aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-ssa-propagate.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-ssa-propagate.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-ssa-propagate.c')
-rw-r--r--gcc-4.9/gcc/tree-ssa-propagate.c1458
1 files changed, 1458 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-ssa-propagate.c b/gcc-4.9/gcc/tree-ssa-propagate.c
new file mode 100644
index 000000000..840d7e762
--- /dev/null
+++ b/gcc-4.9/gcc/tree-ssa-propagate.c
@@ -0,0 +1,1458 @@
+/* Generic SSA value propagation engine.
+ Copyright (C) 2004-2014 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by the
+ Free Software Foundation; either version 3, or (at your option) any
+ later version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING3. If not see
+ <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "tm_p.h"
+#include "basic-block.h"
+#include "function.h"
+#include "gimple-pretty-print.h"
+#include "dumpfile.h"
+#include "sbitmap.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-fold.h"
+#include "tree-eh.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa.h"
+#include "tree-ssa-propagate.h"
+#include "langhooks.h"
+#include "value-prof.h"
+
+/* This file implements a generic value propagation engine based on
+ the same propagation used by the SSA-CCP algorithm [1].
+
+ Propagation is performed by simulating the execution of every
+ statement that produces the value being propagated. Simulation
+ proceeds as follows:
+
+ 1- Initially, all edges of the CFG are marked not executable and
+ the CFG worklist is seeded with all the statements in the entry
+ basic block (block 0).
+
+ 2- Every statement S is simulated with a call to the call-back
+ function SSA_PROP_VISIT_STMT. This evaluation may produce 3
+ results:
+
+ SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
+ interest and does not affect any of the work lists.
+
+ SSA_PROP_VARYING: The value produced by S cannot be determined
+ at compile time. Further simulation of S is not required.
+ If S is a conditional jump, all the outgoing edges for the
+ block are considered executable and added to the work
+ list.
+
+ SSA_PROP_INTERESTING: S produces a value that can be computed
+ at compile time. Its result can be propagated into the
+ statements that feed from S. Furthermore, if S is a
+ conditional jump, only the edge known to be taken is added
+ to the work list. Edges that are known not to execute are
+ never simulated.
+
+ 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
+ return value from SSA_PROP_VISIT_PHI has the same semantics as
+ described in #2.
+
+ 4- Three work lists are kept. Statements are only added to these
+ lists if they produce one of SSA_PROP_INTERESTING or
+ SSA_PROP_VARYING.
+
+ CFG_BLOCKS contains the list of blocks to be simulated.
+ Blocks are added to this list if their incoming edges are
+ found executable.
+
+ VARYING_SSA_EDGES contains the list of statements that feed
+ from statements that produce an SSA_PROP_VARYING result.
+ These are simulated first to speed up processing.
+
+ INTERESTING_SSA_EDGES contains the list of statements that
+ feed from statements that produce an SSA_PROP_INTERESTING
+ result.
+
+ 5- Simulation terminates when all three work lists are drained.
+
+ Before calling ssa_propagate, it is important to clear
+ prop_simulate_again_p for all the statements in the program that
+ should be simulated. This initialization allows an implementation
+ to specify which statements should never be simulated.
+
+ It is also important to compute def-use information before calling
+ ssa_propagate.
+
+ References:
+
+ [1] Constant propagation with conditional branches,
+ Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
+
+ [2] Building an Optimizing Compiler,
+ Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
+
+ [3] Advanced Compiler Design and Implementation,
+ Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
+
+/* Function pointers used to parameterize the propagation engine. */
+static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
+static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
+
+/* Keep track of statements that have been added to one of the SSA
+ edges worklists. This flag is used to avoid visiting statements
+ unnecessarily when draining an SSA edge worklist. If while
+ simulating a basic block, we find a statement with
+ STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
+ processing from visiting it again.
+
+ NOTE: users of the propagation engine are not allowed to use
+ the GF_PLF_1 flag. */
+#define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
+
+/* A bitmap to keep track of executable blocks in the CFG. */
+static sbitmap executable_blocks;
+
+/* Array of control flow edges on the worklist. */
+static vec<basic_block> cfg_blocks;
+
+static unsigned int cfg_blocks_num = 0;
+static int cfg_blocks_tail;
+static int cfg_blocks_head;
+
+static sbitmap bb_in_list;
+
+/* Worklist of SSA edges which will need reexamination as their
+ definition has changed. SSA edges are def-use edges in the SSA
+ web. For each D-U edge, we store the target statement or PHI node
+ U. */
+static GTY(()) vec<gimple, va_gc> *interesting_ssa_edges;
+
+/* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
+ list of SSA edges is split into two. One contains all SSA edges
+ who need to be reexamined because their lattice value changed to
+ varying (this worklist), and the other contains all other SSA edges
+ to be reexamined (INTERESTING_SSA_EDGES).
+
+ Since most values in the program are VARYING, the ideal situation
+ is to move them to that lattice value as quickly as possible.
