aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/tree-parloops.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/tree-parloops.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/tree-parloops.c')
-rw-r--r--gcc-4.9/gcc/tree-parloops.c2312
1 files changed, 2312 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/tree-parloops.c b/gcc-4.9/gcc/tree-parloops.c
new file mode 100644
index 000000000..47179a967
--- /dev/null
+++ b/gcc-4.9/gcc/tree-parloops.c
@@ -0,0 +1,2312 @@
+/* Loop autoparallelization.
+ Copyright (C) 2006-2014 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr>
+ Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "gimplify-me.h"
+#include "gimple-walk.h"
+#include "stor-layout.h"
+#include "tree-nested.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "stringpool.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-ivopts.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop.h"
+#include "tree-into-ssa.h"
+#include "cfgloop.h"
+#include "tree-data-ref.h"
+#include "tree-scalar-evolution.h"
+#include "gimple-pretty-print.h"
+#include "tree-pass.h"
+#include "langhooks.h"
+#include "tree-vectorizer.h"
+#include "tree-hasher.h"
+#include "tree-parloops.h"
+#include "omp-low.h"
+#include "tree-nested.h"
+
+/* This pass tries to distribute iterations of loops into several threads.
+ The implementation is straightforward -- for each loop we test whether its
+ iterations are independent, and if it is the case (and some additional
+ conditions regarding profitability and correctness are satisfied), we
+ add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
+ machinery do its job.
+
+ The most of the complexity is in bringing the code into shape expected
+ by the omp expanders:
+ -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
+ variable and that the exit test is at the start of the loop body
+ -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
+ variables by accesses through pointers, and breaking up ssa chains
+ by storing the values incoming to the parallelized loop to a structure
+ passed to the new function as an argument (something similar is done
+ in omp gimplification, unfortunately only a small part of the code
+ can be shared).
+
+ TODO:
+ -- if there are several parallelizable loops in a function, it may be
+ possible to generate the threads just once (using synchronization to
+ ensure that cross-loop dependences are obeyed).
+ -- handling of common reduction patterns for outer loops.
+
+ More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
+/*
+ Reduction handling:
+ currently we use vect_force_simple_reduction() to detect reduction patterns.
+ The code transformation will be introduced by an example.
+
+
+parloop
+{
+ int sum=1;
+
+ for (i = 0; i < N; i++)
+ {
+ x[i] = i + 3;
+ sum+=x[i];
+ }
+}
+
+gimple-like code:
+header_bb:
+
+ # sum_29 = PHI <sum_11(5), 1(3)>
+ # i_28 = PHI <i_12(5), 0(3)>
+ D.1795_8 = i_28 + 3;
+ x[i_28] = D.1795_8;
+ sum_11 = D.1795_8 + sum_29;
+ i_12 = i_28 + 1;
+ if (N_6(D) > i_12)
+ goto header_bb;
+
+
+exit_bb:
+
+ # sum_21 = PHI <sum_11(4)>
+ printf (&"%d"[0], sum_21);
+
+
+after reduction transformation (only relevant parts):
+
+parloop
+{
+
+....
+
+
+ # Storing the initial value given by the user. #
+
+ .paral_data_store.32.sum.27 = 1;
+
+ #pragma omp parallel num_threads(4)
+
+ #pragma omp for schedule(static)
+
+ # The neutral element corresponding to the particular
+ reduction's operation, e.g. 0 for PLUS_EXPR,
+ 1 for MULT_EXPR, etc. replaces the user's initial value. #
+
+ # sum.27_29 = PHI <sum.27_11, 0>
+
+ sum.27_11 = D.1827_8 + sum.27_29;
+
+ GIMPLE_OMP_CONTINUE
+
+ # Adding this reduction phi is done at create_phi_for_local_result() #
+ # sum.27_56 = PHI <sum.27_11, 0>
+ GIMPLE_OMP_RETURN
+
+ # Creating the atomic operation is done at
+ create_call_for_reduction_1() #
+
+ #pragma omp atomic_load
+ D.1839_59 = *&.paral_data_load.33_51->reduction.23;
+ D.1840_60 = sum.27_56 + D.1839_59;
+ #pragma omp atomic_store (D.1840_60);
+
+ GIMPLE_OMP_RETURN
+
+ # collecting the result after the join of the threads is done at
+ create_loads_for_reductions().
+ The value computed by the threads is loaded from the
+ shared struct. #
+
+
+ .paral_data_load.33_52 = &.paral_data_store.32;
+ sum_37 = .paral_data_load.33_52->sum.27;
+ sum_43 = D.1795_41 + sum_37;
+
+ exit bb:
+ # sum_21 = PHI <sum_43, sum_26>
+ printf (&"%d"[0], sum_21);
+
+...
