aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-vect-data-refs.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-vect-data-refs.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-vect-data-refs.c')
-rw-r--r--gcc-4.9/gcc/tree-vect-data-refs.c5270
1 files changed, 5270 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-vect-data-refs.c b/gcc-4.9/gcc/tree-vect-data-refs.c
new file mode 100644
index 000000000..fbc35a3fe
--- /dev/null
+++ b/gcc-4.9/gcc/tree-vect-data-refs.c
@@ -0,0 +1,5270 @@
+/* Data References Analysis and Manipulation Utilities for Vectorization.
+ Copyright (C) 2003-2014 Free Software Foundation, Inc.
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
+ and Ira Rosen <irar@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "dumpfile.h"
+#include "tm.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "tm_p.h"
+#include "target.h"
+#include "basic-block.h"
+#include "gimple-pretty-print.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "gimple-ssa.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-ivopts.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop.h"
+#include "dumpfile.h"
+#include "cfgloop.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "tree-vectorizer.h"
+#include "diagnostic-core.h"
+#include "cgraph.h"
+/* Need to include rtl.h, expr.h, etc. for optabs. */
+#include "expr.h"
+#include "optabs.h"
+
+/* Return true if load- or store-lanes optab OPTAB is implemented for
+ COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
+
+static bool
+vect_lanes_optab_supported_p (const char *name, convert_optab optab,
+ tree vectype, unsigned HOST_WIDE_INT count)
+{
+ enum machine_mode mode, array_mode;
+ bool limit_p;
+
+ mode = TYPE_MODE (vectype);
+ limit_p = !targetm.array_mode_supported_p (mode, count);
+ array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
+ MODE_INT, limit_p);
+
+ if (array_mode == BLKmode)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
+ GET_MODE_NAME (mode), count);
+ return false;
+ }
+
+ if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "cannot use %s<%s><%s>\n", name,
+ GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
+ return false;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
+ GET_MODE_NAME (mode));
+
+ return true;
+}
+
+
+/* Return the smallest scalar part of STMT.
+ This is used to determine the vectype of the stmt. We generally set the
+ vectype according to the type of the result (lhs). For stmts whose
+ result-type is different than the type of the arguments (e.g., demotion,
+ promotion), vectype will be reset appropriately (later). Note that we have
+ to visit the smallest datatype in this function, because that determines the
+ VF. If the smallest datatype in the loop is present only as the rhs of a
+ promotion operation - we'd miss it.
+ Such a case, where a variable of this datatype does not appear in the lhs
+ anywhere in the loop, can only occur if it's an invariant: e.g.:
+ 'int_x = (int) short_inv', which we'd expect to have been optimized away by
+ invariant motion. However, we cannot rely on invariant motion to always
+ take invariants out of the loop, and so in the case of promotion we also
+ have to check the rhs.
+ LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
+ types. */
+
+tree
+vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
+ HOST_WIDE_INT *rhs_size_unit)
+{
+ tree scalar_type = gimple_expr_type (stmt);
+ HOST_WIDE_INT lhs, rhs;
+
+ lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+
+ if (is_gimple_assign (stmt)
+ && (gimple_assign_cast_p (stmt)
+ || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
+ || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
+ || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
+ {
+ tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
+
+ rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
+ if (rhs < lhs)
+ scalar_type = rhs_type;
+ }
+
+ *lhs_size_unit = lhs;
+ *rhs_size_unit = rhs;
+ return scalar_type;
+}
+
+
+/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
+ tested at run-time. Return TRUE if DDR was successfully inserted.
+ Return false if versioning is not supported. */
+
+static bool
+vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
+{
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
+ return false;
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "mark for run-time aliasing test between ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (optimize_loop_nest_for_size_p (loop))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning not supported when optimizing"
+ " for size.\n");
+ return false;
+ }
+
+ /* FORNOW: We don't support versioning with outer-loop vectorization. */
+ if (loop->inner)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning not yet supported for outer-loops.\n");
+ return false;
+ }
+
+ /* FORNOW: We don't support creating runtime alias tests for non-constant
+ step. */
+ if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
+ || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning not yet supported for non-constant "
+ "step\n");
+ return false;
+ }
+
+ LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependence.
+
+ Return TRUE if there (might) exist a dependence between a memory-reference
+ DRA and a memory-reference DRB. When versioning for alias may check a
+ dependence at run-time, return FALSE. Adjust *MAX_VF according to
+ the data dependence. */
+
+static bool
+vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
+ loop_vec_info loop_vinfo, int *max_vf)
+{
+ unsigned int i;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+ stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+ stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+ lambda_vector dist_v;
+ unsigned int loop_depth;
+
+ /* In loop analysis all data references should be vectorizable. */
+ if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
+ || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
+ gcc_unreachable ();
+
+ /* Independent data accesses. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return false;
+
+ if (dra == drb
+ || (DR_IS_READ (dra) && DR_IS_READ (drb)))
+ return false;
+
+ /* Even if we have an anti-dependence then, as the vectorized loop covers at
+ least two scalar iterations, there is always also a true dependence.
+ As the vectorizer does not re-order loads and stores we can ignore
+ the anti-dependence if TBAA can disambiguate both DRs similar to the
+ case with known negative distance anti-dependences (positive
+ distance anti-dependences would violate TBAA constraints). */
+ if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
+ || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
+ && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
+ get_alias_set (DR_REF (drb))))
+ return false;
+
+ /* Unknown data dependence. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ /* If user asserted safelen consecutive iterations can be
+ executed concurrently, assume independence. */
+ if (loop->safelen >= 2)
+ {
+ if (loop->safelen < *max_vf)
+ *max_vf = loop->safelen;
+ LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
+ return false;
+ }
+
+ if (STMT_VINFO_GATHER_P (stmtinfo_a)
+ || STMT_VINFO_GATHER_P (stmtinfo_b))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning for alias not supported for: "
+ "can't determine dependence between ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (dra));
+ dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (drb));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return true;
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning for alias required: "
+ "can't determine dependence between ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (dra));
+ dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (drb));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ /* Add to list of ddrs that need to be tested at run-time. */
+ return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+ }
+
+ /* Known data dependence. */
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ {
+ /* If user asserted safelen consecutive iterations can be
+ executed concurrently, assume independence. */
+ if (loop->safelen >= 2)
+ {
+ if (loop->safelen < *max_vf)
+ *max_vf = loop->safelen;
+ LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
+ return false;
+ }
+
+ if (STMT_VINFO_GATHER_P (stmtinfo_a)
+ || STMT_VINFO_GATHER_P (stmtinfo_b))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning for alias not supported for: "
+ "bad dist vector for ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (dra));
+ dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (drb));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return true;
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "versioning for alias required: "
+ "bad dist vector for ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ /* Add to list of ddrs that need to be tested at run-time. */
+ return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+ }
+
+ loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ int dist = dist_v[loop_depth];
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance = %d.\n", dist);
+
+ if (dist == 0)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance == 0 between ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ /* When we perform grouped accesses and perform implicit CSE
+ by detecting equal accesses and doing disambiguation with
+ runtime alias tests like for
+ .. = a[i];
+ .. = a[i+1];
+ a[i] = ..;
+ a[i+1] = ..;
+ *p = ..;
+ .. = a[i];
+ .. = a[i+1];
+ where we will end up loading { a[i], a[i+1] } once, make
+ sure that inserting group loads before the first load and
+ stores after the last store will do the right thing. */
+ if ((STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
+ && GROUP_SAME_DR_STMT (stmtinfo_a))
+ || (STMT_VINFO_GROUPED_ACCESS (stmtinfo_b)
+ && GROUP_SAME_DR_STMT (stmtinfo_b)))
+ {
+ gimple earlier_stmt;
+ earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
+ if (DR_IS_WRITE
+ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "READ_WRITE dependence in interleaving."
+ "\n");
+ return true;
+ }
+ }
+
+ continue;
+ }
+
+ if (dist > 0 && DDR_REVERSED_P (ddr))
+ {
+ /* If DDR_REVERSED_P the order of the data-refs in DDR was
+ reversed (to make distance vector positive), and the actual
+ distance is negative. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "dependence distance negative.\n");
+ /* Record a negative dependence distance to later limit the
+ amount of stmt copying / unrolling we can perform.
+ Only need to handle read-after-write dependence. */
+ if (DR_IS_READ (drb)
+ && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
+ || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
+ STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
+ continue;
+ }
+
+ if (abs (dist) >= 2
+ && abs (dist) < *max_vf)
+ {
+ /* The dependence distance requires reduction of the maximal
+ vectorization factor. */
+ *max_vf = abs (dist);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "adjusting maximal vectorization factor to %i\n",
+ *max_vf);
+ }
+
+ if (abs (dist) >= *max_vf)
+ {
+ /* Dependence distance does not create dependence, as far as
+ vectorization is concerned, in this case. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance >= VF.\n");
+ continue;
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized, possible dependence "
+ "between data-refs ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+/* Function vect_analyze_data_ref_dependences.
+
+ Examine all the data references in the loop, and make sure there do not
+ exist any data dependences between them. Set *MAX_VF according to
+ the maximum vectorization factor the data dependences allow. */
+
+bool
+vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
+{
+ unsigned int i;
+ struct data_dependence_relation *ddr;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_analyze_data_ref_dependences ===\n");
+
+ LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
+ if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
+ &LOOP_VINFO_DDRS (loop_vinfo),
+ LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
+ return false;
+
+ FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
+ if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
+ return false;
+
+ return true;
+}
+
+
+/* Function vect_slp_analyze_data_ref_dependence.
+
+ Return TRUE if there (might) exist a dependence between a memory-reference
+ DRA and a memory-reference DRB. When versioning for alias may check a
+ dependence at run-time, return FALSE. Adjust *MAX_VF according to
+ the data dependence. */
+
+static bool
+vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
+{
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+
+ /* We need to check dependences of statements marked as unvectorizable
+ as well, they still can prohibit vectorization. */
+
+ /* Independent data accesses. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return false;
+
+ if (dra == drb)
+ return false;
+
+ /* Read-read is OK. */
+ if (DR_IS_READ (dra) && DR_IS_READ (drb))
+ return false;
+
+ /* If dra and drb are part of the same interleaving chain consider
+ them independent. */
+ if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
+ && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
+ == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
+ return false;
+
+ /* Unknown data dependence. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "can't determine dependence between ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ }
+ else if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "determined dependence between ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ /* We do not vectorize basic blocks with write-write dependencies. */
+ if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
+ return true;
+
+ /* If we have a read-write dependence check that the load is before the store.
+ When we vectorize basic blocks, vector load can be only before
+ corresponding scalar load, and vector store can be only after its
+ corresponding scalar store. So the order of the acceses is preserved in
+ case the load is before the store. */
+ gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
+ if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
+ {
+ /* That only holds for load-store pairs taking part in vectorization. */
+ if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
+ && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_analyze_data_ref_dependences.
+
+ Examine all the data references in the basic-block, and make sure there
+ do not exist any data dependences between them. Set *MAX_VF according to
+ the maximum vectorization factor the data dependences allow. */
+
+bool
+vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
+{
+ struct data_dependence_relation *ddr;
+ unsigned int i;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_slp_analyze_data_ref_dependences ===\n");
+
+ if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
+ &BB_VINFO_DDRS (bb_vinfo),
+ vNULL, true))
+ return false;
+
+ FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
+ if (vect_slp_analyze_data_ref_dependence (ddr))
+ return false;
+
+ return true;
+}
+
+
+/* Function vect_compute_data_ref_alignment
+
+ Compute the misalignment of the data reference DR.
+
+ Output:
+ 1. If during the misalignment computation it is found that the data reference
+ cannot be vectorized then false is returned.
+ 2. DR_MISALIGNMENT (DR) is defined.
+
+ FOR NOW: No analysis is actually performed. Misalignment is calculated
+ only for trivial cases. TODO. */
+
+static bool
+vect_compute_data_ref_alignment (struct data_reference *dr)
+{
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+ tree ref = DR_REF (dr);
+ tree vectype;
+ tree base, base_addr;
+ bool base_aligned;
+ tree misalign;
+ tree aligned_to, alignment;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_compute_data_ref_alignment:\n");
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* Initialize misalignment to unknown. */
+ SET_DR_MISALIGNMENT (dr, -1);
+
+ /* Strided loads perform only component accesses, misalignment information
+ is irrelevant for them. */
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ return true;
+
+ misalign = DR_INIT (dr);
+ aligned_to = DR_ALIGNED_TO (dr);
+ base_addr = DR_BASE_ADDRESS (dr);
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ /* In case the dataref is in an inner-loop of the loop that is being
+ vectorized (LOOP), we use the base and misalignment information
+ relative to the outer-loop (LOOP). This is ok only if the misalignment
+ stays the same throughout the execution of the inner-loop, which is why
+ we have to check that the stride of the dataref in the inner-loop evenly
+ divides by the vector size. */
+ if (loop && nested_in_vect_loop_p (loop, stmt))
+ {
+ tree step = DR_STEP (dr);
+ HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+
+ if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "inner step divides the vector-size.\n");
+ misalign = STMT_VINFO_DR_INIT (stmt_info);
+ aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
+ base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "inner step doesn't divide the vector-size.\n");
+ misalign = NULL_TREE;
+ }
+ }
+
+ /* Similarly, if we're doing basic-block vectorization, we can only use
+ base and misalignment information relative to an innermost loop if the
+ misalignment stays the same throughout the execution of the loop.
+ As above, this is the case if the stride of the dataref evenly divides
+ by the vector size. */
+ if (!loop)
+ {
+ tree step = DR_STEP (dr);
+ HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+
+ if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "SLP: step doesn't divide the vector-size.\n");
+ misalign = NULL_TREE;
+ }
+ }
+
+ base = build_fold_indirect_ref (base_addr);
+ alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
+
+ if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
+ || !misalign)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Unknown alignment for access: ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return true;
+ }
+
+ if ((DECL_P (base)
+ && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
+ alignment) >= 0)
+ || (TREE_CODE (base_addr) == SSA_NAME
+ && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
+ TREE_TYPE (base_addr)))),
+ alignment) >= 0)
+ || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
+ base_aligned = true;
+ else
+ base_aligned = false;
+
+ if (!base_aligned)
+ {
+ /* Do not change the alignment of global variables here if
+ flag_section_anchors is enabled as we already generated
+ RTL for other functions. Most global variables should
+ have been aligned during the IPA increase_alignment pass. */
+ if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
+ || (TREE_STATIC (base) && flag_section_anchors))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "can't force alignment of ref: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
+ dump_printf (MSG_NOTE, "\n");
+ }
+ return true;
+ }
+
+ /* Force the alignment of the decl.
+ NOTE: This is the only change to the code we make during
+ the analysis phase, before deciding to vectorize the loop. */
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ ((dataref_aux *)dr->aux)->base_decl = base;
+ ((dataref_aux *)dr->aux)->base_misaligned = true;
+ }
+
+ /* If this is a backward running DR then first access in the larger
+ vectype actually is N-1 elements before the address in the DR.
+ Adjust misalign accordingly. */
+ if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
+ {
+ tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
+ /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
+ otherwise we wouldn't be here. */
+ offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
+ /* PLUS because DR_STEP was negative. */
+ misalign = size_binop (PLUS_EXPR, misalign, offset);
+ }
+
+ /* Modulo alignment. */
+ misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
+
+ if (!tree_fits_uhwi_p (misalign))
+ {
+ /* Negative or overflowed misalignment value. */
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "unexpected misalign value\n");
+ return false;
+ }
+
+ SET_DR_MISALIGNMENT (dr, tree_to_uhwi (misalign));
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ return true;
+}
+
+
+/* Function vect_compute_data_refs_alignment
+
+ Compute the misalignment of data references in the loop.
+ Return FALSE if a data reference is found that cannot be vectorized. */
+
+static bool
+vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo)
+{
+ vec<data_reference_p> datarefs;
+ struct data_reference *dr;
+ unsigned int i;
+
+ if (loop_vinfo)
+ datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ else
+ datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
+ && !vect_compute_data_ref_alignment (dr))
+ {
+ if (bb_vinfo)
+ {
+ /* Mark unsupported statement as unvectorizable. */
+ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
+ continue;
+ }
+ else
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Function vect_update_misalignment_for_peel
+
+ DR - the data reference whose misalignment is to be adjusted.
+ DR_PEEL - the data reference whose misalignment is being made
+ zero in the vector loop by the peel.
