aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/sem_ch5.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/sem_ch5.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/sem_ch5.adb2027
1 files changed, 0 insertions, 2027 deletions
diff --git a/gcc-4.2.1/gcc/ada/sem_ch5.adb b/gcc-4.2.1/gcc/ada/sem_ch5.adb
deleted file mode 100644
index 241b838eb..000000000
--- a/gcc-4.2.1/gcc/ada/sem_ch5.adb
+++ /dev/null
@@ -1,2027 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M _ C H 5 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 2, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING. If not, write --
--- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
--- Boston, MA 02110-1301, USA. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Expander; use Expander;
-with Exp_Util; use Exp_Util;
-with Freeze; use Freeze;
-with Lib.Xref; use Lib.Xref;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Sem; use Sem;
-with Sem_Case; use Sem_Case;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Disp; use Sem_Disp;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Sem_Warn; use Sem_Warn;
-with Stand; use Stand;
-with Sinfo; use Sinfo;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Uintp; use Uintp;
-
-package body Sem_Ch5 is
-
- Unblocked_Exit_Count : Nat := 0;
- -- This variable is used when processing if statements, case statements,
- -- and block statements. It counts the number of exit points that are
- -- not blocked by unconditional transfer instructions (for IF and CASE,
- -- these are the branches of the conditional, for a block, they are the
- -- statement sequence of the block, and the statement sequences of any
- -- exception handlers that are part of the block. When processing is
- -- complete, if this count is zero, it means that control cannot fall
- -- through the IF, CASE or block statement. This is used for the
- -- generation of warning messages. This variable is recursively saved
- -- on entry to processing the construct, and restored on exit.
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Analyze_Iteration_Scheme (N : Node_Id);
-
- ------------------------
- -- Analyze_Assignment --
- ------------------------
-
- procedure Analyze_Assignment (N : Node_Id) is
- Lhs : constant Node_Id := Name (N);
- Rhs : constant Node_Id := Expression (N);
- T1 : Entity_Id;
- T2 : Entity_Id;
- Decl : Node_Id;
-
- procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
- -- N is the node for the left hand side of an assignment, and it
- -- is not a variable. This routine issues an appropriate diagnostic.
-
- procedure Kill_Lhs;
- -- This is called to kill current value settings of a simple variable
- -- on the left hand side. We call it if we find any error in analyzing
- -- the assignment, and at the end of processing before setting any new
- -- current values in place.
-
- procedure Set_Assignment_Type
- (Opnd : Node_Id;
- Opnd_Type : in out Entity_Id);
- -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
- -- is the nominal subtype. This procedure is used to deal with cases
- -- where the nominal subtype must be replaced by the actual subtype.
-
- -------------------------------
- -- Diagnose_Non_Variable_Lhs --
- -------------------------------
-
- procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
- begin
- -- Not worth posting another error if left hand side already
- -- flagged as being illegal in some respect
-
- if Error_Posted (N) then
- return;
-
- -- Some special bad cases of entity names
-
- elsif Is_Entity_Name (N) then
- if Ekind (Entity (N)) = E_In_Parameter then
- Error_Msg_N
- ("assignment to IN mode parameter not allowed", N);
-
- -- Private declarations in a protected object are turned into
- -- constants when compiling a protected function.
-
- elsif Present (Scope (Entity (N)))
- and then Is_Protected_Type (Scope (Entity (N)))
- and then
- (Ekind (Current_Scope) = E_Function
- or else
- Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
- then
- Error_Msg_N
- ("protected function cannot modify protected object", N);
-
- elsif Ekind (Entity (N)) = E_Loop_Parameter then
- Error_Msg_N
- ("assignment to loop parameter not allowed", N);
-
- else
- Error_Msg_N
- ("left hand side of assignment must be a variable", N);
- end if;
-
- -- For indexed components or selected components, test prefix
-
- elsif Nkind (N) = N_Indexed_Component then
- Diagnose_Non_Variable_Lhs (Prefix (N));
-
- -- Another special case for assignment to discriminant
-
- elsif Nkind (N) = N_Selected_Component then
- if Present (Entity (Selector_Name (N)))
- and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
- then
- Error_Msg_N
- ("assignment to discriminant not allowed", N);
- else
- Diagnose_Non_Variable_Lhs (Prefix (N));
- end if;
-
- else
- -- If we fall through, we have no special message to issue!
-
- Error_Msg_N ("left hand side of assignment must be a variable", N);
- end if;
- end Diagnose_Non_Variable_Lhs;
-
- --------------
- -- Kill_LHS --
- --------------
-
- procedure Kill_Lhs is
- begin
- if Is_Entity_Name (Lhs) then
- declare
- Ent : constant Entity_Id := Entity (Lhs);
- begin
- if Present (Ent) then
- Kill_Current_Values (Ent);
- end if;
- end;
- end if;
- end Kill_Lhs;
-
- -------------------------
- -- Set_Assignment_Type --
- -------------------------
-
- procedure Set_Assignment_Type
- (Opnd : Node_Id;
- Opnd_Type : in out Entity_Id)
- is
- begin
- Require_Entity (Opnd);
-
- -- If the assignment operand is an in-out or out parameter, then we
- -- get the actual subtype (needed for the unconstrained case).
- -- If the operand is the actual in an entry declaration, then within
- -- the accept statement it is replaced with a local renaming, which
- -- may also have an actual subtype.
-
- if Is_Entity_Name (Opnd)
- and then (Ekind (Entity (Opnd)) = E_Out_Parameter
- or else Ekind (Entity (Opnd)) =
- E_In_Out_Parameter
- or else Ekind (Entity (Opnd)) =
- E_Generic_In_Out_Parameter
- or else
- (Ekind (Entity (Opnd)) = E_Variable
- and then Nkind (Parent (Entity (Opnd))) =
- N_Object_Renaming_Declaration
- and then Nkind (Parent (Parent (Entity (Opnd)))) =
- N_Accept_Statement))
- then
- Opnd_Type := Get_Actual_Subtype (Opnd);
-
- -- If assignment operand is a component reference, then we get the
- -- actual subtype of the component for the unconstrained case.
-
- elsif
- (Nkind (Opnd) = N_Selected_Component
- or else Nkind (Opnd) = N_Explicit_Dereference)
- and then not Is_Unchecked_Union (Opnd_Type)
- then
- Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
-
- if Present (Decl) then
- Insert_Action (N, Decl);
- Mark_Rewrite_Insertion (Decl);
- Analyze (Decl);
- Opnd_Type := Defining_Identifier (Decl);
- Set_Etype (Opnd, Opnd_Type);
- Freeze_Itype (Opnd_Type, N);
-
- elsif Is_Constrained (Etype (Opnd)) then
- Opnd_Type := Etype (Opnd);
- end if;
-
- -- For slice, use the constrained subtype created for the slice
-
- elsif Nkind (Opnd) = N_Slice then
- Opnd_Type := Etype (Opnd);
- end if;
- end Set_Assignment_Type;
-
- -- Start of processing for Analyze_Assignment
-
- begin
- Analyze (Rhs);
- Analyze (Lhs);
-
- -- Start type analysis for assignment
-
- T1 := Etype (Lhs);
-
- -- In the most general case, both Lhs and Rhs can be overloaded, and we
- -- must compute the intersection of the possible types on each side.