+
+}
+
+*/
+
+/* Minimal number of iterations of a loop that should be executed in each
+ thread. */
+#define MIN_PER_THREAD 100
+
+/* Element of the hashtable, representing a
+ reduction in the current loop. */
+struct reduction_info
+{
+ gimple reduc_stmt; /* reduction statement. */
+ gimple reduc_phi; /* The phi node defining the reduction. */
+ enum tree_code reduction_code;/* code for the reduction operation. */
+ unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
+ result. */
+ gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
+ of the reduction variable when existing the loop. */
+ tree initial_value; /* The initial value of the reduction var before entering the loop. */
+ tree field; /* the name of the field in the parloop data structure intended for reduction. */
+ tree init; /* reduction initialization value. */
+ gimple new_phi; /* (helper field) Newly created phi node whose result
+ will be passed to the atomic operation. Represents
+ the local result each thread computed for the reduction
+ operation. */
+};
+
+/* Reduction info hashtable helpers. */
+
+struct reduction_hasher : typed_free_remove <reduction_info>
+{
+ typedef reduction_info value_type;
+ typedef reduction_info compare_type;
+ static inline hashval_t hash (const value_type *);
+ static inline bool equal (const value_type *, const compare_type *);
+};
+
+/* Equality and hash functions for hashtab code. */
+
+inline bool
+reduction_hasher::equal (const value_type *a, const compare_type *b)
+{
+ return (a->reduc_phi == b->reduc_phi);
+}
+
+inline hashval_t
+reduction_hasher::hash (const value_type *a)
+{
+ return a->reduc_version;
+}
+
+typedef hash_table <reduction_hasher> reduction_info_table_type;
+
+
+static struct reduction_info *
+reduction_phi (reduction_info_table_type reduction_list, gimple phi)
+{
+ struct reduction_info tmpred, *red;
+
+ if (reduction_list.elements () == 0 || phi == NULL)
+ return NULL;
+
+ tmpred.reduc_phi = phi;
+ tmpred.reduc_version = gimple_uid (phi);
+ red = reduction_list.find (&tmpred);
+
+ return red;
+}
+
+/* Element of hashtable of names to copy. */
+
+struct name_to_copy_elt
+{
+ unsigned version; /* The version of the name to copy. */
+ tree new_name; /* The new name used in the copy. */
+ tree field; /* The field of the structure used to pass the
+ value. */
+};
+
+/* Name copies hashtable helpers. */
+
+struct name_to_copy_hasher : typed_free_remove <name_to_copy_elt>
+{
+ typedef name_to_copy_elt value_type;
+ typedef name_to_copy_elt compare_type;
+ static inline hashval_t hash (const value_type *);
+ static inline bool equal (const value_type *, const compare_type *);
+};
+
+/* Equality and hash functions for hashtab code. */
+
+inline bool
+name_to_copy_hasher::equal (const value_type *a, const compare_type *b)
+{
+ return a->version == b->version;
+}
+
+inline hashval_t
+name_to_copy_hasher::hash (const value_type *a)
+{
+ return (hashval_t) a->version;
+}
+
+typedef hash_table <name_to_copy_hasher> name_to_copy_table_type;
+
+/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
+ matrix. Rather than use floats, we simply keep a single DENOMINATOR that
+ represents the denominator for every element in the matrix. */
+typedef struct lambda_trans_matrix_s
+{
+ lambda_matrix matrix;
+ int rowsize;
+ int colsize;
+ int denominator;
+} *lambda_trans_matrix;
+#define LTM_MATRIX(T) ((T)->matrix)
+#define LTM_ROWSIZE(T) ((T)->rowsize)
+#define LTM_COLSIZE(T) ((T)->colsize)
+#define LTM_DENOMINATOR(T) ((T)->denominator)
+
+/* Allocate a new transformation matrix. */
+
+static lambda_trans_matrix
+lambda_trans_matrix_new (int colsize, int rowsize,
+ struct obstack * lambda_obstack)
+{
+ lambda_trans_matrix ret;
+
+ ret = (lambda_trans_matrix)
+ obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
+ LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
+ LTM_ROWSIZE (ret) = rowsize;
+ LTM_COLSIZE (ret) = colsize;
+ LTM_DENOMINATOR (ret) = 1;
+ return ret;
+}
+
+/* Multiply a vector VEC by a matrix MAT.
+ MAT is an M*N matrix, and VEC is a vector with length N. The result
+ is stored in DEST which must be a vector of length M. */
+
+static void
+lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
+ lambda_vector vec, lambda_vector dest)
+{
+ int i, j;
+
+ lambda_vector_clear (dest, m);
+ for (i = 0; i < m; i++)
+ for (j = 0; j < n; j++)
+ dest[i] += matrix[i][j] * vec[j];
+}
+
+/* Return true if TRANS is a legal transformation matrix that respects
+ the dependence vectors in DISTS and DIRS. The conservative answer
+ is false.
+
+ "Wolfe proves that a unimodular transformation represented by the
+ matrix T is legal when applied to a loop nest with a set of
+ lexicographically non-negative distance vectors RDG if and only if
+ for each vector d in RDG, (T.d >= 0) is lexicographically positive.
+ i.e.: if and only if it transforms the lexicographically positive
+ distance vectors to lexicographically positive vectors. Note that
+ a unimodular matrix must transform the zero vector (and only it) to
+ the zero vector." S.Muchnick. */
+
+static bool
+lambda_transform_legal_p (lambda_trans_matrix trans,
+ int nb_loops,
+ vec<ddr_p> dependence_relations)
+{
+ unsigned int i, j;
+ lambda_vector distres;
+ struct data_dependence_relation *ddr;
+
+ gcc_assert (LTM_COLSIZE (trans) == nb_loops
+ && LTM_ROWSIZE (trans) == nb_loops);
+
+ /* When there are no dependences, the transformation is correct. */
+ if (dependence_relations.length () == 0)
+ return true;
+
+ ddr = dependence_relations[0];
+ if (ddr == NULL)
+ return true;
+
+ /* When there is an unknown relation in the dependence_relations, we
+ know that it is no worth looking at this loop nest: give up. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ return false;
+
+ distres = lambda_vector_new (nb_loops);
+
+ /* For each distance vector in the dependence graph. */
+ FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
+ {
+ /* Don't care about relations for which we know that there is no
+ dependence, nor about read-read (aka. output-dependences):
+ these data accesses can happen in any order. */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_known
+ || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
+ continue;
+
+ /* Conservatively answer: "this transformation is not valid". */
+ if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+ return false;
+
+ /* If the dependence could not be captured by a distance vector,
+ conservatively answer that the transform is not valid. */
+ if (DDR_NUM_DIST_VECTS (ddr) == 0)
+ return false;
+
+ /* Compute trans.dist_vect */
+ for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
+ {
+ lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
+ DDR_DIST_VECT (ddr, j), distres);
+
+ if (!lambda_vector_lexico_pos (distres, nb_loops))
+ return false;
+ }
+ }
+ return true;
+}
+
+/* Data dependency analysis. Returns true if the iterations of LOOP
+ are independent on each other (that is, if we can execute them
+ in parallel). */
+
+static bool
+loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
+{
+ vec<ddr_p> dependence_relations;
+ vec<data_reference_p> datarefs;
+ lambda_trans_matrix trans;
+ bool ret = false;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Considering loop %d\n", loop->num);
+ if (!loop->inner)
+ fprintf (dump_file, "loop is innermost\n");
+ else
+ fprintf (dump_file, "loop NOT innermost\n");
+ }
+
+ /* Check for problems with dependences. If the loop can be reversed,
+ the iterations are independent. */
+ auto_vec<loop_p, 3> loop_nest;
+ datarefs.create (10);
+ dependence_relations.create (100);
+ if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
+ &dependence_relations))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
+ ret = false;
+ goto end;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_data_dependence_relations (dump_file, dependence_relations);
+
+ trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
+ LTM_MATRIX (trans)[0][0] = -1;
+
+ if (lambda_transform_legal_p (trans, 1, dependence_relations))
+ {
+ ret = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " SUCCESS: may be parallelized\n");
+ }
+ else if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: data dependencies exist across iterations\n");
+
+ end:
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+
+ return ret;
+}
+
+/* Return true when LOOP contains basic blocks marked with the
+ BB_IRREDUCIBLE_LOOP flag. */
+
+static inline bool
+loop_has_blocks_with_irreducible_flag (struct loop *loop)
+{
+ unsigned i;
+ basic_block *bbs = get_loop_body_in_dom_order (loop);
+ bool res = true;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
+ goto end;
+
+ res = false;
+ end:
+ free (bbs);
+ return res;
+}
+
+/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
+ The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
+ to their addresses that can be reused. The address of OBJ is known to
+ be invariant in the whole function. Other needed statements are placed
+ right before GSI. */
+
+static tree
+take_address_of (tree obj, tree type, edge entry,
+ int_tree_htab_type decl_address, gimple_stmt_iterator *gsi)
+{
+ int uid;
+ int_tree_map **dslot;
+ struct int_tree_map ielt, *nielt;
+ tree *var_p, name, addr;
+ gimple stmt;
+ gimple_seq stmts;
+
+ /* Since the address of OBJ is invariant, the trees may be shared.