+ NPEEL - the number of iterations in the peel loop if the misalignment
+ of DR_PEEL is known at compile time. */
+
+static void
+vect_update_misalignment_for_peel (struct data_reference *dr,
+ struct data_reference *dr_peel, int npeel)
+{
+ unsigned int i;
+ vec<dr_p> same_align_drs;
+ struct data_reference *current_dr;
+ int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
+ int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
+ stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
+ stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
+
+ /* For interleaved data accesses the step in the loop must be multiplied by
+ the size of the interleaving group. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
+ if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
+ dr_peel_size *= GROUP_SIZE (peel_stmt_info);
+
+ /* It can be assumed that the data refs with the same alignment as dr_peel
+ are aligned in the vector loop. */
+ same_align_drs
+ = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
+ FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
+ {
+ if (current_dr != dr)
+ continue;
+ gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
+ DR_MISALIGNMENT (dr_peel) / dr_peel_size);
+ SET_DR_MISALIGNMENT (dr, 0);
+ return;
+ }
+
+ if (known_alignment_for_access_p (dr)
+ && known_alignment_for_access_p (dr_peel))
+ {
+ bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
+ int misal = DR_MISALIGNMENT (dr);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ misal += negative ? -npeel * dr_size : npeel * dr_size;
+ misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
+ SET_DR_MISALIGNMENT (dr, misal);
+ return;
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
+ SET_DR_MISALIGNMENT (dr, -1);
+}
+
+
+/* Function vect_verify_datarefs_alignment
+
+ Return TRUE if all data references in the loop can be
+ handled with respect to alignment. */
+
+bool
+vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
+{
+ vec<data_reference_p> datarefs;
+ struct data_reference *dr;
+ enum dr_alignment_support supportable_dr_alignment;
+ unsigned int i;
+
+ if (loop_vinfo)
+ datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ else
+ datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ continue;
+
+ /* For interleaving, only the alignment of the first access matters.
+ Skip statements marked as not vectorizable. */
+ if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
+ || !STMT_VINFO_VECTORIZABLE (stmt_info))
+ continue;
+
+ /* Strided loads perform only component accesses, alignment is
+ irrelevant for them. */
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ continue;
+
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
+ if (!supportable_dr_alignment)
+ {
+ if (dump_enabled_p ())
+ {
+ if (DR_IS_READ (dr))
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: unsupported unaligned load.");
+ else
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: unsupported unaligned "
+ "store.");
+
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (dr));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return false;
+ }
+ if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Vectorizing an unaligned access.\n");
+ }
+ return true;
+}
+
+/* Given an memory reference EXP return whether its alignment is less
+ than its size. */
+
+static bool
+not_size_aligned (tree exp)
+{
+ if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
+ return true;
+
+ return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
+ > get_object_alignment (exp));
+}
+
+/* Function vector_alignment_reachable_p
+
+ Return true if vector alignment for DR is reachable by peeling
+ a few loop iterations. Return false otherwise. */
+
+static bool
+vector_alignment_reachable_p (struct data_reference *dr)
+{
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ {
+ /* For interleaved access we peel only if number of iterations in
+ the prolog loop ({VF - misalignment}), is a multiple of the
+ number of the interleaved accesses. */
+ int elem_size, mis_in_elements;
+ int nelements = TYPE_VECTOR_SUBPARTS (vectype);
+
+ /* FORNOW: handle only known alignment. */
+ if (!known_alignment_for_access_p (dr))
+ return false;
+
+ elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
+ mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
+
+ if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
+ return false;
+ }
+
+ /* If misalignment is known at the compile time then allow peeling
+ only if natural alignment is reachable through peeling. */
+ if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
+ {
+ HOST_WIDE_INT elmsize =
+ int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
+ dump_printf (MSG_NOTE,
+ ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
+ }
+ if (DR_MISALIGNMENT (dr) % elmsize)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "data size does not divide the misalignment.\n");
+ return false;
+ }
+ }
+
+ if (!known_alignment_for_access_p (dr))
+ {
+ tree type = TREE_TYPE (DR_REF (dr));
+ bool is_packed = not_size_aligned (DR_REF (dr));
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Unknown misalignment, is_packed = %d\n",is_packed);
+ if ((TYPE_USER_ALIGN (type) && !is_packed)
+ || targetm.vectorize.vector_alignment_reachable (type, is_packed))
+ return true;
+ else
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Calculate the cost of the memory access represented by DR. */
+
+static void
+vect_get_data_access_cost (struct data_reference *dr,
+ unsigned int *inside_cost,
+ unsigned int *outside_cost,
+ stmt_vector_for_cost *body_cost_vec)
+{
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ int ncopies = vf / nunits;
+
+ if (DR_IS_READ (dr))
+ vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
+ NULL, body_cost_vec, false);
+ else
+ vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "vect_get_data_access_cost: inside_cost = %d, "
+ "outside_cost = %d.\n", *inside_cost, *outside_cost);
+}
+
+
+/* Insert DR into peeling hash table with NPEEL as key. */
+
+static void
+vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
+ int npeel)
+{
+ struct _vect_peel_info elem, *slot;
+ _vect_peel_info **new_slot;
+ bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
+
+ elem.npeel = npeel;
+ slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo).find (&elem);
+ if (slot)
+ slot->count++;
+ else
+ {
+ slot = XNEW (struct _vect_peel_info);
+ slot->npeel = npeel;
+ slot->dr = dr;
+ slot->count = 1;
+ new_slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo).find_slot (slot, INSERT);
+ *new_slot = slot;
+ }
+
+ if (!supportable_dr_alignment
+ && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ slot->count += VECT_MAX_COST;
+}
+
+
+/* Traverse peeling hash table to find peeling option that aligns maximum
+ number of data accesses. */
+
+int
+vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
+ _vect_peel_extended_info *max)
+{
+ vect_peel_info elem = *slot;
+
+ if (elem->count > max->peel_info.count
+ || (elem->count == max->peel_info.count
+ && max->peel_info.npeel > elem->npeel))
+ {
+ max->peel_info.npeel = elem->npeel;
+ max->peel_info.count = elem->count;
+ max->peel_info.dr = elem->dr;
+ }
+
+ return 1;
+}
+
+
+/* Traverse peeling hash table and calculate cost for each peeling option.
+ Find the one with the lowest cost. */
+
+int
+vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
+ _vect_peel_extended_info *min)
+{
+ vect_peel_info elem = *slot;
+ int save_misalignment, dummy;
+ unsigned int inside_cost = 0, outside_cost = 0, i;
+ gimple stmt = DR_STMT (elem->dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct data_reference *dr;
+ stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
+ int single_iter_cost;
+
+ prologue_cost_vec.create (2);
+ body_cost_vec.create (2);
+ epilogue_cost_vec.create (2);
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ stmt = DR_STMT (dr);
+ stmt_info = vinfo_for_stmt (stmt);
+ /* For interleaving, only the alignment of the first access
+ matters. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
+ continue;
+
+ save_misalignment = DR_MISALIGNMENT (dr);
+ vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
+ vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
+ &body_cost_vec);
+ SET_DR_MISALIGNMENT (dr, save_misalignment);
+ }
+
+ single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
+ outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
+ &dummy, single_iter_cost,
+ &prologue_cost_vec,
+ &epilogue_cost_vec);
+
+ /* Prologue and epilogue costs are added to the target model later.
+ These costs depend only on the scalar iteration cost, the
+ number of peeling iterations finally chosen, and the number of
+ misaligned statements. So discard the information found here. */
+ prologue_cost_vec.release ();
+ epilogue_cost_vec.release ();
+
+ if (inside_cost < min->inside_cost
+ || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
+ {
+ min->inside_cost = inside_cost;
+ min->outside_cost = outside_cost;
+ min->body_cost_vec.release ();
+ min->body_cost_vec = body_cost_vec;
+ min->peel_info.dr = elem->dr;
+ min->peel_info.npeel = elem->npeel;
+ }
+ else
+ body_cost_vec.release ();
+
+ return 1;
+}
+
+
+/* Choose best peeling option by traversing peeling hash table and either
+ choosing an option with the lowest cost (if cost model is enabled) or the
+ option that aligns as many accesses as possible. */
+
+static struct data_reference *
+vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
+ unsigned int *npeel,
+ stmt_vector_for_cost *body_cost_vec)
+{
+ struct _vect_peel_extended_info res;
+
+ res.peel_info.dr = NULL;
+ res.body_cost_vec = stmt_vector_for_cost ();
+
+ if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ {
+ res.inside_cost = INT_MAX;
+ res.outside_cost = INT_MAX;
+ LOOP_VINFO_PEELING_HTAB (loop_vinfo)
+ .traverse <_vect_peel_extended_info *,
+ vect_peeling_hash_get_lowest_cost> (&res);
+ }
+ else
+ {
+ res.peel_info.count = 0;
+ LOOP_VINFO_PEELING_HTAB (loop_vinfo)
+ .traverse <_vect_peel_extended_info *,
+ vect_peeling_hash_get_most_frequent> (&res);
+ }
+
+ *npeel = res.peel_info.npeel;
+ *body_cost_vec = res.body_cost_vec;
+ return res.peel_info.dr;
+}
+
+
+/* Function vect_enhance_data_refs_alignment
+
+ This pass will use loop versioning and loop peeling in order to enhance
+ the alignment of data references in the loop.
+
+ FOR NOW: we assume that whatever versioning/peeling takes place, only the
+ original loop is to be vectorized. Any other loops that are created by
+ the transformations performed in this pass - are not supposed to be
+ vectorized. This restriction will be relaxed.
+
+ This pass will require a cost model to guide it whether to apply peeling
+ or versioning or a combination of the two. For example, the scheme that
+ intel uses when given a loop with several memory accesses, is as follows:
+ choose one memory access ('p') which alignment you want to force by doing
+ peeling. Then, either (1) generate a loop in which 'p' is aligned and all
+ other accesses are not necessarily aligned, or (2) use loop versioning to
+ generate one loop in which all accesses are aligned, and another loop in
+ which only 'p' is necessarily aligned.
+
+ ("Automatic Intra-Register Vectorization for the Intel Architecture",
+ Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
+ Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
+
+ Devising a cost model is the most critical aspect of this work. It will
+ guide us on which access to peel for, whether to use loop versioning, how
+ many versions to create, etc. The cost model will probably consist of
+ generic considerations as well as target specific considerations (on
+ powerpc for example, misaligned stores are more painful than misaligned
+ loads).
+
+ Here are the general steps involved in alignment enhancements:
+
+ -- original loop, before alignment analysis:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = unknown
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- After vect_compute_data_refs_alignment:
+ for (i=0; i<N; i++){
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 1: we do loop versioning:
+ if (p is aligned) {
+ for (i=0; i<N; i++){ # loop 1A
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i=0; i<N; i++){ # loop 1B
+ x = q[i]; # DR_MISALIGNMENT(q) = 3
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ -- Possibility 2: we do loop peeling:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ for (i = 3; i < N; i++){ # loop 2A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unknown
+ }
+
+ -- Possibility 3: combination of loop peeling and versioning:
+ for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
+ x = q[i];
+ p[i] = y;
+ }
+ if (p is aligned) {
+ for (i = 3; i<N; i++){ # loop 3A
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = 0
+ }
+ }
+ else {
+ for (i = 3; i<N; i++){ # loop 3B
+ x = q[i]; # DR_MISALIGNMENT(q) = 0
+ p[i] = y; # DR_MISALIGNMENT(p) = unaligned
+ }
+ }
+
+ These loops are later passed to loop_transform to be vectorized. The
+ vectorizer will use the alignment information to guide the transformation
+ (whether to generate regular loads/stores, or with special handling for
+ misalignment). */
+
+bool
+vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
+{
+ vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ enum dr_alignment_support supportable_dr_alignment;
+ struct data_reference *dr0 = NULL, *first_store = NULL;
+ struct data_reference *dr;
+ unsigned int i, j;
+ bool do_peeling = false;
+ bool do_versioning = false;
+ bool stat;
+ gimple stmt;
+ stmt_vec_info stmt_info;
+ unsigned int npeel = 0;
+ bool all_misalignments_unknown = true;
+ unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ unsigned possible_npeel_number = 1;
+ tree vectype;
+ unsigned int nelements, mis, same_align_drs_max = 0;
+ stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_enhance_data_refs_alignment ===\n");
+
+ /* While cost model enhancements are expected in the future, the high level
+ view of the code at this time is as follows:
+
+ A) If there is a misaligned access then see if peeling to align
+ this access can make all data references satisfy
+ vect_supportable_dr_alignment. If so, update data structures
+ as needed and return true.
+
+ B) If peeling wasn't possible and there is a data reference with an
+ unknown misalignment that does not satisfy vect_supportable_dr_alignment
+ then see if loop versioning checks can be used to make all data
+ references satisfy vect_supportable_dr_alignment. If so, update
+ data structures as needed and return true.
+
+ C) If neither peeling nor versioning were successful then return false if
+ any data reference does not satisfy vect_supportable_dr_alignment.
+
+ D) Return true (all data references satisfy vect_supportable_dr_alignment).
+
+ Note, Possibility 3 above (which is peeling and versioning together) is not
+ being done at this time. */
+
+ /* (1) Peeling to force alignment. */
+
+ /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
+ Considerations:
+ + How many accesses will become aligned due to the peeling
+ - How many accesses will become unaligned due to the peeling,
+ and the cost of misaligned accesses.
+ - The cost of peeling (the extra runtime checks, the increase
+ in code size). */
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ stmt = DR_STMT (dr);
+ stmt_info = vinfo_for_stmt (stmt);
+
+ if (!STMT_VINFO_RELEVANT_P (stmt_info))
+ continue;
+
+ /* For interleaving, only the alignment of the first access
+ matters. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
+ continue;
+
+ /* For invariant accesses there is nothing to enhance. */
+ if (integer_zerop (DR_STEP (dr)))
+ continue;
+
+ /* Strided loads perform only component accesses, alignment is
+ irrelevant for them. */
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ continue;
+
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
+ do_peeling = vector_alignment_reachable_p (dr);
+ if (do_peeling)
+ {
+ if (known_alignment_for_access_p (dr))
+ {
+ unsigned int npeel_tmp;
+ bool negative = tree_int_cst_compare (DR_STEP (dr),
+ size_zero_node) < 0;
+
+ /* Save info about DR in the hash table. */
+ if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
+ LOOP_VINFO_PEELING_HTAB (loop_vinfo).create (1);
+
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+ nelements = TYPE_VECTOR_SUBPARTS (vectype);
+ mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
+ TREE_TYPE (DR_REF (dr))));
+ npeel_tmp = (negative
+ ? (mis - nelements) : (nelements - mis))
+ & (nelements - 1);
+
+ /* For multiple types, it is possible that the bigger type access
+ will have more than one peeling option. E.g., a loop with two
+ types: one of size (vector size / 4), and the other one of
+ size (vector size / 8). Vectorization factor will 8. If both
+ access are misaligned by 3, the first one needs one scalar
+ iteration to be aligned, and the second one needs 5. But the
+ the first one will be aligned also by peeling 5 scalar
+ iterations, and in that case both accesses will be aligned.
+ Hence, except for the immediate peeling amount, we also want
+ to try to add full vector size, while we don't exceed
+ vectorization factor.