-
- if Is_Overloaded (Lhs) then
- declare
- I : Interp_Index;
- It : Interp;
-
- begin
- T1 := Any_Type;
- Get_First_Interp (Lhs, I, It);
-
- while Present (It.Typ) loop
- if Has_Compatible_Type (Rhs, It.Typ) then
- if T1 /= Any_Type then
-
- -- An explicit dereference is overloaded if the prefix
- -- is. Try to remove the ambiguity on the prefix, the
- -- error will be posted there if the ambiguity is real.
-
- if Nkind (Lhs) = N_Explicit_Dereference then
- declare
- PI : Interp_Index;
- PI1 : Interp_Index := 0;
- PIt : Interp;
- Found : Boolean;
-
- begin
- Found := False;
- Get_First_Interp (Prefix (Lhs), PI, PIt);
-
- while Present (PIt.Typ) loop
- if Is_Access_Type (PIt.Typ)
- and then Has_Compatible_Type
- (Rhs, Designated_Type (PIt.Typ))
- then
- if Found then
- PIt :=
- Disambiguate (Prefix (Lhs),
- PI1, PI, Any_Type);
-
- if PIt = No_Interp then
- Error_Msg_N
- ("ambiguous left-hand side"
- & " in assignment", Lhs);
- exit;
- else
- Resolve (Prefix (Lhs), PIt.Typ);
- end if;
-
- exit;
- else
- Found := True;
- PI1 := PI;
- end if;
- end if;
-
- Get_Next_Interp (PI, PIt);
- end loop;
- end;
-
- else
- Error_Msg_N
- ("ambiguous left-hand side in assignment", Lhs);
- exit;
- end if;
- else
- T1 := It.Typ;
- end if;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end;
-
- if T1 = Any_Type then
- Error_Msg_N
- ("no valid types for left-hand side for assignment", Lhs);
- Kill_Lhs;
- return;
- end if;
- end if;
-
- Resolve (Lhs, T1);
-
- if not Is_Variable (Lhs) then
- Diagnose_Non_Variable_Lhs (Lhs);
- return;
-
- elsif Is_Limited_Type (T1)
- and then not Assignment_OK (Lhs)
- and then not Assignment_OK (Original_Node (Lhs))
- then
- Error_Msg_N
- ("left hand of assignment must not be limited type", Lhs);
- Explain_Limited_Type (T1, Lhs);
- return;
- end if;
-
- -- Resolution may have updated the subtype, in case the left-hand
- -- side is a private protected component. Use the correct subtype
- -- to avoid scoping issues in the back-end.
-
- T1 := Etype (Lhs);
-
- -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
- -- type. For example:
-
- -- limited with P;
- -- package Pkg is
- -- type Acc is access P.T;
- -- end Pkg;
-
- -- with Pkg; use Acc;
- -- procedure Example is
- -- A, B : Acc;
- -- begin
- -- A.all := B.all; -- ERROR
- -- end Example;
-
- if Nkind (Lhs) = N_Explicit_Dereference
- and then Ekind (T1) = E_Incomplete_Type
- then
- Error_Msg_N ("invalid use of incomplete type", Lhs);
- Kill_Lhs;
- return;
- end if;
-
- Set_Assignment_Type (Lhs, T1);
-
- Resolve (Rhs, T1);
- Check_Unset_Reference (Rhs);
-
- -- Remaining steps are skipped if Rhs was syntactically in error
-
- if Rhs = Error then
- Kill_Lhs;
- return;
- end if;
-
- T2 := Etype (Rhs);
-
- if not Covers (T1, T2) then
- Wrong_Type (Rhs, Etype (Lhs));
- Kill_Lhs;
- return;
- end if;
-
- -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
- -- types, use the non-limited view if available
-
- if Nkind (Rhs) = N_Explicit_Dereference
- and then Ekind (T2) = E_Incomplete_Type
- and then Is_Tagged_Type (T2)
- and then Present (Non_Limited_View (T2))
- then
- T2 := Non_Limited_View (T2);
- end if;
-
- Set_Assignment_Type (Rhs, T2);
-
- if Total_Errors_Detected /= 0 then
- if No (T1) then
- T1 := Any_Type;
- end if;
-
- if No (T2) then
- T2 := Any_Type;
- end if;
- end if;
-
- if T1 = Any_Type or else T2 = Any_Type then
- Kill_Lhs;
- return;
- end if;
-
- if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
- and then not Is_Class_Wide_Type (T1)
- then
- Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
-
- elsif Is_Class_Wide_Type (T1)
- and then not Is_Class_Wide_Type (T2)
- and then not Is_Tag_Indeterminate (Rhs)
- and then not Is_Dynamically_Tagged (Rhs)
- then
- Error_Msg_N ("dynamically tagged expression required!", Rhs);
- end if;
-
- -- Propagate the tag from a class-wide target to the rhs when the rhs
- -- is a tag-indeterminate call.
-
- if Is_Class_Wide_Type (T1)
- and then Is_Tag_Indeterminate (Rhs)
- then
- Propagate_Tag (Lhs, Rhs);
- end if;
-
- -- Ada 2005 (AI-230 and AI-385): When the lhs type is an anonymous
- -- access type, apply an implicit conversion of the rhs to that type
- -- to force appropriate static and run-time accessibility checks.
-
- if Ada_Version >= Ada_05
- and then Ekind (T1) = E_Anonymous_Access_Type
- then
- Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
- Analyze_And_Resolve (Rhs, T1);
- end if;
-
- -- Ada 2005 (AI-231)
-
- if Ada_Version >= Ada_05
- and then Can_Never_Be_Null (T1)
- and then not Assignment_OK (Lhs)
- then
- if Nkind (Rhs) = N_Null then
- Apply_Compile_Time_Constraint_Error
- (N => Rhs,
- Msg => "(Ada 2005) NULL not allowed in null-excluding objects?",
- Reason => CE_Null_Not_Allowed);
- return;
-
- elsif not Can_Never_Be_Null (T2) then
- Rewrite (Rhs,
- Convert_To (T1, Relocate_Node (Rhs)));
- Analyze_And_Resolve (Rhs, T1);
- end if;
- end if;
-
- if Is_Scalar_Type (T1) then
- Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
-
- -- For array types, verify that lengths match. If the right hand side
- -- if a function call that has been inlined, the assignment has been
- -- rewritten as a block, and the constraint check will be applied to the
- -- assignment within the block.
-
- elsif Is_Array_Type (T1)
- and then
- (Nkind (Rhs) /= N_Type_Conversion
- or else Is_Constrained (Etype (Rhs)))
- and then
- (Nkind (Rhs) /= N_Function_Call
- or else Nkind (N) /= N_Block_Statement)
- then
- -- Assignment verifies that the length of the Lsh and Rhs are equal,
- -- but of course the indices do not have to match. If the right-hand
- -- side is a type conversion to an unconstrained type, a length check
- -- is performed on the expression itself during expansion. In rare
- -- cases, the redundant length check is computed on an index type
- -- with a different representation, triggering incorrect code in
- -- the back end.
-
- Apply_Length_Check (Rhs, Etype (Lhs));
-
- else
- -- Discriminant checks are applied in the course of expansion
-
- null;
- end if;
-
- -- Note: modifications of the Lhs may only be recorded after
- -- checks have been applied.
