aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1/gcc/ada/checks.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1/gcc/ada/checks.adb')
-rw-r--r--gcc-4.2.1/gcc/ada/checks.adb6502
1 files changed, 0 insertions, 6502 deletions
diff --git a/gcc-4.2.1/gcc/ada/checks.adb b/gcc-4.2.1/gcc/ada/checks.adb
deleted file mode 100644
index 6a58415a0..000000000
--- a/gcc-4.2.1/gcc/ada/checks.adb
+++ /dev/null
@@ -1,6502 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- C H E C K S --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 2, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING. If not, write --
--- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
--- Boston, MA 02110-1301, USA. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Exp_Ch2; use Exp_Ch2;
-with Exp_Pakd; use Exp_Pakd;
-with Exp_Util; use Exp_Util;
-with Elists; use Elists;
-with Eval_Fat; use Eval_Fat;
-with Freeze; use Freeze;
-with Lib; use Lib;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Output; use Output;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Eval; use Sem_Eval;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sem_Warn; use Sem_Warn;
-with Sinfo; use Sinfo;
-with Sinput; use Sinput;
-with Snames; use Snames;
-with Sprint; use Sprint;
-with Stand; use Stand;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Urealp; use Urealp;
-with Validsw; use Validsw;
-
-package body Checks is
-
- -- General note: many of these routines are concerned with generating
- -- checking code to make sure that constraint error is raised at runtime.
- -- Clearly this code is only needed if the expander is active, since
- -- otherwise we will not be generating code or going into the runtime
- -- execution anyway.
-
- -- We therefore disconnect most of these checks if the expander is
- -- inactive. This has the additional benefit that we do not need to
- -- worry about the tree being messed up by previous errors (since errors
- -- turn off expansion anyway).
-
- -- There are a few exceptions to the above rule. For instance routines
- -- such as Apply_Scalar_Range_Check that do not insert any code can be
- -- safely called even when the Expander is inactive (but Errors_Detected
- -- is 0). The benefit of executing this code when expansion is off, is
- -- the ability to emit constraint error warning for static expressions
- -- even when we are not generating code.
-
- -------------------------------------
- -- Suppression of Redundant Checks --
- -------------------------------------
-
- -- This unit implements a limited circuit for removal of redundant
- -- checks. The processing is based on a tracing of simple sequential
- -- flow. For any sequence of statements, we save expressions that are
- -- marked to be checked, and then if the same expression appears later
- -- with the same check, then under certain circumstances, the second
- -- check can be suppressed.
-
- -- Basically, we can suppress the check if we know for certain that
- -- the previous expression has been elaborated (together with its
- -- check), and we know that the exception frame is the same, and that
- -- nothing has happened to change the result of the exception.
-
- -- Let us examine each of these three conditions in turn to describe
- -- how we ensure that this condition is met.
-
- -- First, we need to know for certain that the previous expression has
- -- been executed. This is done principly by the mechanism of calling
- -- Conditional_Statements_Begin at the start of any statement sequence
- -- and Conditional_Statements_End at the end. The End call causes all
- -- checks remembered since the Begin call to be discarded. This does
- -- miss a few cases, notably the case of a nested BEGIN-END block with
- -- no exception handlers. But the important thing is to be conservative.
- -- The other protection is that all checks are discarded if a label
- -- is encountered, since then the assumption of sequential execution
- -- is violated, and we don't know enough about the flow.
-
- -- Second, we need to know that the exception frame is the same. We
- -- do this by killing all remembered checks when we enter a new frame.
- -- Again, that's over-conservative, but generally the cases we can help
- -- with are pretty local anyway (like the body of a loop for example).
-
- -- Third, we must be sure to forget any checks which are no longer valid.
- -- This is done by two mechanisms, first the Kill_Checks_Variable call is
- -- used to note any changes to local variables. We only attempt to deal
- -- with checks involving local variables, so we do not need to worry
- -- about global variables. Second, a call to any non-global procedure
- -- causes us to abandon all stored checks, since such a all may affect
- -- the values of any local variables.
-
- -- The following define the data structures used to deal with remembering
- -- checks so that redundant checks can be eliminated as described above.
-
- -- Right now, the only expressions that we deal with are of the form of
- -- simple local objects (either declared locally, or IN parameters) or
- -- such objects plus/minus a compile time known constant. We can do
- -- more later on if it seems worthwhile, but this catches many simple
- -- cases in practice.
-
- -- The following record type reflects a single saved check. An entry
- -- is made in the stack of saved checks if and only if the expression
- -- has been elaborated with the indicated checks.
-
- type Saved_Check is record
- Killed : Boolean;
- -- Set True if entry is killed by Kill_Checks
-
- Entity : Entity_Id;
- -- The entity involved in the expression that is checked
-
- Offset : Uint;
- -- A compile time value indicating the result of adding or
- -- subtracting a compile time value. This value is to be
- -- added to the value of the Entity. A value of zero is
- -- used for the case of a simple entity reference.
-
- Check_Type : Character;
- -- This is set to 'R' for a range check (in which case Target_Type
- -- is set to the target type for the range check) or to 'O' for an
- -- overflow check (in which case Target_Type is set to Empty).
-
- Target_Type : Entity_Id;
- -- Used only if Do_Range_Check is set. Records the target type for
- -- the check. We need this, because a check is a duplicate only if
- -- it has a the same target type (or more accurately one with a
- -- range that is smaller or equal to the stored target type of a
- -- saved check).
- end record;
-
- -- The following table keeps track of saved checks. Rather than use an
- -- extensible table. We just use a table of fixed size, and we discard
- -- any saved checks that do not fit. That's very unlikely to happen and
- -- this is only an optimization in any case.
-
- Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
- -- Array of saved checks
-
- Num_Saved_Checks : Nat := 0;
- -- Number of saved checks
-
- -- The following stack keeps track of statement ranges. It is treated
- -- as a stack. When Conditional_Statements_Begin is called, an entry
- -- is pushed onto this stack containing the value of Num_Saved_Checks
- -- at the time of the call. Then when Conditional_Statements_End is
- -- called, this value is popped off and used to reset Num_Saved_Checks.
-
- -- Note: again, this is a fixed length stack with a size that should
- -- always be fine. If the value of the stack pointer goes above the
- -- limit, then we just forget all saved checks.
-
- Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
- Saved_Checks_TOS : Nat := 0;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Apply_Float_Conversion_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id);
- -- The checks on a conversion from a floating-point type to an integer
- -- type are delicate. They have to be performed before conversion, they
- -- have to raise an exception when the operand is a NaN, and rounding must
- -- be taken into account to determine the safe bounds of the operand.
-
- procedure Apply_Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean);
- -- This is the subprogram that does all the work for Apply_Length_Check
- -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
- -- described for the above routines. The Do_Static flag indicates that
- -- only a static check is to be done.
-
- procedure Apply_Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean);
- -- This is the subprogram that does all the work for Apply_Range_Check.
- -- Expr, Target_Typ and Source_Typ are as described for the above
- -- routine. The Do_Static flag indicates that only a static check is
- -- to be done.
-
- type Check_Type is (Access_Check, Division_Check);
- function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
- -- This function is used to see if an access or division by zero check is
- -- needed. The check is to be applied to a single variable appearing in the
- -- source, and N is the node for the reference. If N is not of this form,
- -- True is returned with no further processing. If N is of the right form,
- -- then further processing determines if the given Check is needed.
- --
- -- The particular circuit is to see if we have the case of a check that is
- -- not needed because it appears in the right operand of a short circuited
- -- conditional where the left operand guards the check. For example:
- --
- -- if Var = 0 or else Q / Var > 12 then
- -- ...
- -- end if;
- --
- -- In this example, the division check is not required. At the same time
- -- we can issue warnings for suspicious use of non-short-circuited forms,
- -- such as:
- --
- -- if Var = 0 or Q / Var > 12 then
- -- ...
- -- end if;
-
- procedure Find_Check
- (Expr : Node_Id;
- Check_Type : Character;
- Target_Type : Entity_Id;
- Entry_OK : out Boolean;
- Check_Num : out Nat;
- Ent : out Entity_Id;
- Ofs : out Uint);
- -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
- -- to see if a check is of the form for optimization, and if so, to see
- -- if it has already been performed. Expr is the expression to check,
- -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
- -- Target_Type is the target type for a range check, and Empty for an
- -- overflow check. If the entry is not of the form for optimization,
- -- then Entry_OK is set to False, and the remaining out parameters
- -- are undefined. If the entry is OK, then Ent/Ofs are set to the
- -- entity and offset from the expression. Check_Num is the number of
- -- a matching saved entry in Saved_Checks, or zero if no such entry
- -- is located.
-
- function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
- -- If a discriminal is used in constraining a prival, Return reference
- -- to the discriminal of the protected body (which renames the parameter
- -- of the enclosing protected operation). This clumsy transformation is
- -- needed because privals are created too late and their actual subtypes
- -- are not available when analysing the bodies of the protected operations.
- -- To be cleaned up???
-
- function Guard_Access
- (Cond : Node_Id;
- Loc : Source_Ptr;
- Ck_Node : Node_Id) return Node_Id;
- -- In the access type case, guard the test with a test to ensure
- -- that the access value is non-null, since the checks do not
- -- not apply to null access values.
-
- procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
- -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
- -- Constraint_Error node.
-
- function Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result;
- -- Like Apply_Selected_Length_Checks, except it doesn't modify
- -- anything, just returns a list of nodes as described in the spec of
- -- this package for the Range_Check function.
-
- function Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result;
- -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
- -- just returns a list of nodes as described in the spec of this package
- -- for the Range_Check function.
-
- ------------------------------
- -- Access_Checks_Suppressed --
- ------------------------------
-
- function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Access_Check);
- else
- return Scope_Suppress (Access_Check);
- end if;
- end Access_Checks_Suppressed;
-
- -------------------------------------
- -- Accessibility_Checks_Suppressed --
- -------------------------------------
-
- function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Accessibility_Check);
- else
- return Scope_Suppress (Accessibility_Check);
- end if;
- end Accessibility_Checks_Suppressed;
-
- -------------------------
- -- Append_Range_Checks --
- -------------------------
-
- procedure Append_Range_Checks
- (Checks : Check_Result;
- Stmts : List_Id;
- Suppress_Typ : Entity_Id;
- Static_Sloc : Source_Ptr;
- Flag_Node : Node_Id)
- is
- Internal_Flag_Node : constant Node_Id := Flag_Node;
- Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
-
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Suppress_Typ))
- or else
- (not Range_Checks_Suppressed (Suppress_Typ));
-
- begin
- -- For now we just return if Checks_On is false, however this should
- -- be enhanced to check for an always True value in the condition
- -- and to generate a compilation warning???
-
- if not Checks_On then
- return;
- end if;
-
- for J in 1 .. 2 loop
- exit when No (Checks (J));
-
- if Nkind (Checks (J)) = N_Raise_Constraint_Error
- and then Present (Condition (Checks (J)))
- then
- if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
- Append_To (Stmts, Checks (J));
- Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
- end if;
-
- else
- Append_To
- (Stmts,
- Make_Raise_Constraint_Error (Internal_Static_Sloc,
- Reason => CE_Range_Check_Failed));
- end if;
- end loop;
- end Append_Range_Checks;
-
- ------------------------
- -- Apply_Access_Check --
- ------------------------
-
- procedure Apply_Access_Check (N : Node_Id) is
- P : constant Node_Id := Prefix (N);
-
- begin
- -- We do not need checks if we are not generating code (i.e. the
- -- expander is not active). This is not just an optimization, there
- -- are cases (e.g. with pragma Debug) where generating the checks
- -- can cause real trouble).
-
- if not Expander_Active then
- return;
- end if;
-
- -- No check if short circuiting makes check unnecessary
-
- if not Check_Needed (P, Access_Check) then
- return;
- end if;
-
- -- Otherwise go ahead and install the check
-
- Install_Null_Excluding_Check (P);
- end Apply_Access_Check;
-
- -------------------------------
- -- Apply_Accessibility_Check --
- -------------------------------
-
- procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Param_Ent : constant Entity_Id := Param_Entity (N);
- Param_Level : Node_Id;
- Type_Level : Node_Id;
-
- begin
- if Inside_A_Generic then
- return;
-
- -- Only apply the run-time check if the access parameter
- -- has an associated extra access level parameter and
- -- when the level of the type is less deep than the level
- -- of the access parameter.
-
- elsif Present (Param_Ent)
- and then Present (Extra_Accessibility (Param_Ent))
- and then UI_Gt (Object_Access_Level (N),
- Type_Access_Level (Typ))
- and then not Accessibility_Checks_Suppressed (Param_Ent)
- and then not Accessibility_Checks_Suppressed (Typ)
- then
- Param_Level :=
- New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
-
- Type_Level :=
- Make_Integer_Literal (Loc, Type_Access_Level (Typ));
-
- -- Raise Program_Error if the accessibility level of the the access
- -- parameter is deeper than the level of the target access type.
-
- Insert_Action (N,
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Gt (Loc,
- Left_Opnd => Param_Level,
- Right_Opnd => Type_Level),
- Reason => PE_Accessibility_Check_Failed));
-
- Analyze_And_Resolve (N);
- end if;
- end Apply_Accessibility_Check;
-
- ---------------------------
- -- Apply_Alignment_Check --
- ---------------------------
-
- procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id) is
- AC : constant Node_Id := Address_Clause (E);
- Typ : constant Entity_Id := Etype (E);
- Expr : Node_Id;
- Loc : Source_Ptr;
-
- Alignment_Required : constant Boolean := Maximum_Alignment > 1;
- -- Constant to show whether target requires alignment checks
-
- begin
- -- See if check needed. Note that we never need a check if the
- -- maximum alignment is one, since the check will always succeed
-
- if No (AC)
- or else not Check_Address_Alignment (AC)
- or else not Alignment_Required
- then
- return;
- end if;
-
- Loc := Sloc (AC);
- Expr := Expression (AC);
-
- if Nkind (Expr) = N_Unchecked_Type_Conversion then
- Expr := Expression (Expr);
-
- elsif Nkind (Expr) = N_Function_Call
- and then Is_Entity_Name (Name (Expr))
- and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
- then
- Expr := First (Parameter_Associations (Expr));
-
- if Nkind (Expr) = N_Parameter_Association then
- Expr := Explicit_Actual_Parameter (Expr);
- end if;
- end if;
-
- -- Here Expr is the address value. See if we know that the
- -- value is unacceptable at compile time.
-
- if Compile_Time_Known_Value (Expr)
- and then (Known_Alignment (E) or else Known_Alignment (Typ))
- then
- declare
- AL : Uint := Alignment (Typ);
-
- begin
- -- The object alignment might be more restrictive than the
- -- type alignment.
-
- if Known_Alignment (E) then
- AL := Alignment (E);
- end if;
-
- if Expr_Value (Expr) mod AL /= 0 then
- Insert_Action (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Misaligned_Address_Value));
- Error_Msg_NE
- ("?specified address for& not " &
- "consistent with alignment ('R'M 13.3(27))", Expr, E);
- end if;
- end;
-
- -- Here we do not know if the value is acceptable, generate
- -- code to raise PE if alignment is inappropriate.
-
- else
- -- Skip generation of this code if we don't want elab code
-
- if not Restriction_Active (No_Elaboration_Code) then
- Insert_After_And_Analyze (N,
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Op_Mod (Loc,
- Left_Opnd =>
- Unchecked_Convert_To
- (RTE (RE_Integer_Address),
- Duplicate_Subexpr_No_Checks (Expr)),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (E, Loc),
- Attribute_Name => Name_Alignment)),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
- Reason => PE_Misaligned_Address_Value),
- Suppress => All_Checks);
- end if;
- end if;
-
- return;
-
- exception
- when RE_Not_Available =>
- return;
- end Apply_Alignment_Check;
-
- -------------------------------------
- -- Apply_Arithmetic_Overflow_Check --
- -------------------------------------
-
- -- This routine is called only if the type is an integer type, and
- -- a software arithmetic overflow check must be performed for op
- -- (add, subtract, multiply). The check is performed only if
- -- Software_Overflow_Checking is enabled and Do_Overflow_Check
- -- is set. In this case we expand the operation into a more complex
- -- sequence of tests that ensures that overflow is properly caught.
-
- procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Rtyp : constant Entity_Id := Root_Type (Typ);
- Siz : constant Int := UI_To_Int (Esize (Rtyp));
- Dsiz : constant Int := Siz * 2;
- Opnod : Node_Id;
- Ctyp : Entity_Id;
- Opnd : Node_Id;
- Cent : RE_Id;
-
- begin
- -- Skip this if overflow checks are done in back end, or the overflow
- -- flag is not set anyway, or we are not doing code expansion.
-
- if Backend_Overflow_Checks_On_Target
- or else not Do_Overflow_Check (N)
- or else not Expander_Active
- then
- return;
- end if;
-
- -- Otherwise, we generate the full general code for front end overflow
- -- detection, which works by doing arithmetic in a larger type:
-
- -- x op y
-
- -- is expanded into
-
- -- Typ (Checktyp (x) op Checktyp (y));
-
- -- where Typ is the type of the original expression, and Checktyp is
- -- an integer type of sufficient length to hold the largest possible
- -- result.
-
- -- In the case where check type exceeds the size of Long_Long_Integer,
- -- we use a different approach, expanding to:
-
- -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
-
- -- where xxx is Add, Multiply or Subtract as appropriate
-
- -- Find check type if one exists
-
- if Dsiz <= Standard_Integer_Size then
- Ctyp := Standard_Integer;
-
- elsif Dsiz <= Standard_Long_Long_Integer_Size then
- Ctyp := Standard_Long_Long_Integer;
-
- -- No check type exists, use runtime call
-
- else
- if Nkind (N) = N_Op_Add then
- Cent := RE_Add_With_Ovflo_Check;
-
- elsif Nkind (N) = N_Op_Multiply then
- Cent := RE_Multiply_With_Ovflo_Check;
-
- else
- pragma Assert (Nkind (N) = N_Op_Subtract);
- Cent := RE_Subtract_With_Ovflo_Check;
- end if;
-
- Rewrite (N,
- OK_Convert_To (Typ,
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (Cent), Loc),
- Parameter_Associations => New_List (
- OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
- OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
-
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- If we fall through, we have the case where we do the arithmetic in
- -- the next higher type and get the check by conversion. In these cases
- -- Ctyp is set to the type to be used as the check type.
-
- Opnod := Relocate_Node (N);
-
- Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
-
- Analyze (Opnd);
- Set_Etype (Opnd, Ctyp);
- Set_Analyzed (Opnd, True);
- Set_Left_Opnd (Opnod, Opnd);
-
- Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
-
- Analyze (Opnd);
- Set_Etype (Opnd, Ctyp);
- Set_Analyzed (Opnd, True);
- Set_Right_Opnd (Opnod, Opnd);
-
- -- The type of the operation changes to the base type of the check
- -- type, and we reset the overflow check indication, since clearly
- -- no overflow is possible now that we are using a double length
- -- type. We also set the Analyzed flag to avoid a recursive attempt
- -- to expand the node.
-
- Set_Etype (Opnod, Base_Type (Ctyp));
- Set_Do_Overflow_Check (Opnod, False);
- Set_Analyzed (Opnod, True);
-
- -- Now build the outer conversion
-
- Opnd := OK_Convert_To (Typ, Opnod);
- Analyze (Opnd);
- Set_Etype (Opnd, Typ);
-
- -- In the discrete type case, we directly generate the range check
- -- for the outer operand. This range check will implement the required
- -- overflow check.
-
- if Is_Discrete_Type (Typ) then
- Rewrite (N, Opnd);
- Generate_Range_Check (Expression (N), Typ, CE_Overflow_Check_Failed);
-
- -- For other types, we enable overflow checking on the conversion,
- -- after setting the node as analyzed to prevent recursive attempts
- -- to expand the conversion node.
-
- else
- Set_Analyzed (Opnd, True);
- Enable_Overflow_Check (Opnd);
- Rewrite (N, Opnd);
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Apply_Arithmetic_Overflow_Check;
-
- ----------------------------
- -- Apply_Array_Size_Check --
- ----------------------------
-
- -- The situation is as follows. In GNAT 3 (GCC 2.x), the size in bits
- -- is computed in 32 bits without an overflow check. That's a real
- -- problem for Ada. So what we do in GNAT 3 is to approximate the
- -- size of an array by manually multiplying the element size by the
- -- number of elements, and comparing that against the allowed limits.
-
- -- In GNAT 5, the size in byte is still computed in 32 bits without
- -- an overflow check in the dynamic case, but the size in bits is
- -- computed in 64 bits. We assume that's good enough, and we do not
- -- bother to generate any front end test.