+ Thus, it doesn't make sense to process any other type of lattice
+ value until all VARYING values are propagated fully, which is one
+ thing using the VARYING worklist achieves. In addition, if we
+ don't use a separate worklist for VARYING edges, we end up with
+ situations where lattice values move from
+ UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
+static GTY(()) vec<gimple, va_gc> *varying_ssa_edges;
+
+
+/* Return true if the block worklist empty. */
+
+static inline bool
+cfg_blocks_empty_p (void)
+{
+ return (cfg_blocks_num == 0);
+}
+
+
+/* Add a basic block to the worklist. The block must not be already
+ in the worklist, and it must not be the ENTRY or EXIT block. */
+
+static void
+cfg_blocks_add (basic_block bb)
+{
+ bool head = false;
+
+ gcc_assert (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
+ && bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
+ gcc_assert (!bitmap_bit_p (bb_in_list, bb->index));
+
+ if (cfg_blocks_empty_p ())
+ {
+ cfg_blocks_tail = cfg_blocks_head = 0;
+ cfg_blocks_num = 1;
+ }
+ else
+ {
+ cfg_blocks_num++;
+ if (cfg_blocks_num > cfg_blocks.length ())
+ {
+ /* We have to grow the array now. Adjust to queue to occupy
+ the full space of the original array. We do not need to
+ initialize the newly allocated portion of the array
+ because we keep track of CFG_BLOCKS_HEAD and
+ CFG_BLOCKS_HEAD. */
+ cfg_blocks_tail = cfg_blocks.length ();
+ cfg_blocks_head = 0;
+ cfg_blocks.safe_grow (2 * cfg_blocks_tail);
+ }
+ /* Minor optimization: we prefer to see blocks with more
+ predecessors later, because there is more of a chance that
+ the incoming edges will be executable. */
+ else if (EDGE_COUNT (bb->preds)
+ >= EDGE_COUNT (cfg_blocks[cfg_blocks_head]->preds))
+ cfg_blocks_tail = ((cfg_blocks_tail + 1) % cfg_blocks.length ());
+ else
+ {
+ if (cfg_blocks_head == 0)
+ cfg_blocks_head = cfg_blocks.length ();
+ --cfg_blocks_head;
+ head = true;
+ }
+ }
+
+ cfg_blocks[head ? cfg_blocks_head : cfg_blocks_tail] = bb;
+ bitmap_set_bit (bb_in_list, bb->index);
+}
+
+
+/* Remove a block from the worklist. */
+
+static basic_block
+cfg_blocks_get (void)
+{
+ basic_block bb;
+
+ bb = cfg_blocks[cfg_blocks_head];
+
+ gcc_assert (!cfg_blocks_empty_p ());
+ gcc_assert (bb);
+
+ cfg_blocks_head = ((cfg_blocks_head + 1) % cfg_blocks.length ());
+ --cfg_blocks_num;
+ bitmap_clear_bit (bb_in_list, bb->index);
+
+ return bb;
+}
+
+
+/* We have just defined a new value for VAR. If IS_VARYING is true,
+ add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
+ them to INTERESTING_SSA_EDGES. */
+
+static void
+add_ssa_edge (tree var, bool is_varying)
+{
+ imm_use_iterator iter;
+ use_operand_p use_p;
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, var)
+ {
+ gimple use_stmt = USE_STMT (use_p);
+
+ if (prop_simulate_again_p (use_stmt)
+ && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST))
+ {
+ gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true);
+ if (is_varying)
+ vec_safe_push (varying_ssa_edges, use_stmt);
+ else
+ vec_safe_push (interesting_ssa_edges, use_stmt);
+ }
+ }
+}
+
+
+/* Add edge E to the control flow worklist. */
+
+static void
+add_control_edge (edge e)
+{
+ basic_block bb = e->dest;
+ if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ return;
+
+ /* If the edge had already been executed, skip it. */
+ if (e->flags & EDGE_EXECUTABLE)
+ return;
+
+ e->flags |= EDGE_EXECUTABLE;
+
+ /* If the block is already in the list, we're done. */
+ if (bitmap_bit_p (bb_in_list, bb->index))
+ return;
+
+ cfg_blocks_add (bb);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
+ e->src->index, e->dest->index);
+}
+
+
+/* Simulate the execution of STMT and update the work lists accordingly. */
+
+static void
+simulate_stmt (gimple stmt)
+{
+ enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
+ edge taken_edge = NULL;
+ tree output_name = NULL_TREE;
+
+ /* Don't bother visiting statements that are already
+ considered varying by the propagator. */
+ if (!prop_simulate_again_p (stmt))
+ return;
+
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ val = ssa_prop_visit_phi (stmt);
+ output_name = gimple_phi_result (stmt);
+ }
+ else
+ val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
+
+ if (val == SSA_PROP_VARYING)
+ {
+ prop_set_simulate_again (stmt, false);
+
+ /* If the statement produced a new varying value, add the SSA
+ edges coming out of OUTPUT_NAME. */
+ if (output_name)
+ add_ssa_edge (output_name, true);
+
+ /* If STMT transfers control out of its basic block, add
+ all outgoing edges to the work list. */
+ if (stmt_ends_bb_p (stmt))
+ {
+ edge e;
+ edge_iterator ei;
+ basic_block bb = gimple_bb (stmt);
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ add_control_edge (e);
+ }
+ }
+ else if (val == SSA_PROP_INTERESTING)
+ {
+ /* If the statement produced new value, add the SSA edges coming
+ out of OUTPUT_NAME. */
+ if (output_name)
+ add_ssa_edge (output_name, false);
+
+ /* If we know which edge is going to be taken out of this block,
+ add it to the CFG work list. */
+ if (taken_edge)
+ add_control_edge (taken_edge);
+ }
+}
+
+/* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
+ drain. This pops statements off the given WORKLIST and processes
+ them until there are no more statements on WORKLIST.
