aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.2.1-5666.3/gcc/function.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.2.1-5666.3/gcc/function.c')
-rw-r--r--gcc-4.2.1-5666.3/gcc/function.c5840
1 files changed, 5840 insertions, 0 deletions
diff --git a/gcc-4.2.1-5666.3/gcc/function.c b/gcc-4.2.1-5666.3/gcc/function.c
new file mode 100644
index 000000000..6d63b92e9
--- /dev/null
+++ b/gcc-4.2.1-5666.3/gcc/function.c
@@ -0,0 +1,5840 @@
+/* Expands front end tree to back end RTL for GCC.
+ Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
+ 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+/* This file handles the generation of rtl code from tree structure
+ at the level of the function as a whole.
+ It creates the rtl expressions for parameters and auto variables
+ and has full responsibility for allocating stack slots.
+
+ `expand_function_start' is called at the beginning of a function,
+ before the function body is parsed, and `expand_function_end' is
+ called after parsing the body.
+
+ Call `assign_stack_local' to allocate a stack slot for a local variable.
+ This is usually done during the RTL generation for the function body,
+ but it can also be done in the reload pass when a pseudo-register does
+ not get a hard register. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "output.h"
+#include "basic-block.h"
+#include "toplev.h"
+#include "hashtab.h"
+#include "ggc.h"
+#include "tm_p.h"
+#include "integrate.h"
+#include "langhooks.h"
+#include "target.h"
+#include "cfglayout.h"
+#include "tree-gimple.h"
+#include "tree-pass.h"
+#include "predict.h"
+#include "vecprim.h"
+
+#ifndef LOCAL_ALIGNMENT
+#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
+#endif
+
+#ifndef STACK_ALIGNMENT_NEEDED
+#define STACK_ALIGNMENT_NEEDED 1
+#endif
+
+#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
+
+/* Some systems use __main in a way incompatible with its use in gcc, in these
+ cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
+ give the same symbol without quotes for an alternative entry point. You
+ must define both, or neither. */
+#ifndef NAME__MAIN
+#define NAME__MAIN "__main"
+#endif
+
+/* Round a value to the lowest integer less than it that is a multiple of
+ the required alignment. Avoid using division in case the value is
+ negative. Assume the alignment is a power of two. */
+#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
+
+/* Similar, but round to the next highest integer that meets the
+ alignment. */
+#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
+
+/* Nonzero if function being compiled doesn't contain any calls
+ (ignoring the prologue and epilogue). This is set prior to
+ local register allocation and is valid for the remaining
+ compiler passes. */
+int current_function_is_leaf;
+
+/* Nonzero if function being compiled doesn't modify the stack pointer
+ (ignoring the prologue and epilogue). This is only valid after
+ life_analysis has run. */
+int current_function_sp_is_unchanging;
+
+/* Nonzero if the function being compiled is a leaf function which only
+ uses leaf registers. This is valid after reload (specifically after
+ sched2) and is useful only if the port defines LEAF_REGISTERS. */
+int current_function_uses_only_leaf_regs;
+
+/* Nonzero once virtual register instantiation has been done.
+ assign_stack_local uses frame_pointer_rtx when this is nonzero.
+ calls.c:emit_library_call_value_1 uses it to set up
+ post-instantiation libcalls. */
+int virtuals_instantiated;
+
+/* APPLE LOCAL begin radar 5732232 - blocks */
+struct block_sema_info *cur_block;
+/* APPLE LOCAL end radar 5732232 - blocks */
+
+/* Assign unique numbers to labels generated for profiling, debugging, etc. */
+static GTY(()) int funcdef_no;
+
+/* These variables hold pointers to functions to create and destroy
+ target specific, per-function data structures. */
+struct machine_function * (*init_machine_status) (void);
+
+/* The currently compiled function. */
+struct function *cfun = 0;
+
+/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
+static VEC(int,heap) *prologue;
+static VEC(int,heap) *epilogue;
+
+/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
+ in this function. */
+static VEC(int,heap) *sibcall_epilogue;
+
+/* In order to evaluate some expressions, such as function calls returning
+ structures in memory, we need to temporarily allocate stack locations.
+ We record each allocated temporary in the following structure.
+
+ Associated with each temporary slot is a nesting level. When we pop up
+ one level, all temporaries associated with the previous level are freed.
+ Normally, all temporaries are freed after the execution of the statement
+ in which they were created. However, if we are inside a ({...}) grouping,
+ the result may be in a temporary and hence must be preserved. If the
+ result could be in a temporary, we preserve it if we can determine which
+ one it is in. If we cannot determine which temporary may contain the
+ result, all temporaries are preserved. A temporary is preserved by
+ pretending it was allocated at the previous nesting level.
+
+ Automatic variables are also assigned temporary slots, at the nesting
+ level where they are defined. They are marked a "kept" so that
+ free_temp_slots will not free them. */
+
+struct temp_slot GTY(())
+{
+ /* Points to next temporary slot. */
+ struct temp_slot *next;
+ /* Points to previous temporary slot. */
+ struct temp_slot *prev;
+
+ /* The rtx to used to reference the slot. */
+ rtx slot;
+ /* The rtx used to represent the address if not the address of the
+ slot above. May be an EXPR_LIST if multiple addresses exist. */
+ rtx address;
+ /* The alignment (in bits) of the slot. */
+ unsigned int align;
+ /* The size, in units, of the slot. */
+ HOST_WIDE_INT size;
+ /* The type of the object in the slot, or zero if it doesn't correspond
+ to a type. We use this to determine whether a slot can be reused.
+ It can be reused if objects of the type of the new slot will always
+ conflict with objects of the type of the old slot. */
+ tree type;
+ /* Nonzero if this temporary is currently in use. */
+ char in_use;
+ /* Nonzero if this temporary has its address taken. */
+ char addr_taken;
+ /* Nesting level at which this slot is being used. */
+ int level;
+ /* Nonzero if this should survive a call to free_temp_slots. */
+ int keep;
+ /* The offset of the slot from the frame_pointer, including extra space
+ for alignment. This info is for combine_temp_slots. */
+ HOST_WIDE_INT base_offset;
+ /* The size of the slot, including extra space for alignment. This
+ info is for combine_temp_slots. */
+ HOST_WIDE_INT full_size;
+};
+
+/* Forward declarations. */
+
+static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
+ struct function *);
+static struct temp_slot *find_temp_slot_from_address (rtx);
+static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
+static void pad_below (struct args_size *, enum machine_mode, tree);
+static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
+static int all_blocks (tree, tree *);
+static tree *get_block_vector (tree, int *);
+extern tree debug_find_var_in_block_tree (tree, tree);
+/* We always define `record_insns' even if it's not used so that we
+ can always export `prologue_epilogue_contains'. */
+static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
+static int contains (rtx, VEC(int,heap) **);
+#ifdef HAVE_return
+static void emit_return_into_block (basic_block, rtx);
+#endif
+#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
+static rtx keep_stack_depressed (rtx);
+#endif
+static void prepare_function_start (tree);
+static void do_clobber_return_reg (rtx, void *);
+static void do_use_return_reg (rtx, void *);
+static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
+/* APPLE LOCAL radar 6163705, Blocks prologues */
+static rtx find_block_prologue_insns (void);
+
+/* Pointer to chain of `struct function' for containing functions. */
+struct function *outer_function_chain;
+
+/* Given a function decl for a containing function,
+ return the `struct function' for it. */
+
+struct function *
+find_function_data (tree decl)
+{
+ struct function *p;
+
+ for (p = outer_function_chain; p; p = p->outer)
+ if (p->decl == decl)
+ return p;
+
+ gcc_unreachable ();
+}
+
+/* Save the current context for compilation of a nested function.
+ This is called from language-specific code. The caller should use
+ the enter_nested langhook to save any language-specific state,
+ since this function knows only about language-independent
+ variables. */
+
+void
+push_function_context_to (tree context ATTRIBUTE_UNUSED)
+{
+ struct function *p;
+
+ if (cfun == 0)
+ init_dummy_function_start ();
+ p = cfun;
+
+ p->outer = outer_function_chain;
+ outer_function_chain = p;
+
+ lang_hooks.function.enter_nested (p);
+
+ cfun = 0;
+}
+
+void
+push_function_context (void)
+{
+ push_function_context_to (current_function_decl);
+}
+
+/* Restore the last saved context, at the end of a nested function.
+ This function is called from language-specific code. */
+
+void
+pop_function_context_from (tree context ATTRIBUTE_UNUSED)
+{
+ struct function *p = outer_function_chain;
+
+ cfun = p;
+ outer_function_chain = p->outer;
+
+ current_function_decl = p->decl;
+
+ lang_hooks.function.leave_nested (p);
+
+ /* Reset variables that have known state during rtx generation. */
+ virtuals_instantiated = 0;
+ generating_concat_p = 1;
+}
+
+void
+pop_function_context (void)
+{
+ pop_function_context_from (current_function_decl);
+}
+
+/* Clear out all parts of the state in F that can safely be discarded
+ after the function has been parsed, but not compiled, to let
+ garbage collection reclaim the memory. */
+
+void
+free_after_parsing (struct function *f)
+{
+ /* f->expr->forced_labels is used by code generation. */
+ /* f->emit->regno_reg_rtx is used by code generation. */
+ /* f->varasm is used by code generation. */
+ /* f->eh->eh_return_stub_label is used by code generation. */
+
+ lang_hooks.function.final (f);
+}
+
+/* Clear out all parts of the state in F that can safely be discarded
+ after the function has been compiled, to let garbage collection
+ reclaim the memory. */
+
+void
+free_after_compilation (struct function *f)
+{
+ VEC_free (int, heap, prologue);
+ VEC_free (int, heap, epilogue);
+ VEC_free (int, heap, sibcall_epilogue);
+
+ f->eh = NULL;
+ f->expr = NULL;
+ f->emit = NULL;
+ f->varasm = NULL;
+ f->machine = NULL;
+ f->cfg = NULL;
+
+ f->x_avail_temp_slots = NULL;
+ f->x_used_temp_slots = NULL;
+ f->arg_offset_rtx = NULL;
+ f->return_rtx = NULL;
+ f->internal_arg_pointer = NULL;
+ f->x_nonlocal_goto_handler_labels = NULL;
+ f->x_return_label = NULL;
+ f->x_naked_return_label = NULL;
+ f->x_stack_slot_list = NULL;
+ f->x_stack_check_probe_note = NULL;
+ f->x_arg_pointer_save_area = NULL;
+ f->x_parm_birth_insn = NULL;
+ f->epilogue_delay_list = NULL;
+}
+
+/* Allocate fixed slots in the stack frame of the current function. */
+
+/* Return size needed for stack frame based on slots so far allocated in
+ function F.
+ This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
+ the caller may have to do that. */
+
+static HOST_WIDE_INT
+get_func_frame_size (struct function *f)
+{
+ if (FRAME_GROWS_DOWNWARD)
+ return -f->x_frame_offset;
+ else
+ return f->x_frame_offset;
+}
+
+/* Return size needed for stack frame based on slots so far allocated.
+ This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
+ the caller may have to do that. */
+
+HOST_WIDE_INT
+get_frame_size (void)
+{
+ return get_func_frame_size (cfun);
+}
+
+/* Issue an error message and return TRUE if frame OFFSET overflows in
+ the signed target pointer arithmetics for function FUNC. Otherwise
+ return FALSE. */
+
+bool
+frame_offset_overflow (HOST_WIDE_INT offset, tree func)
+{
+ unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
+
+ if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
+ /* Leave room for the fixed part of the frame. */
+ - 64 * UNITS_PER_WORD)
+ {
+ error ("%Jtotal size of local objects too large", func);
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
+ with machine mode MODE.
+
+ ALIGN controls the amount of alignment for the address of the slot:
+ 0 means according to MODE,
+ -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
+ -2 means use BITS_PER_UNIT,
+ positive specifies alignment boundary in bits.
+
+ We do not round to stack_boundary here.
+
+ FUNCTION specifies the function to allocate in. */
+
+static rtx
+assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
+ struct function *function)
+{
+ rtx x, addr;
+ int bigend_correction = 0;
+ unsigned int alignment;
+ int frame_off, frame_alignment, frame_phase;
+
+ if (align == 0)
+ {
+ tree type;
+
+ if (mode == BLKmode)
+ alignment = BIGGEST_ALIGNMENT;
+ else
+ alignment = GET_MODE_ALIGNMENT (mode);
+
+ /* Allow the target to (possibly) increase the alignment of this
+ stack slot. */
+ type = lang_hooks.types.type_for_mode (mode, 0);
+ if (type)
+ alignment = LOCAL_ALIGNMENT (type, alignment);
+
+ alignment /= BITS_PER_UNIT;
+ }
+ else if (align == -1)
+ {
+ alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ size = CEIL_ROUND (size, alignment);
+ }
+ else if (align == -2)
+ alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
+ else
+ alignment = align / BITS_PER_UNIT;
+
+ if (FRAME_GROWS_DOWNWARD)
+ function->x_frame_offset -= size;
+
+ /* Ignore alignment we can't do with expected alignment of the boundary. */
+ if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
+ alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+
+ if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
+ function->stack_alignment_needed = alignment * BITS_PER_UNIT;
+
+ /* Calculate how many bytes the start of local variables is off from
+ stack alignment. */
+ frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+ frame_off = STARTING_FRAME_OFFSET % frame_alignment;
+ frame_phase = frame_off ? frame_alignment - frame_off : 0;
+
+ /* Round the frame offset to the specified alignment. The default is
+ to always honor requests to align the stack but a port may choose to
+ do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
+ if (STACK_ALIGNMENT_NEEDED
+ || mode != BLKmode
+ || size != 0)
+ {
+ /* We must be careful here, since FRAME_OFFSET might be negative and
+ division with a negative dividend isn't as well defined as we might
+ like. So we instead assume that ALIGNMENT is a power of two and
+ use logical operations which are unambiguous. */
+ if (FRAME_GROWS_DOWNWARD)
+ function->x_frame_offset
+ = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
+ (unsigned HOST_WIDE_INT) alignment)
+ + frame_phase);
+ else
+ function->x_frame_offset
+ = (CEIL_ROUND (function->x_frame_offset - frame_phase,
+ (unsigned HOST_WIDE_INT) alignment)
+ + frame_phase);
+ }
+
+ /* On a big-endian machine, if we are allocating more space than we will use,
+ use the least significant bytes of those that are allocated. */
+ if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
+ bigend_correction = size - GET_MODE_SIZE (mode);
+
+ /* If we have already instantiated virtual registers, return the actual
+ address relative to the frame pointer. */
+ if (function == cfun && virtuals_instantiated)
+ addr = plus_constant (frame_pointer_rtx,
+ trunc_int_for_mode
+ (frame_offset + bigend_correction
+ + STARTING_FRAME_OFFSET, Pmode));
+ else
+ addr = plus_constant (virtual_stack_vars_rtx,
+ trunc_int_for_mode
+ (function->x_frame_offset + bigend_correction,
+ Pmode));
+
+ if (!FRAME_GROWS_DOWNWARD)
+ function->x_frame_offset += size;
+
+ x = gen_rtx_MEM (mode, addr);
+ MEM_NOTRAP_P (x) = 1;
+
+ function->x_stack_slot_list
+ = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
+
+ if (frame_offset_overflow (function->x_frame_offset, function->decl))
+ function->x_frame_offset = 0;
+
+ return x;
+}
+
+/* Wrapper around assign_stack_local_1; assign a local stack slot for the
+ current function. */
+
+rtx
+assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
+{
+ return assign_stack_local_1 (mode, size, align, cfun);
+}
+
+/* APPLE LOCAL begin new function for rs6000 consumption */
+/* Wrapper around assign_stack_local_1; assign a local stack slot for the
+ current function, then set the mem_alias to a new alias set.
+ This can be used only in situations where the target code can
+ guarantee that the slot is used in a way that cannot conflict
+ with anything else. */
+
+rtx
+assign_stack_local_with_alias (enum machine_mode mode, HOST_WIDE_INT size,
+ int align)
+{
+ rtx mem = assign_stack_local_1 (mode, size, align, cfun);
+ set_mem_alias_set (mem, new_alias_set ());
+ return mem;
+}
+/* APPLE LOCAL end new function for rs6000 consumption */
+
+
+/* Removes temporary slot TEMP from LIST. */
+
+static void
+cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
+{
+ if (temp->next)
+ temp->next->prev = temp->prev;
+ if (temp->prev)
+ temp->prev->next = temp->next;
+ else
+ *list = temp->next;
+
+ temp->prev = temp->next = NULL;
+}
+
+/* Inserts temporary slot TEMP to LIST. */
+
+static void
+insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
+{
+ temp->next = *list;
+ if (*list)
+ (*list)->prev = temp;
+ temp->prev = NULL;
+ *list = temp;
+}
+
+/* Returns the list of used temp slots at LEVEL. */
+
+static struct temp_slot **
+temp_slots_at_level (int level)
+{
+ if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
+ {
+ size_t old_length = VEC_length (temp_slot_p, used_temp_slots);
+ temp_slot_p *p;
+
+ VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1);
+ p = VEC_address (temp_slot_p, used_temp_slots);
+ memset (&p[old_length], 0,
+ sizeof (temp_slot_p) * (level + 1 - old_length));
+ }
+
+ return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
+}
+
+/* Returns the maximal temporary slot level. */
+
+static int
+max_slot_level (void)
+{
+ if (!used_temp_slots)
+ return -1;
+
+ return VEC_length (temp_slot_p, used_temp_slots) - 1;
+}
+
+/* Moves temporary slot TEMP to LEVEL. */
+
+static void
+move_slot_to_level (struct temp_slot *temp, int level)
+{
+ cut_slot_from_list (temp, temp_slots_at_level (temp->level));
+ insert_slot_to_list (temp, temp_slots_at_level (level));
+ temp->level = level;
+}
+
+/* Make temporary slot TEMP available. */
+
+static void
+make_slot_available (struct temp_slot *temp)
+{
+ cut_slot_from_list (temp, temp_slots_at_level (temp->level));
+ insert_slot_to_list (temp, &avail_temp_slots);
+ temp->in_use = 0;
+ temp->level = -1;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+ reuse.
+
+ MODE is the machine mode to be given to the returned rtx.
+
+ SIZE is the size in units of the space required. We do no rounding here
+ since assign_stack_local will do any required rounding.
+
+ KEEP is 1 if this slot is to be retained after a call to
+ free_temp_slots. Automatic variables for a block are allocated
+ with this flag. KEEP values of 2 or 3 were needed respectively
+ for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
+ or for SAVE_EXPRs, but they are now unused.
+
+ TYPE is the type that will be used for the stack slot. */
+
+rtx
+assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
+ int keep, tree type)
+{
+ unsigned int align;
+ struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
+ rtx slot;
+
+ /* If SIZE is -1 it means that somebody tried to allocate a temporary
+ of a variable size. */
+ gcc_assert (size != -1);
+
+ /* These are now unused. */
+ gcc_assert (keep <= 1);
+
+ if (mode == BLKmode)
+ align = BIGGEST_ALIGNMENT;
+ else
+ align = GET_MODE_ALIGNMENT (mode);
+
+ if (! type)
+ type = lang_hooks.types.type_for_mode (mode, 0);
+
+ if (type)
+ align = LOCAL_ALIGNMENT (type, align);
+
+ /* Try to find an available, already-allocated temporary of the proper
+ mode which meets the size and alignment requirements. Choose the
+ smallest one with the closest alignment.
+
+ If assign_stack_temp is called outside of the tree->rtl expansion,
+ we cannot reuse the stack slots (that may still refer to
+ VIRTUAL_STACK_VARS_REGNUM). */
+ if (!virtuals_instantiated)
+ {
+ for (p = avail_temp_slots; p; p = p->next)
+ {
+ if (p->align >= align && p->size >= size
+ && GET_MODE (p->slot) == mode
+ && objects_must_conflict_p (p->type, type)
+ && (best_p == 0 || best_p->size > p->size
+ || (best_p->size == p->size && best_p->align > p->align)))
+ {
+ if (p->align == align && p->size == size)
+ {
+ selected = p;
+ cut_slot_from_list (selected, &avail_temp_slots);
+ best_p = 0;
+ break;
+ }
+ best_p = p;
+ }
+ }
+ }
+
+ /* Make our best, if any, the one to use. */
+ if (best_p)
+ {
+ selected = best_p;
+ cut_slot_from_list (selected, &avail_temp_slots);
+
+ /* If there are enough aligned bytes left over, make them into a new
+ temp_slot so that the extra bytes don't get wasted. Do this only
+ for BLKmode slots, so that we can be sure of the alignment. */
+ if (GET_MODE (best_p->slot) == BLKmode)
+ {
+ int alignment = best_p->align / BITS_PER_UNIT;
+ HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
+
+ if (best_p->size - rounded_size >= alignment)
+ {
+ p = ggc_alloc (sizeof (struct temp_slot));
+ p->in_use = p->addr_taken = 0;
+ p->size = best_p->size - rounded_size;
+ p->base_offset = best_p->base_offset + rounded_size;
+ p->full_size = best_p->full_size - rounded_size;
+ p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
+ p->align = best_p->align;
+ p->address = 0;
+ p->type = best_p->type;
+ insert_slot_to_list (p, &avail_temp_slots);
+
+ stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
+ stack_slot_list);
+
+ best_p->size = rounded_size;
+ best_p->full_size = rounded_size;
+ }
+ }
+ }
+
+ /* If we still didn't find one, make a new temporary. */
+ if (selected == 0)
+ {
+ HOST_WIDE_INT frame_offset_old = frame_offset;
+
+ p = ggc_alloc (sizeof (struct temp_slot));
+
+ /* We are passing an explicit alignment request to assign_stack_local.