-
- procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Ctyp : constant Entity_Id := Component_Type (Typ);
- Ent : constant Entity_Id := Defining_Identifier (N);
- Decl : Node_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- Lob : Uint;
- Hib : Uint;
- Siz : Uint;
- Xtyp : Entity_Id;
- Indx : Node_Id;
- Sizx : Node_Id;
- Code : Node_Id;
-
- Static : Boolean := True;
- -- Set false if any index subtye bound is non-static
-
- Umark : constant Uintp.Save_Mark := Uintp.Mark;
- -- We can throw away all the Uint computations here, since they are
- -- done only to generate boolean test results.
-
- Check_Siz : Uint;
- -- Size to check against
-
- function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
- -- Determines if Decl is an address clause or Import/Interface pragma
- -- that references the defining identifier of the current declaration.
-
- --------------------------
- -- Is_Address_Or_Import --
- --------------------------
-
- function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
- begin
- if Nkind (Decl) = N_At_Clause then
- return Chars (Identifier (Decl)) = Chars (Ent);
-
- elsif Nkind (Decl) = N_Attribute_Definition_Clause then
- return
- Chars (Decl) = Name_Address
- and then
- Nkind (Name (Decl)) = N_Identifier
- and then
- Chars (Name (Decl)) = Chars (Ent);
-
- elsif Nkind (Decl) = N_Pragma then
- if (Chars (Decl) = Name_Import
- or else
- Chars (Decl) = Name_Interface)
- and then Present (Pragma_Argument_Associations (Decl))
- then
- declare
- F : constant Node_Id :=
- First (Pragma_Argument_Associations (Decl));
-
- begin
- return
- Present (F)
- and then
- Present (Next (F))
- and then
- Nkind (Expression (Next (F))) = N_Identifier
- and then
- Chars (Expression (Next (F))) = Chars (Ent);
- end;
-
- else
- return False;
- end if;
-
- else
- return False;
- end if;
- end Is_Address_Or_Import;
-
- -- Start of processing for Apply_Array_Size_Check
-
- begin
- -- Do size check on local arrays. We only need this in the GCC 2
- -- case, since in GCC 3, we expect the back end to properly handle
- -- things. This routine can be removed when we baseline GNAT 3.
-
- if Opt.GCC_Version >= 3 then
- return;
- end if;
-
- -- No need for a check if not expanding
-
- if not Expander_Active then
- return;
- end if;
-
- -- No need for a check if checks are suppressed
-
- if Storage_Checks_Suppressed (Typ) then
- return;
- end if;
-
- -- It is pointless to insert this check inside an init proc, because
- -- that's too late, we have already built the object to be the right
- -- size, and if it's too large, too bad!
-
- if Inside_Init_Proc then
- return;
- end if;
-
- -- Look head for pragma interface/import or address clause applying
- -- to this entity. If found, we suppress the check entirely. For now
- -- we only look ahead 20 declarations to stop this becoming too slow
- -- Note that eventually this whole routine gets moved to gigi.
-
- Decl := N;
- for Ctr in 1 .. 20 loop
- Next (Decl);
- exit when No (Decl);
-
- if Is_Address_Or_Import (Decl) then
- return;
- end if;
- end loop;
-
- -- First step is to calculate the maximum number of elements. For
- -- this calculation, we use the actual size of the subtype if it is
- -- static, and if a bound of a subtype is non-static, we go to the
- -- bound of the base type.
-
- Siz := Uint_1;
- Indx := First_Index (Typ);
- while Present (Indx) loop
- Xtyp := Etype (Indx);
- Lo := Type_Low_Bound (Xtyp);
- Hi := Type_High_Bound (Xtyp);
-
- -- If any bound raises constraint error, we will never get this
- -- far, so there is no need to generate any kind of check.
-
- if Raises_Constraint_Error (Lo)
- or else
- Raises_Constraint_Error (Hi)
- then
- Uintp.Release (Umark);
- return;
- end if;
-
- -- Otherwise get bounds values
-
- if Is_Static_Expression (Lo) then
- Lob := Expr_Value (Lo);
- else
- Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
- Static := False;
- end if;
-
- if Is_Static_Expression (Hi) then
- Hib := Expr_Value (Hi);
- else
- Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
- Static := False;
- end if;
-
- Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
- Next_Index (Indx);
- end loop;
-
- -- Compute the limit against which we want to check. For subprograms,
- -- where the array will go on the stack, we use 8*2**24, which (in
- -- bits) is the size of a 16 megabyte array.
-
- if Is_Subprogram (Scope (Ent)) then
- Check_Siz := Uint_2 ** 27;
- else
- Check_Siz := Uint_2 ** 31;
- end if;
-
- -- If we have all static bounds and Siz is too large, then we know
- -- we know we have a storage error right now, so generate message
-
- if Static and then Siz >= Check_Siz then
- Insert_Action (N,
- Make_Raise_Storage_Error (Loc,
- Reason => SE_Object_Too_Large));
- Error_Msg_N ("?Storage_Error will be raised at run-time", N);
- Uintp.Release (Umark);
- return;
- end if;
-
- -- Case of component size known at compile time. If the array
- -- size is definitely in range, then we do not need a check.
-
- if Known_Esize (Ctyp)
- and then Siz * Esize (Ctyp) < Check_Siz
- then
- Uintp.Release (Umark);
- return;
- end if;
-
- -- Here if a dynamic check is required
-
- -- What we do is to build an expression for the size of the array,
- -- which is computed as the 'Size of the array component, times
- -- the size of each dimension.
-
- Uintp.Release (Umark);
-
- Sizx :=
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Ctyp, Loc),
- Attribute_Name => Name_Size);
-
- Indx := First_Index (Typ);
- for J in 1 .. Number_Dimensions (Typ) loop
- if Sloc (Etype (Indx)) = Sloc (N) then
- Ensure_Defined (Etype (Indx), N);
- end if;
-
- Sizx :=
- Make_Op_Multiply (Loc,
- Left_Opnd => Sizx,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Typ, Loc),
- Attribute_Name => Name_Length,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J))));
- Next_Index (Indx);
- end loop;
-
- -- Emit the check
-
- Code :=
- Make_Raise_Storage_Error (Loc,
- Condition =>
- Make_Op_Ge (Loc,
- Left_Opnd => Sizx,
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => Check_Siz)),
- Reason => SE_Object_Too_Large);
-
- Set_Size_Check_Code (Defining_Identifier (N), Code);
- Insert_Action (N, Code, Suppress => All_Checks);
- end Apply_Array_Size_Check;
-
- ----------------------------
- -- Apply_Constraint_Check --
- ----------------------------
-
- procedure Apply_Constraint_Check
- (N : Node_Id;
- Typ : Entity_Id;
- No_Sliding : Boolean := False)
- is
- Desig_Typ : Entity_Id;
-
- begin
- if Inside_A_Generic then
- return;
-
- elsif Is_Scalar_Type (Typ) then
- Apply_Scalar_Range_Check (N, Typ);
-
- elsif Is_Array_Type (Typ) then
-
- -- A useful optimization: an aggregate with only an others clause
- -- always has the right bounds.
-
- if Nkind (N) = N_Aggregate
- and then No (Expressions (N))
- and then Nkind
- (First (Choices (First (Component_Associations (N)))))
- = N_Others_Choice
- then
- return;
- end if;
-
- if Is_Constrained (Typ) then
- Apply_Length_Check (N, Typ);
-
- if No_Sliding then
- Apply_Range_Check (N, Typ);
- end if;
- else
- Apply_Range_Check (N, Typ);
- end if;
-
- elsif (Is_Record_Type (Typ)
- or else Is_Private_Type (Typ))
- and then Has_Discriminants (Base_Type (Typ))
- and then Is_Constrained (Typ)
- then
- Apply_Discriminant_Check (N, Typ);
-
- elsif Is_Access_Type (Typ) then
-
- Desig_Typ := Designated_Type (Typ);
-
- -- No checks necessary if expression statically null
-
- if Nkind (N) = N_Null then
- null;
-
- -- No sliding possible on access to arrays
-
- elsif Is_Array_Type (Desig_Typ) then
- if Is_Constrained (Desig_Typ) then
- Apply_Length_Check (N, Typ);
- end if;
-
- Apply_Range_Check (N, Typ);
-
- elsif Has_Discriminants (Base_Type (Desig_Typ))
- and then Is_Constrained (Desig_Typ)
- then
- Apply_Discriminant_Check (N, Typ);
- end if;
-
- if Can_Never_Be_Null (Typ)
- and then not Can_Never_Be_Null (Etype (N))
- then
- Install_Null_Excluding_Check (N);
- end if;
- end if;
- end Apply_Constraint_Check;
-
- ------------------------------
- -- Apply_Discriminant_Check --
- ------------------------------
-
- procedure Apply_Discriminant_Check
- (N : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id := Empty)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Do_Access : constant Boolean := Is_Access_Type (Typ);
- S_Typ : Entity_Id := Etype (N);
- Cond : Node_Id;
- T_Typ : Entity_Id;
-
- function Is_Aliased_Unconstrained_Component return Boolean;
- -- It is possible for an aliased component to have a nominal
- -- unconstrained subtype (through instantiation). If this is a
- -- discriminated component assigned in the expansion of an aggregate
- -- in an initialization, the check must be suppressed. This unusual
- -- situation requires a predicate of its own (see 7503-008).
-
- ----------------------------------------
- -- Is_Aliased_Unconstrained_Component --
- ----------------------------------------
-
- function Is_Aliased_Unconstrained_Component return Boolean is
- Comp : Entity_Id;
- Pref : Node_Id;
-
- begin
- if Nkind (Lhs) /= N_Selected_Component then
- return False;
- else
- Comp := Entity (Selector_Name (Lhs));
- Pref := Prefix (Lhs);
- end if;
-
- if Ekind (Comp) /= E_Component
- or else not Is_Aliased (Comp)
- then
- return False;
- end if;
-
- return not Comes_From_Source (Pref)
- and then In_Instance
- and then not Is_Constrained (Etype (Comp));
- end Is_Aliased_Unconstrained_Component;
-
- -- Start of processing for Apply_Discriminant_Check
-
- begin
- if Do_Access then
- T_Typ := Designated_Type (Typ);
- else
- T_Typ := Typ;
- end if;
-
- -- Nothing to do if discriminant checks are suppressed or else no code
- -- is to be generated
-
- if not Expander_Active
- or else Discriminant_Checks_Suppressed (T_Typ)
- then
- return;
- end if;
-
- -- No discriminant checks necessary for an access when expression
- -- is statically Null. This is not only an optimization, this is
- -- fundamental because otherwise discriminant checks may be generated
- -- in init procs for types containing an access to a not-yet-frozen
- -- record, causing a deadly forward reference.
-
- -- Also, if the expression is of an access type whose designated
- -- type is incomplete, then the access value must be null and
- -- we suppress the check.
-
- if Nkind (N) = N_Null then
- return;
-
- elsif Is_Access_Type (S_Typ) then
- S_Typ := Designated_Type (S_Typ);
-
- if Ekind (S_Typ) = E_Incomplete_Type then
- return;
- end if;
- end if;
-
- -- If an assignment target is present, then we need to generate
- -- the actual subtype if the target is a parameter or aliased
- -- object with an unconstrained nominal subtype.
-
- if Present (Lhs)
- and then (Present (Param_Entity (Lhs))
- or else (not Is_Constrained (T_Typ)
- and then Is_Aliased_View (Lhs)
- and then not Is_Aliased_Unconstrained_Component))
- then
- T_Typ := Get_Actual_Subtype (Lhs);
- end if;
-
- -- Nothing to do if the type is unconstrained (this is the case
- -- where the actual subtype in the RM sense of N is unconstrained
- -- and no check is required).
-
- if not Is_Constrained (T_Typ) then
- return;
-
- -- Ada 2005: nothing to do if the type is one for which there is a
- -- partial view that is constrained.
-
- elsif Ada_Version >= Ada_05
- and then Has_Constrained_Partial_View (Base_Type (T_Typ))
- then
- return;
- end if;
-
- -- Nothing to do if the type is an Unchecked_Union
-
- if Is_Unchecked_Union (Base_Type (T_Typ)) then
- return;
- end if;
-
- -- Suppress checks if the subtypes are the same.
- -- the check must be preserved in an assignment to a formal, because
- -- the constraint is given by the actual.
-
- if Nkind (Original_Node (N)) /= N_Allocator
- and then (No (Lhs)
- or else not Is_Entity_Name (Lhs)
- or else No (Param_Entity (Lhs)))
- then
- if (Etype (N) = Typ
- or else (Do_Access and then Designated_Type (Typ) = S_Typ))
- and then not Is_Aliased_View (Lhs)
- then
- return;
- end if;
-
- -- We can also eliminate checks on allocators with a subtype mark
- -- that coincides with the context type. The context type may be a
- -- subtype without a constraint (common case, a generic actual).
-
- elsif Nkind (Original_Node (N)) = N_Allocator
- and then Is_Entity_Name (Expression (Original_Node (N)))
- then
- declare
- Alloc_Typ : constant Entity_Id :=
- Entity (Expression (Original_Node (N)));
-
- begin
- if Alloc_Typ = T_Typ
- or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
- and then Is_Entity_Name (
- Subtype_Indication (Parent (T_Typ)))
- and then Alloc_Typ = Base_Type (T_Typ))
-
- then
- return;
- end if;
- end;
- end if;
-
- -- See if we have a case where the types are both constrained, and
- -- all the constraints are constants. In this case, we can do the
- -- check successfully at compile time.
-
- -- We skip this check for the case where the node is a rewritten`
- -- allocator, because it already carries the context subtype, and
- -- extracting the discriminants from the aggregate is messy.
-
- if Is_Constrained (S_Typ)
- and then Nkind (Original_Node (N)) /= N_Allocator
- then
- declare
- DconT : Elmt_Id;
- Discr : Entity_Id;
- DconS : Elmt_Id;
- ItemS : Node_Id;
- ItemT : Node_Id;
-
- begin
- -- S_Typ may not have discriminants in the case where it is a
- -- private type completed by a default discriminated type. In
- -- that case, we need to get the constraints from the
- -- underlying_type. If the underlying type is unconstrained (i.e.
- -- has no default discriminants) no check is needed.
-
- if Has_Discriminants (S_Typ) then
- Discr := First_Discriminant (S_Typ);
- DconS := First_Elmt (Discriminant_Constraint (S_Typ));
-
- else
- Discr := First_Discriminant (Underlying_Type (S_Typ));
- DconS :=
- First_Elmt
- (Discriminant_Constraint (Underlying_Type (S_Typ)));
-
- if No (DconS) then
- return;
- end if;
-
- -- A further optimization: if T_Typ is derived from S_Typ
- -- without imposing a constraint, no check is needed.
-
- if Nkind (Original_Node (Parent (T_Typ))) =
- N_Full_Type_Declaration
- then
- declare
- Type_Def : constant Node_Id :=
- Type_Definition
- (Original_Node (Parent (T_Typ)));
- begin
- if Nkind (Type_Def) = N_Derived_Type_Definition
- and then Is_Entity_Name (Subtype_Indication (Type_Def))
- and then Entity (Subtype_Indication (Type_Def)) = S_Typ
- then
- return;
- end if;
- end;
- end if;
- end if;
-
- DconT := First_Elmt (Discriminant_Constraint (T_Typ));
-
- while Present (Discr) loop
- ItemS := Node (DconS);
- ItemT := Node (DconT);
-
- exit when
- not Is_OK_Static_Expression (ItemS)
- or else
- not Is_OK_Static_Expression (ItemT);
-
- if Expr_Value (ItemS) /= Expr_Value (ItemT) then
- if Do_Access then -- needs run-time check.
- exit;
- else
- Apply_Compile_Time_Constraint_Error
- (N, "incorrect value for discriminant&?",
- CE_Discriminant_Check_Failed, Ent => Discr);
- return;
- end if;
- end if;
-
- Next_Elmt (DconS);
- Next_Elmt (DconT);
- Next_Discriminant (Discr);
- end loop;
-
- if No (Discr) then
- return;
- end if;
- end;
- end if;
-
- -- Here we need a discriminant check. First build the expression
- -- for the comparisons of the discriminants:
-
- -- (n.disc1 /= typ.disc1) or else
- -- (n.disc2 /= typ.disc2) or else
- -- ...
- -- (n.discn /= typ.discn)
-
- Cond := Build_Discriminant_Checks (N, T_Typ);
-
- -- If Lhs is set and is a parameter, then the condition is
- -- guarded by: lhs'constrained and then (condition built above)
-
- if Present (Param_Entity (Lhs)) then
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
- Attribute_Name => Name_Constrained),
- Right_Opnd => Cond);
- end if;
-
- if Do_Access then
- Cond := Guard_Access (Cond, Loc, N);
- end if;
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Discriminant_Check_Failed));
- end Apply_Discriminant_Check;
-
- ------------------------
- -- Apply_Divide_Check --
- ------------------------
-
- procedure Apply_Divide_Check (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
-
- LLB : Uint;
- Llo : Uint;
- Lhi : Uint;
- LOK : Boolean;
- Rlo : Uint;
- Rhi : Uint;
- ROK : Boolean;
-
- begin
- if Expander_Active
- and then not Backend_Divide_Checks_On_Target
- and then Check_Needed (Right, Division_Check)
- then
- Determine_Range (Right, ROK, Rlo, Rhi);
-
- -- See if division by zero possible, and if so generate test. This
- -- part of the test is not controlled by the -gnato switch.
-
- if Do_Division_Check (N) then
- if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
- Right_Opnd => Make_Integer_Literal (Loc, 0)),
- Reason => CE_Divide_By_Zero));
- end if;
- end if;
-
- -- Test for extremely annoying case of xxx'First divided by -1
-
- if Do_Overflow_Check (N) then
- if Nkind (N) = N_Op_Divide
- and then Is_Signed_Integer_Type (Typ)
- then
- Determine_Range (Left, LOK, Llo, Lhi);
- LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
-
- if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
- and then
- ((not LOK) or else (Llo = LLB))
- then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_And_Then (Loc,
-
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Duplicate_Subexpr_Move_Checks (Left),
- Right_Opnd => Make_Integer_Literal (Loc, LLB)),
-
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Duplicate_Subexpr (Right),
- Right_Opnd =>
- Make_Integer_Literal (Loc, -1))),
- Reason => CE_Overflow_Check_Failed));
- end if;
- end if;
- end if;
- end if;
- end Apply_Divide_Check;
-
- ----------------------------------
- -- Apply_Float_Conversion_Check --
- ----------------------------------
-
- -- Let F and I be the source and target types of the conversion.
- -- The Ada standard specifies that a floating-point value X is rounded
- -- to the nearest integer, with halfway cases being rounded away from
- -- zero. The rounded value of X is checked against I'Range.
-
- -- The catch in the above paragraph is that there is no good way
- -- to know whether the round-to-integer operation resulted in
- -- overflow. A remedy is to perform a range check in the floating-point
- -- domain instead, however:
- -- (1) The bounds may not be known at compile time
- -- (2) The check must take into account possible rounding.
- -- (3) The range of type I may not be exactly representable in F.
- -- (4) The end-points I'First - 0.5 and I'Last + 0.5 may or may
- -- not be in range, depending on the sign of I'First and I'Last.
- -- (5) X may be a NaN, which will fail any comparison
-
- -- The following steps take care of these issues converting X:
- -- (1) If either I'First or I'Last is not known at compile time, use
- -- I'Base instead of I in the next three steps and perform a
- -- regular range check against I'Range after conversion.
- -- (2) If I'First - 0.5 is representable in F then let Lo be that
- -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
- -- F'Machine (T) and let Lo_OK be (Lo >= I'First). In other words,
- -- take one of the closest floating-point numbers to T, and see if
- -- it is in range or not.
- -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
- -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
- -- F'Rounding (T) and let Hi_OK be (Hi <= I'Last).
- -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
- -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
-
- procedure Apply_Float_Conversion_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id)
- is
- LB : constant Node_Id := Type_Low_Bound (Target_Typ);
- HB : constant Node_Id := Type_High_Bound (Target_Typ);
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
- Target_Base : constant Entity_Id := Implementation_Base_Type
- (Target_Typ);
- Max_Bound : constant Uint := UI_Expon
- (Machine_Radix (Expr_Type),
- Machine_Mantissa (Expr_Type) - 1) - 1;
- -- Largest bound, so bound plus or minus half is a machine number of F
-
- Ifirst,
- Ilast : Uint; -- Bounds of integer type
- Lo, Hi : Ureal; -- Bounds to check in floating-point domain
- Lo_OK,
- Hi_OK : Boolean; -- True iff Lo resp. Hi belongs to I'Range
-
- Lo_Chk,
- Hi_Chk : Node_Id; -- Expressions that are False iff check fails
-
- Reason : RT_Exception_Code;
-
- begin
- if not Compile_Time_Known_Value (LB)
- or not Compile_Time_Known_Value (HB)
- then
- declare
- -- First check that the value falls in the range of the base
- -- type, to prevent overflow during conversion and then
- -- perform a regular range check against the (dynamic) bounds.
