)
-{
- HOST_WIDE_INT i0, i1;
-
- switch (GET_CODE (x))
- {
- case LABEL_REF:
- case HIGH:
- return true;
-
- case CONST:
- if (GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
- x = XEXP (XEXP (x, 0), 0);
- else
- return true;
-
- if (GET_CODE (x) != SYMBOL_REF)
- return true;
-
- /* FALLTHRU */
-
- case SYMBOL_REF:
- /* TLS symbols are never valid. */
- return SYMBOL_REF_TLS_MODEL (x) == 0;
-
- case CONST_DOUBLE:
- if (x == CONST0_RTX (mode))
- return true;
- if (FLOAT_MODE_P (mode))
- return false;
- goto do_integer;
-
- case CONST_VECTOR:
- if (x == CONST0_RTX (mode))
- return true;
- if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
- return false;
- if (GET_MODE_SIZE (mode) != 8)
- return false;
- goto do_integer;
-
- case CONST_INT:
- do_integer:
- if (TARGET_BUILD_CONSTANTS)
- return true;
- alpha_extract_integer (x, &i0, &i1);
- if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == (-i0 < 0))
- return alpha_emit_set_const_1 (x, mode, i0, 3, true) != NULL;
- return false;
-
- default:
- return false;
- }
-}
-
-/* Operand 1 is known to be a constant, and should require more than one
- instruction to load. Emit that multi-part load. */
-
-bool
-alpha_split_const_mov (enum machine_mode mode, rtx *operands)
-{
- HOST_WIDE_INT i0, i1;
- rtx temp = NULL_RTX;
-
- alpha_extract_integer (operands[1], &i0, &i1);
-
- if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == -(i0 < 0))
- temp = alpha_emit_set_const (operands[0], mode, i0, 3, false);
-
- if (!temp && TARGET_BUILD_CONSTANTS)
- temp = alpha_emit_set_long_const (operands[0], i0, i1);
-
- if (temp)
- {
- if (!rtx_equal_p (operands[0], temp))
- emit_move_insn (operands[0], temp);
- return true;
- }
-
- return false;
-}
-
-/* Expand a move instruction; return true if all work is done.
- We don't handle non-bwx subword loads here. */
-
-bool
-alpha_expand_mov (enum machine_mode mode, rtx *operands)
-{
- rtx tmp;
-
- /* If the output is not a register, the input must be. */
- if (MEM_P (operands[0])
- && ! reg_or_0_operand (operands[1], mode))
- operands[1] = force_reg (mode, operands[1]);
-
- /* Allow legitimize_address to perform some simplifications. */
- if (mode == Pmode && symbolic_operand (operands[1], mode))
- {
- tmp = alpha_legitimize_address_1 (operands[1], operands[0], mode);
- if (tmp)
- {
- if (tmp == operands[0])
- return true;
- operands[1] = tmp;
- return false;
- }
- }
-
- /* Early out for non-constants and valid constants. */
- if (! CONSTANT_P (operands[1]) || input_operand (operands[1], mode))
- return false;
-
- /* Split large integers. */
- if (CONST_INT_P (operands[1])
- || GET_CODE (operands[1]) == CONST_DOUBLE
- || GET_CODE (operands[1]) == CONST_VECTOR)
- {
- if (alpha_split_const_mov (mode, operands))
- return true;
- }
-
- /* Otherwise we've nothing left but to drop the thing to memory. */
- tmp = force_const_mem (mode, operands[1]);
-
- if (tmp == NULL_RTX)
- return false;
-
- if (reload_in_progress)
- {
- emit_move_insn (operands[0], XEXP (tmp, 0));
- operands[1] = replace_equiv_address (tmp, operands[0]);
- }
- else
- operands[1] = validize_mem (tmp);
- return false;
-}
-
-/* Expand a non-bwx QImode or HImode move instruction;
- return true if all work is done. */
-
-bool
-alpha_expand_mov_nobwx (enum machine_mode mode, rtx *operands)
-{
- rtx seq;
-
- /* If the output is not a register, the input must be. */
- if (MEM_P (operands[0]))
- operands[1] = force_reg (mode, operands[1]);
-
- /* Handle four memory cases, unaligned and aligned for either the input
- or the output. The only case where we can be called during reload is
- for aligned loads; all other cases require temporaries. */
-
- if (any_memory_operand (operands[1], mode))
- {
- if (aligned_memory_operand (operands[1], mode))
- {
- if (reload_in_progress)
- {
- if (mode == QImode)
- seq = gen_reload_inqi_aligned (operands[0], operands[1]);
- else
- seq = gen_reload_inhi_aligned (operands[0], operands[1]);
- emit_insn (seq);
- }
- else
- {
- rtx aligned_mem, bitnum;
- rtx scratch = gen_reg_rtx (SImode);
- rtx subtarget;
- bool copyout;
-
- get_aligned_mem (operands[1], &aligned_mem, &bitnum);
-
- subtarget = operands[0];
- if (REG_P (subtarget))
- subtarget = gen_lowpart (DImode, subtarget), copyout = false;
- else
- subtarget = gen_reg_rtx (DImode), copyout = true;
-
- if (mode == QImode)
- seq = gen_aligned_loadqi (subtarget, aligned_mem,
- bitnum, scratch);
- else
- seq = gen_aligned_loadhi (subtarget, aligned_mem,
- bitnum, scratch);
- emit_insn (seq);
-
- if (copyout)
- emit_move_insn (operands[0], gen_lowpart (mode, subtarget));
- }
- }
- else
- {
- /* Don't pass these as parameters since that makes the generated
- code depend on parameter evaluation order which will cause
- bootstrap failures. */
-
- rtx temp1, temp2, subtarget, ua;
- bool copyout;
-
- temp1 = gen_reg_rtx (DImode);
- temp2 = gen_reg_rtx (DImode);
-
- subtarget = operands[0];
- if (REG_P (subtarget))
- subtarget = gen_lowpart (DImode, subtarget), copyout = false;
- else
- subtarget = gen_reg_rtx (DImode), copyout = true;
-
- ua = get_unaligned_address (operands[1]);
- if (mode == QImode)
- seq = gen_unaligned_loadqi (subtarget, ua, temp1, temp2);
- else
- seq = gen_unaligned_loadhi (subtarget, ua, temp1, temp2);
-
- alpha_set_memflags (seq, operands[1]);
- emit_insn (seq);
-
- if (copyout)
- emit_move_insn (operands[0], gen_lowpart (mode, subtarget));
- }
- return true;
- }
-
- if (any_memory_operand (operands[0], mode))
- {
- if (aligned_memory_operand (operands[0], mode))
- {
- rtx aligned_mem, bitnum;
- rtx temp1 = gen_reg_rtx (SImode);
- rtx temp2 = gen_reg_rtx (SImode);
-
- get_aligned_mem (operands[0], &aligned_mem, &bitnum);
-
- emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum,
- temp1, temp2));
- }
- else
- {
- rtx temp1 = gen_reg_rtx (DImode);
- rtx temp2 = gen_reg_rtx (DImode);
- rtx temp3 = gen_reg_rtx (DImode);
- rtx ua = get_unaligned_address (operands[0]);
-
- if (mode == QImode)
- seq = gen_unaligned_storeqi (ua, operands[1], temp1, temp2, temp3);
- else
- seq = gen_unaligned_storehi (ua, operands[1], temp1, temp2, temp3);
-
- alpha_set_memflags (seq, operands[0]);
- emit_insn (seq);
- }
- return true;
- }
-
- return false;
-}
-
-/* Implement the movmisalign patterns. One of the operands is a memory
- that is not naturally aligned. Emit instructions to load it. */
-
-void
-alpha_expand_movmisalign (enum machine_mode mode, rtx *operands)
-{
- /* Honor misaligned loads, for those we promised to do so. */
- if (MEM_P (operands[1]))
- {
- rtx tmp;
-
- if (register_operand (operands[0], mode))
- tmp = operands[0];
- else
- tmp = gen_reg_rtx (mode);
-
- alpha_expand_unaligned_load (tmp, operands[1], 8, 0, 0);
- if (tmp != operands[0])
- emit_move_insn (operands[0], tmp);
- }
- else if (MEM_P (operands[0]))
- {
- if (!reg_or_0_operand (operands[1], mode))
- operands[1] = force_reg (mode, operands[1]);
- alpha_expand_unaligned_store (operands[0], operands[1], 8, 0);
- }
- else
- gcc_unreachable ();
-}
-
-/* Generate an unsigned DImode to FP conversion. This is the same code
- optabs would emit if we didn't have TFmode patterns.
-
- For SFmode, this is the only construction I've found that can pass
- gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode
- intermediates will work, because you'll get intermediate rounding
- that ruins the end result. Some of this could be fixed by turning
- on round-to-positive-infinity, but that requires diddling the fpsr,
- which kills performance. I tried turning this around and converting
- to a negative number, so that I could turn on /m, but either I did
- it wrong or there's something else cause I wound up with the exact
- same single-bit error. There is a branch-less form of this same code:
-
- srl $16,1,$1
- and $16,1,$2
- cmplt $16,0,$3
- or $1,$2,$2
- cmovge $16,$16,$2
- itoft $3,$f10
- itoft $2,$f11
- cvtqs $f11,$f11
- adds $f11,$f11,$f0
- fcmoveq $f10,$f11,$f0
-
- I'm not using it because it's the same number of instructions as
- this branch-full form, and it has more serialized long latency
- instructions on the critical path.
-
- For DFmode, we can avoid rounding errors by breaking up the word
- into two pieces, converting them separately, and adding them back:
-
- LC0: .long 0,0x5f800000
-
- itoft $16,$f11
- lda $2,LC0
- cmplt $16,0,$1
- cpyse $f11,$f31,$f10
- cpyse $f31,$f11,$f11
- s4addq $1,$2,$1
- lds $f12,0($1)
- cvtqt $f10,$f10
- cvtqt $f11,$f11
- addt $f12,$f10,$f0
- addt $f0,$f11,$f0
-
- This doesn't seem to be a clear-cut win over the optabs form.
- It probably all depends on the distribution of numbers being
- converted -- in the optabs form, all but high-bit-set has a
- much lower minimum execution time. */
-
-void
-alpha_emit_floatuns (rtx operands[2])
-{
- rtx neglab, donelab, i0, i1, f0, in, out;
- enum machine_mode mode;
-
- out = operands[0];
- in = force_reg (DImode, operands[1]);
- mode = GET_MODE (out);
- neglab = gen_label_rtx ();
- donelab = gen_label_rtx ();
- i0 = gen_reg_rtx (DImode);
- i1 = gen_reg_rtx (DImode);
- f0 = gen_reg_rtx (mode);
-
- emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
-
- emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in)));
- emit_jump_insn (gen_jump (donelab));
- emit_barrier ();
-
- emit_label (neglab);
-
- emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
- emit_insn (gen_anddi3 (i1, in, const1_rtx));
- emit_insn (gen_iordi3 (i0, i0, i1));
- emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0)));
- emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
-
- emit_label (donelab);
-}
-
-/* Generate the comparison for a conditional branch. */
-
-void
-alpha_emit_conditional_branch (rtx operands[], enum machine_mode cmp_mode)
-{
- enum rtx_code cmp_code, branch_code;
- enum machine_mode branch_mode = VOIDmode;
- enum rtx_code code = GET_CODE (operands[0]);
- rtx op0 = operands[1], op1 = operands[2];
- rtx tem;
-
- if (cmp_mode == TFmode)
- {
- op0 = alpha_emit_xfloating_compare (&code, op0, op1);
- op1 = const0_rtx;
- cmp_mode = DImode;
- }
-
- /* The general case: fold the comparison code to the types of compares
- that we have, choosing the branch as necessary. */
- switch (code)
- {
- case EQ: case LE: case LT: case LEU: case LTU:
- case UNORDERED:
- /* We have these compares. */
- cmp_code = code, branch_code = NE;
- break;
-
- case NE:
- case ORDERED:
- /* These must be reversed. */
- cmp_code = reverse_condition (code), branch_code = EQ;
- break;
-
- case GE: case GT: case GEU: case GTU:
- /* For FP, we swap them, for INT, we reverse them. */
- if (cmp_mode == DFmode)
- {
- cmp_code = swap_condition (code);
- branch_code = NE;
- tem = op0, op0 = op1, op1 = tem;
- }
- else
- {
- cmp_code = reverse_condition (code);
- branch_code = EQ;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (cmp_mode == DFmode)
- {
- if (flag_unsafe_math_optimizations && cmp_code != UNORDERED)
- {
- /* When we are not as concerned about non-finite values, and we
- are comparing against zero, we can branch directly. */
- if (op1 == CONST0_RTX (DFmode))
- cmp_code = UNKNOWN, branch_code = code;
- else if (op0 == CONST0_RTX (DFmode))
- {
- /* Undo the swap we probably did just above. */
- tem = op0, op0 = op1, op1 = tem;
- branch_code = swap_condition (cmp_code);
- cmp_code = UNKNOWN;
- }
- }
- else
- {
- /* ??? We mark the branch mode to be CCmode to prevent the
- compare and branch from being combined, since the compare
- insn follows IEEE rules that the branch does not. */
- branch_mode = CCmode;
- }
- }
- else
- {
- /* The following optimizations are only for signed compares. */
- if (code != LEU && code != LTU && code != GEU && code != GTU)
- {
- /* Whee. Compare and branch against 0 directly. */
- if (op1 == const0_rtx)
- cmp_code = UNKNOWN, branch_code = code;
-
- /* If the constants doesn't fit into an immediate, but can
- be generated by lda/ldah, we adjust the argument and
- compare against zero, so we can use beq/bne directly. */
- /* ??? Don't do this when comparing against symbols, otherwise
- we'll reduce (&x == 0x1234) to (&x-0x1234 == 0), which will
- be declared false out of hand (at least for non-weak). */
- else if (CONST_INT_P (op1)
- && (code == EQ || code == NE)
- && !(symbolic_operand (op0, VOIDmode)
- || (REG_P (op0) && REG_POINTER (op0))))
- {
- rtx n_op1 = GEN_INT (-INTVAL (op1));
-
- if (! satisfies_constraint_I (op1)
- && (satisfies_constraint_K (n_op1)
- || satisfies_constraint_L (n_op1)))
- cmp_code = PLUS, branch_code = code, op1 = n_op1;
- }
- }
-
- if (!reg_or_0_operand (op0, DImode))
- op0 = force_reg (DImode, op0);
- if (cmp_code != PLUS && !reg_or_8bit_operand (op1, DImode))
- op1 = force_reg (DImode, op1);
- }
-
- /* Emit an initial compare instruction, if necessary. */
- tem = op0;
- if (cmp_code != UNKNOWN)
- {
- tem = gen_reg_rtx (cmp_mode);
- emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
- }
-
- /* Emit the branch instruction. */
- tem = gen_rtx_SET (VOIDmode, pc_rtx,
- gen_rtx_IF_THEN_ELSE (VOIDmode,
- gen_rtx_fmt_ee (branch_code,
- branch_mode, tem,
- CONST0_RTX (cmp_mode)),
- gen_rtx_LABEL_REF (VOIDmode,
- operands[3]),
- pc_rtx));
- emit_jump_insn (tem);
-}
-
-/* Certain simplifications can be done to make invalid setcc operations
- valid. Return the final comparison, or NULL if we can't work. */
-
-bool
-alpha_emit_setcc (rtx operands[], enum machine_mode cmp_mode)
-{
- enum rtx_code cmp_code;
- enum rtx_code code = GET_CODE (operands[1]);
- rtx op0 = operands[2], op1 = operands[3];
- rtx tmp;
-
- if (cmp_mode == TFmode)
- {
- op0 = alpha_emit_xfloating_compare (&code, op0, op1);
- op1 = const0_rtx;
- cmp_mode = DImode;
- }
-
- if (cmp_mode == DFmode && !TARGET_FIX)
- return 0;
-
- /* The general case: fold the comparison code to the types of compares
- that we have, choosing the branch as necessary. */
-
- cmp_code = UNKNOWN;
- switch (code)
- {
- case EQ: case LE: case LT: case LEU: case LTU:
- case UNORDERED:
- /* We have these compares. */
- if (cmp_mode == DFmode)
- cmp_code = code, code = NE;
- break;
-
- case NE:
- if (cmp_mode == DImode && op1 == const0_rtx)
- break;
- /* FALLTHRU */
-
- case ORDERED:
- cmp_code = reverse_condition (code);
- code = EQ;
- break;
-
- case GE: case GT: case GEU: case GTU:
- /* These normally need swapping, but for integer zero we have
- special patterns that recognize swapped operands. */
- if (cmp_mode == DImode && op1 == const0_rtx)
- break;
- code = swap_condition (code);
- if (cmp_mode == DFmode)
- cmp_code = code, code = NE;
- tmp = op0, op0 = op1, op1 = tmp;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (cmp_mode == DImode)
- {
- if (!register_operand (op0, DImode))
- op0 = force_reg (DImode, op0);
- if (!reg_or_8bit_operand (op1, DImode))
- op1 = force_reg (DImode, op1);
- }
-
- /* Emit an initial compare instruction, if necessary. */
- if (cmp_code != UNKNOWN)
- {
- tmp = gen_reg_rtx (cmp_mode);
- emit_insn (gen_rtx_SET (VOIDmode, tmp,
- gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1)));
-
- op0 = cmp_mode != DImode ? gen_lowpart (DImode, tmp) : tmp;
- op1 = const0_rtx;
- }
-
- /* Emit the setcc instruction. */
- emit_insn (gen_rtx_SET (VOIDmode, operands[0],
- gen_rtx_fmt_ee (code, DImode, op0, op1)));
- return true;
-}
-
-
-/* Rewrite a comparison against zero CMP of the form
- (CODE (cc0) (const_int 0)) so it can be written validly in
- a conditional move (if_then_else CMP ...).
- If both of the operands that set cc0 are nonzero we must emit
- an insn to perform the compare (it can't be done within
- the conditional move). */
-
-rtx
-alpha_emit_conditional_move (rtx cmp, enum machine_mode mode)
-{
- enum rtx_code code = GET_CODE (cmp);
- enum rtx_code cmov_code = NE;
- rtx op0 = XEXP (cmp, 0);
- rtx op1 = XEXP (cmp, 1);
- enum machine_mode cmp_mode
- = (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
- enum machine_mode cmov_mode = VOIDmode;
- int local_fast_math = flag_unsafe_math_optimizations;
- rtx tem;
-
- if (cmp_mode == TFmode)
- {
- op0 = alpha_emit_xfloating_compare (&code, op0, op1);
- op1 = const0_rtx;
- cmp_mode = DImode;
- }
-
- gcc_assert (cmp_mode == DFmode || cmp_mode == DImode);
-
- if (FLOAT_MODE_P (cmp_mode) != FLOAT_MODE_P (mode))
- {
- enum rtx_code cmp_code;
-
- if (! TARGET_FIX)
- return 0;
-
- /* If we have fp<->int register move instructions, do a cmov by
- performing the comparison in fp registers, and move the
- zero/nonzero value to integer registers, where we can then
- use a normal cmov, or vice-versa. */
-
- switch (code)
- {
- case EQ: case LE: case LT: case LEU: case LTU:
- case UNORDERED:
- /* We have these compares. */
- cmp_code = code, code = NE;
- break;
-
- case NE:
- case ORDERED:
- /* These must be reversed. */
- cmp_code = reverse_condition (code), code = EQ;
- break;
-
- case GE: case GT: case GEU: case GTU:
- /* These normally need swapping, but for integer zero we have
- special patterns that recognize swapped operands. */
- if (cmp_mode == DImode && op1 == const0_rtx)
- cmp_code = code, code = NE;
- else
- {
- cmp_code = swap_condition (code);
- code = NE;
- tem = op0, op0 = op1, op1 = tem;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (cmp_mode == DImode)
- {
- if (!reg_or_0_operand (op0, DImode))
- op0 = force_reg (DImode, op0);
- if (!reg_or_8bit_operand (op1, DImode))
- op1 = force_reg (DImode, op1);
- }
-
- tem = gen_reg_rtx (cmp_mode);
- emit_insn (gen_rtx_SET (VOIDmode, tem,
- gen_rtx_fmt_ee (cmp_code, cmp_mode,
- op0, op1)));
-
- cmp_mode = cmp_mode == DImode ? DFmode : DImode;
- op0 = gen_lowpart (cmp_mode, tem);
- op1 = CONST0_RTX (cmp_mode);
- local_fast_math = 1;
- }
-
- if (cmp_mode == DImode)
- {
- if (!reg_or_0_operand (op0, DImode))
- op0 = force_reg (DImode, op0);
- if (!reg_or_8bit_operand (op1, DImode))
- op1 = force_reg (DImode, op1);
- }
-
- /* We may be able to use a conditional move directly.
- This avoids emitting spurious compares. */
- if (signed_comparison_operator (cmp, VOIDmode)
- && (cmp_mode == DImode || local_fast_math)
- && (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
- return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
-
- /* We can't put the comparison inside the conditional move;
- emit a compare instruction and put that inside the
- conditional move. Make sure we emit only comparisons we have;
- swap or reverse as necessary. */
-
- if (!can_create_pseudo_p ())
- return NULL_RTX;
-
- switch (code)
- {
- case EQ: case LE: case LT: case LEU: case LTU:
- case UNORDERED:
- /* We have these compares: */
- break;
-
- case NE:
- case ORDERED:
- /* These must be reversed. */
- code = reverse_condition (code);
- cmov_code = EQ;
- break;
-
- case GE: case GT: case GEU: case GTU:
- /* These must be swapped. */
- if (op1 != CONST0_RTX (cmp_mode))
- {
- code = swap_condition (code);
- tem = op0, op0 = op1, op1 = tem;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (cmp_mode == DImode)
- {
- if (!reg_or_0_operand (op0, DImode))
- op0 = force_reg (DImode, op0);
- if (!reg_or_8bit_operand (op1, DImode))
- op1 = force_reg (DImode, op1);
- }
-
- /* ??? We mark the branch mode to be CCmode to prevent the compare
- and cmov from being combined, since the compare insn follows IEEE
- rules that the cmov does not. */
- if (cmp_mode == DFmode && !local_fast_math)
- cmov_mode = CCmode;
-
- tem = gen_reg_rtx (cmp_mode);
- emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_mode, op0, op1));
- return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_mode));
-}
-
-/* Simplify a conditional move of two constants into a setcc with
- arithmetic. This is done with a splitter since combine would
- just undo the work if done during code generation. It also catches
- cases we wouldn't have before cse. */
-
-int
-alpha_split_conditional_move (enum rtx_code code, rtx dest, rtx cond,
- rtx t_rtx, rtx f_rtx)
-{
- HOST_WIDE_INT t, f, diff;
- enum machine_mode mode;
- rtx target, subtarget, tmp;
-
- mode = GET_MODE (dest);
- t = INTVAL (t_rtx);
- f = INTVAL (f_rtx);
- diff = t - f;
-
- if (((code == NE || code == EQ) && diff < 0)
- || (code == GE || code == GT))
- {
- code = reverse_condition (code);
- diff = t, t = f, f = diff;
- diff = t - f;
- }
-
- subtarget = target = dest;
- if (mode != DImode)
- {
- target = gen_lowpart (DImode, dest);
- if (can_create_pseudo_p ())
- subtarget = gen_reg_rtx (DImode);
- else
- subtarget = target;
- }
- /* Below, we must be careful to use copy_rtx on target and subtarget
- in intermediate insns, as they may be a subreg rtx, which may not
- be shared. */
-
- if (f == 0 && exact_log2 (diff) > 0
- /* On EV6, we've got enough shifters to make non-arithmetic shifts
- viable over a longer latency cmove. On EV5, the E0 slot is a
- scarce resource, and on EV4 shift has the same latency as a cmove. */
- && (diff <= 8 || alpha_tune == PROCESSOR_EV6))
- {
- tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
- emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
-
- tmp = gen_rtx_ASHIFT (DImode, copy_rtx (subtarget),
- GEN_INT (exact_log2 (t)));
- emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
- }
- else if (f == 0 && t == -1)
- {
- tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
- emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
-
- emit_insn (gen_negdi2 (target, copy_rtx (subtarget)));
- }
- else if (diff == 1 || diff == 4 || diff == 8)
- {
- rtx add_op;
-
- tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
- emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
-
- if (diff == 1)
- emit_insn (gen_adddi3 (target, copy_rtx (subtarget), GEN_INT (f)));
- else
- {
- add_op = GEN_INT (f);
- if (sext_add_operand (add_op, mode))
- {
- tmp = gen_rtx_MULT (DImode, copy_rtx (subtarget),
- GEN_INT (diff));
- tmp = gen_rtx_PLUS (DImode, tmp, add_op);
- emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
- }
- else
- return 0;
- }
- }
- else
- return 0;
-
- return 1;
-}
-
-/* Look up the function X_floating library function name for the
- given operation. */
-
-struct GTY(()) xfloating_op
-{
- const enum rtx_code code;
- const char *const GTY((skip)) osf_func;
- const char *const GTY((skip)) vms_func;
- rtx libcall;
-};
-
-static GTY(()) struct xfloating_op xfloating_ops[] =
-{
- { PLUS, "_OtsAddX", "OTS$ADD_X", 0 },
- { MINUS, "_OtsSubX", "OTS$SUB_X", 0 },
- { MULT, "_OtsMulX", "OTS$MUL_X", 0 },
- { DIV, "_OtsDivX", "OTS$DIV_X", 0 },
- { EQ, "_OtsEqlX", "OTS$EQL_X", 0 },
- { NE, "_OtsNeqX", "OTS$NEQ_X", 0 },
- { LT, "_OtsLssX", "OTS$LSS_X", 0 },
- { LE, "_OtsLeqX", "OTS$LEQ_X", 0 },
- { GT, "_OtsGtrX", "OTS$GTR_X", 0 },
- { GE, "_OtsGeqX", "OTS$GEQ_X", 0 },
- { FIX, "_OtsCvtXQ", "OTS$CVTXQ", 0 },
- { FLOAT, "_OtsCvtQX", "OTS$CVTQX", 0 },
- { UNSIGNED_FLOAT, "_OtsCvtQUX", "OTS$CVTQUX", 0 },
- { FLOAT_EXTEND, "_OtsConvertFloatTX", "OTS$CVT_FLOAT_T_X", 0 },
- { FLOAT_TRUNCATE, "_OtsConvertFloatXT", "OTS$CVT_FLOAT_X_T", 0 }
-};
-
-static GTY(()) struct xfloating_op vax_cvt_ops[] =
-{
- { FLOAT_EXTEND, "_OtsConvertFloatGX", "OTS$CVT_FLOAT_G_X", 0 },
- { FLOAT_TRUNCATE, "_OtsConvertFloatXG", "OTS$CVT_FLOAT_X_G", 0 }
-};
-
-static rtx
-alpha_lookup_xfloating_lib_func (enum rtx_code code)
-{
- struct xfloating_op *ops = xfloating_ops;
- long n = ARRAY_SIZE (xfloating_ops);
- long i;
-
- gcc_assert (TARGET_HAS_XFLOATING_LIBS);
-
- /* How irritating. Nothing to key off for the main table. */
- if (TARGET_FLOAT_VAX && (code == FLOAT_EXTEND || code == FLOAT_TRUNCATE))
- {
- ops = vax_cvt_ops;
- n = ARRAY_SIZE (vax_cvt_ops);
- }
-
- for (i = 0; i < n; ++i, ++ops)
- if (ops->code == code)
- {
- rtx func = ops->libcall;
- if (!func)
- {
- func = init_one_libfunc (TARGET_ABI_OPEN_VMS
- ? ops->vms_func : ops->osf_func);
- ops->libcall = func;
- }
- return func;
- }
-
- gcc_unreachable ();
-}
-
-/* Most X_floating operations take the rounding mode as an argument.
- Compute that here. */
-
-static int
-alpha_compute_xfloating_mode_arg (enum rtx_code code,
- enum alpha_fp_rounding_mode round)
-{
- int mode;
-
- switch (round)
- {
- case ALPHA_FPRM_NORM:
- mode = 2;
- break;
- case ALPHA_FPRM_MINF:
- mode = 1;
- break;
- case ALPHA_FPRM_CHOP:
- mode = 0;
- break;
- case ALPHA_FPRM_DYN:
- mode = 4;
- break;
- default:
- gcc_unreachable ();
-
- /* XXX For reference, round to +inf is mode = 3. */
- }
-
- if (code == FLOAT_TRUNCATE && alpha_fptm == ALPHA_FPTM_N)
- mode |= 0x10000;
-
- return mode;
-}
-
-/* Emit an X_floating library function call.
-
- Note that these functions do not follow normal calling conventions:
- TFmode arguments are passed in two integer registers (as opposed to
- indirect); TFmode return values appear in R16+R17.
-
- FUNC is the function to call.
- TARGET is where the output belongs.
- OPERANDS are the inputs.
- NOPERANDS is the count of inputs.
- EQUIV is the expression equivalent for the function.