-
- Note_Possible_Modification (Lhs);
-
- -- ??? a real accessibility check is needed when ???
-
- -- Post warning for useless assignment
-
- if Warn_On_Redundant_Constructs
-
- -- We only warn for source constructs
-
- and then Comes_From_Source (N)
-
- -- Where the entity is the same on both sides
-
- and then Is_Entity_Name (Lhs)
- and then Is_Entity_Name (Original_Node (Rhs))
- and then Entity (Lhs) = Entity (Original_Node (Rhs))
-
- -- But exclude the case where the right side was an operation
- -- that got rewritten (e.g. JUNK + K, where K was known to be
- -- zero). We don't want to warn in such a case, since it is
- -- reasonable to write such expressions especially when K is
- -- defined symbolically in some other package.
-
- and then Nkind (Original_Node (Rhs)) not in N_Op
- then
- Error_Msg_NE
- ("?useless assignment of & to itself", N, Entity (Lhs));
- end if;
-
- -- Check for non-allowed composite assignment
-
- if not Support_Composite_Assign_On_Target
- and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
- and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
- then
- Error_Msg_CRT ("composite assignment", N);
- end if;
-
- -- Final step. If left side is an entity, then we may be able to
- -- reset the current tracked values to new safe values. We only have
- -- something to do if the left side is an entity name, and expansion
- -- has not modified the node into something other than an assignment,
- -- and of course we only capture values if it is safe to do so.
-
- if Is_Entity_Name (Lhs)
- and then Nkind (N) = N_Assignment_Statement
- then
- declare
- Ent : constant Entity_Id := Entity (Lhs);
-
- begin
- if Safe_To_Capture_Value (N, Ent) then
-
- -- If we are assigning an access type and the left side is an
- -- entity, then make sure that the Is_Known_[Non_]Null flags
- -- properly reflect the state of the entity after assignment.
-
- if Is_Access_Type (T1) then
- if Known_Non_Null (Rhs) then
- Set_Is_Known_Non_Null (Ent, True);
-
- elsif Known_Null (Rhs)
- and then not Can_Never_Be_Null (Ent)
- then
- Set_Is_Known_Null (Ent, True);
-
- else
- Set_Is_Known_Null (Ent, False);
-
- if not Can_Never_Be_Null (Ent) then
- Set_Is_Known_Non_Null (Ent, False);
- end if;
- end if;
-
- -- For discrete types, we may be able to set the current value
- -- if the value is known at compile time.
-
- elsif Is_Discrete_Type (T1)
- and then Compile_Time_Known_Value (Rhs)
- then
- Set_Current_Value (Ent, Rhs);
- else
- Set_Current_Value (Ent, Empty);
- end if;
-
- -- If not safe to capture values, kill them
-
- else
- Kill_Lhs;
- end if;
- end;
- end if;
- end Analyze_Assignment;
-
- -----------------------------
- -- Analyze_Block_Statement --
- -----------------------------
-
- procedure Analyze_Block_Statement (N : Node_Id) is
- Decls : constant List_Id := Declarations (N);
- Id : constant Node_Id := Identifier (N);
- HSS : constant Node_Id := Handled_Statement_Sequence (N);
-
- begin
- -- If no handled statement sequence is present, things are really
- -- messed up, and we just return immediately (this is a defence
- -- against previous errors).
-
- if No (HSS) then
- return;
- end if;
-
- -- Normal processing with HSS present
-
- declare
- EH : constant List_Id := Exception_Handlers (HSS);
- Ent : Entity_Id := Empty;
- S : Entity_Id;
-
- Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
- -- Recursively save value of this global, will be restored on exit
-
- begin
- -- Initialize unblocked exit count for statements of begin block
- -- plus one for each excption handler that is present.
-
- Unblocked_Exit_Count := 1;
-
- if Present (EH) then
- Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
- end if;
-
- -- If a label is present analyze it and mark it as referenced
-
- if Present (Id) then
- Analyze (Id);
- Ent := Entity (Id);
-
- -- An error defense. If we have an identifier, but no entity,
- -- then something is wrong. If we have previous errors, then
- -- just remove the identifier and continue, otherwise raise
- -- an exception.
-
- if No (Ent) then
- if Total_Errors_Detected /= 0 then
- Set_Identifier (N, Empty);
- else
- raise Program_Error;
- end if;
-
- else
- Set_Ekind (Ent, E_Block);
- Generate_Reference (Ent, N, ' ');
- Generate_Definition (Ent);
-
- if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
- Set_Label_Construct (Parent (Ent), N);
- end if;
- end if;
- end if;
-
- -- If no entity set, create a label entity
-
- if No (Ent) then
- Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
- Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
- Set_Parent (Ent, N);
- end if;
-
- Set_Etype (Ent, Standard_Void_Type);
- Set_Block_Node (Ent, Identifier (N));
- New_Scope (Ent);
-
- if Present (Decls) then
- Analyze_Declarations (Decls);
- Check_Completion;
- end if;
-
- Analyze (HSS);
- Process_End_Label (HSS, 'e', Ent);
-
- -- If exception handlers are present, then we indicate that
- -- enclosing scopes contain a block with handlers. We only
- -- need to mark non-generic scopes.
-
- if Present (EH) then
- S := Scope (Ent);
- loop
- Set_Has_Nested_Block_With_Handler (S);
- exit when Is_Overloadable (S)
- or else Ekind (S) = E_Package
- or else Is_Generic_Unit (S);
- S := Scope (S);
- end loop;
- end if;
-
- Check_References (Ent);
- End_Scope;
-
- if Unblocked_Exit_Count = 0 then
- Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
- Check_Unreachable_Code (N);
- else
- Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
- end if;
- end;
- end Analyze_Block_Statement;
-
- ----------------------------
- -- Analyze_Case_Statement --
- ----------------------------
-
- procedure Analyze_Case_Statement (N : Node_Id) is
- Exp : Node_Id;
- Exp_Type : Entity_Id;
- Exp_Btype : Entity_Id;
- Last_Choice : Nat;
- Dont_Care : Boolean;
- Others_Present : Boolean;
-
- Statements_Analyzed : Boolean := False;
- -- Set True if at least some statement sequences get analyzed.
- -- If False on exit, means we had a serious error that prevented
- -- full analysis of the case statement, and as a result it is not
- -- a good idea to output warning messages about unreachable code.
-
- Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
- -- Recursively save value of this global, will be restored on exit
-
- procedure Non_Static_Choice_Error (Choice : Node_Id);
- -- Error routine invoked by the generic instantiation below when
- -- the case statment has a non static choice.
-
- procedure Process_Statements (Alternative : Node_Id);
- -- Analyzes all the statements associated to a case alternative.
- -- Needed by the generic instantiation below.