-
- Par : constant Node_Id := Parent (Ck_Node);
-
- pragma Assert (Target_Base /= Target_Typ);
- pragma Assert (Nkind (Par) = N_Type_Conversion);
-
- Temp : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('T'));
-
- begin
- Apply_Float_Conversion_Check (Ck_Node, Target_Base);
- Set_Etype (Temp, Target_Base);
-
- Insert_Action (Parent (Par),
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
- Expression => New_Copy_Tree (Par)),
- Suppress => All_Checks);
-
- Insert_Action (Par,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => New_Occurrence_Of (Temp, Loc),
- Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
- Reason => CE_Range_Check_Failed));
- Rewrite (Par, New_Occurrence_Of (Temp, Loc));
-
- return;
- end;
- end if;
-
- -- Get the bounds of the target type
-
- Ifirst := Expr_Value (LB);
- Ilast := Expr_Value (HB);
-
- -- Check against lower bound
-
- if abs (Ifirst) < Max_Bound then
- Lo := UR_From_Uint (Ifirst) - Ureal_Half;
- Lo_OK := (Ifirst > 0);
- else
- Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
- Lo_OK := (Lo >= UR_From_Uint (Ifirst));
- end if;
-
- if Lo_OK then
-
- -- Lo_Chk := (X >= Lo)
-
- Lo_Chk := Make_Op_Ge (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Lo));
-
- else
- -- Lo_Chk := (X > Lo)
-
- Lo_Chk := Make_Op_Gt (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Lo));
- end if;
-
- -- Check against higher bound
-
- if abs (Ilast) < Max_Bound then
- Hi := UR_From_Uint (Ilast) + Ureal_Half;
- Hi_OK := (Ilast < 0);
- else
- Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
- Hi_OK := (Hi <= UR_From_Uint (Ilast));
- end if;
-
- if Hi_OK then
-
- -- Hi_Chk := (X <= Hi)
-
- Hi_Chk := Make_Op_Le (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Hi));
-
- else
- -- Hi_Chk := (X < Hi)
-
- Hi_Chk := Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Hi));
- end if;
-
- -- If the bounds of the target type are the same as those of the
- -- base type, the check is an overflow check as a range check is
- -- not performed in these cases.
-
- if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
- and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
- then
- Reason := CE_Overflow_Check_Failed;
- else
- Reason := CE_Range_Check_Failed;
- end if;
-
- -- Raise CE if either conditions does not hold
-
- Insert_Action (Ck_Node,
- Make_Raise_Constraint_Error (Loc,
- Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
- Reason => Reason));
- end Apply_Float_Conversion_Check;
-
- ------------------------
- -- Apply_Length_Check --
- ------------------------
-
- procedure Apply_Length_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty)
- is
- begin
- Apply_Selected_Length_Checks
- (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
- end Apply_Length_Check;
-
- -----------------------
- -- Apply_Range_Check --
- -----------------------
-
- procedure Apply_Range_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty)
- is
- begin
- Apply_Selected_Range_Checks
- (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
- end Apply_Range_Check;
-
- ------------------------------
- -- Apply_Scalar_Range_Check --
- ------------------------------
-
- -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
- -- flag off if it is already set on.
-
- procedure Apply_Scalar_Range_Check
- (Expr : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty;
- Fixed_Int : Boolean := False)
- is
- Parnt : constant Node_Id := Parent (Expr);
- S_Typ : Entity_Id;
- Arr : Node_Id := Empty; -- initialize to prevent warning
- Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
- OK : Boolean;
-
- Is_Subscr_Ref : Boolean;
- -- Set true if Expr is a subscript
-
- Is_Unconstrained_Subscr_Ref : Boolean;
- -- Set true if Expr is a subscript of an unconstrained array. In this
- -- case we do not attempt to do an analysis of the value against the
- -- range of the subscript, since we don't know the actual subtype.
-
- Int_Real : Boolean;
- -- Set to True if Expr should be regarded as a real value
- -- even though the type of Expr might be discrete.
-
- procedure Bad_Value;
- -- Procedure called if value is determined to be out of range
-
- ---------------
- -- Bad_Value --
- ---------------
-
- procedure Bad_Value is
- begin
- Apply_Compile_Time_Constraint_Error
- (Expr, "value not in range of}?", CE_Range_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
- end Bad_Value;
-
- -- Start of processing for Apply_Scalar_Range_Check
-
- begin
- if Inside_A_Generic then
- return;
-
- -- Return if check obviously not needed. Note that we do not check
- -- for the expander being inactive, since this routine does not
- -- insert any code, but it does generate useful warnings sometimes,
- -- which we would like even if we are in semantics only mode.
-
- elsif Target_Typ = Any_Type
- or else not Is_Scalar_Type (Target_Typ)
- or else Raises_Constraint_Error (Expr)
- then
- return;
- end if;
-
- -- Now, see if checks are suppressed
-
- Is_Subscr_Ref :=
- Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
-
- if Is_Subscr_Ref then
- Arr := Prefix (Parnt);
- Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
- end if;
-
- if not Do_Range_Check (Expr) then
-
- -- Subscript reference. Check for Index_Checks suppressed
-
- if Is_Subscr_Ref then
-
- -- Check array type and its base type
-
- if Index_Checks_Suppressed (Arr_Typ)
- or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
- then
- return;
-
- -- Check array itself if it is an entity name
-
- elsif Is_Entity_Name (Arr)
- and then Index_Checks_Suppressed (Entity (Arr))
- then
- return;
-
- -- Check expression itself if it is an entity name
-
- elsif Is_Entity_Name (Expr)
- and then Index_Checks_Suppressed (Entity (Expr))
- then
- return;
- end if;
-
- -- All other cases, check for Range_Checks suppressed
-
- else
- -- Check target type and its base type
-
- if Range_Checks_Suppressed (Target_Typ)
- or else Range_Checks_Suppressed (Base_Type (Target_Typ))
- then
- return;
-
- -- Check expression itself if it is an entity name
-
- elsif Is_Entity_Name (Expr)
- and then Range_Checks_Suppressed (Entity (Expr))
- then
- return;
-
- -- If Expr is part of an assignment statement, then check
- -- left side of assignment if it is an entity name.
-
- elsif Nkind (Parnt) = N_Assignment_Statement
- and then Is_Entity_Name (Name (Parnt))
- and then Range_Checks_Suppressed (Entity (Name (Parnt)))
- then
- return;
- end if;
- end if;
- end if;
-
- -- Do not set range checks if they are killed
-
- if Nkind (Expr) = N_Unchecked_Type_Conversion
- and then Kill_Range_Check (Expr)
- then
- return;
- end if;
-
- -- Do not set range checks for any values from System.Scalar_Values
- -- since the whole idea of such values is to avoid checking them!
-
- if Is_Entity_Name (Expr)
- and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
- then
- return;
- end if;
-
- -- Now see if we need a check
-
- if No (Source_Typ) then
- S_Typ := Etype (Expr);
- else
- S_Typ := Source_Typ;
- end if;
-
- if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
- return;
- end if;
-
- Is_Unconstrained_Subscr_Ref :=
- Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
-
- -- Always do a range check if the source type includes infinities
- -- and the target type does not include infinities. We do not do
- -- this if range checks are killed.
-
- if Is_Floating_Point_Type (S_Typ)
- and then Has_Infinities (S_Typ)
- and then not Has_Infinities (Target_Typ)
- then
- Enable_Range_Check (Expr);
- end if;
-
- -- Return if we know expression is definitely in the range of
- -- the target type as determined by Determine_Range. Right now
- -- we only do this for discrete types, and not fixed-point or
- -- floating-point types.
-
- -- The additional less-precise tests below catch these cases
-
- -- Note: skip this if we are given a source_typ, since the point
- -- of supplying a Source_Typ is to stop us looking at the expression.
- -- could sharpen this test to be out parameters only ???
-
- if Is_Discrete_Type (Target_Typ)
- and then Is_Discrete_Type (Etype (Expr))
- and then not Is_Unconstrained_Subscr_Ref
- and then No (Source_Typ)
- then
- declare
- Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
- Thi : constant Node_Id := Type_High_Bound (Target_Typ);
- Lo : Uint;
- Hi : Uint;
-
- begin
- if Compile_Time_Known_Value (Tlo)
- and then Compile_Time_Known_Value (Thi)
- then
- declare
- Lov : constant Uint := Expr_Value (Tlo);
- Hiv : constant Uint := Expr_Value (Thi);
-
- begin
- -- If range is null, we for sure have a constraint error
- -- (we don't even need to look at the value involved,
- -- since all possible values will raise CE).
-
- if Lov > Hiv then
- Bad_Value;
- return;
- end if;
-
- -- Otherwise determine range of value
-
- Determine_Range (Expr, OK, Lo, Hi);
-
- if OK then
-
- -- If definitely in range, all OK
-
- if Lo >= Lov and then Hi <= Hiv then
- return;
-
- -- If definitely not in range, warn
-
- elsif Lov > Hi or else Hiv < Lo then
- Bad_Value;
- return;
-
- -- Otherwise we don't know
-
- else
- null;
- end if;
- end if;
- end;
- end if;
- end;
- end if;
-
- Int_Real :=
- Is_Floating_Point_Type (S_Typ)
- or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
-
- -- Check if we can determine at compile time whether Expr is in the
- -- range of the target type. Note that if S_Typ is within the bounds
- -- of Target_Typ then this must be the case. This check is meaningful
- -- only if this is not a conversion between integer and real types.
-
- if not Is_Unconstrained_Subscr_Ref
- and then
- Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
- and then
- (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
- or else
- Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
- then
- return;
-
- elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
- Bad_Value;
- return;
-
- -- In the floating-point case, we only do range checks if the
- -- type is constrained. We definitely do NOT want range checks
- -- for unconstrained types, since we want to have infinities
-
- elsif Is_Floating_Point_Type (S_Typ) then
- if Is_Constrained (S_Typ) then
- Enable_Range_Check (Expr);
- end if;
-
- -- For all other cases we enable a range check unconditionally
-
- else
- Enable_Range_Check (Expr);
- return;
- end if;
- end Apply_Scalar_Range_Check;
-
- ----------------------------------
- -- Apply_Selected_Length_Checks --
- ----------------------------------
-
- procedure Apply_Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean)
- is
- Cond : Node_Id;
- R_Result : Check_Result;
- R_Cno : Node_Id;
-
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Target_Typ))
- or else
- (not Length_Checks_Suppressed (Target_Typ));
-
- begin
- if not Expander_Active then
- return;
- end if;
-
- R_Result :=
- Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
-
- for J in 1 .. 2 loop
- R_Cno := R_Result (J);
- exit when No (R_Cno);
-
- -- A length check may mention an Itype which is attached to a
- -- subsequent node. At the top level in a package this can cause
- -- an order-of-elaboration problem, so we make sure that the itype
- -- is referenced now.
-
- if Ekind (Current_Scope) = E_Package
- and then Is_Compilation_Unit (Current_Scope)
- then
- Ensure_Defined (Target_Typ, Ck_Node);
-
- if Present (Source_Typ) then
- Ensure_Defined (Source_Typ, Ck_Node);
-
- elsif Is_Itype (Etype (Ck_Node)) then
- Ensure_Defined (Etype (Ck_Node), Ck_Node);
- end if;
- end if;
-
- -- If the item is a conditional raise of constraint error,
- -- then have a look at what check is being performed and
- -- ???
-
- if Nkind (R_Cno) = N_Raise_Constraint_Error
- and then Present (Condition (R_Cno))
- then
- Cond := Condition (R_Cno);
-
- if not Has_Dynamic_Length_Check (Ck_Node)
- and then Checks_On
- then
- Insert_Action (Ck_Node, R_Cno);
-
- if not Do_Static then
- Set_Has_Dynamic_Length_Check (Ck_Node);
- end if;
- end if;
-
- -- Output a warning if the condition is known to be True
-
- if Is_Entity_Name (Cond)
- and then Entity (Cond) = Standard_True
- then
- Apply_Compile_Time_Constraint_Error
- (Ck_Node, "wrong length for array of}?",
- CE_Length_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
-
- -- If we were only doing a static check, or if checks are not
- -- on, then we want to delete the check, since it is not needed.
- -- We do this by replacing the if statement by a null statement
-
- elsif Do_Static or else not Checks_On then
- Rewrite (R_Cno, Make_Null_Statement (Loc));
- end if;
-
- else
- Install_Static_Check (R_Cno, Loc);
- end if;
-
- end loop;
-
- end Apply_Selected_Length_Checks;
-
- ---------------------------------
- -- Apply_Selected_Range_Checks --
- ---------------------------------
-
- procedure Apply_Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean)
- is
- Cond : Node_Id;
- R_Result : Check_Result;
- R_Cno : Node_Id;
-
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Target_Typ))
- or else
- (not Range_Checks_Suppressed (Target_Typ));
-
- begin
- if not Expander_Active or else not Checks_On then
- return;
- end if;
-
- R_Result :=
- Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
-
- for J in 1 .. 2 loop
-
- R_Cno := R_Result (J);
- exit when No (R_Cno);
-
- -- If the item is a conditional raise of constraint error,
- -- then have a look at what check is being performed and
- -- ???
-
- if Nkind (R_Cno) = N_Raise_Constraint_Error
- and then Present (Condition (R_Cno))
- then
- Cond := Condition (R_Cno);
-
- if not Has_Dynamic_Range_Check (Ck_Node) then
- Insert_Action (Ck_Node, R_Cno);
-
- if not Do_Static then
- Set_Has_Dynamic_Range_Check (Ck_Node);
- end if;
- end if;
-
- -- Output a warning if the condition is known to be True
-
- if Is_Entity_Name (Cond)
- and then Entity (Cond) = Standard_True
- then
- -- Since an N_Range is technically not an expression, we
- -- have to set one of the bounds to C_E and then just flag
- -- the N_Range. The warning message will point to the
- -- lower bound and complain about a range, which seems OK.
-
- if Nkind (Ck_Node) = N_Range then
- Apply_Compile_Time_Constraint_Error
- (Low_Bound (Ck_Node), "static range out of bounds of}?",
- CE_Range_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
-
- Set_Raises_Constraint_Error (Ck_Node);
-
- else
- Apply_Compile_Time_Constraint_Error
- (Ck_Node, "static value out of range of}?",
- CE_Range_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
- end if;
-
- -- If we were only doing a static check, or if checks are not
- -- on, then we want to delete the check, since it is not needed.
- -- We do this by replacing the if statement by a null statement
-
- elsif Do_Static or else not Checks_On then
- Rewrite (R_Cno, Make_Null_Statement (Loc));
- end if;
-
- else
- Install_Static_Check (R_Cno, Loc);
- end if;
- end loop;
- end Apply_Selected_Range_Checks;
-
- -------------------------------
- -- Apply_Static_Length_Check --
- -------------------------------
-
- procedure Apply_Static_Length_Check
- (Expr : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty)
- is
- begin
- Apply_Selected_Length_Checks
- (Expr, Target_Typ, Source_Typ, Do_Static => True);
- end Apply_Static_Length_Check;
-
- -------------------------------------
- -- Apply_Subscript_Validity_Checks --
- -------------------------------------
-
- procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
- Sub : Node_Id;
-
- begin
- pragma Assert (Nkind (Expr) = N_Indexed_Component);
-
- -- Loop through subscripts
-
- Sub := First (Expressions (Expr));
- while Present (Sub) loop
-
- -- Check one subscript. Note that we do not worry about
- -- enumeration type with holes, since we will convert the
- -- value to a Pos value for the subscript, and that convert
- -- will do the necessary validity check.
-
- Ensure_Valid (Sub, Holes_OK => True);
-
- -- Move to next subscript
-
- Sub := Next (Sub);
- end loop;
- end Apply_Subscript_Validity_Checks;
-
- ----------------------------------
- -- Apply_Type_Conversion_Checks --
- ----------------------------------
-
- procedure Apply_Type_Conversion_Checks (N : Node_Id) is
- Target_Type : constant Entity_Id := Etype (N);
- Target_Base : constant Entity_Id := Base_Type (Target_Type);
- Expr : constant Node_Id := Expression (N);
- Expr_Type : constant Entity_Id := Etype (Expr);
-
- begin
- if Inside_A_Generic then
- return;
-
- -- Skip these checks if serious errors detected, there are some nasty
- -- situations of incomplete trees that blow things up.
-
- elsif Serious_Errors_Detected > 0 then
- return;
-
- -- Scalar type conversions of the form Target_Type (Expr) require
- -- a range check if we cannot be sure that Expr is in the base type
- -- of Target_Typ and also that Expr is in the range of Target_Typ.
- -- These are not quite the same condition from an implementation
- -- point of view, but clearly the second includes the first.
-
- elsif Is_Scalar_Type (Target_Type) then
- declare
- Conv_OK : constant Boolean := Conversion_OK (N);
- -- If the Conversion_OK flag on the type conversion is set
- -- and no floating point type is involved in the type conversion
- -- then fixed point values must be read as integral values.
-
- Float_To_Int : constant Boolean :=
- Is_Floating_Point_Type (Expr_Type)
- and then Is_Integer_Type (Target_Type);
-
- begin
- if not Overflow_Checks_Suppressed (Target_Base)
- and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
- and then not Float_To_Int
- then
- Set_Do_Overflow_Check (N);
- end if;
-
- if not Range_Checks_Suppressed (Target_Type)
- and then not Range_Checks_Suppressed (Expr_Type)
- then
- if Float_To_Int then
- Apply_Float_Conversion_Check (Expr, Target_Type);
- else
- Apply_Scalar_Range_Check
- (Expr, Target_Type, Fixed_Int => Conv_OK);
- end if;
- end if;
- end;
-
- elsif Comes_From_Source (N)
- and then Is_Record_Type (Target_Type)
- and then Is_Derived_Type (Target_Type)
- and then not Is_Tagged_Type (Target_Type)
- and then not Is_Constrained (Target_Type)
- and then Present (Stored_Constraint (Target_Type))
- then
- -- An unconstrained derived type may have inherited discriminant
- -- Build an actual discriminant constraint list using the stored
- -- constraint, to verify that the expression of the parent type
- -- satisfies the constraints imposed by the (unconstrained!)
- -- derived type. This applies to value conversions, not to view
- -- conversions of tagged types.
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Cond : Node_Id;
- Constraint : Elmt_Id;
- Discr_Value : Node_Id;
- Discr : Entity_Id;
-
- New_Constraints : constant Elist_Id := New_Elmt_List;
- Old_Constraints : constant Elist_Id :=
- Discriminant_Constraint (Expr_Type);
-
- begin
- Constraint := First_Elmt (Stored_Constraint (Target_Type));
-
- while Present (Constraint) loop
- Discr_Value := Node (Constraint);
-
- if Is_Entity_Name (Discr_Value)
- and then Ekind (Entity (Discr_Value)) = E_Discriminant
- then
- Discr := Corresponding_Discriminant (Entity (Discr_Value));
-
- if Present (Discr)
- and then Scope (Discr) = Base_Type (Expr_Type)
- then
- -- Parent is constrained by new discriminant. Obtain
- -- Value of original discriminant in expression. If
- -- the new discriminant has been used to constrain more
- -- than one of the stored discriminants, this will
- -- provide the required consistency check.
-
- Append_Elmt (
- Make_Selected_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks
- (Expr, Name_Req => True),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Discr))),
- New_Constraints);
-
- else
- -- Discriminant of more remote ancestor ???
-
- return;
- end if;
-
- -- Derived type definition has an explicit value for
- -- this stored discriminant.
-
- else
- Append_Elmt
- (Duplicate_Subexpr_No_Checks (Discr_Value),
- New_Constraints);
- end if;
-
- Next_Elmt (Constraint);
- end loop;
-
- -- Use the unconstrained expression type to retrieve the
- -- discriminants of the parent, and apply momentarily the
- -- discriminant constraint synthesized above.
-
- Set_Discriminant_Constraint (Expr_Type, New_Constraints);
- Cond := Build_Discriminant_Checks (Expr, Expr_Type);
- Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Discriminant_Check_Failed));
- end;
-
- -- For arrays, conversions are applied during expansion, to take
- -- into accounts changes of representation. The checks become range
- -- checks on the base type or length checks on the subtype, depending
- -- on whether the target type is unconstrained or constrained.
-
- else
- null;
- end if;
- end Apply_Type_Conversion_Checks;
-
- ----------------------------------------------
- -- Apply_Universal_Integer_Attribute_Checks --
- ----------------------------------------------
-
- procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- if Inside_A_Generic then
- return;
-
- -- Nothing to do if checks are suppressed
-
- elsif Range_Checks_Suppressed (Typ)
- and then Overflow_Checks_Suppressed (Typ)
- then
- return;
-
- -- Nothing to do if the attribute does not come from source. The
- -- internal attributes we generate of this type do not need checks,
- -- and furthermore the attempt to check them causes some circular
- -- elaboration orders when dealing with packed types.