-*/
-
-static void
-alpha_emit_xfloating_libcall (rtx func, rtx target, rtx operands[],
- int noperands, rtx equiv)
-{
- rtx usage = NULL_RTX, tmp, reg;
- int regno = 16, i;
-
- start_sequence ();
-
- for (i = 0; i < noperands; ++i)
- {
- switch (GET_MODE (operands[i]))
- {
- case TFmode:
- reg = gen_rtx_REG (TFmode, regno);
- regno += 2;
- break;
-
- case DFmode:
- reg = gen_rtx_REG (DFmode, regno + 32);
- regno += 1;
- break;
-
- case VOIDmode:
- gcc_assert (CONST_INT_P (operands[i]));
- /* FALLTHRU */
- case DImode:
- reg = gen_rtx_REG (DImode, regno);
- regno += 1;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- emit_move_insn (reg, operands[i]);
- use_reg (&usage, reg);
- }
-
- switch (GET_MODE (target))
- {
- case TFmode:
- reg = gen_rtx_REG (TFmode, 16);
- break;
- case DFmode:
- reg = gen_rtx_REG (DFmode, 32);
- break;
- case DImode:
- reg = gen_rtx_REG (DImode, 0);
- break;
- default:
- gcc_unreachable ();
- }
-
- tmp = gen_rtx_MEM (QImode, func);
- tmp = emit_call_insn (GEN_CALL_VALUE (reg, tmp, const0_rtx,
- const0_rtx, const0_rtx));
- CALL_INSN_FUNCTION_USAGE (tmp) = usage;
- RTL_CONST_CALL_P (tmp) = 1;
-
- tmp = get_insns ();
- end_sequence ();
-
- emit_libcall_block (tmp, target, reg, equiv);
-}
-
-/* Emit an X_floating library function call for arithmetic (+,-,*,/). */
-
-void
-alpha_emit_xfloating_arith (enum rtx_code code, rtx operands[])
-{
- rtx func;
- int mode;
- rtx out_operands[3];
-
- func = alpha_lookup_xfloating_lib_func (code);
- mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
-
- out_operands[0] = operands[1];
- out_operands[1] = operands[2];
- out_operands[2] = GEN_INT (mode);
- alpha_emit_xfloating_libcall (func, operands[0], out_operands, 3,
- gen_rtx_fmt_ee (code, TFmode, operands[1],
- operands[2]));
-}
-
-/* Emit an X_floating library function call for a comparison. */
-
-static rtx
-alpha_emit_xfloating_compare (enum rtx_code *pcode, rtx op0, rtx op1)
-{
- enum rtx_code cmp_code, res_code;
- rtx func, out, operands[2], note;
-
- /* X_floating library comparison functions return
- -1 unordered
- 0 false
- 1 true
- Convert the compare against the raw return value. */
-
- cmp_code = *pcode;
- switch (cmp_code)
- {
- case UNORDERED:
- cmp_code = EQ;
- res_code = LT;
- break;
- case ORDERED:
- cmp_code = EQ;
- res_code = GE;
- break;
- case NE:
- res_code = NE;
- break;
- case EQ:
- case LT:
- case GT:
- case LE:
- case GE:
- res_code = GT;
- break;
- default:
- gcc_unreachable ();
- }
- *pcode = res_code;
-
- func = alpha_lookup_xfloating_lib_func (cmp_code);
-
- operands[0] = op0;
- operands[1] = op1;
- out = gen_reg_rtx (DImode);
-
- /* What's actually returned is -1,0,1, not a proper boolean value,
- so use an EXPR_LIST as with a generic libcall instead of a
- comparison type expression. */
- note = gen_rtx_EXPR_LIST (VOIDmode, op1, NULL_RTX);
- note = gen_rtx_EXPR_LIST (VOIDmode, op0, note);
- note = gen_rtx_EXPR_LIST (VOIDmode, func, note);
- alpha_emit_xfloating_libcall (func, out, operands, 2, note);
-
- return out;
-}
-
-/* Emit an X_floating library function call for a conversion. */
-
-void
-alpha_emit_xfloating_cvt (enum rtx_code orig_code, rtx operands[])
-{
- int noperands = 1, mode;
- rtx out_operands[2];
- rtx func;
- enum rtx_code code = orig_code;
-
- if (code == UNSIGNED_FIX)
- code = FIX;
-
- func = alpha_lookup_xfloating_lib_func (code);
-
- out_operands[0] = operands[1];
-
- switch (code)
- {
- case FIX:
- mode = alpha_compute_xfloating_mode_arg (code, ALPHA_FPRM_CHOP);
- out_operands[1] = GEN_INT (mode);
- noperands = 2;
- break;
- case FLOAT_TRUNCATE:
- mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
- out_operands[1] = GEN_INT (mode);
- noperands = 2;
- break;
- default:
- break;
- }
-
- alpha_emit_xfloating_libcall (func, operands[0], out_operands, noperands,
- gen_rtx_fmt_e (orig_code,
- GET_MODE (operands[0]),
- operands[1]));
-}
-
-/* Split a TImode or TFmode move from OP[1] to OP[0] into a pair of
- DImode moves from OP[2,3] to OP[0,1]. If FIXUP_OVERLAP is true,
- guarantee that the sequence
- set (OP[0] OP[2])
- set (OP[1] OP[3])
- is valid. Naturally, output operand ordering is little-endian.
- This is used by *movtf_internal and *movti_internal. */
-
-void
-alpha_split_tmode_pair (rtx operands[4], enum machine_mode mode,
- bool fixup_overlap)
-{
- switch (GET_CODE (operands[1]))
- {
- case REG:
- operands[3] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
- operands[2] = gen_rtx_REG (DImode, REGNO (operands[1]));
- break;
-
- case MEM:
- operands[3] = adjust_address (operands[1], DImode, 8);
- operands[2] = adjust_address (operands[1], DImode, 0);
- break;
-
- case CONST_INT:
- case CONST_DOUBLE:
- gcc_assert (operands[1] == CONST0_RTX (mode));
- operands[2] = operands[3] = const0_rtx;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- switch (GET_CODE (operands[0]))
- {
- case REG:
- operands[1] = gen_rtx_REG (DImode, REGNO (operands[0]) + 1);
- operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));
- break;
-
- case MEM:
- operands[1] = adjust_address (operands[0], DImode, 8);
- operands[0] = adjust_address (operands[0], DImode, 0);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (fixup_overlap && reg_overlap_mentioned_p (operands[0], operands[3]))
- {
- rtx tmp;
- tmp = operands[0], operands[0] = operands[1], operands[1] = tmp;
- tmp = operands[2], operands[2] = operands[3], operands[3] = tmp;
- }
-}
-
-/* Implement negtf2 or abstf2. Op0 is destination, op1 is source,
- op2 is a register containing the sign bit, operation is the
- logical operation to be performed. */
-
-void
-alpha_split_tfmode_frobsign (rtx operands[3], rtx (*operation) (rtx, rtx, rtx))
-{
- rtx high_bit = operands[2];
- rtx scratch;
- int move;
-
- alpha_split_tmode_pair (operands, TFmode, false);
-
- /* Detect three flavors of operand overlap. */
- move = 1;
- if (rtx_equal_p (operands[0], operands[2]))
- move = 0;
- else if (rtx_equal_p (operands[1], operands[2]))
- {
- if (rtx_equal_p (operands[0], high_bit))
- move = 2;
- else
- move = -1;
- }
-
- if (move < 0)
- emit_move_insn (operands[0], operands[2]);
-
- /* ??? If the destination overlaps both source tf and high_bit, then
- assume source tf is dead in its entirety and use the other half
- for a scratch register. Otherwise "scratch" is just the proper
- destination register. */
- scratch = operands[move < 2 ? 1 : 3];
-
- emit_insn ((*operation) (scratch, high_bit, operands[3]));
-
- if (move > 0)
- {
- emit_move_insn (operands[0], operands[2]);
- if (move > 1)
- emit_move_insn (operands[1], scratch);
- }
-}
-
-/* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
- unaligned data:
-
- unsigned: signed:
- word: ldq_u r1,X(r11) ldq_u r1,X(r11)
- ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
- lda r3,X(r11) lda r3,X+2(r11)
- extwl r1,r3,r1 extql r1,r3,r1
- extwh r2,r3,r2 extqh r2,r3,r2
- or r1.r2.r1 or r1,r2,r1
- sra r1,48,r1
-
- long: ldq_u r1,X(r11) ldq_u r1,X(r11)
- ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
- lda r3,X(r11) lda r3,X(r11)
- extll r1,r3,r1 extll r1,r3,r1
- extlh r2,r3,r2 extlh r2,r3,r2
- or r1.r2.r1 addl r1,r2,r1
-
- quad: ldq_u r1,X(r11)
- ldq_u r2,X+7(r11)
- lda r3,X(r11)
- extql r1,r3,r1
- extqh r2,r3,r2
- or r1.r2.r1
-*/
-
-void
-alpha_expand_unaligned_load (rtx tgt, rtx mem, HOST_WIDE_INT size,
- HOST_WIDE_INT ofs, int sign)
-{
- rtx meml, memh, addr, extl, exth, tmp, mema;
- enum machine_mode mode;
-
- if (TARGET_BWX && size == 2)
- {
- meml = adjust_address (mem, QImode, ofs);
- memh = adjust_address (mem, QImode, ofs+1);
- extl = gen_reg_rtx (DImode);
- exth = gen_reg_rtx (DImode);
- emit_insn (gen_zero_extendqidi2 (extl, meml));
- emit_insn (gen_zero_extendqidi2 (exth, memh));
- exth = expand_simple_binop (DImode, ASHIFT, exth, GEN_INT (8),
- NULL, 1, OPTAB_LIB_WIDEN);
- addr = expand_simple_binop (DImode, IOR, extl, exth,
- NULL, 1, OPTAB_LIB_WIDEN);
-
- if (sign && GET_MODE (tgt) != HImode)
- {
- addr = gen_lowpart (HImode, addr);
- emit_insn (gen_extend_insn (tgt, addr, GET_MODE (tgt), HImode, 0));
- }
- else
- {
- if (GET_MODE (tgt) != DImode)
- addr = gen_lowpart (GET_MODE (tgt), addr);
- emit_move_insn (tgt, addr);
- }
- return;
- }
-
- meml = gen_reg_rtx (DImode);
- memh = gen_reg_rtx (DImode);
- addr = gen_reg_rtx (DImode);
- extl = gen_reg_rtx (DImode);
- exth = gen_reg_rtx (DImode);
-
- mema = XEXP (mem, 0);
- if (GET_CODE (mema) == LO_SUM)
- mema = force_reg (Pmode, mema);
-
- /* AND addresses cannot be in any alias set, since they may implicitly
- alias surrounding code. Ideally we'd have some alias set that
- covered all types except those with alignment 8 or higher. */
-
- tmp = change_address (mem, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, mema, ofs),
- GEN_INT (-8)));
- set_mem_alias_set (tmp, 0);
- emit_move_insn (meml, tmp);
-
- tmp = change_address (mem, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, mema,
- ofs + size - 1),
- GEN_INT (-8)));
- set_mem_alias_set (tmp, 0);
- emit_move_insn (memh, tmp);
-
- if (sign && size == 2)
- {
- emit_move_insn (addr, plus_constant (Pmode, mema, ofs+2));
-
- emit_insn (gen_extql (extl, meml, addr));
- emit_insn (gen_extqh (exth, memh, addr));
-
- /* We must use tgt here for the target. Alpha-vms port fails if we use
- addr for the target, because addr is marked as a pointer and combine
- knows that pointers are always sign-extended 32-bit values. */
- addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
- addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
- addr, 1, OPTAB_WIDEN);
- }
- else
- {
- emit_move_insn (addr, plus_constant (Pmode, mema, ofs));
- emit_insn (gen_extxl (extl, meml, GEN_INT (size*8), addr));
- switch ((int) size)
- {
- case 2:
- emit_insn (gen_extwh (exth, memh, addr));
- mode = HImode;
- break;
- case 4:
- emit_insn (gen_extlh (exth, memh, addr));
- mode = SImode;
- break;
- case 8:
- emit_insn (gen_extqh (exth, memh, addr));
- mode = DImode;
- break;
- default:
- gcc_unreachable ();
- }
-
- addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
- gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
- sign, OPTAB_WIDEN);
- }
-
- if (addr != tgt)
- emit_move_insn (tgt, gen_lowpart (GET_MODE (tgt), addr));
-}
-
-/* Similarly, use ins and msk instructions to perform unaligned stores. */
-
-void
-alpha_expand_unaligned_store (rtx dst, rtx src,
- HOST_WIDE_INT size, HOST_WIDE_INT ofs)
-{
- rtx dstl, dsth, addr, insl, insh, meml, memh, dsta;
-
- if (TARGET_BWX && size == 2)
- {
- if (src != const0_rtx)
- {
- dstl = gen_lowpart (QImode, src);
- dsth = expand_simple_binop (DImode, LSHIFTRT, src, GEN_INT (8),
- NULL, 1, OPTAB_LIB_WIDEN);
- dsth = gen_lowpart (QImode, dsth);
- }
- else
- dstl = dsth = const0_rtx;
-
- meml = adjust_address (dst, QImode, ofs);
- memh = adjust_address (dst, QImode, ofs+1);
-
- emit_move_insn (meml, dstl);
- emit_move_insn (memh, dsth);
- return;
- }
-
- dstl = gen_reg_rtx (DImode);
- dsth = gen_reg_rtx (DImode);
- insl = gen_reg_rtx (DImode);
- insh = gen_reg_rtx (DImode);
-
- dsta = XEXP (dst, 0);
- if (GET_CODE (dsta) == LO_SUM)
- dsta = force_reg (Pmode, dsta);
-
- /* AND addresses cannot be in any alias set, since they may implicitly
- alias surrounding code. Ideally we'd have some alias set that
- covered all types except those with alignment 8 or higher. */
-
- meml = change_address (dst, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, dsta, ofs),
- GEN_INT (-8)));
- set_mem_alias_set (meml, 0);
-
- memh = change_address (dst, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, dsta,
- ofs + size - 1),
- GEN_INT (-8)));
- set_mem_alias_set (memh, 0);
-
- emit_move_insn (dsth, memh);
- emit_move_insn (dstl, meml);
-
- addr = copy_addr_to_reg (plus_constant (Pmode, dsta, ofs));
-
- if (src != CONST0_RTX (GET_MODE (src)))
- {
- emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
- GEN_INT (size*8), addr));
-
- switch ((int) size)
- {
- case 2:
- emit_insn (gen_inswl (insl, gen_lowpart (HImode, src), addr));
- break;
- case 4:
- emit_insn (gen_insll (insl, gen_lowpart (SImode, src), addr));
- break;
- case 8:
- emit_insn (gen_insql (insl, gen_lowpart (DImode, src), addr));
- break;
- default:
- gcc_unreachable ();
- }
- }
-
- emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
-
- switch ((int) size)
- {
- case 2:
- emit_insn (gen_mskwl (dstl, dstl, addr));
- break;
- case 4:
- emit_insn (gen_mskll (dstl, dstl, addr));
- break;
- case 8:
- emit_insn (gen_mskql (dstl, dstl, addr));
- break;
- default:
- gcc_unreachable ();
- }
-
- if (src != CONST0_RTX (GET_MODE (src)))
- {
- dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
- dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
- }
-
- /* Must store high before low for degenerate case of aligned. */
- emit_move_insn (memh, dsth);
- emit_move_insn (meml, dstl);
-}
-
-/* The block move code tries to maximize speed by separating loads and
- stores at the expense of register pressure: we load all of the data
- before we store it back out. There are two secondary effects worth
- mentioning, that this speeds copying to/from aligned and unaligned
- buffers, and that it makes the code significantly easier to write. */
-
-#define MAX_MOVE_WORDS 8
-
-/* Load an integral number of consecutive unaligned quadwords. */
-
-static void
-alpha_expand_unaligned_load_words (rtx *out_regs, rtx smem,
- HOST_WIDE_INT words, HOST_WIDE_INT ofs)
-{
- rtx const im8 = GEN_INT (-8);
- rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
- rtx sreg, areg, tmp, smema;
- HOST_WIDE_INT i;
-
- smema = XEXP (smem, 0);
- if (GET_CODE (smema) == LO_SUM)
- smema = force_reg (Pmode, smema);
-
- /* Generate all the tmp registers we need. */
- for (i = 0; i < words; ++i)
- {
- data_regs[i] = out_regs[i];
- ext_tmps[i] = gen_reg_rtx (DImode);
- }
- data_regs[words] = gen_reg_rtx (DImode);
-
- if (ofs != 0)
- smem = adjust_address (smem, GET_MODE (smem), ofs);
-
- /* Load up all of the source data. */
- for (i = 0; i < words; ++i)
- {
- tmp = change_address (smem, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, smema, 8*i),
- im8));
- set_mem_alias_set (tmp, 0);
- emit_move_insn (data_regs[i], tmp);
- }
-
- tmp = change_address (smem, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, smema,
- 8*words - 1),
- im8));
- set_mem_alias_set (tmp, 0);
- emit_move_insn (data_regs[words], tmp);
-
- /* Extract the half-word fragments. Unfortunately DEC decided to make
- extxh with offset zero a noop instead of zeroing the register, so
- we must take care of that edge condition ourselves with cmov. */
-
- sreg = copy_addr_to_reg (smema);
- areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
- 1, OPTAB_WIDEN);
- for (i = 0; i < words; ++i)
- {
- emit_insn (gen_extql (data_regs[i], data_regs[i], sreg));
- emit_insn (gen_extqh (ext_tmps[i], data_regs[i+1], sreg));
- emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
- gen_rtx_IF_THEN_ELSE (DImode,
- gen_rtx_EQ (DImode, areg,
- const0_rtx),
- const0_rtx, ext_tmps[i])));
- }
-
- /* Merge the half-words into whole words. */
- for (i = 0; i < words; ++i)
- {
- out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
- ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
- }
-}
-
-/* Store an integral number of consecutive unaligned quadwords. DATA_REGS
- may be NULL to store zeros. */
-
-static void
-alpha_expand_unaligned_store_words (rtx *data_regs, rtx dmem,
- HOST_WIDE_INT words, HOST_WIDE_INT ofs)
-{
- rtx const im8 = GEN_INT (-8);
- rtx ins_tmps[MAX_MOVE_WORDS];
- rtx st_tmp_1, st_tmp_2, dreg;
- rtx st_addr_1, st_addr_2, dmema;
- HOST_WIDE_INT i;
-
- dmema = XEXP (dmem, 0);
- if (GET_CODE (dmema) == LO_SUM)
- dmema = force_reg (Pmode, dmema);
-
- /* Generate all the tmp registers we need. */
- if (data_regs != NULL)
- for (i = 0; i < words; ++i)
- ins_tmps[i] = gen_reg_rtx(DImode);
- st_tmp_1 = gen_reg_rtx(DImode);
- st_tmp_2 = gen_reg_rtx(DImode);
-
- if (ofs != 0)
- dmem = adjust_address (dmem, GET_MODE (dmem), ofs);
-
- st_addr_2 = change_address (dmem, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, dmema,
- words*8 - 1),
- im8));
- set_mem_alias_set (st_addr_2, 0);
-
- st_addr_1 = change_address (dmem, DImode,
- gen_rtx_AND (DImode, dmema, im8));
- set_mem_alias_set (st_addr_1, 0);
-
- /* Load up the destination end bits. */
- emit_move_insn (st_tmp_2, st_addr_2);
- emit_move_insn (st_tmp_1, st_addr_1);
-
- /* Shift the input data into place. */
- dreg = copy_addr_to_reg (dmema);
- if (data_regs != NULL)
- {
- for (i = words-1; i >= 0; --i)
- {
- emit_insn (gen_insqh (ins_tmps[i], data_regs[i], dreg));
- emit_insn (gen_insql (data_regs[i], data_regs[i], dreg));
- }
- for (i = words-1; i > 0; --i)
- {
- ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
- ins_tmps[i-1], ins_tmps[i-1], 1,
- OPTAB_WIDEN);
- }
- }
-
- /* Split and merge the ends with the destination data. */
- emit_insn (gen_mskqh (st_tmp_2, st_tmp_2, dreg));
- emit_insn (gen_mskql (st_tmp_1, st_tmp_1, dreg));
-
- if (data_regs != NULL)
- {
- st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
- st_tmp_2, 1, OPTAB_WIDEN);
- st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
- st_tmp_1, 1, OPTAB_WIDEN);
- }
-
- /* Store it all. */
- emit_move_insn (st_addr_2, st_tmp_2);
- for (i = words-1; i > 0; --i)
- {
- rtx tmp = change_address (dmem, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode,
- dmema, i*8),
- im8));
- set_mem_alias_set (tmp, 0);
- emit_move_insn (tmp, data_regs ? ins_tmps[i-1] : const0_rtx);
- }
- emit_move_insn (st_addr_1, st_tmp_1);
-}
-
-
-/* Expand string/block move operations.
-
- operands[0] is the pointer to the destination.
- operands[1] is the pointer to the source.
- operands[2] is the number of bytes to move.
- operands[3] is the alignment. */
-
-int
-alpha_expand_block_move (rtx operands[])
-{
- rtx bytes_rtx = operands[2];
- rtx align_rtx = operands[3];
- HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
- HOST_WIDE_INT bytes = orig_bytes;
- HOST_WIDE_INT src_align = INTVAL (align_rtx) * BITS_PER_UNIT;
- HOST_WIDE_INT dst_align = src_align;
- rtx orig_src = operands[1];
- rtx orig_dst = operands[0];
- rtx data_regs[2 * MAX_MOVE_WORDS + 16];
- rtx tmp;
- unsigned int i, words, ofs, nregs = 0;
-
- if (orig_bytes <= 0)
- return 1;
- else if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
- return 0;
-
- /* Look for additional alignment information from recorded register info. */
-
- tmp = XEXP (orig_src, 0);
- if (REG_P (tmp))
- src_align = MAX (src_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
- else if (GET_CODE (tmp) == PLUS
- && REG_P (XEXP (tmp, 0))
- && CONST_INT_P (XEXP (tmp, 1)))
- {
- unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
- unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
-
- if (a > src_align)
- {
- if (a >= 64 && c % 8 == 0)
- src_align = 64;
- else if (a >= 32 && c % 4 == 0)
- src_align = 32;
- else if (a >= 16 && c % 2 == 0)
- src_align = 16;
- }
- }
-
- tmp = XEXP (orig_dst, 0);
- if (REG_P (tmp))
- dst_align = MAX (dst_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
- else if (GET_CODE (tmp) == PLUS
- && REG_P (XEXP (tmp, 0))
- && CONST_INT_P (XEXP (tmp, 1)))
- {
- unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
- unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
-
- if (a > dst_align)
- {
- if (a >= 64 && c % 8 == 0)
- dst_align = 64;
- else if (a >= 32 && c % 4 == 0)
- dst_align = 32;
- else if (a >= 16 && c % 2 == 0)
- dst_align = 16;
- }
- }
-
- ofs = 0;
- if (src_align >= 64 && bytes >= 8)
- {
- words = bytes / 8;
-
- for (i = 0; i < words; ++i)
- data_regs[nregs + i] = gen_reg_rtx (DImode);
-
- for (i = 0; i < words; ++i)
- emit_move_insn (data_regs[nregs + i],
- adjust_address (orig_src, DImode, ofs + i * 8));
-
- nregs += words;
- bytes -= words * 8;
- ofs += words * 8;
- }
-
- if (src_align >= 32 && bytes >= 4)
- {
- words = bytes / 4;
-
- for (i = 0; i < words; ++i)
- data_regs[nregs + i] = gen_reg_rtx (SImode);
-
- for (i = 0; i < words; ++i)
- emit_move_insn (data_regs[nregs + i],
- adjust_address (orig_src, SImode, ofs + i * 4));
-
- nregs += words;
- bytes -= words * 4;
- ofs += words * 4;
- }
-
- if (bytes >= 8)
- {
- words = bytes / 8;
-
- for (i = 0; i < words+1; ++i)
- data_regs[nregs + i] = gen_reg_rtx (DImode);
-
- alpha_expand_unaligned_load_words (data_regs + nregs, orig_src,
- words, ofs);
-
- nregs += words;
- bytes -= words * 8;
- ofs += words * 8;
- }
-
- if (! TARGET_BWX && bytes >= 4)
- {
- data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
- alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
- bytes -= 4;
- ofs += 4;
- }
-
- if (bytes >= 2)
- {
- if (src_align >= 16)
- {
- do {
- data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
- emit_move_insn (tmp, adjust_address (orig_src, HImode, ofs));
- bytes -= 2;
- ofs += 2;
- } while (bytes >= 2);
- }
- else if (! TARGET_BWX)
- {
- data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
- alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
- bytes -= 2;
- ofs += 2;
- }
- }
-
- while (bytes > 0)
- {
- data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
- emit_move_insn (tmp, adjust_address (orig_src, QImode, ofs));
- bytes -= 1;
- ofs += 1;
- }
-
- gcc_assert (nregs <= ARRAY_SIZE (data_regs));
-
- /* Now save it back out again. */
-
- i = 0, ofs = 0;
-
- /* Write out the data in whatever chunks reading the source allowed. */
- if (dst_align >= 64)
- {
- while (i < nregs && GET_MODE (data_regs[i]) == DImode)
- {
- emit_move_insn (adjust_address (orig_dst, DImode, ofs),
- data_regs[i]);
- ofs += 8;
- i++;
- }
- }
-
- if (dst_align >= 32)
- {
- /* If the source has remaining DImode regs, write them out in
- two pieces. */
- while (i < nregs && GET_MODE (data_regs[i]) == DImode)
- {
- tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
- NULL_RTX, 1, OPTAB_WIDEN);
-
- emit_move_insn (adjust_address (orig_dst, SImode, ofs),
- gen_lowpart (SImode, data_regs[i]));
- emit_move_insn (adjust_address (orig_dst, SImode, ofs + 4),
- gen_lowpart (SImode, tmp));
- ofs += 8;
- i++;
- }
-
- while (i < nregs && GET_MODE (data_regs[i]) == SImode)
- {
- emit_move_insn (adjust_address (orig_dst, SImode, ofs),
- data_regs[i]);
- ofs += 4;
- i++;
- }
- }
-
- if (i < nregs && GET_MODE (data_regs[i]) == DImode)
- {
- /* Write out a remaining block of words using unaligned methods. */
-
- for (words = 1; i + words < nregs; words++)
- if (GET_MODE (data_regs[i + words]) != DImode)
- break;
-
- if (words == 1)
- alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
- else
- alpha_expand_unaligned_store_words (data_regs + i, orig_dst,
- words, ofs);
-
- i += words;
- ofs += words * 8;
- }
-
- /* Due to the above, this won't be aligned. */
- /* ??? If we have more than one of these, consider constructing full
- words in registers and using alpha_expand_unaligned_store_words. */
- while (i < nregs && GET_MODE (data_regs[i]) == SImode)
- {
- alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
- ofs += 4;
- i++;
- }
-
- if (dst_align >= 16)
- while (i < nregs && GET_MODE (data_regs[i]) == HImode)
- {
- emit_move_insn (adjust_address (orig_dst, HImode, ofs), data_regs[i]);
- i++;
- ofs += 2;
- }
- else
- while (i < nregs && GET_MODE (data_regs[i]) == HImode)
- {
- alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
- i++;
- ofs += 2;
- }
-
- /* The remainder must be byte copies. */
- while (i < nregs)
- {
- gcc_assert (GET_MODE (data_regs[i]) == QImode);
- emit_move_insn (adjust_address (orig_dst, QImode, ofs), data_regs[i]);
- i++;
- ofs += 1;
- }
-
- return 1;
-}
-
-int
-alpha_expand_block_clear (rtx operands[])