+ Avoid rewriting unrelated parts of the code. */
+ obj = unshare_expr (obj);
+ for (var_p = &obj;
+ handled_component_p (*var_p);
+ var_p = &TREE_OPERAND (*var_p, 0))
+ continue;
+
+ /* Canonicalize the access to base on a MEM_REF. */
+ if (DECL_P (*var_p))
+ *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
+
+ /* Assign a canonical SSA name to the address of the base decl used
+ in the address and share it for all accesses and addresses based
+ on it. */
+ uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
+ ielt.uid = uid;
+ dslot = decl_address.find_slot_with_hash (&ielt, uid, INSERT);
+ if (!*dslot)
+ {
+ if (gsi == NULL)
+ return NULL;
+ addr = TREE_OPERAND (*var_p, 0);
+ const char *obj_name
+ = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
+ if (obj_name)
+ name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
+ else
+ name = make_ssa_name (TREE_TYPE (addr), NULL);
+ stmt = gimple_build_assign (name, addr);
+ gsi_insert_on_edge_immediate (entry, stmt);
+
+ nielt = XNEW (struct int_tree_map);
+ nielt->uid = uid;
+ nielt->to = name;
+ *dslot = nielt;
+ }
+ else
+ name = (*dslot)->to;
+
+ /* Express the address in terms of the canonical SSA name. */
+ TREE_OPERAND (*var_p, 0) = name;
+ if (gsi == NULL)
+ return build_fold_addr_expr_with_type (obj, type);
+
+ name = force_gimple_operand (build_addr (obj, current_function_decl),
+ &stmts, true, NULL_TREE);
+ if (!gimple_seq_empty_p (stmts))
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+
+ if (!useless_type_conversion_p (type, TREE_TYPE (name)))
+ {
+ name = force_gimple_operand (fold_convert (type, name), &stmts, true,
+ NULL_TREE);
+ if (!gimple_seq_empty_p (stmts))
+ gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
+ }
+
+ return name;
+}
+
+/* Callback for htab_traverse. Create the initialization statement
+ for reduction described in SLOT, and place it at the preheader of
+ the loop described in DATA. */
+
+int
+initialize_reductions (reduction_info **slot, struct loop *loop)
+{
+ tree init, c;
+ tree bvar, type, arg;
+ edge e;
+
+ struct reduction_info *const reduc = *slot;
+
+ /* Create initialization in preheader:
+ reduction_variable = initialization value of reduction. */
+
+ /* In the phi node at the header, replace the argument coming
+ from the preheader with the reduction initialization value. */
+
+ /* Create a new variable to initialize the reduction. */
+ type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
+ bvar = create_tmp_var (type, "reduction");
+
+ c = build_omp_clause (gimple_location (reduc->reduc_stmt),
+ OMP_CLAUSE_REDUCTION);
+ OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
+ OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
+
+ init = omp_reduction_init (c, TREE_TYPE (bvar));
+ reduc->init = init;
+
+ /* Replace the argument representing the initialization value
+ with the initialization value for the reduction (neutral
+ element for the particular operation, e.g. 0 for PLUS_EXPR,
+ 1 for MULT_EXPR, etc).
+ Keep the old value in a new variable "reduction_initial",
+ that will be taken in consideration after the parallel
+ computing is done. */
+
+ e = loop_preheader_edge (loop);
+ arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
+ /* Create new variable to hold the initial value. */
+
+ SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
+ (reduc->reduc_phi, loop_preheader_edge (loop)), init);
+ reduc->initial_value = arg;
+ return 1;
+}
+
+struct elv_data
+{
+ struct walk_stmt_info info;
+ edge entry;
+ int_tree_htab_type decl_address;
+ gimple_stmt_iterator *gsi;
+ bool changed;
+ bool reset;
+};
+
+/* Eliminates references to local variables in *TP out of the single
+ entry single exit region starting at DTA->ENTRY.