-
- elsif not Comes_From_Source (N) then
- return;
-
- -- If the prefix is a selected component that depends on a discriminant
- -- the check may improperly expose a discriminant instead of using
- -- the bounds of the object itself. Set the type of the attribute to
- -- the base type of the context, so that a check will be imposed when
- -- needed (e.g. if the node appears as an index).
-
- elsif Nkind (Prefix (N)) = N_Selected_Component
- and then Ekind (Typ) = E_Signed_Integer_Subtype
- and then Depends_On_Discriminant (Scalar_Range (Typ))
- then
- Set_Etype (N, Base_Type (Typ));
-
- -- Otherwise, replace the attribute node with a type conversion
- -- node whose expression is the attribute, retyped to universal
- -- integer, and whose subtype mark is the target type. The call
- -- to analyze this conversion will set range and overflow checks
- -- as required for proper detection of an out of range value.
-
- else
- Set_Etype (N, Universal_Integer);
- Set_Analyzed (N, True);
-
- Rewrite (N,
- Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Typ, Loc),
- Expression => Relocate_Node (N)));
-
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- end Apply_Universal_Integer_Attribute_Checks;
-
- -------------------------------
- -- Build_Discriminant_Checks --
- -------------------------------
-
- function Build_Discriminant_Checks
- (N : Node_Id;
- T_Typ : Entity_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
- Cond : Node_Id;
- Disc : Elmt_Id;
- Disc_Ent : Entity_Id;
- Dref : Node_Id;
- Dval : Node_Id;
-
- function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
-
- ----------------------------------
- -- Aggregate_Discriminant_Value --
- ----------------------------------
-
- function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
- Assoc : Node_Id;
-
- begin
- -- The aggregate has been normalized with named associations. We
- -- use the Chars field to locate the discriminant to take into
- -- account discriminants in derived types, which carry the same
- -- name as those in the parent.
-
- Assoc := First (Component_Associations (N));
- while Present (Assoc) loop
- if Chars (First (Choices (Assoc))) = Chars (Disc) then
- return Expression (Assoc);
- else
- Next (Assoc);
- end if;
- end loop;
-
- -- Discriminant must have been found in the loop above
-
- raise Program_Error;
- end Aggregate_Discriminant_Val;
-
- -- Start of processing for Build_Discriminant_Checks
-
- begin
- -- Loop through discriminants evolving the condition
-
- Cond := Empty;
- Disc := First_Elmt (Discriminant_Constraint (T_Typ));
-
- -- For a fully private type, use the discriminants of the parent type
-
- if Is_Private_Type (T_Typ)
- and then No (Full_View (T_Typ))
- then
- Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
- else
- Disc_Ent := First_Discriminant (T_Typ);
- end if;
-
- while Present (Disc) loop
- Dval := Node (Disc);
-
- if Nkind (Dval) = N_Identifier
- and then Ekind (Entity (Dval)) = E_Discriminant
- then
- Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
- else
- Dval := Duplicate_Subexpr_No_Checks (Dval);
- end if;
-
- -- If we have an Unchecked_Union node, we can infer the discriminants
- -- of the node.
-
- if Is_Unchecked_Union (Base_Type (T_Typ)) then
- Dref := New_Copy (
- Get_Discriminant_Value (
- First_Discriminant (T_Typ),
- T_Typ,
- Stored_Constraint (T_Typ)));
-
- elsif Nkind (N) = N_Aggregate then
- Dref :=
- Duplicate_Subexpr_No_Checks
- (Aggregate_Discriminant_Val (Disc_Ent));
-
- else
- Dref :=
- Make_Selected_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Disc_Ent)));
-
- Set_Is_In_Discriminant_Check (Dref);
- end if;
-
- Evolve_Or_Else (Cond,
- Make_Op_Ne (Loc,
- Left_Opnd => Dref,
- Right_Opnd => Dval));
-
- Next_Elmt (Disc);
- Next_Discriminant (Disc_Ent);
- end loop;
-
- return Cond;
- end Build_Discriminant_Checks;
-
- ------------------
- -- Check_Needed --
- ------------------
-
- function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
- N : Node_Id;
- P : Node_Id;
- K : Node_Kind;
- L : Node_Id;
- R : Node_Id;
-
- begin
- -- Always check if not simple entity
-
- if Nkind (Nod) not in N_Has_Entity
- or else not Comes_From_Source (Nod)
- then
- return True;
- end if;
-
- -- Look up tree for short circuit
-
- N := Nod;
- loop
- P := Parent (N);
- K := Nkind (P);
-
- if K not in N_Subexpr then
- return True;
-
- -- Or/Or Else case, left operand must be equality test
-
- elsif K = N_Op_Or or else K = N_Or_Else then
- exit when N = Right_Opnd (P)
- and then Nkind (Left_Opnd (P)) = N_Op_Eq;
-
- -- And/And then case, left operand must be inequality test
-
- elsif K = N_Op_And or else K = N_And_Then then
- exit when N = Right_Opnd (P)
- and then Nkind (Left_Opnd (P)) = N_Op_Ne;
- end if;
-
- N := P;
- end loop;
-
- -- If we fall through the loop, then we have a conditional with an
- -- appropriate test as its left operand. So test further.
-
- L := Left_Opnd (P);
-
- if Nkind (L) = N_Op_Not then
- L := Right_Opnd (L);
- end if;
-
- R := Right_Opnd (L);
- L := Left_Opnd (L);
-
- -- Left operand of test must match original variable
-
- if Nkind (L) not in N_Has_Entity
- or else Entity (L) /= Entity (Nod)
- then
- return True;
- end if;
-
- -- Right operand of test mus be key value (zero or null)
-
- case Check is
- when Access_Check =>
- if Nkind (R) /= N_Null then
- return True;
- end if;
-
- when Division_Check =>
- if not Compile_Time_Known_Value (R)
- or else Expr_Value (R) /= Uint_0
- then
- return True;
- end if;
- end case;
-
- -- Here we have the optimizable case, warn if not short-circuited
-
- if K = N_Op_And or else K = N_Op_Or then
- case Check is
- when Access_Check =>
- Error_Msg_N
- ("Constraint_Error may be raised (access check)?",
- Parent (Nod));
- when Division_Check =>
- Error_Msg_N
- ("Constraint_Error may be raised (zero divide)?",
- Parent (Nod));
- end case;
-
- if K = N_Op_And then
- Error_Msg_N ("use `AND THEN` instead of AND?", P);
- else
- Error_Msg_N ("use `OR ELSE` instead of OR?", P);
- end if;
-
- -- If not short-circuited, we need the ckeck
-
- return True;
-
- -- If short-circuited, we can omit the check
-
- else
- return False;
- end if;
- end Check_Needed;
-
- -----------------------------------
- -- Check_Valid_Lvalue_Subscripts --
- -----------------------------------
-
- procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
- begin
- -- Skip this if range checks are suppressed
-
- if Range_Checks_Suppressed (Etype (Expr)) then
- return;
-
- -- Only do this check for expressions that come from source. We
- -- assume that expander generated assignments explicitly include
- -- any necessary checks. Note that this is not just an optimization,
- -- it avoids infinite recursions!
-
- elsif not Comes_From_Source (Expr) then
- return;
-
- -- For a selected component, check the prefix
-
- elsif Nkind (Expr) = N_Selected_Component then
- Check_Valid_Lvalue_Subscripts (Prefix (Expr));
- return;
-
- -- Case of indexed component
-
- elsif Nkind (Expr) = N_Indexed_Component then
- Apply_Subscript_Validity_Checks (Expr);
-
- -- Prefix may itself be or contain an indexed component, and
- -- these subscripts need checking as well
-
- Check_Valid_Lvalue_Subscripts (Prefix (Expr));
- end if;
- end Check_Valid_Lvalue_Subscripts;
-
- ----------------------------------
- -- Null_Exclusion_Static_Checks --
- ----------------------------------
-
- procedure Null_Exclusion_Static_Checks (N : Node_Id) is
- K : constant Node_Kind := Nkind (N);
- Typ : Entity_Id;
- Related_Nod : Node_Id;
- Has_Null_Exclusion : Boolean := False;
-
- begin
- pragma Assert (K = N_Parameter_Specification
- or else K = N_Object_Declaration
- or else K = N_Discriminant_Specification
- or else K = N_Component_Declaration);
-
- Typ := Etype (Defining_Identifier (N));
-
- pragma Assert (Is_Access_Type (Typ)
- or else (K = N_Object_Declaration and then Is_Array_Type (Typ)));
-
- case K is
- when N_Parameter_Specification =>
- Related_Nod := Parameter_Type (N);
- Has_Null_Exclusion := Null_Exclusion_Present (N);
-
- when N_Object_Declaration =>
- Related_Nod := Object_Definition (N);
- Has_Null_Exclusion := Null_Exclusion_Present (N);
-
- when N_Discriminant_Specification =>
- Related_Nod := Discriminant_Type (N);
- Has_Null_Exclusion := Null_Exclusion_Present (N);
-
- when N_Component_Declaration =>
- if Present (Access_Definition (Component_Definition (N))) then
- Related_Nod := Component_Definition (N);
- Has_Null_Exclusion :=
- Null_Exclusion_Present
- (Access_Definition (Component_Definition (N)));
- else
- Related_Nod :=
- Subtype_Indication (Component_Definition (N));
- Has_Null_Exclusion :=
- Null_Exclusion_Present (Component_Definition (N));
- end if;
-
- when others =>
- raise Program_Error;
- end case;
-
- -- Enforce legality rule 3.10 (14/1): A null_exclusion is only allowed
- -- of the access subtype does not exclude null.
-
- if Has_Null_Exclusion
- and then Can_Never_Be_Null (Typ)
-
- -- No need to check itypes that have the null-excluding attribute
- -- because they were checked at their point of creation
-
- and then not Is_Itype (Typ)
- then
- Error_Msg_N
- ("(Ada 2005) already a null-excluding type", Related_Nod);
- end if;
-
- -- Check that null-excluding objects are always initialized
-
- if K = N_Object_Declaration
- and then No (Expression (N))
- then
- -- Add a an expression that assignates null. This node is needed
- -- by Apply_Compile_Time_Constraint_Error, that will replace this
- -- node by a Constraint_Error node.
-
- Set_Expression (N, Make_Null (Sloc (N)));
- Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
-
- Apply_Compile_Time_Constraint_Error
- (N => Expression (N),
- Msg => "(Ada 2005) null-excluding objects must be initialized?",
- Reason => CE_Null_Not_Allowed);
- end if;
-
- -- Check that the null value is not used as a single expression to
- -- assignate a value to a null-excluding component, formal or object;
- -- otherwise generate a warning message at the sloc of Related_Nod and
- -- replace Expression (N) by an N_Contraint_Error node.
-
- declare
- Expr : constant Node_Id := Expression (N);
-
- begin
- if Present (Expr)
- and then Nkind (Expr) = N_Null
- then
- case K is
- when N_Discriminant_Specification |
- N_Component_Declaration =>
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) NULL not allowed in"
- & " null-excluding components?",
- Reason => CE_Null_Not_Allowed);
-
- when N_Parameter_Specification =>
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) NULL not allowed in"
- & " null-excluding formals?",
- Reason => CE_Null_Not_Allowed);
-
- when N_Object_Declaration =>
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) NULL not allowed in"
- & " null-excluding objects?",
- Reason => CE_Null_Not_Allowed);
-
- when others =>
- null;
- end case;
- end if;
- end;
- end Null_Exclusion_Static_Checks;
-
- ----------------------------------
- -- Conditional_Statements_Begin --
- ----------------------------------
-
- procedure Conditional_Statements_Begin is
- begin
- Saved_Checks_TOS := Saved_Checks_TOS + 1;
-
- -- If stack overflows, kill all checks, that way we know to
- -- simply reset the number of saved checks to zero on return.
- -- This should never occur in practice.
-
- if Saved_Checks_TOS > Saved_Checks_Stack'Last then
- Kill_All_Checks;
-
- -- In the normal case, we just make a new stack entry saving
- -- the current number of saved checks for a later restore.
-
- else
- Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
-
- if Debug_Flag_CC then
- w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
- Num_Saved_Checks);
- end if;
- end if;
- end Conditional_Statements_Begin;
-
- --------------------------------
- -- Conditional_Statements_End --
- --------------------------------
-
- procedure Conditional_Statements_End is
- begin
- pragma Assert (Saved_Checks_TOS > 0);
-
- -- If the saved checks stack overflowed, then we killed all
- -- checks, so setting the number of saved checks back to
- -- zero is correct. This should never occur in practice.
-
- if Saved_Checks_TOS > Saved_Checks_Stack'Last then
- Num_Saved_Checks := 0;
-
- -- In the normal case, restore the number of saved checks
- -- from the top stack entry.
-
- else
- Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
- if Debug_Flag_CC then
- w ("Conditional_Statements_End: Num_Saved_Checks = ",
- Num_Saved_Checks);
- end if;
- end if;
-
- Saved_Checks_TOS := Saved_Checks_TOS - 1;
- end Conditional_Statements_End;
-
- ---------------------
- -- Determine_Range --
- ---------------------
-
- Cache_Size : constant := 2 ** 10;
- type Cache_Index is range 0 .. Cache_Size - 1;
- -- Determine size of below cache (power of 2 is more efficient!)
-
- Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
- Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
- Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
- -- The above arrays are used to implement a small direct cache
- -- for Determine_Range calls. Because of the way Determine_Range
- -- recursively traces subexpressions, and because overflow checking
- -- calls the routine on the way up the tree, a quadratic behavior
- -- can otherwise be encountered in large expressions. The cache
- -- entry for node N is stored in the (N mod Cache_Size) entry, and
- -- can be validated by checking the actual node value stored there.
-
- procedure Determine_Range
- (N : Node_Id;
- OK : out Boolean;
- Lo : out Uint;
- Hi : out Uint)
- is
- Typ : constant Entity_Id := Etype (N);
-
- Lo_Left : Uint;
- Hi_Left : Uint;
- -- Lo and Hi bounds of left operand
-
- Lo_Right : Uint;
- Hi_Right : Uint;
- -- Lo and Hi bounds of right (or only) operand
-
- Bound : Node_Id;
- -- Temp variable used to hold a bound node
-
- Hbound : Uint;
- -- High bound of base type of expression
-
- Lor : Uint;
- Hir : Uint;
- -- Refined values for low and high bounds, after tightening
-
- OK1 : Boolean;
- -- Used in lower level calls to indicate if call succeeded
-
- Cindex : Cache_Index;
- -- Used to search cache
-
- function OK_Operands return Boolean;
- -- Used for binary operators. Determines the ranges of the left and
- -- right operands, and if they are both OK, returns True, and puts
- -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
-
- -----------------
- -- OK_Operands --
- -----------------
-
- function OK_Operands return Boolean is
- begin
- Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
-
- if not OK1 then
- return False;
- end if;
-
- Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
- return OK1;
- end OK_Operands;
-
- -- Start of processing for Determine_Range
-
- begin
- -- Prevent junk warnings by initializing range variables
-
- Lo := No_Uint;
- Hi := No_Uint;
- Lor := No_Uint;
- Hir := No_Uint;
-
- -- If the type is not discrete, or is undefined, then we can't
- -- do anything about determining the range.
-
- if No (Typ) or else not Is_Discrete_Type (Typ)
- or else Error_Posted (N)
- then
- OK := False;
- return;
- end if;
-
- -- For all other cases, we can determine the range
-
- OK := True;
-
- -- If value is compile time known, then the possible range is the
- -- one value that we know this expression definitely has!
-
- if Compile_Time_Known_Value (N) then
- Lo := Expr_Value (N);
- Hi := Lo;
- return;
- end if;
-
- -- Return if already in the cache
-
- Cindex := Cache_Index (N mod Cache_Size);
-
- if Determine_Range_Cache_N (Cindex) = N then
- Lo := Determine_Range_Cache_Lo (Cindex);
- Hi := Determine_Range_Cache_Hi (Cindex);
- return;
- end if;
-
- -- Otherwise, start by finding the bounds of the type of the
- -- expression, the value cannot be outside this range (if it
- -- is, then we have an overflow situation, which is a separate
- -- check, we are talking here only about the expression value).
-
- -- We use the actual bound unless it is dynamic, in which case
- -- use the corresponding base type bound if possible. If we can't
- -- get a bound then we figure we can't determine the range (a
- -- peculiar case, that perhaps cannot happen, but there is no
- -- point in bombing in this optimization circuit.
-
- -- First the low bound
-
- Bound := Type_Low_Bound (Typ);
-
- if Compile_Time_Known_Value (Bound) then
- Lo := Expr_Value (Bound);
-
- elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
- Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
-
- else
- OK := False;
- return;
- end if;
-
- -- Now the high bound
-
- Bound := Type_High_Bound (Typ);
-
- -- We need the high bound of the base type later on, and this should
- -- always be compile time known. Again, it is not clear that this
- -- can ever be false, but no point in bombing.
-
- if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
- Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
- Hi := Hbound;
-
- else
- OK := False;
- return;
- end if;
-
- -- If we have a static subtype, then that may have a tighter bound
- -- so use the upper bound of the subtype instead in this case.
-
- if Compile_Time_Known_Value (Bound) then
- Hi := Expr_Value (Bound);
- end if;
-
- -- We may be able to refine this value in certain situations. If
- -- refinement is possible, then Lor and Hir are set to possibly
- -- tighter bounds, and OK1 is set to True.
-
- case Nkind (N) is
-
- -- For unary plus, result is limited by range of operand
-
- when N_Op_Plus =>
- Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
-
- -- For unary minus, determine range of operand, and negate it
-
- when N_Op_Minus =>
- Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
-
- if OK1 then
- Lor := -Hi_Right;
- Hir := -Lo_Right;
- end if;
-
- -- For binary addition, get range of each operand and do the
- -- addition to get the result range.
-
- when N_Op_Add =>
- if OK_Operands then
- Lor := Lo_Left + Lo_Right;
- Hir := Hi_Left + Hi_Right;
- end if;
-
- -- Division is tricky. The only case we consider is where the
- -- right operand is a positive constant, and in this case we
- -- simply divide the bounds of the left operand
-
- when N_Op_Divide =>
- if OK_Operands then
- if Lo_Right = Hi_Right
- and then Lo_Right > 0
- then
- Lor := Lo_Left / Lo_Right;
- Hir := Hi_Left / Lo_Right;
-
- else
- OK1 := False;
- end if;
- end if;
-
- -- For binary subtraction, get range of each operand and do
- -- the worst case subtraction to get the result range.
-
- when N_Op_Subtract =>
- if OK_Operands then
- Lor := Lo_Left - Hi_Right;
- Hir := Hi_Left - Lo_Right;
- end if;
-
- -- For MOD, if right operand is a positive constant, then
- -- result must be in the allowable range of mod results.
-
- when N_Op_Mod =>
- if OK_Operands then
- if Lo_Right = Hi_Right
- and then Lo_Right /= 0
- then
- if Lo_Right > 0 then
- Lor := Uint_0;
- Hir := Lo_Right - 1;
-
- else -- Lo_Right < 0
- Lor := Lo_Right + 1;
- Hir := Uint_0;
- end if;
-
- else
- OK1 := False;
- end if;
- end if;
-
- -- For REM, if right operand is a positive constant, then
- -- result must be in the allowable range of mod results.
-
- when N_Op_Rem =>
- if OK_Operands then
- if Lo_Right = Hi_Right
- and then Lo_Right /= 0
- then
- declare
- Dval : constant Uint := (abs Lo_Right) - 1;
-
- begin
- -- The sign of the result depends on the sign of the
- -- dividend (but not on the sign of the divisor, hence
- -- the abs operation above).
-
- if Lo_Left < 0 then
- Lor := -Dval;
- else
- Lor := Uint_0;
- end if;
-
- if Hi_Left < 0 then
- Hir := Uint_0;
- else
- Hir := Dval;
- end if;
- end;
-
- else
- OK1 := False;
- end if;
- end if;
-
- -- Attribute reference cases
-
- when N_Attribute_Reference =>
- case Attribute_Name (N) is
-
- -- For Pos/Val attributes, we can refine the range using the
- -- possible range of values of the attribute expression
-
- when Name_Pos | Name_Val =>
- Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
-
- -- For Length attribute, use the bounds of the corresponding
- -- index type to refine the range.
-
- when Name_Length =>
- declare
- Atyp : Entity_Id := Etype (Prefix (N));
- Inum : Nat;
- Indx : Node_Id;
-
- LL, LU : Uint;
- UL, UU : Uint;
-
- begin
- if Is_Access_Type (Atyp) then
- Atyp := Designated_Type (Atyp);
- end if;
-
- -- For string literal, we know exact value
-
- if Ekind (Atyp) = E_String_Literal_Subtype then
- OK := True;
- Lo := String_Literal_Length (Atyp);
- Hi := String_Literal_Length (Atyp);
- return;
- end if;
-
- -- Otherwise check for expression given
-
- if No (Expressions (N)) then
- Inum := 1;
- else
- Inum :=
- UI_To_Int (Expr_Value (First (Expressions (N))));
- end if;
-
- Indx := First_Index (Atyp);
- for J in 2 .. Inum loop
- Indx := Next_Index (Indx);
- end loop;
-
- Determine_Range
- (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
-
- if OK1 then
- Determine_Range
- (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
-
- if OK1 then
-
- -- The maximum value for Length is the biggest
- -- possible gap between the values of the bounds.