+ We take a pointer to WORKLIST because it may be reallocated when an
+ SSA edge is added to it in simulate_stmt. */
+
+static void
+process_ssa_edge_worklist (vec<gimple, va_gc> **worklist)
+{
+ /* Drain the entire worklist. */
+ while ((*worklist)->length () > 0)
+ {
+ basic_block bb;
+
+ /* Pull the statement to simulate off the worklist. */
+ gimple stmt = (*worklist)->pop ();
+
+ /* If this statement was already visited by simulate_block, then
+ we don't need to visit it again here. */
+ if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
+ continue;
+
+ /* STMT is no longer in a worklist. */
+ gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
+ print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+ }
+
+ bb = gimple_bb (stmt);
+
+ /* PHI nodes are always visited, regardless of whether or not
+ the destination block is executable. Otherwise, visit the
+ statement only if its block is marked executable. */
+ if (gimple_code (stmt) == GIMPLE_PHI
+ || bitmap_bit_p (executable_blocks, bb->index))
+ simulate_stmt (stmt);
+ }
+}
+
+
+/* Simulate the execution of BLOCK. Evaluate the statement associated
+ with each variable reference inside the block. */
+
+static void
+simulate_block (basic_block block)
+{
+ gimple_stmt_iterator gsi;
+
+ /* There is nothing to do for the exit block. */
+ if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
+ return;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nSimulating block %d\n", block->index);
+
+ /* Always simulate PHI nodes, even if we have simulated this block
+ before. */
+ for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
+ simulate_stmt (gsi_stmt (gsi));
+
+ /* If this is the first time we've simulated this block, then we
+ must simulate each of its statements. */
+ if (!bitmap_bit_p (executable_blocks, block->index))
+ {
+ gimple_stmt_iterator j;
+ unsigned int normal_edge_count;
+ edge e, normal_edge;
+ edge_iterator ei;
+
+ /* Note that we have simulated this block. */
+ bitmap_set_bit (executable_blocks, block->index);
+
+ for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
+ {
+ gimple stmt = gsi_stmt (j);
+
+ /* If this statement is already in the worklist then
+ "cancel" it. The reevaluation implied by the worklist
+ entry will produce the same value we generate here and
+ thus reevaluating it again from the worklist is
+ pointless. */
+ if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST))
+ gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false);
+
+ simulate_stmt (stmt);
+ }
+
+ /* We can not predict when abnormal and EH edges will be executed, so
+ once a block is considered executable, we consider any
+ outgoing abnormal edges as executable.
+
+ TODO: This is not exactly true. Simplifying statement might
+ prove it non-throwing and also computed goto can be handled
+ when destination is known.
+
+ At the same time, if this block has only one successor that is
+ reached by non-abnormal edges, then add that successor to the
+ worklist. */
+ normal_edge_count = 0;
+ normal_edge = NULL;
+ FOR_EACH_EDGE (e, ei, block->succs)
+ {
+ if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
+ add_control_edge (e);
+ else
+ {
+ normal_edge_count++;
+ normal_edge = e;
+ }
+ }
+
+ if (normal_edge_count == 1)
+ add_control_edge (normal_edge);
+ }
+}
+
+
+/* Initialize local data structures and work lists. */
+
+static void
+ssa_prop_init (void)
+{
+ edge e;
+ edge_iterator ei;
+ basic_block bb;
+
+ /* Worklists of SSA edges. */
+ vec_alloc (interesting_ssa_edges, 20);
+ vec_alloc (varying_ssa_edges, 20);
+
+ executable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ bitmap_clear (executable_blocks);
+
+ bb_in_list = sbitmap_alloc (last_basic_block_for_fn (cfun));
+ bitmap_clear (bb_in_list);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_immediate_uses (dump_file);
+
+ cfg_blocks.create (20);
+ cfg_blocks.safe_grow_cleared (20);
+
+ /* Initially assume that every edge in the CFG is not executable.