+ DECL_ADDRESS contains addresses of the references that had their
+ address taken already. If the expression is changed, CHANGED is
+ set to true. Callback for walk_tree. */
+
+static tree
+eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
+{
+ struct elv_data *const dta = (struct elv_data *) data;
+ tree t = *tp, var, addr, addr_type, type, obj;
+
+ if (DECL_P (t))
+ {
+ *walk_subtrees = 0;
+
+ if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
+ return NULL_TREE;
+
+ type = TREE_TYPE (t);
+ addr_type = build_pointer_type (type);
+ addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
+ dta->gsi);
+ if (dta->gsi == NULL && addr == NULL_TREE)
+ {
+ dta->reset = true;
+ return NULL_TREE;
+ }
+
+ *tp = build_simple_mem_ref (addr);
+
+ dta->changed = true;
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (t) == ADDR_EXPR)
+ {
+ /* ADDR_EXPR may appear in two contexts:
+ -- as a gimple operand, when the address taken is a function invariant
+ -- as gimple rhs, when the resulting address in not a function
+ invariant
+ We do not need to do anything special in the latter case (the base of
+ the memory reference whose address is taken may be replaced in the
+ DECL_P case). The former case is more complicated, as we need to
+ ensure that the new address is still a gimple operand. Thus, it
+ is not sufficient to replace just the base of the memory reference --
+ we need to move the whole computation of the address out of the
+ loop. */
+ if (!is_gimple_val (t))
+ return NULL_TREE;
+
+ *walk_subtrees = 0;
+ obj = TREE_OPERAND (t, 0);
+ var = get_base_address (obj);
+ if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
+ return NULL_TREE;
+
+ addr_type = TREE_TYPE (t);
+ addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
+ dta->gsi);
+ if (dta->gsi == NULL && addr == NULL_TREE)
+ {
+ dta->reset = true;
+ return NULL_TREE;
+ }
+ *tp = addr;
+
+ dta->changed = true;
+ return NULL_TREE;
+ }
+
+ if (!EXPR_P (t))
+ *walk_subtrees = 0;
+
+ return NULL_TREE;
+}
+
+/* Moves the references to local variables in STMT at *GSI out of the single
+ entry single exit region starting at ENTRY. DECL_ADDRESS contains
+ addresses of the references that had their address taken
+ already. */
+
+static void
+eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
+ int_tree_htab_type decl_address)
+{
+ struct elv_data dta;
+ gimple stmt = gsi_stmt (*gsi);
+
+ memset (&dta.info, '\0', sizeof (dta.info));
+ dta.entry = entry;
+ dta.decl_address = decl_address;
+ dta.changed = false;
+ dta.reset = false;
+
+ if (gimple_debug_bind_p (stmt))
+ {
+ dta.gsi = NULL;
+ walk_tree (gimple_debug_bind_get_value_ptr (stmt),
+ eliminate_local_variables_1, &dta.info, NULL);
+ if (dta.reset)
+ {
+ gimple_debug_bind_reset_value (stmt);
+ dta.changed = true;
+ }
+ }
+ else if (gimple_clobber_p (stmt))
+ {
+ stmt = gimple_build_nop ();
+ gsi_replace (gsi, stmt, false);
+ dta.changed = true;
+ }
+ else
+ {
+ dta.gsi = gsi;
+ walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
+ }
+
+ if (dta.changed)
+ update_stmt (stmt);
+}
+
+/* Eliminates the references to local variables from the single entry
+ single exit region between the ENTRY and EXIT edges.
+
+ This includes:
+ 1) Taking address of a local variable -- these are moved out of the
+ region (and temporary variable is created to hold the address if
+ necessary).
+
+ 2) Dereferencing a local variable -- these are replaced with indirect
+ references. */
+
+static void
+eliminate_local_variables (edge entry, edge exit)
+{
+ basic_block bb;
+ auto_vec<basic_block, 3> body;
+ unsigned i;
+ gimple_stmt_iterator gsi;
+ bool has_debug_stmt = false;
+ int_tree_htab_type decl_address;
+ decl_address.create (10);
+ basic_block entry_bb = entry->src;
+ basic_block exit_bb = exit->dest;
+
+ gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
+
+ FOR_EACH_VEC_ELT (body, i, bb)
+ if (bb != entry_bb && bb != exit_bb)
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ if (is_gimple_debug (gsi_stmt (gsi)))
+ {
+ if (gimple_debug_bind_p (gsi_stmt (gsi)))
+ has_debug_stmt = true;
+ }
+ else
+ eliminate_local_variables_stmt (entry, &gsi, decl_address);
+
+ if (has_debug_stmt)
+ FOR_EACH_VEC_ELT (body, i, bb)
+ if (bb != entry_bb && bb != exit_bb)
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ if (gimple_debug_bind_p (gsi_stmt (gsi)))
+ eliminate_local_variables_stmt (entry, &gsi, decl_address);
+
+ decl_address.dispose ();
+}
+
+/* Returns true if expression EXPR is not defined between ENTRY and
+ EXIT, i.e. if all its operands are defined outside of the region. */
+
+static bool
+expr_invariant_in_region_p (edge entry, edge exit, tree expr)
+{
+ basic_block entry_bb = entry->src;
+ basic_block exit_bb = exit->dest;
+ basic_block def_bb;
+
+ if (is_gimple_min_invariant (expr))
+ return true;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
+ if (def_bb
+ && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
+ && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
+ return false;
+
+ return true;
+ }
+
+ return false;
+}
+
+/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
+ The copies are stored to NAME_COPIES, if NAME was already duplicated,
+ its duplicate stored in NAME_COPIES is returned.
+
+ Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
+ duplicated, storing the copies in DECL_COPIES. */
+
+static tree
+separate_decls_in_region_name (tree name, name_to_copy_table_type name_copies,
+ int_tree_htab_type decl_copies, bool copy_name_p)
+{
+ tree copy, var, var_copy;
+ unsigned idx, uid, nuid;
+ struct int_tree_map ielt, *nielt;
+ struct name_to_copy_elt elt, *nelt;
+ name_to_copy_elt **slot;
+ int_tree_map **dslot;
+
+ if (TREE_CODE (name) != SSA_NAME)
+ return name;
+
+ idx = SSA_NAME_VERSION (name);
+ elt.version = idx;
+ slot = name_copies.find_slot_with_hash (&elt, idx,
+ copy_name_p ? INSERT : NO_INSERT);
+ if (slot && *slot)
+ return (*slot)->new_name;
+
+ if (copy_name_p)
+ {
+ copy = duplicate_ssa_name (name, NULL);
+ nelt = XNEW (struct name_to_copy_elt);
+ nelt->version = idx;
+ nelt->new_name = copy;
+ nelt->field = NULL_TREE;
+ *slot = nelt;
+ }
+ else
+ {
+ gcc_assert (!slot);
+ copy = name;
+ }
+
+ var = SSA_NAME_VAR (name);
+ if (!var)
+ return copy;
+
+ uid = DECL_UID (var);
+ ielt.uid = uid;