+ One side effect of that is assign_stack_local will not round SIZE
+ to ensure the frame offset remains suitably aligned.
+
+ So for requests which depended on the rounding of SIZE, we go ahead
+ and round it now. We also make sure ALIGNMENT is at least
+ BIGGEST_ALIGNMENT. */
+ gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
+ p->slot = assign_stack_local (mode,
+ (mode == BLKmode
+ ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
+ : size),
+ align);
+
+ p->align = align;
+
+ /* The following slot size computation is necessary because we don't
+ know the actual size of the temporary slot until assign_stack_local
+ has performed all the frame alignment and size rounding for the
+ requested temporary. Note that extra space added for alignment
+ can be either above or below this stack slot depending on which
+ way the frame grows. We include the extra space if and only if it
+ is above this slot. */
+ if (FRAME_GROWS_DOWNWARD)
+ p->size = frame_offset_old - frame_offset;
+ else
+ p->size = size;
+
+ /* Now define the fields used by combine_temp_slots. */
+ if (FRAME_GROWS_DOWNWARD)
+ {
+ p->base_offset = frame_offset;
+ p->full_size = frame_offset_old - frame_offset;
+ }
+ else
+ {
+ p->base_offset = frame_offset_old;
+ p->full_size = frame_offset - frame_offset_old;
+ }
+ p->address = 0;
+
+ selected = p;
+ }
+
+ p = selected;
+ p->in_use = 1;
+ p->addr_taken = 0;
+ p->type = type;
+ p->level = temp_slot_level;
+ p->keep = keep;
+
+ pp = temp_slots_at_level (p->level);
+ insert_slot_to_list (p, pp);
+
+ /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
+ slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
+ stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
+
+ /* If we know the alias set for the memory that will be used, use
+ it. If there's no TYPE, then we don't know anything about the
+ alias set for the memory. */
+ set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
+ set_mem_align (slot, align);
+
+ /* If a type is specified, set the relevant flags. */
+ if (type != 0)
+ {
+ MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
+ MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
+ }
+ MEM_NOTRAP_P (slot) = 1;
+
+ return slot;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+ reuse. First three arguments are same as in preceding function. */
+
+rtx
+assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
+{
+ return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
+}
+
+/* Assign a temporary.
+ If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
+ and so that should be used in error messages. In either case, we
+ allocate of the given type.
+ KEEP is as for assign_stack_temp.
+ MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
+ it is 0 if a register is OK.
+ DONT_PROMOTE is 1 if we should not promote values in register
+ to wider modes. */
+
+rtx
+assign_temp (tree type_or_decl, int keep, int memory_required,
+ int dont_promote ATTRIBUTE_UNUSED)
+{
+ tree type, decl;
+ enum machine_mode mode;
+#ifdef PROMOTE_MODE
+ int unsignedp;
+#endif
+
+ if (DECL_P (type_or_decl))
+ decl = type_or_decl, type = TREE_TYPE (decl);
+ else
+ decl = NULL, type = type_or_decl;
+
+ mode = TYPE_MODE (type);
+#ifdef PROMOTE_MODE
+ unsignedp = TYPE_UNSIGNED (type);
+#endif
+
+ if (mode == BLKmode || memory_required)
+ {
+ HOST_WIDE_INT size = int_size_in_bytes (type);
+ rtx tmp;
+
+ /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
+ problems with allocating the stack space. */
+ if (size == 0)
+ size = 1;
+
+ /* Unfortunately, we don't yet know how to allocate variable-sized
+ temporaries. However, sometimes we can find a fixed upper limit on
+ the size, so try that instead. */
+ else if (size == -1)
+ size = max_int_size_in_bytes (type);
+
+ /* The size of the temporary may be too large to fit into an integer. */
+ /* ??? Not sure this should happen except for user silliness, so limit
+ this to things that aren't compiler-generated temporaries. The
+ rest of the time we'll die in assign_stack_temp_for_type. */
+ if (decl && size == -1
+ && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
+ {
+ error ("size of variable %q+D is too large", decl);
+ size = 1;
+ }
+
+ tmp = assign_stack_temp_for_type (mode, size, keep, type);
+ return tmp;
+ }
+
+#ifdef PROMOTE_MODE
+ if (! dont_promote)
+ mode = promote_mode (type, mode, &unsignedp, 0);
+#endif
+
+ return gen_reg_rtx (mode);
+}
+
+/* Combine temporary stack slots which are adjacent on the stack.
+
+ This allows for better use of already allocated stack space. This is only
+ done for BLKmode slots because we can be sure that we won't have alignment
+ problems in this case. */
+
+static void
+combine_temp_slots (void)
+{
+ struct temp_slot *p, *q, *next, *next_q;
+ int num_slots;
+
+ /* We can't combine slots, because the information about which slot
+ is in which alias set will be lost. */
+ if (flag_strict_aliasing)
+ return;
+
+ /* If there are a lot of temp slots, don't do anything unless
+ high levels of optimization. */
+ if (! flag_expensive_optimizations)
+ for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
+ if (num_slots > 100 || (num_slots > 10 && optimize == 0))
+ return;
+
+ for (p = avail_temp_slots; p; p = next)
+ {
+ int delete_p = 0;
+
+ next = p->next;
+
+ if (GET_MODE (p->slot) != BLKmode)
+ continue;
+
+ for (q = p->next; q; q = next_q)
+ {
+ int delete_q = 0;
+
+ next_q = q->next;
+
+ if (GET_MODE (q->slot) != BLKmode)
+ continue;
+
+ if (p->base_offset + p->full_size == q->base_offset)
+ {
+ /* Q comes after P; combine Q into P. */
+ p->size += q->size;
+ p->full_size += q->full_size;
+ delete_q = 1;
+ }
+ else if (q->base_offset + q->full_size == p->base_offset)
+ {
+ /* P comes after Q; combine P into Q. */
+ q->size += p->size;
+ q->full_size += p->full_size;
+ delete_p = 1;
+ break;
+ }
+ if (delete_q)
+ cut_slot_from_list (q, &avail_temp_slots);
+ }
+
+ /* Either delete P or advance past it. */
+ if (delete_p)
+ cut_slot_from_list (p, &avail_temp_slots);
+ }
+}
+
+/* Find the temp slot corresponding to the object at address X. */
+
+static struct temp_slot *
+find_temp_slot_from_address (rtx x)
+{
+ struct temp_slot *p;
+ rtx next;
+ int i;
+
+ for (i = max_slot_level (); i >= 0; i--)
+ for (p = *temp_slots_at_level (i); p; p = p->next)
+ {
+ if (XEXP (p->slot, 0) == x
+ || p->address == x
+ || (GET_CODE (x) == PLUS
+ && XEXP (x, 0) == virtual_stack_vars_rtx
+ && GET_CODE (XEXP (x, 1)) == CONST_INT
+ && INTVAL (XEXP (x, 1)) >= p->base_offset
+ && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
+ return p;
+
+ else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
+ for (next = p->address; next; next = XEXP (next, 1))
+ if (XEXP (next, 0) == x)
+ return p;
+ }
+
+ /* If we have a sum involving a register, see if it points to a temp
+ slot. */
+ if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
+ && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
+ return p;
+ else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
+ && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
+ return p;
+
+ return 0;
+}
+
+/* Indicate that NEW is an alternate way of referring to the temp slot
+ that previously was known by OLD. */
+
+void
+update_temp_slot_address (rtx old, rtx new)
+{
+ struct temp_slot *p;
+
+ if (rtx_equal_p (old, new))
+ return;
+
+ p = find_temp_slot_from_address (old);
+
+ /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
+ is a register, see if one operand of the PLUS is a temporary
+ location. If so, NEW points into it. Otherwise, if both OLD and
+ NEW are a PLUS and if there is a register in common between them.
+ If so, try a recursive call on those values. */
+ if (p == 0)
+ {
+ if (GET_CODE (old) != PLUS)
+ return;
+
+ if (REG_P (new))
+ {
+ update_temp_slot_address (XEXP (old, 0), new);
+ update_temp_slot_address (XEXP (old, 1), new);
+ return;
+ }
+ else if (GET_CODE (new) != PLUS)
+ return;
+
+ if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
+ update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
+ else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
+ update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
+ else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
+ update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
+ else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
+ update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
+
+ return;
+ }
+
+ /* Otherwise add an alias for the temp's address. */
+ else if (p->address == 0)
+ p->address = new;
+ else
+ {
+ if (GET_CODE (p->address) != EXPR_LIST)
+ p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
+
+ p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
+ }
+}
+
+/* If X could be a reference to a temporary slot, mark the fact that its
+ address was taken. */
+
+void
+mark_temp_addr_taken (rtx x)
+{
+ struct temp_slot *p;
+
+ if (x == 0)
+ return;
+
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot. */
+ if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
+ return;
+
+ p = find_temp_slot_from_address (XEXP (x, 0));
+ if (p != 0)
+ p->addr_taken = 1;
+}
+
+/* If X could be a reference to a temporary slot, mark that slot as
+ belonging to the to one level higher than the current level. If X
+ matched one of our slots, just mark that one. Otherwise, we can't
+ easily predict which it is, so upgrade all of them. Kept slots
+ need not be touched.
+
+ This is called when an ({...}) construct occurs and a statement
+ returns a value in memory. */
+
+void
+preserve_temp_slots (rtx x)
+{
+ struct temp_slot *p = 0, *next;
+
+ /* If there is no result, we still might have some objects whose address
+ were taken, so we need to make sure they stay around. */
+ if (x == 0)
+ {
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+
+ if (p->addr_taken)
+ move_slot_to_level (p, temp_slot_level - 1);
+ }
+
+ return;
+ }
+
+ /* If X is a register that is being used as a pointer, see if we have
+ a temporary slot we know it points to. To be consistent with
+ the code below, we really should preserve all non-kept slots
+ if we can't find a match, but that seems to be much too costly. */
+ if (REG_P (x) && REG_POINTER (x))
+ p = find_temp_slot_from_address (x);
+
+ /* If X is not in memory or is at a constant address, it cannot be in
+ a temporary slot, but it can contain something whose address was
+ taken. */
+ if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
+ {
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+
+ if (p->addr_taken)
+ move_slot_to_level (p, temp_slot_level - 1);
+ }
+
+ return;
+ }
+
+ /* First see if we can find a match. */
+ if (p == 0)
+ p = find_temp_slot_from_address (XEXP (x, 0));
+
+ if (p != 0)
+ {
+ /* Move everything at our level whose address was taken to our new
+ level in case we used its address. */
+ struct temp_slot *q;
+
+ if (p->level == temp_slot_level)
+ {
+ for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
+ {
+ next = q->next;
+
+ if (p != q && q->addr_taken)
+ move_slot_to_level (q, temp_slot_level - 1);
+ }
+
+ move_slot_to_level (p, temp_slot_level - 1);
+ p->addr_taken = 0;
+ }
+ return;
+ }
+
+ /* Otherwise, preserve all non-kept slots at this level. */
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+
+ if (!p->keep)
+ move_slot_to_level (p, temp_slot_level - 1);
+ }
+}
+
+/* Free all temporaries used so far. This is normally called at the
+ end of generating code for a statement. */
+
+void
+free_temp_slots (void)
+{
+ struct temp_slot *p, *next;
+
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+
+ if (!p->keep)
+ make_slot_available (p);
+ }
+
+ combine_temp_slots ();
+}
+
+/* Push deeper into the nesting level for stack temporaries. */
+
+void
+push_temp_slots (void)
+{
+ temp_slot_level++;
+}
+
+/* Pop a temporary nesting level. All slots in use in the current level
+ are freed. */
+
+void
+pop_temp_slots (void)
+{
+ struct temp_slot *p, *next;
+
+ for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+ {
+ next = p->next;
+ make_slot_available (p);
+ }
+
+ combine_temp_slots ();
+
+ temp_slot_level--;
+}
+
+/* Initialize temporary slots. */
+
+void
+init_temp_slots (void)
+{
+ /* We have not allocated any temporaries yet. */
+ avail_temp_slots = 0;
+ used_temp_slots = 0;
+ temp_slot_level = 0;
+}
+
+/* These routines are responsible for converting virtual register references
+ to the actual hard register references once RTL generation is complete.
+
+ The following four variables are used for communication between the
+ routines. They contain the offsets of the virtual registers from their
+ respective hard registers. */
+
+static int in_arg_offset;
+static int var_offset;
+static int dynamic_offset;
+static int out_arg_offset;
+static int cfa_offset;
+
+/* In most machines, the stack pointer register is equivalent to the bottom
+ of the stack. */
+
+#ifndef STACK_POINTER_OFFSET
+#define STACK_POINTER_OFFSET 0
+#endif
+
+/* If not defined, pick an appropriate default for the offset of dynamically
+ allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
+ REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
+
+#ifndef STACK_DYNAMIC_OFFSET
+
+/* The bottom of the stack points to the actual arguments. If
+ REG_PARM_STACK_SPACE is defined, this includes the space for the register
+ parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
+ stack space for register parameters is not pushed by the caller, but
+ rather part of the fixed stack areas and hence not included in
+ `current_function_outgoing_args_size'. Nevertheless, we must allow
+ for it when allocating stack dynamic objects. */
+
+#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+((ACCUMULATE_OUTGOING_ARGS \
+ ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
+ + (STACK_POINTER_OFFSET)) \
+
+#else
+#define STACK_DYNAMIC_OFFSET(FNDECL) \
+((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
+ + (STACK_POINTER_OFFSET))
+#endif
+#endif
+
+
+/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
+ is a virtual register, return the equivalent hard register and set the
+ offset indirectly through the pointer. Otherwise, return 0. */
+
+static rtx
+instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
+{
+ rtx new;
+ HOST_WIDE_INT offset;
+
+ if (x == virtual_incoming_args_rtx)
+ new = arg_pointer_rtx, offset = in_arg_offset;
+ else if (x == virtual_stack_vars_rtx)
+ new = frame_pointer_rtx, offset = var_offset;
+ else if (x == virtual_stack_dynamic_rtx)
+ new = stack_pointer_rtx, offset = dynamic_offset;
+ else if (x == virtual_outgoing_args_rtx)
+ new = stack_pointer_rtx, offset = out_arg_offset;
+ else if (x == virtual_cfa_rtx)
+ {
+#ifdef FRAME_POINTER_CFA_OFFSET
+ new = frame_pointer_rtx;
+#else
+ new = arg_pointer_rtx;
+#endif
+ offset = cfa_offset;
+ }
+ else
+ return NULL_RTX;
+
+ *poffset = offset;
+ return new;
+}
+
+/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
+ Instantiate any virtual registers present inside of *LOC. The expression
+ is simplified, as much as possible, but is not to be considered "valid"
+ in any sense implied by the target. If any change is made, set CHANGED
+ to true. */
+
+static int
+instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
+{
+ HOST_WIDE_INT offset;
+ bool *changed = (bool *) data;
+ rtx x, new;
+
+ x = *loc;
+ if (x == 0)
+ return 0;
+
+ switch (GET_CODE (x))
+ {
+ case REG:
+ new = instantiate_new_reg (x, &offset);
+ if (new)
+ {
+ *loc = plus_constant (new, offset);
+ if (changed)
+ *changed = true;
+ }
+ return -1;
+
+ case PLUS:
+ new = instantiate_new_reg (XEXP (x, 0), &offset);
+ if (new)
+ {
+ new = plus_constant (new, offset);
+ *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
+ if (changed)
+ *changed = true;
+ return -1;
+ }
+
+ /* FIXME -- from old code */
+ /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
+ we can commute the PLUS and SUBREG because pointers into the
+ frame are well-behaved. */
+ break;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
+ matches the predicate for insn CODE operand OPERAND. */
+
+static int
+safe_insn_predicate (int code, int operand, rtx x)
+{
+ const struct insn_operand_data *op_data;
+
+ if (code < 0)
+ return true;
+
+ op_data = &insn_data[code].operand[operand];
+ if (op_data->predicate == NULL)
+ return true;
+
+ return op_data->predicate (x, op_data->mode);
+}
+
+/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
+ registers present inside of insn. The result will be a valid insn. */
+
+static void
+instantiate_virtual_regs_in_insn (rtx insn)
+{
+ HOST_WIDE_INT offset;
+ int insn_code, i;
+ bool any_change = false;
+ rtx set, new, x, seq;
+
+ /* There are some special cases to be handled first. */
+ set = single_set (insn);
+ if (set)
+ {
+ /* We're allowed to assign to a virtual register. This is interpreted
+ to mean that the underlying register gets assigned the inverse
+ transformation. This is used, for example, in the handling of
+ non-local gotos. */
+ new = instantiate_new_reg (SET_DEST (set), &offset);
+ if (new)
+ {
+ start_sequence ();
+
+ for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
+ x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
+ GEN_INT (-offset));
+ x = force_operand (x, new);
+ if (x != new)
+ emit_move_insn (new, x);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_before (seq, insn);
+ delete_insn (insn);
+ return;
+ }
+
+ /* Handle a straight copy from a virtual register by generating a
+ new add insn. The difference between this and falling through
+ to the generic case is avoiding a new pseudo and eliminating a
+ move insn in the initial rtl stream. */
+ new = instantiate_new_reg (SET_SRC (set), &offset);
+ if (new && offset != 0
+ && REG_P (SET_DEST (set))
+ && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
+ {
+ start_sequence ();
+
+ x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
+ new, GEN_INT (offset), SET_DEST (set),
+ 1, OPTAB_LIB_WIDEN);
+ if (x != SET_DEST (set))
+ emit_move_insn (SET_DEST (set), x);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_before (seq, insn);
+ delete_insn (insn);
+ return;
+ }
+
+ extract_insn (insn);
+ insn_code = INSN_CODE (insn);
+
+ /* Handle a plus involving a virtual register by determining if the
+ operands remain valid if they're modified in place. */
+ if (GET_CODE (SET_SRC (set)) == PLUS
+ && recog_data.n_operands >= 3
+ && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
+ && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
+ && GET_CODE (recog_data.operand[2]) == CONST_INT
+ && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
+ {
+ offset += INTVAL (recog_data.operand[2]);
+
+ /* If the sum is zero, then replace with a plain move. */
+ if (offset == 0
+ && REG_P (SET_DEST (set))
+ && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
+ {
+ start_sequence ();
+ emit_move_insn (SET_DEST (set), new);
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_before (seq, insn);
+ delete_insn (insn);
+ return;
+ }
+
+ x = gen_int_mode (offset, recog_data.operand_mode[2]);
+
+ /* Using validate_change and apply_change_group here leaves
+ recog_data in an invalid state. Since we know exactly what
+ we want to check, do those two by hand. */
+ if (safe_insn_predicate (insn_code, 1, new)
+ && safe_insn_predicate (insn_code, 2, x))
+ {
+ *recog_data.operand_loc[1] = recog_data.operand[1] = new;
+ *recog_data.operand_loc[2] = recog_data.operand[2] = x;
+ any_change = true;
+
+ /* Fall through into the regular operand fixup loop in
+ order to take care of operands other than 1 and 2. */
+ }
+ }
+ }
+ else
+ {
+ extract_insn (insn);
+ insn_code = INSN_CODE (insn);
+ }
+
+ /* In the general case, we expect virtual registers to appear only in
+ operands, and then only as either bare registers or inside memories. */
+ for (i = 0; i < recog_data.n_operands; ++i)
+ {
+ x = recog_data.operand[i];
+ switch (GET_CODE (x))
+ {
+ case MEM:
+ {
+ rtx addr = XEXP (x, 0);
+ bool changed = false;
+
+ for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
+ if (!changed)
+ continue;
+
+ start_sequence ();
+ x = replace_equiv_address (x, addr);
+ seq = get_insns ();
+ end_sequence ();
+ if (seq)
+ emit_insn_before (seq, insn);
+ }
+ break;
+
+ case REG:
+ new = instantiate_new_reg (x, &offset);
+ if (new == NULL)
+ continue;
+ if (offset == 0)
+ x = new;
+ else
+ {
+ start_sequence ();
+
+ /* Careful, special mode predicates may have stuff in
+ insn_data[insn_code].operand[i].mode that isn't useful
+ to us for computing a new value. */
+ /* ??? Recognize address_operand and/or "p" constraints
+ to see if (plus new offset) is a valid before we put
+ this through expand_simple_binop. */
+ x = expand_simple_binop (GET_MODE (x), PLUS, new,
+ GEN_INT (offset), NULL_RTX,
+ 1, OPTAB_LIB_WIDEN);
+ seq = get_insns ();
+ end_sequence ();
+ emit_insn_before (seq, insn);
+ }
+ break;
+
+ case SUBREG:
+ new = instantiate_new_reg (SUBREG_REG (x), &offset);
+ if (new == NULL)
+ continue;
+ if (offset != 0)
+ {
+ start_sequence ();
+ new = expand_simple_binop (GET_MODE (new), PLUS, new,
+ GEN_INT (offset), NULL_RTX,
+ 1, OPTAB_LIB_WIDEN);
+ seq = get_insns ();
+ end_sequence ();
+ emit_insn_before (seq, insn);
+ }
+ x = simplify_gen_subreg (recog_data.operand_mode[i], new,
+ GET_MODE (new), SUBREG_BYTE (x));
+ break;
+
+ default:
+ continue;
+ }
+
+ /* At this point, X contains the new value for the operand.