-{
- rtx bytes_rtx = operands[1];
- rtx align_rtx = operands[3];
- HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
- HOST_WIDE_INT bytes = orig_bytes;
- HOST_WIDE_INT align = INTVAL (align_rtx) * BITS_PER_UNIT;
- HOST_WIDE_INT alignofs = 0;
- rtx orig_dst = operands[0];
- rtx tmp;
- int i, words, ofs = 0;
-
- if (orig_bytes <= 0)
- return 1;
- if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
- return 0;
-
- /* Look for stricter alignment. */
- tmp = XEXP (orig_dst, 0);
- if (REG_P (tmp))
- align = MAX (align, REGNO_POINTER_ALIGN (REGNO (tmp)));
- else if (GET_CODE (tmp) == PLUS
- && REG_P (XEXP (tmp, 0))
- && CONST_INT_P (XEXP (tmp, 1)))
- {
- HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
- int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
-
- if (a > align)
- {
- if (a >= 64)
- align = a, alignofs = 8 - c % 8;
- else if (a >= 32)
- align = a, alignofs = 4 - c % 4;
- else if (a >= 16)
- align = a, alignofs = 2 - c % 2;
- }
- }
-
- /* Handle an unaligned prefix first. */
-
- if (alignofs > 0)
- {
-#if HOST_BITS_PER_WIDE_INT >= 64
- /* Given that alignofs is bounded by align, the only time BWX could
- generate three stores is for a 7 byte fill. Prefer two individual
- stores over a load/mask/store sequence. */
- if ((!TARGET_BWX || alignofs == 7)
- && align >= 32
- && !(alignofs == 4 && bytes >= 4))
- {
- enum machine_mode mode = (align >= 64 ? DImode : SImode);
- int inv_alignofs = (align >= 64 ? 8 : 4) - alignofs;
- rtx mem, tmp;
- HOST_WIDE_INT mask;
-
- mem = adjust_address (orig_dst, mode, ofs - inv_alignofs);
- set_mem_alias_set (mem, 0);
-
- mask = ~(~(HOST_WIDE_INT)0 << (inv_alignofs * 8));
- if (bytes < alignofs)
- {
- mask |= ~(HOST_WIDE_INT)0 << ((inv_alignofs + bytes) * 8);
- ofs += bytes;
- bytes = 0;
- }
- else
- {
- bytes -= alignofs;
- ofs += alignofs;
- }
- alignofs = 0;
-
- tmp = expand_binop (mode, and_optab, mem, GEN_INT (mask),
- NULL_RTX, 1, OPTAB_WIDEN);
-
- emit_move_insn (mem, tmp);
- }
-#endif
-
- if (TARGET_BWX && (alignofs & 1) && bytes >= 1)
- {
- emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
- bytes -= 1;
- ofs += 1;
- alignofs -= 1;
- }
- if (TARGET_BWX && align >= 16 && (alignofs & 3) == 2 && bytes >= 2)
- {
- emit_move_insn (adjust_address (orig_dst, HImode, ofs), const0_rtx);
- bytes -= 2;
- ofs += 2;
- alignofs -= 2;
- }
- if (alignofs == 4 && bytes >= 4)
- {
- emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
- bytes -= 4;
- ofs += 4;
- alignofs = 0;
- }
-
- /* If we've not used the extra lead alignment information by now,
- we won't be able to. Downgrade align to match what's left over. */
- if (alignofs > 0)
- {
- alignofs = alignofs & -alignofs;
- align = MIN (align, alignofs * BITS_PER_UNIT);
- }
- }
-
- /* Handle a block of contiguous long-words. */
-
- if (align >= 64 && bytes >= 8)
- {
- words = bytes / 8;
-
- for (i = 0; i < words; ++i)
- emit_move_insn (adjust_address (orig_dst, DImode, ofs + i * 8),
- const0_rtx);
-
- bytes -= words * 8;
- ofs += words * 8;
- }
-
- /* If the block is large and appropriately aligned, emit a single
- store followed by a sequence of stq_u insns. */
-
- if (align >= 32 && bytes > 16)
- {
- rtx orig_dsta;
-
- emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
- bytes -= 4;
- ofs += 4;
-
- orig_dsta = XEXP (orig_dst, 0);
- if (GET_CODE (orig_dsta) == LO_SUM)
- orig_dsta = force_reg (Pmode, orig_dsta);
-
- words = bytes / 8;
- for (i = 0; i < words; ++i)
- {
- rtx mem
- = change_address (orig_dst, DImode,
- gen_rtx_AND (DImode,
- plus_constant (DImode, orig_dsta,
- ofs + i*8),
- GEN_INT (-8)));
- set_mem_alias_set (mem, 0);
- emit_move_insn (mem, const0_rtx);
- }
-
- /* Depending on the alignment, the first stq_u may have overlapped
- with the initial stl, which means that the last stq_u didn't
- write as much as it would appear. Leave those questionable bytes
- unaccounted for. */
- bytes -= words * 8 - 4;
- ofs += words * 8 - 4;
- }
-
- /* Handle a smaller block of aligned words. */
-
- if ((align >= 64 && bytes == 4)
- || (align == 32 && bytes >= 4))
- {
- words = bytes / 4;
-
- for (i = 0; i < words; ++i)
- emit_move_insn (adjust_address (orig_dst, SImode, ofs + i * 4),
- const0_rtx);
-
- bytes -= words * 4;
- ofs += words * 4;
- }
-
- /* An unaligned block uses stq_u stores for as many as possible. */
-
- if (bytes >= 8)
- {
- words = bytes / 8;
-
- alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
-
- bytes -= words * 8;
- ofs += words * 8;
- }
-
- /* Next clean up any trailing pieces. */
-
-#if HOST_BITS_PER_WIDE_INT >= 64
- /* Count the number of bits in BYTES for which aligned stores could
- be emitted. */
- words = 0;
- for (i = (TARGET_BWX ? 1 : 4); i * BITS_PER_UNIT <= align ; i <<= 1)
- if (bytes & i)
- words += 1;
-
- /* If we have appropriate alignment (and it wouldn't take too many
- instructions otherwise), mask out the bytes we need. */
- if (TARGET_BWX ? words > 2 : bytes > 0)
- {
- if (align >= 64)
- {
- rtx mem, tmp;
- HOST_WIDE_INT mask;
-
- mem = adjust_address (orig_dst, DImode, ofs);
- set_mem_alias_set (mem, 0);
-
- mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
-
- tmp = expand_binop (DImode, and_optab, mem, GEN_INT (mask),
- NULL_RTX, 1, OPTAB_WIDEN);
-
- emit_move_insn (mem, tmp);
- return 1;
- }
- else if (align >= 32 && bytes < 4)
- {
- rtx mem, tmp;
- HOST_WIDE_INT mask;
-
- mem = adjust_address (orig_dst, SImode, ofs);
- set_mem_alias_set (mem, 0);
-
- mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
-
- tmp = expand_binop (SImode, and_optab, mem, GEN_INT (mask),
- NULL_RTX, 1, OPTAB_WIDEN);
-
- emit_move_insn (mem, tmp);
- return 1;
- }
- }
-#endif
-
- if (!TARGET_BWX && bytes >= 4)
- {
- alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
- bytes -= 4;
- ofs += 4;
- }
-
- if (bytes >= 2)
- {
- if (align >= 16)
- {
- do {
- emit_move_insn (adjust_address (orig_dst, HImode, ofs),
- const0_rtx);
- bytes -= 2;
- ofs += 2;
- } while (bytes >= 2);
- }
- else if (! TARGET_BWX)
- {
- alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
- bytes -= 2;
- ofs += 2;
- }
- }
-
- while (bytes > 0)
- {
- emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
- bytes -= 1;
- ofs += 1;
- }
-
- return 1;
-}
-
-/* Returns a mask so that zap(x, value) == x & mask. */
-
-rtx
-alpha_expand_zap_mask (HOST_WIDE_INT value)
-{
- rtx result;
- int i;
-
- if (HOST_BITS_PER_WIDE_INT >= 64)
- {
- HOST_WIDE_INT mask = 0;
-
- for (i = 7; i >= 0; --i)
- {
- mask <<= 8;
- if (!((value >> i) & 1))
- mask |= 0xff;
- }
-
- result = gen_int_mode (mask, DImode);
- }
- else
- {
- HOST_WIDE_INT mask_lo = 0, mask_hi = 0;
-
- gcc_assert (HOST_BITS_PER_WIDE_INT == 32);
-
- for (i = 7; i >= 4; --i)
- {
- mask_hi <<= 8;
- if (!((value >> i) & 1))
- mask_hi |= 0xff;
- }
-
- for (i = 3; i >= 0; --i)
- {
- mask_lo <<= 8;
- if (!((value >> i) & 1))
- mask_lo |= 0xff;
- }
-
- result = immed_double_const (mask_lo, mask_hi, DImode);
- }
-
- return result;
-}
-
-void
-alpha_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx),
- enum machine_mode mode,
- rtx op0, rtx op1, rtx op2)
-{
- op0 = gen_lowpart (mode, op0);
-
- if (op1 == const0_rtx)
- op1 = CONST0_RTX (mode);
- else
- op1 = gen_lowpart (mode, op1);
-
- if (op2 == const0_rtx)
- op2 = CONST0_RTX (mode);
- else
- op2 = gen_lowpart (mode, op2);
-
- emit_insn ((*gen) (op0, op1, op2));
-}
-
-/* A subroutine of the atomic operation splitters. Jump to LABEL if
- COND is true. Mark the jump as unlikely to be taken. */
-
-static void
-emit_unlikely_jump (rtx cond, rtx label)
-{
- rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
- rtx x;
-
- x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
- x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
- add_reg_note (x, REG_BR_PROB, very_unlikely);
-}
-
-/* A subroutine of the atomic operation splitters. Emit a load-locked
- instruction in MODE. */
-
-static void
-emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
-{
- rtx (*fn) (rtx, rtx) = NULL;
- if (mode == SImode)
- fn = gen_load_locked_si;
- else if (mode == DImode)
- fn = gen_load_locked_di;
- emit_insn (fn (reg, mem));
-}
-
-/* A subroutine of the atomic operation splitters. Emit a store-conditional
- instruction in MODE. */
-
-static void
-emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
-{
- rtx (*fn) (rtx, rtx, rtx) = NULL;
- if (mode == SImode)
- fn = gen_store_conditional_si;
- else if (mode == DImode)
- fn = gen_store_conditional_di;
- emit_insn (fn (res, mem, val));
-}
-
-/* Subroutines of the atomic operation splitters. Emit barriers
- as needed for the memory MODEL. */
-
-static void
-alpha_pre_atomic_barrier (enum memmodel model)
-{
- if (need_atomic_barrier_p (model, true))
- emit_insn (gen_memory_barrier ());
-}
-
-static void
-alpha_post_atomic_barrier (enum memmodel model)
-{
- if (need_atomic_barrier_p (model, false))
- emit_insn (gen_memory_barrier ());
-}
-
-/* A subroutine of the atomic operation splitters. Emit an insxl
- instruction in MODE. */
-
-static rtx
-emit_insxl (enum machine_mode mode, rtx op1, rtx op2)
-{
- rtx ret = gen_reg_rtx (DImode);
- rtx (*fn) (rtx, rtx, rtx);
-
- switch (mode)
- {
- case QImode:
- fn = gen_insbl;
- break;
- case HImode:
- fn = gen_inswl;
- break;
- case SImode:
- fn = gen_insll;
- break;
- case DImode:
- fn = gen_insql;
- break;
- default:
- gcc_unreachable ();
- }
-
- op1 = force_reg (mode, op1);
- emit_insn (fn (ret, op1, op2));
-
- return ret;
-}
-
-/* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
- to perform. MEM is the memory on which to operate. VAL is the second
- operand of the binary operator. BEFORE and AFTER are optional locations to
- return the value of MEM either before of after the operation. SCRATCH is
- a scratch register. */
-
-void
-alpha_split_atomic_op (enum rtx_code code, rtx mem, rtx val, rtx before,
- rtx after, rtx scratch, enum memmodel model)
-{
- enum machine_mode mode = GET_MODE (mem);
- rtx label, x, cond = gen_rtx_REG (DImode, REGNO (scratch));
-
- alpha_pre_atomic_barrier (model);
-
- label = gen_label_rtx ();
- emit_label (label);
- label = gen_rtx_LABEL_REF (DImode, label);
-
- if (before == NULL)
- before = scratch;
- emit_load_locked (mode, before, mem);
-
- if (code == NOT)
- {
- x = gen_rtx_AND (mode, before, val);
- emit_insn (gen_rtx_SET (VOIDmode, val, x));
-
- x = gen_rtx_NOT (mode, val);
- }
- else
- x = gen_rtx_fmt_ee (code, mode, before, val);
- if (after)
- emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
- emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
-
- emit_store_conditional (mode, cond, mem, scratch);
-
- x = gen_rtx_EQ (DImode, cond, const0_rtx);
- emit_unlikely_jump (x, label);
-
- alpha_post_atomic_barrier (model);
-}
-
-/* Expand a compare and swap operation. */
-
-void
-alpha_split_compare_and_swap (rtx operands[])
-{
- rtx cond, retval, mem, oldval, newval;
- bool is_weak;
- enum memmodel mod_s, mod_f;
- enum machine_mode mode;
- rtx label1, label2, x;
-
- cond = operands[0];
- retval = operands[1];
- mem = operands[2];
- oldval = operands[3];
- newval = operands[4];
- is_weak = (operands[5] != const0_rtx);
- mod_s = (enum memmodel) INTVAL (operands[6]);
- mod_f = (enum memmodel) INTVAL (operands[7]);
- mode = GET_MODE (mem);
-
- alpha_pre_atomic_barrier (mod_s);
-
- label1 = NULL_RTX;
- if (!is_weak)
- {
- label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
- emit_label (XEXP (label1, 0));
- }
- label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
-
- emit_load_locked (mode, retval, mem);
-
- x = gen_lowpart (DImode, retval);
- if (oldval == const0_rtx)
- {
- emit_move_insn (cond, const0_rtx);
- x = gen_rtx_NE (DImode, x, const0_rtx);
- }
- else
- {
- x = gen_rtx_EQ (DImode, x, oldval);
- emit_insn (gen_rtx_SET (VOIDmode, cond, x));
- x = gen_rtx_EQ (DImode, cond, const0_rtx);
- }
- emit_unlikely_jump (x, label2);
-
- emit_move_insn (cond, newval);
- emit_store_conditional (mode, cond, mem, gen_lowpart (mode, cond));
-
- if (!is_weak)
- {
- x = gen_rtx_EQ (DImode, cond, const0_rtx);
- emit_unlikely_jump (x, label1);
- }
-
- if (mod_f != MEMMODEL_RELAXED)
- emit_label (XEXP (label2, 0));
-
- alpha_post_atomic_barrier (mod_s);
-
- if (mod_f == MEMMODEL_RELAXED)
- emit_label (XEXP (label2, 0));
-}
-
-void
-alpha_expand_compare_and_swap_12 (rtx operands[])
-{
- rtx cond, dst, mem, oldval, newval, is_weak, mod_s, mod_f;
- enum machine_mode mode;
- rtx addr, align, wdst;
- rtx (*gen) (rtx, rtx, rtx, rtx, rtx, rtx, rtx, rtx, rtx);
-
- cond = operands[0];
- dst = operands[1];
- mem = operands[2];
- oldval = operands[3];
- newval = operands[4];
- is_weak = operands[5];
- mod_s = operands[6];
- mod_f = operands[7];
- mode = GET_MODE (mem);
-
- /* We forced the address into a register via mem_noofs_operand. */
- addr = XEXP (mem, 0);
- gcc_assert (register_operand (addr, DImode));
-
- align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8),
- NULL_RTX, 1, OPTAB_DIRECT);
-
- oldval = convert_modes (DImode, mode, oldval, 1);
-
- if (newval != const0_rtx)
- newval = emit_insxl (mode, newval, addr);
-
- wdst = gen_reg_rtx (DImode);
- if (mode == QImode)
- gen = gen_atomic_compare_and_swapqi_1;
- else
- gen = gen_atomic_compare_and_swaphi_1;
- emit_insn (gen (cond, wdst, mem, oldval, newval, align,
- is_weak, mod_s, mod_f));
-
- emit_move_insn (dst, gen_lowpart (mode, wdst));
-}
-
-void
-alpha_split_compare_and_swap_12 (rtx operands[])
-{
- rtx cond, dest, orig_mem, oldval, newval, align, scratch;
- enum machine_mode mode;
- bool is_weak;
- enum memmodel mod_s, mod_f;
- rtx label1, label2, mem, addr, width, mask, x;
-
- cond = operands[0];
- dest = operands[1];
- orig_mem = operands[2];
- oldval = operands[3];
- newval = operands[4];
- align = operands[5];
- is_weak = (operands[6] != const0_rtx);
- mod_s = (enum memmodel) INTVAL (operands[7]);
- mod_f = (enum memmodel) INTVAL (operands[8]);
- scratch = operands[9];
- mode = GET_MODE (orig_mem);
- addr = XEXP (orig_mem, 0);
-
- mem = gen_rtx_MEM (DImode, align);
- MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
- if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
- set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
-
- alpha_pre_atomic_barrier (mod_s);
-
- label1 = NULL_RTX;
- if (!is_weak)
- {
- label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
- emit_label (XEXP (label1, 0));
- }
- label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
-
- emit_load_locked (DImode, scratch, mem);
-
- width = GEN_INT (GET_MODE_BITSIZE (mode));
- mask = GEN_INT (mode == QImode ? 0xff : 0xffff);
- emit_insn (gen_extxl (dest, scratch, width, addr));
-
- if (oldval == const0_rtx)
- {
- emit_move_insn (cond, const0_rtx);
- x = gen_rtx_NE (DImode, dest, const0_rtx);
- }
- else
- {
- x = gen_rtx_EQ (DImode, dest, oldval);
- emit_insn (gen_rtx_SET (VOIDmode, cond, x));
- x = gen_rtx_EQ (DImode, cond, const0_rtx);
- }
- emit_unlikely_jump (x, label2);
-
- emit_insn (gen_mskxl (cond, scratch, mask, addr));
-
- if (newval != const0_rtx)
- emit_insn (gen_iordi3 (cond, cond, newval));
-
- emit_store_conditional (DImode, cond, mem, cond);
-
- if (!is_weak)
- {
- x = gen_rtx_EQ (DImode, cond, const0_rtx);
- emit_unlikely_jump (x, label1);
- }
-
- if (mod_f != MEMMODEL_RELAXED)
- emit_label (XEXP (label2, 0));
-
- alpha_post_atomic_barrier (mod_s);
-
- if (mod_f == MEMMODEL_RELAXED)
- emit_label (XEXP (label2, 0));
-}
-
-/* Expand an atomic exchange operation. */
-
-void
-alpha_split_atomic_exchange (rtx operands[])
-{
- rtx retval, mem, val, scratch;
- enum memmodel model;
- enum machine_mode mode;
- rtx label, x, cond;
-
- retval = operands[0];
- mem = operands[1];
- val = operands[2];
- model = (enum memmodel) INTVAL (operands[3]);
- scratch = operands[4];
- mode = GET_MODE (mem);
- cond = gen_lowpart (DImode, scratch);
-
- alpha_pre_atomic_barrier (model);
-
- label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
- emit_label (XEXP (label, 0));
-
- emit_load_locked (mode, retval, mem);
- emit_move_insn (scratch, val);
- emit_store_conditional (mode, cond, mem, scratch);
-
- x = gen_rtx_EQ (DImode, cond, const0_rtx);
- emit_unlikely_jump (x, label);
-
- alpha_post_atomic_barrier (model);
-}
-
-void
-alpha_expand_atomic_exchange_12 (rtx operands[])
-{
- rtx dst, mem, val, model;
- enum machine_mode mode;
- rtx addr, align, wdst;
- rtx (*gen) (rtx, rtx, rtx, rtx, rtx);
-
- dst = operands[0];
- mem = operands[1];
- val = operands[2];
- model = operands[3];
- mode = GET_MODE (mem);
-
- /* We forced the address into a register via mem_noofs_operand. */
- addr = XEXP (mem, 0);
- gcc_assert (register_operand (addr, DImode));
-
- align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8),
- NULL_RTX, 1, OPTAB_DIRECT);
-
- /* Insert val into the correct byte location within the word. */
- if (val != const0_rtx)
- val = emit_insxl (mode, val, addr);
-
- wdst = gen_reg_rtx (DImode);
- if (mode == QImode)
- gen = gen_atomic_exchangeqi_1;
- else
- gen = gen_atomic_exchangehi_1;
- emit_insn (gen (wdst, mem, val, align, model));
-
- emit_move_insn (dst, gen_lowpart (mode, wdst));
-}
-
-void
-alpha_split_atomic_exchange_12 (rtx operands[])
-{
- rtx dest, orig_mem, addr, val, align, scratch;
- rtx label, mem, width, mask, x;
- enum machine_mode mode;
- enum memmodel model;
-
- dest = operands[0];
- orig_mem = operands[1];
- val = operands[2];
- align = operands[3];
- model = (enum memmodel) INTVAL (operands[4]);
- scratch = operands[5];
- mode = GET_MODE (orig_mem);
- addr = XEXP (orig_mem, 0);
-
- mem = gen_rtx_MEM (DImode, align);
- MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
- if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
- set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
-
- alpha_pre_atomic_barrier (model);
-
- label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
- emit_label (XEXP (label, 0));
-
- emit_load_locked (DImode, scratch, mem);
-
- width = GEN_INT (GET_MODE_BITSIZE (mode));
- mask = GEN_INT (mode == QImode ? 0xff : 0xffff);
- emit_insn (gen_extxl (dest, scratch, width, addr));
- emit_insn (gen_mskxl (scratch, scratch, mask, addr));
- if (val != const0_rtx)
- emit_insn (gen_iordi3 (scratch, scratch, val));
-
- emit_store_conditional (DImode, scratch, mem, scratch);
-
- x = gen_rtx_EQ (DImode, scratch, const0_rtx);
- emit_unlikely_jump (x, label);
-
- alpha_post_atomic_barrier (model);
-}
-
-/* Adjust the cost of a scheduling dependency. Return the new cost of
- a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
-
-static int
-alpha_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
-{
- enum attr_type dep_insn_type;
-
- /* If the dependence is an anti-dependence, there is no cost. For an
- output dependence, there is sometimes a cost, but it doesn't seem
- worth handling those few cases. */
- if (REG_NOTE_KIND (link) != 0)
- return cost;
-
- /* If we can't recognize the insns, we can't really do anything. */
- if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
- return cost;
-
- dep_insn_type = get_attr_type (dep_insn);
-
- /* Bring in the user-defined memory latency. */
- if (dep_insn_type == TYPE_ILD
- || dep_insn_type == TYPE_FLD
- || dep_insn_type == TYPE_LDSYM)
- cost += alpha_memory_latency-1;
-
- /* Everything else handled in DFA bypasses now. */
-
- return cost;
-}
-
-/* The number of instructions that can be issued per cycle. */
-
-static int
-alpha_issue_rate (void)
-{
- return (alpha_tune == PROCESSOR_EV4 ? 2 : 4);
-}
-
-/* How many alternative schedules to try. This should be as wide as the
- scheduling freedom in the DFA, but no wider. Making this value too
- large results extra work for the scheduler.
-
- For EV4, loads can be issued to either IB0 or IB1, thus we have 2
- alternative schedules. For EV5, we can choose between E0/E1 and
- FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */
-
-static int
-alpha_multipass_dfa_lookahead (void)
-{
- return (alpha_tune == PROCESSOR_EV6 ? 4 : 2);
-}
-
-/* Machine-specific function data. */
-
-struct GTY(()) alpha_links;
-
-struct GTY(()) machine_function
-{
- /* For OSF. */
- const char *some_ld_name;
-
- /* For flag_reorder_blocks_and_partition. */
- rtx gp_save_rtx;
-
- /* For VMS condition handlers. */
- bool uses_condition_handler;
-
- /* Linkage entries. */
- splay_tree GTY ((param1_is (char *), param2_is (struct alpha_links *)))
- links;
-};
-
-/* How to allocate a 'struct machine_function'. */
-
-static struct machine_function *
-alpha_init_machine_status (void)
-{
- return ggc_alloc_cleared_machine_function ();
-}
-
-/* Support for frame based VMS condition handlers. */
-
-/* A VMS condition handler may be established for a function with a call to
- __builtin_establish_vms_condition_handler, and cancelled with a call to
- __builtin_revert_vms_condition_handler.
-
- The VMS Condition Handling Facility knows about the existence of a handler
- from the procedure descriptor .handler field. As the VMS native compilers,
- we store the user specified handler's address at a fixed location in the
- stack frame and point the procedure descriptor at a common wrapper which
- fetches the real handler's address and issues an indirect call.
-
- The indirection wrapper is "__gcc_shell_handler", provided by libgcc.
-
- We force the procedure kind to PT_STACK, and the fixed frame location is
- fp+8, just before the register save area. We use the handler_data field in
- the procedure descriptor to state the fp offset at which the installed
- handler address can be found. */
-
-#define VMS_COND_HANDLER_FP_OFFSET 8
-
-/* Expand code to store the currently installed user VMS condition handler
- into TARGET and install HANDLER as the new condition handler. */
-
-void
-alpha_expand_builtin_establish_vms_condition_handler (rtx target, rtx handler)
-{
- rtx handler_slot_address = plus_constant (Pmode, hard_frame_pointer_rtx,
- VMS_COND_HANDLER_FP_OFFSET);
-
- rtx handler_slot
- = gen_rtx_MEM (DImode, handler_slot_address);
-
- emit_move_insn (target, handler_slot);
- emit_move_insn (handler_slot, handler);
-
- /* Notify the start/prologue/epilogue emitters that the condition handler
- slot is needed. In addition to reserving the slot space, this will force
- the procedure kind to PT_STACK so ensure that the hard_frame_pointer_rtx
- use above is correct. */
- cfun->machine->uses_condition_handler = true;
-}
-
-/* Expand code to store the current VMS condition handler into TARGET and
- nullify it. */
-
-void
-alpha_expand_builtin_revert_vms_condition_handler (rtx target)
-{
- /* We implement this by establishing a null condition handler, with the tiny
- side effect of setting uses_condition_handler. This is a little bit
- pessimistic if no actual builtin_establish call is ever issued, which is
- not a real problem and expected never to happen anyway. */
-
- alpha_expand_builtin_establish_vms_condition_handler (target, const0_rtx);
-}
-
-/* Functions to save and restore alpha_return_addr_rtx. */
-
-/* Start the ball rolling with RETURN_ADDR_RTX. */
-
-rtx
-alpha_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
-{
- if (count != 0)
- return const0_rtx;
-
- return get_hard_reg_initial_val (Pmode, REG_RA);
-}
-
-/* Return or create a memory slot containing the gp value for the current
- function. Needed only if TARGET_LD_BUGGY_LDGP. */
-
-rtx
-alpha_gp_save_rtx (void)
-{
- rtx seq, m = cfun->machine->gp_save_rtx;
-
- if (m == NULL)
- {
- start_sequence ();
-
- m = assign_stack_local (DImode, UNITS_PER_WORD, BITS_PER_WORD);
- m = validize_mem (m);
- emit_move_insn (m, pic_offset_table_rtx);
-
- seq = get_insns ();
- end_sequence ();
-
- /* We used to simply emit the sequence after entry_of_function.