+ (including the edges coming out of the entry block). */
+ FOR_ALL_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator si;
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
+
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false);
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ e->flags &= ~EDGE_EXECUTABLE;
+ }
+
+ /* Seed the algorithm by adding the successors of the entry block to the
+ edge worklist. */
+ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
+ add_control_edge (e);
+}
+
+
+/* Free allocated storage. */
+
+static void
+ssa_prop_fini (void)
+{
+ vec_free (interesting_ssa_edges);
+ vec_free (varying_ssa_edges);
+ cfg_blocks.release ();
+ sbitmap_free (bb_in_list);
+ sbitmap_free (executable_blocks);
+}
+
+
+/* Return true if EXPR is an acceptable right-hand-side for a
+ GIMPLE assignment. We validate the entire tree, not just
+ the root node, thus catching expressions that embed complex
+ operands that are not permitted in GIMPLE. This function
+ is needed because the folding routines in fold-const.c
+ may return such expressions in some cases, e.g., an array
+ access with an embedded index addition. It may make more
+ sense to have folding routines that are sensitive to the
+ constraints on GIMPLE operands, rather than abandoning any
+ any attempt to fold if the usual folding turns out to be too
+ aggressive. */
+
+bool
+valid_gimple_rhs_p (tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ if (!is_gimple_variable (expr))
+ return false;
+ break;
+
+ case tcc_constant:
+ /* All constants are ok. */
+ break;
+
+ case tcc_binary:
+ case tcc_comparison:
+ if (!is_gimple_val (TREE_OPERAND (expr, 0))
+ || !is_gimple_val (TREE_OPERAND (expr, 1)))
+ return false;
+ break;
+
+ case tcc_unary:
+ if (!is_gimple_val (TREE_OPERAND (expr, 0)))
+ return false;
+ break;
+
+ case tcc_expression:
+ switch (code)
+ {
+ case ADDR_EXPR:
+ {
+ tree t;
+ if (is_gimple_min_invariant (expr))
+ return true;
+ t = TREE_OPERAND (expr, 0);
+ while (handled_component_p (t))
+ {
+ /* ??? More checks needed, see the GIMPLE verifier. */
+ if ((TREE_CODE (t) == ARRAY_REF
+ || TREE_CODE (t) == ARRAY_RANGE_REF)
+ && !is_gimple_val (TREE_OPERAND (t, 1)))
+ return false;
+ t = TREE_OPERAND (t, 0);
+ }
+ if (!is_gimple_id (t))
+ return false;
+ }
+ break;
+
+ default:
+ if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
+ {
+ if (((code == VEC_COND_EXPR || code == COND_EXPR)
+ ? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
+ : !is_gimple_val (TREE_OPERAND (expr, 0)))
+ || !is_gimple_val (TREE_OPERAND (expr, 1))
+ || !is_gimple_val (TREE_OPERAND (expr, 2)))
+ return false;
+ break;
+ }
+ return false;
+ }
+ break;
+
+ case tcc_vl_exp:
+ return false;
+
+ case tcc_exceptional:
+ if (code == CONSTRUCTOR)
+ {
+ unsigned i;
+ tree elt;
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
+ if (!is_gimple_val (elt))
+ return false;
+ return true;
+ }
+ if (code != SSA_NAME)
+ return false;
+ break;
+
+ case tcc_reference:
+ if (code == BIT_FIELD_REF)
+ return is_gimple_val (TREE_OPERAND (expr, 0));
+ return false;
+
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Return true if EXPR is a CALL_EXPR suitable for representation
+ as a single GIMPLE_CALL statement. If the arguments require
+ further gimplification, return false. */
+
+static bool
+valid_gimple_call_p (tree expr)
+{
+ unsigned i, nargs;
+
+ if (TREE_CODE (expr) != CALL_EXPR)
+ return false;
+
+ nargs = call_expr_nargs (expr);
+ for (i = 0; i < nargs; i++)
+ {
+ tree arg = CALL_EXPR_ARG (expr, i);
+ if (is_gimple_reg_type (TREE_TYPE (arg)))
+ {
+ if (!is_gimple_val (arg))
+ return false;
+ }
+ else
+ if (!is_gimple_lvalue (arg))
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Make SSA names defined by OLD_STMT point to NEW_STMT
+ as their defining statement. */
+
+void
+move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt)
+{
+ tree var;
+ ssa_op_iter iter;
+
+ if (gimple_in_ssa_p (cfun))
+ {
+ /* Make defined SSA_NAMEs point to the new
+ statement as their definition. */
+ FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
+ {
+ if (TREE_CODE (var) == SSA_NAME)
+ SSA_NAME_DEF_STMT (var) = new_stmt;
+ }
+ }
+}
+
+/* Helper function for update_gimple_call and update_call_from_tree.
+ A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
+
+static void
+finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple new_stmt,
+ gimple stmt)
+{
+ gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
+ move_ssa_defining_stmt_for_defs (new_stmt, stmt);
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+ gimple_set_location (new_stmt, gimple_location (stmt));
+ if (gimple_block (new_stmt) == NULL_TREE)
+ gimple_set_block (new_stmt, gimple_block (stmt));
+ gsi_replace (si_p, new_stmt, false);
+}
+
+/* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
+ with number of arguments NARGS, where the arguments in GIMPLE form
+ follow NARGS argument. */
+
+bool
+update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
+{
+ va_list ap;
+ gimple new_stmt, stmt = gsi_stmt (*si_p);
+
+ gcc_assert (is_gimple_call (stmt));
+ va_start (ap, nargs);
+ new_stmt = gimple_build_call_valist (fn, nargs, ap);
+ finish_update_gimple_call (si_p, new_stmt, stmt);
+ va_end (ap);
+ return true;
+}
+
+/* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
+ value of EXPR, which is expected to be the result of folding the
+ call. This can only be done if EXPR is a CALL_EXPR with valid
+ GIMPLE operands as arguments, or if it is a suitable RHS expression
+ for a GIMPLE_ASSIGN. More complex expressions will require
+ gimplification, which will introduce additional statements. In this
+ event, no update is performed, and the function returns false.
+ Note that we cannot mutate a GIMPLE_CALL in-place, so we always
+ replace the statement at *SI_P with an entirely new statement.