+ Validate the new value vs the insn predicate. Note that
+ asm insns will have insn_code -1 here. */
+ if (!safe_insn_predicate (insn_code, i, x))
+ {
+ start_sequence ();
+ /* APPLE LOCAL begin 4987589 */
+ if (recog_data.operand_type[i] == OP_IN)
+ x = force_reg (insn_data[insn_code].operand[i].mode, x);
+ else
+ {
+ /* OP_INOUT or OP_OUT. Calculate the address into a
+ register. */
+ gcc_assert (GET_CODE (x) == MEM);
+ x = copy_to_reg (XEXP (x, 0));
+ x = gen_rtx_MEM (insn_data[insn_code].operand[i].mode, x);
+ }
+ /* APPLE LOCAL end 4987589 */
+ seq = get_insns ();
+ end_sequence ();
+ if (seq)
+ emit_insn_before (seq, insn);
+ }
+
+ *recog_data.operand_loc[i] = recog_data.operand[i] = x;
+ any_change = true;
+ }
+
+ if (any_change)
+ {
+ /* Propagate operand changes into the duplicates. */
+ for (i = 0; i < recog_data.n_dups; ++i)
+ *recog_data.dup_loc[i]
+ = recog_data.operand[(unsigned)recog_data.dup_num[i]];
+
+ /* Force re-recognition of the instruction for validation. */
+ INSN_CODE (insn) = -1;
+ }
+
+ if (asm_noperands (PATTERN (insn)) >= 0)
+ {
+ if (!check_asm_operands (PATTERN (insn)))
+ {
+ error_for_asm (insn, "impossible constraint in %<asm%>");
+ delete_insn (insn);
+ }
+ }
+ else
+ {
+ if (recog_memoized (insn) < 0)
+ fatal_insn_not_found (insn);
+ }
+}
+
+/* Subroutine of instantiate_decls. Given RTL representing a decl,
+ do any instantiation required. */
+
+static void
+instantiate_decl (rtx x)
+{
+ rtx addr;
+
+ if (x == 0)
+ return;
+
+ /* If this is a CONCAT, recurse for the pieces. */
+ if (GET_CODE (x) == CONCAT)
+ {
+ instantiate_decl (XEXP (x, 0));
+ instantiate_decl (XEXP (x, 1));
+ return;
+ }
+
+ /* If this is not a MEM, no need to do anything. Similarly if the
+ address is a constant or a register that is not a virtual register. */
+ if (!MEM_P (x))
+ return;
+
+ addr = XEXP (x, 0);
+ if (CONSTANT_P (addr)
+ || (REG_P (addr)
+ && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
+ || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
+ return;
+
+ for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
+}
+
+/* Helper for instantiate_decls called via walk_tree: Process all decls
+ in the given DECL_VALUE_EXPR. */
+
+static tree
+instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
+{
+ tree t = *tp;
+ if (! EXPR_P (t))
+ {
+ *walk_subtrees = 0;
+ if (DECL_P (t) && DECL_RTL_SET_P (t))
+ instantiate_decl (DECL_RTL (t));
+ }
+ return NULL;
+}
+
+/* Subroutine of instantiate_decls: Process all decls in the given
+ BLOCK node and all its subblocks. */
+
+static void
+instantiate_decls_1 (tree let)
+{
+ tree t;
+
+ for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
+ {
+ if (DECL_RTL_SET_P (t))
+ instantiate_decl (DECL_RTL (t));
+ if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
+ {
+ tree v = DECL_VALUE_EXPR (t);
+ walk_tree (&v, instantiate_expr, NULL, NULL);
+ }
+ }
+
+ /* Process all subblocks. */
+ for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
+ instantiate_decls_1 (t);
+}
+
+/* Scan all decls in FNDECL (both variables and parameters) and instantiate
+ all virtual registers in their DECL_RTL's. */
+
+static void
+instantiate_decls (tree fndecl)
+{
+ tree decl;
+
+ /* Process all parameters of the function. */
+ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
+ {
+ instantiate_decl (DECL_RTL (decl));
+ instantiate_decl (DECL_INCOMING_RTL (decl));
+ if (DECL_HAS_VALUE_EXPR_P (decl))
+ {
+ tree v = DECL_VALUE_EXPR (decl);
+ walk_tree (&v, instantiate_expr, NULL, NULL);
+ }
+ }
+
+ /* Now process all variables defined in the function or its subblocks. */
+ instantiate_decls_1 (DECL_INITIAL (fndecl));
+}
+
+/* Pass through the INSNS of function FNDECL and convert virtual register
+ references to hard register references. */
+
+static unsigned int
+instantiate_virtual_regs (void)
+{
+ rtx insn;
+
+ /* Compute the offsets to use for this function. */
+ in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
+ var_offset = STARTING_FRAME_OFFSET;
+ dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
+ out_arg_offset = STACK_POINTER_OFFSET;
+#ifdef FRAME_POINTER_CFA_OFFSET
+ cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
+#else
+ cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
+#endif
+
+ /* Initialize recognition, indicating that volatile is OK. */
+ init_recog ();
+
+ /* Scan through all the insns, instantiating every virtual register still
+ present. */
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (INSN_P (insn))
+ {
+ /* These patterns in the instruction stream can never be recognized.
+ Fortunately, they shouldn't contain virtual registers either. */
+ if (GET_CODE (PATTERN (insn)) == USE
+ || GET_CODE (PATTERN (insn)) == CLOBBER
+ || GET_CODE (PATTERN (insn)) == ADDR_VEC
+ || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
+ || GET_CODE (PATTERN (insn)) == ASM_INPUT)
+ continue;
+
+ instantiate_virtual_regs_in_insn (insn);
+
+ if (INSN_DELETED_P (insn))
+ continue;
+
+ for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
+
+ /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
+ if (GET_CODE (insn) == CALL_INSN)
+ for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
+ instantiate_virtual_regs_in_rtx, NULL);
+ }
+
+ /* Instantiate the virtual registers in the DECLs for debugging purposes. */
+ instantiate_decls (current_function_decl);
+
+ /* Indicate that, from now on, assign_stack_local should use
+ frame_pointer_rtx. */
+ virtuals_instantiated = 1;
+ return 0;
+}
+
+struct tree_opt_pass pass_instantiate_virtual_regs =
+{
+ "vregs", /* name */
+ NULL, /* gate */
+ instantiate_virtual_regs, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+
+/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
+ This means a type for which function calls must pass an address to the
+ function or get an address back from the function.
+ EXP may be a type node or an expression (whose type is tested). */
+
+int
+aggregate_value_p (tree exp, tree fntype)
+{
+ int i, regno, nregs;
+ rtx reg;
+
+ tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
+
+ /* DECL node associated with FNTYPE when relevant, which we might need to
+ check for by-invisible-reference returns, typically for CALL_EXPR input
+ EXPressions. */
+ tree fndecl = NULL_TREE;
+
+ if (fntype)
+ switch (TREE_CODE (fntype))
+ {
+ case CALL_EXPR:
+ fndecl = get_callee_fndecl (fntype);
+ fntype = fndecl ? TREE_TYPE (fndecl) : 0;
+ break;
+ case FUNCTION_DECL:
+ fndecl = fntype;
+ fntype = TREE_TYPE (fndecl);
+ break;
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ break;
+ case IDENTIFIER_NODE:
+ fntype = 0;
+ break;
+ default:
+ /* We don't expect other rtl types here. */
+ gcc_unreachable ();
+ }
+
+ if (TREE_CODE (type) == VOID_TYPE)
+ return 0;
+
+ /* If the front end has decided that this needs to be passed by
+ reference, do so. */
+ if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
+ && DECL_BY_REFERENCE (exp))
+ return 1;
+
+ /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
+ called function RESULT_DECL, meaning the function returns in memory by
+ invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
+ on the function type, which used to be the way to request such a return
+ mechanism but might now be causing troubles at gimplification time if
+ temporaries with the function type need to be created. */
+ if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
+ && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
+ return 1;
+
+ if (targetm.calls.return_in_memory (type, fntype))
+ return 1;
+ /* Types that are TREE_ADDRESSABLE must be constructed in memory,
+ and thus can't be returned in registers. */
+ if (TREE_ADDRESSABLE (type))
+ return 1;
+ if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
+ return 1;
+ /* Make sure we have suitable call-clobbered regs to return
+ the value in; if not, we must return it in memory. */
+ reg = hard_function_value (type, 0, fntype, 0);
+
+ /* If we have something other than a REG (e.g. a PARALLEL), then assume
+ it is OK. */
+ if (!REG_P (reg))
+ return 0;
+
+ regno = REGNO (reg);
+ nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
+ for (i = 0; i < nregs; i++)
+ if (! call_used_regs[regno + i])
+ return 1;
+ return 0;
+}
+
+/* Return true if we should assign DECL a pseudo register; false if it
+ should live on the local stack. */
+
+bool
+use_register_for_decl (tree decl)
+{
+ /* Honor volatile. */
+ if (TREE_SIDE_EFFECTS (decl))
+ return false;
+
+ /* Honor addressability. */
+ if (TREE_ADDRESSABLE (decl))
+ return false;
+
+ /* Only register-like things go in registers. */
+ if (DECL_MODE (decl) == BLKmode)
+ return false;
+
+ /* If -ffloat-store specified, don't put explicit float variables
+ into registers. */
+ /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
+ propagates values across these stores, and it probably shouldn't. */
+ if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
+ return false;
+
+ /* If we're not interested in tracking debugging information for
+ this decl, then we can certainly put it in a register. */
+ if (DECL_IGNORED_P (decl))
+ return true;
+
+ return (optimize || DECL_REGISTER (decl));
+}
+
+/* Return true if TYPE should be passed by invisible reference. */
+
+bool
+pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
+ tree type, bool named_arg)
+{
+ if (type)
+ {
+ /* If this type contains non-trivial constructors, then it is
+ forbidden for the middle-end to create any new copies. */
+ if (TREE_ADDRESSABLE (type))
+ return true;
+
+ /* GCC post 3.4 passes *all* variable sized types by reference. */
+ if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+ return true;
+ }
+
+ return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
+}
+
+/* Return true if TYPE, which is passed by reference, should be callee
+ copied instead of caller copied. */
+
+bool
+reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
+ tree type, bool named_arg)
+{
+ if (type && TREE_ADDRESSABLE (type))
+ return false;
+ return targetm.calls.callee_copies (ca, mode, type, named_arg);
+}
+
+/* Structures to communicate between the subroutines of assign_parms.
+ The first holds data persistent across all parameters, the second
+ is cleared out for each parameter. */
+
+struct assign_parm_data_all
+{
+ CUMULATIVE_ARGS args_so_far;
+ struct args_size stack_args_size;
+ tree function_result_decl;
+ tree orig_fnargs;
+ rtx conversion_insns;
+ HOST_WIDE_INT pretend_args_size;
+ HOST_WIDE_INT extra_pretend_bytes;
+ int reg_parm_stack_space;
+};
+
+struct assign_parm_data_one
+{
+ tree nominal_type;
+ tree passed_type;
+ rtx entry_parm;
+ rtx stack_parm;
+ enum machine_mode nominal_mode;
+ enum machine_mode passed_mode;
+ enum machine_mode promoted_mode;
+ struct locate_and_pad_arg_data locate;
+ int partial;
+ BOOL_BITFIELD named_arg : 1;
+ BOOL_BITFIELD passed_pointer : 1;
+ BOOL_BITFIELD on_stack : 1;
+ BOOL_BITFIELD loaded_in_reg : 1;
+};
+
+/* A subroutine of assign_parms. Initialize ALL. */
+
+static void
+assign_parms_initialize_all (struct assign_parm_data_all *all)
+{
+ tree fntype;
+
+ memset (all, 0, sizeof (*all));
+
+ fntype = TREE_TYPE (current_function_decl);
+
+#ifdef INIT_CUMULATIVE_INCOMING_ARGS
+ INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
+#else
+ INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
+ current_function_decl, -1);
+#endif
+
+#ifdef REG_PARM_STACK_SPACE
+ all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
+#endif
+}
+
+/* If ARGS contains entries with complex types, split the entry into two
+ entries of the component type. Return a new list of substitutions are
+ needed, else the old list. */
+
+static tree
+split_complex_args (tree args)
+{
+ tree p;
+
+ /* Before allocating memory, check for the common case of no complex. */
+ for (p = args; p; p = TREE_CHAIN (p))
+ {
+ tree type = TREE_TYPE (p);
+ if (TREE_CODE (type) == COMPLEX_TYPE
+ && targetm.calls.split_complex_arg (type))
+ goto found;
+ }
+ return args;
+
+ found:
+ args = copy_list (args);
+
+ for (p = args; p; p = TREE_CHAIN (p))
+ {
+ tree type = TREE_TYPE (p);
+ if (TREE_CODE (type) == COMPLEX_TYPE
+ && targetm.calls.split_complex_arg (type))
+ {
+ tree decl;
+ tree subtype = TREE_TYPE (type);
+ bool addressable = TREE_ADDRESSABLE (p);
+
+ /* Rewrite the PARM_DECL's type with its component. */
+ TREE_TYPE (p) = subtype;
+ DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
+ DECL_MODE (p) = VOIDmode;
+ DECL_SIZE (p) = NULL;
+ DECL_SIZE_UNIT (p) = NULL;
+ /* If this arg must go in memory, put it in a pseudo here.
+ We can't allow it to go in memory as per normal parms,
+ because the usual place might not have the imag part
+ adjacent to the real part. */
+ DECL_ARTIFICIAL (p) = addressable;
+ DECL_IGNORED_P (p) = addressable;
+ TREE_ADDRESSABLE (p) = 0;
+ layout_decl (p, 0);
+
+ /* Build a second synthetic decl. */
+ decl = build_decl (PARM_DECL, NULL_TREE, subtype);
+ DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
+ DECL_ARTIFICIAL (decl) = addressable;
+ DECL_IGNORED_P (decl) = addressable;
+ layout_decl (decl, 0);
+
+ /* Splice it in; skip the new decl. */
+ TREE_CHAIN (decl) = TREE_CHAIN (p);
+ TREE_CHAIN (p) = decl;
+ p = decl;
+ }
+ }
+
+ return args;
+}
+
+/* A subroutine of assign_parms. Adjust the parameter list to incorporate
+ the hidden struct return argument, and (abi willing) complex args.
+ Return the new parameter list. */
+
+static tree
+assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
+{
+ tree fndecl = current_function_decl;
+ tree fntype = TREE_TYPE (fndecl);
+ tree fnargs = DECL_ARGUMENTS (fndecl);
+
+ /* If struct value address is treated as the first argument, make it so. */
+ if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
+ && ! current_function_returns_pcc_struct
+ && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
+ {
+ tree type = build_pointer_type (TREE_TYPE (fntype));
+ tree decl;
+
+ decl = build_decl (PARM_DECL, NULL_TREE, type);
+ DECL_ARG_TYPE (decl) = type;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_IGNORED_P (decl) = 1;
+
+ TREE_CHAIN (decl) = fnargs;
+ fnargs = decl;
+ all->function_result_decl = decl;
+ }
+
+ all->orig_fnargs = fnargs;
+
+ /* If the target wants to split complex arguments into scalars, do so. */
+ if (targetm.calls.split_complex_arg)
+ fnargs = split_complex_args (fnargs);
+
+ return fnargs;
+}
+
+/* A subroutine of assign_parms. Examine PARM and pull out type and mode
+ data for the parameter. Incorporate ABI specifics such as pass-by-
+ reference and type promotion. */
+
+static void
+assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
+ struct assign_parm_data_one *data)
+{
+ tree nominal_type, passed_type;
+ enum machine_mode nominal_mode, passed_mode, promoted_mode;
+
+ memset (data, 0, sizeof (*data));
+
+ /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
+ if (!current_function_stdarg)
+ data->named_arg = 1; /* No varadic parms. */
+ else if (TREE_CHAIN (parm))
+ data->named_arg = 1; /* Not the last non-varadic parm. */
+ else if (targetm.calls.strict_argument_naming (&all->args_so_far))
+ data->named_arg = 1; /* Only varadic ones are unnamed. */
+ else
+ data->named_arg = 0; /* Treat as varadic. */
+
+ nominal_type = TREE_TYPE (parm);
+ passed_type = DECL_ARG_TYPE (parm);
+
+ /* Look out for errors propagating this far. Also, if the parameter's
+ type is void then its value doesn't matter. */
+ if (TREE_TYPE (parm) == error_mark_node
+ /* This can happen after weird syntax errors
+ or if an enum type is defined among the parms. */
+ || TREE_CODE (parm) != PARM_DECL
+ || passed_type == NULL
+ || VOID_TYPE_P (nominal_type))
+ {
+ nominal_type = passed_type = void_type_node;
+ nominal_mode = passed_mode = promoted_mode = VOIDmode;
+ goto egress;
+ }
+
+ /* Find mode of arg as it is passed, and mode of arg as it should be
+ during execution of this function. */
+ passed_mode = TYPE_MODE (passed_type);
+ nominal_mode = TYPE_MODE (nominal_type);
+
+ /* If the parm is to be passed as a transparent union, use the type of
+ the first field for the tests below. We have already verified that
+ the modes are the same. */
+ if (TREE_CODE (passed_type) == UNION_TYPE
+ && TYPE_TRANSPARENT_UNION (passed_type))
+ passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
+
+ /* See if this arg was passed by invisible reference. */
+ if (pass_by_reference (&all->args_so_far, passed_mode,
+ passed_type, data->named_arg))
+ {
+ passed_type = nominal_type = build_pointer_type (passed_type);
+ data->passed_pointer = true;
+ passed_mode = nominal_mode = Pmode;
+ }
+
+ /* Find mode as it is passed by the ABI. */
+ promoted_mode = passed_mode;
+ if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
+ {
+ int unsignedp = TYPE_UNSIGNED (passed_type);
+ promoted_mode = promote_mode (passed_type, promoted_mode,
+ &unsignedp, 1);
+ }
+
+ egress:
+ data->nominal_type = nominal_type;
+ data->passed_type = passed_type;
+ data->nominal_mode = nominal_mode;
+ data->passed_mode = passed_mode;
+ data->promoted_mode = promoted_mode;
+}
+
+/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
+
+static void
+assign_parms_setup_varargs (struct assign_parm_data_all *all,
+ struct assign_parm_data_one *data, bool no_rtl)
+{
+ int varargs_pretend_bytes = 0;
+
+ targetm.calls.setup_incoming_varargs (&all->args_so_far,
+ data->promoted_mode,
+ data->passed_type,
+ &varargs_pretend_bytes, no_rtl);
+
+ /* If the back-end has requested extra stack space, record how much is
+ needed. Do not change pretend_args_size otherwise since it may be
+ nonzero from an earlier partial argument. */
+ if (varargs_pretend_bytes > 0)
+ all->pretend_args_size = varargs_pretend_bytes;
+}
+
+/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
+ the incoming location of the current parameter. */
+
+static void
+assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
+ struct assign_parm_data_one *data)
+{
+ HOST_WIDE_INT pretend_bytes = 0;
+ rtx entry_parm;
+ bool in_regs;
+
+ if (data->promoted_mode == VOIDmode)
+ {
+ data->entry_parm = data->stack_parm = const0_rtx;
+ return;
+ }
+
+#ifdef FUNCTION_INCOMING_ARG
+ entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
+ data->passed_type, data->named_arg);
+#else
+ entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
+ data->passed_type, data->named_arg);
+#endif
+
+ if (entry_parm == 0)
+ data->promoted_mode = data->passed_mode;
+
+ /* Determine parm's home in the stack, in case it arrives in the stack
+ or we should pretend it did. Compute the stack position and rtx where
+ the argument arrives and its size.