+ We do this automtically for cost model, since we calculate cost
+ for every peeling option. */
+ if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ possible_npeel_number = vf /nelements;
+
+ /* Handle the aligned case. We may decide to align some other
+ access, making DR unaligned. */
+ if (DR_MISALIGNMENT (dr) == 0)
+ {
+ npeel_tmp = 0;
+ if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
+ possible_npeel_number++;
+ }
+
+ for (j = 0; j < possible_npeel_number; j++)
+ {
+ gcc_assert (npeel_tmp <= vf);
+ vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
+ npeel_tmp += nelements;
+ }
+
+ all_misalignments_unknown = false;
+ /* Data-ref that was chosen for the case that all the
+ misalignments are unknown is not relevant anymore, since we
+ have a data-ref with known alignment. */
+ dr0 = NULL;
+ }
+ else
+ {
+ /* If we don't know any misalignment values, we prefer
+ peeling for data-ref that has the maximum number of data-refs
+ with the same alignment, unless the target prefers to align
+ stores over load. */
+ if (all_misalignments_unknown)
+ {
+ unsigned same_align_drs
+ = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
+ if (!dr0
+ || same_align_drs_max < same_align_drs)
+ {
+ same_align_drs_max = same_align_drs;
+ dr0 = dr;
+ }
+ /* For data-refs with the same number of related
+ accesses prefer the one where the misalign
+ computation will be invariant in the outermost loop. */
+ else if (same_align_drs_max == same_align_drs)
+ {
+ struct loop *ivloop0, *ivloop;
+ ivloop0 = outermost_invariant_loop_for_expr
+ (loop, DR_BASE_ADDRESS (dr0));
+ ivloop = outermost_invariant_loop_for_expr
+ (loop, DR_BASE_ADDRESS (dr));
+ if ((ivloop && !ivloop0)
+ || (ivloop && ivloop0
+ && flow_loop_nested_p (ivloop, ivloop0)))
+ dr0 = dr;
+ }
+
+ if (!first_store && DR_IS_WRITE (dr))
+ first_store = dr;
+ }
+
+ /* If there are both known and unknown misaligned accesses in the
+ loop, we choose peeling amount according to the known
+ accesses. */
+ if (!supportable_dr_alignment)
+ {
+ dr0 = dr;
+ if (!first_store && DR_IS_WRITE (dr))
+ first_store = dr;
+ }
+ }
+ }
+ else
+ {
+ if (!aligned_access_p (dr))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "vector alignment may not be reachable\n");
+ break;
+ }
+ }
+ }
+
+ /* Check if we can possibly peel the loop. */
+ if (!vect_can_advance_ivs_p (loop_vinfo)
+ || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
+ do_peeling = false;
+
+ if (do_peeling && all_misalignments_unknown
+ && vect_supportable_dr_alignment (dr0, false))
+ {
+
+ /* Check if the target requires to prefer stores over loads, i.e., if
+ misaligned stores are more expensive than misaligned loads (taking
+ drs with same alignment into account). */
+ if (first_store && DR_IS_READ (dr0))
+ {
+ unsigned int load_inside_cost = 0, load_outside_cost = 0;
+ unsigned int store_inside_cost = 0, store_outside_cost = 0;
+ unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
+ unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
+ stmt_vector_for_cost dummy;
+ dummy.create (2);
+
+ vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
+ &dummy);
+ vect_get_data_access_cost (first_store, &store_inside_cost,
+ &store_outside_cost, &dummy);
+
+ dummy.release ();
+
+ /* Calculate the penalty for leaving FIRST_STORE unaligned (by
+ aligning the load DR0). */
+ load_inside_penalty = store_inside_cost;
+ load_outside_penalty = store_outside_cost;
+ for (i = 0;
+ STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
+ DR_STMT (first_store))).iterate (i, &dr);
+ i++)
+ if (DR_IS_READ (dr))
+ {
+ load_inside_penalty += load_inside_cost;
+ load_outside_penalty += load_outside_cost;
+ }
+ else
+ {
+ load_inside_penalty += store_inside_cost;
+ load_outside_penalty += store_outside_cost;
+ }
+
+ /* Calculate the penalty for leaving DR0 unaligned (by
+ aligning the FIRST_STORE). */
+ store_inside_penalty = load_inside_cost;
+ store_outside_penalty = load_outside_cost;
+ for (i = 0;
+ STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
+ DR_STMT (dr0))).iterate (i, &dr);
+ i++)
+ if (DR_IS_READ (dr))
+ {
+ store_inside_penalty += load_inside_cost;
+ store_outside_penalty += load_outside_cost;
+ }
+ else
+ {
+ store_inside_penalty += store_inside_cost;
+ store_outside_penalty += store_outside_cost;
+ }
+
+ if (load_inside_penalty > store_inside_penalty
+ || (load_inside_penalty == store_inside_penalty
+ && load_outside_penalty > store_outside_penalty))
+ dr0 = first_store;
+ }
+
+ /* In case there are only loads with different unknown misalignments, use
+ peeling only if it may help to align other accesses in the loop. */
+ if (!first_store
+ && !STMT_VINFO_SAME_ALIGN_REFS (
+ vinfo_for_stmt (DR_STMT (dr0))).length ()
+ && vect_supportable_dr_alignment (dr0, false)
+ != dr_unaligned_supported)
+ do_peeling = false;
+ }
+
+ if (do_peeling && !dr0)
+ {
+ /* Peeling is possible, but there is no data access that is not supported
+ unless aligned. So we try to choose the best possible peeling. */
+
+ /* We should get here only if there are drs with known misalignment. */
+ gcc_assert (!all_misalignments_unknown);
+
+ /* Choose the best peeling from the hash table. */
+ dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
+ &body_cost_vec);
+ if (!dr0 || !npeel)
+ do_peeling = false;
+ }
+
+ if (do_peeling)
+ {
+ stmt = DR_STMT (dr0);
+ stmt_info = vinfo_for_stmt (stmt);
+ vectype = STMT_VINFO_VECTYPE (stmt_info);
+ nelements = TYPE_VECTOR_SUBPARTS (vectype);
+
+ if (known_alignment_for_access_p (dr0))
+ {
+ bool negative = tree_int_cst_compare (DR_STEP (dr0),
+ size_zero_node) < 0;
+ if (!npeel)
+ {
+ /* Since it's known at compile time, compute the number of
+ iterations in the peeled loop (the peeling factor) for use in
+ updating DR_MISALIGNMENT values. The peeling factor is the
+ vectorization factor minus the misalignment as an element
+ count. */
+ mis = DR_MISALIGNMENT (dr0);
+ mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
+ npeel = ((negative ? mis - nelements : nelements - mis)
+ & (nelements - 1));
+ }
+
+ /* For interleaved data access every iteration accesses all the
+ members of the group, therefore we divide the number of iterations
+ by the group size. */
+ stmt_info = vinfo_for_stmt (DR_STMT (dr0));
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
+ npeel /= GROUP_SIZE (stmt_info);
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Try peeling by %d\n", npeel);
+ }
+
+ /* Ensure that all data refs can be vectorized after the peel. */
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ int save_misalignment;
+
+ if (dr == dr0)
+ continue;
+
+ stmt = DR_STMT (dr);
+ stmt_info = vinfo_for_stmt (stmt);
+ /* For interleaving, only the alignment of the first access
+ matters. */
+ if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
+ continue;
+
+ /* Strided loads perform only component accesses, alignment is
+ irrelevant for them. */
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ continue;
+
+ save_misalignment = DR_MISALIGNMENT (dr);
+ vect_update_misalignment_for_peel (dr, dr0, npeel);
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
+ SET_DR_MISALIGNMENT (dr, save_misalignment);
+
+ if (!supportable_dr_alignment)
+ {
+ do_peeling = false;
+ break;
+ }
+ }
+
+ if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
+ {
+ stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+ if (!stat)
+ do_peeling = false;
+ else
+ {
+ body_cost_vec.release ();
+ return stat;
+ }
+ }
+
+ if (do_peeling)
+ {
+ unsigned max_allowed_peel
+ = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
+ if (max_allowed_peel != (unsigned)-1)
+ {
+ unsigned max_peel = npeel;
+ if (max_peel == 0)
+ {
+ gimple dr_stmt = DR_STMT (dr0);
+ stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
+ tree vtype = STMT_VINFO_VECTYPE (vinfo);
+ max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
+ }
+ if (max_peel > max_allowed_peel)
+ {
+ do_peeling = false;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Disable peeling, max peels reached: %d\n", max_peel);
+ }
+ }
+ }
+
+ if (do_peeling)
+ {
+ stmt_info_for_cost *si;
+ void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
+
+ /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
+ If the misalignment of DR_i is identical to that of dr0 then set
+ DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
+ dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
+ by the peeling factor times the element size of DR_i (MOD the
+ vectorization factor times the size). Otherwise, the
+ misalignment of DR_i must be set to unknown. */
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ if (dr != dr0)
+ vect_update_misalignment_for_peel (dr, dr0, npeel);
+
+ LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
+ if (npeel)
+ LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
+ else
+ LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
+ = DR_MISALIGNMENT (dr0);
+ SET_DR_MISALIGNMENT (dr0, 0);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Alignment of access forced using peeling.\n");
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Peeling for alignment will be applied.\n");
+ }
+ /* We've delayed passing the inside-loop peeling costs to the
+ target cost model until we were sure peeling would happen.
+ Do so now. */
+ if (body_cost_vec.exists ())
+ {
+ FOR_EACH_VEC_ELT (body_cost_vec, i, si)
+ {
+ struct _stmt_vec_info *stmt_info
+ = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
+ (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
+ si->misalign, vect_body);
+ }
+ body_cost_vec.release ();
+ }
+
+ stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+ gcc_assert (stat);
+ return stat;
+ }
+ }
+
+ body_cost_vec.release ();
+
+ /* (2) Versioning to force alignment. */
+
+ /* Try versioning if:
+ 1) optimize loop for speed
+ 2) there is at least one unsupported misaligned data ref with an unknown
+ misalignment, and
+ 3) all misaligned data refs with a known misalignment are supported, and
+ 4) the number of runtime alignment checks is within reason. */
+
+ do_versioning =
+ optimize_loop_nest_for_speed_p (loop)
+ && (!loop->inner); /* FORNOW */
+
+ if (do_versioning)
+ {
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ stmt = DR_STMT (dr);
+ stmt_info = vinfo_for_stmt (stmt);
+
+ /* For interleaving, only the alignment of the first access
+ matters. */
+ if (aligned_access_p (dr)
+ || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
+ && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
+ continue;
+
+ /* Strided loads perform only component accesses, alignment is
+ irrelevant for them. */
+ if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
+ continue;
+
+ supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
+
+ if (!supportable_dr_alignment)
+ {
+ gimple stmt;
+ int mask;
+ tree vectype;
+
+ if (known_alignment_for_access_p (dr)
+ || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
+ >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
+ {
+ do_versioning = false;
+ break;
+ }
+
+ stmt = DR_STMT (dr);
+ vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+ gcc_assert (vectype);
+
+ /* The rightmost bits of an aligned address must be zeros.
+ Construct the mask needed for this test. For example,
+ GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
+ mask must be 15 = 0xf. */
+ mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
+
+ /* FORNOW: use the same mask to test all potentially unaligned
+ references in the loop. The vectorizer currently supports
+ a single vector size, see the reference to
+ GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
+ vectorization factor is computed. */
+ gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
+ || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
+ LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
+ DR_STMT (dr));
+ }
+ }
+
+ /* Versioning requires at least one misaligned data reference. */
+ if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
+ do_versioning = false;
+ else if (!do_versioning)
+ LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
+ }
+
+ if (do_versioning)
+ {
+ vec<gimple> may_misalign_stmts
+ = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
+ gimple stmt;
+
+ /* It can now be assumed that the data references in the statements
+ in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
+ of the loop being vectorized. */
+ FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
+ {
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ dr = STMT_VINFO_DATA_REF (stmt_info);
+ SET_DR_MISALIGNMENT (dr, 0);
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Alignment of access forced using versioning.\n");
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Versioning for alignment will be applied.\n");
+
+ /* Peeling and versioning can't be done together at this time. */
+ gcc_assert (! (do_peeling && do_versioning));
+
+ stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+ gcc_assert (stat);
+ return stat;
+ }
+
+ /* This point is reached if neither peeling nor versioning is being done. */
+ gcc_assert (! (do_peeling || do_versioning));
+
+ stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
+ return stat;
+}
+
+
+/* Function vect_find_same_alignment_drs.
+
+ Update group and alignment relations according to the chosen
+ vectorization factor. */
+
+static void
+vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
+ loop_vec_info loop_vinfo)
+{
+ unsigned int i;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ struct data_reference *dra = DDR_A (ddr);
+ struct data_reference *drb = DDR_B (ddr);
+ stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+ stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+ int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
+ int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
+ lambda_vector dist_v;
+ unsigned int loop_depth;
+
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
+ return;
+
+ if (dra == drb)
+ return;
+
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ return;
+
+ /* Loop-based vectorization and known data dependence. */
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ return;
+
+ /* Data-dependence analysis reports a distance vector of zero
+ for data-references that overlap only in the first iteration
+ but have different sign step (see PR45764).
+ So as a sanity check require equal DR_STEP. */
+ if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
+ return;
+
+ loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+ FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+ {
+ int dist = dist_v[loop_depth];
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "dependence distance = %d.\n", dist);
+
+ /* Same loop iteration. */
+ if (dist == 0
+ || (dist % vectorization_factor == 0 && dra_size == drb_size))
+ {
+ /* Two references with distance zero have the same alignment. */
+ STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
+ STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "accesses have the same alignment.\n");
+ dump_printf (MSG_NOTE,
+ "dependence distance modulo vf == 0 between ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_NOTE, "\n");
+ }
+ }
+ }
+}
+
+
+/* Function vect_analyze_data_refs_alignment
+
+ Analyze the alignment of the data-references in the loop.
+ Return FALSE if a data reference is found that cannot be vectorized. */
+
+bool
+vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo)
+{
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_analyze_data_refs_alignment ===\n");
+
+ /* Mark groups of data references with same alignment using
+ data dependence information. */
+ if (loop_vinfo)
+ {
+ vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
+ struct data_dependence_relation *ddr;
+ unsigned int i;
+
+ FOR_EACH_VEC_ELT (ddrs, i, ddr)
+ vect_find_same_alignment_drs (ddr, loop_vinfo);
+ }
+
+ if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: can't calculate alignment "
+ "for data ref.\n");
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Analyze groups of accesses: check that DR belongs to a group of
+ accesses of legal size, step, etc. Detect gaps, single element
+ interleaving, and other special cases. Set grouped access info.
+ Collect groups of strided stores for further use in SLP analysis. */
+
+static bool
+vect_analyze_group_access (struct data_reference *dr)
+{
+ tree step = DR_STEP (dr);
+ tree scalar_type = TREE_TYPE (DR_REF (dr));
+ HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+ HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+ HOST_WIDE_INT groupsize, last_accessed_element = 1;
+ bool slp_impossible = false;
+ struct loop *loop = NULL;
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
+ size of the interleaving group (including gaps). */
+ groupsize = absu_hwi (dr_step) / type_size;
+
+ /* Not consecutive access is possible only if it is a part of interleaving. */
+ if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
+ {
+ /* Check if it this DR is a part of interleaving, and is a single
+ element of the group that is accessed in the loop. */
+
+ /* Gaps are supported only for loads. STEP must be a multiple of the type
+ size. The size of the group must be a power of 2. */
+ if (DR_IS_READ (dr)
+ && (dr_step % type_size) == 0
+ && groupsize > 0
+ && exact_log2 (groupsize) != -1)
+ {
+ GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
+ GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Detected single element interleaving ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
+ dump_printf (MSG_NOTE, " step ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ if (loop_vinfo)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Data access with gaps requires scalar "
+ "epilogue loop\n");
+ if (loop->inner)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Peeling for outer loop is not"
+ " supported\n");
+ return false;
+ }
+
+ LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
+ }
+
+ return true;
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not consecutive access ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ {
+ /* Mark the statement as unvectorizable. */
+ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
+ return true;
+ }
+
+ return false;
+ }
+
+ if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
+ {
+ /* First stmt in the interleaving chain. Check the chain. */
+ gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
+ struct data_reference *data_ref = dr;
+ unsigned int count = 1;
+ tree prev_init = DR_INIT (data_ref);
+ gimple prev = stmt;
+ HOST_WIDE_INT diff, gaps = 0;
+ unsigned HOST_WIDE_INT count_in_bytes;
+
+ while (next)
+ {
+ /* Skip same data-refs. In case that two or more stmts share
+ data-ref (supported only for loads), we vectorize only the first
+ stmt, and the rest get their vectorized loads from the first
+ one. */
+ if (!tree_int_cst_compare (DR_INIT (data_ref),
+ DR_INIT (STMT_VINFO_DATA_REF (
+ vinfo_for_stmt (next)))))
+ {
+ if (DR_IS_WRITE (data_ref))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Two store stmts share the same dr.\n");
+ return false;
+ }
+
+ /* For load use the same data-ref load. */
+ GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
+
+ prev = next;
+ next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
+ continue;
+ }
+
+ prev = next;
+ data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
+
+ /* All group members have the same STEP by construction. */
+ gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
+
+ /* Check that the distance between two accesses is equal to the type
+ size. Otherwise, we have gaps. */
+ diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
+ - TREE_INT_CST_LOW (prev_init)) / type_size;
+ if (diff != 1)
+ {
+ /* FORNOW: SLP of accesses with gaps is not supported. */
+ slp_impossible = true;
+ if (DR_IS_WRITE (data_ref))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "interleaved store with gaps\n");
+ return false;
+ }
+
+ gaps += diff - 1;
+ }
+
+ last_accessed_element += diff;
+
+ /* Store the gap from the previous member of the group. If there is no
+ gap in the access, GROUP_GAP is always 1. */
+ GROUP_GAP (vinfo_for_stmt (next)) = diff;
+
+ prev_init = DR_INIT (data_ref);
+ next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
+ /* Count the number of data-refs in the chain. */
+ count++;
+ }
+
+ /* COUNT is the number of accesses found, we multiply it by the size of
+ the type to get COUNT_IN_BYTES. */
+ count_in_bytes = type_size * count;
+
+ /* Check that the size of the interleaving (including gaps) is not
+ greater than STEP. */
+ if (dr_step != 0
+ && absu_hwi (dr_step) < count_in_bytes + gaps * type_size)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "interleaving size is greater than step for ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ DR_REF (dr));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return false;
+ }
+
+ /* Check that the size of the interleaving is equal to STEP for stores,
+ i.e., that there are no gaps. */
+ if (dr_step != 0
+ && absu_hwi (dr_step) != count_in_bytes)
+ {
+ if (DR_IS_READ (dr))
+ {
+ slp_impossible = true;
+ /* There is a gap after the last load in the group. This gap is a
+ difference between the groupsize and the number of elements.