+ The new statement need not be a call, e.g., if the original call
+ folded to a constant. */
+
+bool
+update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
+{
+ gimple stmt = gsi_stmt (*si_p);
+
+ if (valid_gimple_call_p (expr))
+ {
+ /* The call has simplified to another call. */
+ tree fn = CALL_EXPR_FN (expr);
+ unsigned i;
+ unsigned nargs = call_expr_nargs (expr);
+ vec<tree> args = vNULL;
+ gimple new_stmt;
+
+ if (nargs > 0)
+ {
+ args.create (nargs);
+ args.safe_grow_cleared (nargs);
+
+ for (i = 0; i < nargs; i++)
+ args[i] = CALL_EXPR_ARG (expr, i);
+ }
+
+ new_stmt = gimple_build_call_vec (fn, args);
+ finish_update_gimple_call (si_p, new_stmt, stmt);
+ args.release ();
+
+ return true;
+ }
+ else if (valid_gimple_rhs_p (expr))
+ {
+ tree lhs = gimple_call_lhs (stmt);
+ gimple new_stmt;
+
+ /* The call has simplified to an expression
+ that cannot be represented as a GIMPLE_CALL. */
+ if (lhs)
+ {
+ /* A value is expected.
+ Introduce a new GIMPLE_ASSIGN statement. */
+ STRIP_USELESS_TYPE_CONVERSION (expr);
+ new_stmt = gimple_build_assign (lhs, expr);
+ move_ssa_defining_stmt_for_defs (new_stmt, stmt);
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+ }
+ else if (!TREE_SIDE_EFFECTS (expr))
+ {
+ /* No value is expected, and EXPR has no effect.
+ Replace it with an empty statement. */
+ new_stmt = gimple_build_nop ();
+ if (gimple_in_ssa_p (cfun))
+ {
+ unlink_stmt_vdef (stmt);
+ release_defs (stmt);
+ }
+ }
+ else
+ {
+ /* No value is expected, but EXPR has an effect,
+ e.g., it could be a reference to a volatile
+ variable. Create an assignment statement
+ with a dummy (unused) lhs variable. */
+ STRIP_USELESS_TYPE_CONVERSION (expr);
+ if (gimple_in_ssa_p (cfun))
+ lhs = make_ssa_name (TREE_TYPE (expr), NULL);
+ else
+ lhs = create_tmp_var (TREE_TYPE (expr), NULL);
+ new_stmt = gimple_build_assign (lhs, expr);
+ gimple_set_vuse (new_stmt, gimple_vuse (stmt));
+ gimple_set_vdef (new_stmt, gimple_vdef (stmt));
+ move_ssa_defining_stmt_for_defs (new_stmt, stmt);
+ }
+ gimple_set_location (new_stmt, gimple_location (stmt));
+ gsi_replace (si_p, new_stmt, false);
+ return true;
+ }
+ else
+ /* The call simplified to an expression that is
+ not a valid GIMPLE RHS. */
+ return false;
+}
+
+
+/* Entry point to the propagation engine.
+
+ VISIT_STMT is called for every statement visited.
+ VISIT_PHI is called for every PHI node visited. */
+
+void
+ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
+ ssa_prop_visit_phi_fn visit_phi)
+{
+ ssa_prop_visit_stmt = visit_stmt;
+ ssa_prop_visit_phi = visit_phi;
+
+ ssa_prop_init ();
+
+ /* Iterate until the worklists are empty. */
+ while (!cfg_blocks_empty_p ()
+ || interesting_ssa_edges->length () > 0
+ || varying_ssa_edges->length () > 0)
+ {
+ if (!cfg_blocks_empty_p ())
+ {
+ /* Pull the next block to simulate off the worklist. */
+ basic_block dest_block = cfg_blocks_get ();
+ simulate_block (dest_block);
+ }
+
+ /* In order to move things to varying as quickly as
+ possible,process the VARYING_SSA_EDGES worklist first. */
+ process_ssa_edge_worklist (&varying_ssa_edges);
+
+ /* Now process the INTERESTING_SSA_EDGES worklist. */
+ process_ssa_edge_worklist (&interesting_ssa_edges);
+ }
+
+ ssa_prop_fini ();
+}
+
+
+/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
+ is a non-volatile pointer dereference, a structure reference or a
+ reference to a single _DECL. Ignore volatile memory references
+ because they are not interesting for the optimizers. */
+
+bool
+stmt_makes_single_store (gimple stmt)
+{
+ tree lhs;
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN
+ && gimple_code (stmt) != GIMPLE_CALL)
+ return false;
+
+ if (!gimple_vdef (stmt))
+ return false;
+
+ lhs = gimple_get_lhs (stmt);
+
+ /* A call statement may have a null LHS. */
+ if (!lhs)
+ return false;
+
+ return (!TREE_THIS_VOLATILE (lhs)
+ && (DECL_P (lhs)
+ || REFERENCE_CLASS_P (lhs)));
+}
+
+
+/* Propagation statistics. */
+struct prop_stats_d
+{
+ long num_const_prop;
+ long num_copy_prop;
+ long num_stmts_folded;
+ long num_dce;
+};
+
+static struct prop_stats_d prop_stats;
+
+/* Replace USE references in statement STMT with the values stored in
+ PROP_VALUE. Return true if at least one reference was replaced. */
+
+static bool
+replace_uses_in (gimple stmt, ssa_prop_get_value_fn get_value)
+{
+ bool replaced = false;
+ use_operand_p use;
+ ssa_op_iter iter;
+
+ FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
+ {
+ tree tuse = USE_FROM_PTR (use);
+ tree val = (*get_value) (tuse);
+
+ if (val == tuse || val == NULL_TREE)
+ continue;
+
+ if (gimple_code (stmt) == GIMPLE_ASM
+ && !may_propagate_copy_into_asm (tuse))
+ continue;
+
+ if (!may_propagate_copy (tuse, val))
+ continue;
+
+ if (TREE_CODE (val) != SSA_NAME)
+ prop_stats.num_const_prop++;
+ else
+ prop_stats.num_copy_prop++;
+
+ propagate_value (use, val);
+
+ replaced = true;
+ }
+
+ return replaced;
+}
+
+