+
+ There is one complexity here: If this was a parameter that would
+ have been passed in registers, but wasn't only because it is
+ __builtin_va_alist, we want locate_and_pad_parm to treat it as if
+ it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
+ In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
+ as it was the previous time. */
+ in_regs = entry_parm != 0;
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+ in_regs = true;
+#endif
+ if (!in_regs && !data->named_arg)
+ {
+ if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
+ {
+ rtx tem;
+#ifdef FUNCTION_INCOMING_ARG
+ tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
+ data->passed_type, true);
+#else
+ tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
+ data->passed_type, true);
+#endif
+ in_regs = tem != NULL;
+ }
+ }
+
+ /* If this parameter was passed both in registers and in the stack, use
+ the copy on the stack. */
+ if (targetm.calls.must_pass_in_stack (data->promoted_mode,
+ data->passed_type))
+ entry_parm = 0;
+
+ if (entry_parm)
+ {
+ int partial;
+
+ partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
+ data->promoted_mode,
+ data->passed_type,
+ data->named_arg);
+ data->partial = partial;
+
+ /* The caller might already have allocated stack space for the
+ register parameters. */
+ if (partial != 0 && all->reg_parm_stack_space == 0)
+ {
+ /* Part of this argument is passed in registers and part
+ is passed on the stack. Ask the prologue code to extend
+ the stack part so that we can recreate the full value.
+
+ PRETEND_BYTES is the size of the registers we need to store.
+ CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
+ stack space that the prologue should allocate.
+
+ Internally, gcc assumes that the argument pointer is aligned
+ to STACK_BOUNDARY bits. This is used both for alignment
+ optimizations (see init_emit) and to locate arguments that are
+ aligned to more than PARM_BOUNDARY bits. We must preserve this
+ invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
+ a stack boundary. */
+
+ /* We assume at most one partial arg, and it must be the first
+ argument on the stack. */
+ gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
+
+ pretend_bytes = partial;
+ all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
+
+ /* We want to align relative to the actual stack pointer, so
+ don't include this in the stack size until later. */
+ all->extra_pretend_bytes = all->pretend_args_size;
+ }
+ }
+
+ locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
+ entry_parm ? data->partial : 0, current_function_decl,
+ &all->stack_args_size, &data->locate);
+
+ /* Adjust offsets to include the pretend args. */
+ pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
+ data->locate.slot_offset.constant += pretend_bytes;
+ data->locate.offset.constant += pretend_bytes;
+
+ data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms. If there is actually space on the stack
+ for this parm, count it in stack_args_size and return true. */
+
+static bool
+assign_parm_is_stack_parm (struct assign_parm_data_all *all,
+ struct assign_parm_data_one *data)
+{
+ /* Trivially true if we've no incoming register. */
+ if (data->entry_parm == NULL)
+ ;
+ /* Also true if we're partially in registers and partially not,
+ since we've arranged to drop the entire argument on the stack. */
+ else if (data->partial != 0)
+ ;
+ /* Also true if the target says that it's passed in both registers
+ and on the stack. */
+ else if (GET_CODE (data->entry_parm) == PARALLEL
+ && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
+ ;
+ /* Also true if the target says that there's stack allocated for
+ all register parameters. */
+ else if (all->reg_parm_stack_space > 0)
+ ;
+ /* Otherwise, no, this parameter has no ABI defined stack slot. */
+ else
+ return false;
+
+ all->stack_args_size.constant += data->locate.size.constant;
+ if (data->locate.size.var)
+ ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
+
+ return true;
+}
+
+/* A subroutine of assign_parms. Given that this parameter is allocated
+ stack space by the ABI, find it. */
+
+static void
+assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
+{
+ rtx offset_rtx, stack_parm;
+ unsigned int align, boundary;
+
+ /* If we're passing this arg using a reg, make its stack home the
+ aligned stack slot. */
+ if (data->entry_parm)
+ offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
+ else
+ offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
+
+ stack_parm = current_function_internal_arg_pointer;
+ if (offset_rtx != const0_rtx)
+ stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
+ stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
+
+ set_mem_attributes (stack_parm, parm, 1);
+
+ boundary = data->locate.boundary;
+ align = BITS_PER_UNIT;
+
+ /* If we're padding upward, we know that the alignment of the slot
+ is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
+ intentionally forcing upward padding. Otherwise we have to come
+ up with a guess at the alignment based on OFFSET_RTX. */
+ if (data->locate.where_pad != downward || data->entry_parm)
+ align = boundary;
+ else if (GET_CODE (offset_rtx) == CONST_INT)
+ {
+ align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
+ align = align & -align;
+ }
+ set_mem_align (stack_parm, align);
+
+ if (data->entry_parm)
+ set_reg_attrs_for_parm (data->entry_parm, stack_parm);
+
+ data->stack_parm = stack_parm;
+}
+
+/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
+ always valid and contiguous. */
+
+static void
+assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
+{
+ rtx entry_parm = data->entry_parm;
+ rtx stack_parm = data->stack_parm;
+
+ /* If this parm was passed part in regs and part in memory, pretend it
+ arrived entirely in memory by pushing the register-part onto the stack.
+ In the special case of a DImode or DFmode that is split, we could put
+ it together in a pseudoreg directly, but for now that's not worth
+ bothering with. */
+ if (data->partial != 0)
+ {
+ /* Handle calls that pass values in multiple non-contiguous
+ locations. The Irix 6 ABI has examples of this. */
+ if (GET_CODE (entry_parm) == PARALLEL)
+ emit_group_store (validize_mem (stack_parm), entry_parm,
+ data->passed_type,
+ int_size_in_bytes (data->passed_type));
+ else
+ {
+ gcc_assert (data->partial % UNITS_PER_WORD == 0);
+ move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
+ data->partial / UNITS_PER_WORD);
+ }
+
+ entry_parm = stack_parm;
+ }
+
+ /* If we didn't decide this parm came in a register, by default it came
+ on the stack. */
+ else if (entry_parm == NULL)
+ entry_parm = stack_parm;
+
+ /* When an argument is passed in multiple locations, we can't make use
+ of this information, but we can save some copying if the whole argument
+ is passed in a single register. */
+ else if (GET_CODE (entry_parm) == PARALLEL
+ && data->nominal_mode != BLKmode
+ && data->passed_mode != BLKmode)
+ {
+ size_t i, len = XVECLEN (entry_parm, 0);
+
+ for (i = 0; i < len; i++)
+ if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
+ && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
+ && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
+ == data->passed_mode)
+ && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
+ {
+ entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
+ break;
+ }
+ }
+
+ data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
+ always valid and properly aligned. */
+
+static void
+assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
+{
+ rtx stack_parm = data->stack_parm;
+
+ /* If we can't trust the parm stack slot to be aligned enough for its
+ ultimate type, don't use that slot after entry. We'll make another
+ stack slot, if we need one. */
+ if (stack_parm
+ && ((STRICT_ALIGNMENT
+ && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
+ || (data->nominal_type
+ && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
+ && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
+ stack_parm = NULL;
+
+ /* If parm was passed in memory, and we need to convert it on entry,
+ don't store it back in that same slot. */
+ else if (data->entry_parm == stack_parm
+ && data->nominal_mode != BLKmode
+ && data->nominal_mode != data->passed_mode)
+ stack_parm = NULL;
+
+ /* If stack protection is in effect for this function, don't leave any
+ pointers in their passed stack slots. */
+ else if (cfun->stack_protect_guard
+ && (flag_stack_protect == 2
+ || data->passed_pointer
+ || POINTER_TYPE_P (data->nominal_type)))
+ stack_parm = NULL;
+
+ data->stack_parm = stack_parm;
+}
+
+/* A subroutine of assign_parms. Return true if the current parameter
+ should be stored as a BLKmode in the current frame. */
+
+static bool
+assign_parm_setup_block_p (struct assign_parm_data_one *data)
+{
+ if (data->nominal_mode == BLKmode)
+ return true;
+ if (GET_CODE (data->entry_parm) == PARALLEL)
+ return true;
+
+#ifdef BLOCK_REG_PADDING
+ /* Only assign_parm_setup_block knows how to deal with register arguments
+ that are padded at the least significant end. */
+ if (REG_P (data->entry_parm)
+ && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
+ && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
+ == (BYTES_BIG_ENDIAN ? upward : downward)))
+ return true;
+#endif
+
+ return false;
+}
+
+/* A subroutine of assign_parms. Arrange for the parameter to be
+ present and valid in DATA->STACK_RTL. */
+
+static void
+assign_parm_setup_block (struct assign_parm_data_all *all,
+ tree parm, struct assign_parm_data_one *data)
+{
+ rtx entry_parm = data->entry_parm;
+ rtx stack_parm = data->stack_parm;
+ HOST_WIDE_INT size;
+ HOST_WIDE_INT size_stored;
+ rtx orig_entry_parm = entry_parm;
+
+ if (GET_CODE (entry_parm) == PARALLEL)
+ entry_parm = emit_group_move_into_temps (entry_parm);
+
+ /* If we've a non-block object that's nevertheless passed in parts,
+ reconstitute it in register operations rather than on the stack. */
+ if (GET_CODE (entry_parm) == PARALLEL
+ && data->nominal_mode != BLKmode)
+ {
+ rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
+
+ if ((XVECLEN (entry_parm, 0) > 1
+ || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
+ && use_register_for_decl (parm))
+ {
+ rtx parmreg = gen_reg_rtx (data->nominal_mode);
+
+ push_to_sequence (all->conversion_insns);
+
+ /* For values returned in multiple registers, handle possible
+ incompatible calls to emit_group_store.
+
+ For example, the following would be invalid, and would have to
+ be fixed by the conditional below:
+
+ emit_group_store ((reg:SF), (parallel:DF))
+ emit_group_store ((reg:SI), (parallel:DI))
+
+ An example of this are doubles in e500 v2:
+ (parallel:DF (expr_list (reg:SI) (const_int 0))
+ (expr_list (reg:SI) (const_int 4))). */
+ if (data->nominal_mode != data->passed_mode)
+ {
+ rtx t = gen_reg_rtx (GET_MODE (entry_parm));
+ emit_group_store (t, entry_parm, NULL_TREE,
+ GET_MODE_SIZE (GET_MODE (entry_parm)));
+ convert_move (parmreg, t, 0);
+ }
+ else
+ emit_group_store (parmreg, entry_parm, data->nominal_type,
+ int_size_in_bytes (data->nominal_type));
+
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+
+ SET_DECL_RTL (parm, parmreg);
+ return;
+ }
+ }
+
+ size = int_size_in_bytes (data->passed_type);
+ size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
+ if (stack_parm == 0)
+ {
+ DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
+ stack_parm = assign_stack_local (BLKmode, size_stored,
+ DECL_ALIGN (parm));
+ if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
+ PUT_MODE (stack_parm, GET_MODE (entry_parm));
+ set_mem_attributes (stack_parm, parm, 1);
+ }
+
+ /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
+ calls that pass values in multiple non-contiguous locations. */
+ if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
+ {
+ rtx mem;
+
+ /* Note that we will be storing an integral number of words.
+ So we have to be careful to ensure that we allocate an
+ integral number of words. We do this above when we call
+ assign_stack_local if space was not allocated in the argument
+ list. If it was, this will not work if PARM_BOUNDARY is not
+ a multiple of BITS_PER_WORD. It isn't clear how to fix this
+ if it becomes a problem. Exception is when BLKmode arrives
+ with arguments not conforming to word_mode. */
+
+ if (data->stack_parm == 0)
+ ;
+ else if (GET_CODE (entry_parm) == PARALLEL)
+ ;
+ else
+ gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
+
+ mem = validize_mem (stack_parm);
+
+ /* Handle values in multiple non-contiguous locations. */
+ if (GET_CODE (entry_parm) == PARALLEL)
+ {
+ push_to_sequence (all->conversion_insns);
+ emit_group_store (mem, entry_parm, data->passed_type, size);
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+ }
+
+ else if (size == 0)
+ ;
+
+ /* If SIZE is that of a mode no bigger than a word, just use
+ that mode's store operation. */
+ else if (size <= UNITS_PER_WORD)
+ {
+ enum machine_mode mode
+ = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
+
+ if (mode != BLKmode
+#ifdef BLOCK_REG_PADDING
+ && (size == UNITS_PER_WORD
+ || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
+ != (BYTES_BIG_ENDIAN ? upward : downward)))
+#endif
+ )
+ {
+ rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
+ emit_move_insn (change_address (mem, mode, 0), reg);
+ }
+
+ /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
+ machine must be aligned to the left before storing
+ to memory. Note that the previous test doesn't
+ handle all cases (e.g. SIZE == 3). */
+ else if (size != UNITS_PER_WORD
+#ifdef BLOCK_REG_PADDING
+ && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
+ == downward)
+#else
+ && BYTES_BIG_ENDIAN
+#endif
+ )
+ {
+ rtx tem, x;
+ int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
+ rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
+
+ x = expand_shift (LSHIFT_EXPR, word_mode, reg,
+ build_int_cst (NULL_TREE, by),
+ NULL_RTX, 1);
+ tem = change_address (mem, word_mode, 0);
+ emit_move_insn (tem, x);
+ }
+ else
+ move_block_from_reg (REGNO (entry_parm), mem,
+ size_stored / UNITS_PER_WORD);
+ }
+ else
+ move_block_from_reg (REGNO (entry_parm), mem,
+ size_stored / UNITS_PER_WORD);
+ }
+ else if (data->stack_parm == 0)
+ {
+ push_to_sequence (all->conversion_insns);
+ emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
+ BLOCK_OP_NORMAL);
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+ }
+
+ data->stack_parm = stack_parm;
+ SET_DECL_RTL (parm, stack_parm);
+}
+
+/* A subroutine of assign_parms. Allocate a pseudo to hold the current
+ parameter. Get it there. Perform all ABI specified conversions. */
+
+static void
+assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
+ struct assign_parm_data_one *data)
+{
+ rtx parmreg;
+ enum machine_mode promoted_nominal_mode;
+ int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
+ bool did_conversion = false;
+
+ /* Store the parm in a pseudoregister during the function, but we may
+ need to do it in a wider mode. */
+
+ /* This is not really promoting for a call. However we need to be
+ consistent with assign_parm_find_data_types and expand_expr_real_1. */
+ promoted_nominal_mode
+ = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
+
+ /* APPLE LOCAL begin CW asm blocks */
+ /* In asm functions with no stack frame, leave it in the register. */
+ if (cfun->iasm_frame_size == -2
+ && cfun->iasm_noreturn)
+ {
+ parmreg = DECL_INCOMING_RTL (parm);
+ if (promoted_nominal_mode != GET_MODE (parmreg))
+ warning (0, "wrong mode for arg %qD", parm);
+ }
+ else
+ /* APPLE LOCAL end CW asm blocks */
+ parmreg = gen_reg_rtx (promoted_nominal_mode);
+
+ if (!DECL_ARTIFICIAL (parm))
+ mark_user_reg (parmreg);
+
+ /* If this was an item that we received a pointer to,
+ set DECL_RTL appropriately. */
+ if (data->passed_pointer)
+ {
+ rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
+ set_mem_attributes (x, parm, 1);
+ SET_DECL_RTL (parm, x);
+ }
+ else
+ SET_DECL_RTL (parm, parmreg);
+
+ /* Copy the value into the register. */
+ if (data->nominal_mode != data->passed_mode
+ || promoted_nominal_mode != data->promoted_mode)
+ {
+ int save_tree_used;
+
+ /* ENTRY_PARM has been converted to PROMOTED_MODE, its
+ mode, by the caller. We now have to convert it to
+ NOMINAL_MODE, if different. However, PARMREG may be in
+ a different mode than NOMINAL_MODE if it is being stored
+ promoted.
+
+ If ENTRY_PARM is a hard register, it might be in a register
+ not valid for operating in its mode (e.g., an odd-numbered
+ register for a DFmode). In that case, moves are the only
+ thing valid, so we can't do a convert from there. This
+ occurs when the calling sequence allow such misaligned
+ usages.
+
+ In addition, the conversion may involve a call, which could
+ clobber parameters which haven't been copied to pseudo
+ registers yet. Therefore, we must first copy the parm to
+ a pseudo reg here, and save the conversion until after all
+ parameters have been moved. */
+
+ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
+
+ emit_move_insn (tempreg, validize_mem (data->entry_parm));
+
+ push_to_sequence (all->conversion_insns);
+ tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
+
+ if (GET_CODE (tempreg) == SUBREG
+ && GET_MODE (tempreg) == data->nominal_mode
+ && REG_P (SUBREG_REG (tempreg))
+ && data->nominal_mode == data->passed_mode
+ && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
+ && GET_MODE_SIZE (GET_MODE (tempreg))
+ < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
+ {
+ /* The argument is already sign/zero extended, so note it
+ into the subreg. */
+ SUBREG_PROMOTED_VAR_P (tempreg) = 1;
+ SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
+ }
+
+ /* TREE_USED gets set erroneously during expand_assignment. */
+ save_tree_used = TREE_USED (parm);
+ expand_assignment (parm, make_tree (data->nominal_type, tempreg));
+ TREE_USED (parm) = save_tree_used;
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+
+ did_conversion = true;
+ }
+ else
+ emit_move_insn (parmreg, validize_mem (data->entry_parm));
+
+ /* If we were passed a pointer but the actual value can safely live
+ in a register, put it in one. */
+ if (data->passed_pointer
+ && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
+ /* If by-reference argument was promoted, demote it. */
+ && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
+ || use_register_for_decl (parm)))
+ {
+ /* We can't use nominal_mode, because it will have been set to
+ Pmode above. We must use the actual mode of the parm. */
+ parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
+ mark_user_reg (parmreg);
+
+ if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
+ {
+ rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
+ int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
+
+ push_to_sequence (all->conversion_insns);
+ emit_move_insn (tempreg, DECL_RTL (parm));
+ tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
+ emit_move_insn (parmreg, tempreg);
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+
+ did_conversion = true;
+ }
+ else
+ emit_move_insn (parmreg, DECL_RTL (parm));
+
+ SET_DECL_RTL (parm, parmreg);
+
+ /* STACK_PARM is the pointer, not the parm, and PARMREG is
+ now the parm. */
+ data->stack_parm = NULL;
+ }
+
+ /* Mark the register as eliminable if we did no conversion and it was
+ copied from memory at a fixed offset, and the arg pointer was not
+ copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
+ offset formed an invalid address, such memory-equivalences as we
+ make here would screw up life analysis for it. */
+ if (data->nominal_mode == data->passed_mode
+ && !did_conversion
+ && data->stack_parm != 0
+ && MEM_P (data->stack_parm)
+ && data->locate.offset.var == 0
+ && reg_mentioned_p (virtual_incoming_args_rtx,
+ XEXP (data->stack_parm, 0)))
+ {
+ rtx linsn = get_last_insn ();
+ rtx sinsn, set;
+
+ /* Mark complex types separately. */
+ if (GET_CODE (parmreg) == CONCAT)
+ {
+ enum machine_mode submode
+ = GET_MODE_INNER (GET_MODE (parmreg));
+ int regnor = REGNO (XEXP (parmreg, 0));
+ int regnoi = REGNO (XEXP (parmreg, 1));
+ rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
+ rtx stacki = adjust_address_nv (data->stack_parm, submode,
+ GET_MODE_SIZE (submode));
+
+ /* Scan backwards for the set of the real and
+ imaginary parts. */
+ for (sinsn = linsn; sinsn != 0;
+ sinsn = prev_nonnote_insn (sinsn))
+ {
+ set = single_set (sinsn);
+ if (set == 0)
+ continue;
+
+ if (SET_DEST (set) == regno_reg_rtx [regnoi])
+ REG_NOTES (sinsn)
+ = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
+ REG_NOTES (sinsn));
+ else if (SET_DEST (set) == regno_reg_rtx [regnor])
+ REG_NOTES (sinsn)
+ = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
+ REG_NOTES (sinsn));
+ }
+ }
+ else if ((set = single_set (linsn)) != 0
+ && SET_DEST (set) == parmreg)
+ REG_NOTES (linsn)
+ = gen_rtx_EXPR_LIST (REG_EQUIV,
+ data->stack_parm, REG_NOTES (linsn));
+ }
+
+ /* For pointer data type, suggest pointer register. */
+ if (POINTER_TYPE_P (TREE_TYPE (parm)))
+ mark_reg_pointer (parmreg,
+ TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
+}
+
+/* A subroutine of assign_parms. Allocate stack space to hold the current
+ parameter. Get it there. Perform all ABI specified conversions. */
+
+static void
+assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
+ struct assign_parm_data_one *data)
+{
+ /* Value must be stored in the stack slot STACK_PARM during function
+ execution. */
+ bool to_conversion = false;
+
+ if (data->promoted_mode != data->nominal_mode)
+ {
+ /* Conversion is required. */
+ rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
+
+ emit_move_insn (tempreg, validize_mem (data->entry_parm));
+
+ push_to_sequence (all->conversion_insns);
+ to_conversion = true;
+
+ data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
+ TYPE_UNSIGNED (TREE_TYPE (parm)));
+
+ if (data->stack_parm)
+ /* ??? This may need a big-endian conversion on sparc64. */
+ data->stack_parm
+ = adjust_address (data->stack_parm, data->nominal_mode, 0);
+ }
+
+ if (data->entry_parm != data->stack_parm)
+ {
+ rtx src, dest;
+
+ if (data->stack_parm == 0)
+ {
+ data->stack_parm
+ = assign_stack_local (GET_MODE (data->entry_parm),
+ GET_MODE_SIZE (GET_MODE (data->entry_parm)),
+ TYPE_ALIGN (data->passed_type));
+ set_mem_attributes (data->stack_parm, parm, 1);
+ }
+
+ dest = validize_mem (data->stack_parm);
+ src = validize_mem (data->entry_parm);
+
+ if (MEM_P (src))
+ {
+ /* Use a block move to handle potentially misaligned entry_parm. */
+ if (!to_conversion)
+ push_to_sequence (all->conversion_insns);
+ to_conversion = true;
+
+ emit_block_move (dest, src,
+ GEN_INT (int_size_in_bytes (data->passed_type)),
+ BLOCK_OP_NORMAL);
+ }
+ else
+ emit_move_insn (dest, src);
+ }
+
+ if (to_conversion)
+ {
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+ }
+
+ SET_DECL_RTL (parm, data->stack_parm);
+}
+
+/* A subroutine of assign_parms. If the ABI splits complex arguments, then
+ undo the frobbing that we did in assign_parms_augmented_arg_list. */
+
+static void
+assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
+{
+ tree parm;
+ tree orig_fnargs = all->orig_fnargs;
+
+ for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
+ {
+ if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
+ && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
+ {
+ rtx tmp, real, imag;
+ enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
+
+ real = DECL_RTL (fnargs);
+ imag = DECL_RTL (TREE_CHAIN (fnargs));
+ if (inner != GET_MODE (real))
+ {
+ real = gen_lowpart_SUBREG (inner, real);
+ imag = gen_lowpart_SUBREG (inner, imag);
+ }
+
+ if (TREE_ADDRESSABLE (parm))
+ {
+ rtx rmem, imem;
+ HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
+
+ /* split_complex_arg put the real and imag parts in
+ pseudos. Move them to memory. */
+ tmp = assign_stack_local (DECL_MODE (parm), size,
+ TYPE_ALIGN (TREE_TYPE (parm)));
+ set_mem_attributes (tmp, parm, 1);
+ rmem = adjust_address_nv (tmp, inner, 0);
+ imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
+ push_to_sequence (all->conversion_insns);
+ emit_move_insn (rmem, real);
+ emit_move_insn (imem, imag);
+ all->conversion_insns = get_insns ();
+ end_sequence ();
+ }
+ else
+ tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
+ SET_DECL_RTL (parm, tmp);
+
+ real = DECL_INCOMING_RTL (fnargs);
+ imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
+ if (inner != GET_MODE (real))
+ {
+ real = gen_lowpart_SUBREG (inner, real);
+ imag = gen_lowpart_SUBREG (inner, imag);
+ }
+ tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
+ set_decl_incoming_rtl (parm, tmp);
+ fnargs = TREE_CHAIN (fnargs);
+ }
+ else
+ {
+ SET_DECL_RTL (parm, DECL_RTL (fnargs));
+ set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
+
+ /* Set MEM_EXPR to the original decl, i.e. to PARM,
+ instead of the copy of decl, i.e. FNARGS. */
+ if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
+ set_mem_expr (DECL_INCOMING_RTL (parm), parm);
+ }
+
+ fnargs = TREE_CHAIN (fnargs);
+ }
+}
+
+/* Assign RTL expressions to the function's parameters. This may involve
+ copying them into registers and using those registers as the DECL_RTL. */
+
+static void
+assign_parms (tree fndecl)
+{
+ struct assign_parm_data_all all;
+ tree fnargs, parm;
+ /* APPLE LOCAL AltiVec */
+ int pass, last_pass;
+
+ current_function_internal_arg_pointer
+ = targetm.calls.internal_arg_pointer ();
+
+ assign_parms_initialize_all (&all);
+ fnargs = assign_parms_augmented_arg_list (&all);
+
+ /* APPLE LOCAL begin AltiVec */
+ last_pass = 1;
+
+ for (pass = 1; pass <= last_pass; pass++)
+ {
+ for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
+ {
+ struct assign_parm_data_one data;
+
+ tree type = TREE_TYPE (parm);
+ /* In 1st iteration over actual arguments, only consider non-vectors.