+ dslot = decl_copies.find_slot_with_hash (&ielt, uid, INSERT);
+ if (!*dslot)
+ {
+ var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
+ DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
+ nielt = XNEW (struct int_tree_map);
+ nielt->uid = uid;
+ nielt->to = var_copy;
+ *dslot = nielt;
+
+ /* Ensure that when we meet this decl next time, we won't duplicate
+ it again. */
+ nuid = DECL_UID (var_copy);
+ ielt.uid = nuid;
+ dslot = decl_copies.find_slot_with_hash (&ielt, nuid, INSERT);
+ gcc_assert (!*dslot);
+ nielt = XNEW (struct int_tree_map);
+ nielt->uid = nuid;
+ nielt->to = var_copy;
+ *dslot = nielt;
+ }
+ else
+ var_copy = ((struct int_tree_map *) *dslot)->to;
+
+ replace_ssa_name_symbol (copy, var_copy);
+ return copy;
+}
+
+/* Finds the ssa names used in STMT that are defined outside the
+ region between ENTRY and EXIT and replaces such ssa names with
+ their duplicates. The duplicates are stored to NAME_COPIES. Base
+ decls of all ssa names used in STMT (including those defined in
+ LOOP) are replaced with the new temporary variables; the
+ replacement decls are stored in DECL_COPIES. */
+
+static void
+separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
+ name_to_copy_table_type name_copies,
+ int_tree_htab_type decl_copies)
+{
+ use_operand_p use;
+ def_operand_p def;
+ ssa_op_iter oi;
+ tree name, copy;
+ bool copy_name_p;
+
+ FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
+ {
+ name = DEF_FROM_PTR (def);
+ gcc_assert (TREE_CODE (name) == SSA_NAME);
+ copy = separate_decls_in_region_name (name, name_copies, decl_copies,
+ false);
+ gcc_assert (copy == name);
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
+ {
+ name = USE_FROM_PTR (use);
+ if (TREE_CODE (name) != SSA_NAME)
+ continue;
+
+ copy_name_p = expr_invariant_in_region_p (entry, exit, name);
+ copy = separate_decls_in_region_name (name, name_copies, decl_copies,
+ copy_name_p);
+ SET_USE (use, copy);
+ }
+}
+
+/* Finds the ssa names used in STMT that are defined outside the
+ region between ENTRY and EXIT and replaces such ssa names with
+ their duplicates. The duplicates are stored to NAME_COPIES. Base
+ decls of all ssa names used in STMT (including those defined in
+ LOOP) are replaced with the new temporary variables; the
+ replacement decls are stored in DECL_COPIES. */
+
+static bool
+separate_decls_in_region_debug (gimple stmt,
+ name_to_copy_table_type name_copies,
+ int_tree_htab_type decl_copies)
+{
+ use_operand_p use;
+ ssa_op_iter oi;
+ tree var, name;
+ struct int_tree_map ielt;
+ struct name_to_copy_elt elt;
+ name_to_copy_elt **slot;
+ int_tree_map **dslot;
+
+ if (gimple_debug_bind_p (stmt))
+ var = gimple_debug_bind_get_var (stmt);
+ else if (gimple_debug_source_bind_p (stmt))
+ var = gimple_debug_source_bind_get_var (stmt);
+ else
+ return true;
+ if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
+ return true;
+ gcc_assert (DECL_P (var) && SSA_VAR_P (var));
+ ielt.uid = DECL_UID (var);
+ dslot = decl_copies.find_slot_with_hash (&ielt, ielt.uid, NO_INSERT);
+ if (!dslot)
+ return true;
+ if (gimple_debug_bind_p (stmt))
+ gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
+ else if (gimple_debug_source_bind_p (stmt))
+ gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
+
+ FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
+ {
+ name = USE_FROM_PTR (use);
+ if (TREE_CODE (name) != SSA_NAME)
+ continue;
+
+ elt.version = SSA_NAME_VERSION (name);
+ slot = name_copies.find_slot_with_hash (&elt, elt.version, NO_INSERT);
+ if (!slot)
+ {
+ gimple_debug_bind_reset_value (stmt);
+ update_stmt (stmt);
+ break;
+ }
+
+ SET_USE (use, (*slot)->new_name);
+ }
+
+ return false;
+}
+
+/* Callback for htab_traverse. Adds a field corresponding to the reduction
+ specified in SLOT. The type is passed in DATA. */
+
+int
+add_field_for_reduction (reduction_info **slot, tree type)
+{
+
+ struct reduction_info *const red = *slot;
+ tree var = gimple_assign_lhs (red->reduc_stmt);
+ tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
+ SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
+
+ insert_field_into_struct (type, field);
+
+ red->field = field;
+
+ return 1;
+}
+
+/* Callback for htab_traverse. Adds a field corresponding to a ssa name
+ described in SLOT. The type is passed in DATA. */
+
+int
+add_field_for_name (name_to_copy_elt **slot, tree type)
+{
+ struct name_to_copy_elt *const elt = *slot;
+ tree name = ssa_name (elt->version);
+ tree field = build_decl (UNKNOWN_LOCATION,
+ FIELD_DECL, SSA_NAME_IDENTIFIER (name),
+ TREE_TYPE (name));
+
+ insert_field_into_struct (type, field);
+ elt->field = field;
+
+ return 1;
+}
+
+/* Callback for htab_traverse. A local result is the intermediate result
+ computed by a single
+ thread, or the initial value in case no iteration was executed.
+ This function creates a phi node reflecting these values.
+ The phi's result will be stored in NEW_PHI field of the
+ reduction's data structure. */
+
+int
+create_phi_for_local_result (reduction_info **slot, struct loop *loop)
+{
+ struct reduction_info *const reduc = *slot;
+ edge e;
+ gimple new_phi;
+ basic_block store_bb;
+ tree local_res;
+ source_location locus;
+
+ /* STORE_BB is the block where the phi
+ should be stored. It is the destination of the loop exit.
+ (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
+ store_bb = FALLTHRU_EDGE (loop->latch)->dest;
+
+ /* STORE_BB has two predecessors. One coming from the loop
+ (the reduction's result is computed at the loop),
+ and another coming from a block preceding the loop,
+ when no iterations
+ are executed (the initial value should be taken). */
+ if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
+ e = EDGE_PRED (store_bb, 1);
+ else
+ e = EDGE_PRED (store_bb, 0);
+ local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
+ locus = gimple_location (reduc->reduc_stmt);
+ new_phi = create_phi_node (local_res, store_bb);
+ add_phi_arg (new_phi, reduc->init, e, locus);
+ add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
+ FALLTHRU_EDGE (loop->latch), locus);
+ reduc->new_phi = new_phi;
+
+ return 1;
+}
+
+struct clsn_data
+{
+ tree store;
+ tree load;
+
+ basic_block store_bb;
+ basic_block load_bb;
+};
+
+/* Callback for htab_traverse. Create an atomic instruction for the
+ reduction described in SLOT.