+/* Replace propagated values into all the arguments for PHI using the
+ values from PROP_VALUE. */
+
+static void
+replace_phi_args_in (gimple phi, ssa_prop_get_value_fn get_value)
+{
+ size_t i;
+ bool replaced = false;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Folding PHI node: ");
+ print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
+ }
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree arg = gimple_phi_arg_def (phi, i);
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ {
+ tree val = (*get_value) (arg);
+
+ if (val && val != arg && may_propagate_copy (arg, val))
+ {
+ if (TREE_CODE (val) != SSA_NAME)
+ prop_stats.num_const_prop++;
+ else
+ prop_stats.num_copy_prop++;
+
+ propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
+ replaced = true;
+
+ /* If we propagated a copy and this argument flows
+ through an abnormal edge, update the replacement
+ accordingly. */
+ if (TREE_CODE (val) == SSA_NAME
+ && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL)
+ SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
+ }
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (!replaced)
+ fprintf (dump_file, "No folding possible\n");
+ else
+ {
+ fprintf (dump_file, "Folded into: ");
+ print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ }
+}
+
+
+/* Perform final substitution and folding of propagated values.
+
+ PROP_VALUE[I] contains the single value that should be substituted
+ at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
+ substituted.
+
+ If FOLD_FN is non-NULL the function will be invoked on all statements
+ before propagating values for pass specific simplification.
+
+ DO_DCE is true if trivially dead stmts can be removed.
+
+ If DO_DCE is true, the statements within a BB are walked from
+ last to first element. Otherwise we scan from first to last element.
+
+ Return TRUE when something changed. */
+
+bool
+substitute_and_fold (ssa_prop_get_value_fn get_value_fn,
+ ssa_prop_fold_stmt_fn fold_fn,
+ bool do_dce)
+{
+ basic_block bb;
+ bool something_changed = false;
+ unsigned i;
+
+ if (!get_value_fn && !fold_fn)
+ return false;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
+
+ memset (&prop_stats, 0, sizeof (prop_stats));
+
+ /* Substitute lattice values at definition sites. */
+ if (get_value_fn)
+ for (i = 1; i < num_ssa_names; ++i)
+ {
+ tree name = ssa_name (i);
+ tree val;
+ gimple def_stmt;
+ gimple_stmt_iterator gsi;
+
+ if (!name
+ || virtual_operand_p (name))
+ continue;
+
+ def_stmt = SSA_NAME_DEF_STMT (name);
+ if (gimple_nop_p (def_stmt)
+ /* Do not substitute ASSERT_EXPR rhs, this will confuse VRP. */
+ || (gimple_assign_single_p (def_stmt)
+ && gimple_assign_rhs_code (def_stmt) == ASSERT_EXPR)
+ || !(val = (*get_value_fn) (name))
+ || !may_propagate_copy (name, val))
+ continue;
+
+ gsi = gsi_for_stmt (def_stmt);
+ if (is_gimple_assign (def_stmt))
+ {
+ gimple_assign_set_rhs_with_ops (&gsi, TREE_CODE (val),
+ val, NULL_TREE);
+ gcc_assert (gsi_stmt (gsi) == def_stmt);
+ if (maybe_clean_eh_stmt (def_stmt))
+ gimple_purge_dead_eh_edges (gimple_bb (def_stmt));
+ update_stmt (def_stmt);
+ }
+ else if (is_gimple_call (def_stmt))
+ {
+ int flags = gimple_call_flags (def_stmt);
+
+ /* Don't optimize away calls that have side-effects. */
+ if ((flags & (ECF_CONST|ECF_PURE)) == 0
+ || (flags & ECF_LOOPING_CONST_OR_PURE))
+ continue;
+ if (update_call_from_tree (&gsi, val)
+ && maybe_clean_or_replace_eh_stmt (def_stmt, gsi_stmt (gsi)))
+ gimple_purge_dead_eh_edges (gimple_bb (gsi_stmt (gsi)));
+ }
+ else if (gimple_code (def_stmt) == GIMPLE_PHI)
+ {
+ gimple new_stmt = gimple_build_assign (name, val);
+ gimple_stmt_iterator gsi2;
+ gsi2 = gsi_after_labels (gimple_bb (def_stmt));
+ gsi_insert_before (&gsi2, new_stmt, GSI_SAME_STMT);
+ remove_phi_node (&gsi, false);
+ }
+
+ something_changed = true;
+ }
+
+ /* Propagate into all uses and fold. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator i;
+
+ /* Propagate known values into PHI nodes. */
+ if (get_value_fn)
+ for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
+ replace_phi_args_in (gsi_stmt (i), get_value_fn);
+
+ /* Propagate known values into stmts. Do a backward walk if
+ do_dce is true. In some case it exposes
+ more trivially deletable stmts to walk backward. */
+ for (i = (do_dce ? gsi_last_bb (bb) : gsi_start_bb (bb)); !gsi_end_p (i);)
+ {
+ bool did_replace;
+ gimple stmt = gsi_stmt (i);
+ gimple old_stmt;
+ enum gimple_code code = gimple_code (stmt);
+ gimple_stmt_iterator oldi;
+
+ oldi = i;
+ if (do_dce)
+ gsi_prev (&i);
+ else
+ gsi_next (&i);
+
+ /* Ignore ASSERT_EXPRs. They are used by VRP to generate
+ range information for names and they are discarded
+ afterwards. */
+
+ if (code == GIMPLE_ASSIGN
+ && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
+ continue;
+
+ /* No point propagating into a stmt whose result is not used,
+ but instead we might be able to remove a trivially dead stmt.