+ During 2nd iteration, finish off with vector parameters. */
+ if (!current_function_stdarg && targetm.calls.skip_vec_args (type, pass, &last_pass))
+ continue;
+
+ /* Extract the type of PARM; adjust it according to ABI. */
+ assign_parm_find_data_types (&all, parm, &data);
+
+ /* Early out for errors and void parameters. */
+ if (data.passed_mode == VOIDmode)
+ {
+ SET_DECL_RTL (parm, const0_rtx);
+ DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
+ continue;
+ }
+
+ if (current_function_stdarg && !TREE_CHAIN (parm))
+ assign_parms_setup_varargs (&all, &data, false);
+
+ /* Find out where the parameter arrives in this function. */
+ assign_parm_find_entry_rtl (&all, &data);
+
+ /* Find out where stack space for this parameter might be. */
+ if (assign_parm_is_stack_parm (&all, &data))
+ {
+ assign_parm_find_stack_rtl (parm, &data);
+ assign_parm_adjust_entry_rtl (&data);
+ }
+
+ /* Record permanently how this parm was passed. */
+ set_decl_incoming_rtl (parm, data.entry_parm);
+
+ /* Update info on where next arg arrives in registers. */
+ FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
+ data.passed_type, data.named_arg);
+
+ assign_parm_adjust_stack_rtl (&data);
+
+ if (assign_parm_setup_block_p (&data))
+ assign_parm_setup_block (&all, parm, &data);
+ else if (data.passed_pointer || use_register_for_decl (parm))
+ assign_parm_setup_reg (&all, parm, &data);
+ else
+ assign_parm_setup_stack (&all, parm, &data);
+ }
+ }
+ /* APPLE LOCAL end AltiVec */
+
+ if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
+ assign_parms_unsplit_complex (&all, fnargs);
+
+ /* Output all parameter conversion instructions (possibly including calls)
+ now that all parameters have been copied out of hard registers. */
+ emit_insn (all.conversion_insns);
+
+ /* If we are receiving a struct value address as the first argument, set up
+ the RTL for the function result. As this might require code to convert
+ the transmitted address to Pmode, we do this here to ensure that possible
+ preliminary conversions of the address have been emitted already. */
+ if (all.function_result_decl)
+ {
+ tree result = DECL_RESULT (current_function_decl);
+ rtx addr = DECL_RTL (all.function_result_decl);
+ rtx x;
+
+ if (DECL_BY_REFERENCE (result))
+ x = addr;
+ else
+ {
+ addr = convert_memory_address (Pmode, addr);
+ x = gen_rtx_MEM (DECL_MODE (result), addr);
+ set_mem_attributes (x, result, 1);
+ }
+ SET_DECL_RTL (result, x);
+ }
+
+ /* We have aligned all the args, so add space for the pretend args. */
+ current_function_pretend_args_size = all.pretend_args_size;
+ all.stack_args_size.constant += all.extra_pretend_bytes;
+ current_function_args_size = all.stack_args_size.constant;
+ /* APPLE LOCAL sibcall optimization stomped CW frames (radar 3007352) */
+ cfun->unrounded_args_size = all.stack_args_size.constant;
+
+ /* Adjust function incoming argument size for alignment and
+ minimum length. */
+
+#ifdef REG_PARM_STACK_SPACE
+ current_function_args_size = MAX (current_function_args_size,
+ REG_PARM_STACK_SPACE (fndecl));
+#endif
+
+ current_function_args_size = CEIL_ROUND (current_function_args_size,
+ PARM_BOUNDARY / BITS_PER_UNIT);
+
+#ifdef ARGS_GROW_DOWNWARD
+ current_function_arg_offset_rtx
+ = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
+ : expand_expr (size_diffop (all.stack_args_size.var,
+ size_int (-all.stack_args_size.constant)),
+ NULL_RTX, VOIDmode, 0));
+#else
+ current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
+#endif
+
+ /* See how many bytes, if any, of its args a function should try to pop
+ on return. */
+
+ /* APPLE LOCAL begin stdcall vs 16 byte alignment 4284121 */
+ current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
+ cfun->unrounded_args_size);
+ /* APPLE LOCAL end stdcall vs 16 byte alignment 4284121 */
+
+ /* For stdarg.h function, save info about
+ regs and stack space used by the named args. */
+
+ current_function_args_info = all.args_so_far;
+
+ /* Set the rtx used for the function return value. Put this in its
+ own variable so any optimizers that need this information don't have
+ to include tree.h. Do this here so it gets done when an inlined
+ function gets output. */
+
+ current_function_return_rtx
+ = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
+ ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
+
+ /* If scalar return value was computed in a pseudo-reg, or was a named
+ return value that got dumped to the stack, copy that to the hard
+ return register. */
+ if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
+ {
+ tree decl_result = DECL_RESULT (fndecl);
+ rtx decl_rtl = DECL_RTL (decl_result);
+
+ if (REG_P (decl_rtl)
+ ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
+ : DECL_REGISTER (decl_result))
+ {
+ rtx real_decl_rtl;
+
+ real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
+ fndecl, true);
+ REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
+ /* The delay slot scheduler assumes that current_function_return_rtx
+ holds the hard register containing the return value, not a
+ temporary pseudo. */
+ current_function_return_rtx = real_decl_rtl;
+ }
+ }
+}
+
+/* A subroutine of gimplify_parameters, invoked via walk_tree.
+ For all seen types, gimplify their sizes. */
+
+static tree
+gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
+{
+ tree t = *tp;
+
+ *walk_subtrees = 0;
+ if (TYPE_P (t))
+ {
+ if (POINTER_TYPE_P (t))
+ *walk_subtrees = 1;
+ else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
+ && !TYPE_SIZES_GIMPLIFIED (t))
+ {
+ gimplify_type_sizes (t, (tree *) data);
+ *walk_subtrees = 1;
+ }
+ }
+
+ return NULL;
+}
+
+/* Gimplify the parameter list for current_function_decl. This involves
+ evaluating SAVE_EXPRs of variable sized parameters and generating code
+ to implement callee-copies reference parameters. Returns a list of
+ statements to add to the beginning of the function, or NULL if nothing
+ to do. */
+
+tree
+gimplify_parameters (void)
+{
+ struct assign_parm_data_all all;
+ tree fnargs, parm, stmts = NULL;
+
+ assign_parms_initialize_all (&all);
+ fnargs = assign_parms_augmented_arg_list (&all);
+
+ for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
+ {
+ struct assign_parm_data_one data;
+
+ /* Extract the type of PARM; adjust it according to ABI. */
+ assign_parm_find_data_types (&all, parm, &data);
+
+ /* Early out for errors and void parameters. */
+ if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
+ continue;
+
+ /* Update info on where next arg arrives in registers. */
+ FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
+ data.passed_type, data.named_arg);
+
+ /* ??? Once upon a time variable_size stuffed parameter list
+ SAVE_EXPRs (amongst others) onto a pending sizes list. This
+ turned out to be less than manageable in the gimple world.
+ Now we have to hunt them down ourselves. */
+ walk_tree_without_duplicates (&data.passed_type,
+ gimplify_parm_type, &stmts);
+
+ if (!TREE_CONSTANT (DECL_SIZE (parm)))
+ {
+ gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
+ gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
+ }
+
+ if (data.passed_pointer)
+ {
+ tree type = TREE_TYPE (data.passed_type);
+ if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
+ type, data.named_arg))
+ {
+ tree local, t;
+
+ /* For constant sized objects, this is trivial; for
+ variable-sized objects, we have to play games. */
+ if (TREE_CONSTANT (DECL_SIZE (parm)))
+ {
+ local = create_tmp_var (type, get_name (parm));
+ DECL_IGNORED_P (local) = 0;
+ }
+ else
+ {
+ tree ptr_type, addr, args;
+
+ ptr_type = build_pointer_type (type);
+ addr = create_tmp_var (ptr_type, get_name (parm));
+ DECL_IGNORED_P (addr) = 0;
+ local = build_fold_indirect_ref (addr);
+
+ args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
+ t = built_in_decls[BUILT_IN_ALLOCA];
+ t = build_function_call_expr (t, args);
+ t = fold_convert (ptr_type, t);
+ t = build2 (MODIFY_EXPR, void_type_node, addr, t);
+ gimplify_and_add (t, &stmts);
+ }
+
+ t = build2 (MODIFY_EXPR, void_type_node, local, parm);
+ gimplify_and_add (t, &stmts);
+
+ SET_DECL_VALUE_EXPR (parm, local);
+ DECL_HAS_VALUE_EXPR_P (parm) = 1;
+ }
+ }
+ }
+
+ return stmts;
+}
+
+/* Indicate whether REGNO is an incoming argument to the current function
+ that was promoted to a wider mode. If so, return the RTX for the
+ register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
+ that REGNO is promoted from and whether the promotion was signed or
+ unsigned. */
+
+rtx
+promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
+{
+ tree arg;
+
+ for (arg = DECL_ARGUMENTS (current_function_decl); arg;
+ arg = TREE_CHAIN (arg))
+ if (REG_P (DECL_INCOMING_RTL (arg))
+ && REGNO (DECL_INCOMING_RTL (arg)) == regno
+ && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
+ {
+ enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
+ int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
+
+ mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
+ if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
+ && mode != DECL_MODE (arg))
+ {
+ *pmode = DECL_MODE (arg);
+ *punsignedp = unsignedp;
+ return DECL_INCOMING_RTL (arg);
+ }
+ }
+
+ return 0;
+}
+
+
+/* Compute the size and offset from the start of the stacked arguments for a
+ parm passed in mode PASSED_MODE and with type TYPE.
+
+ INITIAL_OFFSET_PTR points to the current offset into the stacked
+ arguments.
+
+ The starting offset and size for this parm are returned in
+ LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
+ nonzero, the offset is that of stack slot, which is returned in
+ LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
+ padding required from the initial offset ptr to the stack slot.
+
+ IN_REGS is nonzero if the argument will be passed in registers. It will
+ never be set if REG_PARM_STACK_SPACE is not defined.
+
+ FNDECL is the function in which the argument was defined.
+
+ There are two types of rounding that are done. The first, controlled by
+ FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
+ list to be aligned to the specific boundary (in bits). This rounding
+ affects the initial and starting offsets, but not the argument size.
+
+ The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
+ optionally rounds the size of the parm to PARM_BOUNDARY. The
+ initial offset is not affected by this rounding, while the size always
+ is and the starting offset may be. */
+
+/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
+ INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
+ callers pass in the total size of args so far as
+ INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
+
+void
+locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
+ int partial, tree fndecl ATTRIBUTE_UNUSED,
+ struct args_size *initial_offset_ptr,
+ struct locate_and_pad_arg_data *locate)
+{
+ tree sizetree;
+ enum direction where_pad;
+ unsigned int boundary;
+ int reg_parm_stack_space = 0;
+ int part_size_in_regs;
+
+#ifdef REG_PARM_STACK_SPACE
+ reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
+
+ /* If we have found a stack parm before we reach the end of the
+ area reserved for registers, skip that area. */
+ if (! in_regs)
+ {
+ if (reg_parm_stack_space > 0)
+ {
+ if (initial_offset_ptr->var)
+ {
+ initial_offset_ptr->var
+ = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
+ ssize_int (reg_parm_stack_space));
+ initial_offset_ptr->constant = 0;
+ }
+ else if (initial_offset_ptr->constant < reg_parm_stack_space)
+ initial_offset_ptr->constant = reg_parm_stack_space;
+ }
+ }
+#endif /* REG_PARM_STACK_SPACE */
+
+ part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
+
+ sizetree
+ = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
+ where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
+ boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
+ locate->where_pad = where_pad;
+ locate->boundary = boundary;
+
+ /* Remember if the outgoing parameter requires extra alignment on the
+ calling function side. */
+ if (boundary > PREFERRED_STACK_BOUNDARY)
+ boundary = PREFERRED_STACK_BOUNDARY;
+ if (cfun->stack_alignment_needed < boundary)
+ cfun->stack_alignment_needed = boundary;
+
+#ifdef ARGS_GROW_DOWNWARD
+ locate->slot_offset.constant = -initial_offset_ptr->constant;
+ if (initial_offset_ptr->var)
+ locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
+ initial_offset_ptr->var);
+
+ {
+ tree s2 = sizetree;
+ if (where_pad != none
+ && (!host_integerp (sizetree, 1)
+ || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
+ s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
+ SUB_PARM_SIZE (locate->slot_offset, s2);
+ }
+
+ locate->slot_offset.constant += part_size_in_regs;
+
+ if (!in_regs
+#ifdef REG_PARM_STACK_SPACE
+ || REG_PARM_STACK_SPACE (fndecl) > 0
+#endif
+ )
+ pad_to_arg_alignment (&locate->slot_offset, boundary,
+ &locate->alignment_pad);
+
+ locate->size.constant = (-initial_offset_ptr->constant
+ - locate->slot_offset.constant);
+ if (initial_offset_ptr->var)
+ locate->size.var = size_binop (MINUS_EXPR,
+ size_binop (MINUS_EXPR,
+ ssize_int (0),
+ initial_offset_ptr->var),
+ locate->slot_offset.var);
+
+ /* Pad_below needs the pre-rounded size to know how much to pad
+ below. */
+ locate->offset = locate->slot_offset;
+ if (where_pad == downward)
+ pad_below (&locate->offset, passed_mode, sizetree);
+
+#else /* !ARGS_GROW_DOWNWARD */
+ if (!in_regs
+#ifdef REG_PARM_STACK_SPACE
+ || REG_PARM_STACK_SPACE (fndecl) > 0
+#endif
+ )
+ pad_to_arg_alignment (initial_offset_ptr, boundary,
+ &locate->alignment_pad);
+ locate->slot_offset = *initial_offset_ptr;
+
+#ifdef PUSH_ROUNDING
+ if (passed_mode != BLKmode)
+ sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
+#endif
+
+ /* Pad_below needs the pre-rounded size to know how much to pad below
+ so this must be done before rounding up. */
+ locate->offset = locate->slot_offset;
+ if (where_pad == downward)
+ pad_below (&locate->offset, passed_mode, sizetree);
+
+ if (where_pad != none
+ && (!host_integerp (sizetree, 1)
+ || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
+ sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+
+ ADD_PARM_SIZE (locate->size, sizetree);
+
+ locate->size.constant -= part_size_in_regs;
+#endif /* ARGS_GROW_DOWNWARD */
+}
+
+/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
+ BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
+
+static void
+pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
+ struct args_size *alignment_pad)
+{
+ tree save_var = NULL_TREE;
+ HOST_WIDE_INT save_constant = 0;
+ int boundary_in_bytes = boundary / BITS_PER_UNIT;
+ HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
+
+#ifdef SPARC_STACK_BOUNDARY_HACK
+ /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
+ the real alignment of %sp. However, when it does this, the
+ alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
+ if (SPARC_STACK_BOUNDARY_HACK)
+ sp_offset = 0;
+#endif
+
+ if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
+ {
+ save_var = offset_ptr->var;
+ save_constant = offset_ptr->constant;
+ }
+
+ alignment_pad->var = NULL_TREE;
+ alignment_pad->constant = 0;
+
+ if (boundary > BITS_PER_UNIT)
+ {
+ if (offset_ptr->var)
+ {
+ tree sp_offset_tree = ssize_int (sp_offset);
+ tree offset = size_binop (PLUS_EXPR,
+ ARGS_SIZE_TREE (*offset_ptr),
+ sp_offset_tree);
+#ifdef ARGS_GROW_DOWNWARD
+ tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
+#else
+ tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
+#endif
+
+ offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
+ /* ARGS_SIZE_TREE includes constant term. */
+ offset_ptr->constant = 0;
+ if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
+ alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
+ save_var);
+ }
+ else
+ {
+ offset_ptr->constant = -sp_offset +
+#ifdef ARGS_GROW_DOWNWARD
+ FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
+#else
+ CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
+#endif
+ if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
+ alignment_pad->constant = offset_ptr->constant - save_constant;
+ }
+ }
+}
+
+static void
+pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
+{
+ if (passed_mode != BLKmode)
+ {
+ if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
+ offset_ptr->constant
+ += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
+ / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
+ - GET_MODE_SIZE (passed_mode));
+ }
+ else
+ {
+ if (TREE_CODE (sizetree) != INTEGER_CST
+ || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
+ {
+ /* Round the size up to multiple of PARM_BOUNDARY bits. */
+ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+ /* Add it in. */
+ ADD_PARM_SIZE (*offset_ptr, s2);
+ SUB_PARM_SIZE (*offset_ptr, sizetree);
+ }
+ }
+}
+
+/* Walk the tree of blocks describing the binding levels within a function
+ and warn about variables the might be killed by setjmp or vfork.