- -- But of course, this value cannot be negative.
-
- Hir := UI_Max (Uint_0, UU - LL);
-
- -- For constrained arrays, the minimum value for
- -- Length is taken from the actual value of the
- -- bounds, since the index will be exactly of
- -- this subtype.
-
- if Is_Constrained (Atyp) then
- Lor := UI_Max (Uint_0, UL - LU);
-
- -- For an unconstrained array, the minimum value
- -- for length is always zero.
-
- else
- Lor := Uint_0;
- end if;
- end if;
- end if;
- end;
-
- -- No special handling for other attributes
- -- Probably more opportunities exist here ???
-
- when others =>
- OK1 := False;
-
- end case;
-
- -- For type conversion from one discrete type to another, we
- -- can refine the range using the converted value.
-
- when N_Type_Conversion =>
- Determine_Range (Expression (N), OK1, Lor, Hir);
-
- -- Nothing special to do for all other expression kinds
-
- when others =>
- OK1 := False;
- Lor := No_Uint;
- Hir := No_Uint;
- end case;
-
- -- At this stage, if OK1 is true, then we know that the actual
- -- result of the computed expression is in the range Lor .. Hir.
- -- We can use this to restrict the possible range of results.
-
- if OK1 then
-
- -- If the refined value of the low bound is greater than the
- -- type high bound, then reset it to the more restrictive
- -- value. However, we do NOT do this for the case of a modular
- -- type where the possible upper bound on the value is above the
- -- base type high bound, because that means the result could wrap.
-
- if Lor > Lo
- and then not (Is_Modular_Integer_Type (Typ)
- and then Hir > Hbound)
- then
- Lo := Lor;
- end if;
-
- -- Similarly, if the refined value of the high bound is less
- -- than the value so far, then reset it to the more restrictive
- -- value. Again, we do not do this if the refined low bound is
- -- negative for a modular type, since this would wrap.
-
- if Hir < Hi
- and then not (Is_Modular_Integer_Type (Typ)
- and then Lor < Uint_0)
- then
- Hi := Hir;
- end if;
- end if;
-
- -- Set cache entry for future call and we are all done
-
- Determine_Range_Cache_N (Cindex) := N;
- Determine_Range_Cache_Lo (Cindex) := Lo;
- Determine_Range_Cache_Hi (Cindex) := Hi;
- return;
-
- -- If any exception occurs, it means that we have some bug in the compiler
- -- possibly triggered by a previous error, or by some unforseen peculiar
- -- occurrence. However, this is only an optimization attempt, so there is
- -- really no point in crashing the compiler. Instead we just decide, too
- -- bad, we can't figure out a range in this case after all.
-
- exception
- when others =>
-
- -- Debug flag K disables this behavior (useful for debugging)
-
- if Debug_Flag_K then
- raise;
- else
- OK := False;
- Lo := No_Uint;
- Hi := No_Uint;
- return;
- end if;
- end Determine_Range;
-
- ------------------------------------
- -- Discriminant_Checks_Suppressed --
- ------------------------------------
-
- function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) then
- if Is_Unchecked_Union (E) then
- return True;
- elsif Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Discriminant_Check);
- end if;
- end if;
-
- return Scope_Suppress (Discriminant_Check);
- end Discriminant_Checks_Suppressed;
-
- --------------------------------
- -- Division_Checks_Suppressed --
- --------------------------------
-
- function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Division_Check);
- else
- return Scope_Suppress (Division_Check);
- end if;
- end Division_Checks_Suppressed;
-
- -----------------------------------
- -- Elaboration_Checks_Suppressed --
- -----------------------------------
-
- function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- -- The complication in this routine is that if we are in the dynamic
- -- model of elaboration, we also check All_Checks, since All_Checks
- -- does not set Elaboration_Check explicitly.
-
- if Present (E) then
- if Kill_Elaboration_Checks (E) then
- return True;
-
- elsif Checks_May_Be_Suppressed (E) then
- if Is_Check_Suppressed (E, Elaboration_Check) then
- return True;
- elsif Dynamic_Elaboration_Checks then
- return Is_Check_Suppressed (E, All_Checks);
- else
- return False;
- end if;
- end if;
- end if;
-
- if Scope_Suppress (Elaboration_Check) then
- return True;
- elsif Dynamic_Elaboration_Checks then
- return Scope_Suppress (All_Checks);
- else
- return False;
- end if;
- end Elaboration_Checks_Suppressed;
-
- ---------------------------
- -- Enable_Overflow_Check --
- ---------------------------
-
- procedure Enable_Overflow_Check (N : Node_Id) is
- Typ : constant Entity_Id := Base_Type (Etype (N));
- Chk : Nat;
- OK : Boolean;
- Ent : Entity_Id;
- Ofs : Uint;
- Lo : Uint;
- Hi : Uint;
-
- begin
- if Debug_Flag_CC then
- w ("Enable_Overflow_Check for node ", Int (N));
- Write_Str (" Source location = ");
- wl (Sloc (N));
- pg (N);
- end if;
-
- -- Nothing to do if the range of the result is known OK. We skip
- -- this for conversions, since the caller already did the check,
- -- and in any case the condition for deleting the check for a
- -- type conversion is different in any case.
-
- if Nkind (N) /= N_Type_Conversion then
- Determine_Range (N, OK, Lo, Hi);
-
- -- Note in the test below that we assume that if a bound of the
- -- range is equal to that of the type. That's not quite accurate
- -- but we do this for the following reasons:
-
- -- a) The way that Determine_Range works, it will typically report
- -- the bounds of the value as being equal to the bounds of the
- -- type, because it either can't tell anything more precise, or
- -- does not think it is worth the effort to be more precise.
-
- -- b) It is very unusual to have a situation in which this would
- -- generate an unnecessary overflow check (an example would be
- -- a subtype with a range 0 .. Integer'Last - 1 to which the
- -- literal value one is added.
-
- -- c) The alternative is a lot of special casing in this routine
- -- which would partially duplicate Determine_Range processing.
-
- if OK
- and then Lo > Expr_Value (Type_Low_Bound (Typ))
- and then Hi < Expr_Value (Type_High_Bound (Typ))
- then
- if Debug_Flag_CC then
- w ("No overflow check required");
- end if;
-
- return;
- end if;
- end if;
-
- -- If not in optimizing mode, set flag and we are done. We are also
- -- done (and just set the flag) if the type is not a discrete type,
- -- since it is not worth the effort to eliminate checks for other
- -- than discrete types. In addition, we take this same path if we
- -- have stored the maximum number of checks possible already (a
- -- very unlikely situation, but we do not want to blow up!)
-
- if Optimization_Level = 0
- or else not Is_Discrete_Type (Etype (N))
- or else Num_Saved_Checks = Saved_Checks'Last
- then
- Set_Do_Overflow_Check (N, True);
-
- if Debug_Flag_CC then
- w ("Optimization off");
- end if;
-
- return;
- end if;
-
- -- Otherwise evaluate and check the expression
-
- Find_Check
- (Expr => N,
- Check_Type => 'O',
- Target_Type => Empty,
- Entry_OK => OK,
- Check_Num => Chk,
- Ent => Ent,
- Ofs => Ofs);
-
- if Debug_Flag_CC then
- w ("Called Find_Check");
- w (" OK = ", OK);
-
- if OK then
- w (" Check_Num = ", Chk);
- w (" Ent = ", Int (Ent));
- Write_Str (" Ofs = ");
- pid (Ofs);
- end if;
- end if;
-
- -- If check is not of form to optimize, then set flag and we are done
-
- if not OK then
- Set_Do_Overflow_Check (N, True);
- return;
- end if;
-
- -- If check is already performed, then return without setting flag
-
- if Chk /= 0 then
- if Debug_Flag_CC then
- w ("Check suppressed!");
- end if;
-
- return;
- end if;
-
- -- Here we will make a new entry for the new check
-
- Set_Do_Overflow_Check (N, True);
- Num_Saved_Checks := Num_Saved_Checks + 1;
- Saved_Checks (Num_Saved_Checks) :=
- (Killed => False,
- Entity => Ent,
- Offset => Ofs,
- Check_Type => 'O',
- Target_Type => Empty);
-
- if Debug_Flag_CC then
- w ("Make new entry, check number = ", Num_Saved_Checks);
- w (" Entity = ", Int (Ent));
- Write_Str (" Offset = ");
- pid (Ofs);
- w (" Check_Type = O");
- w (" Target_Type = Empty");
- end if;
-
- -- If we get an exception, then something went wrong, probably because
- -- of an error in the structure of the tree due to an incorrect program.
- -- Or it may be a bug in the optimization circuit. In either case the
- -- safest thing is simply to set the check flag unconditionally.
-
- exception
- when others =>
- Set_Do_Overflow_Check (N, True);
-
- if Debug_Flag_CC then
- w (" exception occurred, overflow flag set");
- end if;
-
- return;
- end Enable_Overflow_Check;
-
- ------------------------
- -- Enable_Range_Check --
- ------------------------
-
- procedure Enable_Range_Check (N : Node_Id) is
- Chk : Nat;
- OK : Boolean;
- Ent : Entity_Id;
- Ofs : Uint;
- Ttyp : Entity_Id;
- P : Node_Id;
-
- begin
- -- Return if unchecked type conversion with range check killed.
- -- In this case we never set the flag (that's what Kill_Range_Check
- -- is all about!)
-
- if Nkind (N) = N_Unchecked_Type_Conversion
- and then Kill_Range_Check (N)
- then
- return;
- end if;
-
- -- Debug trace output
-
- if Debug_Flag_CC then
- w ("Enable_Range_Check for node ", Int (N));
- Write_Str (" Source location = ");
- wl (Sloc (N));
- pg (N);
- end if;
-
- -- If not in optimizing mode, set flag and we are done. We are also
- -- done (and just set the flag) if the type is not a discrete type,
- -- since it is not worth the effort to eliminate checks for other
- -- than discrete types. In addition, we take this same path if we
- -- have stored the maximum number of checks possible already (a
- -- very unlikely situation, but we do not want to blow up!)
-
- if Optimization_Level = 0
- or else No (Etype (N))
- or else not Is_Discrete_Type (Etype (N))
- or else Num_Saved_Checks = Saved_Checks'Last
- then
- Set_Do_Range_Check (N, True);
-
- if Debug_Flag_CC then
- w ("Optimization off");
- end if;
-
- return;
- end if;
-
- -- Otherwise find out the target type
-
- P := Parent (N);
-
- -- For assignment, use left side subtype
-
- if Nkind (P) = N_Assignment_Statement
- and then Expression (P) = N
- then
- Ttyp := Etype (Name (P));
-
- -- For indexed component, use subscript subtype
-
- elsif Nkind (P) = N_Indexed_Component then
- declare
- Atyp : Entity_Id;
- Indx : Node_Id;
- Subs : Node_Id;
-
- begin
- Atyp := Etype (Prefix (P));
-
- if Is_Access_Type (Atyp) then
- Atyp := Designated_Type (Atyp);
-
- -- If the prefix is an access to an unconstrained array,
- -- perform check unconditionally: it depends on the bounds
- -- of an object and we cannot currently recognize whether
- -- the test may be redundant.
-
- if not Is_Constrained (Atyp) then
- Set_Do_Range_Check (N, True);
- return;
- end if;
-
- -- Ditto if the prefix is an explicit dereference whose
- -- designated type is unconstrained.
-
- elsif Nkind (Prefix (P)) = N_Explicit_Dereference
- and then not Is_Constrained (Atyp)
- then
- Set_Do_Range_Check (N, True);
- return;
- end if;
-
- Indx := First_Index (Atyp);
- Subs := First (Expressions (P));
- loop
- if Subs = N then
- Ttyp := Etype (Indx);
- exit;
- end if;
-
- Next_Index (Indx);
- Next (Subs);
- end loop;
- end;
-
- -- For now, ignore all other cases, they are not so interesting
-
- else
- if Debug_Flag_CC then
- w (" target type not found, flag set");
- end if;
-
- Set_Do_Range_Check (N, True);
- return;
- end if;
-
- -- Evaluate and check the expression
-
- Find_Check
- (Expr => N,
- Check_Type => 'R',
- Target_Type => Ttyp,
- Entry_OK => OK,
- Check_Num => Chk,
- Ent => Ent,
- Ofs => Ofs);
-
- if Debug_Flag_CC then
- w ("Called Find_Check");
- w ("Target_Typ = ", Int (Ttyp));
- w (" OK = ", OK);
-
- if OK then
- w (" Check_Num = ", Chk);
- w (" Ent = ", Int (Ent));
- Write_Str (" Ofs = ");
- pid (Ofs);
- end if;
- end if;
-
- -- If check is not of form to optimize, then set flag and we are done
-
- if not OK then
- if Debug_Flag_CC then
- w (" expression not of optimizable type, flag set");
- end if;
-
- Set_Do_Range_Check (N, True);
- return;
- end if;
-
- -- If check is already performed, then return without setting flag
-
- if Chk /= 0 then
- if Debug_Flag_CC then
- w ("Check suppressed!");
- end if;
-
- return;
- end if;
-
- -- Here we will make a new entry for the new check
-
- Set_Do_Range_Check (N, True);
- Num_Saved_Checks := Num_Saved_Checks + 1;
- Saved_Checks (Num_Saved_Checks) :=
- (Killed => False,
- Entity => Ent,
- Offset => Ofs,
- Check_Type => 'R',
- Target_Type => Ttyp);
-
- if Debug_Flag_CC then
- w ("Make new entry, check number = ", Num_Saved_Checks);
- w (" Entity = ", Int (Ent));
- Write_Str (" Offset = ");
- pid (Ofs);
- w (" Check_Type = R");
- w (" Target_Type = ", Int (Ttyp));
- pg (Ttyp);
- end if;
-
- -- If we get an exception, then something went wrong, probably because
- -- of an error in the structure of the tree due to an incorrect program.
- -- Or it may be a bug in the optimization circuit. In either case the
- -- safest thing is simply to set the check flag unconditionally.
-
- exception
- when others =>
- Set_Do_Range_Check (N, True);
-
- if Debug_Flag_CC then
- w (" exception occurred, range flag set");
- end if;
-
- return;
- end Enable_Range_Check;
-
- ------------------
- -- Ensure_Valid --
- ------------------
-
- procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
- Typ : constant Entity_Id := Etype (Expr);
-
- begin
- -- Ignore call if we are not doing any validity checking
-
- if not Validity_Checks_On then
- return;
-
- -- Ignore call if range checks suppressed on entity in question
-
- elsif Is_Entity_Name (Expr)
- and then Range_Checks_Suppressed (Entity (Expr))
- then
- return;
-
- -- No check required if expression is from the expander, we assume
- -- the expander will generate whatever checks are needed. Note that
- -- this is not just an optimization, it avoids infinite recursions!
-
- -- Unchecked conversions must be checked, unless they are initialized
- -- scalar values, as in a component assignment in an init proc.
-
- -- In addition, we force a check if Force_Validity_Checks is set
-
- elsif not Comes_From_Source (Expr)
- and then not Force_Validity_Checks
- and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
- or else Kill_Range_Check (Expr))
- then
- return;
-
- -- No check required if expression is known to have valid value
-
- elsif Expr_Known_Valid (Expr) then
- return;
-
- -- No check required if checks off
-
- elsif Range_Checks_Suppressed (Typ) then
- return;
-
- -- Ignore case of enumeration with holes where the flag is set not
- -- to worry about holes, since no special validity check is needed
-
- elsif Is_Enumeration_Type (Typ)
- and then Has_Non_Standard_Rep (Typ)
- and then Holes_OK
- then
- return;
-
- -- No check required on the left-hand side of an assignment
-
- elsif Nkind (Parent (Expr)) = N_Assignment_Statement
- and then Expr = Name (Parent (Expr))
- then
- return;
-
- -- No check on a univeral real constant. The context will eventually
- -- convert it to a machine number for some target type, or report an
- -- illegality.
-
- elsif Nkind (Expr) = N_Real_Literal
- and then Etype (Expr) = Universal_Real
- then
- return;
-
- -- An annoying special case. If this is an out parameter of a scalar
- -- type, then the value is not going to be accessed, therefore it is
- -- inappropriate to do any validity check at the call site.
-
- else
- -- Only need to worry about scalar types
-
- if Is_Scalar_Type (Typ) then
- declare
- P : Node_Id;
- N : Node_Id;
- E : Entity_Id;
- F : Entity_Id;
- A : Node_Id;
- L : List_Id;
-
- begin
- -- Find actual argument (which may be a parameter association)
- -- and the parent of the actual argument (the call statement)
-
- N := Expr;
- P := Parent (Expr);
-
- if Nkind (P) = N_Parameter_Association then
- N := P;
- P := Parent (N);
- end if;
-
- -- Only need to worry if we are argument of a procedure
- -- call since functions don't have out parameters. If this
- -- is an indirect or dispatching call, get signature from
- -- the subprogram type.
-
- if Nkind (P) = N_Procedure_Call_Statement then
- L := Parameter_Associations (P);
-
- if Is_Entity_Name (Name (P)) then
- E := Entity (Name (P));
- else
- pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
- E := Etype (Name (P));
- end if;
-
- -- Only need to worry if there are indeed actuals, and
- -- if this could be a procedure call, otherwise we cannot
- -- get a match (either we are not an argument, or the
- -- mode of the formal is not OUT). This test also filters
- -- out the generic case.
-
- if Is_Non_Empty_List (L)
- and then Is_Subprogram (E)
- then
- -- This is the loop through parameters, looking to
- -- see if there is an OUT parameter for which we are
- -- the argument.
-
- F := First_Formal (E);
- A := First (L);
-
- while Present (F) loop
- if Ekind (F) = E_Out_Parameter and then A = N then
- return;
- end if;
-
- Next_Formal (F);
- Next (A);
- end loop;
- end if;
- end if;
- end;
- end if;
- end if;
-
- -- If we fall through, a validity check is required. Note that it would
- -- not be good to set Do_Range_Check, even in contexts where this is
- -- permissible, since this flag causes checking against the target type,
- -- not the source type in contexts such as assignments
-
- Insert_Valid_Check (Expr);
- end Ensure_Valid;
-
- ----------------------
- -- Expr_Known_Valid --
- ----------------------
-
- function Expr_Known_Valid (Expr : Node_Id) return Boolean is
- Typ : constant Entity_Id := Etype (Expr);
-
- begin
- -- Non-scalar types are always considered valid, since they never
- -- give rise to the issues of erroneous or bounded error behavior
- -- that are the concern. In formal reference manual terms the
- -- notion of validity only applies to scalar types. Note that
- -- even when packed arrays are represented using modular types,
- -- they are still arrays semantically, so they are also always
- -- valid (in particular, the unused bits can be random rubbish
- -- without affecting the validity of the array value).
-
- if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
- return True;
-
- -- If no validity checking, then everything is considered valid
-
- elsif not Validity_Checks_On then
- return True;
-
- -- Floating-point types are considered valid unless floating-point
- -- validity checks have been specifically turned on.
-
- elsif Is_Floating_Point_Type (Typ)
- and then not Validity_Check_Floating_Point
- then
- return True;
-
- -- If the expression is the value of an object that is known to
- -- be valid, then clearly the expression value itself is valid.
-
- elsif Is_Entity_Name (Expr)
- and then Is_Known_Valid (Entity (Expr))
- then
- return True;
-
- -- If the type is one for which all values are known valid, then
- -- we are sure that the value is valid except in the slightly odd
- -- case where the expression is a reference to a variable whose size
- -- has been explicitly set to a value greater than the object size.
-
- elsif Is_Known_Valid (Typ) then
- if Is_Entity_Name (Expr)
- and then Ekind (Entity (Expr)) = E_Variable
- and then Esize (Entity (Expr)) > Esize (Typ)
- then
- return False;
- else
- return True;
- end if;
-
- -- Integer and character literals always have valid values, where
- -- appropriate these will be range checked in any case.
-
- elsif Nkind (Expr) = N_Integer_Literal
- or else
- Nkind (Expr) = N_Character_Literal
- then
- return True;
-
- -- If we have a type conversion or a qualification of a known valid
- -- value, then the result will always be valid.
-
- elsif Nkind (Expr) = N_Type_Conversion
- or else
- Nkind (Expr) = N_Qualified_Expression
- then
- return Expr_Known_Valid (Expression (Expr));
-
- -- The result of any operator is always considered valid, since we
- -- assume the necessary checks are done by the operator. For operators
- -- on floating-point operations, we must also check when the operation
- -- is the right-hand side of an assignment, or is an actual in a call.