+ Don't do this when called from VRP, since the SSA_NAME which
+ is going to be released could be still referenced in VRP
+ ranges. */
+ if (do_dce
+ && gimple_get_lhs (stmt)
+ && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
+ && has_zero_uses (gimple_get_lhs (stmt))
+ && !stmt_could_throw_p (stmt)
+ && !gimple_has_side_effects (stmt))
+ {
+ gimple_stmt_iterator i2;
+
+ if (dump_file && dump_flags & TDF_DETAILS)
+ {
+ fprintf (dump_file, "Removing dead stmt ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+ prop_stats.num_dce++;
+ i2 = gsi_for_stmt (stmt);
+ gsi_remove (&i2, true);
+ release_defs (stmt);
+ continue;
+ }
+
+ /* Replace the statement with its folded version and mark it
+ folded. */
+ did_replace = false;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Folding statement: ");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+
+ old_stmt = stmt;
+
+ /* Some statements may be simplified using propagator
+ specific information. Do this before propagating
+ into the stmt to not disturb pass specific information. */
+ if (fold_fn
+ && (*fold_fn)(&oldi))
+ {
+ did_replace = true;
+ prop_stats.num_stmts_folded++;
+ stmt = gsi_stmt (oldi);
+ update_stmt (stmt);
+ }
+
+ /* Replace real uses in the statement. */
+ if (get_value_fn)
+ did_replace |= replace_uses_in (stmt, get_value_fn);
+
+ /* If we made a replacement, fold the statement. */
+ if (did_replace)
+ fold_stmt (&oldi);
+
+ /* Now cleanup. */
+ if (did_replace)
+ {
+ stmt = gsi_stmt (oldi);
+
+ /* If we cleaned up EH information from the statement,
+ remove EH edges. */
+ if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
+ gimple_purge_dead_eh_edges (bb);
+
+ if (is_gimple_assign (stmt)
+ && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
+ == GIMPLE_SINGLE_RHS))
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+
+ if (TREE_CODE (rhs) == ADDR_EXPR)
+ recompute_tree_invariant_for_addr_expr (rhs);
+ }
+
+ /* Determine what needs to be done to update the SSA form. */
+ update_stmt (stmt);
+ if (!is_gimple_debug (stmt))
+ something_changed = true;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (did_replace)
+ {
+ fprintf (dump_file, "Folded into: ");
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ else
+ fprintf (dump_file, "Not folded\n");
+ }
+ }
+ }
+
+ statistics_counter_event (cfun, "Constants propagated",
+ prop_stats.num_const_prop);
+ statistics_counter_event (cfun, "Copies propagated",
+ prop_stats.num_copy_prop);
+ statistics_counter_event (cfun, "Statements folded",
+ prop_stats.num_stmts_folded);
+ statistics_counter_event (cfun, "Statements deleted",
+ prop_stats.num_dce);
+ return something_changed;
+}
+
+
+/* Return true if we may propagate ORIG into DEST, false otherwise. */
+
+bool
+may_propagate_copy (tree dest, tree orig)
+{
+ tree type_d = TREE_TYPE (dest);
+ tree type_o = TREE_TYPE (orig);
+
+ /* If ORIG flows in from an abnormal edge, it cannot be propagated. */
+ if (TREE_CODE (orig) == SSA_NAME
+ && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
+ /* If it is the default definition and an automatic variable then
+ we can though and it is important that we do to avoid
+ uninitialized regular copies. */
+ && !(SSA_NAME_IS_DEFAULT_DEF (orig)
+ && (SSA_NAME_VAR (orig) == NULL_TREE
+ || TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL)))
+ return false;
+
+ /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
+ cannot be replaced. */
+ if (TREE_CODE (dest) == SSA_NAME
+ && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
+ return false;
+
+ /* Do not copy between types for which we *do* need a conversion. */
+ if (!useless_type_conversion_p (type_d, type_o))
+ return false;
+
+ /* Generally propagating virtual operands is not ok as that may
+ create overlapping life-ranges. */
+ if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
+ return false;
+
+ /* Anything else is OK. */
+ return true;
+}
+
+/* Like may_propagate_copy, but use as the destination expression
+ the principal expression (typically, the RHS) contained in
+ statement DEST. This is more efficient when working with the
+ gimple tuples representation. */
+
+bool
+may_propagate_copy_into_stmt (gimple dest, tree orig)
+{
+ tree type_d;
+ tree type_o;
+
+ /* If the statement is a switch or a single-rhs assignment,
+ then the expression to be replaced by the propagation may
+ be an SSA_NAME. Fortunately, there is an explicit tree
+ for the expression, so we delegate to may_propagate_copy. */
+
+ if (gimple_assign_single_p (dest))
+ return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
+ else if (gimple_code (dest) == GIMPLE_SWITCH)
+ return may_propagate_copy (gimple_switch_index (dest), orig);
+
+ /* In other cases, the expression is not materialized, so there
+ is no destination to pass to may_propagate_copy. On the other
+ hand, the expression cannot be an SSA_NAME, so the analysis
+ is much simpler. */
+
+ if (TREE_CODE (orig) == SSA_NAME
+ && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
+ return false;
+
+ if (is_gimple_assign (dest))
+ type_d = TREE_TYPE (gimple_assign_lhs (dest));
+ else if (gimple_code (dest) == GIMPLE_COND)
+ type_d = boolean_type_node;
+ else if (is_gimple_call (dest)
+ && gimple_call_lhs (dest) != NULL_TREE)
+ type_d = TREE_TYPE (gimple_call_lhs (dest));
+ else
+ gcc_unreachable ();
+
+ type_o = TREE_TYPE (orig);
+
+ if (!useless_type_conversion_p (type_d, type_o))
+ return false;
+
+ return true;
+}
+
+/* Similarly, but we know that we're propagating into an ASM_EXPR. */
+
+bool
+may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
+{
+ return true;
+}
+
+
+/* Common code for propagate_value and replace_exp.