-
- package Case_Choices_Processing is new
- Generic_Choices_Processing
- (Get_Alternatives => Alternatives,
- Get_Choices => Discrete_Choices,
- Process_Empty_Choice => No_OP,
- Process_Non_Static_Choice => Non_Static_Choice_Error,
- Process_Associated_Node => Process_Statements);
- use Case_Choices_Processing;
- -- Instantiation of the generic choice processing package
-
- -----------------------------
- -- Non_Static_Choice_Error --
- -----------------------------
-
- procedure Non_Static_Choice_Error (Choice : Node_Id) is
- begin
- Flag_Non_Static_Expr
- ("choice given in case statement is not static!", Choice);
- end Non_Static_Choice_Error;
-
- ------------------------
- -- Process_Statements --
- ------------------------
-
- procedure Process_Statements (Alternative : Node_Id) is
- Choices : constant List_Id := Discrete_Choices (Alternative);
- Ent : Entity_Id;
-
- begin
- Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
- Statements_Analyzed := True;
-
- -- An interesting optimization. If the case statement expression
- -- is a simple entity, then we can set the current value within
- -- an alternative if the alternative has one possible value.
-
- -- case N is
- -- when 1 => alpha
- -- when 2 | 3 => beta
- -- when others => gamma
-
- -- Here we know that N is initially 1 within alpha, but for beta
- -- and gamma, we do not know anything more about the initial value.
-
- if Is_Entity_Name (Exp) then
- Ent := Entity (Exp);
-
- if Ekind (Ent) = E_Variable
- or else
- Ekind (Ent) = E_In_Out_Parameter
- or else
- Ekind (Ent) = E_Out_Parameter
- then
- if List_Length (Choices) = 1
- and then Nkind (First (Choices)) in N_Subexpr
- and then Compile_Time_Known_Value (First (Choices))
- then
- Set_Current_Value (Entity (Exp), First (Choices));
- end if;
-
- Analyze_Statements (Statements (Alternative));
-
- -- After analyzing the case, set the current value to empty
- -- since we won't know what it is for the next alternative
- -- (unless reset by this same circuit), or after the case.
-
- Set_Current_Value (Entity (Exp), Empty);
- return;
- end if;
- end if;
-
- -- Case where expression is not an entity name of a variable
-
- Analyze_Statements (Statements (Alternative));
- end Process_Statements;
-
- -- Table to record choices. Put after subprograms since we make
- -- a call to Number_Of_Choices to get the right number of entries.
-
- Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
-
- -- Start of processing for Analyze_Case_Statement
-
- begin
- Unblocked_Exit_Count := 0;
- Exp := Expression (N);
- Analyze (Exp);
-
- -- The expression must be of any discrete type. In rare cases, the
- -- expander constructs a case statement whose expression has a private
- -- type whose full view is discrete. This can happen when generating
- -- a stream operation for a variant type after the type is frozen,
- -- when the partial of view of the type of the discriminant is private.
- -- In that case, use the full view to analyze case alternatives.
-
- if not Is_Overloaded (Exp)
- and then not Comes_From_Source (N)
- and then Is_Private_Type (Etype (Exp))
- and then Present (Full_View (Etype (Exp)))
- and then Is_Discrete_Type (Full_View (Etype (Exp)))
- then
- Resolve (Exp, Etype (Exp));
- Exp_Type := Full_View (Etype (Exp));
-
- else
- Analyze_And_Resolve (Exp, Any_Discrete);
- Exp_Type := Etype (Exp);
- end if;
-
- Check_Unset_Reference (Exp);
- Exp_Btype := Base_Type (Exp_Type);
-
- -- The expression must be of a discrete type which must be determinable
- -- independently of the context in which the expression occurs, but
- -- using the fact that the expression must be of a discrete type.
- -- Moreover, the type this expression must not be a character literal
- -- (which is always ambiguous) or, for Ada-83, a generic formal type.
-
- -- If error already reported by Resolve, nothing more to do
-
- if Exp_Btype = Any_Discrete
- or else Exp_Btype = Any_Type
- then
- return;
-
- elsif Exp_Btype = Any_Character then
- Error_Msg_N
- ("character literal as case expression is ambiguous", Exp);
- return;
-
- elsif Ada_Version = Ada_83
- and then (Is_Generic_Type (Exp_Btype)
- or else Is_Generic_Type (Root_Type (Exp_Btype)))
- then
- Error_Msg_N
- ("(Ada 83) case expression cannot be of a generic type", Exp);
- return;
- end if;
-
- -- If the case expression is a formal object of mode in out, then
- -- treat it as having a nonstatic subtype by forcing use of the base
- -- type (which has to get passed to Check_Case_Choices below). Also
- -- use base type when the case expression is parenthesized.
-
- if Paren_Count (Exp) > 0
- or else (Is_Entity_Name (Exp)
- and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
- then
- Exp_Type := Exp_Btype;
- end if;
-
- -- Call instantiated Analyze_Choices which does the rest of the work
-
- Analyze_Choices
- (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
-
- if Exp_Type = Universal_Integer and then not Others_Present then
- Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
- end if;
-
- -- If all our exits were blocked by unconditional transfers of control,
- -- then the entire CASE statement acts as an unconditional transfer of
- -- control, so treat it like one, and check unreachable code. Skip this
- -- test if we had serious errors preventing any statement analysis.
-
- if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
- Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
- Check_Unreachable_Code (N);
- else
- Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
- end if;
-
- if not Expander_Active
- and then Compile_Time_Known_Value (Expression (N))
- and then Serious_Errors_Detected = 0
- then
- declare
- Chosen : constant Node_Id := Find_Static_Alternative (N);
- Alt : Node_Id;
-
- begin
- Alt := First (Alternatives (N));
-
- while Present (Alt) loop
- if Alt /= Chosen then
- Remove_Warning_Messages (Statements (Alt));
- end if;
-
- Next (Alt);
- end loop;
- end;
- end if;
- end Analyze_Case_Statement;
-
- ----------------------------
- -- Analyze_Exit_Statement --
- ----------------------------
-
- -- If the exit includes a name, it must be the name of a currently open
- -- loop. Otherwise there must be an innermost open loop on the stack,
- -- to which the statement implicitly refers.