+ This is done after calling flow_analysis and before global_alloc
+ clobbers the pseudo-regs to hard regs. */
+
+void
+setjmp_vars_warning (tree block)
+{
+ tree decl, sub;
+
+ for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
+ {
+ if (TREE_CODE (decl) == VAR_DECL
+ && DECL_RTL_SET_P (decl)
+ && REG_P (DECL_RTL (decl))
+ && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
+ warning (0, "variable %q+D might be clobbered by %<longjmp%>"
+ " or %<vfork%>",
+ decl);
+ }
+
+ for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
+ setjmp_vars_warning (sub);
+}
+
+/* Do the appropriate part of setjmp_vars_warning
+ but for arguments instead of local variables. */
+
+void
+setjmp_args_warning (void)
+{
+ tree decl;
+ for (decl = DECL_ARGUMENTS (current_function_decl);
+ decl; decl = TREE_CHAIN (decl))
+ if (DECL_RTL (decl) != 0
+ && REG_P (DECL_RTL (decl))
+ && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
+ warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
+ decl);
+}
+
+
+/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
+ and create duplicate blocks. */
+/* ??? Need an option to either create block fragments or to create
+ abstract origin duplicates of a source block. It really depends
+ on what optimization has been performed. */
+
+void
+reorder_blocks (void)
+{
+ tree block = DECL_INITIAL (current_function_decl);
+ VEC(tree,heap) *block_stack;
+
+ if (block == NULL_TREE)
+ return;
+
+ block_stack = VEC_alloc (tree, heap, 10);
+
+ /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
+ clear_block_marks (block);
+
+ /* Prune the old trees away, so that they don't get in the way. */
+ BLOCK_SUBBLOCKS (block) = NULL_TREE;
+ BLOCK_CHAIN (block) = NULL_TREE;
+
+ /* Recreate the block tree from the note nesting. */
+ reorder_blocks_1 (get_insns (), block, &block_stack);
+ BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
+
+ VEC_free (tree, heap, block_stack);
+}
+
+/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
+
+void
+clear_block_marks (tree block)
+{
+ while (block)
+ {
+ TREE_ASM_WRITTEN (block) = 0;
+ clear_block_marks (BLOCK_SUBBLOCKS (block));
+ block = BLOCK_CHAIN (block);
+ }
+}
+
+static void
+reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
+{
+ rtx insn;
+
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
+ {
+ tree block = NOTE_BLOCK (insn);
+ tree origin;
+
+ origin = (BLOCK_FRAGMENT_ORIGIN (block)
+ ? BLOCK_FRAGMENT_ORIGIN (block)
+ : block);
+
+ /* If we have seen this block before, that means it now
+ spans multiple address regions. Create a new fragment. */
+ if (TREE_ASM_WRITTEN (block))
+ {
+ tree new_block = copy_node (block);
+
+ BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
+ BLOCK_FRAGMENT_CHAIN (new_block)
+ = BLOCK_FRAGMENT_CHAIN (origin);
+ BLOCK_FRAGMENT_CHAIN (origin) = new_block;
+
+ NOTE_BLOCK (insn) = new_block;
+ block = new_block;
+ }
+
+ BLOCK_SUBBLOCKS (block) = 0;
+ TREE_ASM_WRITTEN (block) = 1;
+ /* When there's only one block for the entire function,
+ current_block == block and we mustn't do this, it
+ will cause infinite recursion. */
+ if (block != current_block)
+ {
+ if (block != origin)
+ gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
+
+ BLOCK_SUPERCONTEXT (block) = current_block;
+ BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
+ BLOCK_SUBBLOCKS (current_block) = block;
+ current_block = origin;
+ }
+ VEC_safe_push (tree, heap, *p_block_stack, block);
+ }
+ else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
+ {
+ NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
+ BLOCK_SUBBLOCKS (current_block)
+ = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
+ current_block = BLOCK_SUPERCONTEXT (current_block);
+ }
+ }
+ }
+}
+
+/* Reverse the order of elements in the chain T of blocks,
+ and return the new head of the chain (old last element). */
+
+tree
+blocks_nreverse (tree t)
+{
+ tree prev = 0, decl, next;
+ for (decl = t; decl; decl = next)
+ {
+ next = BLOCK_CHAIN (decl);
+ BLOCK_CHAIN (decl) = prev;
+ prev = decl;
+ }
+ return prev;
+}
+
+/* Count the subblocks of the list starting with BLOCK. If VECTOR is
+ non-NULL, list them all into VECTOR, in a depth-first preorder
+ traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
+ blocks. */
+
+static int
+all_blocks (tree block, tree *vector)
+{
+ int n_blocks = 0;
+
+ while (block)
+ {
+ TREE_ASM_WRITTEN (block) = 0;
+
+ /* Record this block. */
+ if (vector)
+ vector[n_blocks] = block;
+
+ ++n_blocks;
+
+ /* Record the subblocks, and their subblocks... */
+ n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
+ vector ? vector + n_blocks : 0);
+ block = BLOCK_CHAIN (block);
+ }
+
+ return n_blocks;
+}
+
+/* Return a vector containing all the blocks rooted at BLOCK. The
+ number of elements in the vector is stored in N_BLOCKS_P. The
+ vector is dynamically allocated; it is the caller's responsibility
+ to call `free' on the pointer returned. */
+
+static tree *
+get_block_vector (tree block, int *n_blocks_p)
+{
+ tree *block_vector;
+
+ *n_blocks_p = all_blocks (block, NULL);
+ block_vector = XNEWVEC (tree, *n_blocks_p);
+ all_blocks (block, block_vector);
+
+ return block_vector;
+}
+
+static GTY(()) int next_block_index = 2;
+
+/* Set BLOCK_NUMBER for all the blocks in FN. */
+
+void
+number_blocks (tree fn)
+{
+ int i;
+ int n_blocks;
+ tree *block_vector;
+
+ /* For SDB and XCOFF debugging output, we start numbering the blocks
+ from 1 within each function, rather than keeping a running
+ count. */
+#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
+ if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
+ next_block_index = 1;
+#endif
+
+ block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
+
+ /* The top-level BLOCK isn't numbered at all. */
+ for (i = 1; i < n_blocks; ++i)
+ /* We number the blocks from two. */
+ BLOCK_NUMBER (block_vector[i]) = next_block_index++;
+
+ free (block_vector);
+
+ return;
+}
+
+/* If VAR is present in a subblock of BLOCK, return the subblock. */
+
+tree
+debug_find_var_in_block_tree (tree var, tree block)
+{
+ tree t;
+
+ for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
+ if (t == var)
+ return block;
+
+ for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
+ {
+ tree ret = debug_find_var_in_block_tree (var, t);
+ if (ret)
+ return ret;
+ }
+
+ return NULL_TREE;
+}
+
+/* Allocate a function structure for FNDECL and set its contents
+ to the defaults. */
+
+void
+allocate_struct_function (tree fndecl)
+{
+ tree result;
+ tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
+
+ cfun = ggc_alloc_cleared (sizeof (struct function));
+
+ cfun->stack_alignment_needed = STACK_BOUNDARY;
+ cfun->preferred_stack_boundary = STACK_BOUNDARY;
+
+ current_function_funcdef_no = funcdef_no++;
+
+ cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
+
+ init_eh_for_function ();
+
+ lang_hooks.function.init (cfun);
+ if (init_machine_status)
+ cfun->machine = (*init_machine_status) ();
+
+ if (fndecl == NULL)
+ return;
+
+ DECL_STRUCT_FUNCTION (fndecl) = cfun;
+ cfun->decl = fndecl;
+
+ /* APPLE LOCAL begin radar 5732232 - blocks */
+ /* We cannot support blocks which return aggregates because at this
+ point we do not have info on the return type. */
+ if (!cur_block)
+ {
+ result = DECL_RESULT (fndecl);
+ if (aggregate_value_p (result, fndecl))
+ {
+#ifdef PCC_STATIC_STRUCT_RETURN
+ current_function_returns_pcc_struct = 1;
+#endif
+ current_function_returns_struct = 1;
+ }
+ /* This code is not used anywhere ! */
+ current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
+ }
+ /* APPLE LOCAL end radar 5732232 - blocks */
+ current_function_stdarg
+ = (fntype
+ && TYPE_ARG_TYPES (fntype) != 0
+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+ != void_type_node));
+
+ /* Assume all registers in stdarg functions need to be saved. */
+ cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
+ cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
+}
+
+/* Reset cfun, and other non-struct-function variables to defaults as
+ appropriate for emitting rtl at the start of a function. */
+
+static void
+prepare_function_start (tree fndecl)
+{
+ if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
+ cfun = DECL_STRUCT_FUNCTION (fndecl);
+ else
+ allocate_struct_function (fndecl);
+ init_emit ();
+ init_varasm_status (cfun);
+ init_expr ();
+
+ cse_not_expected = ! optimize;
+
+ /* Caller save not needed yet. */
+ caller_save_needed = 0;
+
+ /* We haven't done register allocation yet. */
+ reg_renumber = 0;
+
+ /* Indicate that we have not instantiated virtual registers yet. */
+ virtuals_instantiated = 0;
+
+ /* Indicate that we want CONCATs now. */
+ generating_concat_p = 1;
+
+ /* Indicate we have no need of a frame pointer yet. */
+ frame_pointer_needed = 0;
+}
+
+/* Initialize the rtl expansion mechanism so that we can do simple things
+ like generate sequences. This is used to provide a context during global
+ initialization of some passes. */
+void
+init_dummy_function_start (void)
+{
+ prepare_function_start (NULL);
+}
+
+/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
+ and initialize static variables for generating RTL for the statements
+ of the function. */
+
+void
+init_function_start (tree subr)
+{
+ prepare_function_start (subr);
+
+ /* APPLE LOCAL begin CW asm blocks */
+ if (DECL_IASM_ASM_FUNCTION (subr))
+ {
+ cfun->iasm_asm_function = true;
+ cfun->iasm_noreturn = DECL_IASM_NORETURN (subr);
+ cfun->iasm_frame_size = DECL_IASM_FRAME_SIZE (subr);
+ }
+ /* APPLE LOCAL end CW asm blocks */
+ /* Prevent ever trying to delete the first instruction of a
+ function. Also tell final how to output a linenum before the
+ function prologue. Note linenums could be missing, e.g. when
+ compiling a Java .class file. */
+ if (! DECL_IS_BUILTIN (subr))
+ emit_line_note (DECL_SOURCE_LOCATION (subr));
+
+ /* Make sure first insn is a note even if we don't want linenums.
+ This makes sure the first insn will never be deleted.
+ Also, final expects a note to appear there. */
+ emit_note (NOTE_INSN_DELETED);
+
+ /* Warn if this value is an aggregate type,
+ regardless of which calling convention we are using for it. */
+ if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
+ warning (OPT_Waggregate_return, "function returns an aggregate");
+}
+
+/* Make sure all values used by the optimization passes have sane
+ defaults. */
+unsigned int
+init_function_for_compilation (void)
+{
+ reg_renumber = 0;
+
+ /* No prologue/epilogue insns yet. Make sure that these vectors are
+ empty. */
+ gcc_assert (VEC_length (int, prologue) == 0);
+ gcc_assert (VEC_length (int, epilogue) == 0);
+ gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
+ return 0;
+}
+
+struct tree_opt_pass pass_init_function =
+{
+ NULL, /* name */
+ NULL, /* gate */
+ init_function_for_compilation, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+
+void
+expand_main_function (void)
+{
+#if (defined(INVOKE__main) \
+ || (!defined(HAS_INIT_SECTION) \
+ && !defined(INIT_SECTION_ASM_OP) \
+ && !defined(INIT_ARRAY_SECTION_ASM_OP)))
+ emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
+#endif
+}
+
+/* Expand code to initialize the stack_protect_guard. This is invoked at
+ the beginning of a function to be protected. */
+
+#ifndef HAVE_stack_protect_set
+# define HAVE_stack_protect_set 0
+# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+stack_protect_prologue (void)
+{
+ tree guard_decl = targetm.stack_protect_guard ();
+ rtx x, y;
+
+ /* Avoid expand_expr here, because we don't want guard_decl pulled
+ into registers unless absolutely necessary. And we know that
+ cfun->stack_protect_guard is a local stack slot, so this skips
+ all the fluff. */
+ x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
+ y = validize_mem (DECL_RTL (guard_decl));
+
+ /* Allow the target to copy from Y to X without leaking Y into a
+ register. */
+ if (HAVE_stack_protect_set)
+ {
+ rtx insn = gen_stack_protect_set (x, y);
+ if (insn)
+ {
+ emit_insn (insn);
+ return;
+ }
+ }
+
+ /* Otherwise do a straight move. */
+ emit_move_insn (x, y);
+}
+
+/* Expand code to verify the stack_protect_guard. This is invoked at
+ the end of a function to be protected. */
+
+#ifndef HAVE_stack_protect_test
+# define HAVE_stack_protect_test 0
+# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+stack_protect_epilogue (void)
+{
+ tree guard_decl = targetm.stack_protect_guard ();
+ rtx label = gen_label_rtx ();
+ rtx x, y, tmp;
+
+ /* Avoid expand_expr here, because we don't want guard_decl pulled
+ into registers unless absolutely necessary. And we know that
+ cfun->stack_protect_guard is a local stack slot, so this skips
+ all the fluff. */
+ x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
+ y = validize_mem (DECL_RTL (guard_decl));
+
+ /* Allow the target to compare Y with X without leaking either into
+ a register. */
+ switch (HAVE_stack_protect_test != 0)
+ {
+ case 1:
+ tmp = gen_stack_protect_test (x, y, label);
+ if (tmp)
+ {
+ emit_insn (tmp);
+ break;
+ }
+ /* FALLTHRU */
+
+ default:
+ emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
+ break;
+ }
+
+ /* The noreturn predictor has been moved to the tree level. The rtl-level
+ predictors estimate this branch about 20%, which isn't enough to get
+ things moved out of line. Since this is the only extant case of adding
+ a noreturn function at the rtl level, it doesn't seem worth doing ought
+ except adding the prediction by hand. */
+ tmp = get_last_insn ();
+ if (JUMP_P (tmp))
+ predict_insn_def (tmp, PRED_NORETURN, TAKEN);
+
+ expand_expr_stmt (targetm.stack_protect_fail ());
+ emit_label (label);
+}
+
+/* Start the RTL for a new function, and set variables used for
+ emitting RTL.
+ SUBR is the FUNCTION_DECL node.
+ PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
+ the function's parameters, which must be run at any return statement. */
+
+void
+expand_function_start (tree subr)
+{
+ /* Make sure volatile mem refs aren't considered
+ valid operands of arithmetic insns. */
+ init_recog_no_volatile ();
+
+ current_function_profile
+ = (profile_flag
+ && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
+
+ current_function_limit_stack
+ = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
+
+ /* Make the label for return statements to jump to. Do not special
+ case machines with special return instructions -- they will be
+ handled later during jump, ifcvt, or epilogue creation. */
+ return_label = gen_label_rtx ();
+
+ /* Initialize rtx used to return the value. */
+ /* Do this before assign_parms so that we copy the struct value address
+ before any library calls that assign parms might generate. */
+
+ /* Decide whether to return the value in memory or in a register. */
+ if (aggregate_value_p (DECL_RESULT (subr), subr))
+ {
+ /* Returning something that won't go in a register. */
+ rtx value_address = 0;
+
+#ifdef PCC_STATIC_STRUCT_RETURN
+ if (current_function_returns_pcc_struct)
+ {
+ int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
+ value_address = assemble_static_space (size);
+ }
+ else
+#endif
+ {
+ rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
+ /* Expect to be passed the address of a place to store the value.
+ If it is passed as an argument, assign_parms will take care of
+ it. */
+ if (sv)
+ {
+ value_address = gen_reg_rtx (Pmode);
+ emit_move_insn (value_address, sv);
+ }
+ }
+ if (value_address)
+ {
+ rtx x = value_address;
+ if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
+ {
+ x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
+ set_mem_attributes (x, DECL_RESULT (subr), 1);
+ }
+ SET_DECL_RTL (DECL_RESULT (subr), x);
+ }
+ }
+ /* APPLE LOCAL begin CW asm blocks */
+ else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode
+ || cfun->iasm_asm_function)
+ /* APPLE LOCAL end CW asm blocks */
+ /* If return mode is void, this decl rtl should not be used. */
+ SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
+ else
+ {
+ /* Compute the return values into a pseudo reg, which we will copy
+ into the true return register after the cleanups are done. */
+ tree return_type = TREE_TYPE (DECL_RESULT (subr));
+ if (TYPE_MODE (return_type) != BLKmode
+ && targetm.calls.return_in_msb (return_type))
+ /* expand_function_end will insert the appropriate padding in
+ this case. Use the return value's natural (unpadded) mode
+ within the function proper. */
+ SET_DECL_RTL (DECL_RESULT (subr),
+ gen_reg_rtx (TYPE_MODE (return_type)));
+ else
+ {
+ /* In order to figure out what mode to use for the pseudo, we
+ figure out what the mode of the eventual return register will
+ actually be, and use that. */
+ rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
+
+ /* Structures that are returned in registers are not
+ aggregate_value_p, so we may see a PARALLEL or a REG. */
+ if (REG_P (hard_reg))
+ SET_DECL_RTL (DECL_RESULT (subr),
+ gen_reg_rtx (GET_MODE (hard_reg)));
+ else
+ {
+ gcc_assert (GET_CODE (hard_reg) == PARALLEL);
+ SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
+ }
+ }
+
+ /* Set DECL_REGISTER flag so that expand_function_end will copy the
+ result to the real return register(s). */
+ DECL_REGISTER (DECL_RESULT (subr)) = 1;
+ }
+
+ /* Initialize rtx for parameters and local variables.
+ In some cases this requires emitting insns. */
+ assign_parms (subr);
+
+ /* If function gets a static chain arg, store it. */
+ if (cfun->static_chain_decl)
+ {
+ tree parm = cfun->static_chain_decl;
+ rtx local = gen_reg_rtx (Pmode);
+
+ set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
+ SET_DECL_RTL (parm, local);
+ mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
+
+ emit_move_insn (local, static_chain_incoming_rtx);
+ }
+
+ /* If the function receives a non-local goto, then store the
+ bits we need to restore the frame pointer. */
+ if (cfun->nonlocal_goto_save_area)
+ {
+ tree t_save;
+ rtx r_save;
+
+ /* ??? We need to do this save early. Unfortunately here is
+ before the frame variable gets declared. Help out... */
+ expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
+
+ t_save = build4 (ARRAY_REF, ptr_type_node,
+ cfun->nonlocal_goto_save_area,
+ integer_zero_node, NULL_TREE, NULL_TREE);
+ r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
+ r_save = convert_memory_address (Pmode, r_save);
+
+ emit_move_insn (r_save, virtual_stack_vars_rtx);
+ update_nonlocal_goto_save_area ();
+ }
+
+ /* The following was moved from init_function_start.
+ The move is supposed to make sdb output more accurate. */
+ /* Indicate the beginning of the function body,
+ as opposed to parm setup. */
+ emit_note (NOTE_INSN_FUNCTION_BEG);
+
+ gcc_assert (NOTE_P (get_last_insn ()));
+
+ parm_birth_insn = get_last_insn ();
+
+ if (current_function_profile)
+ {
+#ifdef PROFILE_HOOK
+ PROFILE_HOOK (current_function_funcdef_no);
+#endif
+ }
+
+ /* After the display initializations is where the stack checking
+ probe should go. */
+ if(flag_stack_check)
+ stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
+
+ /* Make sure there is a line number after the function entry setup code. */
+ force_next_line_note ();
+}
+
+/* Undo the effects of init_dummy_function_start. */
+void
+expand_dummy_function_end (void)
+{
+ /* End any sequences that failed to be closed due to syntax errors. */
+ while (in_sequence_p ())
+ end_sequence ();
+
+ /* Outside function body, can't compute type's actual size
+ until next function's body starts. */
+
+ free_after_parsing (cfun);
+ free_after_compilation (cfun);
+ cfun = 0;
+}
+
+/* Call DOIT for each hard register used as a return value from
+ the current function. */
+
+void
+diddle_return_value (void (*doit) (rtx, void *), void *arg)
+{
+ rtx outgoing = current_function_return_rtx;
+
+ if (! outgoing)
+ return;
+
+ if (REG_P (outgoing))
+ (*doit) (outgoing, arg);
+ else if (GET_CODE (outgoing) == PARALLEL)
+ {
+ int i;
+
+ for (i = 0; i < XVECLEN (outgoing, 0); i++)
+ {
+ rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
+
+ if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+ (*doit) (x, arg);
+ }
+ }
+}
+
+static void
+do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
+{
+ emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
+}
+
+void
+clobber_return_register (void)
+{
+ diddle_return_value (do_clobber_return_reg, NULL);
+
+ /* In case we do use pseudo to return value, clobber it too. */
+ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
+ {
+ tree decl_result = DECL_RESULT (current_function_decl);
+ rtx decl_rtl = DECL_RTL (decl_result);
+ if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
+ {
+ do_clobber_return_reg (decl_rtl, NULL);
+ }
+ }
+}
+
+static void
+do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
+{
+ emit_insn (gen_rtx_USE (VOIDmode, reg));
+}
+
+static void
+use_return_register (void)
+{
+ diddle_return_value (do_use_return_reg, NULL);
+}
+
+/* Possibly warn about unused parameters. */
+void
+do_warn_unused_parameter (tree fn)
+{
+ tree decl;
+
+ for (decl = DECL_ARGUMENTS (fn);
+ decl; decl = TREE_CHAIN (decl))
+ if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
+ && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
+ warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
+}
+
+static GTY(()) rtx initial_trampoline;
+
+/* Generate RTL for the end of the current function. */
+
+void
+expand_function_end (void)
+{
+ rtx clobber_after;
+
+ /* If arg_pointer_save_area was referenced only from a nested
+ function, we will not have initialized it yet. Do that now. */
+ if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
+ get_arg_pointer_save_area (cfun);
+
+ /* If we are doing stack checking and this function makes calls,
+ do a stack probe at the start of the function to ensure we have enough
+ space for another stack frame. */
+ if (flag_stack_check && ! STACK_CHECK_BUILTIN)
+ {
+ rtx insn, seq;
+
+ for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+ if (CALL_P (insn))
+ {
+ start_sequence ();
+ probe_stack_range (STACK_CHECK_PROTECT,
+ GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
+ seq = get_insns ();
+ end_sequence ();
+ emit_insn_before (seq, stack_check_probe_note);
+ break;
+ }
+ }
+
+ /* Possibly warn about unused parameters.