+
+ Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
+ replacement is done to propagate a value or not. */
+
+static void
+replace_exp_1 (use_operand_p op_p, tree val,
+ bool for_propagation ATTRIBUTE_UNUSED)
+{
+#if defined ENABLE_CHECKING
+ tree op = USE_FROM_PTR (op_p);
+
+ gcc_assert (!(for_propagation
+ && TREE_CODE (op) == SSA_NAME
+ && TREE_CODE (val) == SSA_NAME
+ && !may_propagate_copy (op, val)));
+#endif
+
+ if (TREE_CODE (val) == SSA_NAME)
+ SET_USE (op_p, val);
+ else
+ SET_USE (op_p, unshare_expr (val));
+}
+
+
+/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
+ into the operand pointed to by OP_P.
+
+ Use this version for const/copy propagation as it will perform additional
+ checks to ensure validity of the const/copy propagation. */
+
+void
+propagate_value (use_operand_p op_p, tree val)
+{
+ replace_exp_1 (op_p, val, true);
+}
+
+/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
+
+ Use this version when not const/copy propagating values. For example,
+ PRE uses this version when building expressions as they would appear
+ in specific blocks taking into account actions of PHI nodes.
+
+ The statement in which an expression has been replaced should be
+ folded using fold_stmt_inplace. */
+
+void
+replace_exp (use_operand_p op_p, tree val)
+{
+ replace_exp_1 (op_p, val, false);
+}
+
+
+/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
+ into the tree pointed to by OP_P.
+
+ Use this version for const/copy propagation when SSA operands are not
+ available. It will perform the additional checks to ensure validity of
+ the const/copy propagation, but will not update any operand information.
+ Be sure to mark the stmt as modified. */
+
+void
+propagate_tree_value (tree *op_p, tree val)
+{
+ gcc_checking_assert (!(TREE_CODE (val) == SSA_NAME
+ && *op_p
+ && TREE_CODE (*op_p) == SSA_NAME
+ && !may_propagate_copy (*op_p, val)));
+
+ if (TREE_CODE (val) == SSA_NAME)
+ *op_p = val;
+ else
+ *op_p = unshare_expr (val);
+}
+
+
+/* Like propagate_tree_value, but use as the operand to replace
+ the principal expression (typically, the RHS) contained in the
+ statement referenced by iterator GSI. Note that it is not
+ always possible to update the statement in-place, so a new
+ statement may be created to replace the original. */
+
+void
+propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
+{
+ gimple stmt = gsi_stmt (*gsi);
+
+ if (is_gimple_assign (stmt))
+ {
+ tree expr = NULL_TREE;
+ if (gimple_assign_single_p (stmt))
+ expr = gimple_assign_rhs1 (stmt);
+ propagate_tree_value (&expr, val);
+ gimple_assign_set_rhs_from_tree (gsi, expr);
+ }
+ else if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ tree lhs = NULL_TREE;
+ tree rhs = build_zero_cst (TREE_TYPE (val));
+ propagate_tree_value (&lhs, val);
+ gimple_cond_set_code (stmt, NE_EXPR);
+ gimple_cond_set_lhs (stmt, lhs);
+ gimple_cond_set_rhs (stmt, rhs);
+ }
+ else if (is_gimple_call (stmt)
+ && gimple_call_lhs (stmt) != NULL_TREE)
+ {
+ tree expr = NULL_TREE;
+ bool res;
+ propagate_tree_value (&expr, val);
+ res = update_call_from_tree (gsi, expr);
+ gcc_assert (res);
+ }
+ else if (gimple_code (stmt) == GIMPLE_SWITCH)
+ propagate_tree_value (gimple_switch_index_ptr (stmt), val);
+ else
+ gcc_unreachable ();
+}
+
+#include "gt-tree-ssa-propagate.h"