+ When there is no gap, this difference should be 0. */
+ GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "interleaved store with gaps\n");
+ return false;
+ }
+ }
+
+ /* Check that STEP is a multiple of type size. */
+ if (dr_step != 0
+ && (dr_step % type_size) != 0)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "step is not a multiple of type size: step ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
+ dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
+ TYPE_SIZE_UNIT (scalar_type));
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return false;
+ }
+
+ if (groupsize == 0)
+ groupsize = count;
+
+ GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Detected interleaving of size %d\n", (int)groupsize);
+
+ /* SLP: create an SLP data structure for every interleaving group of
+ stores for further analysis in vect_analyse_slp. */
+ if (DR_IS_WRITE (dr) && !slp_impossible)
+ {
+ if (loop_vinfo)
+ LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
+ if (bb_vinfo)
+ BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
+ }
+
+ /* There is a gap in the end of the group. */
+ if (groupsize - last_accessed_element > 0 && loop_vinfo)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Data access with gaps requires scalar "
+ "epilogue loop\n");
+ if (loop->inner)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "Peeling for outer loop is not supported\n");
+ return false;
+ }
+
+ LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
+ }
+ }
+
+ return true;
+}
+
+
+/* Analyze the access pattern of the data-reference DR.
+ In case of non-consecutive accesses call vect_analyze_group_access() to
+ analyze groups of accesses. */
+
+static bool
+vect_analyze_data_ref_access (struct data_reference *dr)
+{
+ tree step = DR_STEP (dr);
+ tree scalar_type = TREE_TYPE (DR_REF (dr));
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+
+ if (loop_vinfo)
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ if (loop_vinfo && !step)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "bad data-ref access in loop\n");
+ return false;
+ }
+
+ /* Allow invariant loads in not nested loops. */
+ if (loop_vinfo && integer_zerop (step))
+ {
+ GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
+ if (nested_in_vect_loop_p (loop, stmt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "zero step in inner loop of nest\n");
+ return false;
+ }
+ return DR_IS_READ (dr);
+ }
+
+ if (loop && nested_in_vect_loop_p (loop, stmt))
+ {
+ /* Interleaved accesses are not yet supported within outer-loop
+ vectorization for references in the inner-loop. */
+ GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
+
+ /* For the rest of the analysis we use the outer-loop step. */
+ step = STMT_VINFO_DR_STEP (stmt_info);
+ if (integer_zerop (step))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "zero step in outer loop.\n");
+ if (DR_IS_READ (dr))
+ return true;
+ else
+ return false;
+ }
+ }
+
+ /* Consecutive? */
+ if (TREE_CODE (step) == INTEGER_CST)
+ {
+ HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
+ if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
+ || (dr_step < 0
+ && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
+ {
+ /* Mark that it is not interleaving. */
+ GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
+ return true;
+ }
+ }
+
+ if (loop && nested_in_vect_loop_p (loop, stmt))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "grouped access in outer loop.\n");
+ return false;
+ }
+
+ /* Assume this is a DR handled by non-constant strided load case. */
+ if (TREE_CODE (step) != INTEGER_CST)
+ return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
+
+ /* Not consecutive access - check if it's a part of interleaving group. */
+ return vect_analyze_group_access (dr);
+}
+
+
+
+/* A helper function used in the comparator function to sort data
+ references. T1 and T2 are two data references to be compared.
+ The function returns -1, 0, or 1. */
+
+static int
+compare_tree (tree t1, tree t2)
+{
+ int i, cmp;
+ enum tree_code code;
+ char tclass;
+
+ if (t1 == t2)
+ return 0;
+ if (t1 == NULL)
+ return -1;
+ if (t2 == NULL)
+ return 1;
+
+
+ if (TREE_CODE (t1) != TREE_CODE (t2))
+ return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
+
+ code = TREE_CODE (t1);
+ switch (code)
+ {
+ /* For const values, we can just use hash values for comparisons. */
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ case STRING_CST:
+ case COMPLEX_CST:
+ case VECTOR_CST:
+ {
+ hashval_t h1 = iterative_hash_expr (t1, 0);
+ hashval_t h2 = iterative_hash_expr (t2, 0);
+ if (h1 != h2)
+ return h1 < h2 ? -1 : 1;
+ break;
+ }
+
+ case SSA_NAME:
+ cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
+ if (cmp != 0)
+ return cmp;
+
+ if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
+ return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
+ break;
+
+ default:
+ tclass = TREE_CODE_CLASS (code);
+
+ /* For var-decl, we could compare their UIDs. */
+ if (tclass == tcc_declaration)
+ {
+ if (DECL_UID (t1) != DECL_UID (t2))
+ return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
+ break;
+ }
+
+ /* For expressions with operands, compare their operands recursively. */
+ for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
+ {
+ cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
+ if (cmp != 0)
+ return cmp;
+ }
+ }
+
+ return 0;
+}
+
+
+/* Compare two data-references DRA and DRB to group them into chunks
+ suitable for grouping. */
+
+static int
+dr_group_sort_cmp (const void *dra_, const void *drb_)
+{
+ data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
+ data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
+ int cmp;
+
+ /* Stabilize sort. */
+ if (dra == drb)
+ return 0;
+
+ /* Ordering of DRs according to base. */
+ if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
+ {
+ cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
+ if (cmp != 0)
+ return cmp;
+ }
+
+ /* And according to DR_OFFSET. */
+ if (!dr_equal_offsets_p (dra, drb))
+ {
+ cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
+ if (cmp != 0)
+ return cmp;
+ }
+
+ /* Put reads before writes. */
+ if (DR_IS_READ (dra) != DR_IS_READ (drb))
+ return DR_IS_READ (dra) ? -1 : 1;
+
+ /* Then sort after access size. */
+ if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
+ {
+ cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
+ TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
+ if (cmp != 0)
+ return cmp;
+ }
+
+ /* And after step. */
+ if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
+ {
+ cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
+ if (cmp != 0)
+ return cmp;
+ }
+
+ /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
+ cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
+ if (cmp == 0)
+ return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
+ return cmp;
+}
+
+/* Function vect_analyze_data_ref_accesses.
+
+ Analyze the access pattern of all the data references in the loop.
+
+ FORNOW: the only access pattern that is considered vectorizable is a
+ simple step 1 (consecutive) access.
+
+ FORNOW: handle only arrays and pointer accesses. */
+
+bool
+vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
+{
+ unsigned int i;
+ vec<data_reference_p> datarefs;
+ struct data_reference *dr;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_analyze_data_ref_accesses ===\n");
+
+ if (loop_vinfo)
+ datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ else
+ datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+
+ if (datarefs.is_empty ())
+ return true;
+
+ /* Sort the array of datarefs to make building the interleaving chains
+ linear. Don't modify the original vector's order, it is needed for
+ determining what dependencies are reversed. */
+ vec<data_reference_p> datarefs_copy = datarefs.copy ();
+ qsort (datarefs_copy.address (), datarefs_copy.length (),
+ sizeof (data_reference_p), dr_group_sort_cmp);
+
+ /* Build the interleaving chains. */
+ for (i = 0; i < datarefs_copy.length () - 1;)
+ {
+ data_reference_p dra = datarefs_copy[i];
+ stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
+ stmt_vec_info lastinfo = NULL;
+ for (i = i + 1; i < datarefs_copy.length (); ++i)
+ {
+ data_reference_p drb = datarefs_copy[i];
+ stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
+
+ /* ??? Imperfect sorting (non-compatible types, non-modulo
+ accesses, same accesses) can lead to a group to be artificially
+ split here as we don't just skip over those. If it really
+ matters we can push those to a worklist and re-iterate
+ over them. The we can just skip ahead to the next DR here. */
+
+ /* Check that the data-refs have same first location (except init)
+ and they are both either store or load (not load and store). */
+ if (DR_IS_READ (dra) != DR_IS_READ (drb)
+ || !operand_equal_p (DR_BASE_ADDRESS (dra),
+ DR_BASE_ADDRESS (drb), 0)
+ || !dr_equal_offsets_p (dra, drb))
+ break;
+
+ /* Check that the data-refs have the same constant size and step. */
+ tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
+ tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
+ if (!tree_fits_uhwi_p (sza)
+ || !tree_fits_uhwi_p (szb)
+ || !tree_int_cst_equal (sza, szb)
+ || !tree_fits_shwi_p (DR_STEP (dra))
+ || !tree_fits_shwi_p (DR_STEP (drb))
+ || !tree_int_cst_equal (DR_STEP (dra), DR_STEP (drb)))
+ break;
+
+ /* Do not place the same access in the interleaving chain twice. */
+ if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
+ break;
+
+ /* Check the types are compatible.
+ ??? We don't distinguish this during sorting. */
+ if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
+ TREE_TYPE (DR_REF (drb))))
+ break;
+
+ /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
+ HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
+ HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
+ gcc_assert (init_a < init_b);
+
+ /* If init_b == init_a + the size of the type * k, we have an
+ interleaving, and DRA is accessed before DRB. */
+ HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
+ if ((init_b - init_a) % type_size_a != 0)
+ break;
+
+ /* The step (if not zero) is greater than the difference between
+ data-refs' inits. This splits groups into suitable sizes. */
+ HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
+ if (step != 0 && step <= (init_b - init_a))
+ break;
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "Detected interleaving ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ /* Link the found element into the group list. */
+ if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
+ {
+ GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
+ lastinfo = stmtinfo_a;
+ }
+ GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
+ GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
+ lastinfo = stmtinfo_b;
+ }
+ }
+
+ FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
+ if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
+ && !vect_analyze_data_ref_access (dr))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: complicated access pattern.\n");
+
+ if (bb_vinfo)
+ {
+ /* Mark the statement as not vectorizable. */
+ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
+ continue;
+ }
+ else
+ {
+ datarefs_copy.release ();
+ return false;
+ }
+ }
+
+ datarefs_copy.release ();
+ return true;
+}
+
+
+/* Operator == between two dr_with_seg_len objects.
+
+ This equality operator is used to make sure two data refs
+ are the same one so that we will consider to combine the
+ aliasing checks of those two pairs of data dependent data
+ refs. */
+
+static bool
+operator == (const dr_with_seg_len& d1,
+ const dr_with_seg_len& d2)
+{
+ return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
+ DR_BASE_ADDRESS (d2.dr), 0)
+ && compare_tree (d1.offset, d2.offset) == 0
+ && compare_tree (d1.seg_len, d2.seg_len) == 0;
+}
+
+/* Function comp_dr_with_seg_len_pair.
+
+ Comparison function for sorting objects of dr_with_seg_len_pair_t
+ so that we can combine aliasing checks in one scan. */
+
+static int
+comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
+{
+ const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
+ const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
+
+ const dr_with_seg_len &p11 = p1->first,
+ &p12 = p1->second,
+ &p21 = p2->first,
+ &p22 = p2->second;
+
+ /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
+ if a and c have the same basic address snd step, and b and d have the same
+ address and step. Therefore, if any a&c or b&d don't have the same address
+ and step, we don't care the order of those two pairs after sorting. */
+ int comp_res;
+
+ if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
+ DR_BASE_ADDRESS (p21.dr))) != 0)
+ return comp_res;
+ if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
+ DR_BASE_ADDRESS (p22.dr))) != 0)
+ return comp_res;
+ if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
+ return comp_res;
+ if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
+ return comp_res;
+ if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
+ return comp_res;
+ if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
+ return comp_res;
+
+ return 0;
+}
+
+template <class T> static void
+swap (T& a, T& b)
+{
+ T c (a);
+ a = b;
+ b = c;
+}
+
+/* Function vect_vfa_segment_size.
+
+ Create an expression that computes the size of segment
+ that will be accessed for a data reference. The functions takes into
+ account that realignment loads may access one more vector.
+
+ Input:
+ DR: The data reference.
+ LENGTH_FACTOR: segment length to consider.
+
+ Return an expression whose value is the size of segment which will be
+ accessed by DR. */
+
+static tree
+vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
+{
+ tree segment_length;
+
+ if (integer_zerop (DR_STEP (dr)))
+ segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
+ else
+ segment_length = size_binop (MULT_EXPR,
+ fold_convert (sizetype, DR_STEP (dr)),
+ fold_convert (sizetype, length_factor));
+
+ if (vect_supportable_dr_alignment (dr, false)
+ == dr_explicit_realign_optimized)
+ {
+ tree vector_size = TYPE_SIZE_UNIT
+ (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
+
+ segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
+ }
+ return segment_length;
+}
+
+/* Function vect_prune_runtime_alias_test_list.
+
+ Prune a list of ddrs to be tested at run-time by versioning for alias.
+ Merge several alias checks into one if possible.
+ Return FALSE if resulting list of ddrs is longer then allowed by
+ PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
+
+bool
+vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
+{
+ vec<ddr_p> may_alias_ddrs =
+ LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
+ vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
+ LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
+ int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
+ tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
+
+ ddr_p ddr;
+ unsigned int i;
+ tree length_factor;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_prune_runtime_alias_test_list ===\n");
+
+ if (may_alias_ddrs.is_empty ())
+ return true;
+
+ /* Basically, for each pair of dependent data refs store_ptr_0
+ and load_ptr_0, we create an expression:
+
+ ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
+ || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
+
+ for aliasing checks. However, in some cases we can decrease
+ the number of checks by combining two checks into one. For
+ example, suppose we have another pair of data refs store_ptr_0
+ and load_ptr_1, and if the following condition is satisfied:
+
+ load_ptr_0 < load_ptr_1 &&
+ load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
+
+ (this condition means, in each iteration of vectorized loop,
+ the accessed memory of store_ptr_0 cannot be between the memory
+ of load_ptr_0 and load_ptr_1.)
+
+ we then can use only the following expression to finish the
+ alising checks between store_ptr_0 & load_ptr_0 and
+ store_ptr_0 & load_ptr_1:
+
+ ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
+ || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
+
+ Note that we only consider that load_ptr_0 and load_ptr_1 have the
+ same basic address. */
+
+ comp_alias_ddrs.create (may_alias_ddrs.length ());
+
+ /* First, we collect all data ref pairs for aliasing checks. */
+ FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
+ {
+ struct data_reference *dr_a, *dr_b;
+ gimple dr_group_first_a, dr_group_first_b;
+ tree segment_length_a, segment_length_b;
+ gimple stmt_a, stmt_b;
+
+ dr_a = DDR_A (ddr);
+ stmt_a = DR_STMT (DDR_A (ddr));
+ dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
+ if (dr_group_first_a)
+ {
+ stmt_a = dr_group_first_a;
+ dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
+ }
+
+ dr_b = DDR_B (ddr);
+ stmt_b = DR_STMT (DDR_B (ddr));
+ dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
+ if (dr_group_first_b)
+ {
+ stmt_b = dr_group_first_b;
+ dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
+ }
+
+ if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
+ length_factor = scalar_loop_iters;
+ else
+ length_factor = size_int (vect_factor);
+ segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
+ segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
+
+ dr_with_seg_len_pair_t dr_with_seg_len_pair
+ (dr_with_seg_len (dr_a, segment_length_a),
+ dr_with_seg_len (dr_b, segment_length_b));
+
+ if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
+ swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
+
+ comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
+ }
+
+ /* Second, we sort the collected data ref pairs so that we can scan
+ them once to combine all possible aliasing checks. */
+ comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
+
+ /* Third, we scan the sorted dr pairs and check if we can combine
+ alias checks of two neighbouring dr pairs. */
+ for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
+ {
+ /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
+ dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
+ *dr_b1 = &comp_alias_ddrs[i-1].second,
+ *dr_a2 = &comp_alias_ddrs[i].first,
+ *dr_b2 = &comp_alias_ddrs[i].second;
+
+ /* Remove duplicate data ref pairs. */
+ if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "found equal ranges ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_a1->dr));
+ dump_printf (MSG_NOTE, ", ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_b1->dr));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_a2->dr));
+ dump_printf (MSG_NOTE, ", ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_b2->dr));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ comp_alias_ddrs.ordered_remove (i--);
+ continue;
+ }
+
+ if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
+ {
+ /* We consider the case that DR_B1 and DR_B2 are same memrefs,
+ and DR_A1 and DR_A2 are two consecutive memrefs. */
+ if (*dr_a1 == *dr_a2)
+ {
+ swap (dr_a1, dr_b1);
+ swap (dr_a2, dr_b2);
+ }
+
+ if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
+ DR_BASE_ADDRESS (dr_a2->dr),
+ 0)
+ || !tree_fits_shwi_p (dr_a1->offset)
+ || !tree_fits_shwi_p (dr_a2->offset))
+ continue;
+
+ HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
+ - tree_to_shwi (dr_a1->offset));
+
+
+ /* Now we check if the following condition is satisfied:
+
+ DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
+
+ where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
+ SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
+ have to make a best estimation. We can get the minimum value
+ of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
+ then either of the following two conditions can guarantee the
+ one above:
+
+ 1: DIFF <= MIN_SEG_LEN_B
+ 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
+
+ */
+
+ HOST_WIDE_INT
+ min_seg_len_b = (TREE_CODE (dr_b1->seg_len) == INTEGER_CST) ?