- However this breaks the CFG if the first instruction in the
- first block is not the NOTE_INSN_BASIC_BLOCK, for example a
- label. Emit the sequence properly on the edge. We are only
- invoked from dw2_build_landing_pads and finish_eh_generation
- will call commit_edge_insertions thanks to a kludge. */
- insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
-
- cfun->machine->gp_save_rtx = m;
- }
-
- return m;
-}
-
-static void
-alpha_instantiate_decls (void)
-{
- if (cfun->machine->gp_save_rtx != NULL_RTX)
- instantiate_decl_rtl (cfun->machine->gp_save_rtx);
-}
-
-static int
-alpha_ra_ever_killed (void)
-{
- rtx top;
-
- if (!has_hard_reg_initial_val (Pmode, REG_RA))
- return (int)df_regs_ever_live_p (REG_RA);
-
- push_topmost_sequence ();
- top = get_insns ();
- pop_topmost_sequence ();
-
- return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
-}
-
-
-/* Return the trap mode suffix applicable to the current
- instruction, or NULL. */
-
-static const char *
-get_trap_mode_suffix (void)
-{
- enum attr_trap_suffix s = get_attr_trap_suffix (current_output_insn);
-
- switch (s)
- {
- case TRAP_SUFFIX_NONE:
- return NULL;
-
- case TRAP_SUFFIX_SU:
- if (alpha_fptm >= ALPHA_FPTM_SU)
- return "su";
- return NULL;
-
- case TRAP_SUFFIX_SUI:
- if (alpha_fptm >= ALPHA_FPTM_SUI)
- return "sui";
- return NULL;
-
- case TRAP_SUFFIX_V_SV:
- switch (alpha_fptm)
- {
- case ALPHA_FPTM_N:
- return NULL;
- case ALPHA_FPTM_U:
- return "v";
- case ALPHA_FPTM_SU:
- case ALPHA_FPTM_SUI:
- return "sv";
- default:
- gcc_unreachable ();
- }
-
- case TRAP_SUFFIX_V_SV_SVI:
- switch (alpha_fptm)
- {
- case ALPHA_FPTM_N:
- return NULL;
- case ALPHA_FPTM_U:
- return "v";
- case ALPHA_FPTM_SU:
- return "sv";
- case ALPHA_FPTM_SUI:
- return "svi";
- default:
- gcc_unreachable ();
- }
- break;
-
- case TRAP_SUFFIX_U_SU_SUI:
- switch (alpha_fptm)
- {
- case ALPHA_FPTM_N:
- return NULL;
- case ALPHA_FPTM_U:
- return "u";
- case ALPHA_FPTM_SU:
- return "su";
- case ALPHA_FPTM_SUI:
- return "sui";
- default:
- gcc_unreachable ();
- }
- break;
-
- default:
- gcc_unreachable ();
- }
- gcc_unreachable ();
-}
-
-/* Return the rounding mode suffix applicable to the current
- instruction, or NULL. */
-
-static const char *
-get_round_mode_suffix (void)
-{
- enum attr_round_suffix s = get_attr_round_suffix (current_output_insn);
-
- switch (s)
- {
- case ROUND_SUFFIX_NONE:
- return NULL;
- case ROUND_SUFFIX_NORMAL:
- switch (alpha_fprm)
- {
- case ALPHA_FPRM_NORM:
- return NULL;
- case ALPHA_FPRM_MINF:
- return "m";
- case ALPHA_FPRM_CHOP:
- return "c";
- case ALPHA_FPRM_DYN:
- return "d";
- default:
- gcc_unreachable ();
- }
- break;
-
- case ROUND_SUFFIX_C:
- return "c";
-
- default:
- gcc_unreachable ();
- }
- gcc_unreachable ();
-}
-
-/* Locate some local-dynamic symbol still in use by this function
- so that we can print its name in some movdi_er_tlsldm pattern. */
-
-static int
-get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
-{
- rtx x = *px;
-
- if (GET_CODE (x) == SYMBOL_REF
- && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
- {
- cfun->machine->some_ld_name = XSTR (x, 0);
- return 1;
- }
-
- return 0;
-}
-
-static const char *
-get_some_local_dynamic_name (void)
-{
- rtx insn;
-
- if (cfun->machine->some_ld_name)
- return cfun->machine->some_ld_name;
-
- for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
- if (INSN_P (insn)
- && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
- return cfun->machine->some_ld_name;
-
- gcc_unreachable ();
-}
-
-/* Print an operand. Recognize special options, documented below. */
-
-void
-print_operand (FILE *file, rtx x, int code)
-{
- int i;
-
- switch (code)
- {
- case '~':
- /* Print the assembler name of the current function. */
- assemble_name (file, alpha_fnname);
- break;
-
- case '&':
- assemble_name (file, get_some_local_dynamic_name ());
- break;
-
- case '/':
- {
- const char *trap = get_trap_mode_suffix ();
- const char *round = get_round_mode_suffix ();
-
- if (trap || round)
- fprintf (file, "/%s%s", (trap ? trap : ""), (round ? round : ""));
- break;
- }
-
- case ',':
- /* Generates single precision instruction suffix. */
- fputc ((TARGET_FLOAT_VAX ? 'f' : 's'), file);
- break;
-
- case '-':
- /* Generates double precision instruction suffix. */
- fputc ((TARGET_FLOAT_VAX ? 'g' : 't'), file);
- break;
-
- case '#':
- if (alpha_this_literal_sequence_number == 0)
- alpha_this_literal_sequence_number = alpha_next_sequence_number++;
- fprintf (file, "%d", alpha_this_literal_sequence_number);
- break;
-
- case '*':
- if (alpha_this_gpdisp_sequence_number == 0)
- alpha_this_gpdisp_sequence_number = alpha_next_sequence_number++;
- fprintf (file, "%d", alpha_this_gpdisp_sequence_number);
- break;
-
- case 'H':
- if (GET_CODE (x) == HIGH)
- output_addr_const (file, XEXP (x, 0));
- else
- output_operand_lossage ("invalid %%H value");
- break;
-
- case 'J':
- {
- const char *lituse;
-
- if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD_CALL)
- {
- x = XVECEXP (x, 0, 0);
- lituse = "lituse_tlsgd";
- }
- else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM_CALL)
- {
- x = XVECEXP (x, 0, 0);
- lituse = "lituse_tlsldm";
- }
- else if (CONST_INT_P (x))
- lituse = "lituse_jsr";
- else
- {
- output_operand_lossage ("invalid %%J value");
- break;
- }
-
- if (x != const0_rtx)
- fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
- }
- break;
-
- case 'j':
- {
- const char *lituse;
-
-#ifdef HAVE_AS_JSRDIRECT_RELOCS
- lituse = "lituse_jsrdirect";
-#else
- lituse = "lituse_jsr";
-#endif
-
- gcc_assert (INTVAL (x) != 0);
- fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
- }
- break;
- case 'r':
- /* If this operand is the constant zero, write it as "$31". */
- if (REG_P (x))
- fprintf (file, "%s", reg_names[REGNO (x)]);
- else if (x == CONST0_RTX (GET_MODE (x)))
- fprintf (file, "$31");
- else
- output_operand_lossage ("invalid %%r value");
- break;
-
- case 'R':
- /* Similar, but for floating-point. */
- if (REG_P (x))
- fprintf (file, "%s", reg_names[REGNO (x)]);
- else if (x == CONST0_RTX (GET_MODE (x)))
- fprintf (file, "$f31");
- else
- output_operand_lossage ("invalid %%R value");
- break;
-
- case 'N':
- /* Write the 1's complement of a constant. */
- if (!CONST_INT_P (x))
- output_operand_lossage ("invalid %%N value");
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
- break;
-
- case 'P':
- /* Write 1 << C, for a constant C. */
- if (!CONST_INT_P (x))
- output_operand_lossage ("invalid %%P value");
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
- break;
-
- case 'h':
- /* Write the high-order 16 bits of a constant, sign-extended. */
- if (!CONST_INT_P (x))
- output_operand_lossage ("invalid %%h value");
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
- break;
-
- case 'L':
- /* Write the low-order 16 bits of a constant, sign-extended. */
- if (!CONST_INT_P (x))
- output_operand_lossage ("invalid %%L value");
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC,
- (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
- break;
-
- case 'm':
- /* Write mask for ZAP insn. */
- if (GET_CODE (x) == CONST_DOUBLE)
- {
- HOST_WIDE_INT mask = 0;
- HOST_WIDE_INT value;
-
- value = CONST_DOUBLE_LOW (x);
- for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
- i++, value >>= 8)
- if (value & 0xff)
- mask |= (1 << i);
-
- value = CONST_DOUBLE_HIGH (x);
- for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
- i++, value >>= 8)
- if (value & 0xff)
- mask |= (1 << (i + sizeof (int)));
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
- }
-
- else if (CONST_INT_P (x))
- {
- HOST_WIDE_INT mask = 0, value = INTVAL (x);
-
- for (i = 0; i < 8; i++, value >>= 8)
- if (value & 0xff)
- mask |= (1 << i);
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
- }
- else
- output_operand_lossage ("invalid %%m value");
- break;
-
- case 'M':
- /* 'b', 'w', 'l', or 'q' as the value of the constant. */
- if (!CONST_INT_P (x)
- || (INTVAL (x) != 8 && INTVAL (x) != 16
- && INTVAL (x) != 32 && INTVAL (x) != 64))
- output_operand_lossage ("invalid %%M value");
-
- fprintf (file, "%s",
- (INTVAL (x) == 8 ? "b"
- : INTVAL (x) == 16 ? "w"
- : INTVAL (x) == 32 ? "l"
- : "q"));
- break;
-
- case 'U':
- /* Similar, except do it from the mask. */
- if (CONST_INT_P (x))
- {
- HOST_WIDE_INT value = INTVAL (x);
-
- if (value == 0xff)
- {
- fputc ('b', file);
- break;
- }
- if (value == 0xffff)
- {
- fputc ('w', file);
- break;
- }
- if (value == 0xffffffff)
- {
- fputc ('l', file);
- break;
- }
- if (value == -1)
- {
- fputc ('q', file);
- break;
- }
- }
- else if (HOST_BITS_PER_WIDE_INT == 32
- && GET_CODE (x) == CONST_DOUBLE
- && CONST_DOUBLE_LOW (x) == 0xffffffff
- && CONST_DOUBLE_HIGH (x) == 0)
- {
- fputc ('l', file);
- break;
- }
- output_operand_lossage ("invalid %%U value");
- break;
-
- case 's':
- /* Write the constant value divided by 8. */
- if (!CONST_INT_P (x)
- || (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
- || (INTVAL (x) & 7) != 0)
- output_operand_lossage ("invalid %%s value");
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) / 8);
- break;
-
- case 'S':
- /* Same, except compute (64 - c) / 8 */
-
- if (!CONST_INT_P (x)
- && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
- && (INTVAL (x) & 7) != 8)
- output_operand_lossage ("invalid %%s value");
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
- break;
-
- case 'C': case 'D': case 'c': case 'd':
- /* Write out comparison name. */
- {
- enum rtx_code c = GET_CODE (x);
-
- if (!COMPARISON_P (x))
- output_operand_lossage ("invalid %%C value");
-
- else if (code == 'D')
- c = reverse_condition (c);
- else if (code == 'c')
- c = swap_condition (c);
- else if (code == 'd')
- c = swap_condition (reverse_condition (c));
-
- if (c == LEU)
- fprintf (file, "ule");
- else if (c == LTU)
- fprintf (file, "ult");
- else if (c == UNORDERED)
- fprintf (file, "un");
- else
- fprintf (file, "%s", GET_RTX_NAME (c));
- }
- break;
-
- case 'E':
- /* Write the divide or modulus operator. */
- switch (GET_CODE (x))
- {
- case DIV:
- fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
- break;
- case UDIV:
- fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
- break;
- case MOD:
- fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
- break;
- case UMOD:
- fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
- break;
- default:
- output_operand_lossage ("invalid %%E value");
- break;
- }
- break;
-
- case 'A':
- /* Write "_u" for unaligned access. */
- if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND)
- fprintf (file, "_u");
- break;
-
- case 0:
- if (REG_P (x))
- fprintf (file, "%s", reg_names[REGNO (x)]);
- else if (MEM_P (x))
- output_address (XEXP (x, 0));
- else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC)
- {
- switch (XINT (XEXP (x, 0), 1))
- {
- case UNSPEC_DTPREL:
- case UNSPEC_TPREL:
- output_addr_const (file, XVECEXP (XEXP (x, 0), 0, 0));
- break;
- default:
- output_operand_lossage ("unknown relocation unspec");
- break;
- }
- }
- else
- output_addr_const (file, x);
- break;
-
- default:
- output_operand_lossage ("invalid %%xn code");
- }
-}
-
-void
-print_operand_address (FILE *file, rtx addr)
-{
- int basereg = 31;
- HOST_WIDE_INT offset = 0;
-
- if (GET_CODE (addr) == AND)
- addr = XEXP (addr, 0);
-
- if (GET_CODE (addr) == PLUS
- && CONST_INT_P (XEXP (addr, 1)))
- {
- offset = INTVAL (XEXP (addr, 1));
- addr = XEXP (addr, 0);
- }
-
- if (GET_CODE (addr) == LO_SUM)
- {
- const char *reloc16, *reloclo;
- rtx op1 = XEXP (addr, 1);
-
- if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == UNSPEC)
- {
- op1 = XEXP (op1, 0);
- switch (XINT (op1, 1))
- {
- case UNSPEC_DTPREL:
- reloc16 = NULL;
- reloclo = (alpha_tls_size == 16 ? "dtprel" : "dtprello");
- break;
- case UNSPEC_TPREL:
- reloc16 = NULL;
- reloclo = (alpha_tls_size == 16 ? "tprel" : "tprello");
- break;
- default:
- output_operand_lossage ("unknown relocation unspec");
- return;
- }
-
- output_addr_const (file, XVECEXP (op1, 0, 0));
- }
- else
- {
- reloc16 = "gprel";
- reloclo = "gprellow";
- output_addr_const (file, op1);
- }
-
- if (offset)
- fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
-
- addr = XEXP (addr, 0);
- switch (GET_CODE (addr))
- {
- case REG:
- basereg = REGNO (addr);
- break;
-
- case SUBREG:
- basereg = subreg_regno (addr);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- fprintf (file, "($%d)\t\t!%s", basereg,
- (basereg == 29 ? reloc16 : reloclo));
- return;
- }
-
- switch (GET_CODE (addr))
- {
- case REG:
- basereg = REGNO (addr);
- break;
-
- case SUBREG:
- basereg = subreg_regno (addr);
- break;
-
- case CONST_INT:
- offset = INTVAL (addr);
- break;
-
-#if TARGET_ABI_OPEN_VMS
- case SYMBOL_REF:
- fprintf (file, "%s", XSTR (addr, 0));
- return;
-
- case CONST:
- gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF);
- fprintf (file, "%s+" HOST_WIDE_INT_PRINT_DEC,
- XSTR (XEXP (XEXP (addr, 0), 0), 0),
- INTVAL (XEXP (XEXP (addr, 0), 1)));
- return;
-
-#endif
- default:
- gcc_unreachable ();
- }
-
- fprintf (file, HOST_WIDE_INT_PRINT_DEC "($%d)", offset, basereg);
-}
-
-/* Emit RTL insns to initialize the variable parts of a trampoline at
- M_TRAMP. FNDECL is target function's decl. CHAIN_VALUE is an rtx
- for the static chain value for the function. */
-
-static void
-alpha_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
-{
- rtx fnaddr, mem, word1, word2;
-
- fnaddr = XEXP (DECL_RTL (fndecl), 0);
-
-#ifdef POINTERS_EXTEND_UNSIGNED
- fnaddr = convert_memory_address (Pmode, fnaddr);
- chain_value = convert_memory_address (Pmode, chain_value);
-#endif
-
- if (TARGET_ABI_OPEN_VMS)
- {
- const char *fnname;
- char *trname;
-
- /* Construct the name of the trampoline entry point. */
- fnname = XSTR (fnaddr, 0);
- trname = (char *) alloca (strlen (fnname) + 5);
- strcpy (trname, fnname);
- strcat (trname, "..tr");
- fnname = ggc_alloc_string (trname, strlen (trname) + 1);
- word2 = gen_rtx_SYMBOL_REF (Pmode, fnname);
-
- /* Trampoline (or "bounded") procedure descriptor is constructed from
- the function's procedure descriptor with certain fields zeroed IAW
- the VMS calling standard. This is stored in the first quadword. */
- word1 = force_reg (DImode, gen_const_mem (DImode, fnaddr));
- word1 = expand_and (DImode, word1,
- GEN_INT (HOST_WIDE_INT_C (0xffff0fff0000fff0)),
- NULL);
- }
- else
- {
- /* These 4 instructions are:
- ldq $1,24($27)
- ldq $27,16($27)
- jmp $31,($27),0
- nop
- We don't bother setting the HINT field of the jump; the nop
- is merely there for padding. */
- word1 = GEN_INT (HOST_WIDE_INT_C (0xa77b0010a43b0018));
- word2 = GEN_INT (HOST_WIDE_INT_C (0x47ff041f6bfb0000));
- }
-
- /* Store the first two words, as computed above. */
- mem = adjust_address (m_tramp, DImode, 0);
- emit_move_insn (mem, word1);
- mem = adjust_address (m_tramp, DImode, 8);
- emit_move_insn (mem, word2);
-
- /* Store function address and static chain value. */
- mem = adjust_address (m_tramp, Pmode, 16);
- emit_move_insn (mem, fnaddr);
- mem = adjust_address (m_tramp, Pmode, 24);
- emit_move_insn (mem, chain_value);
-
- if (TARGET_ABI_OSF)
- {
- emit_insn (gen_imb ());
-#ifdef HAVE_ENABLE_EXECUTE_STACK
- emit_library_call (init_one_libfunc ("__enable_execute_stack"),
- LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
-#endif
- }
-}
-
-/* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On Alpha the first 6 words of args are normally in registers
- and the rest are pushed. */
-
-static rtx
-alpha_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
- const_tree type, bool named ATTRIBUTE_UNUSED)
-{
- CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
- int basereg;
- int num_args;
-
- /* Don't get confused and pass small structures in FP registers. */
- if (type && AGGREGATE_TYPE_P (type))
- basereg = 16;
- else
- {
-#ifdef ENABLE_CHECKING
- /* With alpha_split_complex_arg, we shouldn't see any raw complex
- values here. */
- gcc_assert (!COMPLEX_MODE_P (mode));
-#endif
-
- /* Set up defaults for FP operands passed in FP registers, and
- integral operands passed in integer registers. */
- if (TARGET_FPREGS && GET_MODE_CLASS (mode) == MODE_FLOAT)
- basereg = 32 + 16;
- else
- basereg = 16;
- }
-
- /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for
- the two platforms, so we can't avoid conditional compilation. */
-#if TARGET_ABI_OPEN_VMS
- {
- if (mode == VOIDmode)
- return alpha_arg_info_reg_val (*cum);
-
- num_args = cum->num_args;
- if (num_args >= 6
- || targetm.calls.must_pass_in_stack (mode, type))
- return NULL_RTX;
- }
-#elif TARGET_ABI_OSF
- {
- if (*cum >= 6)
- return NULL_RTX;
- num_args = *cum;
-
- /* VOID is passed as a special flag for "last argument". */
- if (type == void_type_node)
- basereg = 16;
- else if (targetm.calls.must_pass_in_stack (mode, type))
- return NULL_RTX;
- }
-#else
-#error Unhandled ABI
-#endif
-
- return gen_rtx_REG (mode, num_args + basereg);
-}
-
-/* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
-static void
-alpha_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
- const_tree type, bool named ATTRIBUTE_UNUSED)
-{
- CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
- bool onstack = targetm.calls.must_pass_in_stack (mode, type);
- int increment = onstack ? 6 : ALPHA_ARG_SIZE (mode, type, named);
-
-#if TARGET_ABI_OSF
- *cum += increment;
-#else
- if (!onstack && cum->num_args < 6)
- cum->atypes[cum->num_args] = alpha_arg_type (mode);
- cum->num_args += increment;
-#endif
-}
-
-static int
-alpha_arg_partial_bytes (cumulative_args_t cum_v,
- enum machine_mode mode ATTRIBUTE_UNUSED,
- tree type ATTRIBUTE_UNUSED,
- bool named ATTRIBUTE_UNUSED)
-{
- int words = 0;
- CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED = get_cumulative_args (cum_v);
-
-#if TARGET_ABI_OPEN_VMS
- if (cum->num_args < 6
- && 6 < cum->num_args + ALPHA_ARG_SIZE (mode, type, named))
- words = 6 - cum->num_args;
-#elif TARGET_ABI_OSF
- if (*cum < 6 && 6 < *cum + ALPHA_ARG_SIZE (mode, type, named))
- words = 6 - *cum;
-#else
-#error Unhandled ABI
-#endif
-
- return words * UNITS_PER_WORD;
-}
-
-
-/* Return true if TYPE must be returned in memory, instead of in registers. */
-
-static bool
-alpha_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
-{
- enum machine_mode mode = VOIDmode;
- int size;
-
- if (type)
- {
- mode = TYPE_MODE (type);
-
- /* All aggregates are returned in memory, except on OpenVMS where
- records that fit 64 bits should be returned by immediate value
- as required by section 3.8.7.1 of the OpenVMS Calling Standard. */
- if (TARGET_ABI_OPEN_VMS
- && TREE_CODE (type) != ARRAY_TYPE
- && (unsigned HOST_WIDE_INT) int_size_in_bytes(type) <= 8)
- return false;
-
- if (AGGREGATE_TYPE_P (type))
- return true;
- }
-
- size = GET_MODE_SIZE (mode);
- switch (GET_MODE_CLASS (mode))
- {
- case MODE_VECTOR_FLOAT:
- /* Pass all float vectors in memory, like an aggregate. */
- return true;
-
- case MODE_COMPLEX_FLOAT:
- /* We judge complex floats on the size of their element,
- not the size of the whole type. */
- size = GET_MODE_UNIT_SIZE (mode);
- break;
-
- case MODE_INT:
- case MODE_FLOAT:
- case MODE_COMPLEX_INT:
- case MODE_VECTOR_INT:
- break;
-
- default:
- /* ??? We get called on all sorts of random stuff from
- aggregate_value_p. We must return something, but it's not
- clear what's safe to return. Pretend it's a struct I
- guess. */
- return true;
- }
-
- /* Otherwise types must fit in one register. */
- return size > UNITS_PER_WORD;
-}
-
-/* Return true if TYPE should be passed by invisible reference. */
-
-static bool
-alpha_pass_by_reference (cumulative_args_t ca ATTRIBUTE_UNUSED,
- enum machine_mode mode,
- const_tree type ATTRIBUTE_UNUSED,
- bool named ATTRIBUTE_UNUSED)
-{
- return mode == TFmode || mode == TCmode;
-}
-
-/* Define how to find the value returned by a function. VALTYPE is the
- data type of the value (as a tree). If the precise function being
- called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0.
- MODE is set instead of VALTYPE for libcalls.
-
- On Alpha the value is found in $0 for integer functions and
- $f0 for floating-point functions. */
-
-rtx
-function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
- enum machine_mode mode)
-{
- unsigned int regnum, dummy ATTRIBUTE_UNUSED;
- enum mode_class mclass;
-
- gcc_assert (!valtype || !alpha_return_in_memory (valtype, func));
-
- if (valtype)
- mode = TYPE_MODE (valtype);
-
- mclass = GET_MODE_CLASS (mode);
- switch (mclass)
- {
- case MODE_INT:
- /* Do the same thing as PROMOTE_MODE except for libcalls on VMS,
- where we have them returning both SImode and DImode. */
- if (!(TARGET_ABI_OPEN_VMS && valtype && AGGREGATE_TYPE_P (valtype)))
- PROMOTE_MODE (mode, dummy, valtype);
- /* FALLTHRU */
-
- case MODE_COMPLEX_INT:
- case MODE_VECTOR_INT:
- regnum = 0;
- break;
-
- case MODE_FLOAT:
- regnum = 32;
- break;
-
- case MODE_COMPLEX_FLOAT:
- {
- enum machine_mode cmode = GET_MODE_INNER (mode);
-
- return gen_rtx_PARALLEL
- (VOIDmode,
- gen_rtvec (2,
- gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 32),
- const0_rtx),
- gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 33),
- GEN_INT (GET_MODE_SIZE (cmode)))));
- }
-
- case MODE_RANDOM:
- /* We should only reach here for BLKmode on VMS. */
- gcc_assert (TARGET_ABI_OPEN_VMS && mode == BLKmode);
- regnum = 0;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return gen_rtx_REG (mode, regnum);
-}
-
-/* TCmode complex values are passed by invisible reference. We
- should not split these values. */
-
-static bool
-alpha_split_complex_arg (const_tree type)
-{
- return TYPE_MODE (type) != TCmode;
-}
-
-static tree
-alpha_build_builtin_va_list (void)
-{
- tree base, ofs, space, record, type_decl;
-
- if (TARGET_ABI_OPEN_VMS)
- return ptr_type_node;
-
- record = (*lang_hooks.types.make_type) (RECORD_TYPE);
- type_decl = build_decl (BUILTINS_LOCATION,
- TYPE_DECL, get_identifier ("__va_list_tag"), record);
- TYPE_STUB_DECL (record) = type_decl;
- TYPE_NAME (record) = type_decl;
-
- /* C++? SET_IS_AGGR_TYPE (record, 1); */
-
- /* Dummy field to prevent alignment warnings. */
- space = build_decl (BUILTINS_LOCATION,
- FIELD_DECL, NULL_TREE, integer_type_node);
- DECL_FIELD_CONTEXT (space) = record;
- DECL_ARTIFICIAL (space) = 1;
- DECL_IGNORED_P (space) = 1;
-
- ofs = build_decl (BUILTINS_LOCATION,
- FIELD_DECL, get_identifier ("__offset"),
- integer_type_node);
- DECL_FIELD_CONTEXT (ofs) = record;
- DECL_CHAIN (ofs) = space;
- /* ??? This is a hack, __offset is marked volatile to prevent
- DCE that confuses stdarg optimization and results in
- gcc.c-torture/execute/stdarg-1.c failure. See PR 41089. */
- TREE_THIS_VOLATILE (ofs) = 1;
-
- base = build_decl (BUILTINS_LOCATION,
- FIELD_DECL, get_identifier ("__base"),
- ptr_type_node);
- DECL_FIELD_CONTEXT (base) = record;
- DECL_CHAIN (base) = ofs;
-
- TYPE_FIELDS (record) = base;
- layout_type (record);
-
- va_list_gpr_counter_field = ofs;
- return record;
-}
-
-#if TARGET_ABI_OSF
-/* Helper function for alpha_stdarg_optimize_hook. Skip over casts
- and constant additions. */
-
-static gimple
-va_list_skip_additions (tree lhs)
-{
- gimple stmt;
-
- for (;;)
- {
- enum tree_code code;
-
- stmt = SSA_NAME_DEF_STMT (lhs);
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- return stmt;
-
- if (!is_gimple_assign (stmt)
- || gimple_assign_lhs (stmt) != lhs)
- return NULL;
-
- if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
- return stmt;
- code = gimple_assign_rhs_code (stmt);
- if (!CONVERT_EXPR_CODE_P (code)
- && ((code != PLUS_EXPR && code != POINTER_PLUS_EXPR)
- || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST
- || !host_integerp (gimple_assign_rhs2 (stmt), 1)))
- return stmt;
-
- lhs = gimple_assign_rhs1 (stmt);
- }
-}
-
-/* Check if LHS = RHS statement is
- LHS = *(ap.__base + ap.__offset + cst)
- or
- LHS = *(ap.__base
- + ((ap.__offset + cst <= 47)
- ? ap.__offset + cst - 48 : ap.__offset + cst) + cst2).
- If the former, indicate that GPR registers are needed,
- if the latter, indicate that FPR registers are needed.
-
- Also look for LHS = (*ptr).field, where ptr is one of the forms
- listed above.
-
- On alpha, cfun->va_list_gpr_size is used as size of the needed
- regs and cfun->va_list_fpr_size is a bitmask, bit 0 set if GPR
- registers are needed and bit 1 set if FPR registers are needed.
- Return true if va_list references should not be scanned for the
- current statement. */
-
-static bool
-alpha_stdarg_optimize_hook (struct stdarg_info *si, const_gimple stmt)
-{
- tree base, offset, rhs;
- int offset_arg = 1;
- gimple base_stmt;
-
- if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
- != GIMPLE_SINGLE_RHS)
- return false;
-
- rhs = gimple_assign_rhs1 (stmt);
- while (handled_component_p (rhs))
- rhs = TREE_OPERAND (rhs, 0);
- if (TREE_CODE (rhs) != MEM_REF
- || TREE_CODE (TREE_OPERAND (rhs, 0)) != SSA_NAME)
- return false;
-
- stmt = va_list_skip_additions (TREE_OPERAND (rhs, 0));
- if (stmt == NULL
- || !is_gimple_assign (stmt)
- || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
- return false;
-
- base = gimple_assign_rhs1 (stmt);
- if (TREE_CODE (base) == SSA_NAME)
- {
- base_stmt = va_list_skip_additions (base);
- if (base_stmt
- && is_gimple_assign (base_stmt)
- && gimple_assign_rhs_code (base_stmt) == COMPONENT_REF)
- base = gimple_assign_rhs1 (base_stmt);
- }
-
- if (TREE_CODE (base) != COMPONENT_REF
- || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node))
- {
- base = gimple_assign_rhs2 (stmt);
- if (TREE_CODE (base) == SSA_NAME)
- {
- base_stmt = va_list_skip_additions (base);
- if (base_stmt
- && is_gimple_assign (base_stmt)
- && gimple_assign_rhs_code (base_stmt) == COMPONENT_REF)
- base = gimple_assign_rhs1 (base_stmt);
- }
-
- if (TREE_CODE (base) != COMPONENT_REF
- || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node))
- return false;
-
- offset_arg = 0;
- }
-
- base = get_base_address (base);
- if (TREE_CODE (base) != VAR_DECL
- || !bitmap_bit_p (si->va_list_vars, DECL_UID (base) + num_ssa_names))
- return false;
-
- offset = gimple_op (stmt, 1 + offset_arg);
- if (TREE_CODE (offset) == SSA_NAME)
- {
- gimple offset_stmt = va_list_skip_additions (offset);
-
- if (offset_stmt
- && gimple_code (offset_stmt) == GIMPLE_PHI)
- {
- HOST_WIDE_INT sub;
- gimple arg1_stmt, arg2_stmt;
- tree arg1, arg2;
- enum tree_code code1, code2;
-
- if (gimple_phi_num_args (offset_stmt) != 2)
- goto escapes;
-
- arg1_stmt
- = va_list_skip_additions (gimple_phi_arg_def (offset_stmt, 0));
- arg2_stmt
- = va_list_skip_additions (gimple_phi_arg_def (offset_stmt, 1));
- if (arg1_stmt == NULL
- || !is_gimple_assign (arg1_stmt)
- || arg2_stmt == NULL
- || !is_gimple_assign (arg2_stmt))
- goto escapes;
-
- code1 = gimple_assign_rhs_code (arg1_stmt);
- code2 = gimple_assign_rhs_code (arg2_stmt);
- if (code1 == COMPONENT_REF
- && (code2 == MINUS_EXPR || code2 == PLUS_EXPR))
- /* Do nothing. */;
- else if (code2 == COMPONENT_REF
- && (code1 == MINUS_EXPR || code1 == PLUS_EXPR))
- {
- gimple tem = arg1_stmt;
- code2 = code1;
- arg1_stmt = arg2_stmt;
- arg2_stmt = tem;
- }
- else
- goto escapes;
-
- if (!host_integerp (gimple_assign_rhs2 (arg2_stmt), 0))
- goto escapes;
-
- sub = tree_low_cst (gimple_assign_rhs2 (arg2_stmt), 0);
- if (code2 == MINUS_EXPR)
- sub = -sub;
- if (sub < -48 || sub > -32)
- goto escapes;
-
- arg1 = gimple_assign_rhs1 (arg1_stmt);
- arg2 = gimple_assign_rhs1 (arg2_stmt);
- if (TREE_CODE (arg2) == SSA_NAME)
- {
- arg2_stmt = va_list_skip_additions (arg2);
- if (arg2_stmt == NULL
- || !is_gimple_assign (arg2_stmt)
- || gimple_assign_rhs_code (arg2_stmt) != COMPONENT_REF)
- goto escapes;
- arg2 = gimple_assign_rhs1 (arg2_stmt);
- }
- if (arg1 != arg2)
- goto escapes;
-
- if (TREE_CODE (arg1) != COMPONENT_REF
- || TREE_OPERAND (arg1, 1) != va_list_gpr_counter_field
- || get_base_address (arg1) != base)
- goto escapes;
-
- /* Need floating point regs. */
- cfun->va_list_fpr_size |= 2;
- return false;
- }
- if (offset_stmt
- && is_gimple_assign (offset_stmt)
- && gimple_assign_rhs_code (offset_stmt) == COMPONENT_REF)
- offset = gimple_assign_rhs1 (offset_stmt);
- }
- if (TREE_CODE (offset) != COMPONENT_REF
- || TREE_OPERAND (offset, 1) != va_list_gpr_counter_field
- || get_base_address (offset) != base)
- goto escapes;
- else
- /* Need general regs. */
- cfun->va_list_fpr_size |= 1;
- return false;
-
-escapes:
- si->va_list_escapes = true;
- return false;
-}
-#endif
-
-/* Perform any needed actions needed for a function that is receiving a
- variable number of arguments. */
-
-static void
-alpha_setup_incoming_varargs (cumulative_args_t pcum, enum machine_mode mode,
- tree type, int *pretend_size, int no_rtl)
-{
- CUMULATIVE_ARGS cum = *get_cumulative_args (pcum);
-
- /* Skip the current argument. */
- targetm.calls.function_arg_advance (pack_cumulative_args (&cum), mode, type,
- true);
-
-#if TARGET_ABI_OPEN_VMS
- /* For VMS, we allocate space for all 6 arg registers plus a count.
-
- However, if NO registers need to be saved, don't allocate any space.