-
- procedure Analyze_Exit_Statement (N : Node_Id) is
- Target : constant Node_Id := Name (N);
- Cond : constant Node_Id := Condition (N);
- Scope_Id : Entity_Id;
- U_Name : Entity_Id;
- Kind : Entity_Kind;
-
- begin
- if No (Cond) then
- Check_Unreachable_Code (N);
- end if;
-
- if Present (Target) then
- Analyze (Target);
- U_Name := Entity (Target);
-
- if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
- Error_Msg_N ("invalid loop name in exit statement", N);
- return;
- else
- Set_Has_Exit (U_Name);
- end if;
-
- else
- U_Name := Empty;
- end if;
-
- for J in reverse 0 .. Scope_Stack.Last loop
- Scope_Id := Scope_Stack.Table (J).Entity;
- Kind := Ekind (Scope_Id);
-
- if Kind = E_Loop
- and then (No (Target) or else Scope_Id = U_Name) then
- Set_Has_Exit (Scope_Id);
- exit;
-
- elsif Kind = E_Block or else Kind = E_Loop then
- null;
-
- else
- Error_Msg_N
- ("cannot exit from program unit or accept statement", N);
- exit;
- end if;
- end loop;
-
- -- Verify that if present the condition is a Boolean expression
-
- if Present (Cond) then
- Analyze_And_Resolve (Cond, Any_Boolean);
- Check_Unset_Reference (Cond);
- end if;
- end Analyze_Exit_Statement;
-
- ----------------------------
- -- Analyze_Goto_Statement --
- ----------------------------
-
- procedure Analyze_Goto_Statement (N : Node_Id) is
- Label : constant Node_Id := Name (N);
- Scope_Id : Entity_Id;
- Label_Scope : Entity_Id;
-
- begin
- Check_Unreachable_Code (N);
-
- Analyze (Label);
-
- if Entity (Label) = Any_Id then
- return;
-
- elsif Ekind (Entity (Label)) /= E_Label then
- Error_Msg_N ("target of goto statement must be a label", Label);
- return;
-
- elsif not Reachable (Entity (Label)) then
- Error_Msg_N ("target of goto statement is not reachable", Label);
- return;
- end if;
-
- Label_Scope := Enclosing_Scope (Entity (Label));
-
- for J in reverse 0 .. Scope_Stack.Last loop
- Scope_Id := Scope_Stack.Table (J).Entity;
-
- if Label_Scope = Scope_Id
- or else (Ekind (Scope_Id) /= E_Block
- and then Ekind (Scope_Id) /= E_Loop)
- then
- if Scope_Id /= Label_Scope then
- Error_Msg_N
- ("cannot exit from program unit or accept statement", N);
- end if;
-
- return;
- end if;
- end loop;
-
- raise Program_Error;
- end Analyze_Goto_Statement;
-
- --------------------------
- -- Analyze_If_Statement --
- --------------------------
-
- -- A special complication arises in the analysis of if statements
-
- -- The expander has circuitry to completely delete code that it
- -- can tell will not be executed (as a result of compile time known
- -- conditions). In the analyzer, we ensure that code that will be
- -- deleted in this manner is analyzed but not expanded. This is
- -- obviously more efficient, but more significantly, difficulties
- -- arise if code is expanded and then eliminated (e.g. exception
- -- table entries disappear). Similarly, itypes generated in deleted
- -- code must be frozen from start, because the nodes on which they
- -- depend will not be available at the freeze point.
-
- procedure Analyze_If_Statement (N : Node_Id) is
- E : Node_Id;
-
- Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
- -- Recursively save value of this global, will be restored on exit
-
- Save_In_Deleted_Code : Boolean;
-
- Del : Boolean := False;
- -- This flag gets set True if a True condition has been found,
- -- which means that remaining ELSE/ELSIF parts are deleted.
-
- procedure Analyze_Cond_Then (Cnode : Node_Id);
- -- This is applied to either the N_If_Statement node itself or
- -- to an N_Elsif_Part node. It deals with analyzing the condition
- -- and the THEN statements associated with it.
-
- -----------------------
- -- Analyze_Cond_Then --
- -----------------------
-
- procedure Analyze_Cond_Then (Cnode : Node_Id) is
- Cond : constant Node_Id := Condition (Cnode);
- Tstm : constant List_Id := Then_Statements (Cnode);
-
- begin
- Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
- Analyze_And_Resolve (Cond, Any_Boolean);
- Check_Unset_Reference (Cond);
- Check_Possible_Current_Value_Condition (Cnode);
-
- -- If already deleting, then just analyze then statements
-
- if Del then
- Analyze_Statements (Tstm);
-
- -- Compile time known value, not deleting yet
-
- elsif Compile_Time_Known_Value (Cond) then
- Save_In_Deleted_Code := In_Deleted_Code;
-
- -- If condition is True, then analyze the THEN statements
- -- and set no expansion for ELSE and ELSIF parts.
-
- if Is_True (Expr_Value (Cond)) then
- Analyze_Statements (Tstm);
- Del := True;
- Expander_Mode_Save_And_Set (False);
- In_Deleted_Code := True;
-
- -- If condition is False, analyze THEN with expansion off
-
- else -- Is_False (Expr_Value (Cond))
- Expander_Mode_Save_And_Set (False);
- In_Deleted_Code := True;
- Analyze_Statements (Tstm);
- Expander_Mode_Restore;
- In_Deleted_Code := Save_In_Deleted_Code;
- end if;
-
- -- Not known at compile time, not deleting, normal analysis
-
- else
- Analyze_Statements (Tstm);
- end if;
- end Analyze_Cond_Then;
-
- -- Start of Analyze_If_Statement
-
- begin
- -- Initialize exit count for else statements. If there is no else
- -- part, this count will stay non-zero reflecting the fact that the
- -- uncovered else case is an unblocked exit.
-
- Unblocked_Exit_Count := 1;
- Analyze_Cond_Then (N);
-
- -- Now to analyze the elsif parts if any are present
-
- if Present (Elsif_Parts (N)) then
- E := First (Elsif_Parts (N));
- while Present (E) loop
- Analyze_Cond_Then (E);
- Next (E);
- end loop;
- end if;
-
- if Present (Else_Statements (N)) then
- Analyze_Statements (Else_Statements (N));
- end if;
-
- -- If all our exits were blocked by unconditional transfers of control,
- -- then the entire IF statement acts as an unconditional transfer of
- -- control, so treat it like one, and check unreachable code.
-
- if Unblocked_Exit_Count = 0 then
- Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
- Check_Unreachable_Code (N);
- else
- Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
- end if;
-
- if Del then
- Expander_Mode_Restore;
- In_Deleted_Code := Save_In_Deleted_Code;
- end if;
-
- if not Expander_Active
- and then Compile_Time_Known_Value (Condition (N))
- and then Serious_Errors_Detected = 0
- then
- if Is_True (Expr_Value (Condition (N))) then
- Remove_Warning_Messages (Else_Statements (N));
-
- if Present (Elsif_Parts (N)) then
- E := First (Elsif_Parts (N));
-
- while Present (E) loop
- Remove_Warning_Messages (Then_Statements (E));
- Next (E);
- end loop;
- end if;
-
- else
- Remove_Warning_Messages (Then_Statements (N));
- end if;
- end if;
- end Analyze_If_Statement;
-
- ----------------------------------------
- -- Analyze_Implicit_Label_Declaration --
- ----------------------------------------
-
- -- An implicit label declaration is generated in the innermost
- -- enclosing declarative part. This is done for labels as well as
- -- block and loop names.
-
- -- Note: any changes in this routine may need to be reflected in
- -- Analyze_Label_Entity.
-
- procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
- Id : constant Node_Id := Defining_Identifier (N);
- begin
- Enter_Name (Id);
- Set_Ekind (Id, E_Label);
- Set_Etype (Id, Standard_Void_Type);
- Set_Enclosing_Scope (Id, Current_Scope);
- end Analyze_Implicit_Label_Declaration;
-
- ------------------------------
- -- Analyze_Iteration_Scheme --
- ------------------------------
-
- procedure Analyze_Iteration_Scheme (N : Node_Id) is
-
- procedure Process_Bounds (R : Node_Id);
- -- If the iteration is given by a range, create temporaries and
- -- assignment statements block to capture the bounds and perform
- -- required finalization actions in case a bound includes a function
- -- call that uses the temporary stack. We first pre-analyze a copy of
- -- the range in order to determine the expected type, and analyze and
- -- resolve the original bounds.
-
- procedure Check_Controlled_Array_Attribute (DS : Node_Id);
- -- If the bounds are given by a 'Range reference on a function call
- -- that returns a controlled array, introduce an explicit declaration
- -- to capture the bounds, so that the function result can be finalized
- -- in timely fashion.