+ TREE_INT_CST_LOW (dr_b1->seg_len) :
+ vect_factor;
+
+ if (diff <= min_seg_len_b
+ || (TREE_CODE (dr_a1->seg_len) == INTEGER_CST
+ && diff - (HOST_WIDE_INT) TREE_INT_CST_LOW (dr_a1->seg_len) <
+ min_seg_len_b))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "merging ranges for ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_a1->dr));
+ dump_printf (MSG_NOTE, ", ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_b1->dr));
+ dump_printf (MSG_NOTE, " and ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_a2->dr));
+ dump_printf (MSG_NOTE, ", ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ DR_REF (dr_b2->dr));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ dr_a1->seg_len = size_binop (PLUS_EXPR,
+ dr_a2->seg_len, size_int (diff));
+ comp_alias_ddrs.ordered_remove (i--);
+ }
+ }
+ }
+
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "improved number of alias checks from %d to %d\n",
+ may_alias_ddrs.length (), comp_alias_ddrs.length ());
+ if ((int) comp_alias_ddrs.length () >
+ PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
+ return false;
+
+ return true;
+}
+
+/* Check whether a non-affine read in stmt is suitable for gather load
+ and if so, return a builtin decl for that operation. */
+
+tree
+vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
+ tree *offp, int *scalep)
+{
+ HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
+ struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree offtype = NULL_TREE;
+ tree decl, base, off;
+ enum machine_mode pmode;
+ int punsignedp, pvolatilep;
+
+ base = DR_REF (dr);
+ /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
+ see if we can use the def stmt of the address. */
+ if (is_gimple_call (stmt)
+ && gimple_call_internal_p (stmt)
+ && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
+ || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
+ && TREE_CODE (base) == MEM_REF
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
+ && integer_zerop (TREE_OPERAND (base, 1))
+ && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
+ if (is_gimple_assign (def_stmt)
+ && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
+ base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
+ }
+
+ /* The gather builtins need address of the form
+ loop_invariant + vector * {1, 2, 4, 8}
+ or
+ loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
+ Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
+ of loop invariants/SSA_NAMEs defined in the loop, with casts,
+ multiplications and additions in it. To get a vector, we need
+ a single SSA_NAME that will be defined in the loop and will
+ contain everything that is not loop invariant and that can be
+ vectorized. The following code attempts to find such a preexistng
+ SSA_NAME OFF and put the loop invariants into a tree BASE
+ that can be gimplified before the loop. */
+ base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
+ &pmode, &punsignedp, &pvolatilep, false);
+ gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
+
+ if (TREE_CODE (base) == MEM_REF)
+ {
+ if (!integer_zerop (TREE_OPERAND (base, 1)))
+ {
+ if (off == NULL_TREE)
+ {
+ double_int moff = mem_ref_offset (base);
+ off = double_int_to_tree (sizetype, moff);
+ }
+ else
+ off = size_binop (PLUS_EXPR, off,
+ fold_convert (sizetype, TREE_OPERAND (base, 1)));
+ }
+ base = TREE_OPERAND (base, 0);
+ }
+ else
+ base = build_fold_addr_expr (base);
+
+ if (off == NULL_TREE)
+ off = size_zero_node;
+
+ /* If base is not loop invariant, either off is 0, then we start with just
+ the constant offset in the loop invariant BASE and continue with base
+ as OFF, otherwise give up.
+ We could handle that case by gimplifying the addition of base + off
+ into some SSA_NAME and use that as off, but for now punt. */
+ if (!expr_invariant_in_loop_p (loop, base))
+ {
+ if (!integer_zerop (off))
+ return NULL_TREE;
+ off = base;
+ base = size_int (pbitpos / BITS_PER_UNIT);
+ }
+ /* Otherwise put base + constant offset into the loop invariant BASE
+ and continue with OFF. */
+ else
+ {
+ base = fold_convert (sizetype, base);
+ base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
+ }
+
+ /* OFF at this point may be either a SSA_NAME or some tree expression
+ from get_inner_reference. Try to peel off loop invariants from it
+ into BASE as long as possible. */
+ STRIP_NOPS (off);
+ while (offtype == NULL_TREE)
+ {
+ enum tree_code code;
+ tree op0, op1, add = NULL_TREE;
+
+ if (TREE_CODE (off) == SSA_NAME)
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (off);
+
+ if (expr_invariant_in_loop_p (loop, off))
+ return NULL_TREE;
+
+ if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
+ break;
+
+ op0 = gimple_assign_rhs1 (def_stmt);
+ code = gimple_assign_rhs_code (def_stmt);
+ op1 = gimple_assign_rhs2 (def_stmt);
+ }
+ else
+ {
+ if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
+ return NULL_TREE;
+ code = TREE_CODE (off);
+ extract_ops_from_tree (off, &code, &op0, &op1);
+ }
+ switch (code)
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ if (expr_invariant_in_loop_p (loop, op0))
+ {
+ add = op0;
+ off = op1;
+ do_add:
+ add = fold_convert (sizetype, add);
+ if (scale != 1)
+ add = size_binop (MULT_EXPR, add, size_int (scale));
+ base = size_binop (PLUS_EXPR, base, add);
+ continue;
+ }
+ if (expr_invariant_in_loop_p (loop, op1))
+ {
+ add = op1;
+ off = op0;
+ goto do_add;
+ }
+ break;
+ case MINUS_EXPR:
+ if (expr_invariant_in_loop_p (loop, op1))
+ {
+ add = fold_convert (sizetype, op1);
+ add = size_binop (MINUS_EXPR, size_zero_node, add);
+ off = op0;
+ goto do_add;
+ }
+ break;
+ case MULT_EXPR:
+ if (scale == 1 && tree_fits_shwi_p (op1))
+ {
+ scale = tree_to_shwi (op1);
+ off = op0;
+ continue;
+ }
+ break;
+ case SSA_NAME:
+ off = op0;
+ continue;
+ CASE_CONVERT:
+ if (!POINTER_TYPE_P (TREE_TYPE (op0))
+ && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+ break;
+ if (TYPE_PRECISION (TREE_TYPE (op0))
+ == TYPE_PRECISION (TREE_TYPE (off)))
+ {
+ off = op0;
+ continue;
+ }
+ if (TYPE_PRECISION (TREE_TYPE (op0))
+ < TYPE_PRECISION (TREE_TYPE (off)))
+ {
+ off = op0;
+ offtype = TREE_TYPE (off);
+ STRIP_NOPS (off);
+ continue;
+ }
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+
+ /* If at the end OFF still isn't a SSA_NAME or isn't
+ defined in the loop, punt. */
+ if (TREE_CODE (off) != SSA_NAME
+ || expr_invariant_in_loop_p (loop, off))
+ return NULL_TREE;
+
+ if (offtype == NULL_TREE)
+ offtype = TREE_TYPE (off);
+
+ decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
+ offtype, scale);
+ if (decl == NULL_TREE)
+ return NULL_TREE;
+
+ if (basep)
+ *basep = base;
+ if (offp)
+ *offp = off;
+ if (scalep)
+ *scalep = scale;
+ return decl;
+}
+
+/* Function vect_analyze_data_refs.
+
+ Find all the data references in the loop or basic block.
+
+ The general structure of the analysis of data refs in the vectorizer is as
+ follows:
+ 1- vect_analyze_data_refs(loop/bb): call
+ compute_data_dependences_for_loop/bb to find and analyze all data-refs
+ in the loop/bb and their dependences.
+ 2- vect_analyze_dependences(): apply dependence testing using ddrs.
+ 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
+ 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
+
+*/
+
+bool
+vect_analyze_data_refs (loop_vec_info loop_vinfo,
+ bb_vec_info bb_vinfo,
+ int *min_vf)
+{
+ struct loop *loop = NULL;
+ basic_block bb = NULL;
+ unsigned int i;
+ vec<data_reference_p> datarefs;
+ struct data_reference *dr;
+ tree scalar_type;
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "=== vect_analyze_data_refs ===\n");
+
+ if (loop_vinfo)
+ {
+ basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
+
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
+ if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: loop contains function calls"
+ " or data references that cannot be analyzed\n");
+ return false;
+ }
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ gimple_stmt_iterator gsi;
+
+ for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (!find_data_references_in_stmt (loop, stmt, &datarefs))
+ {
+ if (is_gimple_call (stmt) && loop->safelen)
+ {
+ tree fndecl = gimple_call_fndecl (stmt), op;
+ if (fndecl != NULL_TREE)
+ {
+ struct cgraph_node *node = cgraph_get_node (fndecl);
+ if (node != NULL && node->simd_clones != NULL)
+ {
+ unsigned int j, n = gimple_call_num_args (stmt);
+ for (j = 0; j < n; j++)
+ {
+ op = gimple_call_arg (stmt, j);
+ if (DECL_P (op)
+ || (REFERENCE_CLASS_P (op)
+ && get_base_address (op)))
+ break;
+ }
+ op = gimple_call_lhs (stmt);
+ /* Ignore #pragma omp declare simd functions
+ if they don't have data references in the
+ call stmt itself. */
+ if (j == n
+ && !(op
+ && (DECL_P (op)
+ || (REFERENCE_CLASS_P (op)
+ && get_base_address (op)))))
+ continue;
+ }
+ }
+ }
+ LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: loop contains function "
+ "calls or data references that cannot "
+ "be analyzed\n");
+ return false;
+ }
+ }
+ }
+
+ LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
+ }
+ else
+ {
+ gimple_stmt_iterator gsi;
+
+ bb = BB_VINFO_BB (bb_vinfo);
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (!find_data_references_in_stmt (NULL, stmt,
+ &BB_VINFO_DATAREFS (bb_vinfo)))
+ {
+ /* Mark the rest of the basic-block as unvectorizable. */
+ for (; !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ stmt = gsi_stmt (gsi);
+ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
+ }
+ break;
+ }
+ }
+
+ datarefs = BB_VINFO_DATAREFS (bb_vinfo);
+ }
+
+ /* Go through the data-refs, check that the analysis succeeded. Update
+ pointer from stmt_vec_info struct to DR and vectype. */
+
+ FOR_EACH_VEC_ELT (datarefs, i, dr)
+ {
+ gimple stmt;
+ stmt_vec_info stmt_info;
+ tree base, offset, init;
+ bool gather = false;
+ bool simd_lane_access = false;
+ int vf;
+
+again:
+ if (!dr || !DR_REF (dr))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: unhandled data-ref\n");
+ return false;
+ }
+
+ stmt = DR_STMT (dr);
+ stmt_info = vinfo_for_stmt (stmt);
+
+ /* Discard clobbers from the dataref vector. We will remove
+ clobber stmts during vectorization. */
+ if (gimple_clobber_p (stmt))
+ {
+ free_data_ref (dr);
+ if (i == datarefs.length () - 1)
+ {
+ datarefs.pop ();
+ break;
+ }
+ datarefs.ordered_remove (i);
+ dr = datarefs[i];
+ goto again;
+ }
+
+ /* Check that analysis of the data-ref succeeded. */
+ if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
+ || !DR_STEP (dr))
+ {
+ bool maybe_gather
+ = DR_IS_READ (dr)
+ && !TREE_THIS_VOLATILE (DR_REF (dr))
+ && targetm.vectorize.builtin_gather != NULL;
+ bool maybe_simd_lane_access
+ = loop_vinfo && loop->simduid;
+
+ /* If target supports vector gather loads, or if this might be
+ a SIMD lane access, see if they can't be used. */
+ if (loop_vinfo
+ && (maybe_gather || maybe_simd_lane_access)
+ && !nested_in_vect_loop_p (loop, stmt))
+ {
+ struct data_reference *newdr
+ = create_data_ref (NULL, loop_containing_stmt (stmt),
+ DR_REF (dr), stmt, true);
+ gcc_assert (newdr != NULL && DR_REF (newdr));
+ if (DR_BASE_ADDRESS (newdr)
+ && DR_OFFSET (newdr)
+ && DR_INIT (newdr)
+ && DR_STEP (newdr)
+ && integer_zerop (DR_STEP (newdr)))
+ {
+ if (maybe_simd_lane_access)
+ {
+ tree off = DR_OFFSET (newdr);
+ STRIP_NOPS (off);
+ if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
+ && TREE_CODE (off) == MULT_EXPR
+ && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
+ {
+ tree step = TREE_OPERAND (off, 1);
+ off = TREE_OPERAND (off, 0);
+ STRIP_NOPS (off);
+ if (CONVERT_EXPR_P (off)
+ && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
+ 0)))
+ < TYPE_PRECISION (TREE_TYPE (off)))
+ off = TREE_OPERAND (off, 0);
+ if (TREE_CODE (off) == SSA_NAME)
+ {
+ gimple def = SSA_NAME_DEF_STMT (off);
+ tree reft = TREE_TYPE (DR_REF (newdr));
+ if (is_gimple_call (def)
+ && gimple_call_internal_p (def)
+ && (gimple_call_internal_fn (def)
+ == IFN_GOMP_SIMD_LANE))
+ {
+ tree arg = gimple_call_arg (def, 0);
+ gcc_assert (TREE_CODE (arg) == SSA_NAME);
+ arg = SSA_NAME_VAR (arg);
+ if (arg == loop->simduid
+ /* For now. */
+ && tree_int_cst_equal
+ (TYPE_SIZE_UNIT (reft),
+ step))
+ {
+ DR_OFFSET (newdr) = ssize_int (0);
+ DR_STEP (newdr) = step;
+ DR_ALIGNED_TO (newdr)
+ = size_int (BIGGEST_ALIGNMENT);
+ dr = newdr;
+ simd_lane_access = true;
+ }
+ }
+ }
+ }
+ }
+ if (!simd_lane_access && maybe_gather)
+ {
+ dr = newdr;
+ gather = true;
+ }
+ }
+ if (!gather && !simd_lane_access)
+ free_data_ref (newdr);
+ }
+
+ if (!gather && !simd_lane_access)
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: data ref analysis "
+ "failed ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ return false;
+ }
+ }
+
+ if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: base addr of dr is a "
+ "constant\n");
+
+ if (bb_vinfo)
+ break;
+
+ if (gather || simd_lane_access)
+ free_data_ref (dr);
+ return false;
+ }
+
+ if (TREE_THIS_VOLATILE (DR_REF (dr)))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: volatile type ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ return false;
+ }
+
+ if (stmt_can_throw_internal (stmt))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: statement can throw an "
+ "exception ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ if (gather || simd_lane_access)
+ free_data_ref (dr);
+ return false;
+ }
+
+ if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
+ && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: statement is bitfield "
+ "access ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ if (gather || simd_lane_access)
+ free_data_ref (dr);
+ return false;
+ }
+
+ base = unshare_expr (DR_BASE_ADDRESS (dr));
+ offset = unshare_expr (DR_OFFSET (dr));
+ init = unshare_expr (DR_INIT (dr));
+
+ if (is_gimple_call (stmt)
+ && (!gimple_call_internal_p (stmt)
+ || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
+ && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: dr in a call ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ if (gather || simd_lane_access)
+ free_data_ref (dr);
+ return false;
+ }
+
+ /* Update DR field in stmt_vec_info struct. */
+
+ /* If the dataref is in an inner-loop of the loop that is considered for
+ for vectorization, we also want to analyze the access relative to
+ the outer-loop (DR contains information only relative to the
+ inner-most enclosing loop). We do that by building a reference to the
+ first location accessed by the inner-loop, and analyze it relative to
+ the outer-loop. */
+ if (loop && nested_in_vect_loop_p (loop, stmt))
+ {
+ tree outer_step, outer_base, outer_init;
+ HOST_WIDE_INT pbitsize, pbitpos;
+ tree poffset;
+ enum machine_mode pmode;
+ int punsignedp, pvolatilep;
+ affine_iv base_iv, offset_iv;
+ tree dinit;
+
+ /* Build a reference to the first location accessed by the
+ inner-loop: *(BASE+INIT). (The first location is actually
+ BASE+INIT+OFFSET, but we add OFFSET separately later). */
+ tree inner_base = build_fold_indirect_ref
+ (fold_build_pointer_plus (base, init));
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "analyze in outer-loop: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
+ &poffset, &pmode, &punsignedp, &pvolatilep, false);
+ gcc_assert (outer_base != NULL_TREE);
+
+ if (pbitpos % BITS_PER_UNIT != 0)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "failed: bit offset alignment.\n");
+ return false;
+ }
+
+ outer_base = build_fold_addr_expr (outer_base);
+ if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
+ &base_iv, false))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "failed: evolution of base is not affine.\n");
+ return false;
+ }
+
+ if (offset)
+ {
+ if (poffset)
+ poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
+ poffset);
+ else
+ poffset = offset;
+ }
+
+ if (!poffset)
+ {
+ offset_iv.base = ssize_int (0);
+ offset_iv.step = ssize_int (0);
+ }
+ else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
+ &offset_iv, false))
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "evolution of offset is not affine.\n");