+ When frontend does unit-at-a-time, the warning is already
+ issued at finalization time. */
+ if (warn_unused_parameter
+ && !lang_hooks.callgraph.expand_function)
+ do_warn_unused_parameter (current_function_decl);
+
+ /* End any sequences that failed to be closed due to syntax errors. */
+ while (in_sequence_p ())
+ end_sequence ();
+
+ clear_pending_stack_adjust ();
+ do_pending_stack_adjust ();
+
+ /* APPLE LOCAL begin CW asm blocks */
+ if (cfun->iasm_asm_function)
+ expand_naked_return ();
+ /* APPLE LOCAL end CW asm blocks */
+
+ /* Mark the end of the function body.
+ If control reaches this insn, the function can drop through
+ without returning a value. */
+ emit_note (NOTE_INSN_FUNCTION_END);
+
+ /* Must mark the last line number note in the function, so that the test
+ coverage code can avoid counting the last line twice. This just tells
+ the code to ignore the immediately following line note, since there
+ already exists a copy of this note somewhere above. This line number
+ note is still needed for debugging though, so we can't delete it. */
+ if (flag_test_coverage)
+ emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
+
+ /* Output a linenumber for the end of the function.
+ SDB depends on this. */
+ force_next_line_note ();
+ emit_line_note (input_location);
+
+ /* Before the return label (if any), clobber the return
+ registers so that they are not propagated live to the rest of
+ the function. This can only happen with functions that drop
+ through; if there had been a return statement, there would
+ have either been a return rtx, or a jump to the return label.
+
+ We delay actual code generation after the current_function_value_rtx
+ is computed. */
+ clobber_after = get_last_insn ();
+
+ /* Output the label for the actual return from the function. */
+ emit_label (return_label);
+
+ if (USING_SJLJ_EXCEPTIONS)
+ {
+ /* Let except.c know where it should emit the call to unregister
+ the function context for sjlj exceptions. */
+ if (flag_exceptions)
+ sjlj_emit_function_exit_after (get_last_insn ());
+ }
+ else
+ {
+ /* @@@ This is a kludge. We want to ensure that instructions that
+ may trap are not moved into the epilogue by scheduling, because
+ we don't always emit unwind information for the epilogue.
+ However, not all machine descriptions define a blockage insn, so
+ emit an ASM_INPUT to act as one. */
+ if (flag_non_call_exceptions)
+ emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
+ }
+
+ /* If this is an implementation of throw, do what's necessary to
+ communicate between __builtin_eh_return and the epilogue. */
+ expand_eh_return ();
+
+ /* If scalar return value was computed in a pseudo-reg, or was a named
+ return value that got dumped to the stack, copy that to the hard
+ return register. */
+ if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
+ {
+ tree decl_result = DECL_RESULT (current_function_decl);
+ rtx decl_rtl = DECL_RTL (decl_result);
+
+ if (REG_P (decl_rtl)
+ ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
+ : DECL_REGISTER (decl_result))
+ {
+ rtx real_decl_rtl = current_function_return_rtx;
+
+ /* This should be set in assign_parms. */
+ gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
+
+ /* If this is a BLKmode structure being returned in registers,
+ then use the mode computed in expand_return. Note that if
+ decl_rtl is memory, then its mode may have been changed,
+ but that current_function_return_rtx has not. */
+ if (GET_MODE (real_decl_rtl) == BLKmode)
+ PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
+
+ /* If a non-BLKmode return value should be padded at the least
+ significant end of the register, shift it left by the appropriate
+ amount. BLKmode results are handled using the group load/store
+ machinery. */
+ if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
+ && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
+ {
+ emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
+ REGNO (real_decl_rtl)),
+ decl_rtl);
+ shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
+ }
+ /* If a named return value dumped decl_return to memory, then
+ we may need to re-do the PROMOTE_MODE signed/unsigned
+ extension. */
+ else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
+ {
+ int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
+
+ if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
+ promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
+ &unsignedp, 1);
+
+ convert_move (real_decl_rtl, decl_rtl, unsignedp);
+ }
+ else if (GET_CODE (real_decl_rtl) == PARALLEL)
+ {
+ /* If expand_function_start has created a PARALLEL for decl_rtl,
+ move the result to the real return registers. Otherwise, do
+ a group load from decl_rtl for a named return. */
+ if (GET_CODE (decl_rtl) == PARALLEL)
+ emit_group_move (real_decl_rtl, decl_rtl);
+ else
+ emit_group_load (real_decl_rtl, decl_rtl,
+ TREE_TYPE (decl_result),
+ int_size_in_bytes (TREE_TYPE (decl_result)));
+ }
+ /* In the case of complex integer modes smaller than a word, we'll
+ need to generate some non-trivial bitfield insertions. Do that
+ on a pseudo and not the hard register. */
+ else if (GET_CODE (decl_rtl) == CONCAT
+ && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
+ && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
+ {
+ int old_generating_concat_p;
+ rtx tmp;
+
+ old_generating_concat_p = generating_concat_p;
+ generating_concat_p = 0;
+ tmp = gen_reg_rtx (GET_MODE (decl_rtl));
+ generating_concat_p = old_generating_concat_p;
+
+ emit_move_insn (tmp, decl_rtl);
+ emit_move_insn (real_decl_rtl, tmp);
+ }
+ else
+ emit_move_insn (real_decl_rtl, decl_rtl);
+ }
+ }
+
+ /* If returning a structure, arrange to return the address of the value
+ in a place where debuggers expect to find it.
+
+ If returning a structure PCC style,
+ the caller also depends on this value.
+ And current_function_returns_pcc_struct is not necessarily set. */
+ if (current_function_returns_struct
+ || current_function_returns_pcc_struct)
+ {
+ rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
+ tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
+ rtx outgoing;
+
+ if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
+ type = TREE_TYPE (type);
+ else
+ value_address = XEXP (value_address, 0);
+
+ outgoing = targetm.calls.function_value (build_pointer_type (type),
+ current_function_decl, true);
+
+ /* Mark this as a function return value so integrate will delete the
+ assignment and USE below when inlining this function. */
+ REG_FUNCTION_VALUE_P (outgoing) = 1;
+
+ /* The address may be ptr_mode and OUTGOING may be Pmode. */
+ value_address = convert_memory_address (GET_MODE (outgoing),
+ value_address);
+
+ emit_move_insn (outgoing, value_address);
+
+ /* Show return register used to hold result (in this case the address
+ of the result. */
+ current_function_return_rtx = outgoing;
+ }
+
+ /* Emit the actual code to clobber return register. */
+ {
+ rtx seq;
+
+ start_sequence ();
+ clobber_return_register ();
+ expand_naked_return ();
+ seq = get_insns ();
+ end_sequence ();
+
+ emit_insn_after (seq, clobber_after);
+ }
+
+ /* Output the label for the naked return from the function. */
+ emit_label (naked_return_label);
+
+ /* If stack protection is enabled for this function, check the guard. */
+ if (cfun->stack_protect_guard)
+ stack_protect_epilogue ();
+
+ /* If we had calls to alloca, and this machine needs
+ an accurate stack pointer to exit the function,
+ insert some code to save and restore the stack pointer. */
+ if (! EXIT_IGNORE_STACK
+ && current_function_calls_alloca)
+ {
+ rtx tem = 0;
+
+ emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
+ emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
+ }
+
+ /* ??? This should no longer be necessary since stupid is no longer with
+ us, but there are some parts of the compiler (eg reload_combine, and
+ sh mach_dep_reorg) that still try and compute their own lifetime info
+ instead of using the general framework. */
+ use_return_register ();
+}
+
+rtx
+get_arg_pointer_save_area (struct function *f)
+{
+ rtx ret = f->x_arg_pointer_save_area;
+
+ if (! ret)
+ {
+ ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
+ f->x_arg_pointer_save_area = ret;
+ }
+
+ if (f == cfun && ! f->arg_pointer_save_area_init)
+ {
+ rtx seq;
+
+ /* Save the arg pointer at the beginning of the function. The
+ generated stack slot may not be a valid memory address, so we
+ have to check it and fix it if necessary. */
+ start_sequence ();
+ emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
+ seq = get_insns ();
+ end_sequence ();
+
+ push_topmost_sequence ();
+ emit_insn_after (seq, entry_of_function ());
+ pop_topmost_sequence ();
+ }
+
+ return ret;
+}
+
+/* Extend a vector that records the INSN_UIDs of INSNS
+ (a list of one or more insns). */
+
+static void
+record_insns (rtx insns, VEC(int,heap) **vecp)
+{
+ rtx tmp;
+
+ for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
+ VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
+}
+
+/* Set the locator of the insn chain starting at INSN to LOC. */
+static void
+set_insn_locators (rtx insn, int loc)
+{
+ while (insn != NULL_RTX)
+ {
+ if (INSN_P (insn))
+ INSN_LOCATOR (insn) = loc;
+ insn = NEXT_INSN (insn);
+ }
+}
+
+/* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
+ be running after reorg, SEQUENCE rtl is possible. */
+
+static int
+contains (rtx insn, VEC(int,heap) **vec)
+{
+ int i, j;
+
+ if (NONJUMP_INSN_P (insn)
+ && GET_CODE (PATTERN (insn)) == SEQUENCE)
+ {
+ int count = 0;
+ for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+ for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
+ if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
+ == VEC_index (int, *vec, j))
+ count++;
+ return count;
+ }
+ else
+ {
+ for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
+ if (INSN_UID (insn) == VEC_index (int, *vec, j))
+ return 1;
+ }
+ return 0;
+}
+
+int
+prologue_epilogue_contains (rtx insn)
+{
+ if (contains (insn, &prologue))
+ return 1;
+ if (contains (insn, &epilogue))
+ return 1;
+ return 0;
+}
+
+int
+sibcall_epilogue_contains (rtx insn)
+{
+ if (sibcall_epilogue)
+ return contains (insn, &sibcall_epilogue);
+ return 0;
+}
+
+#ifdef HAVE_return
+/* Insert gen_return at the end of block BB. This also means updating
+ block_for_insn appropriately. */
+
+static void
+emit_return_into_block (basic_block bb, rtx line_note)
+{
+ emit_jump_insn_after (gen_return (), BB_END (bb));
+ if (line_note)
+ emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
+}
+#endif /* HAVE_return */
+
+#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
+
+/* These functions convert the epilogue into a variant that does not
+ modify the stack pointer. This is used in cases where a function
+ returns an object whose size is not known until it is computed.
+ The called function leaves the object on the stack, leaves the
+ stack depressed, and returns a pointer to the object.
+
+ What we need to do is track all modifications and references to the
+ stack pointer, deleting the modifications and changing the
+ references to point to the location the stack pointer would have
+ pointed to had the modifications taken place.
+
+ These functions need to be portable so we need to make as few
+ assumptions about the epilogue as we can. However, the epilogue
+ basically contains three things: instructions to reset the stack
+ pointer, instructions to reload registers, possibly including the
+ frame pointer, and an instruction to return to the caller.
+
+ We must be sure of what a relevant epilogue insn is doing. We also
+ make no attempt to validate the insns we make since if they are
+ invalid, we probably can't do anything valid. The intent is that
+ these routines get "smarter" as more and more machines start to use
+ them and they try operating on different epilogues.
+
+ We use the following structure to track what the part of the
+ epilogue that we've already processed has done. We keep two copies
+ of the SP equivalence, one for use during the insn we are
+ processing and one for use in the next insn. The difference is
+ because one part of a PARALLEL may adjust SP and the other may use
+ it. */
+
+struct epi_info
+{
+ rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
+ HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
+ rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
+ HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
+ rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
+ should be set to once we no longer need
+ its value. */
+ rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
+ for registers. */
+};
+
+static void handle_epilogue_set (rtx, struct epi_info *);
+static void update_epilogue_consts (rtx, rtx, void *);
+static void emit_equiv_load (struct epi_info *);
+
+/* Modify INSN, a list of one or more insns that is part of the epilogue, to
+ no modifications to the stack pointer. Return the new list of insns. */
+
+static rtx
+keep_stack_depressed (rtx insns)
+{
+ int j;
+ struct epi_info info;
+ rtx insn, next;
+
+ /* If the epilogue is just a single instruction, it must be OK as is. */
+ if (NEXT_INSN (insns) == NULL_RTX)
+ return insns;
+
+ /* Otherwise, start a sequence, initialize the information we have, and
+ process all the insns we were given. */
+ start_sequence ();
+
+ info.sp_equiv_reg = stack_pointer_rtx;
+ info.sp_offset = 0;
+ info.equiv_reg_src = 0;
+
+ for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
+ info.const_equiv[j] = 0;
+
+ insn = insns;
+ next = NULL_RTX;
+ while (insn != NULL_RTX)
+ {
+ next = NEXT_INSN (insn);
+
+ if (!INSN_P (insn))
+ {
+ add_insn (insn);
+ insn = next;
+ continue;
+ }
+
+ /* If this insn references the register that SP is equivalent to and
+ we have a pending load to that register, we must force out the load
+ first and then indicate we no longer know what SP's equivalent is. */
+ if (info.equiv_reg_src != 0
+ && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
+ {
+ emit_equiv_load (&info);
+ info.sp_equiv_reg = 0;
+ }
+
+ info.new_sp_equiv_reg = info.sp_equiv_reg;
+ info.new_sp_offset = info.sp_offset;
+
+ /* If this is a (RETURN) and the return address is on the stack,
+ update the address and change to an indirect jump. */
+ if (GET_CODE (PATTERN (insn)) == RETURN
+ || (GET_CODE (PATTERN (insn)) == PARALLEL
+ && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
+ {
+ rtx retaddr = INCOMING_RETURN_ADDR_RTX;
+ rtx base = 0;
+ HOST_WIDE_INT offset = 0;
+ rtx jump_insn, jump_set;
+
+ /* If the return address is in a register, we can emit the insn
+ unchanged. Otherwise, it must be a MEM and we see what the
+ base register and offset are. In any case, we have to emit any
+ pending load to the equivalent reg of SP, if any. */
+ if (REG_P (retaddr))
+ {
+ emit_equiv_load (&info);
+ add_insn (insn);
+ insn = next;
+ continue;
+ }
+ else
+ {
+ rtx ret_ptr;
+ gcc_assert (MEM_P (retaddr));
+
+ ret_ptr = XEXP (retaddr, 0);
+
+ if (REG_P (ret_ptr))
+ {
+ base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
+ offset = 0;
+ }
+ else
+ {
+ gcc_assert (GET_CODE (ret_ptr) == PLUS
+ && REG_P (XEXP (ret_ptr, 0))
+ && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
+ base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
+ offset = INTVAL (XEXP (ret_ptr, 1));
+ }
+ }
+
+ /* If the base of the location containing the return pointer
+ is SP, we must update it with the replacement address. Otherwise,
+ just build the necessary MEM. */
+ retaddr = plus_constant (base, offset);
+ if (base == stack_pointer_rtx)
+ retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
+ plus_constant (info.sp_equiv_reg,
+ info.sp_offset));
+
+ retaddr = gen_rtx_MEM (Pmode, retaddr);
+ MEM_NOTRAP_P (retaddr) = 1;
+
+ /* If there is a pending load to the equivalent register for SP
+ and we reference that register, we must load our address into
+ a scratch register and then do that load. */
+ if (info.equiv_reg_src
+ && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
+ {
+ unsigned int regno;
+ rtx reg;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (HARD_REGNO_MODE_OK (regno, Pmode)
+ && !fixed_regs[regno]
+ && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
+ && !REGNO_REG_SET_P
+ (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
+ && !refers_to_regno_p (regno,
+ regno + hard_regno_nregs[regno]
+ [Pmode],
+ info.equiv_reg_src, NULL)
+ && info.const_equiv[regno] == 0)
+ break;
+
+ gcc_assert (regno < FIRST_PSEUDO_REGISTER);
+
+ reg = gen_rtx_REG (Pmode, regno);
+ emit_move_insn (reg, retaddr);
+ retaddr = reg;
+ }
+
+ emit_equiv_load (&info);
+ jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
+
+ /* Show the SET in the above insn is a RETURN. */
+ jump_set = single_set (jump_insn);
+ gcc_assert (jump_set);
+ SET_IS_RETURN_P (jump_set) = 1;
+ }
+
+ /* If SP is not mentioned in the pattern and its equivalent register, if
+ any, is not modified, just emit it. Otherwise, if neither is set,
+ replace the reference to SP and emit the insn. If none of those are
+ true, handle each SET individually. */
+ else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
+ && (info.sp_equiv_reg == stack_pointer_rtx
+ || !reg_set_p (info.sp_equiv_reg, insn)))
+ add_insn (insn);
+ else if (! reg_set_p (stack_pointer_rtx, insn)
+ && (info.sp_equiv_reg == stack_pointer_rtx
+ || !reg_set_p (info.sp_equiv_reg, insn)))
+ {
+ int changed;
+
+ changed = validate_replace_rtx (stack_pointer_rtx,
+ plus_constant (info.sp_equiv_reg,
+ info.sp_offset),
+ insn);
+ gcc_assert (changed);
+
+ add_insn (insn);
+ }
+ else if (GET_CODE (PATTERN (insn)) == SET)
+ handle_epilogue_set (PATTERN (insn), &info);
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL)
+ {
+ for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
+ if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
+ handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
+ }
+ else
+ add_insn (insn);
+
+ info.sp_equiv_reg = info.new_sp_equiv_reg;
+ info.sp_offset = info.new_sp_offset;
+
+ /* Now update any constants this insn sets. */
+ note_stores (PATTERN (insn), update_epilogue_consts, &info);
+ insn = next;
+ }
+
+ insns = get_insns ();
+ end_sequence ();
+ return insns;
+}
+
+/* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
+ structure that contains information about what we've seen so far. We
+ process this SET by either updating that data or by emitting one or
+ more insns. */
+
+static void
+handle_epilogue_set (rtx set, struct epi_info *p)
+{
+ /* First handle the case where we are setting SP. Record what it is being
+ set from, which we must be able to determine */
+ if (reg_set_p (stack_pointer_rtx, set))
+ {
+ gcc_assert (SET_DEST (set) == stack_pointer_rtx);
+
+ if (GET_CODE (SET_SRC (set)) == PLUS)
+ {
+ p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
+ if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
+ p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
+ else
+ {
+ gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
+ && (REGNO (XEXP (SET_SRC (set), 1))
+ < FIRST_PSEUDO_REGISTER)
+ && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
+ p->new_sp_offset
+ = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
+ }
+ }
+ else
+ p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
+
+ /* If we are adjusting SP, we adjust from the old data. */
+ if (p->new_sp_equiv_reg == stack_pointer_rtx)
+ {
+ p->new_sp_equiv_reg = p->sp_equiv_reg;
+ p->new_sp_offset += p->sp_offset;
+ }
+
+ gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
+
+ return;
+ }
+
+ /* Next handle the case where we are setting SP's equivalent
+ register. We must not already have a value to set it to. We
+ could update, but there seems little point in handling that case.
+ Note that we have to allow for the case where we are setting the
+ register set in the previous part of a PARALLEL inside a single
+ insn. But use the old offset for any updates within this insn.