-
- --------------------
- -- Process_Bounds --
- --------------------
-
- procedure Process_Bounds (R : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- R_Copy : constant Node_Id := New_Copy_Tree (R);
- Lo : constant Node_Id := Low_Bound (R);
- Hi : constant Node_Id := High_Bound (R);
- New_Lo_Bound : Node_Id := Empty;
- New_Hi_Bound : Node_Id := Empty;
- Typ : Entity_Id;
- Save_Analysis : Boolean;
-
- function One_Bound
- (Original_Bound : Node_Id;
- Analyzed_Bound : Node_Id) return Node_Id;
- -- Create one declaration followed by one assignment statement
- -- to capture the value of bound. We create a separate assignment
- -- in order to force the creation of a block in case the bound
- -- contains a call that uses the secondary stack.
-
- ---------------
- -- One_Bound --
- ---------------
-
- function One_Bound
- (Original_Bound : Node_Id;
- Analyzed_Bound : Node_Id) return Node_Id
- is
- Assign : Node_Id;
- Id : Entity_Id;
- Decl : Node_Id;
-
- begin
- -- If the bound is a constant or an object, no need for a separate
- -- declaration. If the bound is the result of previous expansion
- -- it is already analyzed and should not be modified. Note that
- -- the Bound will be resolved later, if needed, as part of the
- -- call to Make_Index (literal bounds may need to be resolved to
- -- type Integer).
-
- if Analyzed (Original_Bound) then
- return Original_Bound;
-
- elsif Nkind (Analyzed_Bound) = N_Integer_Literal
- or else Is_Entity_Name (Analyzed_Bound)
- then
- Analyze_And_Resolve (Original_Bound, Typ);
- return Original_Bound;
-
- else
- Analyze_And_Resolve (Original_Bound, Typ);
- end if;
-
- Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('S'));
-
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Id,
- Object_Definition => New_Occurrence_Of (Typ, Loc));
-
- Insert_Before (Parent (N), Decl);
- Analyze (Decl);
-
- Assign :=
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Id, Loc),
- Expression => Relocate_Node (Original_Bound));
-
- Insert_Before (Parent (N), Assign);
- Analyze (Assign);
-
- Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
-
- if Nkind (Assign) = N_Assignment_Statement then
- return Expression (Assign);
- else
- return Original_Bound;
- end if;
- end One_Bound;
-
- -- Start of processing for Process_Bounds
-
- begin
- -- Determine expected type of range by analyzing separate copy
- -- Do the analysis and resolution of the copy of the bounds with
- -- expansion disabled, to prevent the generation of finalization
- -- actions on each bound. This prevents memory leaks when the
- -- bounds contain calls to functions returning controlled arrays.
-
- Set_Parent (R_Copy, Parent (R));
- Save_Analysis := Full_Analysis;
- Full_Analysis := False;
- Expander_Mode_Save_And_Set (False);
-
- Analyze (R_Copy);
-
- if Is_Overloaded (R_Copy) then
-
- -- Apply preference rules for range of predefined integer types,
- -- or diagnose true ambiguity.
-
- declare
- I : Interp_Index;
- It : Interp;
- Found : Entity_Id := Empty;
-
- begin
- Get_First_Interp (R_Copy, I, It);
- while Present (It.Typ) loop
- if Is_Discrete_Type (It.Typ) then
- if No (Found) then
- Found := It.Typ;
- else
- if Scope (Found) = Standard_Standard then
- null;
-
- elsif Scope (It.Typ) = Standard_Standard then
- Found := It.Typ;
-
- else
- -- Both of them are user-defined
-
- Error_Msg_N
- ("ambiguous bounds in range of iteration",
- R_Copy);
- Error_Msg_N ("\possible interpretations:", R_Copy);
- Error_Msg_NE ("\} ", R_Copy, Found);
- Error_Msg_NE ("\} ", R_Copy, It.Typ);
- exit;
- end if;
- end if;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end;
- end if;
-
- Resolve (R_Copy);
- Expander_Mode_Restore;
- Full_Analysis := Save_Analysis;
-
- Typ := Etype (R_Copy);
-
- -- If the type of the discrete range is Universal_Integer, then
- -- the bound's type must be resolved to Integer, and any object
- -- used to hold the bound must also have type Integer.
-
- if Typ = Universal_Integer then
- Typ := Standard_Integer;
- end if;
-
- Set_Etype (R, Typ);
-
- New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
- New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
-
- -- Propagate staticness to loop range itself, in case the
- -- corresponding subtype is static.
-
- if New_Lo_Bound /= Lo
- and then Is_Static_Expression (New_Lo_Bound)
- then
- Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
- end if;
-
- if New_Hi_Bound /= Hi
- and then Is_Static_Expression (New_Hi_Bound)
- then
- Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
- end if;
- end Process_Bounds;
-
- --------------------------------------
- -- Check_Controlled_Array_Attribute --
- --------------------------------------
-
- procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
- begin
- if Nkind (DS) = N_Attribute_Reference
- and then Is_Entity_Name (Prefix (DS))
- and then Ekind (Entity (Prefix (DS))) = E_Function
- and then Is_Array_Type (Etype (Entity (Prefix (DS))))
- and then
- Is_Controlled (
- Component_Type (Etype (Entity (Prefix (DS)))))
- and then Expander_Active
- then
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Arr : constant Entity_Id :=
- Etype (Entity (Prefix (DS)));
- Indx : constant Entity_Id :=
- Base_Type (Etype (First_Index (Arr)));
- Subt : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, New_Internal_Name ('S'));
- Decl : Node_Id;
-
- begin
- Decl :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Subt,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Indx, Loc),
- Constraint =>
- Make_Range_Constraint (Loc,
- Relocate_Node (DS))));
- Insert_Before (Parent (N), Decl);
- Analyze (Decl);
-
- Rewrite (DS,
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Subt, Loc),
- Attribute_Name => Attribute_Name (DS)));
- Analyze (DS);
- end;
- end if;
- end Check_Controlled_Array_Attribute;
-
- -- Start of processing for Analyze_Iteration_Scheme
-
- begin
- -- For an infinite loop, there is no iteration scheme
-
- if No (N) then
- return;
-
- else
- declare
- Cond : constant Node_Id := Condition (N);
-
- begin
- -- For WHILE loop, verify that the condition is a Boolean
- -- expression and resolve and check it.
-
- if Present (Cond) then
- Analyze_And_Resolve (Cond, Any_Boolean);
- Check_Unset_Reference (Cond);
-
- -- Else we have a FOR loop
-
- else
- declare
- LP : constant Node_Id := Loop_Parameter_Specification (N);
- Id : constant Entity_Id := Defining_Identifier (LP);
- DS : constant Node_Id := Discrete_Subtype_Definition (LP);
-
- begin
- Enter_Name (Id);
-
- -- We always consider the loop variable to be referenced,
- -- since the loop may be used just for counting purposes.
-
- Generate_Reference (Id, N, ' ');
-
- -- Check for case of loop variable hiding a local
- -- variable (used later on to give a nice warning
- -- if the hidden variable is never assigned).
-
- declare
- H : constant Entity_Id := Homonym (Id);
- begin
- if Present (H)
- and then Enclosing_Dynamic_Scope (H) =
- Enclosing_Dynamic_Scope (Id)
- and then Ekind (H) = E_Variable
- and then Is_Discrete_Type (Etype (H))
- then
- Set_Hiding_Loop_Variable (H, Id);
- end if;
- end;
-
- -- Now analyze the subtype definition. If it is
- -- a range, create temporaries for bounds.