-
- elsif
- Nkind (Expr) in N_Binary_Op or else Nkind (Expr) in N_Unary_Op
- then
- if Is_Floating_Point_Type (Typ)
- and then Validity_Check_Floating_Point
- and then
- (Nkind (Parent (Expr)) = N_Assignment_Statement
- or else Nkind (Parent (Expr)) = N_Function_Call
- or else Nkind (Parent (Expr)) = N_Parameter_Association)
- then
- return False;
- else
- return True;
- end if;
-
- -- For all other cases, we do not know the expression is valid
-
- else
- return False;
- end if;
- end Expr_Known_Valid;
-
- ----------------
- -- Find_Check --
- ----------------
-
- procedure Find_Check
- (Expr : Node_Id;
- Check_Type : Character;
- Target_Type : Entity_Id;
- Entry_OK : out Boolean;
- Check_Num : out Nat;
- Ent : out Entity_Id;
- Ofs : out Uint)
- is
- function Within_Range_Of
- (Target_Type : Entity_Id;
- Check_Type : Entity_Id) return Boolean;
- -- Given a requirement for checking a range against Target_Type, and
- -- and a range Check_Type against which a check has already been made,
- -- determines if the check against check type is sufficient to ensure
- -- that no check against Target_Type is required.
-
- ---------------------
- -- Within_Range_Of --
- ---------------------
-
- function Within_Range_Of
- (Target_Type : Entity_Id;
- Check_Type : Entity_Id) return Boolean
- is
- begin
- if Target_Type = Check_Type then
- return True;
-
- else
- declare
- Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
- Thi : constant Node_Id := Type_High_Bound (Target_Type);
- Clo : constant Node_Id := Type_Low_Bound (Check_Type);
- Chi : constant Node_Id := Type_High_Bound (Check_Type);
-
- begin
- if (Tlo = Clo
- or else (Compile_Time_Known_Value (Tlo)
- and then
- Compile_Time_Known_Value (Clo)
- and then
- Expr_Value (Clo) >= Expr_Value (Tlo)))
- and then
- (Thi = Chi
- or else (Compile_Time_Known_Value (Thi)
- and then
- Compile_Time_Known_Value (Chi)
- and then
- Expr_Value (Chi) <= Expr_Value (Clo)))
- then
- return True;
- else
- return False;
- end if;
- end;
- end if;
- end Within_Range_Of;
-
- -- Start of processing for Find_Check
-
- begin
- -- Establish default, to avoid warnings from GCC
-
- Check_Num := 0;
-
- -- Case of expression is simple entity reference
-
- if Is_Entity_Name (Expr) then
- Ent := Entity (Expr);
- Ofs := Uint_0;
-
- -- Case of expression is entity + known constant
-
- elsif Nkind (Expr) = N_Op_Add
- and then Compile_Time_Known_Value (Right_Opnd (Expr))
- and then Is_Entity_Name (Left_Opnd (Expr))
- then
- Ent := Entity (Left_Opnd (Expr));
- Ofs := Expr_Value (Right_Opnd (Expr));
-
- -- Case of expression is entity - known constant
-
- elsif Nkind (Expr) = N_Op_Subtract
- and then Compile_Time_Known_Value (Right_Opnd (Expr))
- and then Is_Entity_Name (Left_Opnd (Expr))
- then
- Ent := Entity (Left_Opnd (Expr));
- Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
-
- -- Any other expression is not of the right form
-
- else
- Ent := Empty;
- Ofs := Uint_0;
- Entry_OK := False;
- return;
- end if;
-
- -- Come here with expression of appropriate form, check if
- -- entity is an appropriate one for our purposes.
-
- if (Ekind (Ent) = E_Variable
- or else
- Ekind (Ent) = E_Constant
- or else
- Ekind (Ent) = E_Loop_Parameter
- or else
- Ekind (Ent) = E_In_Parameter)
- and then not Is_Library_Level_Entity (Ent)
- then
- Entry_OK := True;
- else
- Entry_OK := False;
- return;
- end if;
-
- -- See if there is matching check already
-
- for J in reverse 1 .. Num_Saved_Checks loop
- declare
- SC : Saved_Check renames Saved_Checks (J);
-
- begin
- if SC.Killed = False
- and then SC.Entity = Ent
- and then SC.Offset = Ofs
- and then SC.Check_Type = Check_Type
- and then Within_Range_Of (Target_Type, SC.Target_Type)
- then
- Check_Num := J;
- return;
- end if;
- end;
- end loop;
-
- -- If we fall through entry was not found
-
- Check_Num := 0;
- return;
- end Find_Check;
-
- ---------------------------------
- -- Generate_Discriminant_Check --
- ---------------------------------
-
- -- Note: the code for this procedure is derived from the
- -- emit_discriminant_check routine a-trans.c v1.659.
-
- procedure Generate_Discriminant_Check (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Pref : constant Node_Id := Prefix (N);
- Sel : constant Node_Id := Selector_Name (N);
-
- Orig_Comp : constant Entity_Id :=
- Original_Record_Component (Entity (Sel));
- -- The original component to be checked
-
- Discr_Fct : constant Entity_Id :=
- Discriminant_Checking_Func (Orig_Comp);
- -- The discriminant checking function
-
- Discr : Entity_Id;
- -- One discriminant to be checked in the type
-
- Real_Discr : Entity_Id;
- -- Actual discriminant in the call
-
- Pref_Type : Entity_Id;
- -- Type of relevant prefix (ignoring private/access stuff)
-
- Args : List_Id;
- -- List of arguments for function call
-
- Formal : Entity_Id;
- -- Keep track of the formal corresponding to the actual we build
- -- for each discriminant, in order to be able to perform the
- -- necessary type conversions.
-
- Scomp : Node_Id;
- -- Selected component reference for checking function argument
-
- begin
- Pref_Type := Etype (Pref);
-
- -- Force evaluation of the prefix, so that it does not get evaluated
- -- twice (once for the check, once for the actual reference). Such a
- -- double evaluation is always a potential source of inefficiency,
- -- and is functionally incorrect in the volatile case, or when the
- -- prefix may have side-effects. An entity or a component of an
- -- entity requires no evaluation.
-
- if Is_Entity_Name (Pref) then
- if Treat_As_Volatile (Entity (Pref)) then
- Force_Evaluation (Pref, Name_Req => True);
- end if;
-
- elsif Treat_As_Volatile (Etype (Pref)) then
- Force_Evaluation (Pref, Name_Req => True);
-
- elsif Nkind (Pref) = N_Selected_Component
- and then Is_Entity_Name (Prefix (Pref))
- then
- null;
-
- else
- Force_Evaluation (Pref, Name_Req => True);
- end if;
-
- -- For a tagged type, use the scope of the original component to
- -- obtain the type, because ???
-
- if Is_Tagged_Type (Scope (Orig_Comp)) then
- Pref_Type := Scope (Orig_Comp);
-
- -- For an untagged derived type, use the discriminants of the
- -- parent which have been renamed in the derivation, possibly
- -- by a one-to-many discriminant constraint.
- -- For non-tagged type, initially get the Etype of the prefix
-
- else
- if Is_Derived_Type (Pref_Type)
- and then Number_Discriminants (Pref_Type) /=
- Number_Discriminants (Etype (Base_Type (Pref_Type)))
- then
- Pref_Type := Etype (Base_Type (Pref_Type));
- end if;
- end if;
-
- -- We definitely should have a checking function, This routine should
- -- not be called if no discriminant checking function is present.
-
- pragma Assert (Present (Discr_Fct));
-
- -- Create the list of the actual parameters for the call. This list
- -- is the list of the discriminant fields of the record expression to
- -- be discriminant checked.
-
- Args := New_List;
- Formal := First_Formal (Discr_Fct);
- Discr := First_Discriminant (Pref_Type);
- while Present (Discr) loop
-
- -- If we have a corresponding discriminant field, and a parent
- -- subtype is present, then we want to use the corresponding
- -- discriminant since this is the one with the useful value.
-
- if Present (Corresponding_Discriminant (Discr))
- and then Ekind (Pref_Type) = E_Record_Type
- and then Present (Parent_Subtype (Pref_Type))
- then
- Real_Discr := Corresponding_Discriminant (Discr);
- else
- Real_Discr := Discr;
- end if;
-
- -- Construct the reference to the discriminant
-
- Scomp :=
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (Pref_Type,
- Duplicate_Subexpr (Pref)),
- Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
-
- -- Manually analyze and resolve this selected component. We really
- -- want it just as it appears above, and do not want the expander
- -- playing discriminal games etc with this reference. Then we
- -- append the argument to the list we are gathering.
-
- Set_Etype (Scomp, Etype (Real_Discr));
- Set_Analyzed (Scomp, True);
- Append_To (Args, Convert_To (Etype (Formal), Scomp));
-
- Next_Formal_With_Extras (Formal);
- Next_Discriminant (Discr);
- end loop;
-
- -- Now build and insert the call
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Discr_Fct, Loc),
- Parameter_Associations => Args),
- Reason => CE_Discriminant_Check_Failed));
- end Generate_Discriminant_Check;
-
- ---------------------------
- -- Generate_Index_Checks --
- ---------------------------
-
- procedure Generate_Index_Checks (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- A : constant Node_Id := Prefix (N);
- Sub : Node_Id;
- Ind : Nat;
- Num : List_Id;
-
- begin
- Sub := First (Expressions (N));
- Ind := 1;
- while Present (Sub) loop
- if Do_Range_Check (Sub) then
- Set_Do_Range_Check (Sub, False);
-
- -- Force evaluation except for the case of a simple name of
- -- a non-volatile entity.
-
- if not Is_Entity_Name (Sub)
- or else Treat_As_Volatile (Entity (Sub))
- then
- Force_Evaluation (Sub);
- end if;
-
- -- Generate a raise of constraint error with the appropriate
- -- reason and a condition of the form:
-
- -- Base_Type(Sub) not in array'range (subscript)
-
- -- Note that the reason we generate the conversion to the
- -- base type here is that we definitely want the range check
- -- to take place, even if it looks like the subtype is OK.
- -- Optimization considerations that allow us to omit the
- -- check have already been taken into account in the setting
- -- of the Do_Range_Check flag earlier on.
-
- if Ind = 1 then
- Num := No_List;
- else
- Num := New_List (Make_Integer_Literal (Loc, Ind));
- end if;
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Etype (Sub)),
- Duplicate_Subexpr_Move_Checks (Sub)),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr_Move_Checks (A),
- Attribute_Name => Name_Range,
- Expressions => Num)),
- Reason => CE_Index_Check_Failed));
- end if;
-
- Ind := Ind + 1;
- Next (Sub);
- end loop;
- end Generate_Index_Checks;
-
- --------------------------
- -- Generate_Range_Check --
- --------------------------
-
- procedure Generate_Range_Check
- (N : Node_Id;
- Target_Type : Entity_Id;
- Reason : RT_Exception_Code)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Source_Type : constant Entity_Id := Etype (N);
- Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
- Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
-
- begin
- -- First special case, if the source type is already within the
- -- range of the target type, then no check is needed (probably we
- -- should have stopped Do_Range_Check from being set in the first
- -- place, but better late than later in preventing junk code!
-
- -- We do NOT apply this if the source node is a literal, since in
- -- this case the literal has already been labeled as having the
- -- subtype of the target.
-
- if In_Subrange_Of (Source_Type, Target_Type)
- and then not
- (Nkind (N) = N_Integer_Literal
- or else
- Nkind (N) = N_Real_Literal
- or else
- Nkind (N) = N_Character_Literal
- or else
- (Is_Entity_Name (N)
- and then Ekind (Entity (N)) = E_Enumeration_Literal))
- then
- return;
- end if;
-
- -- We need a check, so force evaluation of the node, so that it does
- -- not get evaluated twice (once for the check, once for the actual
- -- reference). Such a double evaluation is always a potential source
- -- of inefficiency, and is functionally incorrect in the volatile case.
-
- if not Is_Entity_Name (N)
- or else Treat_As_Volatile (Entity (N))
- then
- Force_Evaluation (N);
- end if;
-
- -- The easiest case is when Source_Base_Type and Target_Base_Type
- -- are the same since in this case we can simply do a direct
- -- check of the value of N against the bounds of Target_Type.
-
- -- [constraint_error when N not in Target_Type]
-
- -- Note: this is by far the most common case, for example all cases of
- -- checks on the RHS of assignments are in this category, but not all
- -- cases are like this. Notably conversions can involve two types.
-
- if Source_Base_Type = Target_Base_Type then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
- Reason => Reason));
-
- -- Next test for the case where the target type is within the bounds
- -- of the base type of the source type, since in this case we can
- -- simply convert these bounds to the base type of T to do the test.
-
- -- [constraint_error when N not in
- -- Source_Base_Type (Target_Type'First)
- -- ..
- -- Source_Base_Type(Target_Type'Last))]
-
- -- The conversions will always work and need no check
-
- elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
-
- Right_Opnd =>
- Make_Range (Loc,
- Low_Bound =>
- Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_First)),
-
- High_Bound =>
- Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Last)))),
- Reason => Reason));
-
- -- Note that at this stage we now that the Target_Base_Type is
- -- not in the range of the Source_Base_Type (since even the
- -- Target_Type itself is not in this range). It could still be
- -- the case that the Source_Type is in range of the target base
- -- type, since we have not checked that case.
-
- -- If that is the case, we can freely convert the source to the
- -- target, and then test the target result against the bounds.
-
- elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
-
- -- We make a temporary to hold the value of the converted
- -- value (converted to the base type), and then we will
- -- do the test against this temporary.
-
- -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
- -- [constraint_error when Tnn not in Target_Type]
-
- -- Then the conversion itself is replaced by an occurrence of Tnn
-
- declare
- Tnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('T'));
-
- begin
- Insert_Actions (N, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition =>
- New_Occurrence_Of (Target_Base_Type, Loc),
- Constant_Present => True,
- Expression =>
- Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
- Expression => Duplicate_Subexpr (N))),
-
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => New_Occurrence_Of (Tnn, Loc),
- Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
-
- Reason => Reason)));
-
- Rewrite (N, New_Occurrence_Of (Tnn, Loc));
- end;
-
- -- At this stage, we know that we have two scalar types, which are
- -- directly convertible, and where neither scalar type has a base
- -- range that is in the range of the other scalar type.
-
- -- The only way this can happen is with a signed and unsigned type.
- -- So test for these two cases:
-
- else
- -- Case of the source is unsigned and the target is signed
-
- if Is_Unsigned_Type (Source_Base_Type)
- and then not Is_Unsigned_Type (Target_Base_Type)
- then
- -- If the source is unsigned and the target is signed, then we
- -- know that the source is not shorter than the target (otherwise
- -- the source base type would be in the target base type range).
-
- -- In other words, the unsigned type is either the same size
- -- as the target, or it is larger. It cannot be smaller.
-
- pragma Assert
- (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
-
- -- We only need to check the low bound if the low bound of the
- -- target type is non-negative. If the low bound of the target
- -- type is negative, then we know that we will fit fine.
-
- -- If the high bound of the target type is negative, then we
- -- know we have a constraint error, since we can't possibly
- -- have a negative source.
-
- -- With these two checks out of the way, we can do the check
- -- using the source type safely
-
- -- This is definitely the most annoying case!
-
- -- [constraint_error
- -- when (Target_Type'First >= 0
- -- and then
- -- N < Source_Base_Type (Target_Type'First))
- -- or else Target_Type'Last < 0
- -- or else N > Source_Base_Type (Target_Type'Last)];
-
- -- We turn off all checks since we know that the conversions
- -- will work fine, given the guards for negative values.
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Or_Else (Loc,
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_And_Then (Loc,
- Left_Opnd => Make_Op_Ge (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_First),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
-
- Right_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd =>
- Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_First)))),
-
- Right_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Last),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd =>
- Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Last)))),
-
- Reason => Reason),
- Suppress => All_Checks);
-
- -- Only remaining possibility is that the source is signed and
- -- the target is unsigned
-
- else
- pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
- and then Is_Unsigned_Type (Target_Base_Type));
-
- -- If the source is signed and the target is unsigned, then
- -- we know that the target is not shorter than the source
- -- (otherwise the target base type would be in the source
- -- base type range).
-
- -- In other words, the unsigned type is either the same size
- -- as the target, or it is larger. It cannot be smaller.
-
- -- Clearly we have an error if the source value is negative
- -- since no unsigned type can have negative values. If the
- -- source type is non-negative, then the check can be done
- -- using the target type.
-
- -- Tnn : constant Target_Base_Type (N) := Target_Type;
-
- -- [constraint_error
- -- when N < 0 or else Tnn not in Target_Type];
-
- -- We turn off all checks for the conversion of N to the
- -- target base type, since we generate the explicit check
- -- to ensure that the value is non-negative
-
- declare
- Tnn : constant Entity_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('T'));
-
- begin
- Insert_Actions (N, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition =>
- New_Occurrence_Of (Target_Base_Type, Loc),
- Constant_Present => True,
- Expression =>
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Target_Base_Type, Loc),
- Expression => Duplicate_Subexpr (N))),
-
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
-
- Right_Opnd =>
- Make_Not_In (Loc,
- Left_Opnd => New_Occurrence_Of (Tnn, Loc),
- Right_Opnd =>
- New_Occurrence_Of (Target_Type, Loc))),
-
- Reason => Reason)),
- Suppress => All_Checks);
-
- -- Set the Etype explicitly, because Insert_Actions may
- -- have placed the declaration in the freeze list for an
- -- enclosing construct, and thus it is not analyzed yet.
-
- Set_Etype (Tnn, Target_Base_Type);
- Rewrite (N, New_Occurrence_Of (Tnn, Loc));
- end;
- end if;
- end if;
- end Generate_Range_Check;
-
- ---------------------
- -- Get_Discriminal --
- ---------------------
-
- function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (E);
- D : Entity_Id;
- Sc : Entity_Id;
-
- begin
- -- The entity E is the type of a private component of the protected
- -- type, or the type of a renaming of that component within a protected
- -- operation of that type.
-
- Sc := Scope (E);
-
- if Ekind (Sc) /= E_Protected_Type then
- Sc := Scope (Sc);
-
- if Ekind (Sc) /= E_Protected_Type then
- return Bound;
- end if;
- end if;
-
- D := First_Discriminant (Sc);
-
- while Present (D)
- and then Chars (D) /= Chars (Bound)
- loop
- Next_Discriminant (D);
- end loop;
-
- return New_Occurrence_Of (Discriminal (D), Loc);
- end Get_Discriminal;
-
- ------------------
- -- Guard_Access --
- ------------------
-
- function Guard_Access
- (Cond : Node_Id;
- Loc : Source_Ptr;
- Ck_Node : Node_Id) return Node_Id
- is
- begin
- if Nkind (Cond) = N_Or_Else then
- Set_Paren_Count (Cond, 1);
- end if;
-
- if Nkind (Ck_Node) = N_Allocator then
- return Cond;
- else
- return
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Null (Loc)),
- Right_Opnd => Cond);
- end if;
- end Guard_Access;
-
- -----------------------------
- -- Index_Checks_Suppressed --
- -----------------------------
-
- function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Index_Check);
- else
- return Scope_Suppress (Index_Check);
- end if;
- end Index_Checks_Suppressed;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize is
- begin
- for J in Determine_Range_Cache_N'Range loop
- Determine_Range_Cache_N (J) := Empty;
- end loop;
- end Initialize;
-
- -------------------------
- -- Insert_Range_Checks --
- -------------------------
-
- procedure Insert_Range_Checks
- (Checks : Check_Result;
- Node : Node_Id;
- Suppress_Typ : Entity_Id;
- Static_Sloc : Source_Ptr := No_Location;
- Flag_Node : Node_Id := Empty;
- Do_Before : Boolean := False)
- is
- Internal_Flag_Node : Node_Id := Flag_Node;
- Internal_Static_Sloc : Source_Ptr := Static_Sloc;
-
- Check_Node : Node_Id;
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Suppress_Typ))
- or else
- (not Range_Checks_Suppressed (Suppress_Typ));
-
- begin
- -- For now we just return if Checks_On is false, however this should
- -- be enhanced to check for an always True value in the condition
- -- and to generate a compilation warning???