- This is not only because we won't need the space, but because AP
- includes the current_pretend_args_size and we don't want to mess up
- any ap-relative addresses already made. */
- if (cum.num_args < 6)
- {
- if (!no_rtl)
- {
- emit_move_insn (gen_rtx_REG (DImode, 1), virtual_incoming_args_rtx);
- emit_insn (gen_arg_home ());
- }
- *pretend_size = 7 * UNITS_PER_WORD;
- }
-#else
- /* On OSF/1 and friends, we allocate space for all 12 arg registers, but
- only push those that are remaining. However, if NO registers need to
- be saved, don't allocate any space. This is not only because we won't
- need the space, but because AP includes the current_pretend_args_size
- and we don't want to mess up any ap-relative addresses already made.
-
- If we are not to use the floating-point registers, save the integer
- registers where we would put the floating-point registers. This is
- not the most efficient way to implement varargs with just one register
- class, but it isn't worth doing anything more efficient in this rare
- case. */
- if (cum >= 6)
- return;
-
- if (!no_rtl)
- {
- int count;
- alias_set_type set = get_varargs_alias_set ();
- rtx tmp;
-
- count = cfun->va_list_gpr_size / UNITS_PER_WORD;
- if (count > 6 - cum)
- count = 6 - cum;
-
- /* Detect whether integer registers or floating-point registers
- are needed by the detected va_arg statements. See above for
- how these values are computed. Note that the "escape" value
- is VA_LIST_MAX_FPR_SIZE, which is 255, which has both of
- these bits set. */
- gcc_assert ((VA_LIST_MAX_FPR_SIZE & 3) == 3);
-
- if (cfun->va_list_fpr_size & 1)
- {
- tmp = gen_rtx_MEM (BLKmode,
- plus_constant (Pmode, virtual_incoming_args_rtx,
- (cum + 6) * UNITS_PER_WORD));
- MEM_NOTRAP_P (tmp) = 1;
- set_mem_alias_set (tmp, set);
- move_block_from_reg (16 + cum, tmp, count);
- }
-
- if (cfun->va_list_fpr_size & 2)
- {
- tmp = gen_rtx_MEM (BLKmode,
- plus_constant (Pmode, virtual_incoming_args_rtx,
- cum * UNITS_PER_WORD));
- MEM_NOTRAP_P (tmp) = 1;
- set_mem_alias_set (tmp, set);
- move_block_from_reg (16 + cum + TARGET_FPREGS*32, tmp, count);
- }
- }
- *pretend_size = 12 * UNITS_PER_WORD;
-#endif
-}
-
-static void
-alpha_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
-{
- HOST_WIDE_INT offset;
- tree t, offset_field, base_field;
-
- if (TREE_CODE (TREE_TYPE (valist)) == ERROR_MARK)
- return;
-
- /* For Unix, TARGET_SETUP_INCOMING_VARARGS moves the starting address base
- up by 48, storing fp arg registers in the first 48 bytes, and the
- integer arg registers in the next 48 bytes. This is only done,
- however, if any integer registers need to be stored.
-
- If no integer registers need be stored, then we must subtract 48
- in order to account for the integer arg registers which are counted
- in argsize above, but which are not actually stored on the stack.
- Must further be careful here about structures straddling the last
- integer argument register; that futzes with pretend_args_size,
- which changes the meaning of AP. */
-
- if (NUM_ARGS < 6)
- offset = TARGET_ABI_OPEN_VMS ? UNITS_PER_WORD : 6 * UNITS_PER_WORD;
- else
- offset = -6 * UNITS_PER_WORD + crtl->args.pretend_args_size;
-
- if (TARGET_ABI_OPEN_VMS)
- {
- t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
- t = fold_build_pointer_plus_hwi (t, offset + NUM_ARGS * UNITS_PER_WORD);
- t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
- TREE_SIDE_EFFECTS (t) = 1;
- expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
- }
- else
- {
- base_field = TYPE_FIELDS (TREE_TYPE (valist));
- offset_field = DECL_CHAIN (base_field);
-
- base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field),
- valist, base_field, NULL_TREE);
- offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field),
- valist, offset_field, NULL_TREE);
-
- t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
- t = fold_build_pointer_plus_hwi (t, offset);
- t = build2 (MODIFY_EXPR, TREE_TYPE (base_field), base_field, t);
- TREE_SIDE_EFFECTS (t) = 1;
- expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
-
- t = build_int_cst (NULL_TREE, NUM_ARGS * UNITS_PER_WORD);
- t = build2 (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field, t);
- TREE_SIDE_EFFECTS (t) = 1;
- expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
- }
-}
-
-static tree
-alpha_gimplify_va_arg_1 (tree type, tree base, tree offset,
- gimple_seq *pre_p)
-{
- tree type_size, ptr_type, addend, t, addr;
- gimple_seq internal_post;
-
- /* If the type could not be passed in registers, skip the block
- reserved for the registers. */
- if (targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
- {
- t = build_int_cst (TREE_TYPE (offset), 6*8);
- gimplify_assign (offset,
- build2 (MAX_EXPR, TREE_TYPE (offset), offset, t),
- pre_p);
- }
-
- addend = offset;
- ptr_type = build_pointer_type_for_mode (type, ptr_mode, true);
-
- if (TREE_CODE (type) == COMPLEX_TYPE)
- {
- tree real_part, imag_part, real_temp;
-
- real_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base,
- offset, pre_p);
-
- /* Copy the value into a new temporary, lest the formal temporary
- be reused out from under us. */
- real_temp = get_initialized_tmp_var (real_part, pre_p, NULL);
-
- imag_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base,
- offset, pre_p);
-
- return build2 (COMPLEX_EXPR, type, real_temp, imag_part);
- }
- else if (TREE_CODE (type) == REAL_TYPE)
- {
- tree fpaddend, cond, fourtyeight;
-
- fourtyeight = build_int_cst (TREE_TYPE (addend), 6*8);
- fpaddend = fold_build2 (MINUS_EXPR, TREE_TYPE (addend),
- addend, fourtyeight);
- cond = fold_build2 (LT_EXPR, boolean_type_node, addend, fourtyeight);
- addend = fold_build3 (COND_EXPR, TREE_TYPE (addend), cond,
- fpaddend, addend);
- }
-
- /* Build the final address and force that value into a temporary. */
- addr = fold_build_pointer_plus (fold_convert (ptr_type, base), addend);
- internal_post = NULL;
- gimplify_expr (&addr, pre_p, &internal_post, is_gimple_val, fb_rvalue);
- gimple_seq_add_seq (pre_p, internal_post);
-
- /* Update the offset field. */
- type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type));
- if (type_size == NULL || TREE_OVERFLOW (type_size))
- t = size_zero_node;
- else
- {
- t = size_binop (PLUS_EXPR, type_size, size_int (7));
- t = size_binop (TRUNC_DIV_EXPR, t, size_int (8));
- t = size_binop (MULT_EXPR, t, size_int (8));
- }
- t = fold_convert (TREE_TYPE (offset), t);
- gimplify_assign (offset, build2 (PLUS_EXPR, TREE_TYPE (offset), offset, t),
- pre_p);
-
- return build_va_arg_indirect_ref (addr);
-}
-
-static tree
-alpha_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
- gimple_seq *post_p)
-{
- tree offset_field, base_field, offset, base, t, r;
- bool indirect;
-
- if (TARGET_ABI_OPEN_VMS)
- return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
-
- base_field = TYPE_FIELDS (va_list_type_node);
- offset_field = DECL_CHAIN (base_field);
- base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field),
- valist, base_field, NULL_TREE);
- offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field),
- valist, offset_field, NULL_TREE);
-
- /* Pull the fields of the structure out into temporaries. Since we never
- modify the base field, we can use a formal temporary. Sign-extend the
- offset field so that it's the proper width for pointer arithmetic. */
- base = get_formal_tmp_var (base_field, pre_p);
-
- t = fold_convert (build_nonstandard_integer_type (64, 0), offset_field);
- offset = get_initialized_tmp_var (t, pre_p, NULL);
-
- indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
- if (indirect)
- type = build_pointer_type_for_mode (type, ptr_mode, true);
-
- /* Find the value. Note that this will be a stable indirection, or
- a composite of stable indirections in the case of complex. */
- r = alpha_gimplify_va_arg_1 (type, base, offset, pre_p);
-
- /* Stuff the offset temporary back into its field. */
- gimplify_assign (unshare_expr (offset_field),
- fold_convert (TREE_TYPE (offset_field), offset), pre_p);
-
- if (indirect)
- r = build_va_arg_indirect_ref (r);
-
- return r;
-}
-
-/* Builtins. */
-
-enum alpha_builtin
-{
- ALPHA_BUILTIN_CMPBGE,
- ALPHA_BUILTIN_EXTBL,
- ALPHA_BUILTIN_EXTWL,
- ALPHA_BUILTIN_EXTLL,
- ALPHA_BUILTIN_EXTQL,
- ALPHA_BUILTIN_EXTWH,
- ALPHA_BUILTIN_EXTLH,
- ALPHA_BUILTIN_EXTQH,
- ALPHA_BUILTIN_INSBL,
- ALPHA_BUILTIN_INSWL,
- ALPHA_BUILTIN_INSLL,
- ALPHA_BUILTIN_INSQL,
- ALPHA_BUILTIN_INSWH,
- ALPHA_BUILTIN_INSLH,
- ALPHA_BUILTIN_INSQH,
- ALPHA_BUILTIN_MSKBL,
- ALPHA_BUILTIN_MSKWL,
- ALPHA_BUILTIN_MSKLL,
- ALPHA_BUILTIN_MSKQL,
- ALPHA_BUILTIN_MSKWH,
- ALPHA_BUILTIN_MSKLH,
- ALPHA_BUILTIN_MSKQH,
- ALPHA_BUILTIN_UMULH,
- ALPHA_BUILTIN_ZAP,
- ALPHA_BUILTIN_ZAPNOT,
- ALPHA_BUILTIN_AMASK,
- ALPHA_BUILTIN_IMPLVER,
- ALPHA_BUILTIN_RPCC,
- ALPHA_BUILTIN_ESTABLISH_VMS_CONDITION_HANDLER,
- ALPHA_BUILTIN_REVERT_VMS_CONDITION_HANDLER,
-
- /* TARGET_MAX */
- ALPHA_BUILTIN_MINUB8,
- ALPHA_BUILTIN_MINSB8,
- ALPHA_BUILTIN_MINUW4,
- ALPHA_BUILTIN_MINSW4,
- ALPHA_BUILTIN_MAXUB8,
- ALPHA_BUILTIN_MAXSB8,
- ALPHA_BUILTIN_MAXUW4,
- ALPHA_BUILTIN_MAXSW4,
- ALPHA_BUILTIN_PERR,
- ALPHA_BUILTIN_PKLB,
- ALPHA_BUILTIN_PKWB,
- ALPHA_BUILTIN_UNPKBL,
- ALPHA_BUILTIN_UNPKBW,
-
- /* TARGET_CIX */
- ALPHA_BUILTIN_CTTZ,
- ALPHA_BUILTIN_CTLZ,
- ALPHA_BUILTIN_CTPOP,
-
- ALPHA_BUILTIN_max
-};
-
-static enum insn_code const code_for_builtin[ALPHA_BUILTIN_max] = {
- CODE_FOR_builtin_cmpbge,
- CODE_FOR_extbl,
- CODE_FOR_extwl,
- CODE_FOR_extll,
- CODE_FOR_extql,
- CODE_FOR_extwh,
- CODE_FOR_extlh,
- CODE_FOR_extqh,
- CODE_FOR_builtin_insbl,
- CODE_FOR_builtin_inswl,
- CODE_FOR_builtin_insll,
- CODE_FOR_insql,
- CODE_FOR_inswh,
- CODE_FOR_inslh,
- CODE_FOR_insqh,
- CODE_FOR_mskbl,
- CODE_FOR_mskwl,
- CODE_FOR_mskll,
- CODE_FOR_mskql,
- CODE_FOR_mskwh,
- CODE_FOR_msklh,
- CODE_FOR_mskqh,
- CODE_FOR_umuldi3_highpart,
- CODE_FOR_builtin_zap,
- CODE_FOR_builtin_zapnot,
- CODE_FOR_builtin_amask,
- CODE_FOR_builtin_implver,
- CODE_FOR_builtin_rpcc,
- CODE_FOR_builtin_establish_vms_condition_handler,
- CODE_FOR_builtin_revert_vms_condition_handler,
-
- /* TARGET_MAX */
- CODE_FOR_builtin_minub8,
- CODE_FOR_builtin_minsb8,
- CODE_FOR_builtin_minuw4,
- CODE_FOR_builtin_minsw4,
- CODE_FOR_builtin_maxub8,
- CODE_FOR_builtin_maxsb8,
- CODE_FOR_builtin_maxuw4,
- CODE_FOR_builtin_maxsw4,
- CODE_FOR_builtin_perr,
- CODE_FOR_builtin_pklb,
- CODE_FOR_builtin_pkwb,
- CODE_FOR_builtin_unpkbl,
- CODE_FOR_builtin_unpkbw,
-
- /* TARGET_CIX */
- CODE_FOR_ctzdi2,
- CODE_FOR_clzdi2,
- CODE_FOR_popcountdi2
-};
-
-struct alpha_builtin_def
-{
- const char *name;
- enum alpha_builtin code;
- unsigned int target_mask;
- bool is_const;
-};
-
-static struct alpha_builtin_def const zero_arg_builtins[] = {
- { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER, 0, true },
- { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC, 0, false }
-};
-
-static struct alpha_builtin_def const one_arg_builtins[] = {
- { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK, 0, true },
- { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB, MASK_MAX, true },
- { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB, MASK_MAX, true },
- { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL, MASK_MAX, true },
- { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW, MASK_MAX, true },
- { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ, MASK_CIX, true },
- { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ, MASK_CIX, true },
- { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP, MASK_CIX, true }
-};
-
-static struct alpha_builtin_def const two_arg_builtins[] = {
- { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE, 0, true },
- { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL, 0, true },
- { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL, 0, true },
- { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL, 0, true },
- { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL, 0, true },
- { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH, 0, true },
- { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH, 0, true },
- { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH, 0, true },
- { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL, 0, true },
- { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL, 0, true },
- { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL, 0, true },
- { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL, 0, true },
- { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH, 0, true },
- { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH, 0, true },
- { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH, 0, true },
- { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL, 0, true },
- { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL, 0, true },
- { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL, 0, true },
- { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL, 0, true },
- { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH, 0, true },
- { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH, 0, true },
- { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH, 0, true },
- { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH, 0, true },
- { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP, 0, true },
- { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT, 0, true },
- { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8, MASK_MAX, true },
- { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8, MASK_MAX, true },
- { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4, MASK_MAX, true },
- { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4, MASK_MAX, true },
- { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8, MASK_MAX, true },
- { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8, MASK_MAX, true },
- { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4, MASK_MAX, true },
- { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4, MASK_MAX, true },
- { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR, MASK_MAX, true }
-};
-
-static GTY(()) tree alpha_dimode_u;
-static GTY(()) tree alpha_v8qi_u;
-static GTY(()) tree alpha_v8qi_s;
-static GTY(()) tree alpha_v4hi_u;
-static GTY(()) tree alpha_v4hi_s;
-
-static GTY(()) tree alpha_builtins[(int) ALPHA_BUILTIN_max];
-
-/* Return the alpha builtin for CODE. */
-
-static tree
-alpha_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
-{
- if (code >= ALPHA_BUILTIN_max)
- return error_mark_node;
- return alpha_builtins[code];
-}
-
-/* Helper function of alpha_init_builtins. Add the built-in specified
- by NAME, TYPE, CODE, and ECF. */
-
-static void
-alpha_builtin_function (const char *name, tree ftype,
- enum alpha_builtin code, unsigned ecf)
-{
- tree decl = add_builtin_function (name, ftype, (int) code,
- BUILT_IN_MD, NULL, NULL_TREE);
-
- if (ecf & ECF_CONST)
- TREE_READONLY (decl) = 1;
- if (ecf & ECF_NOTHROW)
- TREE_NOTHROW (decl) = 1;
-
- alpha_builtins [(int) code] = decl;
-}
-
-/* Helper function of alpha_init_builtins. Add the COUNT built-in
- functions pointed to by P, with function type FTYPE. */
-
-static void
-alpha_add_builtins (const struct alpha_builtin_def *p, size_t count,
- tree ftype)
-{
- size_t i;
-
- for (i = 0; i < count; ++i, ++p)
- if ((target_flags & p->target_mask) == p->target_mask)
- alpha_builtin_function (p->name, ftype, p->code,
- (p->is_const ? ECF_CONST : 0) | ECF_NOTHROW);
-}
-
-static void
-alpha_init_builtins (void)
-{
- tree ftype;
-
- alpha_dimode_u = lang_hooks.types.type_for_mode (DImode, 1);
- alpha_v8qi_u = build_vector_type (unsigned_intQI_type_node, 8);
- alpha_v8qi_s = build_vector_type (intQI_type_node, 8);
- alpha_v4hi_u = build_vector_type (unsigned_intHI_type_node, 4);
- alpha_v4hi_s = build_vector_type (intHI_type_node, 4);
-
- ftype = build_function_type_list (alpha_dimode_u, NULL_TREE);
- alpha_add_builtins (zero_arg_builtins, ARRAY_SIZE (zero_arg_builtins), ftype);
-
- ftype = build_function_type_list (alpha_dimode_u, alpha_dimode_u, NULL_TREE);
- alpha_add_builtins (one_arg_builtins, ARRAY_SIZE (one_arg_builtins), ftype);
-
- ftype = build_function_type_list (alpha_dimode_u, alpha_dimode_u,
- alpha_dimode_u, NULL_TREE);
- alpha_add_builtins (two_arg_builtins, ARRAY_SIZE (two_arg_builtins), ftype);
-
- if (TARGET_ABI_OPEN_VMS)
- {
- ftype = build_function_type_list (ptr_type_node, ptr_type_node,
- NULL_TREE);
- alpha_builtin_function ("__builtin_establish_vms_condition_handler",
- ftype,
- ALPHA_BUILTIN_ESTABLISH_VMS_CONDITION_HANDLER,
- 0);
-
- ftype = build_function_type_list (ptr_type_node, void_type_node,
- NULL_TREE);
- alpha_builtin_function ("__builtin_revert_vms_condition_handler", ftype,
- ALPHA_BUILTIN_REVERT_VMS_CONDITION_HANDLER, 0);
-
- vms_patch_builtins ();
- }
-}
-
-/* Expand an expression EXP that calls a built-in function,
- with result going to TARGET if that's convenient
- (and in mode MODE if that's convenient).
- SUBTARGET may be used as the target for computing one of EXP's operands.
- IGNORE is nonzero if the value is to be ignored. */
-
-static rtx
-alpha_expand_builtin (tree exp, rtx target,
- rtx subtarget ATTRIBUTE_UNUSED,
- enum machine_mode mode ATTRIBUTE_UNUSED,
- int ignore ATTRIBUTE_UNUSED)
-{
-#define MAX_ARGS 2
-
- tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
- unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
- tree arg;
- call_expr_arg_iterator iter;
- enum insn_code icode;
- rtx op[MAX_ARGS], pat;
- int arity;
- bool nonvoid;
-
- if (fcode >= ALPHA_BUILTIN_max)
- internal_error ("bad builtin fcode");
- icode = code_for_builtin[fcode];
- if (icode == 0)
- internal_error ("bad builtin fcode");
-
- nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
-
- arity = 0;
- FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
- {
- const struct insn_operand_data *insn_op;
-
- if (arg == error_mark_node)
- return NULL_RTX;
- if (arity > MAX_ARGS)
- return NULL_RTX;
-
- insn_op = &insn_data[icode].operand[arity + nonvoid];
-
- op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, EXPAND_NORMAL);
-
- if (!(*insn_op->predicate) (op[arity], insn_op->mode))
- op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
- arity++;
- }
-
- if (nonvoid)
- {
- enum machine_mode tmode = insn_data[icode].operand[0].mode;
- if (!target
- || GET_MODE (target) != tmode
- || !(*insn_data[icode].operand[0].predicate) (target, tmode))
- target = gen_reg_rtx (tmode);
- }
-
- switch (arity)
- {
- case 0:
- pat = GEN_FCN (icode) (target);
- break;
- case 1:
- if (nonvoid)
- pat = GEN_FCN (icode) (target, op[0]);
- else
- pat = GEN_FCN (icode) (op[0]);
- break;
- case 2:
- pat = GEN_FCN (icode) (target, op[0], op[1]);
- break;
- default:
- gcc_unreachable ();
- }
- if (!pat)
- return NULL_RTX;
- emit_insn (pat);
-
- if (nonvoid)
- return target;
- else
- return const0_rtx;
-}
-
-
-/* Several bits below assume HWI >= 64 bits. This should be enforced
- by config.gcc. */
-#if HOST_BITS_PER_WIDE_INT < 64
-# error "HOST_WIDE_INT too small"
-#endif
-
-/* Fold the builtin for the CMPBGE instruction. This is a vector comparison
- with an 8-bit output vector. OPINT contains the integer operands; bit N
- of OP_CONST is set if OPINT[N] is valid. */
-
-static tree
-alpha_fold_builtin_cmpbge (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- if (op_const == 3)
- {
- int i, val;
- for (i = 0, val = 0; i < 8; ++i)
- {
- unsigned HOST_WIDE_INT c0 = (opint[0] >> (i * 8)) & 0xff;
- unsigned HOST_WIDE_INT c1 = (opint[1] >> (i * 8)) & 0xff;
- if (c0 >= c1)
- val |= 1 << i;
- }
- return build_int_cst (alpha_dimode_u, val);
- }
- else if (op_const == 2 && opint[1] == 0)
- return build_int_cst (alpha_dimode_u, 0xff);
- return NULL;
-}
-
-/* Fold the builtin for the ZAPNOT instruction. This is essentially a
- specialized form of an AND operation. Other byte manipulation instructions
- are defined in terms of this instruction, so this is also used as a
- subroutine for other builtins.
-
- OP contains the tree operands; OPINT contains the extracted integer values.
- Bit N of OP_CONST it set if OPINT[N] is valid. OP may be null if only
- OPINT may be considered. */
-
-static tree
-alpha_fold_builtin_zapnot (tree *op, unsigned HOST_WIDE_INT opint[],
- long op_const)
-{
- if (op_const & 2)
- {
- unsigned HOST_WIDE_INT mask = 0;
- int i;
-
- for (i = 0; i < 8; ++i)
- if ((opint[1] >> i) & 1)
- mask |= (unsigned HOST_WIDE_INT)0xff << (i * 8);
-
- if (op_const & 1)
- return build_int_cst (alpha_dimode_u, opint[0] & mask);
-
- if (op)
- return fold_build2 (BIT_AND_EXPR, alpha_dimode_u, op[0],
- build_int_cst (alpha_dimode_u, mask));
- }
- else if ((op_const & 1) && opint[0] == 0)
- return build_int_cst (alpha_dimode_u, 0);
- return NULL;
-}
-
-/* Fold the builtins for the EXT family of instructions. */
-
-static tree
-alpha_fold_builtin_extxx (tree op[], unsigned HOST_WIDE_INT opint[],
- long op_const, unsigned HOST_WIDE_INT bytemask,
- bool is_high)
-{
- long zap_const = 2;
- tree *zap_op = NULL;
-
- if (op_const & 2)
- {
- unsigned HOST_WIDE_INT loc;
-
- loc = opint[1] & 7;
- loc *= BITS_PER_UNIT;
-
- if (loc != 0)
- {
- if (op_const & 1)
- {
- unsigned HOST_WIDE_INT temp = opint[0];
- if (is_high)
- temp <<= loc;
- else
- temp >>= loc;
- opint[0] = temp;
- zap_const = 3;
- }
- }
- else
- zap_op = op;
- }
-
- opint[1] = bytemask;
- return alpha_fold_builtin_zapnot (zap_op, opint, zap_const);
-}
-
-/* Fold the builtins for the INS family of instructions. */
-
-static tree
-alpha_fold_builtin_insxx (tree op[], unsigned HOST_WIDE_INT opint[],
- long op_const, unsigned HOST_WIDE_INT bytemask,
- bool is_high)
-{
- if ((op_const & 1) && opint[0] == 0)
- return build_int_cst (alpha_dimode_u, 0);
-
- if (op_const & 2)
- {
- unsigned HOST_WIDE_INT temp, loc, byteloc;
- tree *zap_op = NULL;
-
- loc = opint[1] & 7;
- bytemask <<= loc;
-
- temp = opint[0];
- if (is_high)
- {
- byteloc = (64 - (loc * 8)) & 0x3f;
- if (byteloc == 0)
- zap_op = op;
- else
- temp >>= byteloc;
- bytemask >>= 8;
- }
- else
- {
- byteloc = loc * 8;
- if (byteloc == 0)
- zap_op = op;
- else
- temp <<= byteloc;
- }
-
- opint[0] = temp;
- opint[1] = bytemask;
- return alpha_fold_builtin_zapnot (zap_op, opint, op_const);
- }
-
- return NULL;
-}
-
-static tree
-alpha_fold_builtin_mskxx (tree op[], unsigned HOST_WIDE_INT opint[],
- long op_const, unsigned HOST_WIDE_INT bytemask,
- bool is_high)
-{
- if (op_const & 2)
- {
- unsigned HOST_WIDE_INT loc;
-
- loc = opint[1] & 7;
- bytemask <<= loc;
-
- if (is_high)
- bytemask >>= 8;
-
- opint[1] = bytemask ^ 0xff;
- }
-
- return alpha_fold_builtin_zapnot (op, opint, op_const);
-}
-
-static tree
-alpha_fold_vector_minmax (enum tree_code code, tree op[], tree vtype)
-{
- tree op0 = fold_convert (vtype, op[0]);
- tree op1 = fold_convert (vtype, op[1]);
- tree val = fold_build2 (code, vtype, op0, op1);
- return fold_build1 (VIEW_CONVERT_EXPR, alpha_dimode_u, val);
-}
-
-static tree
-alpha_fold_builtin_perr (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp = 0;
- int i;
-
- if (op_const != 3)
- return NULL;
-
- for (i = 0; i < 8; ++i)
- {
- unsigned HOST_WIDE_INT a = (opint[0] >> (i * 8)) & 0xff;
- unsigned HOST_WIDE_INT b = (opint[1] >> (i * 8)) & 0xff;
- if (a >= b)
- temp += a - b;
- else
- temp += b - a;
- }
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_pklb (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp;
-
- if (op_const == 0)
- return NULL;
-
- temp = opint[0] & 0xff;
- temp |= (opint[0] >> 24) & 0xff00;
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_pkwb (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp;
-
- if (op_const == 0)
- return NULL;
-
- temp = opint[0] & 0xff;
- temp |= (opint[0] >> 8) & 0xff00;
- temp |= (opint[0] >> 16) & 0xff0000;
- temp |= (opint[0] >> 24) & 0xff000000;
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_unpkbl (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp;
-
- if (op_const == 0)
- return NULL;
-
- temp = opint[0] & 0xff;
- temp |= (opint[0] & 0xff00) << 24;
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_unpkbw (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp;
-
- if (op_const == 0)
- return NULL;
-
- temp = opint[0] & 0xff;
- temp |= (opint[0] & 0x0000ff00) << 8;
- temp |= (opint[0] & 0x00ff0000) << 16;
- temp |= (opint[0] & 0xff000000) << 24;
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_cttz (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp;
-
- if (op_const == 0)
- return NULL;
-
- if (opint[0] == 0)
- temp = 64;
- else
- temp = exact_log2 (opint[0] & -opint[0]);
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_ctlz (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp;
-
- if (op_const == 0)
- return NULL;
-
- if (opint[0] == 0)
- temp = 64;
- else
- temp = 64 - floor_log2 (opint[0]) - 1;
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-static tree
-alpha_fold_builtin_ctpop (unsigned HOST_WIDE_INT opint[], long op_const)
-{
- unsigned HOST_WIDE_INT temp, op;
-
- if (op_const == 0)
- return NULL;
-
- op = opint[0];
- temp = 0;
- while (op)
- temp++, op &= op - 1;
-
- return build_int_cst (alpha_dimode_u, temp);
-}
-
-/* Fold one of our builtin functions. */
-
-static tree
-alpha_fold_builtin (tree fndecl, int n_args, tree *op,
- bool ignore ATTRIBUTE_UNUSED)
-{
- unsigned HOST_WIDE_INT opint[MAX_ARGS];
- long op_const = 0;
- int i;
-
- if (n_args > MAX_ARGS)
- return NULL;
-
- for (i = 0; i < n_args; i++)
- {
- tree arg = op[i];
- if (arg == error_mark_node)
- return NULL;
-
- opint[i] = 0;
- if (TREE_CODE (arg) == INTEGER_CST)
- {
- op_const |= 1L << i;
- opint[i] = int_cst_value (arg);
- }
- }
-
- switch (DECL_FUNCTION_CODE (fndecl))
- {
- case ALPHA_BUILTIN_CMPBGE:
- return alpha_fold_builtin_cmpbge (opint, op_const);
-
- case ALPHA_BUILTIN_EXTBL:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0x01, false);
- case ALPHA_BUILTIN_EXTWL:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, false);
- case ALPHA_BUILTIN_EXTLL:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, false);
- case ALPHA_BUILTIN_EXTQL:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, false);
- case ALPHA_BUILTIN_EXTWH:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, true);
- case ALPHA_BUILTIN_EXTLH:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, true);
- case ALPHA_BUILTIN_EXTQH:
- return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, true);
-
- case ALPHA_BUILTIN_INSBL:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0x01, false);
- case ALPHA_BUILTIN_INSWL:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, false);
- case ALPHA_BUILTIN_INSLL:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, false);
- case ALPHA_BUILTIN_INSQL:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, false);
- case ALPHA_BUILTIN_INSWH:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, true);
- case ALPHA_BUILTIN_INSLH:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, true);
- case ALPHA_BUILTIN_INSQH:
- return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, true);
-
- case ALPHA_BUILTIN_MSKBL:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0x01, false);
- case ALPHA_BUILTIN_MSKWL:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, false);
- case ALPHA_BUILTIN_MSKLL:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, false);
- case ALPHA_BUILTIN_MSKQL:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, false);
- case ALPHA_BUILTIN_MSKWH:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, true);
- case ALPHA_BUILTIN_MSKLH:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, true);
- case ALPHA_BUILTIN_MSKQH:
- return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, true);
-
- case ALPHA_BUILTIN_UMULH:
- return fold_build2 (MULT_HIGHPART_EXPR, alpha_dimode_u, op[0], op[1]);
-
- case ALPHA_BUILTIN_ZAP:
- opint[1] ^= 0xff;
- /* FALLTHRU */
- case ALPHA_BUILTIN_ZAPNOT:
- return alpha_fold_builtin_zapnot (op, opint, op_const);
-
- case ALPHA_BUILTIN_MINUB8:
- return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_u);
- case ALPHA_BUILTIN_MINSB8:
- return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_s);
- case ALPHA_BUILTIN_MINUW4:
- return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_u);
- case ALPHA_BUILTIN_MINSW4:
- return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_s);
- case ALPHA_BUILTIN_MAXUB8:
- return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_u);
- case ALPHA_BUILTIN_MAXSB8:
- return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_s);
- case ALPHA_BUILTIN_MAXUW4:
- return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_u);
- case ALPHA_BUILTIN_MAXSW4:
- return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_s);
-
- case ALPHA_BUILTIN_PERR:
- return alpha_fold_builtin_perr (opint, op_const);
- case ALPHA_BUILTIN_PKLB:
- return alpha_fold_builtin_pklb (opint, op_const);
- case ALPHA_BUILTIN_PKWB:
- return alpha_fold_builtin_pkwb (opint, op_const);
- case ALPHA_BUILTIN_UNPKBL:
- return alpha_fold_builtin_unpkbl (opint, op_const);
- case ALPHA_BUILTIN_UNPKBW:
- return alpha_fold_builtin_unpkbw (opint, op_const);
-
- case ALPHA_BUILTIN_CTTZ:
- return alpha_fold_builtin_cttz (opint, op_const);
- case ALPHA_BUILTIN_CTLZ:
- return alpha_fold_builtin_ctlz (opint, op_const);
- case ALPHA_BUILTIN_CTPOP:
- return alpha_fold_builtin_ctpop (opint, op_const);
-
- case ALPHA_BUILTIN_AMASK:
- case ALPHA_BUILTIN_IMPLVER:
- case ALPHA_BUILTIN_RPCC:
- /* None of these are foldable at compile-time. */
- default:
- return NULL;
- }
-}
-
-/* This page contains routines that are used to determine what the function
- prologue and epilogue code will do and write them out. */
-
-/* Compute the size of the save area in the stack. */
-
-/* These variables are used for communication between the following functions.