-
- if Nkind (DS) = N_Range
- and then Expander_Active
- then
- Process_Bounds (DS);
- else
- Analyze (DS);
- end if;
-
- if DS = Error then
- return;
- end if;
-
- -- The subtype indication may denote the completion
- -- of an incomplete type declaration.
-
- if Is_Entity_Name (DS)
- and then Present (Entity (DS))
- and then Is_Type (Entity (DS))
- and then Ekind (Entity (DS)) = E_Incomplete_Type
- then
- Set_Entity (DS, Get_Full_View (Entity (DS)));
- Set_Etype (DS, Entity (DS));
- end if;
-
- if not Is_Discrete_Type (Etype (DS)) then
- Wrong_Type (DS, Any_Discrete);
- Set_Etype (DS, Any_Type);
- end if;
-
- Check_Controlled_Array_Attribute (DS);
-
- Make_Index (DS, LP);
-
- Set_Ekind (Id, E_Loop_Parameter);
- Set_Etype (Id, Etype (DS));
- Set_Is_Known_Valid (Id, True);
-
- -- The loop is not a declarative part, so the only entity
- -- declared "within" must be frozen explicitly.
-
- declare
- Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
- begin
- if Is_Non_Empty_List (Flist) then
- Insert_Actions (N, Flist);
- end if;
- end;
-
- -- Check for null or possibly null range and issue warning.
- -- We suppress such messages in generic templates and
- -- instances, because in practice they tend to be dubious
- -- in these cases.
-
- if Nkind (DS) = N_Range
- and then Comes_From_Source (N)
- then
- declare
- L : constant Node_Id := Low_Bound (DS);
- H : constant Node_Id := High_Bound (DS);
-
- Llo : Uint;
- Lhi : Uint;
- LOK : Boolean;
- Hlo : Uint;
- Hhi : Uint;
- HOK : Boolean;
-
- begin
- Determine_Range (L, LOK, Llo, Lhi);
- Determine_Range (H, HOK, Hlo, Hhi);
-
- -- If range of loop is null, issue warning
-
- if (LOK and HOK) and then Llo > Hhi then
-
- -- Suppress the warning if inside a generic
- -- template or instance, since in practice
- -- they tend to be dubious in these cases since
- -- they can result from intended parametrization.
-
- if not Inside_A_Generic
- and then not In_Instance
- then
- Error_Msg_N
- ("?loop range is null, loop will not execute",
- DS);
- end if;
-
- -- Since we know the range of the loop is null,
- -- set the appropriate flag to suppress any
- -- warnings that would otherwise be issued in
- -- the body of the loop that will not execute.
- -- We do this even in the generic case, since
- -- if it is dubious to warn on the null loop
- -- itself, it is certainly dubious to warn for
- -- conditions that occur inside it!
-
- Set_Is_Null_Loop (Parent (N));
-
- -- The other case for a warning is a reverse loop
- -- where the upper bound is the integer literal
- -- zero or one, and the lower bound can be positive.
-
- -- For example, we have
-
- -- for J in reverse N .. 1 loop
-
- -- In practice, this is very likely to be a case
- -- of reversing the bounds incorrectly in the range.
-
- elsif Reverse_Present (LP)
- and then Nkind (Original_Node (H)) =
- N_Integer_Literal
- and then (Intval (H) = Uint_0
- or else
- Intval (H) = Uint_1)
- and then Lhi > Hhi
- then
- Error_Msg_N ("?loop range may be null", DS);
- Error_Msg_N ("\?bounds may be wrong way round", DS);
- end if;
- end;
- end if;
- end;
- end if;
- end;
- end if;
- end Analyze_Iteration_Scheme;
-
- -------------------
- -- Analyze_Label --
- -------------------
-
- -- Note: the semantic work required for analyzing labels (setting them as
- -- reachable) was done in a prepass through the statements in the block,
- -- so that forward gotos would be properly handled. See Analyze_Statements
- -- for further details. The only processing required here is to deal with
- -- optimizations that depend on an assumption of sequential control flow,
- -- since of course the occurrence of a label breaks this assumption.
-
- procedure Analyze_Label (N : Node_Id) is
- pragma Warnings (Off, N);
- begin
- Kill_Current_Values;
- end Analyze_Label;
-
- --------------------------
- -- Analyze_Label_Entity --
- --------------------------
-
- procedure Analyze_Label_Entity (E : Entity_Id) is
- begin
- Set_Ekind (E, E_Label);
- Set_Etype (E, Standard_Void_Type);
- Set_Enclosing_Scope (E, Current_Scope);
- Set_Reachable (E, True);
- end Analyze_Label_Entity;
-
- ----------------------------
- -- Analyze_Loop_Statement --
- ----------------------------
-
- procedure Analyze_Loop_Statement (N : Node_Id) is
- Id : constant Node_Id := Identifier (N);
- Ent : Entity_Id;
-
- begin
- if Present (Id) then
-
- -- Make name visible, e.g. for use in exit statements. Loop
- -- labels are always considered to be referenced.
-
- Analyze (Id);
- Ent := Entity (Id);
- Generate_Reference (Ent, N, ' ');
- Generate_Definition (Ent);
-
- -- If we found a label, mark its type. If not, ignore it, since it
- -- means we have a conflicting declaration, which would already have
- -- been diagnosed at declaration time. Set Label_Construct of the
- -- implicit label declaration, which is not created by the parser
- -- for generic units.
-
- if Ekind (Ent) = E_Label then
- Set_Ekind (Ent, E_Loop);
-
- if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
- Set_Label_Construct (Parent (Ent), N);
- end if;
- end if;
-
- -- Case of no identifier present
-
- else
- Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
- Set_Etype (Ent, Standard_Void_Type);
- Set_Parent (Ent, N);
- end if;
-
- -- Kill current values on entry to loop, since statements in body
- -- of loop may have been executed before the loop is entered.
- -- Similarly we kill values after the loop, since we do not know
- -- that the body of the loop was executed.
-
- Kill_Current_Values;
- New_Scope (Ent);
- Analyze_Iteration_Scheme (Iteration_Scheme (N));
- Analyze_Statements (Statements (N));
- Process_End_Label (N, 'e', Ent);
- End_Scope;
- Kill_Current_Values;
- end Analyze_Loop_Statement;
-
- ----------------------------
- -- Analyze_Null_Statement --
- ----------------------------
-
- -- Note: the semantics of the null statement is implemented by a single
- -- null statement, too bad everything isn't as simple as this!
-
- procedure Analyze_Null_Statement (N : Node_Id) is
- pragma Warnings (Off, N);
- begin
- null;
- end Analyze_Null_Statement;
-
- ------------------------
- -- Analyze_Statements --
- ------------------------
-
- procedure Analyze_Statements (L : List_Id) is
- S : Node_Id;
- Lab : Entity_Id;
-
- begin
- -- The labels declared in the statement list are reachable from
- -- statements in the list. We do this as a prepass so that any
- -- goto statement will be properly flagged if its target is not
- -- reachable. This is not required, but is nice behavior!