-
- if not Expander_Active or else not Checks_On then
- return;
- end if;
-
- if Static_Sloc = No_Location then
- Internal_Static_Sloc := Sloc (Node);
- end if;
-
- if No (Flag_Node) then
- Internal_Flag_Node := Node;
- end if;
-
- for J in 1 .. 2 loop
- exit when No (Checks (J));
-
- if Nkind (Checks (J)) = N_Raise_Constraint_Error
- and then Present (Condition (Checks (J)))
- then
- if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
- Check_Node := Checks (J);
- Mark_Rewrite_Insertion (Check_Node);
-
- if Do_Before then
- Insert_Before_And_Analyze (Node, Check_Node);
- else
- Insert_After_And_Analyze (Node, Check_Node);
- end if;
-
- Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
- end if;
-
- else
- Check_Node :=
- Make_Raise_Constraint_Error (Internal_Static_Sloc,
- Reason => CE_Range_Check_Failed);
- Mark_Rewrite_Insertion (Check_Node);
-
- if Do_Before then
- Insert_Before_And_Analyze (Node, Check_Node);
- else
- Insert_After_And_Analyze (Node, Check_Node);
- end if;
- end if;
- end loop;
- end Insert_Range_Checks;
-
- ------------------------
- -- Insert_Valid_Check --
- ------------------------
-
- procedure Insert_Valid_Check (Expr : Node_Id) is
- Loc : constant Source_Ptr := Sloc (Expr);
- Exp : Node_Id;
-
- begin
- -- Do not insert if checks off, or if not checking validity
-
- if Range_Checks_Suppressed (Etype (Expr))
- or else (not Validity_Checks_On)
- then
- return;
- end if;
-
- -- If we have a checked conversion, then validity check applies to
- -- the expression inside the conversion, not the result, since if
- -- the expression inside is valid, then so is the conversion result.
-
- Exp := Expr;
- while Nkind (Exp) = N_Type_Conversion loop
- Exp := Expression (Exp);
- end loop;
-
- -- Insert the validity check. Note that we do this with validity
- -- checks turned off, to avoid recursion, we do not want validity
- -- checks on the validity checking code itself!
-
- Validity_Checks_On := False;
- Insert_Action
- (Expr,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
- Attribute_Name => Name_Valid)),
- Reason => CE_Invalid_Data),
- Suppress => All_Checks);
-
- -- If the expression is a a reference to an element of a bit-packed
- -- array, it is rewritten as a renaming declaration. If the expression
- -- is an actual in a call, it has not been expanded, waiting for the
- -- proper point at which to do it. The same happens with renamings, so
- -- that we have to force the expansion now. This non-local complication
- -- is due to code in exp_ch2,adb, exp_ch4.adb and exp_ch6.adb.
-
- if Is_Entity_Name (Exp)
- and then Nkind (Parent (Entity (Exp))) = N_Object_Renaming_Declaration
- then
- declare
- Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
- begin
- if Nkind (Old_Exp) = N_Indexed_Component
- and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
- then
- Expand_Packed_Element_Reference (Old_Exp);
- end if;
- end;
- end if;
-
- Validity_Checks_On := True;
- end Insert_Valid_Check;
-
- ----------------------------------
- -- Install_Null_Excluding_Check --
- ----------------------------------
-
- procedure Install_Null_Excluding_Check (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- procedure Mark_Non_Null;
- -- After installation of check, marks node as non-null if entity
-
- -------------------
- -- Mark_Non_Null --
- -------------------
-
- procedure Mark_Non_Null is
- begin
- if Is_Entity_Name (N) then
- Set_Is_Known_Null (Entity (N), False);
-
- if Safe_To_Capture_Value (N, Entity (N)) then
- Set_Is_Known_Non_Null (Entity (N), True);
- end if;
- end if;
- end Mark_Non_Null;
-
- -- Start of processing for Install_Null_Excluding_Check
-
- begin
- pragma Assert (Is_Access_Type (Typ));
-
- -- No check inside a generic (why not???)
-
- if Inside_A_Generic then
- return;
- end if;
-
- -- No check needed if known to be non-null
-
- if Known_Non_Null (N) then
- return;
- end if;
-
- -- If known to be null, here is where we generate a compile time check
-
- if Known_Null (N) then
- Apply_Compile_Time_Constraint_Error
- (N,
- "null value not allowed here?",
- CE_Access_Check_Failed);
- Mark_Non_Null;
- return;
- end if;
-
- -- If entity is never assigned, for sure a warning is appropriate
-
- if Is_Entity_Name (N) then
- Check_Unset_Reference (N);
- end if;
-
- -- No check needed if checks are suppressed on the range. Note that we
- -- don't set Is_Known_Non_Null in this case (we could legitimately do
- -- so, since the program is erroneous, but we don't like to casually
- -- propagate such conclusions from erroneosity).
-
- if Access_Checks_Suppressed (Typ) then
- return;
- end if;
-
- -- Otherwise install access check
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
- Right_Opnd => Make_Null (Loc)),
- Reason => CE_Access_Check_Failed));
-
- Mark_Non_Null;
- end Install_Null_Excluding_Check;
-
- --------------------------
- -- Install_Static_Check --
- --------------------------
-
- procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
- Stat : constant Boolean := Is_Static_Expression (R_Cno);
- Typ : constant Entity_Id := Etype (R_Cno);
-
- begin
- Rewrite (R_Cno,
- Make_Raise_Constraint_Error (Loc,
- Reason => CE_Range_Check_Failed));
- Set_Analyzed (R_Cno);
- Set_Etype (R_Cno, Typ);
- Set_Raises_Constraint_Error (R_Cno);
- Set_Is_Static_Expression (R_Cno, Stat);
- end Install_Static_Check;
-
- ---------------------
- -- Kill_All_Checks --
- ---------------------
-
- procedure Kill_All_Checks is
- begin
- if Debug_Flag_CC then
- w ("Kill_All_Checks");
- end if;
-
- -- We reset the number of saved checks to zero, and also modify
- -- all stack entries for statement ranges to indicate that the
- -- number of checks at each level is now zero.
-
- Num_Saved_Checks := 0;
-
- for J in 1 .. Saved_Checks_TOS loop
- Saved_Checks_Stack (J) := 0;
- end loop;
- end Kill_All_Checks;
-
- -----------------
- -- Kill_Checks --
- -----------------
-
- procedure Kill_Checks (V : Entity_Id) is
- begin
- if Debug_Flag_CC then
- w ("Kill_Checks for entity", Int (V));
- end if;
-
- for J in 1 .. Num_Saved_Checks loop
- if Saved_Checks (J).Entity = V then
- if Debug_Flag_CC then
- w (" Checks killed for saved check ", J);
- end if;
-
- Saved_Checks (J).Killed := True;
- end if;
- end loop;
- end Kill_Checks;
-
- ------------------------------
- -- Length_Checks_Suppressed --
- ------------------------------
-
- function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Length_Check);
- else
- return Scope_Suppress (Length_Check);
- end if;
- end Length_Checks_Suppressed;
-
- --------------------------------
- -- Overflow_Checks_Suppressed --
- --------------------------------
-
- function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Overflow_Check);
- else
- return Scope_Suppress (Overflow_Check);
- end if;
- end Overflow_Checks_Suppressed;
-
- -----------------
- -- Range_Check --
- -----------------
-
- function Range_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty;
- Warn_Node : Node_Id := Empty) return Check_Result
- is
- begin
- return Selected_Range_Checks
- (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
- end Range_Check;
-
- -----------------------------
- -- Range_Checks_Suppressed --
- -----------------------------
-
- function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) then
-
- -- Note: for now we always suppress range checks on Vax float types,
- -- since Gigi does not know how to generate these checks.
-
- if Vax_Float (E) then
- return True;
- elsif Kill_Range_Checks (E) then
- return True;
- elsif Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Range_Check);
- end if;
- end if;
-
- return Scope_Suppress (Range_Check);
- end Range_Checks_Suppressed;
-
- -------------------
- -- Remove_Checks --
- -------------------
-
- procedure Remove_Checks (Expr : Node_Id) is
- Discard : Traverse_Result;
- pragma Warnings (Off, Discard);
-
- function Process (N : Node_Id) return Traverse_Result;
- -- Process a single node during the traversal
-
- function Traverse is new Traverse_Func (Process);
- -- The traversal function itself
-
- -------------
- -- Process --
- -------------
-
- function Process (N : Node_Id) return Traverse_Result is
- begin
- if Nkind (N) not in N_Subexpr then
- return Skip;
- end if;
-
- Set_Do_Range_Check (N, False);
-
- case Nkind (N) is
- when N_And_Then =>
- Discard := Traverse (Left_Opnd (N));
- return Skip;
-
- when N_Attribute_Reference =>
- Set_Do_Overflow_Check (N, False);
-
- when N_Function_Call =>
- Set_Do_Tag_Check (N, False);
-
- when N_Op =>
- Set_Do_Overflow_Check (N, False);
-
- case Nkind (N) is
- when N_Op_Divide =>
- Set_Do_Division_Check (N, False);
-
- when N_Op_And =>
- Set_Do_Length_Check (N, False);
-
- when N_Op_Mod =>
- Set_Do_Division_Check (N, False);
-
- when N_Op_Or =>
- Set_Do_Length_Check (N, False);
-
- when N_Op_Rem =>
- Set_Do_Division_Check (N, False);
-
- when N_Op_Xor =>
- Set_Do_Length_Check (N, False);
-
- when others =>
- null;
- end case;
-
- when N_Or_Else =>
- Discard := Traverse (Left_Opnd (N));
- return Skip;
-
- when N_Selected_Component =>
- Set_Do_Discriminant_Check (N, False);
-
- when N_Type_Conversion =>
- Set_Do_Length_Check (N, False);
- Set_Do_Tag_Check (N, False);
- Set_Do_Overflow_Check (N, False);
-
- when others =>
- null;
- end case;
-
- return OK;
- end Process;
-
- -- Start of processing for Remove_Checks
-
- begin
- Discard := Traverse (Expr);
- end Remove_Checks;
-
- ----------------------------
- -- Selected_Length_Checks --
- ----------------------------
-
- function Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result
- is
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- S_Typ : Entity_Id;
- T_Typ : Entity_Id;
- Expr_Actual : Node_Id;
- Exptyp : Entity_Id;
- Cond : Node_Id := Empty;
- Do_Access : Boolean := False;
- Wnode : Node_Id := Warn_Node;
- Ret_Result : Check_Result := (Empty, Empty);
- Num_Checks : Natural := 0;
-
- procedure Add_Check (N : Node_Id);
- -- Adds the action given to Ret_Result if N is non-Empty
-
- function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
- function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
- -- Comments required ???
-
- function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
- -- True for equal literals and for nodes that denote the same constant
- -- entity, even if its value is not a static constant. This includes the
- -- case of a discriminal reference within an init proc. Removes some
- -- obviously superfluous checks.
-
- function Length_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- Typ'Length /= Exptyp'Length
-
- function Length_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- Typ'Length /= Expr'Length
-
- ---------------
- -- Add_Check --
- ---------------
-
- procedure Add_Check (N : Node_Id) is
- begin
- if Present (N) then
-
- -- For now, ignore attempt to place more than 2 checks ???
-
- if Num_Checks = 2 then
- return;
- end if;
-
- pragma Assert (Num_Checks <= 1);
- Num_Checks := Num_Checks + 1;
- Ret_Result (Num_Checks) := N;
- end if;
- end Add_Check;
-
- ------------------
- -- Get_E_Length --
- ------------------
-
- function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
- Pt : constant Entity_Id := Scope (Scope (E));
- N : Node_Id;
- E1 : Entity_Id := E;
-
- begin
- if Ekind (Scope (E)) = E_Record_Type
- and then Has_Discriminants (Scope (E))
- then
- N := Build_Discriminal_Subtype_Of_Component (E);
-
- if Present (N) then
- Insert_Action (Ck_Node, N);
- E1 := Defining_Identifier (N);
- end if;
- end if;
-
- if Ekind (E1) = E_String_Literal_Subtype then
- return
- Make_Integer_Literal (Loc,
- Intval => String_Literal_Length (E1));
-
- elsif Ekind (Pt) = E_Protected_Type
- and then Has_Discriminants (Pt)
- and then Has_Completion (Pt)
- and then not Inside_Init_Proc
- then
-
- -- If the type whose length is needed is a private component
- -- constrained by a discriminant, we must expand the 'Length
- -- attribute into an explicit computation, using the discriminal
- -- of the current protected operation. This is because the actual
- -- type of the prival is constructed after the protected opera-
- -- tion has been fully expanded.
-
- declare
- Indx_Type : Node_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- Do_Expand : Boolean := False;
-
- begin
- Indx_Type := First_Index (E);
-
- for J in 1 .. Indx - 1 loop
- Next_Index (Indx_Type);
- end loop;
-
- Get_Index_Bounds (Indx_Type, Lo, Hi);
-
- if Nkind (Lo) = N_Identifier
- and then Ekind (Entity (Lo)) = E_In_Parameter
- then
- Lo := Get_Discriminal (E, Lo);
- Do_Expand := True;
- end if;
-
- if Nkind (Hi) = N_Identifier
- and then Ekind (Entity (Hi)) = E_In_Parameter
- then
- Hi := Get_Discriminal (E, Hi);
- Do_Expand := True;
- end if;
-
- if Do_Expand then
- if not Is_Entity_Name (Lo) then
- Lo := Duplicate_Subexpr_No_Checks (Lo);
- end if;
-
- if not Is_Entity_Name (Hi) then
- Lo := Duplicate_Subexpr_No_Checks (Hi);
- end if;
-
- N :=
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Op_Subtract (Loc,
- Left_Opnd => Hi,
- Right_Opnd => Lo),
-
- Right_Opnd => Make_Integer_Literal (Loc, 1));
- return N;
-
- else
- N :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (E1, Loc));
-
- if Indx > 1 then
- Set_Expressions (N, New_List (
- Make_Integer_Literal (Loc, Indx)));
- end if;
-
- return N;
- end if;
- end;
-
- else
- N :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (E1, Loc));
-
- if Indx > 1 then
- Set_Expressions (N, New_List (
- Make_Integer_Literal (Loc, Indx)));
- end if;
-
- return N;
-
- end if;
- end Get_E_Length;
-
- ------------------
- -- Get_N_Length --
- ------------------
-
- function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Expressions => New_List (
- Make_Integer_Literal (Loc, Indx)));
-
- end Get_N_Length;
-
- -------------------
- -- Length_E_Cond --
- -------------------
-
- function Length_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_Length (Typ, Indx),
- Right_Opnd => Get_E_Length (Exptyp, Indx));
-
- end Length_E_Cond;
-
- -------------------
- -- Length_N_Cond --
- -------------------
-
- function Length_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_Length (Typ, Indx),
- Right_Opnd => Get_N_Length (Expr, Indx));
-
- end Length_N_Cond;
-
- function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
- begin
- return
- (Nkind (L) = N_Integer_Literal
- and then Nkind (R) = N_Integer_Literal
- and then Intval (L) = Intval (R))
-
- or else
- (Is_Entity_Name (L)
- and then Ekind (Entity (L)) = E_Constant
- and then ((Is_Entity_Name (R)
- and then Entity (L) = Entity (R))
- or else
- (Nkind (R) = N_Type_Conversion
- and then Is_Entity_Name (Expression (R))
- and then Entity (L) = Entity (Expression (R)))))
-
- or else
- (Is_Entity_Name (R)
- and then Ekind (Entity (R)) = E_Constant
- and then Nkind (L) = N_Type_Conversion
- and then Is_Entity_Name (Expression (L))
- and then Entity (R) = Entity (Expression (L)))
-
- or else
- (Is_Entity_Name (L)
- and then Is_Entity_Name (R)
- and then Entity (L) = Entity (R)
- and then Ekind (Entity (L)) = E_In_Parameter
- and then Inside_Init_Proc);
- end Same_Bounds;
-
- -- Start of processing for Selected_Length_Checks
-
- begin
- if not Expander_Active then
- return Ret_Result;
- end if;
-
- if Target_Typ = Any_Type
- or else Target_Typ = Any_Composite
- or else Raises_Constraint_Error (Ck_Node)
- then
- return Ret_Result;
- end if;
-
- if No (Wnode) then
- Wnode := Ck_Node;
- end if;
-
- T_Typ := Target_Typ;
-
- if No (Source_Typ) then
- S_Typ := Etype (Ck_Node);
- else
- S_Typ := Source_Typ;
- end if;
-
- if S_Typ = Any_Type or else S_Typ = Any_Composite then
- return Ret_Result;
- end if;
-
- if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
- S_Typ := Designated_Type (S_Typ);
- T_Typ := Designated_Type (T_Typ);
- Do_Access := True;
-
- -- A simple optimization
-
- if Nkind (Ck_Node) = N_Null then
- return Ret_Result;
- end if;
- end if;
-
- if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
- if Is_Constrained (T_Typ) then
-
- -- The checking code to be generated will freeze the
- -- corresponding array type. However, we must freeze the
- -- type now, so that the freeze node does not appear within
- -- the generated condional expression, but ahead of it.
-
- Freeze_Before (Ck_Node, T_Typ);
-
- Expr_Actual := Get_Referenced_Object (Ck_Node);
- Exptyp := Get_Actual_Subtype (Ck_Node);
-
- if Is_Access_Type (Exptyp) then
- Exptyp := Designated_Type (Exptyp);
- end if;
-
- -- String_Literal case. This needs to be handled specially be-
- -- cause no index types are available for string literals. The
- -- condition is simply:
-
- -- T_Typ'Length = string-literal-length
-
- if Nkind (Expr_Actual) = N_String_Literal
- and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
- then
- Cond :=
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_Length (T_Typ, 1),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval =>
- String_Literal_Length (Etype (Expr_Actual))));
-
- -- General array case. Here we have a usable actual subtype for
- -- the expression, and the condition is built from the two types
- -- (Do_Length):
-
- -- T_Typ'Length /= Exptyp'Length or else
- -- T_Typ'Length (2) /= Exptyp'Length (2) or else
- -- T_Typ'Length (3) /= Exptyp'Length (3) or else
- -- ...
-
- elsif Is_Constrained (Exptyp) then
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- L_Index : Node_Id;
- R_Index : Node_Id;
- L_Low : Node_Id;
- L_High : Node_Id;
- R_Low : Node_Id;
- R_High : Node_Id;
- L_Length : Uint;
- R_Length : Uint;
- Ref_Node : Node_Id;
-
- begin
-
- -- At the library level, we need to ensure that the
- -- type of the object is elaborated before the check
- -- itself is emitted. This is only done if the object
- -- is in the current compilation unit, otherwise the
- -- type is frozen and elaborated in its unit.
-
- if Is_Itype (Exptyp)
- and then
- Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
- and then
- not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
- and then In_Open_Scopes (Scope (Exptyp))
- then
- Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
- Set_Itype (Ref_Node, Exptyp);
- Insert_Action (Ck_Node, Ref_Node);
- end if;
-
- L_Index := First_Index (T_Typ);
- R_Index := First_Index (Exptyp);
-
- for Indx in 1 .. Ndims loop
- if not (Nkind (L_Index) = N_Raise_Constraint_Error
- or else
- Nkind (R_Index) = N_Raise_Constraint_Error)
- then
- Get_Index_Bounds (L_Index, L_Low, L_High);
- Get_Index_Bounds (R_Index, R_Low, R_High);
-
- -- Deal with compile time length check. Note that we
- -- skip this in the access case, because the access
- -- value may be null, so we cannot know statically.
-
- if not Do_Access
- and then Compile_Time_Known_Value (L_Low)
- and then Compile_Time_Known_Value (L_High)
- and then Compile_Time_Known_Value (R_Low)
- and then Compile_Time_Known_Value (R_High)
- then
- if Expr_Value (L_High) >= Expr_Value (L_Low) then
- L_Length := Expr_Value (L_High) -
- Expr_Value (L_Low) + 1;
- else
- L_Length := UI_From_Int (0);
- end if;
-
- if Expr_Value (R_High) >= Expr_Value (R_Low) then
- R_Length := Expr_Value (R_High) -
- Expr_Value (R_Low) + 1;
- else
- R_Length := UI_From_Int (0);
- end if;
-
- if L_Length > R_Length then
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode, "too few elements for}?", T_Typ));
-
- elsif L_Length < R_Length then
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode, "too many elements for}?", T_Typ));
- end if;
-
- -- The comparison for an individual index subtype
- -- is omitted if the corresponding index subtypes
- -- statically match, since the result is known to
- -- be true. Note that this test is worth while even
- -- though we do static evaluation, because non-static
- -- subtypes can statically match.
-
- elsif not
- Subtypes_Statically_Match
- (Etype (L_Index), Etype (R_Index))
-
- and then not
- (Same_Bounds (L_Low, R_Low)
- and then Same_Bounds (L_High, R_High))
- then
- Evolve_Or_Else
- (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
- end if;
-
- Next (L_Index);
- Next (R_Index);
- end if;
- end loop;
- end;
-
- -- Handle cases where we do not get a usable actual subtype that
- -- is constrained. This happens for example in the function call
- -- and explicit dereference cases. In these cases, we have to get
- -- the length or range from the expression itself, making sure we
- -- do not evaluate it more than once.
-
- -- Here Ck_Node is the original expression, or more properly the
- -- result of applying Duplicate_Expr to the original tree,
- -- forcing the result to be a name.