- They indicate various things about the current function being compiled
- that are used to tell what kind of prologue, epilogue and procedure
- descriptor to generate. */
-
-/* Nonzero if we need a stack procedure. */
-enum alpha_procedure_types {PT_NULL = 0, PT_REGISTER = 1, PT_STACK = 2};
-static enum alpha_procedure_types alpha_procedure_type;
-
-/* Register number (either FP or SP) that is used to unwind the frame. */
-static int vms_unwind_regno;
-
-/* Register number used to save FP. We need not have one for RA since
- we don't modify it for register procedures. This is only defined
- for register frame procedures. */
-static int vms_save_fp_regno;
-
-/* Register number used to reference objects off our PV. */
-static int vms_base_regno;
-
-/* Compute register masks for saved registers. */
-
-static void
-alpha_sa_mask (unsigned long *imaskP, unsigned long *fmaskP)
-{
- unsigned long imask = 0;
- unsigned long fmask = 0;
- unsigned int i;
-
- /* When outputting a thunk, we don't have valid register life info,
- but assemble_start_function wants to output .frame and .mask
- directives. */
- if (cfun->is_thunk)
- {
- *imaskP = 0;
- *fmaskP = 0;
- return;
- }
-
- if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
- imask |= (1UL << HARD_FRAME_POINTER_REGNUM);
-
- /* One for every register we have to save. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (! fixed_regs[i] && ! call_used_regs[i]
- && df_regs_ever_live_p (i) && i != REG_RA)
- {
- if (i < 32)
- imask |= (1UL << i);
- else
- fmask |= (1UL << (i - 32));
- }
-
- /* We need to restore these for the handler. */
- if (crtl->calls_eh_return)
- {
- for (i = 0; ; ++i)
- {
- unsigned regno = EH_RETURN_DATA_REGNO (i);
- if (regno == INVALID_REGNUM)
- break;
- imask |= 1UL << regno;
- }
- }
-
- /* If any register spilled, then spill the return address also. */
- /* ??? This is required by the Digital stack unwind specification
- and isn't needed if we're doing Dwarf2 unwinding. */
- if (imask || fmask || alpha_ra_ever_killed ())
- imask |= (1UL << REG_RA);
-
- *imaskP = imask;
- *fmaskP = fmask;
-}
-
-int
-alpha_sa_size (void)
-{
- unsigned long mask[2];
- int sa_size = 0;
- int i, j;
-
- alpha_sa_mask (&mask[0], &mask[1]);
-
- for (j = 0; j < 2; ++j)
- for (i = 0; i < 32; ++i)
- if ((mask[j] >> i) & 1)
- sa_size++;
-
- if (TARGET_ABI_OPEN_VMS)
- {
- /* Start with a stack procedure if we make any calls (REG_RA used), or
- need a frame pointer, with a register procedure if we otherwise need
- at least a slot, and with a null procedure in other cases. */
- if ((mask[0] >> REG_RA) & 1 || frame_pointer_needed)
- alpha_procedure_type = PT_STACK;
- else if (get_frame_size() != 0)
- alpha_procedure_type = PT_REGISTER;
- else
- alpha_procedure_type = PT_NULL;
-
- /* Don't reserve space for saving FP & RA yet. Do that later after we've
- made the final decision on stack procedure vs register procedure. */
- if (alpha_procedure_type == PT_STACK)
- sa_size -= 2;
-
- /* Decide whether to refer to objects off our PV via FP or PV.
- If we need FP for something else or if we receive a nonlocal
- goto (which expects PV to contain the value), we must use PV.
- Otherwise, start by assuming we can use FP. */
-
- vms_base_regno
- = (frame_pointer_needed
- || cfun->has_nonlocal_label
- || alpha_procedure_type == PT_STACK
- || crtl->outgoing_args_size)
- ? REG_PV : HARD_FRAME_POINTER_REGNUM;
-
- /* If we want to copy PV into FP, we need to find some register
- in which to save FP. */
-
- vms_save_fp_regno = -1;
- if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
- for (i = 0; i < 32; i++)
- if (! fixed_regs[i] && call_used_regs[i] && ! df_regs_ever_live_p (i))
- vms_save_fp_regno = i;
-
- /* A VMS condition handler requires a stack procedure in our
- implementation. (not required by the calling standard). */
- if ((vms_save_fp_regno == -1 && alpha_procedure_type == PT_REGISTER)
- || cfun->machine->uses_condition_handler)
- vms_base_regno = REG_PV, alpha_procedure_type = PT_STACK;
- else if (alpha_procedure_type == PT_NULL)
- vms_base_regno = REG_PV;
-
- /* Stack unwinding should be done via FP unless we use it for PV. */
- vms_unwind_regno = (vms_base_regno == REG_PV
- ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
-
- /* If this is a stack procedure, allow space for saving FP, RA and
- a condition handler slot if needed. */
- if (alpha_procedure_type == PT_STACK)
- sa_size += 2 + cfun->machine->uses_condition_handler;
- }
- else
- {
- /* Our size must be even (multiple of 16 bytes). */
- if (sa_size & 1)
- sa_size++;
- }
-
- return sa_size * 8;
-}
-
-/* Define the offset between two registers, one to be eliminated,
- and the other its replacement, at the start of a routine. */
-
-HOST_WIDE_INT
-alpha_initial_elimination_offset (unsigned int from,
- unsigned int to ATTRIBUTE_UNUSED)
-{
- HOST_WIDE_INT ret;
-
- ret = alpha_sa_size ();
- ret += ALPHA_ROUND (crtl->outgoing_args_size);
-
- switch (from)
- {
- case FRAME_POINTER_REGNUM:
- break;
-
- case ARG_POINTER_REGNUM:
- ret += (ALPHA_ROUND (get_frame_size ()
- + crtl->args.pretend_args_size)
- - crtl->args.pretend_args_size);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return ret;
-}
-
-#if TARGET_ABI_OPEN_VMS
-
-/* Worker function for TARGET_CAN_ELIMINATE. */
-
-static bool
-alpha_vms_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
-{
- /* We need the alpha_procedure_type to decide. Evaluate it now. */
- alpha_sa_size ();
-
- switch (alpha_procedure_type)
- {
- case PT_NULL:
- /* NULL procedures have no frame of their own and we only
- know how to resolve from the current stack pointer. */
- return to == STACK_POINTER_REGNUM;
-
- case PT_REGISTER:
- case PT_STACK:
- /* We always eliminate except to the stack pointer if there is no
- usable frame pointer at hand. */
- return (to != STACK_POINTER_REGNUM
- || vms_unwind_regno != HARD_FRAME_POINTER_REGNUM);
- }
-
- gcc_unreachable ();
-}
-
-/* FROM is to be eliminated for TO. Return the offset so that TO+offset
- designates the same location as FROM. */
-
-HOST_WIDE_INT
-alpha_vms_initial_elimination_offset (unsigned int from, unsigned int to)
-{
- /* The only possible attempts we ever expect are ARG or FRAME_PTR to
- HARD_FRAME or STACK_PTR. We need the alpha_procedure_type to decide
- on the proper computations and will need the register save area size
- in most cases. */
-
- HOST_WIDE_INT sa_size = alpha_sa_size ();
-
- /* PT_NULL procedures have no frame of their own and we only allow
- elimination to the stack pointer. This is the argument pointer and we
- resolve the soft frame pointer to that as well. */
-
- if (alpha_procedure_type == PT_NULL)
- return 0;
-
- /* For a PT_STACK procedure the frame layout looks as follows
-
- -----> decreasing addresses
-
- < size rounded up to 16 | likewise >
- --------------#------------------------------+++--------------+++-------#
- incoming args # pretended args | "frame" | regs sa | PV | outgoing args #
- --------------#---------------------------------------------------------#
- ^ ^ ^ ^
- ARG_PTR FRAME_PTR HARD_FRAME_PTR STACK_PTR
-
-
- PT_REGISTER procedures are similar in that they may have a frame of their
- own. They have no regs-sa/pv/outgoing-args area.
-
- We first compute offset to HARD_FRAME_PTR, then add what we need to get
- to STACK_PTR if need be. */
-
- {
- HOST_WIDE_INT offset;
- HOST_WIDE_INT pv_save_size = alpha_procedure_type == PT_STACK ? 8 : 0;
-
- switch (from)
- {
- case FRAME_POINTER_REGNUM:
- offset = ALPHA_ROUND (sa_size + pv_save_size);
- break;
- case ARG_POINTER_REGNUM:
- offset = (ALPHA_ROUND (sa_size + pv_save_size
- + get_frame_size ()
- + crtl->args.pretend_args_size)
- - crtl->args.pretend_args_size);
- break;
- default:
- gcc_unreachable ();
- }
-
- if (to == STACK_POINTER_REGNUM)
- offset += ALPHA_ROUND (crtl->outgoing_args_size);
-
- return offset;
- }
-}
-
-#define COMMON_OBJECT "common_object"
-
-static tree
-common_object_handler (tree *node, tree name ATTRIBUTE_UNUSED,
- tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED,
- bool *no_add_attrs ATTRIBUTE_UNUSED)
-{
- tree decl = *node;
- gcc_assert (DECL_P (decl));
-
- DECL_COMMON (decl) = 1;
- return NULL_TREE;
-}
-
-static const struct attribute_spec vms_attribute_table[] =
-{
- /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
- affects_type_identity } */
- { COMMON_OBJECT, 0, 1, true, false, false, common_object_handler, false },
- { NULL, 0, 0, false, false, false, NULL, false }
-};
-
-void
-vms_output_aligned_decl_common(FILE *file, tree decl, const char *name,
- unsigned HOST_WIDE_INT size,
- unsigned int align)
-{
- tree attr = DECL_ATTRIBUTES (decl);
- fprintf (file, "%s", COMMON_ASM_OP);
- assemble_name (file, name);
- fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED, size);
- /* ??? Unlike on OSF/1, the alignment factor is not in log units. */
- fprintf (file, ",%u", align / BITS_PER_UNIT);
- if (attr)
- {
- attr = lookup_attribute (COMMON_OBJECT, attr);
- if (attr)
- fprintf (file, ",%s",
- IDENTIFIER_POINTER (TREE_VALUE (TREE_VALUE (attr))));
- }
- fputc ('\n', file);
-}
-
-#undef COMMON_OBJECT
-
-#endif
-
-static int
-find_lo_sum_using_gp (rtx *px, void *data ATTRIBUTE_UNUSED)
-{
- return GET_CODE (*px) == LO_SUM && XEXP (*px, 0) == pic_offset_table_rtx;
-}
-
-int
-alpha_find_lo_sum_using_gp (rtx insn)
-{
- return for_each_rtx (&PATTERN (insn), find_lo_sum_using_gp, NULL) > 0;
-}
-
-static int
-alpha_does_function_need_gp (void)
-{
- rtx insn;
-
- /* The GP being variable is an OSF abi thing. */
- if (! TARGET_ABI_OSF)
- return 0;
-
- /* We need the gp to load the address of __mcount. */
- if (TARGET_PROFILING_NEEDS_GP && crtl->profile)
- return 1;
-
- /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */
- if (cfun->is_thunk)
- return 1;
-
- /* The nonlocal receiver pattern assumes that the gp is valid for
- the nested function. Reasonable because it's almost always set
- correctly already. For the cases where that's wrong, make sure
- the nested function loads its gp on entry. */
- if (crtl->has_nonlocal_goto)
- return 1;
-
- /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
- Even if we are a static function, we still need to do this in case
- our address is taken and passed to something like qsort. */
-
- push_topmost_sequence ();
- insn = get_insns ();
- pop_topmost_sequence ();
-
- for (; insn; insn = NEXT_INSN (insn))
- if (NONDEBUG_INSN_P (insn)
- && ! JUMP_TABLE_DATA_P (insn)
- && GET_CODE (PATTERN (insn)) != USE
- && GET_CODE (PATTERN (insn)) != CLOBBER
- && get_attr_usegp (insn))
- return 1;
-
- return 0;
-}
-
-
-/* Helper function to set RTX_FRAME_RELATED_P on instructions, including
- sequences. */
-
-static rtx
-set_frame_related_p (void)
-{
- rtx seq = get_insns ();
- rtx insn;
-
- end_sequence ();
-
- if (!seq)
- return NULL_RTX;
-
- if (INSN_P (seq))
- {
- insn = seq;
- while (insn != NULL_RTX)
- {
- RTX_FRAME_RELATED_P (insn) = 1;
- insn = NEXT_INSN (insn);
- }
- seq = emit_insn (seq);
- }
- else
- {
- seq = emit_insn (seq);
- RTX_FRAME_RELATED_P (seq) = 1;
- }
- return seq;
-}
-
-#define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
-
-/* Generates a store with the proper unwind info attached. VALUE is
- stored at BASE_REG+BASE_OFS. If FRAME_BIAS is nonzero, then BASE_REG
- contains SP+FRAME_BIAS, and that is the unwind info that should be
- generated. If FRAME_REG != VALUE, then VALUE is being stored on
- behalf of FRAME_REG, and FRAME_REG should be present in the unwind. */
-
-static void
-emit_frame_store_1 (rtx value, rtx base_reg, HOST_WIDE_INT frame_bias,
- HOST_WIDE_INT base_ofs, rtx frame_reg)
-{
- rtx addr, mem, insn;
-
- addr = plus_constant (Pmode, base_reg, base_ofs);
- mem = gen_frame_mem (DImode, addr);
-
- insn = emit_move_insn (mem, value);
- RTX_FRAME_RELATED_P (insn) = 1;
-
- if (frame_bias || value != frame_reg)
- {
- if (frame_bias)
- {
- addr = plus_constant (Pmode, stack_pointer_rtx,
- frame_bias + base_ofs);
- mem = gen_rtx_MEM (DImode, addr);
- }
-
- add_reg_note (insn, REG_FRAME_RELATED_EXPR,
- gen_rtx_SET (VOIDmode, mem, frame_reg));
- }
-}
-
-static void
-emit_frame_store (unsigned int regno, rtx base_reg,
- HOST_WIDE_INT frame_bias, HOST_WIDE_INT base_ofs)
-{
- rtx reg = gen_rtx_REG (DImode, regno);
- emit_frame_store_1 (reg, base_reg, frame_bias, base_ofs, reg);
-}
-
-/* Compute the frame size. SIZE is the size of the "naked" frame
- and SA_SIZE is the size of the register save area. */
-
-static HOST_WIDE_INT
-compute_frame_size (HOST_WIDE_INT size, HOST_WIDE_INT sa_size)
-{
- if (TARGET_ABI_OPEN_VMS)
- return ALPHA_ROUND (sa_size
- + (alpha_procedure_type == PT_STACK ? 8 : 0)
- + size
- + crtl->args.pretend_args_size);
- else
- return ALPHA_ROUND (crtl->outgoing_args_size)
- + sa_size
- + ALPHA_ROUND (size
- + crtl->args.pretend_args_size);
-}
-
-/* Write function prologue. */
-
-/* On vms we have two kinds of functions:
-
- - stack frame (PROC_STACK)
- these are 'normal' functions with local vars and which are
- calling other functions
- - register frame (PROC_REGISTER)
- keeps all data in registers, needs no stack
-
- We must pass this to the assembler so it can generate the
- proper pdsc (procedure descriptor)
- This is done with the '.pdesc' command.
-
- On not-vms, we don't really differentiate between the two, as we can
- simply allocate stack without saving registers. */
-
-void
-alpha_expand_prologue (void)
-{
- /* Registers to save. */
- unsigned long imask = 0;
- unsigned long fmask = 0;
- /* Stack space needed for pushing registers clobbered by us. */
- HOST_WIDE_INT sa_size, sa_bias;
- /* Complete stack size needed. */
- HOST_WIDE_INT frame_size;
- /* Probed stack size; it additionally includes the size of
- the "reserve region" if any. */
- HOST_WIDE_INT probed_size;
- /* Offset from base reg to register save area. */
- HOST_WIDE_INT reg_offset;
- rtx sa_reg;
- int i;
-
- sa_size = alpha_sa_size ();
- frame_size = compute_frame_size (get_frame_size (), sa_size);
-
- if (flag_stack_usage_info)
- current_function_static_stack_size = frame_size;
-
- if (TARGET_ABI_OPEN_VMS)
- reg_offset = 8 + 8 * cfun->machine->uses_condition_handler;
- else
- reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
-
- alpha_sa_mask (&imask, &fmask);
-
- /* Emit an insn to reload GP, if needed. */
- if (TARGET_ABI_OSF)
- {
- alpha_function_needs_gp = alpha_does_function_need_gp ();
- if (alpha_function_needs_gp)
- emit_insn (gen_prologue_ldgp ());
- }
-
- /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert
- the call to mcount ourselves, rather than having the linker do it
- magically in response to -pg. Since _mcount has special linkage,
- don't represent the call as a call. */
- if (TARGET_PROFILING_NEEDS_GP && crtl->profile)
- emit_insn (gen_prologue_mcount ());
-
- /* Adjust the stack by the frame size. If the frame size is > 4096
- bytes, we need to be sure we probe somewhere in the first and last
- 4096 bytes (we can probably get away without the latter test) and
- every 8192 bytes in between. If the frame size is > 32768, we
- do this in a loop. Otherwise, we generate the explicit probe
- instructions.
-
- Note that we are only allowed to adjust sp once in the prologue. */
-
- probed_size = frame_size;
- if (flag_stack_check)
- probed_size += STACK_CHECK_PROTECT;
-
- if (probed_size <= 32768)
- {
- if (probed_size > 4096)
- {
- int probed;
-
- for (probed = 4096; probed < probed_size; probed += 8192)
- emit_insn (gen_probe_stack (GEN_INT (-probed)));
-
- /* We only have to do this probe if we aren't saving registers or
- if we are probing beyond the frame because of -fstack-check. */
- if ((sa_size == 0 && probed_size > probed - 4096)
- || flag_stack_check)
- emit_insn (gen_probe_stack (GEN_INT (-probed_size)));
- }
-
- if (frame_size != 0)
- FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
- GEN_INT (-frame_size))));
- }
- else
- {
- /* Here we generate code to set R22 to SP + 4096 and set R23 to the
- number of 8192 byte blocks to probe. We then probe each block
- in the loop and then set SP to the proper location. If the
- amount remaining is > 4096, we have to do one more probe if we
- are not saving any registers or if we are probing beyond the
- frame because of -fstack-check. */
-
- HOST_WIDE_INT blocks = (probed_size + 4096) / 8192;
- HOST_WIDE_INT leftover = probed_size + 4096 - blocks * 8192;
- rtx ptr = gen_rtx_REG (DImode, 22);
- rtx count = gen_rtx_REG (DImode, 23);
- rtx seq;
-
- emit_move_insn (count, GEN_INT (blocks));
- emit_insn (gen_adddi3 (ptr, stack_pointer_rtx, GEN_INT (4096)));
-
- /* Because of the difficulty in emitting a new basic block this
- late in the compilation, generate the loop as a single insn. */
- emit_insn (gen_prologue_stack_probe_loop (count, ptr));
-
- if ((leftover > 4096 && sa_size == 0) || flag_stack_check)
- {
- rtx last = gen_rtx_MEM (DImode,
- plus_constant (Pmode, ptr, -leftover));
- MEM_VOLATILE_P (last) = 1;
- emit_move_insn (last, const0_rtx);
- }
-
- if (flag_stack_check)
- {
- /* If -fstack-check is specified we have to load the entire
- constant into a register and subtract from the sp in one go,
- because the probed stack size is not equal to the frame size. */
- HOST_WIDE_INT lo, hi;
- lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
- hi = frame_size - lo;
-
- emit_move_insn (ptr, GEN_INT (hi));
- emit_insn (gen_adddi3 (ptr, ptr, GEN_INT (lo)));
- seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
- ptr));
- }
- else
- {
- seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr,
- GEN_INT (-leftover)));
- }
-
- /* This alternative is special, because the DWARF code cannot
- possibly intuit through the loop above. So we invent this
- note it looks at instead. */
- RTX_FRAME_RELATED_P (seq) = 1;
- add_reg_note (seq, REG_FRAME_RELATED_EXPR,
- gen_rtx_SET (VOIDmode, stack_pointer_rtx,
- plus_constant (Pmode, stack_pointer_rtx,
- -frame_size)));
- }
-
- /* Cope with very large offsets to the register save area. */
- sa_bias = 0;
- sa_reg = stack_pointer_rtx;
- if (reg_offset + sa_size > 0x8000)
- {
- int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
- rtx sa_bias_rtx;
-
- if (low + sa_size <= 0x8000)
- sa_bias = reg_offset - low, reg_offset = low;
- else
- sa_bias = reg_offset, reg_offset = 0;
-
- sa_reg = gen_rtx_REG (DImode, 24);
- sa_bias_rtx = GEN_INT (sa_bias);
-
- if (add_operand (sa_bias_rtx, DImode))
- emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_bias_rtx));
- else
- {
- emit_move_insn (sa_reg, sa_bias_rtx);
- emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_reg));
- }
- }
-
- /* Save regs in stack order. Beginning with VMS PV. */
- if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
- emit_frame_store (REG_PV, stack_pointer_rtx, 0, 0);
-
- /* Save register RA next. */
- if (imask & (1UL << REG_RA))
- {
- emit_frame_store (REG_RA, sa_reg, sa_bias, reg_offset);
- imask &= ~(1UL << REG_RA);
- reg_offset += 8;
- }
-
- /* Now save any other registers required to be saved. */
- for (i = 0; i < 31; i++)
- if (imask & (1UL << i))
- {
- emit_frame_store (i, sa_reg, sa_bias, reg_offset);
- reg_offset += 8;
- }
-
- for (i = 0; i < 31; i++)
- if (fmask & (1UL << i))
- {
- emit_frame_store (i+32, sa_reg, sa_bias, reg_offset);
- reg_offset += 8;
- }
-
- if (TARGET_ABI_OPEN_VMS)
- {
- /* Register frame procedures save the fp. */
- if (alpha_procedure_type == PT_REGISTER)
- {
- rtx insn = emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
- hard_frame_pointer_rtx);
- add_reg_note (insn, REG_CFA_REGISTER, NULL);
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- if (alpha_procedure_type != PT_NULL && vms_base_regno != REG_PV)
- emit_insn (gen_force_movdi (gen_rtx_REG (DImode, vms_base_regno),
- gen_rtx_REG (DImode, REG_PV)));
-
- if (alpha_procedure_type != PT_NULL
- && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
- FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
-
- /* If we have to allocate space for outgoing args, do it now. */
- if (crtl->outgoing_args_size != 0)
- {
- rtx seq
- = emit_move_insn (stack_pointer_rtx,
- plus_constant
- (Pmode, hard_frame_pointer_rtx,
- - (ALPHA_ROUND
- (crtl->outgoing_args_size))));
-
- /* Only set FRAME_RELATED_P on the stack adjustment we just emitted
- if ! frame_pointer_needed. Setting the bit will change the CFA
- computation rule to use sp again, which would be wrong if we had
- frame_pointer_needed, as this means sp might move unpredictably
- later on.
-
- Also, note that
- frame_pointer_needed
- => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
- and
- crtl->outgoing_args_size != 0
- => alpha_procedure_type != PT_NULL,
-
- so when we are not setting the bit here, we are guaranteed to
- have emitted an FRP frame pointer update just before. */
- RTX_FRAME_RELATED_P (seq) = ! frame_pointer_needed;
- }
- }
- else
- {
- /* If we need a frame pointer, set it from the stack pointer. */
- if (frame_pointer_needed)
- {
- if (TARGET_CAN_FAULT_IN_PROLOGUE)
- FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
- else
- /* This must always be the last instruction in the
- prologue, thus we emit a special move + clobber. */
- FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
- stack_pointer_rtx, sa_reg)));
- }
- }
-
- /* The ABIs for VMS and OSF/1 say that while we can schedule insns into
- the prologue, for exception handling reasons, we cannot do this for
- any insn that might fault. We could prevent this for mems with a
- (clobber:BLK (scratch)), but this doesn't work for fp insns. So we
- have to prevent all such scheduling with a blockage.
-
- Linux, on the other hand, never bothered to implement OSF/1's
- exception handling, and so doesn't care about such things. Anyone
- planning to use dwarf2 frame-unwind info can also omit the blockage. */
-
- if (! TARGET_CAN_FAULT_IN_PROLOGUE)
- emit_insn (gen_blockage ());
-}
-
-/* Count the number of .file directives, so that .loc is up to date. */
-int num_source_filenames = 0;
-
-/* Output the textual info surrounding the prologue. */
-
-void
-alpha_start_function (FILE *file, const char *fnname,
- tree decl ATTRIBUTE_UNUSED)
-{
- unsigned long imask = 0;
- unsigned long fmask = 0;
- /* Stack space needed for pushing registers clobbered by us. */
- HOST_WIDE_INT sa_size;
- /* Complete stack size needed. */
- unsigned HOST_WIDE_INT frame_size;
- /* The maximum debuggable frame size. */
- unsigned HOST_WIDE_INT max_frame_size = 1UL << 31;
- /* Offset from base reg to register save area. */
- HOST_WIDE_INT reg_offset;
- char *entry_label = (char *) alloca (strlen (fnname) + 6);
- char *tramp_label = (char *) alloca (strlen (fnname) + 6);
- int i;
-
-#if TARGET_ABI_OPEN_VMS
- vms_start_function (fnname);
-#endif
-
- alpha_fnname = fnname;
- sa_size = alpha_sa_size ();
- frame_size = compute_frame_size (get_frame_size (), sa_size);
-
- if (TARGET_ABI_OPEN_VMS)
- reg_offset = 8 + 8 * cfun->machine->uses_condition_handler;
- else
- reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
-
- alpha_sa_mask (&imask, &fmask);
-
- /* Issue function start and label. */
- if (TARGET_ABI_OPEN_VMS || !flag_inhibit_size_directive)
- {
- fputs ("\t.ent ", file);
- assemble_name (file, fnname);
- putc ('\n', file);
-
- /* If the function needs GP, we'll write the "..ng" label there.