+ DATA annotates the place in memory the atomic operation relates to,
+ and the basic block it needs to be generated in. */
+
+int
+create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
+{
+ struct reduction_info *const reduc = *slot;
+ gimple_stmt_iterator gsi;
+ tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
+ tree load_struct;
+ basic_block bb;
+ basic_block new_bb;
+ edge e;
+ tree t, addr, ref, x;
+ tree tmp_load, name;
+ gimple load;
+
+ load_struct = build_simple_mem_ref (clsn_data->load);
+ t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
+
+ addr = build_addr (t, current_function_decl);
+
+ /* Create phi node. */
+ bb = clsn_data->load_bb;
+
+ e = split_block (bb, t);
+ new_bb = e->dest;
+
+ tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
+ tmp_load = make_ssa_name (tmp_load, NULL);
+ load = gimple_build_omp_atomic_load (tmp_load, addr);
+ SSA_NAME_DEF_STMT (tmp_load) = load;
+ gsi = gsi_start_bb (new_bb);
+ gsi_insert_after (&gsi, load, GSI_NEW_STMT);
+
+ e = split_block (new_bb, load);
+ new_bb = e->dest;
+ gsi = gsi_start_bb (new_bb);
+ ref = tmp_load;
+ x = fold_build2 (reduc->reduction_code,
+ TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
+ PHI_RESULT (reduc->new_phi));
+
+ name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
+ GSI_CONTINUE_LINKING);
+
+ gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
+ return 1;
+}
+
+/* Create the atomic operation at the join point of the threads.
+ REDUCTION_LIST describes the reductions in the LOOP.
+ LD_ST_DATA describes the shared data structure where
+ shared data is stored in and loaded from. */
+static void
+create_call_for_reduction (struct loop *loop,
+ reduction_info_table_type reduction_list,
+ struct clsn_data *ld_st_data)
+{
+ reduction_list.traverse <struct loop *, create_phi_for_local_result> (loop);
+ /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
+ ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
+ reduction_list
+ .traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
+}
+
+/* Callback for htab_traverse. Loads the final reduction value at the
+ join point of all threads, and inserts it in the right place. */
+
+int
+create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
+{
+ struct reduction_info *const red = *slot;
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+ tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
+ tree load_struct;
+ tree name;
+ tree x;
+
+ gsi = gsi_after_labels (clsn_data->load_bb);
+ load_struct = build_simple_mem_ref (clsn_data->load);
+ load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
+ NULL_TREE);
+
+ x = load_struct;
+ name = PHI_RESULT (red->keep_res);
+ stmt = gimple_build_assign (name, x);
+
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
+ !gsi_end_p (gsi); gsi_next (&gsi))
+ if (gsi_stmt (gsi) == red->keep_res)
+ {
+ remove_phi_node (&gsi, false);
+ return 1;
+ }
+ gcc_unreachable ();
+}
+
+/* Load the reduction result that was stored in LD_ST_DATA.
+ REDUCTION_LIST describes the list of reductions that the
+ loads should be generated for. */
+static void
+create_final_loads_for_reduction (reduction_info_table_type reduction_list,
+ struct clsn_data *ld_st_data)
+{
+ gimple_stmt_iterator gsi;
+ tree t;
+ gimple stmt;
+
+ gsi = gsi_after_labels (ld_st_data->load_bb);
+ t = build_fold_addr_expr (ld_st_data->store);
+ stmt = gimple_build_assign (ld_st_data->load, t);
+
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+
+ reduction_list
+ .traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
+
+}
+
+/* Callback for htab_traverse. Store the neutral value for the
+ particular reduction's operation, e.g. 0 for PLUS_EXPR,
+ 1 for MULT_EXPR, etc. into the reduction field.
+ The reduction is specified in SLOT. The store information is
+ passed in DATA. */
+
+int
+create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
+{
+ struct reduction_info *const red = *slot;
+ tree t;
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+ tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
+
+ gsi = gsi_last_bb (clsn_data->store_bb);
+ t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
+ stmt = gimple_build_assign (t, red->initial_value);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ return 1;
+}
+
+/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
+ store to a field of STORE in STORE_BB for the ssa name and its duplicate
+ specified in SLOT. */
+
+int
+create_loads_and_stores_for_name (name_to_copy_elt **slot,
+ struct clsn_data *clsn_data)
+{
+ struct name_to_copy_elt *const elt = *slot;
+ tree t;
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+ tree type = TREE_TYPE (elt->new_name);
+ tree load_struct;
+
+ gsi = gsi_last_bb (clsn_data->store_bb);
+ t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
+ stmt = gimple_build_assign (t, ssa_name (elt->version));
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ gsi = gsi_last_bb (clsn_data->load_bb);
+ load_struct = build_simple_mem_ref (clsn_data->load);
+ t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
+ stmt = gimple_build_assign (elt->new_name, t);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ return 1;
+}
+
+/* Moves all the variables used in LOOP and defined outside of it (including
+ the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
+ name) to a structure created for this purpose. The code
+
+ while (1)
+ {
+ use (a);
+ use (b);
+ }
+
+ is transformed this way:
+
+ bb0:
+ old.a = a;
+ old.b = b;
+
+ bb1:
+ a' = new->a;
+ b' = new->b;
+ while (1)
+ {
+ use (a');
+ use (b');
+ }
+
+ `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
+ pointer `new' is intentionally not initialized (the loop will be split to a
+ separate function later, and `new' will be initialized from its arguments).