-
- else
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- begin
- -- Build the condition for the explicit dereference case
-
- for Indx in 1 .. Ndims loop
- Evolve_Or_Else
- (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
- end loop;
- end;
- end if;
- end if;
- end if;
-
- -- Construct the test and insert into the tree
-
- if Present (Cond) then
- if Do_Access then
- Cond := Guard_Access (Cond, Loc, Ck_Node);
- end if;
-
- Add_Check
- (Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Length_Check_Failed));
- end if;
-
- return Ret_Result;
- end Selected_Length_Checks;
-
- ---------------------------
- -- Selected_Range_Checks --
- ---------------------------
-
- function Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result
- is
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- S_Typ : Entity_Id;
- T_Typ : Entity_Id;
- Expr_Actual : Node_Id;
- Exptyp : Entity_Id;
- Cond : Node_Id := Empty;
- Do_Access : Boolean := False;
- Wnode : Node_Id := Warn_Node;
- Ret_Result : Check_Result := (Empty, Empty);
- Num_Checks : Integer := 0;
-
- procedure Add_Check (N : Node_Id);
- -- Adds the action given to Ret_Result if N is non-Empty
-
- function Discrete_Range_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id;
- -- Returns expression to compute:
- -- Low_Bound (Expr) < Typ'First
- -- or else
- -- High_Bound (Expr) > Typ'Last
-
- function Discrete_Expr_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id;
- -- Returns expression to compute:
- -- Expr < Typ'First
- -- or else
- -- Expr > Typ'Last
-
- function Get_E_First_Or_Last
- (E : Entity_Id;
- Indx : Nat;
- Nam : Name_Id) return Node_Id;
- -- Returns expression to compute:
- -- E'First or E'Last
-
- function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
- function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- N'First or N'Last using Duplicate_Subexpr_No_Checks
-
- function Range_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat)
- return Node_Id;
- -- Returns expression to compute:
- -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
-
- function Range_Equal_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
-
- function Range_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Return expression to compute:
- -- Expr'First < Typ'First or else Expr'Last > Typ'Last
-
- ---------------
- -- Add_Check --
- ---------------
-
- procedure Add_Check (N : Node_Id) is
- begin
- if Present (N) then
-
- -- For now, ignore attempt to place more than 2 checks ???
-
- if Num_Checks = 2 then
- return;
- end if;
-
- pragma Assert (Num_Checks <= 1);
- Num_Checks := Num_Checks + 1;
- Ret_Result (Num_Checks) := N;
- end if;
- end Add_Check;
-
- -------------------------
- -- Discrete_Expr_Cond --
- -------------------------
-
- function Discrete_Expr_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Typ),
- Duplicate_Subexpr_No_Checks (Expr)),
- Right_Opnd =>
- Convert_To (Base_Type (Typ),
- Get_E_First_Or_Last (Typ, 0, Name_First))),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Typ),
- Duplicate_Subexpr_No_Checks (Expr)),
- Right_Opnd =>
- Convert_To
- (Base_Type (Typ),
- Get_E_First_Or_Last (Typ, 0, Name_Last))));
- end Discrete_Expr_Cond;
-
- -------------------------
- -- Discrete_Range_Cond --
- -------------------------
-
- function Discrete_Range_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id
- is
- LB : Node_Id := Low_Bound (Expr);
- HB : Node_Id := High_Bound (Expr);
-
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id;
-
- begin
- if Nkind (LB) = N_Identifier
- and then Ekind (Entity (LB)) = E_Discriminant then
- LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
- end if;
-
- if Nkind (HB) = N_Identifier
- and then Ekind (Entity (HB)) = E_Discriminant then
- HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
- end if;
-
- Left_Opnd :=
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Convert_To
- (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
-
- Right_Opnd =>
- Convert_To
- (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
-
- if Base_Type (Typ) = Typ then
- return Left_Opnd;
-
- elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
- and then
- Compile_Time_Known_Value (High_Bound (Scalar_Range
- (Base_Type (Typ))))
- then
- if Is_Floating_Point_Type (Typ) then
- if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
- Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
- then
- return Left_Opnd;
- end if;
-
- else
- if Expr_Value (High_Bound (Scalar_Range (Typ))) =
- Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
- then
- return Left_Opnd;
- end if;
- end if;
- end if;
-
- Right_Opnd :=
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Convert_To
- (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
-
- Right_Opnd =>
- Convert_To
- (Base_Type (Typ),
- Get_E_First_Or_Last (Typ, 0, Name_Last)));
-
- return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
- end Discrete_Range_Cond;
-
- -------------------------
- -- Get_E_First_Or_Last --
- -------------------------
-
- function Get_E_First_Or_Last
- (E : Entity_Id;
- Indx : Nat;
- Nam : Name_Id) return Node_Id
- is
- N : Node_Id;
- LB : Node_Id;
- HB : Node_Id;
- Bound : Node_Id;
-
- begin
- if Is_Array_Type (E) then
- N := First_Index (E);
-
- for J in 2 .. Indx loop
- Next_Index (N);
- end loop;
-
- else
- N := Scalar_Range (E);
- end if;
-
- if Nkind (N) = N_Subtype_Indication then
- LB := Low_Bound (Range_Expression (Constraint (N)));
- HB := High_Bound (Range_Expression (Constraint (N)));
-
- elsif Is_Entity_Name (N) then
- LB := Type_Low_Bound (Etype (N));
- HB := Type_High_Bound (Etype (N));
-
- else
- LB := Low_Bound (N);
- HB := High_Bound (N);
- end if;
-
- if Nam = Name_First then
- Bound := LB;
- else
- Bound := HB;
- end if;
-
- if Nkind (Bound) = N_Identifier
- and then Ekind (Entity (Bound)) = E_Discriminant
- then
- -- If this is a task discriminant, and we are the body, we must
- -- retrieve the corresponding body discriminal. This is another
- -- consequence of the early creation of discriminals, and the
- -- need to generate constraint checks before their declarations
- -- are made visible.
-
- if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
- declare
- Tsk : constant Entity_Id :=
- Corresponding_Concurrent_Type
- (Scope (Entity (Bound)));
- Disc : Entity_Id;
-
- begin
- if In_Open_Scopes (Tsk)
- and then Has_Completion (Tsk)
- then
- -- Find discriminant of original task, and use its
- -- current discriminal, which is the renaming within
- -- the task body.
-
- Disc := First_Discriminant (Tsk);
- while Present (Disc) loop
- if Chars (Disc) = Chars (Entity (Bound)) then
- Set_Scope (Discriminal (Disc), Tsk);
- return New_Occurrence_Of (Discriminal (Disc), Loc);
- end if;
-
- Next_Discriminant (Disc);
- end loop;
-
- -- That loop should always succeed in finding a matching
- -- entry and returning. Fatal error if not.
-
- raise Program_Error;
-
- else
- return
- New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
- end if;
- end;
- else
- return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
- end if;
-
- elsif Nkind (Bound) = N_Identifier
- and then Ekind (Entity (Bound)) = E_In_Parameter
- and then not Inside_Init_Proc
- then
- return Get_Discriminal (E, Bound);
-
- elsif Nkind (Bound) = N_Integer_Literal then
- return Make_Integer_Literal (Loc, Intval (Bound));
-
- -- Case of a bound that has been rewritten to an
- -- N_Raise_Constraint_Error node because it is an out-of-range
- -- value. We may not call Duplicate_Subexpr on this node because
- -- an N_Raise_Constraint_Error is not side effect free, and we may
- -- not assume that we are in the proper context to remove side
- -- effects on it at the point of reference.
-
- elsif Nkind (Bound) = N_Raise_Constraint_Error then
- return New_Copy_Tree (Bound);
-
- else
- return Duplicate_Subexpr_No_Checks (Bound);
- end if;
- end Get_E_First_Or_Last;
-
- -----------------
- -- Get_N_First --
- -----------------
-
- function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_First,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Expressions => New_List (
- Make_Integer_Literal (Loc, Indx)));
- end Get_N_First;
-
- ----------------
- -- Get_N_Last --
- ----------------
-
- function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Last,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Expressions => New_List (
- Make_Integer_Literal (Loc, Indx)));
- end Get_N_Last;
-
- ------------------
- -- Range_E_Cond --
- ------------------
-
- function Range_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
- Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
- Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
-
- end Range_E_Cond;
-
- ------------------------
- -- Range_Equal_E_Cond --
- ------------------------
-
- function Range_Equal_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
- Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
- Right_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
- Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
- end Range_Equal_E_Cond;
-
- ------------------
- -- Range_N_Cond --
- ------------------
-
- function Range_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Get_N_First (Expr, Indx),
- Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => Get_N_Last (Expr, Indx),
- Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
- end Range_N_Cond;
-
- -- Start of processing for Selected_Range_Checks
-
- begin
- if not Expander_Active then
- return Ret_Result;
- end if;
-
- if Target_Typ = Any_Type
- or else Target_Typ = Any_Composite
- or else Raises_Constraint_Error (Ck_Node)
- then
- return Ret_Result;
- end if;
-
- if No (Wnode) then
- Wnode := Ck_Node;
- end if;
-
- T_Typ := Target_Typ;
-
- if No (Source_Typ) then
- S_Typ := Etype (Ck_Node);
- else
- S_Typ := Source_Typ;
- end if;
-
- if S_Typ = Any_Type or else S_Typ = Any_Composite then
- return Ret_Result;
- end if;
-
- -- The order of evaluating T_Typ before S_Typ seems to be critical
- -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
- -- in, and since Node can be an N_Range node, it might be invalid.
- -- Should there be an assert check somewhere for taking the Etype of
- -- an N_Range node ???
-
- if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
- S_Typ := Designated_Type (S_Typ);
- T_Typ := Designated_Type (T_Typ);
- Do_Access := True;
-
- -- A simple optimization
-
- if Nkind (Ck_Node) = N_Null then
- return Ret_Result;
- end if;
- end if;
-
- -- For an N_Range Node, check for a null range and then if not
- -- null generate a range check action.
-
- if Nkind (Ck_Node) = N_Range then
-
- -- There's no point in checking a range against itself
-
- if Ck_Node = Scalar_Range (T_Typ) then
- return Ret_Result;
- end if;
-
- declare
- T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
- T_HB : constant Node_Id := Type_High_Bound (T_Typ);
- LB : constant Node_Id := Low_Bound (Ck_Node);
- HB : constant Node_Id := High_Bound (Ck_Node);
- Null_Range : Boolean;
-
- Out_Of_Range_L : Boolean;
- Out_Of_Range_H : Boolean;
-
- begin
- -- Check for case where everything is static and we can
- -- do the check at compile time. This is skipped if we
- -- have an access type, since the access value may be null.
-
- -- ??? This code can be improved since you only need to know
- -- that the two respective bounds (LB & T_LB or HB & T_HB)
- -- are known at compile time to emit pertinent messages.
-
- if Compile_Time_Known_Value (LB)
- and then Compile_Time_Known_Value (HB)
- and then Compile_Time_Known_Value (T_LB)
- and then Compile_Time_Known_Value (T_HB)
- and then not Do_Access
- then
- -- Floating-point case
-
- if Is_Floating_Point_Type (S_Typ) then
- Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
- Out_Of_Range_L :=
- (Expr_Value_R (LB) < Expr_Value_R (T_LB))
- or else
- (Expr_Value_R (LB) > Expr_Value_R (T_HB));
-
- Out_Of_Range_H :=
- (Expr_Value_R (HB) > Expr_Value_R (T_HB))
- or else
- (Expr_Value_R (HB) < Expr_Value_R (T_LB));
-
- -- Fixed or discrete type case
-
- else
- Null_Range := Expr_Value (HB) < Expr_Value (LB);
- Out_Of_Range_L :=
- (Expr_Value (LB) < Expr_Value (T_LB))
- or else
- (Expr_Value (LB) > Expr_Value (T_HB));
-
- Out_Of_Range_H :=
- (Expr_Value (HB) > Expr_Value (T_HB))
- or else
- (Expr_Value (HB) < Expr_Value (T_LB));
- end if;
-
- if not Null_Range then
- if Out_Of_Range_L then
- if No (Warn_Node) then
- Add_Check
- (Compile_Time_Constraint_Error
- (Low_Bound (Ck_Node),
- "static value out of range of}?", T_Typ));
-
- else
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode,
- "static range out of bounds of}?", T_Typ));
- end if;
- end if;
-
- if Out_Of_Range_H then
- if No (Warn_Node) then
- Add_Check
- (Compile_Time_Constraint_Error
- (High_Bound (Ck_Node),
- "static value out of range of}?", T_Typ));
-
- else
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode,
- "static range out of bounds of}?", T_Typ));
- end if;
- end if;
-
- end if;
-
- else
- declare
- LB : Node_Id := Low_Bound (Ck_Node);
- HB : Node_Id := High_Bound (Ck_Node);
-
- begin
-
- -- If either bound is a discriminant and we are within
- -- the record declaration, it is a use of the discriminant
- -- in a constraint of a component, and nothing can be
- -- checked here. The check will be emitted within the
- -- init proc. Before then, the discriminal has no real
- -- meaning.
-
- if Nkind (LB) = N_Identifier
- and then Ekind (Entity (LB)) = E_Discriminant
- then
- if Current_Scope = Scope (Entity (LB)) then
- return Ret_Result;
- else
- LB :=
- New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
- end if;
- end if;
-
- if Nkind (HB) = N_Identifier
- and then Ekind (Entity (HB)) = E_Discriminant
- then
- if Current_Scope = Scope (Entity (HB)) then
- return Ret_Result;
- else
- HB :=
- New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
- end if;
- end if;
-
- Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
- Set_Paren_Count (Cond, 1);
-
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Ge (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
- Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
- Right_Opnd => Cond);
- end;
-
- end if;
- end;
-
- elsif Is_Scalar_Type (S_Typ) then
-
- -- This somewhat duplicates what Apply_Scalar_Range_Check does,
- -- except the above simply sets a flag in the node and lets
- -- gigi generate the check base on the Etype of the expression.
- -- Sometimes, however we want to do a dynamic check against an
- -- arbitrary target type, so we do that here.
-
- if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
- Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
-
- -- For literals, we can tell if the constraint error will be
- -- raised at compile time, so we never need a dynamic check, but
- -- if the exception will be raised, then post the usual warning,
- -- and replace the literal with a raise constraint error
- -- expression. As usual, skip this for access types
-
- elsif Compile_Time_Known_Value (Ck_Node)
- and then not Do_Access
- then
- declare
- LB : constant Node_Id := Type_Low_Bound (T_Typ);
- UB : constant Node_Id := Type_High_Bound (T_Typ);
-
- Out_Of_Range : Boolean;
- Static_Bounds : constant Boolean :=
- Compile_Time_Known_Value (LB)
- and Compile_Time_Known_Value (UB);
-
- begin
- -- Following range tests should use Sem_Eval routine ???
-
- if Static_Bounds then
- if Is_Floating_Point_Type (S_Typ) then
- Out_Of_Range :=
- (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
- or else
- (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
-
- else -- fixed or discrete type
- Out_Of_Range :=
- Expr_Value (Ck_Node) < Expr_Value (LB)
- or else
- Expr_Value (Ck_Node) > Expr_Value (UB);
- end if;
-
- -- Bounds of the type are static and the literal is
- -- out of range so make a warning message.
-
- if Out_Of_Range then
- if No (Warn_Node) then
- Add_Check
- (Compile_Time_Constraint_Error
- (Ck_Node,
- "static value out of range of}?", T_Typ));
-
- else
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode,
- "static value out of range of}?", T_Typ));
- end if;
- end if;
-
- else
- Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
- end if;
- end;
-
- -- Here for the case of a non-static expression, we need a runtime
- -- check unless the source type range is guaranteed to be in the
- -- range of the target type.
-
- else
- if not In_Subrange_Of (S_Typ, T_Typ) then
- Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
- end if;
- end if;
- end if;
-
- if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
- if Is_Constrained (T_Typ) then
-
- Expr_Actual := Get_Referenced_Object (Ck_Node);
- Exptyp := Get_Actual_Subtype (Expr_Actual);
-
- if Is_Access_Type (Exptyp) then
- Exptyp := Designated_Type (Exptyp);
- end if;
-
- -- String_Literal case. This needs to be handled specially be-
- -- cause no index types are available for string literals. The
- -- condition is simply:
-
- -- T_Typ'Length = string-literal-length
-
- if Nkind (Expr_Actual) = N_String_Literal then
- null;
-
- -- General array case. Here we have a usable actual subtype for
- -- the expression, and the condition is built from the two types
-
- -- T_Typ'First < Exptyp'First or else
- -- T_Typ'Last > Exptyp'Last or else
- -- T_Typ'First(1) < Exptyp'First(1) or else
- -- T_Typ'Last(1) > Exptyp'Last(1) or else
- -- ...
-
- elsif Is_Constrained (Exptyp) then
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- L_Index : Node_Id;
- R_Index : Node_Id;
- L_Low : Node_Id;
- L_High : Node_Id;
- R_Low : Node_Id;
- R_High : Node_Id;
-
- begin
- L_Index := First_Index (T_Typ);
- R_Index := First_Index (Exptyp);
-
- for Indx in 1 .. Ndims loop
- if not (Nkind (L_Index) = N_Raise_Constraint_Error
- or else
- Nkind (R_Index) = N_Raise_Constraint_Error)
- then
- Get_Index_Bounds (L_Index, L_Low, L_High);
- Get_Index_Bounds (R_Index, R_Low, R_High);
-
- -- Deal with compile time length check. Note that we
- -- skip this in the access case, because the access
- -- value may be null, so we cannot know statically.
-
- if not
- Subtypes_Statically_Match
- (Etype (L_Index), Etype (R_Index))
- then
- -- If the target type is constrained then we
- -- have to check for exact equality of bounds
- -- (required for qualified expressions).
-
- if Is_Constrained (T_Typ) then
- Evolve_Or_Else
- (Cond,
- Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
-
- else
- Evolve_Or_Else
- (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
- end if;
- end if;
-
- Next (L_Index);
- Next (R_Index);
-
- end if;
- end loop;
- end;
-
- -- Handle cases where we do not get a usable actual subtype that
- -- is constrained. This happens for example in the function call
- -- and explicit dereference cases. In these cases, we have to get
- -- the length or range from the expression itself, making sure we
- -- do not evaluate it more than once.
-
- -- Here Ck_Node is the original expression, or more properly the
- -- result of applying Duplicate_Expr to the original tree,
- -- forcing the result to be a name.
-
- else
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- begin
- -- Build the condition for the explicit dereference case
-
- for Indx in 1 .. Ndims loop
- Evolve_Or_Else
- (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
- end loop;
- end;
-
- end if;
-
- else
- -- Generate an Action to check that the bounds of the
- -- source value are within the constraints imposed by the
- -- target type for a conversion to an unconstrained type.
- -- Rule is 4.6(38).
-
- if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
- declare
- Opnd_Index : Node_Id;
- Targ_Index : Node_Id;
-
- begin
- Opnd_Index
- := First_Index (Get_Actual_Subtype (Ck_Node));
- Targ_Index := First_Index (T_Typ);
-
- while Opnd_Index /= Empty loop
- if Nkind (Opnd_Index) = N_Range then
- if Is_In_Range
- (Low_Bound (Opnd_Index), Etype (Targ_Index))
- and then
- Is_In_Range
- (High_Bound (Opnd_Index), Etype (Targ_Index))
- then
- null;
-
- -- If null range, no check needed
-
- elsif
- Compile_Time_Known_Value (High_Bound (Opnd_Index))
- and then
- Compile_Time_Known_Value (Low_Bound (Opnd_Index))
- and then
- Expr_Value (High_Bound (Opnd_Index)) <
- Expr_Value (Low_Bound (Opnd_Index))
- then
- null;
-
- elsif Is_Out_Of_Range
- (Low_Bound (Opnd_Index), Etype (Targ_Index))
- or else
- Is_Out_Of_Range
- (High_Bound (Opnd_Index), Etype (Targ_Index))
- then
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode, "value out of range of}?", T_Typ));
-
- else
- Evolve_Or_Else
- (Cond,
- Discrete_Range_Cond
- (Opnd_Index, Etype (Targ_Index)));
- end if;
- end if;
-
- Next_Index (Opnd_Index);
- Next_Index (Targ_Index);
- end loop;
- end;
- end if;
- end if;
- end if;
-
- -- Construct the test and insert into the tree
-
- if Present (Cond) then
- if Do_Access then
- Cond := Guard_Access (Cond, Loc, Ck_Node);
- end if;
-
- Add_Check
- (Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Range_Check_Failed));
- end if;
-
- return Ret_Result;
- end Selected_Range_Checks;
-
- -------------------------------
- -- Storage_Checks_Suppressed --
- -------------------------------
-
- function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Storage_Check);
- else
- return Scope_Suppress (Storage_Check);
- end if;
- end Storage_Checks_Suppressed;
-
- ---------------------------
- -- Tag_Checks_Suppressed --
- ---------------------------
-
- function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) then
- if Kill_Tag_Checks (E) then
- return True;
- elsif Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Tag_Check);
- end if;
- end if;
-
- return Scope_Suppress (Tag_Check);
- end Tag_Checks_Suppressed;
-
-end Checks;