+ return false;
+ }
+
+ outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
+ split_constant_offset (base_iv.base, &base_iv.base, &dinit);
+ outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
+ split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
+ outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
+
+ outer_step = size_binop (PLUS_EXPR,
+ fold_convert (ssizetype, base_iv.step),
+ fold_convert (ssizetype, offset_iv.step));
+
+ STMT_VINFO_DR_STEP (stmt_info) = outer_step;
+ /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
+ STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
+ STMT_VINFO_DR_INIT (stmt_info) = outer_init;
+ STMT_VINFO_DR_OFFSET (stmt_info) =
+ fold_convert (ssizetype, offset_iv.base);
+ STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
+ size_int (highest_pow2_factor (offset_iv.base));
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "\touter base_address: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
+ dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ STMT_VINFO_DR_OFFSET (stmt_info));
+ dump_printf (MSG_NOTE,
+ "\n\touter constant offset from base address: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ STMT_VINFO_DR_INIT (stmt_info));
+ dump_printf (MSG_NOTE, "\n\touter step: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ STMT_VINFO_DR_STEP (stmt_info));
+ dump_printf (MSG_NOTE, "\n\touter aligned to: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ STMT_VINFO_DR_ALIGNED_TO (stmt_info));
+ dump_printf (MSG_NOTE, "\n");
+ }
+ }
+
+ if (STMT_VINFO_DATA_REF (stmt_info))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: more than one data ref "
+ "in stmt: ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ if (gather || simd_lane_access)
+ free_data_ref (dr);
+ return false;
+ }
+
+ STMT_VINFO_DATA_REF (stmt_info) = dr;
+ if (simd_lane_access)
+ {
+ STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
+ free_data_ref (datarefs[i]);
+ datarefs[i] = dr;
+ }
+
+ /* Set vectype for STMT. */
+ scalar_type = TREE_TYPE (DR_REF (dr));
+ STMT_VINFO_VECTYPE (stmt_info)
+ = get_vectype_for_scalar_type (scalar_type);
+ if (!STMT_VINFO_VECTYPE (stmt_info))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: no vectype for stmt: ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
+ dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
+ scalar_type);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+
+ if (bb_vinfo)
+ break;
+
+ if (gather || simd_lane_access)
+ {
+ STMT_VINFO_DATA_REF (stmt_info) = NULL;
+ if (gather)
+ free_data_ref (dr);
+ }
+ return false;
+ }
+ else
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "got vectype for stmt: ");
+ dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
+ dump_generic_expr (MSG_NOTE, TDF_SLIM,
+ STMT_VINFO_VECTYPE (stmt_info));
+ dump_printf (MSG_NOTE, "\n");
+ }
+ }
+
+ /* Adjust the minimal vectorization factor according to the
+ vector type. */
+ vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
+ if (vf > *min_vf)
+ *min_vf = vf;
+
+ if (gather)
+ {
+ tree off;
+
+ gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
+ if (gather
+ && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
+ gather = false;
+ if (!gather)
+ {
+ STMT_VINFO_DATA_REF (stmt_info) = NULL;
+ free_data_ref (dr);
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: not suitable for gather "
+ "load ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return false;
+ }
+
+ datarefs[i] = dr;
+ STMT_VINFO_GATHER_P (stmt_info) = true;
+ }
+ else if (loop_vinfo
+ && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
+ {
+ if (nested_in_vect_loop_p (loop, stmt)
+ || !DR_IS_READ (dr))
+ {
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "not vectorized: not suitable for strided "
+ "load ");
+ dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
+ dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
+ }
+ return false;
+ }
+ STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
+ }
+ }
+
+ /* If we stopped analysis at the first dataref we could not analyze
+ when trying to vectorize a basic-block mark the rest of the datarefs
+ as not vectorizable and truncate the vector of datarefs. That
+ avoids spending useless time in analyzing their dependence. */
+ if (i != datarefs.length ())
+ {
+ gcc_assert (bb_vinfo != NULL);
+ for (unsigned j = i; j < datarefs.length (); ++j)
+ {
+ data_reference_p dr = datarefs[j];
+ STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
+ free_data_ref (dr);
+ }
+ datarefs.truncate (i);
+ }
+
+ return true;
+}
+
+
+/* Function vect_get_new_vect_var.
+
+ Returns a name for a new variable. The current naming scheme appends the
+ prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
+ the name of vectorizer generated variables, and appends that to NAME if
+ provided. */
+
+tree
+vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
+{
+ const char *prefix;
+ tree new_vect_var;
+
+ switch (var_kind)
+ {
+ case vect_simple_var:
+ prefix = "vect";
+ break;
+ case vect_scalar_var:
+ prefix = "stmp";
+ break;
+ case vect_pointer_var:
+ prefix = "vectp";
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (name)
+ {
+ char* tmp = concat (prefix, "_", name, NULL);
+ new_vect_var = create_tmp_reg (type, tmp);
+ free (tmp);
+ }
+ else
+ new_vect_var = create_tmp_reg (type, prefix);
+
+ return new_vect_var;
+}
+
+
+/* Function vect_create_addr_base_for_vector_ref.
+
+ Create an expression that computes the address of the first memory location
+ that will be accessed for a data reference.
+
+ Input:
+ STMT: The statement containing the data reference.
+ NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
+ OFFSET: Optional. If supplied, it is be added to the initial address.
+ LOOP: Specify relative to which loop-nest should the address be computed.
+ For example, when the dataref is in an inner-loop nested in an
+ outer-loop that is now being vectorized, LOOP can be either the
+ outer-loop, or the inner-loop. The first memory location accessed
+ by the following dataref ('in' points to short):
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ s += in[i+j]
+
+ is as follows:
+ if LOOP=i_loop: &in (relative to i_loop)
+ if LOOP=j_loop: &in+i*2B (relative to j_loop)
+
+ Output:
+ 1. Return an SSA_NAME whose value is the address of the memory location of
+ the first vector of the data reference.
+ 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
+ these statement(s) which define the returned SSA_NAME.
+
+ FORNOW: We are only handling array accesses with step 1. */
+
+tree
+vect_create_addr_base_for_vector_ref (gimple stmt,
+ gimple_seq *new_stmt_list,
+ tree offset,
+ struct loop *loop)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree data_ref_base;
+ const char *base_name;
+ tree addr_base;
+ tree dest;
+ gimple_seq seq = NULL;
+ tree base_offset;
+ tree init;
+ tree vect_ptr_type;
+ tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+
+ if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
+ {
+ struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
+
+ gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
+
+ data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
+ base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
+ init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
+ }
+ else
+ {
+ data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
+ base_offset = unshare_expr (DR_OFFSET (dr));
+ init = unshare_expr (DR_INIT (dr));
+ }
+
+ if (loop_vinfo)
+ base_name = get_name (data_ref_base);
+ else
+ {
+ base_offset = ssize_int (0);
+ init = ssize_int (0);
+ base_name = get_name (DR_REF (dr));
+ }
+
+ /* Create base_offset */
+ base_offset = size_binop (PLUS_EXPR,
+ fold_convert (sizetype, base_offset),
+ fold_convert (sizetype, init));
+
+ if (offset)
+ {
+ offset = fold_build2 (MULT_EXPR, sizetype,
+ fold_convert (sizetype, offset), step);
+ base_offset = fold_build2 (PLUS_EXPR, sizetype,
+ base_offset, offset);
+ }
+
+ /* base + base_offset */
+ if (loop_vinfo)
+ addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
+ else
+ {
+ addr_base = build1 (ADDR_EXPR,
+ build_pointer_type (TREE_TYPE (DR_REF (dr))),
+ unshare_expr (DR_REF (dr)));
+ }
+
+ vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
+ addr_base = fold_convert (vect_ptr_type, addr_base);
+ dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
+ addr_base = force_gimple_operand (addr_base, &seq, false, dest);
+ gimple_seq_add_seq (new_stmt_list, seq);
+
+ if (DR_PTR_INFO (dr)
+ && TREE_CODE (addr_base) == SSA_NAME)
+ {
+ duplicate_ssa_name_ptr_info (addr_base, DR_PTR_INFO (dr));
+ if (offset)
+ mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
+ }
+
+ if (dump_enabled_p ())
+ {
+ dump_printf_loc (MSG_NOTE, vect_location, "created ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ return addr_base;
+}
+
+
+/* Function vect_create_data_ref_ptr.
+
+ Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
+ location accessed in the loop by STMT, along with the def-use update
+ chain to appropriately advance the pointer through the loop iterations.
+ Also set aliasing information for the pointer. This pointer is used by
+ the callers to this function to create a memory reference expression for
+ vector load/store access.
+
+ Input:
+ 1. STMT: a stmt that references memory. Expected to be of the form
+ GIMPLE_ASSIGN <name, data-ref> or
+ GIMPLE_ASSIGN <data-ref, name>.
+ 2. AGGR_TYPE: the type of the reference, which should be either a vector
+ or an array.
+ 3. AT_LOOP: the loop where the vector memref is to be created.
+ 4. OFFSET (optional): an offset to be added to the initial address accessed
+ by the data-ref in STMT.
+ 5. BSI: location where the new stmts are to be placed if there is no loop
+ 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
+ pointing to the initial address.
+
+ Output:
+ 1. Declare a new ptr to vector_type, and have it point to the base of the
+ data reference (initial addressed accessed by the data reference).
+ For example, for vector of type V8HI, the following code is generated:
+
+ v8hi *ap;
+ ap = (v8hi *)initial_address;
+
+ if OFFSET is not supplied:
+ initial_address = &a[init];
+ if OFFSET is supplied:
+ initial_address = &a[init + OFFSET];
+
+ Return the initial_address in INITIAL_ADDRESS.
+
+ 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
+ update the pointer in each iteration of the loop.
+
+ Return the increment stmt that updates the pointer in PTR_INCR.
+
+ 3. Set INV_P to true if the access pattern of the data reference in the
+ vectorized loop is invariant. Set it to false otherwise.
+
+ 4. Return the pointer. */
+
+tree
+vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
+ tree offset, tree *initial_address,
+ gimple_stmt_iterator *gsi, gimple *ptr_incr,
+ bool only_init, bool *inv_p)
+{
+ const char *base_name;
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *loop = NULL;
+ bool nested_in_vect_loop = false;
+ struct loop *containing_loop = NULL;
+ tree aggr_ptr_type;
+ tree aggr_ptr;
+ tree new_temp;
+ gimple vec_stmt;
+ gimple_seq new_stmt_list = NULL;
+ edge pe = NULL;
+ basic_block new_bb;
+ tree aggr_ptr_init;
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree aptr;
+ gimple_stmt_iterator incr_gsi;
+ bool insert_after;
+ tree indx_before_incr, indx_after_incr;
+ gimple incr;
+ tree step;
+ bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
+
+ gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
+ || TREE_CODE (aggr_type) == VECTOR_TYPE);
+
+ if (loop_vinfo)
+ {
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+ containing_loop = (gimple_bb (stmt))->loop_father;
+ pe = loop_preheader_edge (loop);
+ }
+ else
+ {
+ gcc_assert (bb_vinfo);
+ only_init = true;
+ *ptr_incr = NULL;
+ }
+
+ /* Check the step (evolution) of the load in LOOP, and record
+ whether it's invariant. */
+ if (nested_in_vect_loop)
+ step = STMT_VINFO_DR_STEP (stmt_info);
+ else
+ step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
+
+ if (integer_zerop (step))
+ *inv_p = true;
+ else
+ *inv_p = false;
+
+ /* Create an expression for the first address accessed by this load
+ in LOOP. */
+ base_name = get_name (DR_BASE_ADDRESS (dr));
+
+ if (dump_enabled_p ())
+ {
+ tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
+ dump_printf_loc (MSG_NOTE, vect_location,
+ "create %s-pointer variable to type: ",
+ get_tree_code_name (TREE_CODE (aggr_type)));
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
+ if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
+ dump_printf (MSG_NOTE, " vectorizing an array ref: ");
+ else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
+ dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
+ else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
+ dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
+ else
+ dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
+ dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
+ dump_printf (MSG_NOTE, "\n");
+ }
+
+ /* (1) Create the new aggregate-pointer variable.
+ Vector and array types inherit the alias set of their component
+ type by default so we need to use a ref-all pointer if the data
+ reference does not conflict with the created aggregated data
+ reference because it is not addressable. */
+ bool need_ref_all = false;
+ if (!alias_sets_conflict_p (get_alias_set (aggr_type),
+ get_alias_set (DR_REF (dr))))
+ need_ref_all = true;
+ /* Likewise for any of the data references in the stmt group. */
+ else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
+ {
+ gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
+ do
+ {
+ stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
+ struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
+ if (!alias_sets_conflict_p (get_alias_set (aggr_type),
+ get_alias_set (DR_REF (sdr))))
+ {
+ need_ref_all = true;
+ break;
+ }
+ orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
+ }
+ while (orig_stmt);
+ }
+ aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
+ need_ref_all);
+ aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
+
+
+ /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
+ vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
+ def-use update cycles for the pointer: one relative to the outer-loop
+ (LOOP), which is what steps (3) and (4) below do. The other is relative
+ to the inner-loop (which is the inner-most loop containing the dataref),
+ and this is done be step (5) below.
+
+ When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
+ inner-most loop, and so steps (3),(4) work the same, and step (5) is
+ redundant. Steps (3),(4) create the following:
+
+ vp0 = &base_addr;
+ LOOP: vp1 = phi(vp0,vp2)
+ ...
+ ...
+ vp2 = vp1 + step
+ goto LOOP
+
+ If there is an inner-loop nested in loop, then step (5) will also be
+ applied, and an additional update in the inner-loop will be created:
+
+ vp0 = &base_addr;
+ LOOP: vp1 = phi(vp0,vp2)
+ ...
+ inner: vp3 = phi(vp1,vp4)
+ vp4 = vp3 + inner_step
+ if () goto inner
+ ...
+ vp2 = vp1 + step
+ if () goto LOOP */
+
+ /* (2) Calculate the initial address of the aggregate-pointer, and set
+ the aggregate-pointer to point to it before the loop. */
+
+ /* Create: (&(base[init_val+offset]) in the loop preheader. */
+
+ new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
+ offset, loop);
+ if (new_stmt_list)
+ {
+ if (pe)
+ {
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
+ }
+
+ *initial_address = new_temp;
+
+ /* Create: p = (aggr_type *) initial_base */
+ if (TREE_CODE (new_temp) != SSA_NAME
+ || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
+ {
+ vec_stmt = gimple_build_assign (aggr_ptr,
+ fold_convert (aggr_ptr_type, new_temp));
+ aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
+ gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
+ if (pe)
+ {
+ new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
+ }
+ else
+ aggr_ptr_init = new_temp;
+
+ /* (3) Handle the updating of the aggregate-pointer inside the loop.