- Otherwise, do it here. */
- if (TARGET_ABI_OSF
- && ! alpha_function_needs_gp
- && ! cfun->is_thunk)
- {
- putc ('$', file);
- assemble_name (file, fnname);
- fputs ("..ng:\n", file);
- }
- }
- /* Nested functions on VMS that are potentially called via trampoline
- get a special transfer entry point that loads the called functions
- procedure descriptor and static chain. */
- if (TARGET_ABI_OPEN_VMS
- && !TREE_PUBLIC (decl)
- && DECL_CONTEXT (decl)
- && !TYPE_P (DECL_CONTEXT (decl))
- && TREE_CODE (DECL_CONTEXT (decl)) != TRANSLATION_UNIT_DECL)
- {
- strcpy (tramp_label, fnname);
- strcat (tramp_label, "..tr");
- ASM_OUTPUT_LABEL (file, tramp_label);
- fprintf (file, "\tldq $1,24($27)\n");
- fprintf (file, "\tldq $27,16($27)\n");
- }
-
- strcpy (entry_label, fnname);
- if (TARGET_ABI_OPEN_VMS)
- strcat (entry_label, "..en");
-
- ASM_OUTPUT_LABEL (file, entry_label);
- inside_function = TRUE;
-
- if (TARGET_ABI_OPEN_VMS)
- fprintf (file, "\t.base $%d\n", vms_base_regno);
-
- if (TARGET_ABI_OSF
- && TARGET_IEEE_CONFORMANT
- && !flag_inhibit_size_directive)
- {
- /* Set flags in procedure descriptor to request IEEE-conformant
- math-library routines. The value we set it to is PDSC_EXC_IEEE
- (/usr/include/pdsc.h). */
- fputs ("\t.eflag 48\n", file);
- }
-
- /* Set up offsets to alpha virtual arg/local debugging pointer. */
- alpha_auto_offset = -frame_size + crtl->args.pretend_args_size;
- alpha_arg_offset = -frame_size + 48;
-
- /* Describe our frame. If the frame size is larger than an integer,
- print it as zero to avoid an assembler error. We won't be
- properly describing such a frame, but that's the best we can do. */
- if (TARGET_ABI_OPEN_VMS)
- fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,"
- HOST_WIDE_INT_PRINT_DEC "\n",
- vms_unwind_regno,
- frame_size >= (1UL << 31) ? 0 : frame_size,
- reg_offset);
- else if (!flag_inhibit_size_directive)
- fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,%d\n",
- (frame_pointer_needed
- ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM),
- frame_size >= max_frame_size ? 0 : frame_size,
- crtl->args.pretend_args_size);
-
- /* Describe which registers were spilled. */
- if (TARGET_ABI_OPEN_VMS)
- {
- if (imask)
- /* ??? Does VMS care if mask contains ra? The old code didn't
- set it, so I don't here. */
- fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1UL << REG_RA));
- if (fmask)
- fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
- if (alpha_procedure_type == PT_REGISTER)
- fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
- }
- else if (!flag_inhibit_size_directive)
- {
- if (imask)
- {
- fprintf (file, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", imask,
- frame_size >= max_frame_size ? 0 : reg_offset - frame_size);
-
- for (i = 0; i < 32; ++i)
- if (imask & (1UL << i))
- reg_offset += 8;
- }
-
- if (fmask)
- fprintf (file, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", fmask,
- frame_size >= max_frame_size ? 0 : reg_offset - frame_size);
- }
-
-#if TARGET_ABI_OPEN_VMS
- /* If a user condition handler has been installed at some point, emit
- the procedure descriptor bits to point the Condition Handling Facility
- at the indirection wrapper, and state the fp offset at which the user
- handler may be found. */
- if (cfun->machine->uses_condition_handler)
- {
- fprintf (file, "\t.handler __gcc_shell_handler\n");
- fprintf (file, "\t.handler_data %d\n", VMS_COND_HANDLER_FP_OFFSET);
- }
-
-#ifdef TARGET_VMS_CRASH_DEBUG
- /* Support of minimal traceback info. */
- switch_to_section (readonly_data_section);
- fprintf (file, "\t.align 3\n");
- assemble_name (file, fnname); fputs ("..na:\n", file);
- fputs ("\t.ascii \"", file);
- assemble_name (file, fnname);
- fputs ("\\0\"\n", file);
- switch_to_section (text_section);
-#endif
-#endif /* TARGET_ABI_OPEN_VMS */
-}
-
-/* Emit the .prologue note at the scheduled end of the prologue. */
-
-static void
-alpha_output_function_end_prologue (FILE *file)
-{
- if (TARGET_ABI_OPEN_VMS)
- fputs ("\t.prologue\n", file);
- else if (!flag_inhibit_size_directive)
- fprintf (file, "\t.prologue %d\n",
- alpha_function_needs_gp || cfun->is_thunk);
-}
-
-/* Write function epilogue. */
-
-void
-alpha_expand_epilogue (void)
-{
- /* Registers to save. */
- unsigned long imask = 0;
- unsigned long fmask = 0;
- /* Stack space needed for pushing registers clobbered by us. */
- HOST_WIDE_INT sa_size;
- /* Complete stack size needed. */
- HOST_WIDE_INT frame_size;
- /* Offset from base reg to register save area. */
- HOST_WIDE_INT reg_offset;
- int fp_is_frame_pointer, fp_offset;
- rtx sa_reg, sa_reg_exp = NULL;
- rtx sp_adj1, sp_adj2, mem, reg, insn;
- rtx eh_ofs;
- rtx cfa_restores = NULL_RTX;
- int i;
-
- sa_size = alpha_sa_size ();
- frame_size = compute_frame_size (get_frame_size (), sa_size);
-
- if (TARGET_ABI_OPEN_VMS)
- {
- if (alpha_procedure_type == PT_STACK)
- reg_offset = 8 + 8 * cfun->machine->uses_condition_handler;
- else
- reg_offset = 0;
- }
- else
- reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
-
- alpha_sa_mask (&imask, &fmask);
-
- fp_is_frame_pointer
- = (TARGET_ABI_OPEN_VMS
- ? alpha_procedure_type == PT_STACK
- : frame_pointer_needed);
- fp_offset = 0;
- sa_reg = stack_pointer_rtx;
-
- if (crtl->calls_eh_return)
- eh_ofs = EH_RETURN_STACKADJ_RTX;
- else
- eh_ofs = NULL_RTX;
-
- if (sa_size)
- {
- /* If we have a frame pointer, restore SP from it. */
- if (TARGET_ABI_OPEN_VMS
- ? vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
- : frame_pointer_needed)
- emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
-
- /* Cope with very large offsets to the register save area. */
- if (reg_offset + sa_size > 0x8000)
- {
- int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
- HOST_WIDE_INT bias;
-
- if (low + sa_size <= 0x8000)
- bias = reg_offset - low, reg_offset = low;
- else
- bias = reg_offset, reg_offset = 0;
-
- sa_reg = gen_rtx_REG (DImode, 22);
- sa_reg_exp = plus_constant (Pmode, stack_pointer_rtx, bias);
-
- emit_move_insn (sa_reg, sa_reg_exp);
- }
-
- /* Restore registers in order, excepting a true frame pointer. */
-
- mem = gen_frame_mem (DImode, plus_constant (Pmode, sa_reg, reg_offset));
- reg = gen_rtx_REG (DImode, REG_RA);
- emit_move_insn (reg, mem);
- cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
-
- reg_offset += 8;
- imask &= ~(1UL << REG_RA);
-
- for (i = 0; i < 31; ++i)
- if (imask & (1UL << i))
- {
- if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
- fp_offset = reg_offset;
- else
- {
- mem = gen_frame_mem (DImode,
- plus_constant (Pmode, sa_reg,
- reg_offset));
- reg = gen_rtx_REG (DImode, i);
- emit_move_insn (reg, mem);
- cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
- cfa_restores);
- }
- reg_offset += 8;
- }
-
- for (i = 0; i < 31; ++i)
- if (fmask & (1UL << i))
- {
- mem = gen_frame_mem (DFmode, plus_constant (Pmode, sa_reg,
- reg_offset));
- reg = gen_rtx_REG (DFmode, i+32);
- emit_move_insn (reg, mem);
- cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
- reg_offset += 8;
- }
- }
-
- if (frame_size || eh_ofs)
- {
- sp_adj1 = stack_pointer_rtx;
-
- if (eh_ofs)
- {
- sp_adj1 = gen_rtx_REG (DImode, 23);
- emit_move_insn (sp_adj1,
- gen_rtx_PLUS (Pmode, stack_pointer_rtx, eh_ofs));
- }
-
- /* If the stack size is large, begin computation into a temporary
- register so as not to interfere with a potential fp restore,
- which must be consecutive with an SP restore. */
- if (frame_size < 32768 && !cfun->calls_alloca)
- sp_adj2 = GEN_INT (frame_size);
- else if (frame_size < 0x40007fffL)
- {
- int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
-
- sp_adj2 = plus_constant (Pmode, sp_adj1, frame_size - low);
- if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
- sp_adj1 = sa_reg;
- else
- {
- sp_adj1 = gen_rtx_REG (DImode, 23);
- emit_move_insn (sp_adj1, sp_adj2);
- }
- sp_adj2 = GEN_INT (low);
- }
- else
- {
- rtx tmp = gen_rtx_REG (DImode, 23);
- sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3, false);
- if (!sp_adj2)
- {
- /* We can't drop new things to memory this late, afaik,
- so build it up by pieces. */
- sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
- -(frame_size < 0));
- gcc_assert (sp_adj2);
- }
- }
-
- /* From now on, things must be in order. So emit blockages. */
-
- /* Restore the frame pointer. */
- if (fp_is_frame_pointer)
- {
- emit_insn (gen_blockage ());
- mem = gen_frame_mem (DImode, plus_constant (Pmode, sa_reg,
- fp_offset));
- emit_move_insn (hard_frame_pointer_rtx, mem);
- cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
- hard_frame_pointer_rtx, cfa_restores);
- }
- else if (TARGET_ABI_OPEN_VMS)
- {
- emit_insn (gen_blockage ());
- emit_move_insn (hard_frame_pointer_rtx,
- gen_rtx_REG (DImode, vms_save_fp_regno));
- cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
- hard_frame_pointer_rtx, cfa_restores);
- }
-
- /* Restore the stack pointer. */
- emit_insn (gen_blockage ());
- if (sp_adj2 == const0_rtx)
- insn = emit_move_insn (stack_pointer_rtx, sp_adj1);
- else
- insn = emit_move_insn (stack_pointer_rtx,
- gen_rtx_PLUS (DImode, sp_adj1, sp_adj2));
- REG_NOTES (insn) = cfa_restores;
- add_reg_note (insn, REG_CFA_DEF_CFA, stack_pointer_rtx);
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- else
- {
- gcc_assert (cfa_restores == NULL);
-
- if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_REGISTER)
- {
- emit_insn (gen_blockage ());
- insn = emit_move_insn (hard_frame_pointer_rtx,
- gen_rtx_REG (DImode, vms_save_fp_regno));
- add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx);
- RTX_FRAME_RELATED_P (insn) = 1;
- }
- }
-}
-
-/* Output the rest of the textual info surrounding the epilogue. */
-
-void
-alpha_end_function (FILE *file, const char *fnname, tree decl ATTRIBUTE_UNUSED)
-{
- rtx insn;
-
- /* We output a nop after noreturn calls at the very end of the function to
- ensure that the return address always remains in the caller's code range,
- as not doing so might confuse unwinding engines. */
- insn = get_last_insn ();
- if (!INSN_P (insn))
- insn = prev_active_insn (insn);
- if (insn && CALL_P (insn))
- output_asm_insn (get_insn_template (CODE_FOR_nop, NULL), NULL);
-
-#if TARGET_ABI_OPEN_VMS
- /* Write the linkage entries. */
- alpha_write_linkage (file, fnname);
-#endif
-
- /* End the function. */
- if (TARGET_ABI_OPEN_VMS
- || !flag_inhibit_size_directive)
- {
- fputs ("\t.end ", file);
- assemble_name (file, fnname);
- putc ('\n', file);
- }
- inside_function = FALSE;
-}
-
-#if TARGET_ABI_OSF
-/* Emit a tail call to FUNCTION after adjusting THIS by DELTA.
-
- In order to avoid the hordes of differences between generated code
- with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating
- lots of code loading up large constants, generate rtl and emit it
- instead of going straight to text.
-
- Not sure why this idea hasn't been explored before... */
-
-static void
-alpha_output_mi_thunk_osf (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
- HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
- tree function)
-{
- HOST_WIDE_INT hi, lo;
- rtx this_rtx, insn, funexp;
-
- /* We always require a valid GP. */
- emit_insn (gen_prologue_ldgp ());
- emit_note (NOTE_INSN_PROLOGUE_END);
-
- /* Find the "this" pointer. If the function returns a structure,
- the structure return pointer is in $16. */
- if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
- this_rtx = gen_rtx_REG (Pmode, 17);
- else
- this_rtx = gen_rtx_REG (Pmode, 16);
-
- /* Add DELTA. When possible we use ldah+lda. Otherwise load the
- entire constant for the add. */
- lo = ((delta & 0xffff) ^ 0x8000) - 0x8000;
- hi = (((delta - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
- if (hi + lo == delta)
- {
- if (hi)
- emit_insn (gen_adddi3 (this_rtx, this_rtx, GEN_INT (hi)));
- if (lo)
- emit_insn (gen_adddi3 (this_rtx, this_rtx, GEN_INT (lo)));
- }
- else
- {
- rtx tmp = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 0),
- delta, -(delta < 0));
- emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp));
- }
-
- /* Add a delta stored in the vtable at VCALL_OFFSET. */
- if (vcall_offset)
- {
- rtx tmp, tmp2;
-
- tmp = gen_rtx_REG (Pmode, 0);
- emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
-
- lo = ((vcall_offset & 0xffff) ^ 0x8000) - 0x8000;
- hi = (((vcall_offset - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
- if (hi + lo == vcall_offset)
- {
- if (hi)
- emit_insn (gen_adddi3 (tmp, tmp, GEN_INT (hi)));
- }
- else
- {
- tmp2 = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 1),
- vcall_offset, -(vcall_offset < 0));
- emit_insn (gen_adddi3 (tmp, tmp, tmp2));
- lo = 0;
- }
- if (lo)
- tmp2 = gen_rtx_PLUS (Pmode, tmp, GEN_INT (lo));
- else
- tmp2 = tmp;
- emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp2));
-
- emit_insn (gen_adddi3 (this_rtx, this_rtx, tmp));
- }
-
- /* Generate a tail call to the target function. */
- if (! TREE_USED (function))
- {
- assemble_external (function);
- TREE_USED (function) = 1;
- }
- funexp = XEXP (DECL_RTL (function), 0);
- funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
- insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
- SIBLING_CALL_P (insn) = 1;
-
- /* Run just enough of rest_of_compilation to get the insns emitted.
- There's not really enough bulk here to make other passes such as
- instruction scheduling worth while. Note that use_thunk calls
- assemble_start_function and assemble_end_function. */
- insn = get_insns ();
- shorten_branches (insn);
- final_start_function (insn, file, 1);
- final (insn, file, 1);
- final_end_function ();
-}
-#endif /* TARGET_ABI_OSF */
-
-/* Debugging support. */
-
-#include "gstab.h"
-
-/* Name of the file containing the current function. */
-
-static const char *current_function_file = "";
-
-/* Offsets to alpha virtual arg/local debugging pointers. */
-
-long alpha_arg_offset;
-long alpha_auto_offset;
-
-/* Emit a new filename to a stream. */
-
-void
-alpha_output_filename (FILE *stream, const char *name)
-{
- static int first_time = TRUE;
-
- if (first_time)
- {
- first_time = FALSE;
- ++num_source_filenames;
- current_function_file = name;
- fprintf (stream, "\t.file\t%d ", num_source_filenames);
- output_quoted_string (stream, name);
- fprintf (stream, "\n");
- }
-
- else if (name != current_function_file
- && strcmp (name, current_function_file) != 0)
- {
- ++num_source_filenames;
- current_function_file = name;
- fprintf (stream, "\t.file\t%d ", num_source_filenames);
-
- output_quoted_string (stream, name);
- fprintf (stream, "\n");
- }
-}
-
-/* Structure to show the current status of registers and memory. */
-
-struct shadow_summary
-{
- struct {
- unsigned int i : 31; /* Mask of int regs */
- unsigned int fp : 31; /* Mask of fp regs */
- unsigned int mem : 1; /* mem == imem | fpmem */
- } used, defd;
-};
-
-/* Summary the effects of expression X on the machine. Update SUM, a pointer
- to the summary structure. SET is nonzero if the insn is setting the
- object, otherwise zero. */
-
-static void
-summarize_insn (rtx x, struct shadow_summary *sum, int set)
-{
- const char *format_ptr;
- int i, j;
-
- if (x == 0)
- return;
-
- switch (GET_CODE (x))
- {
- /* ??? Note that this case would be incorrect if the Alpha had a
- ZERO_EXTRACT in SET_DEST. */
- case SET:
- summarize_insn (SET_SRC (x), sum, 0);
- summarize_insn (SET_DEST (x), sum, 1);
- break;
-
- case CLOBBER:
- summarize_insn (XEXP (x, 0), sum, 1);
- break;
-
- case USE:
- summarize_insn (XEXP (x, 0), sum, 0);
- break;
-
- case ASM_OPERANDS:
- for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
- summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
- break;
-
- case PARALLEL:
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- summarize_insn (XVECEXP (x, 0, i), sum, 0);
- break;
-
- case SUBREG:
- summarize_insn (SUBREG_REG (x), sum, 0);
- break;
-
- case REG:
- {
- int regno = REGNO (x);
- unsigned long mask = ((unsigned long) 1) << (regno % 32);
-
- if (regno == 31 || regno == 63)
- break;
-
- if (set)
- {
- if (regno < 32)
- sum->defd.i |= mask;
- else
- sum->defd.fp |= mask;
- }
- else
- {
- if (regno < 32)
- sum->used.i |= mask;
- else
- sum->used.fp |= mask;
- }
- }
- break;
-
- case MEM:
- if (set)
- sum->defd.mem = 1;
- else
- sum->used.mem = 1;
-
- /* Find the regs used in memory address computation: */
- summarize_insn (XEXP (x, 0), sum, 0);
- break;
-
- case CONST_INT: case CONST_DOUBLE:
- case SYMBOL_REF: case LABEL_REF: case CONST:
- case SCRATCH: case ASM_INPUT:
- break;
-
- /* Handle common unary and binary ops for efficiency. */
- case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
- case MOD: case UDIV: case UMOD: case AND: case IOR:
- case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
- case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
- case NE: case EQ: case GE: case GT: case LE:
- case LT: case GEU: case GTU: case LEU: case LTU:
- summarize_insn (XEXP (x, 0), sum, 0);
- summarize_insn (XEXP (x, 1), sum, 0);
- break;
-
- case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
- case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
- case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
- case SQRT: case FFS:
- summarize_insn (XEXP (x, 0), sum, 0);
- break;
-
- default:
- format_ptr = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- switch (format_ptr[i])
- {
- case 'e':
- summarize_insn (XEXP (x, i), sum, 0);
- break;
-
- case 'E':
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- summarize_insn (XVECEXP (x, i, j), sum, 0);
- break;
-
- case 'i':
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-}
-
-/* Ensure a sufficient number of `trapb' insns are in the code when
- the user requests code with a trap precision of functions or
- instructions.
-
- In naive mode, when the user requests a trap-precision of
- "instruction", a trapb is needed after every instruction that may
- generate a trap. This ensures that the code is resumption safe but
- it is also slow.
-
- When optimizations are turned on, we delay issuing a trapb as long
- as possible. In this context, a trap shadow is the sequence of
- instructions that starts with a (potentially) trap generating
- instruction and extends to the next trapb or call_pal instruction
- (but GCC never generates call_pal by itself). We can delay (and
- therefore sometimes omit) a trapb subject to the following
- conditions:
-
- (a) On entry to the trap shadow, if any Alpha register or memory
- location contains a value that is used as an operand value by some
- instruction in the trap shadow (live on entry), then no instruction
- in the trap shadow may modify the register or memory location.
-
- (b) Within the trap shadow, the computation of the base register
- for a memory load or store instruction may not involve using the
- result of an instruction that might generate an UNPREDICTABLE
- result.
-
- (c) Within the trap shadow, no register may be used more than once
- as a destination register. (This is to make life easier for the
- trap-handler.)
-
- (d) The trap shadow may not include any branch instructions. */
-
-static void
-alpha_handle_trap_shadows (void)
-{
- struct shadow_summary shadow;
- int trap_pending, exception_nesting;
- rtx i, n;
-
- trap_pending = 0;
- exception_nesting = 0;
- shadow.used.i = 0;
- shadow.used.fp = 0;
- shadow.used.mem = 0;
- shadow.defd = shadow.used;
-
- for (i = get_insns (); i ; i = NEXT_INSN (i))
- {
- if (NOTE_P (i))
- {
- switch (NOTE_KIND (i))
- {
- case NOTE_INSN_EH_REGION_BEG:
- exception_nesting++;
- if (trap_pending)
- goto close_shadow;
- break;
-
- case NOTE_INSN_EH_REGION_END:
- exception_nesting--;
- if (trap_pending)
- goto close_shadow;
- break;
-
- case NOTE_INSN_EPILOGUE_BEG:
- if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
- goto close_shadow;
- break;
- }
- }
- else if (trap_pending)
- {
- if (alpha_tp == ALPHA_TP_FUNC)
- {
- if (JUMP_P (i)
- && GET_CODE (PATTERN (i)) == RETURN)
- goto close_shadow;
- }
- else if (alpha_tp == ALPHA_TP_INSN)
- {
- if (optimize > 0)
- {
- struct shadow_summary sum;
-
- sum.used.i = 0;
- sum.used.fp = 0;
- sum.used.mem = 0;
- sum.defd = sum.used;
-
- switch (GET_CODE (i))
- {
- case INSN:
- /* Annoyingly, get_attr_trap will die on these. */
- if (GET_CODE (PATTERN (i)) == USE
- || GET_CODE (PATTERN (i)) == CLOBBER)
- break;
-
- summarize_insn (PATTERN (i), &sum, 0);
-
- if ((sum.defd.i & shadow.defd.i)
- || (sum.defd.fp & shadow.defd.fp))
- {
- /* (c) would be violated */
- goto close_shadow;
- }
-
- /* Combine shadow with summary of current insn: */
- shadow.used.i |= sum.used.i;
- shadow.used.fp |= sum.used.fp;
- shadow.used.mem |= sum.used.mem;
- shadow.defd.i |= sum.defd.i;
- shadow.defd.fp |= sum.defd.fp;
- shadow.defd.mem |= sum.defd.mem;
-
- if ((sum.defd.i & shadow.used.i)
- || (sum.defd.fp & shadow.used.fp)
- || (sum.defd.mem & shadow.used.mem))
- {
- /* (a) would be violated (also takes care of (b)) */
- gcc_assert (get_attr_trap (i) != TRAP_YES
- || (!(sum.defd.i & sum.used.i)
- && !(sum.defd.fp & sum.used.fp)));
-
- goto close_shadow;
- }
- break;
-
- case JUMP_INSN:
- case CALL_INSN:
- case CODE_LABEL:
- goto close_shadow;
-
- default:
- gcc_unreachable ();
- }
- }
- else
- {
- close_shadow:
- n = emit_insn_before (gen_trapb (), i);
- PUT_MODE (n, TImode);
- PUT_MODE (i, TImode);
- trap_pending = 0;
- shadow.used.i = 0;
- shadow.used.fp = 0;
- shadow.used.mem = 0;
- shadow.defd = shadow.used;
- }
- }
- }
-
- if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
- && NONJUMP_INSN_P (i)
- && GET_CODE (PATTERN (i)) != USE
- && GET_CODE (PATTERN (i)) != CLOBBER
- && get_attr_trap (i) == TRAP_YES)
- {
- if (optimize && !trap_pending)
- summarize_insn (PATTERN (i), &shadow, 0);
- trap_pending = 1;
- }
- }
-}
-
-/* Alpha can only issue instruction groups simultaneously if they are
- suitably aligned. This is very processor-specific. */
-/* There are a number of entries in alphaev4_insn_pipe and alphaev5_insn_pipe
- that are marked "fake". These instructions do not exist on that target,
- but it is possible to see these insns with deranged combinations of
- command-line options, such as "-mtune=ev4 -mmax". Instead of aborting,
- choose a result at random. */
-
-enum alphaev4_pipe {
- EV4_STOP = 0,
- EV4_IB0 = 1,
- EV4_IB1 = 2,
- EV4_IBX = 4
-};
-
-enum alphaev5_pipe {
- EV5_STOP = 0,
- EV5_NONE = 1,
- EV5_E01 = 2,
- EV5_E0 = 4,
- EV5_E1 = 8,
- EV5_FAM = 16,
- EV5_FA = 32,
- EV5_FM = 64
-};
-
-static enum alphaev4_pipe
-alphaev4_insn_pipe (rtx insn)
-{
- if (recog_memoized (insn) < 0)
- return EV4_STOP;
- if (get_attr_length (insn) != 4)
- return EV4_STOP;
-
- switch (get_attr_type (insn))
- {
- case TYPE_ILD:
- case TYPE_LDSYM:
- case TYPE_FLD:
- case TYPE_LD_L:
- return EV4_IBX;
-
- case TYPE_IADD:
- case TYPE_ILOG:
- case TYPE_ICMOV:
- case TYPE_ICMP:
- case TYPE_FST:
- case TYPE_SHIFT:
- case TYPE_IMUL:
- case TYPE_FBR:
- case TYPE_MVI: /* fake */
- return EV4_IB0;
-
- case TYPE_IST:
- case TYPE_MISC:
- case TYPE_IBR:
- case TYPE_JSR:
- case TYPE_CALLPAL:
- case TYPE_FCPYS:
- case TYPE_FCMOV:
- case TYPE_FADD:
- case TYPE_FDIV:
- case TYPE_FMUL:
- case TYPE_ST_C:
- case TYPE_MB:
- case TYPE_FSQRT: /* fake */
- case TYPE_FTOI: /* fake */
- case TYPE_ITOF: /* fake */
- return EV4_IB1;
-
- default:
- gcc_unreachable ();
- }
-}
-
-static enum alphaev5_pipe
-alphaev5_insn_pipe (rtx insn)
-{
- if (recog_memoized (insn) < 0)
- return EV5_STOP;
- if (get_attr_length (insn) != 4)
- return EV5_STOP;
-
- switch (get_attr_type (insn))
- {
- case TYPE_ILD:
- case TYPE_FLD:
- case TYPE_LDSYM:
- case TYPE_IADD:
- case TYPE_ILOG:
- case TYPE_ICMOV:
- case TYPE_ICMP:
- return EV5_E01;
-
- case TYPE_IST:
- case TYPE_FST:
- case TYPE_SHIFT:
- case TYPE_IMUL:
- case TYPE_MISC:
- case TYPE_MVI:
- case TYPE_LD_L:
- case TYPE_ST_C:
- case TYPE_MB:
- case TYPE_FTOI: /* fake */
- case TYPE_ITOF: /* fake */
- return EV5_E0;
-
- case TYPE_IBR:
- case TYPE_JSR:
- case TYPE_CALLPAL:
- return EV5_E1;
-
- case TYPE_FCPYS:
- return EV5_FAM;
-
- case TYPE_FBR:
- case TYPE_FCMOV:
- case TYPE_FADD:
- case TYPE_FDIV:
- case TYPE_FSQRT: /* fake */
- return EV5_FA;
-
- case TYPE_FMUL:
- return EV5_FM;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* IN_USE is a mask of the slots currently filled within the insn group.
- The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
- the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
-
- LEN is, of course, the length of the group in bytes. */
-
-static rtx
-alphaev4_next_group (rtx insn, int *pin_use, int *plen)
-{
- int len, in_use;
-
- len = in_use = 0;
-
- if (! INSN_P (insn)
- || GET_CODE (PATTERN (insn)) == CLOBBER
- || GET_CODE (PATTERN (insn)) == USE)
- goto next_and_done;
-
- while (1)
- {
- enum alphaev4_pipe pipe;
-
- pipe = alphaev4_insn_pipe (insn);
- switch (pipe)
- {
- case EV4_STOP:
- /* Force complex instructions to start new groups. */
- if (in_use)
- goto done;
-
- /* If this is a completely unrecognized insn, it's an asm.
- We don't know how long it is, so record length as -1 to
- signal a needed realignment. */
- if (recog_memoized (insn) < 0)
- len = -1;
- else
- len = get_attr_length (insn);
- goto next_and_done;
-
- case EV4_IBX:
- if (in_use & EV4_IB0)
- {
- if (in_use & EV4_IB1)
- goto done;
- in_use |= EV4_IB1;
- }
- else
- in_use |= EV4_IB0 | EV4_IBX;
- break;
-
- case EV4_IB0:
- if (in_use & EV4_IB0)
- {
- if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
- goto done;
- in_use |= EV4_IB1;
- }
- in_use |= EV4_IB0;
- break;
-
- case EV4_IB1:
- if (in_use & EV4_IB1)
- goto done;
- in_use |= EV4_IB1;
- break;
-
- default:
- gcc_unreachable ();
- }
- len += 4;
-
- /* Haifa doesn't do well scheduling branches. */
- if (JUMP_P (insn))
- goto next_and_done;
-
- next:
- insn = next_nonnote_insn (insn);
-
- if (!insn || ! INSN_P (insn))
- goto done;
-
- /* Let Haifa tell us where it thinks insn group boundaries are. */
- if (GET_MODE (insn) == TImode)
- goto done;
-
- if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
- goto next;
- }
-
- next_and_done:
- insn = next_nonnote_insn (insn);
-
- done:
- *plen = len;
- *pin_use = in_use;
- return insn;
-}
-
-/* IN_USE is a mask of the slots currently filled within the insn group.