+ We must allow for the case where the register is being set in a
+ different (usually wider) mode than Pmode). */
+ else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
+ {
+ gcc_assert (!p->equiv_reg_src
+ && REG_P (p->new_sp_equiv_reg)
+ && REG_P (SET_DEST (set))
+ && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
+ <= BITS_PER_WORD)
+ && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
+ p->equiv_reg_src
+ = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
+ plus_constant (p->sp_equiv_reg,
+ p->sp_offset));
+ }
+
+ /* Otherwise, replace any references to SP in the insn to its new value
+ and emit the insn. */
+ else
+ {
+ SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
+ plus_constant (p->sp_equiv_reg,
+ p->sp_offset));
+ SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
+ plus_constant (p->sp_equiv_reg,
+ p->sp_offset));
+ emit_insn (set);
+ }
+}
+
+/* Update the tracking information for registers set to constants. */
+
+static void
+update_epilogue_consts (rtx dest, rtx x, void *data)
+{
+ struct epi_info *p = (struct epi_info *) data;
+ rtx new;
+
+ if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
+ return;
+
+ /* If we are either clobbering a register or doing a partial set,
+ show we don't know the value. */
+ else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
+ p->const_equiv[REGNO (dest)] = 0;
+
+ /* If we are setting it to a constant, record that constant. */
+ else if (GET_CODE (SET_SRC (x)) == CONST_INT)
+ p->const_equiv[REGNO (dest)] = SET_SRC (x);
+
+ /* If this is a binary operation between a register we have been tracking
+ and a constant, see if we can compute a new constant value. */
+ else if (ARITHMETIC_P (SET_SRC (x))
+ && REG_P (XEXP (SET_SRC (x), 0))
+ && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
+ && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
+ && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
+ && 0 != (new = simplify_binary_operation
+ (GET_CODE (SET_SRC (x)), GET_MODE (dest),
+ p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
+ XEXP (SET_SRC (x), 1)))
+ && GET_CODE (new) == CONST_INT)
+ p->const_equiv[REGNO (dest)] = new;
+
+ /* Otherwise, we can't do anything with this value. */
+ else
+ p->const_equiv[REGNO (dest)] = 0;
+}
+
+/* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
+
+static void
+emit_equiv_load (struct epi_info *p)
+{
+ if (p->equiv_reg_src != 0)
+ {
+ rtx dest = p->sp_equiv_reg;
+
+ if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
+ dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
+ REGNO (p->sp_equiv_reg));
+
+ emit_move_insn (dest, p->equiv_reg_src);
+ p->equiv_reg_src = 0;
+ }
+}
+#endif
+
+/* APPLE LOCAL begin radar 6163705, Blocks prologues */
+
+/* The function should only be called for Blocks functions.
+
+ On being called, the main instruction list for the Blocks function
+ may contain instructions for setting up the ref_decl and byref_decl
+ variables in the Block. Those isns really need to go before the
+ function prologue note rather than after. If such instructions are
+ present, they are identifiable by their source line number, which
+ will be one line preceding the declaration of the function. If
+ they are present, there will also be a source line note instruction
+ for that line.
+
+ This function does a set of things:
+ - It finds the first such prologue insn.
+ - It finds the last such prologue insn.
+ - It changes the insn locator of all such prologue insns to
+ the prologue locator.
+ - It finds the source line note for the bogus location and
+ removes it.
+ - It decides if it is safe to place the prolgoue end note
+ after the last prologue insn it finds, and if so, returns
+ the last prologue insn (otherwise it returns NULL).
+
+ This function makes the following checks to determine if it is
+ safe to move the prologue end note to just below the last
+ prologue insn it finds. If ALL of the checks succeed then it
+ is safe. If any check fails, this function returns NULL. The
+ checks it makes are:
+
+ - There were no INSN_P instructions that occurred before the
+ first prologue insn.
+ - If there are any non-prologue insns between the first & last
+ prologue insn, the non-prologue insns do not outnumber the
+ prologue insns.
+ - The first prologue insn & the last prologue insn are in the
+ same basic block.
+*/
+
+static rtx
+find_block_prologue_insns (void)
+{
+ rtx first_prologue_insn = NULL;
+ rtx last_prologue_insn = NULL;
+ rtx line_number_note = NULL;
+ rtx tmp_insn;
+ int num_prologue_insns = 0;
+ int total_insns = 0;
+ int prologue_line = DECL_SOURCE_LINE (cfun->decl) - 1;
+ bool other_insns_before_prologue = false;
+ bool start_of_fnbody_found = false;
+
+ /* Go through all the insns and find the first prologue insn, the
+ last prologue insn, the source line location note, and whether or
+ not there are any "real" insns that occur before the first
+ prologue insn. Re-set the insn locator for prologue insns to the
+ prologue locator. */
+
+ for (tmp_insn = get_insns(); tmp_insn; tmp_insn = NEXT_INSN (tmp_insn))
+ {
+ if (INSN_P (tmp_insn))
+ {
+ if (insn_line (tmp_insn) == prologue_line)
+ {
+ if (!first_prologue_insn)
+ first_prologue_insn = tmp_insn;
+ num_prologue_insns++;
+ last_prologue_insn = tmp_insn;
+ INSN_LOCATOR (tmp_insn) = prologue_locator;
+ }
+ else if (!first_prologue_insn
+ && start_of_fnbody_found)
+ other_insns_before_prologue = true;
+ }
+ else if (NOTE_P (tmp_insn)
+ && NOTE_LINE_NUMBER (tmp_insn) == NOTE_INSN_FUNCTION_BEG)
+ start_of_fnbody_found = true;
+ else if (NOTE_P (tmp_insn)
+ && (XINT (tmp_insn, 5) == prologue_line))
+ line_number_note = tmp_insn;
+ }
+
+ /* If there were no prologue insns, return now. */
+
+ if (!first_prologue_insn)
+ return NULL;
+
+ /* If the source location note for the line before the beginning of the
+ function was found, remove it. */
+
+ if (line_number_note)
+ remove_insn (line_number_note);
+
+ /* If other real insns got moved above the prologue insns, we can't
+ pull out the prologue insns, so return now. */
+
+ if (other_insns_before_prologue && (optimize > 0))
+ return NULL;
+
+ /* Count the number of insns between the first prologue insn and the
+ last prologue insn; also count the number of non-prologue insns
+ between the first prologue insn and the last prologue insn. */
+
+ tmp_insn = first_prologue_insn;
+ while (tmp_insn != last_prologue_insn)
+ {
+ total_insns++;
+ tmp_insn = NEXT_INSN (tmp_insn);
+ }
+ total_insns++;
+
+ /* If more than half of the insns between the first & last prologue
+ insns are not prologue insns, then there is too much code that
+ got moved in between prologue insns (by optimizations), so we
+ will not try to pull it out. */
+
+ if ((num_prologue_insns * 2) <= total_insns)
+ return NULL;
+
+ /* Make sure all the prologue insns are within one basic block.
+ If the insns cross a basic block boundary, then there is a chance
+ that moving them will cause incorrect code, so don't do it. */
+
+ gcc_assert (first_prologue_insn != NULL);
+ gcc_assert (last_prologue_insn != NULL);
+
+ if (BLOCK_FOR_INSN (first_prologue_insn) !=
+ BLOCK_FOR_INSN (last_prologue_insn))
+ return NULL;
+
+ return last_prologue_insn;
+}
+/* APPLE LOCAL end radar 6163705, Blocks prologues */
+
+/* Generate the prologue and epilogue RTL if the machine supports it. Thread
+ this into place with notes indicating where the prologue ends and where
+ the epilogue begins. Update the basic block information when possible. */
+
+void
+thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
+{
+ int inserted = 0;
+ edge e;
+#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
+ rtx seq;
+#endif
+#ifdef HAVE_prologue
+ rtx prologue_end = NULL_RTX;
+#endif
+#if defined (HAVE_epilogue) || defined(HAVE_return)
+ rtx epilogue_end = NULL_RTX;
+#endif
+ edge_iterator ei;
+
+#ifdef HAVE_prologue
+ if (HAVE_prologue)
+ {
+ /* APPLE LOCAL begin radar 6163705, Blocks prologues */
+ rtx last_prologue_insn = NULL;
+
+ if (BLOCK_SYNTHESIZED_FUNC (cfun->decl))
+ last_prologue_insn = find_block_prologue_insns();
+ /* APPLE LOCAL end radar 6163705, Blocks prologues */
+
+ start_sequence ();
+ seq = gen_prologue ();
+ emit_insn (seq);
+
+ /* Retain a map of the prologue insns. */
+ record_insns (seq, &prologue);
+
+ /* APPLE LOCAL begin radar 6163705, Blocks prologues */
+ if (!last_prologue_insn)
+ prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
+ /* APPLE LOCAL end radar 6163705, Blocks prologues */
+
+#ifndef PROFILE_BEFORE_PROLOGUE
+ /* Ensure that instructions are not moved into the prologue when
+ profiling is on. The call to the profiling routine can be
+ emitted within the live range of a call-clobbered register. */
+ if (current_function_profile)
+ emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
+#endif
+
+ seq = get_insns ();
+ end_sequence ();
+ set_insn_locators (seq, prologue_locator);
+
+ /* Can't deal with multiple successors of the entry block
+ at the moment. Function should always have at least one
+ entry point. */
+ gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
+
+ insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
+ inserted = 1;
+
+ /* APPLE LOCAL begin radar 6163705, Blocks prologues */
+ if (last_prologue_insn)
+ emit_note_after (NOTE_INSN_PROLOGUE_END, last_prologue_insn);
+ /* APPLE LOCAL end radar 6163705, Blocks prologues */ }
+#endif
+
+ /* If the exit block has no non-fake predecessors, we don't need
+ an epilogue. */
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+ if ((e->flags & EDGE_FAKE) == 0)
+ break;
+ if (e == NULL)
+ goto epilogue_done;
+
+#ifdef HAVE_return
+ if (optimize && HAVE_return)
+ {
+ /* If we're allowed to generate a simple return instruction,
+ then by definition we don't need a full epilogue. Examine
+ the block that falls through to EXIT. If it does not
+ contain any code, examine its predecessors and try to
+ emit (conditional) return instructions. */
+
+ basic_block last;
+ rtx label;
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+ if (e->flags & EDGE_FALLTHRU)
+ break;
+ if (e == NULL)
+ goto epilogue_done;
+ last = e->src;
+
+ /* Verify that there are no active instructions in the last block. */
+ label = BB_END (last);
+ while (label && !LABEL_P (label))
+ {
+ if (active_insn_p (label))
+ break;
+ label = PREV_INSN (label);
+ }
+
+ if (BB_HEAD (last) == label && LABEL_P (label))
+ {
+ edge_iterator ei2;
+ rtx epilogue_line_note = NULL_RTX;
+
+ /* Locate the line number associated with the closing brace,
+ if we can find one. */
+ for (seq = get_last_insn ();
+ seq && ! active_insn_p (seq);
+ seq = PREV_INSN (seq))
+ if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
+ {
+ epilogue_line_note = seq;
+ break;
+ }
+
+ for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
+ {
+ basic_block bb = e->src;
+ rtx jump;
+
+ if (bb == ENTRY_BLOCK_PTR)
+ {
+ ei_next (&ei2);
+ continue;
+ }
+
+ jump = BB_END (bb);
+ if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
+ {
+ ei_next (&ei2);
+ continue;
+ }
+
+ /* If we have an unconditional jump, we can replace that
+ with a simple return instruction. */
+ if (simplejump_p (jump))
+ {
+ emit_return_into_block (bb, epilogue_line_note);
+ delete_insn (jump);
+ }
+
+ /* If we have a conditional jump, we can try to replace
+ that with a conditional return instruction. */
+ else if (condjump_p (jump))
+ {
+ if (! redirect_jump (jump, 0, 0))
+ {
+ ei_next (&ei2);
+ continue;
+ }
+
+ /* If this block has only one successor, it both jumps
+ and falls through to the fallthru block, so we can't
+ delete the edge. */
+ if (single_succ_p (bb))
+ {
+ ei_next (&ei2);
+ continue;
+ }
+ }
+ else
+ {
+ ei_next (&ei2);
+ continue;
+ }
+
+ /* Fix up the CFG for the successful change we just made. */
+ redirect_edge_succ (e, EXIT_BLOCK_PTR);
+ }
+
+ /* Emit a return insn for the exit fallthru block. Whether
+ this is still reachable will be determined later. */
+
+ emit_barrier_after (BB_END (last));
+ emit_return_into_block (last, epilogue_line_note);
+ epilogue_end = BB_END (last);
+ single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
+ goto epilogue_done;
+ }
+ }
+#endif
+ /* Find the edge that falls through to EXIT. Other edges may exist
+ due to RETURN instructions, but those don't need epilogues.
+ There really shouldn't be a mixture -- either all should have
+ been converted or none, however... */
+
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+ if (e->flags & EDGE_FALLTHRU)
+ break;
+ if (e == NULL)
+ goto epilogue_done;
+
+#ifdef HAVE_epilogue
+ if (HAVE_epilogue)
+ {
+ start_sequence ();
+ epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
+
+ seq = gen_epilogue ();
+
+#ifdef INCOMING_RETURN_ADDR_RTX
+ /* If this function returns with the stack depressed and we can support
+ it, massage the epilogue to actually do that. */
+ if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
+ && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
+ seq = keep_stack_depressed (seq);
+#endif
+
+ emit_jump_insn (seq);
+
+ /* Retain a map of the epilogue insns. */
+ record_insns (seq, &epilogue);
+ set_insn_locators (seq, epilogue_locator);
+
+ seq = get_insns ();
+ end_sequence ();
+
+ insert_insn_on_edge (seq, e);
+ inserted = 1;
+ }
+ else
+#endif
+ {
+ basic_block cur_bb;
+
+ if (! next_active_insn (BB_END (e->src)))
+ goto epilogue_done;
+ /* We have a fall-through edge to the exit block, the source is not
+ at the end of the function, and there will be an assembler epilogue
+ at the end of the function.
+ We can't use force_nonfallthru here, because that would try to
+ use return. Inserting a jump 'by hand' is extremely messy, so
+ we take advantage of cfg_layout_finalize using
+ fixup_fallthru_exit_predecessor. */
+ cfg_layout_initialize (0);
+ FOR_EACH_BB (cur_bb)
+ if (cur_bb->index >= NUM_FIXED_BLOCKS
+ && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
+ cur_bb->aux = cur_bb->next_bb;
+ cfg_layout_finalize ();
+ }
+epilogue_done:
+
+ if (inserted)
+ commit_edge_insertions ();
+
+#ifdef HAVE_sibcall_epilogue
+ /* Emit sibling epilogues before any sibling call sites. */
+ for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
+ {
+ basic_block bb = e->src;
+ rtx insn = BB_END (bb);
+
+ if (!CALL_P (insn)
+ || ! SIBLING_CALL_P (insn))
+ {
+ ei_next (&ei);
+ continue;
+ }
+
+ start_sequence ();
+ emit_insn (gen_sibcall_epilogue ());
+ seq = get_insns ();
+ end_sequence ();
+
+ /* Retain a map of the epilogue insns. Used in life analysis to
+ avoid getting rid of sibcall epilogue insns. Do this before we
+ actually emit the sequence. */
+ record_insns (seq, &sibcall_epilogue);
+ set_insn_locators (seq, epilogue_locator);
+
+ emit_insn_before (seq, insn);
+ ei_next (&ei);
+ }
+#endif
+
+#ifdef HAVE_prologue
+ /* This is probably all useless now that we use locators. */
+ if (prologue_end)
+ {
+ rtx insn, prev;
+
+ /* GDB handles `break f' by setting a breakpoint on the first
+ line note after the prologue. Which means (1) that if
+ there are line number notes before where we inserted the
+ prologue we should move them, and (2) we should generate a
+ note before the end of the first basic block, if there isn't
+ one already there.
+
+ ??? This behavior is completely broken when dealing with
+ multiple entry functions. We simply place the note always
+ into first basic block and let alternate entry points
+ to be missed.
+ */
+
+ for (insn = prologue_end; insn; insn = prev)
+ {
+ prev = PREV_INSN (insn);
+ if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
+ {
+ /* Note that we cannot reorder the first insn in the
+ chain, since rest_of_compilation relies on that
+ remaining constant. */
+ if (prev == NULL)
+ break;
+ reorder_insns (insn, insn, prologue_end);
+ }
+ }
+
+ /* Find the last line number note in the first block. */
+ for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
+ insn != prologue_end && insn;
+ insn = PREV_INSN (insn))
+ if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
+ break;
+
+ /* If we didn't find one, make a copy of the first line number
+ we run across. */
+ if (! insn)
+ {
+ for (insn = next_active_insn (prologue_end);
+ insn;
+ insn = PREV_INSN (insn))
+ if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
+ {
+ emit_note_copy_after (insn, prologue_end);
+ break;
+ }
+ }
+ }
+#endif
+#ifdef HAVE_epilogue
+ if (epilogue_end)
+ {
+ rtx insn, next;
+
+ /* Similarly, move any line notes that appear after the epilogue.
+ There is no need, however, to be quite so anal about the existence
+ of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
+ NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
+ info generation. */
+ for (insn = epilogue_end; insn; insn = next)
+ {
+ next = NEXT_INSN (insn);
+ if (NOTE_P (insn)
+ && (NOTE_LINE_NUMBER (insn) > 0
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
+ reorder_insns (insn, insn, PREV_INSN (epilogue_end));
+ }
+ }
+#endif
+}
+
+/* Reposition the prologue-end and epilogue-begin notes after instruction
+ scheduling and delayed branch scheduling. */
+
+void
+reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
+{
+#if defined (HAVE_prologue) || defined (HAVE_epilogue)
+ rtx insn, last, note;
+ int len;
+
+ if ((len = VEC_length (int, prologue)) > 0)
+ {
+ last = 0, note = 0;
+
+ /* Scan from the beginning until we reach the last prologue insn.
+ We apparently can't depend on basic_block_{head,end} after
+ reorg has run. */
+ for (insn = f; insn; insn = NEXT_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
+ note = insn;
+ }
+ else if (contains (insn, &prologue))
+ {
+ last = insn;
+ if (--len == 0)
+ break;
+ }
+ }
+
+ if (last)
+ {
+ /* Find the prologue-end note if we haven't already, and
+ move it to just after the last prologue insn. */
+ if (note == 0)
+ {
+ for (note = last; (note = NEXT_INSN (note));)
+ if (NOTE_P (note)
+ && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
+ break;
+ }
+
+ /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
+ if (LABEL_P (last))
+ last = NEXT_INSN (last);
+ reorder_insns (note, note, last);
+ }
+ }
+
+ if ((len = VEC_length (int, epilogue)) > 0)
+ {
+ last = 0, note = 0;
+
+ /* Scan from the end until we reach the first epilogue insn.
+ We apparently can't depend on basic_block_{head,end} after
+ reorg has run. */
+ for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
+ {
+ if (NOTE_P (insn))
+ {
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
+ note = insn;
+ }
+ else if (contains (insn, &epilogue))
+ {
+ last = insn;
+ if (--len == 0)
+ break;
+ }
+ }
+
+ if (last)
+ {
+ /* Find the epilogue-begin note if we haven't already, and
+ move it to just before the first epilogue insn. */
+ if (note == 0)
+ {
+ for (note = insn; (note = PREV_INSN (note));)
+ if (NOTE_P (note)
+ && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
+ break;
+ }
+
+ if (PREV_INSN (last) != note)
+ reorder_insns (note, note, PREV_INSN (last));
+ }
+ }
+#endif /* HAVE_prologue or HAVE_epilogue */
+}
+
+/* Resets insn_block_boundaries array. */
+
+void
+reset_block_changes (void)
+{
+ cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
+ VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
+}
+
+/* Record the boundary for BLOCK. */
+void
+record_block_change (tree block)
+{
+ int i, n;
+ tree last_block;
+
+ if (!block)
+ return;
+
+ if(!cfun->ib_boundaries_block)
+ return;
+
+ last_block = VEC_pop (tree, cfun->ib_boundaries_block);
+ n = get_max_uid ();
+ for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
+ VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
+
+ VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
+}
+
+/* Finishes record of boundaries. */
+void
+finalize_block_changes (void)
+{
+ record_block_change (DECL_INITIAL (current_function_decl));
+}
+
+/* For INSN return the BLOCK it belongs to. */
+void
+check_block_change (rtx insn, tree *block)
+{
+ unsigned uid = INSN_UID (insn);
+
+ if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
+ return;
+
+ *block = VEC_index (tree, cfun->ib_boundaries_block, uid);
+}
+
+/* Releases the ib_boundaries_block records. */
+void
+free_block_changes (void)
+{
+ VEC_free (tree, gc, cfun->ib_boundaries_block);
+}
+
+/* Returns the name of the current function. */
+const char *
+current_function_name (void)
+{
+ return lang_hooks.decl_printable_name (cfun->decl, 2);
+}
+
+
+static unsigned int
+rest_of_handle_check_leaf_regs (void)
+{
+#ifdef LEAF_REGISTERS
+ current_function_uses_only_leaf_regs
+ = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
+#endif
+ return 0;
+}
+
+/* Insert a TYPE into the used types hash table of CFUN. */
+static void
+used_types_insert_helper (tree type, struct function *func)
+{
+ if (type != NULL && func != NULL)
+ {
+ void **slot;
+
+ if (func->used_types_hash == NULL)
+ func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
+ htab_eq_pointer, NULL);
+ slot = htab_find_slot (func->used_types_hash, type, INSERT);
+ if (*slot == NULL)
+ *slot = type;
+ }
+}
+
+/* Given a type, insert it into the used hash table in cfun. */
+void
+used_types_insert (tree t)
+{
+ while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
+ t = TREE_TYPE (t);
+ t = TYPE_MAIN_VARIANT (t);
+ if (debug_info_level > DINFO_LEVEL_NONE)
+ used_types_insert_helper (t, cfun);
+}
+
+struct tree_opt_pass pass_leaf_regs =
+{
+ NULL, /* name */
+ NULL, /* gate */
+ rest_of_handle_check_leaf_regs, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+ 0 /* letter */
+};
+
+
+#include "gt-function.h"