+ This is needed when ONLY_INIT is false, and also when AT_LOOP is the
+ inner-loop nested in LOOP (during outer-loop vectorization). */
+
+ /* No update in loop is required. */
+ if (only_init && (!loop_vinfo || at_loop == loop))
+ aptr = aggr_ptr_init;
+ else
+ {
+ /* The step of the aggregate pointer is the type size. */
+ tree iv_step = TYPE_SIZE_UNIT (aggr_type);
+ /* One exception to the above is when the scalar step of the load in
+ LOOP is zero. In this case the step here is also zero. */
+ if (*inv_p)
+ iv_step = size_zero_node;
+ else if (tree_int_cst_sgn (step) == -1)
+ iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
+
+ standard_iv_increment_position (loop, &incr_gsi, &insert_after);
+
+ create_iv (aggr_ptr_init,
+ fold_convert (aggr_ptr_type, iv_step),
+ aggr_ptr, loop, &incr_gsi, insert_after,
+ &indx_before_incr, &indx_after_incr);
+ incr = gsi_stmt (incr_gsi);
+ set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
+ duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
+ }
+ if (ptr_incr)
+ *ptr_incr = incr;
+
+ aptr = indx_before_incr;
+ }
+
+ if (!nested_in_vect_loop || only_init)
+ return aptr;
+
+
+ /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
+ nested in LOOP, if exists. */
+
+ gcc_assert (nested_in_vect_loop);
+ if (!only_init)
+ {
+ standard_iv_increment_position (containing_loop, &incr_gsi,
+ &insert_after);
+ create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
+ containing_loop, &incr_gsi, insert_after, &indx_before_incr,
+ &indx_after_incr);
+ incr = gsi_stmt (incr_gsi);
+ set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
+ duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
+ }
+ if (ptr_incr)
+ *ptr_incr = incr;
+
+ return indx_before_incr;
+ }
+ else
+ gcc_unreachable ();
+}
+
+
+/* Function bump_vector_ptr
+
+ Increment a pointer (to a vector type) by vector-size. If requested,
+ i.e. if PTR-INCR is given, then also connect the new increment stmt
+ to the existing def-use update-chain of the pointer, by modifying
+ the PTR_INCR as illustrated below:
+
+ The pointer def-use update-chain before this function:
+ DATAREF_PTR = phi (p_0, p_2)
+ ....
+ PTR_INCR: p_2 = DATAREF_PTR + step
+
+ The pointer def-use update-chain after this function:
+ DATAREF_PTR = phi (p_0, p_2)
+ ....
+ NEW_DATAREF_PTR = DATAREF_PTR + BUMP
+ ....
+ PTR_INCR: p_2 = NEW_DATAREF_PTR + step
+
+ Input:
+ DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
+ in the loop.
+ PTR_INCR - optional. The stmt that updates the pointer in each iteration of
+ the loop. The increment amount across iterations is expected
+ to be vector_size.
+ BSI - location where the new update stmt is to be placed.
+ STMT - the original scalar memory-access stmt that is being vectorized.
+ BUMP - optional. The offset by which to bump the pointer. If not given,
+ the offset is assumed to be vector_size.
+
+ Output: Return NEW_DATAREF_PTR as illustrated above.
+
+*/
+
+tree
+bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
+ gimple stmt, tree bump)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ tree update = TYPE_SIZE_UNIT (vectype);
+ gimple incr_stmt;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree new_dataref_ptr;
+
+ if (bump)
+ update = bump;
+
+ new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
+ incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
+ dataref_ptr, update);
+ vect_finish_stmt_generation (stmt, incr_stmt, gsi);
+
+ /* Copy the points-to information if it exists. */
+ if (DR_PTR_INFO (dr))
+ {
+ duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
+ mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
+ }
+
+ if (!ptr_incr)
+ return new_dataref_ptr;
+
+ /* Update the vector-pointer's cross-iteration increment. */
+ FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
+ {
+ tree use = USE_FROM_PTR (use_p);
+
+ if (use == dataref_ptr)
+ SET_USE (use_p, new_dataref_ptr);
+ else
+ gcc_assert (tree_int_cst_compare (use, update) == 0);
+ }
+
+ return new_dataref_ptr;
+}
+
+
+/* Function vect_create_destination_var.
+
+ Create a new temporary of type VECTYPE. */
+
+tree
+vect_create_destination_var (tree scalar_dest, tree vectype)
+{
+ tree vec_dest;
+ const char *name;
+ char *new_name;
+ tree type;
+ enum vect_var_kind kind;
+
+ kind = vectype ? vect_simple_var : vect_scalar_var;
+ type = vectype ? vectype : TREE_TYPE (scalar_dest);
+
+ gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
+
+ name = get_name (scalar_dest);
+ if (name)
+ asprintf (&new_name, "%s_%u", name, SSA_NAME_VERSION (scalar_dest));
+ else
+ asprintf (&new_name, "_%u", SSA_NAME_VERSION (scalar_dest));
+ vec_dest = vect_get_new_vect_var (type, kind, new_name);
+ free (new_name);
+
+ return vec_dest;
+}
+
+/* Function vect_grouped_store_supported.
+
+ Returns TRUE if interleave high and interleave low permutations
+ are supported, and FALSE otherwise. */
+
+bool
+vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
+{
+ enum machine_mode mode = TYPE_MODE (vectype);
+
+ /* vect_permute_store_chain requires the group size to be a power of two. */
+ if (exact_log2 (count) == -1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "the size of the group of accesses"
+ " is not a power of 2\n");
+ return false;
+ }
+
+ /* Check that the permutation is supported. */
+ if (VECTOR_MODE_P (mode))
+ {
+ unsigned int i, nelt = GET_MODE_NUNITS (mode);
+ unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
+ for (i = 0; i < nelt / 2; i++)
+ {
+ sel[i * 2] = i;
+ sel[i * 2 + 1] = i + nelt;
+ }
+ if (can_vec_perm_p (mode, false, sel))
+ {
+ for (i = 0; i < nelt; i++)
+ sel[i] += nelt / 2;
+ if (can_vec_perm_p (mode, false, sel))
+ return true;
+ }
+ }
+
+ if (dump_enabled_p ())
+ dump_printf (MSG_MISSED_OPTIMIZATION,
+ "interleave op not supported by target.\n");
+ return false;
+}
+
+
+/* Return TRUE if vec_store_lanes is available for COUNT vectors of
+ type VECTYPE. */
+
+bool
+vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
+{
+ return vect_lanes_optab_supported_p ("vec_store_lanes",
+ vec_store_lanes_optab,
+ vectype, count);
+}
+
+
+/* Function vect_permute_store_chain.
+
+ Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
+ a power of 2, generate interleave_high/low stmts to reorder the data
+ correctly for the stores. Return the final references for stores in
+ RESULT_CHAIN.
+
+ E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+ The input is 4 vectors each containing 8 elements. We assign a number to
+ each element, the input sequence is:
+
+ 1st vec: 0 1 2 3 4 5 6 7
+ 2nd vec: 8 9 10 11 12 13 14 15
+ 3rd vec: 16 17 18 19 20 21 22 23
+ 4th vec: 24 25 26 27 28 29 30 31
+
+ The output sequence should be:
+
+ 1st vec: 0 8 16 24 1 9 17 25
+ 2nd vec: 2 10 18 26 3 11 19 27
+ 3rd vec: 4 12 20 28 5 13 21 30
+ 4th vec: 6 14 22 30 7 15 23 31
+
+ i.e., we interleave the contents of the four vectors in their order.
+
+ We use interleave_high/low instructions to create such output. The input of
+ each interleave_high/low operation is two vectors:
+ 1st vec 2nd vec
+ 0 1 2 3 4 5 6 7
+ the even elements of the result vector are obtained left-to-right from the
+ high/low elements of the first vector. The odd elements of the result are
+ obtained left-to-right from the high/low elements of the second vector.
+ The output of interleave_high will be: 0 4 1 5
+ and of interleave_low: 2 6 3 7
+
+
+ The permutation is done in log LENGTH stages. In each stage interleave_high
+ and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
+ where the first argument is taken from the first half of DR_CHAIN and the
+ second argument from it's second half.
+ In our example,
+
+ I1: interleave_high (1st vec, 3rd vec)
+ I2: interleave_low (1st vec, 3rd vec)
+ I3: interleave_high (2nd vec, 4th vec)
+ I4: interleave_low (2nd vec, 4th vec)
+
+ The output for the first stage is:
+
+ I1: 0 16 1 17 2 18 3 19
+ I2: 4 20 5 21 6 22 7 23
+ I3: 8 24 9 25 10 26 11 27
+ I4: 12 28 13 29 14 30 15 31
+
+ The output of the second stage, i.e. the final result is:
+
+ I1: 0 8 16 24 1 9 17 25
+ I2: 2 10 18 26 3 11 19 27
+ I3: 4 12 20 28 5 13 21 30
+ I4: 6 14 22 30 7 15 23 31. */
+
+void
+vect_permute_store_chain (vec<tree> dr_chain,
+ unsigned int length,
+ gimple stmt,
+ gimple_stmt_iterator *gsi,
+ vec<tree> *result_chain)
+{
+ tree vect1, vect2, high, low;
+ gimple perm_stmt;
+ tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+ tree perm_mask_low, perm_mask_high;
+ unsigned int i, n;
+ unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
+ unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
+
+ result_chain->quick_grow (length);
+ memcpy (result_chain->address (), dr_chain.address (),
+ length * sizeof (tree));
+
+ for (i = 0, n = nelt / 2; i < n; i++)
+ {
+ sel[i * 2] = i;
+ sel[i * 2 + 1] = i + nelt;
+ }
+ perm_mask_high = vect_gen_perm_mask (vectype, sel);
+ gcc_assert (perm_mask_high != NULL);
+
+ for (i = 0; i < nelt; i++)
+ sel[i] += nelt / 2;
+ perm_mask_low = vect_gen_perm_mask (vectype, sel);
+ gcc_assert (perm_mask_low != NULL);
+
+ for (i = 0, n = exact_log2 (length); i < n; i++)
+ {
+ for (j = 0; j < length/2; j++)
+ {
+ vect1 = dr_chain[j];
+ vect2 = dr_chain[j+length/2];
+
+ /* Create interleaving stmt:
+ high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1, ...}> */
+ high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
+ perm_stmt
+ = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
+ vect1, vect2, perm_mask_high);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+ (*result_chain)[2*j] = high;
+
+ /* Create interleaving stmt:
+ low = VEC_PERM_EXPR <vect1, vect2, {nelt/2, nelt*3/2, nelt/2+1,
+ nelt*3/2+1, ...}> */
+ low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
+ perm_stmt
+ = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
+ vect1, vect2, perm_mask_low);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+ (*result_chain)[2*j+1] = low;
+ }
+ memcpy (dr_chain.address (), result_chain->address (),
+ length * sizeof (tree));
+ }
+}
+
+/* Function vect_setup_realignment
+
+ This function is called when vectorizing an unaligned load using
+ the dr_explicit_realign[_optimized] scheme.
+ This function generates the following code at the loop prolog:
+
+ p = initial_addr;
+ x msq_init = *(floor(p)); # prolog load
+ realignment_token = call target_builtin;
+ loop:
+ x msq = phi (msq_init, ---)
+
+ The stmts marked with x are generated only for the case of
+ dr_explicit_realign_optimized.
+
+ The code above sets up a new (vector) pointer, pointing to the first
+ location accessed by STMT, and a "floor-aligned" load using that pointer.
+ It also generates code to compute the "realignment-token" (if the relevant
+ target hook was defined), and creates a phi-node at the loop-header bb
+ whose arguments are the result of the prolog-load (created by this
+ function) and the result of a load that takes place in the loop (to be
+ created by the caller to this function).
+
+ For the case of dr_explicit_realign_optimized:
+ The caller to this function uses the phi-result (msq) to create the
+ realignment code inside the loop, and sets up the missing phi argument,
+ as follows:
+ loop:
+ msq = phi (msq_init, lsq)
+ lsq = *(floor(p')); # load in loop
+ result = realign_load (msq, lsq, realignment_token);
+
+ For the case of dr_explicit_realign:
+ loop:
+ msq = *(floor(p)); # load in loop
+ p' = p + (VS-1);
+ lsq = *(floor(p')); # load in loop
+ result = realign_load (msq, lsq, realignment_token);
+
+ Input:
+ STMT - (scalar) load stmt to be vectorized. This load accesses
+ a memory location that may be unaligned.
+ BSI - place where new code is to be inserted.
+ ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
+ is used.
+
+ Output:
+ REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
+ target hook, if defined.
+ Return value - the result of the loop-header phi node. */
+
+tree
+vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
+ tree *realignment_token,
+ enum dr_alignment_support alignment_support_scheme,
+ tree init_addr,
+ struct loop **at_loop)
+{
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
+ struct loop *loop = NULL;
+ edge pe = NULL;
+ tree scalar_dest = gimple_assign_lhs (stmt);
+ tree vec_dest;
+ gimple inc;
+ tree ptr;
+ tree data_ref;
+ gimple new_stmt;
+ basic_block new_bb;
+ tree msq_init = NULL_TREE;
+ tree new_temp;
+ gimple phi_stmt;
+ tree msq = NULL_TREE;
+ gimple_seq stmts = NULL;
+ bool inv_p;
+ bool compute_in_loop = false;
+ bool nested_in_vect_loop = false;
+ struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
+ struct loop *loop_for_initial_load = NULL;
+
+ if (loop_vinfo)
+ {
+ loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
+ }
+
+ gcc_assert (alignment_support_scheme == dr_explicit_realign
+ || alignment_support_scheme == dr_explicit_realign_optimized);
+
+ /* We need to generate three things:
+ 1. the misalignment computation
+ 2. the extra vector load (for the optimized realignment scheme).
+ 3. the phi node for the two vectors from which the realignment is
+ done (for the optimized realignment scheme). */
+
+ /* 1. Determine where to generate the misalignment computation.
+
+ If INIT_ADDR is NULL_TREE, this indicates that the misalignment
+ calculation will be generated by this function, outside the loop (in the
+ preheader). Otherwise, INIT_ADDR had already been computed for us by the
+ caller, inside the loop.
+
+ Background: If the misalignment remains fixed throughout the iterations of
+ the loop, then both realignment schemes are applicable, and also the
+ misalignment computation can be done outside LOOP. This is because we are
+ vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
+ are a multiple of VS (the Vector Size), and therefore the misalignment in
+ different vectorized LOOP iterations is always the same.
+ The problem arises only if the memory access is in an inner-loop nested
+ inside LOOP, which is now being vectorized using outer-loop vectorization.
+ This is the only case when the misalignment of the memory access may not
+ remain fixed throughout the iterations of the inner-loop (as explained in
+ detail in vect_supportable_dr_alignment). In this case, not only is the
+ optimized realignment scheme not applicable, but also the misalignment
+ computation (and generation of the realignment token that is passed to
+ REALIGN_LOAD) have to be done inside the loop.
+
+ In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
+ or not, which in turn determines if the misalignment is computed inside
+ the inner-loop, or outside LOOP. */
+
+ if (init_addr != NULL_TREE || !loop_vinfo)
+ {
+ compute_in_loop = true;
+ gcc_assert (alignment_support_scheme == dr_explicit_realign);
+ }
+
+
+ /* 2. Determine where to generate the extra vector load.
+
+ For the optimized realignment scheme, instead of generating two vector
+ loads in each iteration, we generate a single extra vector load in the
+ preheader of the loop, and in each iteration reuse the result of the
+ vector load from the previous iteration. In case the memory access is in
+ an inner-loop nested inside LOOP, which is now being vectorized using
+ outer-loop vectorization, we need to determine whether this initial vector
+ load should be generated at the preheader of the inner-loop, or can be
+ generated at the preheader of LOOP. If the memory access has no evolution
+ in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
+ to be generated inside LOOP (in the preheader of the inner-loop). */
+
+ if (nested_in_vect_loop)
+ {
+ tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
+ bool invariant_in_outerloop =
+ (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
+ loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
+ }
+ else
+ loop_for_initial_load = loop;
+ if (at_loop)
+ *at_loop = loop_for_initial_load;
+
+ if (loop_for_initial_load)
+ pe = loop_preheader_edge (loop_for_initial_load);
+
+ /* 3. For the case of the optimized realignment, create the first vector
+ load at the loop preheader. */
+
+ if (alignment_support_scheme == dr_explicit_realign_optimized)
+ {
+ /* Create msq_init = *(floor(p1)) in the loop preheader */
+
+ gcc_assert (!compute_in_loop);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
+ NULL_TREE, &init_addr, NULL, &inc,
+ true, &inv_p);
+ new_temp = copy_ssa_name (ptr, NULL);
+ new_stmt = gimple_build_assign_with_ops
+ (BIT_AND_EXPR, new_temp, ptr,
+ build_int_cst (TREE_TYPE (ptr),
+ -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ data_ref
+ = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
+ build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
+ new_stmt = gimple_build_assign (vec_dest, data_ref);
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_assign_set_lhs (new_stmt, new_temp);
+ if (pe)
+ {
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+
+ msq_init = gimple_assign_lhs (new_stmt);
+ }
+
+ /* 4. Create realignment token using a target builtin, if available.