- The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
- the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
-
- LEN is, of course, the length of the group in bytes. */
-
-static rtx
-alphaev5_next_group (rtx insn, int *pin_use, int *plen)
-{
- int len, in_use;
-
- len = in_use = 0;
-
- if (! INSN_P (insn)
- || GET_CODE (PATTERN (insn)) == CLOBBER
- || GET_CODE (PATTERN (insn)) == USE)
- goto next_and_done;
-
- while (1)
- {
- enum alphaev5_pipe pipe;
-
- pipe = alphaev5_insn_pipe (insn);
- switch (pipe)
- {
- case EV5_STOP:
- /* Force complex instructions to start new groups. */
- if (in_use)
- goto done;
-
- /* If this is a completely unrecognized insn, it's an asm.
- We don't know how long it is, so record length as -1 to
- signal a needed realignment. */
- if (recog_memoized (insn) < 0)
- len = -1;
- else
- len = get_attr_length (insn);
- goto next_and_done;
-
- /* ??? Most of the places below, we would like to assert never
- happen, as it would indicate an error either in Haifa, or
- in the scheduling description. Unfortunately, Haifa never
- schedules the last instruction of the BB, so we don't have
- an accurate TI bit to go off. */
- case EV5_E01:
- if (in_use & EV5_E0)
- {
- if (in_use & EV5_E1)
- goto done;
- in_use |= EV5_E1;
- }
- else
- in_use |= EV5_E0 | EV5_E01;
- break;
-
- case EV5_E0:
- if (in_use & EV5_E0)
- {
- if (!(in_use & EV5_E01) || (in_use & EV5_E1))
- goto done;
- in_use |= EV5_E1;
- }
- in_use |= EV5_E0;
- break;
-
- case EV5_E1:
- if (in_use & EV5_E1)
- goto done;
- in_use |= EV5_E1;
- break;
-
- case EV5_FAM:
- if (in_use & EV5_FA)
- {
- if (in_use & EV5_FM)
- goto done;
- in_use |= EV5_FM;
- }
- else
- in_use |= EV5_FA | EV5_FAM;
- break;
-
- case EV5_FA:
- if (in_use & EV5_FA)
- goto done;
- in_use |= EV5_FA;
- break;
-
- case EV5_FM:
- if (in_use & EV5_FM)
- goto done;
- in_use |= EV5_FM;
- break;
-
- case EV5_NONE:
- break;
-
- default:
- gcc_unreachable ();
- }
- len += 4;
-
- /* Haifa doesn't do well scheduling branches. */
- /* ??? If this is predicted not-taken, slotting continues, except
- that no more IBR, FBR, or JSR insns may be slotted. */
- if (JUMP_P (insn))
- goto next_and_done;
-
- next:
- insn = next_nonnote_insn (insn);
-
- if (!insn || ! INSN_P (insn))
- goto done;
-
- /* Let Haifa tell us where it thinks insn group boundaries are. */
- if (GET_MODE (insn) == TImode)
- goto done;
-
- if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
- goto next;
- }
-
- next_and_done:
- insn = next_nonnote_insn (insn);
-
- done:
- *plen = len;
- *pin_use = in_use;
- return insn;
-}
-
-static rtx
-alphaev4_next_nop (int *pin_use)
-{
- int in_use = *pin_use;
- rtx nop;
-
- if (!(in_use & EV4_IB0))
- {
- in_use |= EV4_IB0;
- nop = gen_nop ();
- }
- else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
- {
- in_use |= EV4_IB1;
- nop = gen_nop ();
- }
- else if (TARGET_FP && !(in_use & EV4_IB1))
- {
- in_use |= EV4_IB1;
- nop = gen_fnop ();
- }
- else
- nop = gen_unop ();
-
- *pin_use = in_use;
- return nop;
-}
-
-static rtx
-alphaev5_next_nop (int *pin_use)
-{
- int in_use = *pin_use;
- rtx nop;
-
- if (!(in_use & EV5_E1))
- {
- in_use |= EV5_E1;
- nop = gen_nop ();
- }
- else if (TARGET_FP && !(in_use & EV5_FA))
- {
- in_use |= EV5_FA;
- nop = gen_fnop ();
- }
- else if (TARGET_FP && !(in_use & EV5_FM))
- {
- in_use |= EV5_FM;
- nop = gen_fnop ();
- }
- else
- nop = gen_unop ();
-
- *pin_use = in_use;
- return nop;
-}
-
-/* The instruction group alignment main loop. */
-
-static void
-alpha_align_insns (unsigned int max_align,
- rtx (*next_group) (rtx, int *, int *),
- rtx (*next_nop) (int *))
-{
- /* ALIGN is the known alignment for the insn group. */
- unsigned int align;
- /* OFS is the offset of the current insn in the insn group. */
- int ofs;
- int prev_in_use, in_use, len, ldgp;
- rtx i, next;
-
- /* Let shorten branches care for assigning alignments to code labels. */
- shorten_branches (get_insns ());
-
- if (align_functions < 4)
- align = 4;
- else if ((unsigned int) align_functions < max_align)
- align = align_functions;
- else
- align = max_align;
-
- ofs = prev_in_use = 0;
- i = get_insns ();
- if (NOTE_P (i))
- i = next_nonnote_insn (i);
-
- ldgp = alpha_function_needs_gp ? 8 : 0;
-
- while (i)
- {
- next = (*next_group) (i, &in_use, &len);
-
- /* When we see a label, resync alignment etc. */
- if (LABEL_P (i))
- {
- unsigned int new_align = 1 << label_to_alignment (i);
-
- if (new_align >= align)
- {
- align = new_align < max_align ? new_align : max_align;
- ofs = 0;
- }
-
- else if (ofs & (new_align-1))
- ofs = (ofs | (new_align-1)) + 1;
- gcc_assert (!len);
- }
-
- /* Handle complex instructions special. */
- else if (in_use == 0)
- {
- /* Asms will have length < 0. This is a signal that we have
- lost alignment knowledge. Assume, however, that the asm
- will not mis-align instructions. */
- if (len < 0)
- {
- ofs = 0;
- align = 4;
- len = 0;
- }
- }
-
- /* If the known alignment is smaller than the recognized insn group,
- realign the output. */
- else if ((int) align < len)
- {
- unsigned int new_log_align = len > 8 ? 4 : 3;
- rtx prev, where;
-
- where = prev = prev_nonnote_insn (i);
- if (!where || !LABEL_P (where))
- where = i;
-
- /* Can't realign between a call and its gp reload. */
- if (! (TARGET_EXPLICIT_RELOCS
- && prev && CALL_P (prev)))
- {
- emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
- align = 1 << new_log_align;
- ofs = 0;
- }
- }
-
- /* We may not insert padding inside the initial ldgp sequence. */
- else if (ldgp > 0)
- ldgp -= len;
-
- /* If the group won't fit in the same INT16 as the previous,
- we need to add padding to keep the group together. Rather
- than simply leaving the insn filling to the assembler, we
- can make use of the knowledge of what sorts of instructions
- were issued in the previous group to make sure that all of
- the added nops are really free. */
- else if (ofs + len > (int) align)
- {
- int nop_count = (align - ofs) / 4;
- rtx where;
-
- /* Insert nops before labels, branches, and calls to truly merge
- the execution of the nops with the previous instruction group. */
- where = prev_nonnote_insn (i);
- if (where)
- {
- if (LABEL_P (where))
- {
- rtx where2 = prev_nonnote_insn (where);
- if (where2 && JUMP_P (where2))
- where = where2;
- }
- else if (NONJUMP_INSN_P (where))
- where = i;
- }
- else
- where = i;
-
- do
- emit_insn_before ((*next_nop)(&prev_in_use), where);
- while (--nop_count);
- ofs = 0;
- }
-
- ofs = (ofs + len) & (align - 1);
- prev_in_use = in_use;
- i = next;
- }
-}
-
-/* Insert an unop between sibcall or noreturn function call and GP load. */
-
-static void
-alpha_pad_function_end (void)
-{
- rtx insn, next;
-
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- {
- if (!CALL_P (insn)
- || !(SIBLING_CALL_P (insn)
- || find_reg_note (insn, REG_NORETURN, NULL_RTX)))
- continue;
-
- /* Make sure we do not split a call and its corresponding
- CALL_ARG_LOCATION note. */
- next = NEXT_INSN (insn);
- if (next == NULL)
- continue;
- if (BARRIER_P (next))
- {
- next = NEXT_INSN (next);
- if (next == NULL)
- continue;
- }
- if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
- insn = next;
-
- next = next_active_insn (insn);
- if (next)
- {
- rtx pat = PATTERN (next);
-
- if (GET_CODE (pat) == SET
- && GET_CODE (SET_SRC (pat)) == UNSPEC_VOLATILE
- && XINT (SET_SRC (pat), 1) == UNSPECV_LDGP1)
- emit_insn_after (gen_unop (), insn);
- }
- }
-}
-
-/* Machine dependent reorg pass. */
-
-static void
-alpha_reorg (void)
-{
- /* Workaround for a linker error that triggers when an exception
- handler immediatelly follows a sibcall or a noreturn function.
-
-In the sibcall case:
-
- The instruction stream from an object file:
-
- 1d8: 00 00 fb 6b jmp (t12)
- 1dc: 00 00 ba 27 ldah gp,0(ra)
- 1e0: 00 00 bd 23 lda gp,0(gp)
- 1e4: 00 00 7d a7 ldq t12,0(gp)
- 1e8: 00 40 5b 6b jsr ra,(t12),1ec <__funcZ+0x1ec>
-
- was converted in the final link pass to:
-
- 12003aa88: 67 fa ff c3 br 120039428 <...>
- 12003aa8c: 00 00 fe 2f unop
- 12003aa90: 00 00 fe 2f unop
- 12003aa94: 48 83 7d a7 ldq t12,-31928(gp)
- 12003aa98: 00 40 5b 6b jsr ra,(t12),12003aa9c <__func+0x1ec>
-
-And in the noreturn case:
-
- The instruction stream from an object file:
-
- 54: 00 40 5b 6b jsr ra,(t12),58 <__func+0x58>
- 58: 00 00 ba 27 ldah gp,0(ra)
- 5c: 00 00 bd 23 lda gp,0(gp)
- 60: 00 00 7d a7 ldq t12,0(gp)
- 64: 00 40 5b 6b jsr ra,(t12),68 <__func+0x68>
-
- was converted in the final link pass to:
-
- fdb24: a0 03 40 d3 bsr ra,fe9a8 <_called_func+0x8>
- fdb28: 00 00 fe 2f unop
- fdb2c: 00 00 fe 2f unop
- fdb30: 30 82 7d a7 ldq t12,-32208(gp)
- fdb34: 00 40 5b 6b jsr ra,(t12),fdb38 <__func+0x68>
-
- GP load instructions were wrongly cleared by the linker relaxation
- pass. This workaround prevents removal of GP loads by inserting
- an unop instruction between a sibcall or noreturn function call and
- exception handler prologue. */
-
- if (current_function_has_exception_handlers ())
- alpha_pad_function_end ();
-
- if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
- alpha_handle_trap_shadows ();
-
- /* Due to the number of extra trapb insns, don't bother fixing up
- alignment when trap precision is instruction. Moreover, we can
- only do our job when sched2 is run. */
- if (optimize && !optimize_size
- && alpha_tp != ALPHA_TP_INSN
- && flag_schedule_insns_after_reload)
- {
- if (alpha_tune == PROCESSOR_EV4)
- alpha_align_insns (8, alphaev4_next_group, alphaev4_next_nop);
- else if (alpha_tune == PROCESSOR_EV5)
- alpha_align_insns (16, alphaev5_next_group, alphaev5_next_nop);
- }
-}
-
-static void
-alpha_file_start (void)
-{
- default_file_start ();
-
- fputs ("\t.set noreorder\n", asm_out_file);
- fputs ("\t.set volatile\n", asm_out_file);
- if (TARGET_ABI_OSF)
- fputs ("\t.set noat\n", asm_out_file);
- if (TARGET_EXPLICIT_RELOCS)
- fputs ("\t.set nomacro\n", asm_out_file);
- if (TARGET_SUPPORT_ARCH | TARGET_BWX | TARGET_MAX | TARGET_FIX | TARGET_CIX)
- {
- const char *arch;
-
- if (alpha_cpu == PROCESSOR_EV6 || TARGET_FIX || TARGET_CIX)
- arch = "ev6";
- else if (TARGET_MAX)
- arch = "pca56";
- else if (TARGET_BWX)
- arch = "ev56";
- else if (alpha_cpu == PROCESSOR_EV5)
- arch = "ev5";
- else
- arch = "ev4";
-
- fprintf (asm_out_file, "\t.arch %s\n", arch);
- }
-}
-
-/* Since we don't have a .dynbss section, we should not allow global
- relocations in the .rodata section. */
-
-static int
-alpha_elf_reloc_rw_mask (void)
-{
- return flag_pic ? 3 : 2;
-}
-
-/* Return a section for X. The only special thing we do here is to
- honor small data. */
-
-static section *
-alpha_elf_select_rtx_section (enum machine_mode mode, rtx x,
- unsigned HOST_WIDE_INT align)
-{
- if (TARGET_SMALL_DATA && GET_MODE_SIZE (mode) <= g_switch_value)
- /* ??? Consider using mergeable sdata sections. */
- return sdata_section;
- else
- return default_elf_select_rtx_section (mode, x, align);
-}
-
-static unsigned int
-alpha_elf_section_type_flags (tree decl, const char *name, int reloc)
-{
- unsigned int flags = 0;
-
- if (strcmp (name, ".sdata") == 0
- || strncmp (name, ".sdata.", 7) == 0
- || strncmp (name, ".gnu.linkonce.s.", 16) == 0
- || strcmp (name, ".sbss") == 0
- || strncmp (name, ".sbss.", 6) == 0
- || strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
- flags = SECTION_SMALL;
-
- flags |= default_section_type_flags (decl, name, reloc);
- return flags;
-}
-
-/* Structure to collect function names for final output in link section. */
-/* Note that items marked with GTY can't be ifdef'ed out. */
-
-enum reloc_kind
-{
- KIND_LINKAGE,
- KIND_CODEADDR
-};
-
-struct GTY(()) alpha_links
-{
- rtx func;
- rtx linkage;
- enum reloc_kind rkind;
-};
-
-#if TARGET_ABI_OPEN_VMS
-
-/* Return the VMS argument type corresponding to MODE. */
-
-enum avms_arg_type
-alpha_arg_type (enum machine_mode mode)
-{
- switch (mode)
- {
- case SFmode:
- return TARGET_FLOAT_VAX ? FF : FS;
- case DFmode:
- return TARGET_FLOAT_VAX ? FD : FT;
- default:
- return I64;
- }
-}
-
-/* Return an rtx for an integer representing the VMS Argument Information
- register value. */
-
-rtx
-alpha_arg_info_reg_val (CUMULATIVE_ARGS cum)
-{
- unsigned HOST_WIDE_INT regval = cum.num_args;
- int i;
-
- for (i = 0; i < 6; i++)
- regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
-
- return GEN_INT (regval);
-}
-
-
-/* Return a SYMBOL_REF representing the reference to the .linkage entry
- of function FUNC built for calls made from CFUNDECL. LFLAG is 1 if
- this is the reference to the linkage pointer value, 0 if this is the
- reference to the function entry value. RFLAG is 1 if this a reduced
- reference (code address only), 0 if this is a full reference. */
-
-rtx
-alpha_use_linkage (rtx func, bool lflag, bool rflag)
-{
- struct alpha_links *al = NULL;
- const char *name = XSTR (func, 0);
-
- if (cfun->machine->links)
- {
- splay_tree_node lnode;
-
- /* Is this name already defined? */
- lnode = splay_tree_lookup (cfun->machine->links, (splay_tree_key) name);
- if (lnode)
- al = (struct alpha_links *) lnode->value;
- }
- else
- cfun->machine->links = splay_tree_new_ggc
- ((splay_tree_compare_fn) strcmp,
- ggc_alloc_splay_tree_str_alpha_links_splay_tree_s,
- ggc_alloc_splay_tree_str_alpha_links_splay_tree_node_s);
-
- if (al == NULL)
- {
- size_t buf_len;
- char *linksym;
- tree id;
-
- if (name[0] == '*')
- name++;
-
- /* Follow transparent alias, as this is used for CRTL translations. */
- id = maybe_get_identifier (name);
- if (id)
- {
- while (IDENTIFIER_TRANSPARENT_ALIAS (id))
- id = TREE_CHAIN (id);
- name = IDENTIFIER_POINTER (id);
- }
-
- buf_len = strlen (name) + 8 + 9;
- linksym = (char *) alloca (buf_len);
- snprintf (linksym, buf_len, "$%d..%s..lk", cfun->funcdef_no, name);
-
- al = ggc_alloc_alpha_links ();
- al->func = func;
- al->linkage = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (linksym));
-
- splay_tree_insert (cfun->machine->links,
- (splay_tree_key) ggc_strdup (name),
- (splay_tree_value) al);
- }
-
- al->rkind = rflag ? KIND_CODEADDR : KIND_LINKAGE;
-
- if (lflag)
- return gen_rtx_MEM (Pmode, plus_constant (Pmode, al->linkage, 8));
- else
- return al->linkage;
-}
-
-static int
-alpha_write_one_linkage (splay_tree_node node, void *data)
-{
- const char *const name = (const char *) node->key;
- struct alpha_links *link = (struct alpha_links *) node->value;
- FILE *stream = (FILE *) data;
-
- ASM_OUTPUT_INTERNAL_LABEL (stream, XSTR (link->linkage, 0));
- if (link->rkind == KIND_CODEADDR)
- {
- /* External and used, request code address. */
- fprintf (stream, "\t.code_address ");
- }
- else
- {
- if (!SYMBOL_REF_EXTERNAL_P (link->func)
- && SYMBOL_REF_LOCAL_P (link->func))
- {
- /* Locally defined, build linkage pair. */
- fprintf (stream, "\t.quad %s..en\n", name);
- fprintf (stream, "\t.quad ");
- }
- else
- {
- /* External, request linkage pair. */
- fprintf (stream, "\t.linkage ");
- }
- }
- assemble_name (stream, name);
- fputs ("\n", stream);
-
- return 0;
-}
-
-static void
-alpha_write_linkage (FILE *stream, const char *funname)
-{
- fprintf (stream, "\t.link\n");
- fprintf (stream, "\t.align 3\n");
- in_section = NULL;
-
-#ifdef TARGET_VMS_CRASH_DEBUG
- fputs ("\t.name ", stream);
- assemble_name (stream, funname);
- fputs ("..na\n", stream);
-#endif
-
- ASM_OUTPUT_LABEL (stream, funname);
- fprintf (stream, "\t.pdesc ");
- assemble_name (stream, funname);
- fprintf (stream, "..en,%s\n",
- alpha_procedure_type == PT_STACK ? "stack"
- : alpha_procedure_type == PT_REGISTER ? "reg" : "null");
-
- if (cfun->machine->links)
- {
- splay_tree_foreach (cfun->machine->links, alpha_write_one_linkage, stream);
- /* splay_tree_delete (func->links); */
- }
-}
-
-/* Switch to an arbitrary section NAME with attributes as specified
- by FLAGS. ALIGN specifies any known alignment requirements for
- the section; 0 if the default should be used. */
-
-static void
-vms_asm_named_section (const char *name, unsigned int flags,
- tree decl ATTRIBUTE_UNUSED)
-{
- fputc ('\n', asm_out_file);
- fprintf (asm_out_file, ".section\t%s", name);
-
- if (flags & SECTION_DEBUG)
- fprintf (asm_out_file, ",NOWRT");
-
- fputc ('\n', asm_out_file);
-}
-
-/* Record an element in the table of global constructors. SYMBOL is
- a SYMBOL_REF of the function to be called; PRIORITY is a number
- between 0 and MAX_INIT_PRIORITY.
-
- Differs from default_ctors_section_asm_out_constructor in that the
- width of the .ctors entry is always 64 bits, rather than the 32 bits
- used by a normal pointer. */
-
-static void
-vms_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
-{
- switch_to_section (ctors_section);
- assemble_align (BITS_PER_WORD);
- assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
-}
-
-static void
-vms_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
-{
- switch_to_section (dtors_section);
- assemble_align (BITS_PER_WORD);
- assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
-}
-#else
-rtx
-alpha_use_linkage (rtx func ATTRIBUTE_UNUSED,
- bool lflag ATTRIBUTE_UNUSED,
- bool rflag ATTRIBUTE_UNUSED)
-{
- return NULL_RTX;
-}
-
-#endif /* TARGET_ABI_OPEN_VMS */
-
-static void
-alpha_init_libfuncs (void)
-{
- if (TARGET_ABI_OPEN_VMS)
- {
- /* Use the VMS runtime library functions for division and
- remainder. */
- set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
- set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
- set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
- set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
- set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
- set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
- set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
- set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
- abort_libfunc = init_one_libfunc ("decc$abort");
- memcmp_libfunc = init_one_libfunc ("decc$memcmp");
-#ifdef MEM_LIBFUNCS_INIT
- MEM_LIBFUNCS_INIT;
-#endif
- }
-}
-
-/* On the Alpha, we use this to disable the floating-point registers
- when they don't exist. */
-
-static void
-alpha_conditional_register_usage (void)
-{
- int i;
- if (! TARGET_FPREGS)
- for (i = 32; i < 63; i++)
- fixed_regs[i] = call_used_regs[i] = 1;
-}
-
-/* Canonicalize a comparison from one we don't have to one we do have. */
-
-static void
-alpha_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
- bool op0_preserve_value)
-{
- if (!op0_preserve_value
- && (*code == GE || *code == GT || *code == GEU || *code == GTU)
- && (REG_P (*op1) || *op1 == const0_rtx))
- {
- rtx tem = *op0;
- *op0 = *op1;
- *op1 = tem;
- *code = (int)swap_condition ((enum rtx_code)*code);
- }
-
- if ((*code == LT || *code == LTU)
- && CONST_INT_P (*op1) && INTVAL (*op1) == 256)
- {
- *code = *code == LT ? LE : LEU;
- *op1 = GEN_INT (255);
- }
-}
-
-/* Initialize the GCC target structure. */
-#if TARGET_ABI_OPEN_VMS
-# undef TARGET_ATTRIBUTE_TABLE
-# define TARGET_ATTRIBUTE_TABLE vms_attribute_table
-# undef TARGET_CAN_ELIMINATE
-# define TARGET_CAN_ELIMINATE alpha_vms_can_eliminate
-#endif
-
-#undef TARGET_IN_SMALL_DATA_P
-#define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p
-
-#undef TARGET_ASM_ALIGNED_HI_OP
-#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
-#undef TARGET_ASM_ALIGNED_DI_OP
-#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
-
-/* Default unaligned ops are provided for ELF systems. To get unaligned
- data for non-ELF systems, we have to turn off auto alignment. */
-#if TARGET_ABI_OPEN_VMS
-#undef TARGET_ASM_UNALIGNED_HI_OP
-#define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t"
-#undef TARGET_ASM_UNALIGNED_SI_OP
-#define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t"
-#undef TARGET_ASM_UNALIGNED_DI_OP
-#define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t"
-#endif
-
-#undef TARGET_ASM_RELOC_RW_MASK
-#define TARGET_ASM_RELOC_RW_MASK alpha_elf_reloc_rw_mask
-#undef TARGET_ASM_SELECT_RTX_SECTION
-#define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section
-#undef TARGET_SECTION_TYPE_FLAGS
-#define TARGET_SECTION_TYPE_FLAGS alpha_elf_section_type_flags
-
-#undef TARGET_ASM_FUNCTION_END_PROLOGUE
-#define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue
-
-#undef TARGET_INIT_LIBFUNCS
-#define TARGET_INIT_LIBFUNCS alpha_init_libfuncs
-
-#undef TARGET_LEGITIMIZE_ADDRESS
-#define TARGET_LEGITIMIZE_ADDRESS alpha_legitimize_address
-#undef TARGET_MODE_DEPENDENT_ADDRESS_P
-#define TARGET_MODE_DEPENDENT_ADDRESS_P alpha_mode_dependent_address_p
-
-#undef TARGET_ASM_FILE_START
-#define TARGET_ASM_FILE_START alpha_file_start
-
-#undef TARGET_SCHED_ADJUST_COST
-#define TARGET_SCHED_ADJUST_COST alpha_adjust_cost
-#undef TARGET_SCHED_ISSUE_RATE
-#define TARGET_SCHED_ISSUE_RATE alpha_issue_rate
-#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
-#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
- alpha_multipass_dfa_lookahead
-
-#undef TARGET_HAVE_TLS
-#define TARGET_HAVE_TLS HAVE_AS_TLS
-
-#undef TARGET_BUILTIN_DECL
-#define TARGET_BUILTIN_DECL alpha_builtin_decl
-#undef TARGET_INIT_BUILTINS
-#define TARGET_INIT_BUILTINS alpha_init_builtins
-#undef TARGET_EXPAND_BUILTIN
-#define TARGET_EXPAND_BUILTIN alpha_expand_builtin
-#undef TARGET_FOLD_BUILTIN
-#define TARGET_FOLD_BUILTIN alpha_fold_builtin
-
-#undef TARGET_FUNCTION_OK_FOR_SIBCALL
-#define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall
-#undef TARGET_CANNOT_COPY_INSN_P
-#define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p
-#undef TARGET_LEGITIMATE_CONSTANT_P
-#define TARGET_LEGITIMATE_CONSTANT_P alpha_legitimate_constant_p
-#undef TARGET_CANNOT_FORCE_CONST_MEM
-#define TARGET_CANNOT_FORCE_CONST_MEM alpha_cannot_force_const_mem
-
-#if TARGET_ABI_OSF
-#undef TARGET_ASM_OUTPUT_MI_THUNK
-#define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf
-#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
-#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
-#undef TARGET_STDARG_OPTIMIZE_HOOK
-#define TARGET_STDARG_OPTIMIZE_HOOK alpha_stdarg_optimize_hook
-#endif
-
-/* Use 16-bits anchor. */
-#undef TARGET_MIN_ANCHOR_OFFSET
-#define TARGET_MIN_ANCHOR_OFFSET -0x7fff - 1
-#undef TARGET_MAX_ANCHOR_OFFSET
-#define TARGET_MAX_ANCHOR_OFFSET 0x7fff
-#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
-#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
-
-#undef TARGET_RTX_COSTS
-#define TARGET_RTX_COSTS alpha_rtx_costs
-#undef TARGET_ADDRESS_COST
-#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
-
-#undef TARGET_MACHINE_DEPENDENT_REORG
-#define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg
-
-#undef TARGET_PROMOTE_FUNCTION_MODE
-#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
-#undef TARGET_PROMOTE_PROTOTYPES
-#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_false
-#undef TARGET_RETURN_IN_MEMORY
-#define TARGET_RETURN_IN_MEMORY alpha_return_in_memory
-#undef TARGET_PASS_BY_REFERENCE
-#define TARGET_PASS_BY_REFERENCE alpha_pass_by_reference
-#undef TARGET_SETUP_INCOMING_VARARGS
-#define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs
-#undef TARGET_STRICT_ARGUMENT_NAMING
-#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
-#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
-#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
-#undef TARGET_SPLIT_COMPLEX_ARG
-#define TARGET_SPLIT_COMPLEX_ARG alpha_split_complex_arg
-#undef TARGET_GIMPLIFY_VA_ARG_EXPR
-#define TARGET_GIMPLIFY_VA_ARG_EXPR alpha_gimplify_va_arg
-#undef TARGET_ARG_PARTIAL_BYTES
-#define TARGET_ARG_PARTIAL_BYTES alpha_arg_partial_bytes
-#undef TARGET_FUNCTION_ARG
-#define TARGET_FUNCTION_ARG alpha_function_arg
-#undef TARGET_FUNCTION_ARG_ADVANCE
-#define TARGET_FUNCTION_ARG_ADVANCE alpha_function_arg_advance
-#undef TARGET_TRAMPOLINE_INIT
-#define TARGET_TRAMPOLINE_INIT alpha_trampoline_init
-
-#undef TARGET_INSTANTIATE_DECLS
-#define TARGET_INSTANTIATE_DECLS alpha_instantiate_decls
-
-#undef TARGET_SECONDARY_RELOAD
-#define TARGET_SECONDARY_RELOAD alpha_secondary_reload
-
-#undef TARGET_SCALAR_MODE_SUPPORTED_P
-#define TARGET_SCALAR_MODE_SUPPORTED_P alpha_scalar_mode_supported_p
-#undef TARGET_VECTOR_MODE_SUPPORTED_P
-#define TARGET_VECTOR_MODE_SUPPORTED_P alpha_vector_mode_supported_p
-
-#undef TARGET_BUILD_BUILTIN_VA_LIST
-#define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list
-
-#undef TARGET_EXPAND_BUILTIN_VA_START
-#define TARGET_EXPAND_BUILTIN_VA_START alpha_va_start
-
-/* The Alpha architecture does not require sequential consistency. See
- http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
- for an example of how it can be violated in practice. */
-#undef TARGET_RELAXED_ORDERING
-#define TARGET_RELAXED_ORDERING true
-
-#undef TARGET_OPTION_OVERRIDE
-#define TARGET_OPTION_OVERRIDE alpha_option_override
-
-#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
-#undef TARGET_MANGLE_TYPE
-#define TARGET_MANGLE_TYPE alpha_mangle_type
-#endif
-
-#undef TARGET_LEGITIMATE_ADDRESS_P
-#define TARGET_LEGITIMATE_ADDRESS_P alpha_legitimate_address_p
-
-#undef TARGET_CONDITIONAL_REGISTER_USAGE
-#define TARGET_CONDITIONAL_REGISTER_USAGE alpha_conditional_register_usage
-
-#undef TARGET_CANONICALIZE_COMPARISON
-#define TARGET_CANONICALIZE_COMPARISON alpha_canonicalize_comparison
-
-struct gcc_target targetm = TARGET_INITIALIZER;
-
-
-#include "gt-alpha.h"