-
- S := First (L);
- while Present (S) loop
- if Nkind (S) = N_Label then
- Analyze (Identifier (S));
- Lab := Entity (Identifier (S));
-
- -- If we found a label mark it as reachable
-
- if Ekind (Lab) = E_Label then
- Generate_Definition (Lab);
- Set_Reachable (Lab);
-
- if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
- Set_Label_Construct (Parent (Lab), S);
- end if;
-
- -- If we failed to find a label, it means the implicit declaration
- -- of the label was hidden. A for-loop parameter can do this to
- -- a label with the same name inside the loop, since the implicit
- -- label declaration is in the innermost enclosing body or block
- -- statement.
-
- else
- Error_Msg_Sloc := Sloc (Lab);
- Error_Msg_N
- ("implicit label declaration for & is hidden#",
- Identifier (S));
- end if;
- end if;
-
- Next (S);
- end loop;
-
- -- Perform semantic analysis on all statements
-
- Conditional_Statements_Begin;
-
- S := First (L);
- while Present (S) loop
- Analyze (S);
- Next (S);
- end loop;
-
- Conditional_Statements_End;
-
- -- Make labels unreachable. Visibility is not sufficient, because
- -- labels in one if-branch for example are not reachable from the
- -- other branch, even though their declarations are in the enclosing
- -- declarative part.
-
- S := First (L);
- while Present (S) loop
- if Nkind (S) = N_Label then
- Set_Reachable (Entity (Identifier (S)), False);
- end if;
-
- Next (S);
- end loop;
- end Analyze_Statements;
-
- --------------------------------------------
- -- Check_Possible_Current_Value_Condition --
- --------------------------------------------
-
- procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
- Cond : Node_Id;
-
- begin
- -- Loop to deal with (ignore for now) any NOT operators present
-
- Cond := Condition (Cnode);
- while Nkind (Cond) = N_Op_Not loop
- Cond := Right_Opnd (Cond);
- end loop;
-
- -- Check possible relational operator
-
- if Nkind (Cond) = N_Op_Eq
- or else
- Nkind (Cond) = N_Op_Ne
- or else
- Nkind (Cond) = N_Op_Ge
- or else
- Nkind (Cond) = N_Op_Le
- or else
- Nkind (Cond) = N_Op_Gt
- or else
- Nkind (Cond) = N_Op_Lt
- then
- if Compile_Time_Known_Value (Right_Opnd (Cond))
- and then Nkind (Left_Opnd (Cond)) = N_Identifier
- then
- declare
- Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
-
- begin
- if Ekind (Ent) = E_Variable
- or else
- Ekind (Ent) = E_Constant
- or else
- Is_Formal (Ent)
- or else
- Ekind (Ent) = E_Loop_Parameter
- then
- -- Here we have a case where the Current_Value field
- -- may need to be set. We set it if it is not already
- -- set to a compile time expression value.
-
- -- Note that this represents a decision that one
- -- condition blots out another previous one. That's
- -- certainly right if they occur at the same level.
- -- If the second one is nested, then the decision is
- -- neither right nor wrong (it would be equally OK
- -- to leave the outer one in place, or take the new
- -- inner one. Really we should record both, but our
- -- data structures are not that elaborate.
-
- if Nkind (Current_Value (Ent)) not in N_Subexpr then
- Set_Current_Value (Ent, Cnode);
- end if;
- end if;
- end;
- end if;
- end if;
- end Check_Possible_Current_Value_Condition;
-
- ----------------------------
- -- Check_Unreachable_Code --
- ----------------------------
-
- procedure Check_Unreachable_Code (N : Node_Id) is
- Error_Loc : Source_Ptr;
- P : Node_Id;
-
- begin
- if Is_List_Member (N)
- and then Comes_From_Source (N)
- then
- declare
- Nxt : Node_Id;
-
- begin
- Nxt := Original_Node (Next (N));
-
- -- If a label follows us, then we never have dead code, since
- -- someone could branch to the label, so we just ignore it.
-
- if Nkind (Nxt) = N_Label then
- return;
-
- -- Otherwise see if we have a real statement following us
-
- elsif Present (Nxt)
- and then Comes_From_Source (Nxt)
- and then Is_Statement (Nxt)
- then
- -- Special very annoying exception. If we have a return that
- -- follows a raise, then we allow it without a warning, since
- -- the Ada RM annoyingly requires a useless return here!
-
- if Nkind (Original_Node (N)) /= N_Raise_Statement
- or else Nkind (Nxt) /= N_Return_Statement
- then
- -- The rather strange shenanigans with the warning message
- -- here reflects the fact that Kill_Dead_Code is very good
- -- at removing warnings in deleted code, and this is one
- -- warning we would prefer NOT to have removed :-)
-
- Error_Loc := Sloc (Nxt);
-
- -- If we have unreachable code, analyze and remove the
- -- unreachable code, since it is useless and we don't
- -- want to generate junk warnings.
-
- -- We skip this step if we are not in code generation mode.
- -- This is the one case where we remove dead code in the
- -- semantics as opposed to the expander, and we do not want
- -- to remove code if we are not in code generation mode,
- -- since this messes up the ASIS trees.
-
- -- Note that one might react by moving the whole circuit to
- -- exp_ch5, but then we lose the warning in -gnatc mode.
-
- if Operating_Mode = Generate_Code then
- loop
- Nxt := Next (N);
-
- -- Quit deleting when we have nothing more to delete
- -- or if we hit a label (since someone could transfer
- -- control to a label, so we should not delete it).
-
- exit when No (Nxt) or else Nkind (Nxt) = N_Label;
-
- -- Statement/declaration is to be deleted
-
- Analyze (Nxt);
- Remove (Nxt);
- Kill_Dead_Code (Nxt);
- end loop;
- end if;
-
- -- Now issue the warning
-
- Error_Msg ("?unreachable code", Error_Loc);
- end if;
-
- -- If the unconditional transfer of control instruction is
- -- the last statement of a sequence, then see if our parent
- -- is one of the constructs for which we count unblocked exits,
- -- and if so, adjust the count.
-
- else
- P := Parent (N);
-
- -- Statements in THEN part or ELSE part of IF statement
-
- if Nkind (P) = N_If_Statement then
- null;
-
- -- Statements in ELSIF part of an IF statement
-
- elsif Nkind (P) = N_Elsif_Part then
- P := Parent (P);
- pragma Assert (Nkind (P) = N_If_Statement);
-
- -- Statements in CASE statement alternative
-
- elsif Nkind (P) = N_Case_Statement_Alternative then
- P := Parent (P);
- pragma Assert (Nkind (P) = N_Case_Statement);
-
- -- Statements in body of block
-
- elsif Nkind (P) = N_Handled_Sequence_Of_Statements
- and then Nkind (Parent (P)) = N_Block_Statement
- then
- null;
-
- -- Statements in exception handler in a block
-
- elsif Nkind (P) = N_Exception_Handler
- and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
- and then Nkind (Parent (Parent (P))) = N_Block_Statement
- then
- null;
-
- -- None of these cases, so return
-
- else
- return;
- end if;
-
- -- This was one of the cases we are looking for (i.e. the
- -- parent construct was IF, CASE or block) so decrement count.
-
- Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
- end if;
- end;
- end if;
- end Check_Unreachable_Code;
-
-end Sem_Ch5;