+ It is done either inside the containing loop, or before LOOP (as
+ determined above). */
+
+ if (targetm.vectorize.builtin_mask_for_load)
+ {
+ tree builtin_decl;
+
+ /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
+ if (!init_addr)
+ {
+ /* Generate the INIT_ADDR computation outside LOOP. */
+ init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
+ NULL_TREE, loop);
+ if (loop)
+ {
+ pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
+ gcc_assert (!new_bb);
+ }
+ else
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ }
+
+ builtin_decl = targetm.vectorize.builtin_mask_for_load ();
+ new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
+ vec_dest =
+ vect_create_destination_var (scalar_dest,
+ gimple_call_return_type (new_stmt));
+ new_temp = make_ssa_name (vec_dest, new_stmt);
+ gimple_call_set_lhs (new_stmt, new_temp);
+
+ if (compute_in_loop)
+ gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
+ else
+ {
+ /* Generate the misalignment computation outside LOOP. */
+ pe = loop_preheader_edge (loop);
+ new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
+ gcc_assert (!new_bb);
+ }
+
+ *realignment_token = gimple_call_lhs (new_stmt);
+
+ /* The result of the CALL_EXPR to this builtin is determined from
+ the value of the parameter and no global variables are touched
+ which makes the builtin a "const" function. Requiring the
+ builtin to have the "const" attribute makes it unnecessary
+ to call mark_call_clobbered. */
+ gcc_assert (TREE_READONLY (builtin_decl));
+ }
+
+ if (alignment_support_scheme == dr_explicit_realign)
+ return msq;
+
+ gcc_assert (!compute_in_loop);
+ gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
+
+
+ /* 5. Create msq = phi <msq_init, lsq> in loop */
+
+ pe = loop_preheader_edge (containing_loop);
+ vec_dest = vect_create_destination_var (scalar_dest, vectype);
+ msq = make_ssa_name (vec_dest, NULL);
+ phi_stmt = create_phi_node (msq, containing_loop->header);
+ add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
+
+ return msq;
+}
+
+
+/* Function vect_grouped_load_supported.
+
+ Returns TRUE if even and odd permutations are supported,
+ and FALSE otherwise. */
+
+bool
+vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
+{
+ enum machine_mode mode = TYPE_MODE (vectype);
+
+ /* vect_permute_load_chain requires the group size to be a power of two. */
+ if (exact_log2 (count) == -1)
+ {
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "the size of the group of accesses"
+ " is not a power of 2\n");
+ return false;
+ }
+
+ /* Check that the permutation is supported. */
+ if (VECTOR_MODE_P (mode))
+ {
+ unsigned int i, nelt = GET_MODE_NUNITS (mode);
+ unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
+
+ for (i = 0; i < nelt; i++)
+ sel[i] = i * 2;
+ if (can_vec_perm_p (mode, false, sel))
+ {
+ for (i = 0; i < nelt; i++)
+ sel[i] = i * 2 + 1;
+ if (can_vec_perm_p (mode, false, sel))
+ return true;
+ }
+ }
+
+ if (dump_enabled_p ())
+ dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
+ "extract even/odd not supported by target\n");
+ return false;
+}
+
+/* Return TRUE if vec_load_lanes is available for COUNT vectors of
+ type VECTYPE. */
+
+bool
+vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
+{
+ return vect_lanes_optab_supported_p ("vec_load_lanes",
+ vec_load_lanes_optab,
+ vectype, count);
+}
+
+/* Function vect_permute_load_chain.
+
+ Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
+ a power of 2, generate extract_even/odd stmts to reorder the input data
+ correctly. Return the final references for loads in RESULT_CHAIN.
+
+ E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
+ The input is 4 vectors each containing 8 elements. We assign a number to each
+ element, the input sequence is:
+
+ 1st vec: 0 1 2 3 4 5 6 7
+ 2nd vec: 8 9 10 11 12 13 14 15
+ 3rd vec: 16 17 18 19 20 21 22 23
+ 4th vec: 24 25 26 27 28 29 30 31
+
+ The output sequence should be:
+
+ 1st vec: 0 4 8 12 16 20 24 28
+ 2nd vec: 1 5 9 13 17 21 25 29
+ 3rd vec: 2 6 10 14 18 22 26 30
+ 4th vec: 3 7 11 15 19 23 27 31
+
+ i.e., the first output vector should contain the first elements of each
+ interleaving group, etc.
+
+ We use extract_even/odd instructions to create such output. The input of
+ each extract_even/odd operation is two vectors
+ 1st vec 2nd vec
+ 0 1 2 3 4 5 6 7
+
+ and the output is the vector of extracted even/odd elements. The output of
+ extract_even will be: 0 2 4 6
+ and of extract_odd: 1 3 5 7
+
+
+ The permutation is done in log LENGTH stages. In each stage extract_even
+ and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
+ their order. In our example,
+
+ E1: extract_even (1st vec, 2nd vec)
+ E2: extract_odd (1st vec, 2nd vec)
+ E3: extract_even (3rd vec, 4th vec)
+ E4: extract_odd (3rd vec, 4th vec)
+
+ The output for the first stage will be:
+
+ E1: 0 2 4 6 8 10 12 14
+ E2: 1 3 5 7 9 11 13 15
+ E3: 16 18 20 22 24 26 28 30
+ E4: 17 19 21 23 25 27 29 31
+
+ In order to proceed and create the correct sequence for the next stage (or
+ for the correct output, if the second stage is the last one, as in our
+ example), we first put the output of extract_even operation and then the
+ output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
+ The input for the second stage is:
+
+ 1st vec (E1): 0 2 4 6 8 10 12 14
+ 2nd vec (E3): 16 18 20 22 24 26 28 30
+ 3rd vec (E2): 1 3 5 7 9 11 13 15
+ 4th vec (E4): 17 19 21 23 25 27 29 31
+
+ The output of the second stage:
+
+ E1: 0 4 8 12 16 20 24 28
+ E2: 2 6 10 14 18 22 26 30
+ E3: 1 5 9 13 17 21 25 29
+ E4: 3 7 11 15 19 23 27 31
+
+ And RESULT_CHAIN after reordering:
+
+ 1st vec (E1): 0 4 8 12 16 20 24 28
+ 2nd vec (E3): 1 5 9 13 17 21 25 29
+ 3rd vec (E2): 2 6 10 14 18 22 26 30
+ 4th vec (E4): 3 7 11 15 19 23 27 31. */
+
+static void
+vect_permute_load_chain (vec<tree> dr_chain,
+ unsigned int length,
+ gimple stmt,
+ gimple_stmt_iterator *gsi,
+ vec<tree> *result_chain)
+{
+ tree data_ref, first_vect, second_vect;
+ tree perm_mask_even, perm_mask_odd;
+ gimple perm_stmt;
+ tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
+ unsigned int i, j, log_length = exact_log2 (length);
+ unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
+ unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
+
+ result_chain->quick_grow (length);
+ memcpy (result_chain->address (), dr_chain.address (),
+ length * sizeof (tree));
+
+ for (i = 0; i < nelt; ++i)
+ sel[i] = i * 2;
+ perm_mask_even = vect_gen_perm_mask (vectype, sel);
+ gcc_assert (perm_mask_even != NULL);
+
+ for (i = 0; i < nelt; ++i)
+ sel[i] = i * 2 + 1;
+ perm_mask_odd = vect_gen_perm_mask (vectype, sel);
+ gcc_assert (perm_mask_odd != NULL);
+
+ for (i = 0; i < log_length; i++)
+ {
+ for (j = 0; j < length; j += 2)
+ {
+ first_vect = dr_chain[j];
+ second_vect = dr_chain[j+1];
+
+ /* data_ref = permute_even (first_data_ref, second_data_ref); */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
+ perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
+ first_vect, second_vect,
+ perm_mask_even);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+ (*result_chain)[j/2] = data_ref;
+
+ /* data_ref = permute_odd (first_data_ref, second_data_ref); */
+ data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
+ perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
+ first_vect, second_vect,
+ perm_mask_odd);
+ vect_finish_stmt_generation (stmt, perm_stmt, gsi);
+ (*result_chain)[j/2+length/2] = data_ref;
+ }
+ memcpy (dr_chain.address (), result_chain->address (),
+ length * sizeof (tree));
+ }
+}
+
+
+/* Function vect_transform_grouped_load.
+
+ Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
+ to perform their permutation and ascribe the result vectorized statements to
+ the scalar statements.
+*/
+
+void
+vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
+ gimple_stmt_iterator *gsi)
+{
+ vec<tree> result_chain = vNULL;
+
+ /* DR_CHAIN contains input data-refs that are a part of the interleaving.
+ RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
+ vectors, that are ready for vector computation. */
+ result_chain.create (size);
+ vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
+ vect_record_grouped_load_vectors (stmt, result_chain);
+ result_chain.release ();
+}
+
+/* RESULT_CHAIN contains the output of a group of grouped loads that were
+ generated as part of the vectorization of STMT. Assign the statement
+ for each vector to the associated scalar statement. */
+
+void
+vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
+{
+ gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
+ gimple next_stmt, new_stmt;
+ unsigned int i, gap_count;
+ tree tmp_data_ref;
+
+ /* Put a permuted data-ref in the VECTORIZED_STMT field.
+ Since we scan the chain starting from it's first node, their order
+ corresponds the order of data-refs in RESULT_CHAIN. */
+ next_stmt = first_stmt;
+ gap_count = 1;
+ FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
+ {
+ if (!next_stmt)
+ break;
+
+ /* Skip the gaps. Loads created for the gaps will be removed by dead
+ code elimination pass later. No need to check for the first stmt in
+ the group, since it always exists.
+ GROUP_GAP is the number of steps in elements from the previous
+ access (if there is no gap GROUP_GAP is 1). We skip loads that
+ correspond to the gaps. */
+ if (next_stmt != first_stmt
+ && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
+ {
+ gap_count++;
+ continue;
+ }
+
+ while (next_stmt)
+ {
+ new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
+ /* We assume that if VEC_STMT is not NULL, this is a case of multiple
+ copies, and we put the new vector statement in the first available
+ RELATED_STMT. */
+ if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
+ STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
+ else
+ {
+ if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
+ {
+ gimple prev_stmt =
+ STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
+ gimple rel_stmt =
+ STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
+ while (rel_stmt)
+ {
+ prev_stmt = rel_stmt;
+ rel_stmt =
+ STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
+ }
+
+ STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
+ new_stmt;
+ }
+ }
+
+ next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
+ gap_count = 1;
+ /* If NEXT_STMT accesses the same DR as the previous statement,
+ put the same TMP_DATA_REF as its vectorized statement; otherwise
+ get the next data-ref from RESULT_CHAIN. */
+ if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
+ break;
+ }
+ }
+}
+
+/* Function vect_force_dr_alignment_p.
+
+ Returns whether the alignment of a DECL can be forced to be aligned
+ on ALIGNMENT bit boundary. */
+
+bool
+vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
+{
+ if (TREE_CODE (decl) != VAR_DECL)
+ return false;
+
+ /* We cannot change alignment of common or external symbols as another
+ translation unit may contain a definition with lower alignment.
+ The rules of common symbol linking mean that the definition
+ will override the common symbol. The same is true for constant
+ pool entries which may be shared and are not properly merged
+ by LTO. */
+ if (DECL_EXTERNAL (decl)
+ || DECL_COMMON (decl)
+ || DECL_IN_CONSTANT_POOL (decl))
+ return false;
+
+ if (TREE_ASM_WRITTEN (decl))
+ return false;
+
+ /* Do not override the alignment as specified by the ABI when the used
+ attribute is set. */
+ if (DECL_PRESERVE_P (decl))
+ return false;
+
+ /* Do not override explicit alignment set by the user when an explicit
+ section name is also used. This is a common idiom used by many
+ software projects. */
+ if (DECL_SECTION_NAME (decl) != NULL_TREE
+ && !DECL_HAS_IMPLICIT_SECTION_NAME_P (decl))
+ return false;
+
+ if (TREE_STATIC (decl))
+ return (alignment <= MAX_OFILE_ALIGNMENT);
+ else
+ return (alignment <= MAX_STACK_ALIGNMENT);
+}
+
+
+/* Return whether the data reference DR is supported with respect to its
+ alignment.
+ If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
+ it is aligned, i.e., check if it is possible to vectorize it with different
+ alignment. */
+
+enum dr_alignment_support
+vect_supportable_dr_alignment (struct data_reference *dr,
+ bool check_aligned_accesses)
+{
+ gimple stmt = DR_STMT (dr);
+ stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ enum machine_mode mode = TYPE_MODE (vectype);
+ loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
+ struct loop *vect_loop = NULL;
+ bool nested_in_vect_loop = false;
+
+ if (aligned_access_p (dr) && !check_aligned_accesses)
+ return dr_aligned;
+
+ /* For now assume all conditional loads/stores support unaligned
+ access without any special code. */
+ if (is_gimple_call (stmt)
+ && gimple_call_internal_p (stmt)
+ && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
+ || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
+ return dr_unaligned_supported;
+
+ if (loop_vinfo)
+ {
+ vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
+ nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
+ }
+
+ /* Possibly unaligned access. */
+
+ /* We can choose between using the implicit realignment scheme (generating
+ a misaligned_move stmt) and the explicit realignment scheme (generating
+ aligned loads with a REALIGN_LOAD). There are two variants to the
+ explicit realignment scheme: optimized, and unoptimized.
+ We can optimize the realignment only if the step between consecutive
+ vector loads is equal to the vector size. Since the vector memory
+ accesses advance in steps of VS (Vector Size) in the vectorized loop, it
+ is guaranteed that the misalignment amount remains the same throughout the
+ execution of the vectorized loop. Therefore, we can create the
+ "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
+ at the loop preheader.
+
+ However, in the case of outer-loop vectorization, when vectorizing a
+ memory access in the inner-loop nested within the LOOP that is now being
+ vectorized, while it is guaranteed that the misalignment of the
+ vectorized memory access will remain the same in different outer-loop
+ iterations, it is *not* guaranteed that is will remain the same throughout
+ the execution of the inner-loop. This is because the inner-loop advances
+ with the original scalar step (and not in steps of VS). If the inner-loop
+ step happens to be a multiple of VS, then the misalignment remains fixed
+ and we can use the optimized realignment scheme. For example:
+
+ for (i=0; i<N; i++)
+ for (j=0; j<M; j++)
+ s += a[i+j];
+
+ When vectorizing the i-loop in the above example, the step between
+ consecutive vector loads is 1, and so the misalignment does not remain
+ fixed across the execution of the inner-loop, and the realignment cannot
+ be optimized (as illustrated in the following pseudo vectorized loop):
+
+ for (i=0; i<N; i+=4)
+ for (j=0; j<M; j++){
+ vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
+ // when j is {0,1,2,3,4,5,6,7,...} respectively.
+ // (assuming that we start from an aligned address).
+ }
+
+ We therefore have to use the unoptimized realignment scheme:
+
+ for (i=0; i<N; i+=4)
+ for (j=k; j<M; j+=4)
+ vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
+ // that the misalignment of the initial address is
+ // 0).
+
+ The loop can then be vectorized as follows:
+
+ for (k=0; k<4; k++){
+ rt = get_realignment_token (&vp[k]);
+ for (i=0; i<N; i+=4){
+ v1 = vp[i+k];
+ for (j=k; j<M; j+=4){
+ v2 = vp[i+j+VS-1];
+ va = REALIGN_LOAD <v1,v2,rt>;
+ vs += va;
+ v1 = v2;
+ }
+ }
+ } */
+
+ if (DR_IS_READ (dr))
+ {
+ bool is_packed = false;
+ tree type = (TREE_TYPE (DR_REF (dr)));
+
+ if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
+ && (!targetm.vectorize.builtin_mask_for_load
+ || targetm.vectorize.builtin_mask_for_load ()))
+ {
+ tree vectype = STMT_VINFO_VECTYPE (stmt_info);
+ if ((nested_in_vect_loop
+ && (TREE_INT_CST_LOW (DR_STEP (dr))
+ != GET_MODE_SIZE (TYPE_MODE (vectype))))
+ || !loop_vinfo)
+ return dr_explicit_realign;
+ else
+ return dr_explicit_realign_optimized;
+ }
+ if (!known_alignment_for_access_p (dr))
+ is_packed = not_size_aligned (DR_REF (dr));
+
+ if ((TYPE_USER_ALIGN (type) && !is_packed)
+ || targetm.vectorize.
+ support_vector_misalignment (mode, type,
+ DR_MISALIGNMENT (dr), is_packed))
+ /* Can't software pipeline the loads, but can at least do them. */
+ return dr_unaligned_supported;
+ }
+ else
+ {
+ bool is_packed = false;
+ tree type = (TREE_TYPE (DR_REF (dr)));
+
+ if (!known_alignment_for_access_p (dr))
+ is_packed = not_size_aligned (DR_REF (dr));
+
+ if ((TYPE_USER_ALIGN (type) && !is_packed)
+ || targetm.vectorize.
+ support_vector_misalignment (mode, type,
+ DR_MISALIGNMENT (dr), is_packed))
+ return dr_unaligned_supported;
+ }
+
+ /* Unsupported. */
+ return dr_unaligned_unsupported;
+}