+ LD_ST_DATA holds information about the shared data structure used to pass
+ information among the threads. It is initialized here, and
+ gen_parallel_loop will pass it to create_call_for_reduction that
+ needs this information. REDUCTION_LIST describes the reductions
+ in LOOP. */
+
+static void
+separate_decls_in_region (edge entry, edge exit,
+ reduction_info_table_type reduction_list,
+ tree *arg_struct, tree *new_arg_struct,
+ struct clsn_data *ld_st_data)
+
+{
+ basic_block bb1 = split_edge (entry);
+ basic_block bb0 = single_pred (bb1);
+ name_to_copy_table_type name_copies;
+ name_copies.create (10);
+ int_tree_htab_type decl_copies;
+ decl_copies.create (10);
+ unsigned i;
+ tree type, type_name, nvar;
+ gimple_stmt_iterator gsi;
+ struct clsn_data clsn_data;
+ auto_vec<basic_block, 3> body;
+ basic_block bb;
+ basic_block entry_bb = bb1;
+ basic_block exit_bb = exit->dest;
+ bool has_debug_stmt = false;
+
+ entry = single_succ_edge (entry_bb);
+ gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
+
+ FOR_EACH_VEC_ELT (body, i, bb)
+ {
+ if (bb != entry_bb && bb != exit_bb)
+ {
+ for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
+ name_copies, decl_copies);
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ if (is_gimple_debug (stmt))
+ has_debug_stmt = true;
+ else
+ separate_decls_in_region_stmt (entry, exit, stmt,
+ name_copies, decl_copies);
+ }
+ }
+ }
+
+ /* Now process debug bind stmts. We must not create decls while
+ processing debug stmts, so we defer their processing so as to
+ make sure we will have debug info for as many variables as
+ possible (all of those that were dealt with in the loop above),
+ and discard those for which we know there's nothing we can
+ do. */
+ if (has_debug_stmt)
+ FOR_EACH_VEC_ELT (body, i, bb)
+ if (bb != entry_bb && bb != exit_bb)
+ {
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ if (is_gimple_debug (stmt))
+ {
+ if (separate_decls_in_region_debug (stmt, name_copies,
+ decl_copies))
+ {
+ gsi_remove (&gsi, true);
+ continue;
+ }
+ }
+
+ gsi_next (&gsi);
+ }
+ }
+
+ if (name_copies.elements () == 0 && reduction_list.elements () == 0)
+ {
+ /* It may happen that there is nothing to copy (if there are only
+ loop carried and external variables in the loop). */
+ *arg_struct = NULL;
+ *new_arg_struct = NULL;
+ }
+ else
+ {
+ /* Create the type for the structure to store the ssa names to. */
+ type = lang_hooks.types.make_type (RECORD_TYPE);
+ type_name = build_decl (UNKNOWN_LOCATION,
+ TYPE_DECL, create_tmp_var_name (".paral_data"),
+ type);
+ TYPE_NAME (type) = type_name;
+
+ name_copies.traverse <tree, add_field_for_name> (type);
+ if (reduction_list.is_created () && reduction_list.elements () > 0)
+ {
+ /* Create the fields for reductions. */
+ reduction_list.traverse <tree, add_field_for_reduction> (type);
+ }
+ layout_type (type);
+
+ /* Create the loads and stores. */
+ *arg_struct = create_tmp_var (type, ".paral_data_store");
+ nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
+ *new_arg_struct = make_ssa_name (nvar, NULL);
+
+ ld_st_data->store = *arg_struct;
+ ld_st_data->load = *new_arg_struct;
+ ld_st_data->store_bb = bb0;
+ ld_st_data->load_bb = bb1;
+
+ name_copies
+ .traverse <struct clsn_data *, create_loads_and_stores_for_name>
+ (ld_st_data);
+
+ /* Load the calculation from memory (after the join of the threads). */
+
+ if (reduction_list.is_created () && reduction_list.elements () > 0)
+ {
+ reduction_list
+ .traverse <struct clsn_data *, create_stores_for_reduction>
+ (ld_st_data);
+ clsn_data.load = make_ssa_name (nvar, NULL);
+ clsn_data.load_bb = exit->dest;
+ clsn_data.store = ld_st_data->store;
+ create_final_loads_for_reduction (reduction_list, &clsn_data);
+ }
+ }
+
+ decl_copies.dispose ();
+ name_copies.dispose ();
+}
+
+/* Bitmap containing uids of functions created by parallelization. We cannot
+ allocate it from the default obstack, as it must live across compilation
+ of several functions; we make it gc allocated instead. */
+
+static GTY(()) bitmap parallelized_functions;
+
+/* Returns true if FN was created by create_loop_fn. */
+
+bool
+parallelized_function_p (tree fn)
+{
+ if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
+ return false;
+
+ return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
+}
+
+/* Creates and returns an empty function that will receive the body of
+ a parallelized loop. */
+
+static tree
+create_loop_fn (location_t loc)
+{
+ char buf[100];
+ char *tname;
+ tree decl, type, name, t;
+ struct function *act_cfun = cfun;
+ static unsigned loopfn_num;
+
+ loc = LOCATION_LOCUS (loc);
+ snprintf (buf, 100, "%s.$loopfn", current_function_name ());
+ ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
+ clean_symbol_name (tname);
+ name = get_identifier (tname);
+ type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+
+ decl = build_decl (loc, FUNCTION_DECL, name, type);
+ if (!parallelized_functions)
+ parallelized_functions = BITMAP_GGC_ALLOC ();
+ bitmap_set_bit (parallelized_functions, DECL_UID (decl));
+
+ TREE_STATIC (decl) = 1;
+ TREE_USED (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_IGNORED_P (decl) = 0;
+ TREE_PUBLIC (decl) = 0;
+ DECL_UNINLINABLE (decl) = 1;
+ DECL_EXTERNAL (decl) = 0;
+ DECL_CONTEXT (decl) = NULL_TREE;
+ DECL_INITIAL (decl) = make_node (BLOCK);
+
+ t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_IGNORED_P (t) = 1;
+ DECL_RESULT (decl) = t;
+
+ t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
+ ptr_type_node);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_ARG_TYPE (t) = ptr_type_node;
+ DECL_CONTEXT (t) = decl;
+ TREE_USED (t) = 1;
+ DECL_ARGUMENTS (decl) = t;
+
+ allocate_struct_function (decl, false);
+
+ /* The call to allocate_struct_function clobbers CFUN, so we need to restore
+ it. */
+ set_cfun (act_cfun);
+
+ return decl;
+}
+
+/* Moves the exit condition of LOOP to the beginning of its header, and
+ duplicates the part of the last iteration that gets disabled to the
+ exit of the loop. NIT is the number of iterations of the loop
+ (used to initialize the variables in the duplicated part).
+
+ TODO: the common case is that latch of the loop is empty and immediately
+ follows the loop exit. In this case, it would be better not to copy the
+ body of the loop, but only move the entry of the loop directly before the
+ exit check and increase the number of iterations of the loop by one.
+ This may need some additional preconditioning in case NIT = ~0.
+ REDUCTION_LIST describes the reductions in LOOP. */
+
+static void
+transform_to_exit_first_loop (struct loop *loop,
+ reduction_info_table_type reduction_list,
+ tree nit)
+{
+ basic_block *bbs, *nbbs, ex_bb, orig_header;
+ unsigned n;
+ bool ok;
+ edge exit = single_dom_exit (loop), hpred;
+ tree control, control_name, res, t;
+ gimple phi, nphi, cond_stmt, stmt, cond_nit;
+ gimple_stmt_iterator gsi;
+ tree nit_1;
+
+ split_block_after_labels (loop->header);
+ orig_header = single_succ (loop->header);
+ hpred = single_succ_edge (loop->header);
+
+ cond_stmt = last_stmt (exit->src);
+ control = gimple_cond_lhs (cond_stmt);
+ gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
+
+ /* Make sure that we have phi nodes on exit for all loop header phis
+ (create_parallel_loop requires that). */
+ for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ phi = gsi_stmt (gsi);
+ res = PHI_RESULT (phi);
+ t = copy_ssa_name (res, phi);
+ SET_PHI_RESULT (phi, t);
+ nphi = create_phi_node (res, orig_header);
+ add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
+
+ if (res == control)
+ {
+ gimple_cond_set_lhs (cond_stmt, t);
+ update_stmt (cond_stmt);
+ control = t;
+ }
+ }
+
+ bbs = get_loop_body_in_dom_order (loop);
+
+ for (n = 0; bbs[n] != exit->src; n++)
+ continue;
+ nbbs = XNEWVEC (basic_block, n);
+ ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
+ bbs + 1, n, nbbs);
+ gcc_assert (ok);
+ free (bbs);
+ ex_bb = nbbs[0];
+ free (nbbs);
+
+ /* Other than reductions, the only gimple reg that should be copied
+ out of the loop is the control variable. */
+ exit = single_dom_exit (loop);
+ control_name = NULL_TREE;
+ for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
+ {
+ phi = gsi_stmt (gsi);
+ res = PHI_RESULT (phi);
+ if (virtual_operand_p (res))
+ {
+ gsi_next (&gsi);
+ continue;
+ }
+
+ /* Check if it is a part of reduction. If it is,
+ keep the phi at the reduction's keep_res field. The
+ PHI_RESULT of this phi is the resulting value of the reduction
+ variable when exiting the loop. */
+
+ if (reduction_list.elements () > 0)
+ {
+ struct reduction_info *red;
+
+ tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+ red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
+ if (red)
+ {
+ red->keep_res = phi;
+ gsi_next (&gsi);
+ continue;
+ }
+ }
+ gcc_assert (control_name == NULL_TREE
+ && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
+ control_name = res;
+ remove_phi_node (&gsi, false);
+ }
+ gcc_assert (control_name != NULL_TREE);
+
+ /* Initialize the control variable to number of iterations
+ according to the rhs of the exit condition. */
+ gsi = gsi_after_labels (ex_bb);
+ cond_nit = last_stmt (exit->src);
+ nit_1 = gimple_cond_rhs (cond_nit);
+ nit_1 = force_gimple_operand_gsi (&gsi,
+ fold_convert (TREE_TYPE (control_name), nit_1),
+ false, NULL_TREE, false, GSI_SAME_STMT);
+ stmt = gimple_build_assign (control_name, nit_1);
+ gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+}
+
+/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
+ LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
+ NEW_DATA is the variable that should be initialized from the argument
+ of LOOP_FN. N_THREADS is the requested number of threads. Returns the
+ basic block containing GIMPLE_OMP_PARALLEL tree. */
+
+static basic_block
+create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
+ tree new_data, unsigned n_threads, location_t loc)
+{
+ gimple_stmt_iterator gsi;
+ basic_block bb, paral_bb, for_bb, ex_bb;
+ tree t, param;
+ gimple stmt, for_stmt, phi, cond_stmt;
+ tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
+ edge exit, nexit, guard, end, e;
+
+ /* Prepare the GIMPLE_OMP_PARALLEL statement. */
+ bb = loop_preheader_edge (loop)->src;
+ paral_bb = single_pred (bb);
+ gsi = gsi_last_bb (paral_bb);
+
+ t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
+ OMP_CLAUSE_NUM_THREADS_EXPR (t)
+ = build_int_cst (integer_type_node, n_threads);
+ stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
+ gimple_set_location (stmt, loc);
+
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ /* Initialize NEW_DATA. */
+ if (data)
+ {
+ gsi = gsi_after_labels (bb);
+
+ param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
+ stmt = gimple_build_assign (param, build_fold_addr_expr (data));
+ gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
+
+ stmt = gimple_build_assign (new_data,
+ fold_convert (TREE_TYPE (new_data), param));
+ gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
+ }
+
+ /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
+ bb = split_loop_exit_edge (single_dom_exit (loop));
+ gsi = gsi_last_bb (bb);
+ stmt = gimple_build_omp_return (false);
+ gimple_set_location (stmt, loc);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ /* Extract data for GIMPLE_OMP_FOR. */
+ gcc_assert (loop->header == single_dom_exit (loop)->src);
+ cond_stmt = last_stmt (loop->header);
+
+ cvar = gimple_cond_lhs (cond_stmt);
+ cvar_base = SSA_NAME_VAR (cvar);
+ phi = SSA_NAME_DEF_STMT (cvar);
+ cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ initvar = copy_ssa_name (cvar, NULL);
+ SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
+ initvar);
+ cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+
+ gsi = gsi_last_nondebug_bb (loop->latch);
+ gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
+ gsi_remove (&gsi, true);
+
+ /* Prepare cfg. */
+ for_bb = split_edge (loop_preheader_edge (loop));
+ ex_bb = split_loop_exit_edge (single_dom_exit (loop));
+ extract_true_false_edges_from_block (loop->header, &nexit, &exit);
+ gcc_assert (exit == single_dom_exit (loop));
+
+ guard = make_edge (for_bb, ex_bb, 0);
+ single_succ_edge (loop->latch)->flags = 0;
+ end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
+ for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ source_location locus;
+ tree def;
+ phi = gsi_stmt (gsi);
+ stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
+
+ def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
+ locus = gimple_phi_arg_location_from_edge (stmt,
+ loop_preheader_edge (loop));
+ add_phi_arg (phi, def, guard, locus);
+
+ def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
+ locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
+ add_phi_arg (phi, def, end, locus);
+ }
+ e = redirect_edge_and_branch (exit, nexit->dest);
+ PENDING_STMT (e) = NULL;
+
+ /* Emit GIMPLE_OMP_FOR. */
+ gimple_cond_set_lhs (cond_stmt, cvar_base);
+ type = TREE_TYPE (cvar);
+ t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
+ OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
+
+ for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
+ gimple_set_location (for_stmt, loc);
+ gimple_omp_for_set_index (for_stmt, 0, initvar);
+ gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
+ gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
+ gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
+ gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
+ cvar_base,
+ build_int_cst (type, 1)));
+
+ gsi = gsi_last_bb (for_bb);
+ gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (initvar) = for_stmt;
+
+ /* Emit GIMPLE_OMP_CONTINUE. */
+ gsi = gsi_last_bb (loop->latch);
+ stmt = gimple_build_omp_continue (cvar_next, cvar);
+ gimple_set_location (stmt, loc);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (cvar_next) = stmt;
+
+ /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
+ gsi = gsi_last_bb (ex_bb);
+ stmt = gimple_build_omp_return (true);
+ gimple_set_location (stmt, loc);
+ gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
+
+ /* After the above dom info is hosed. Re-compute it. */
+ free_dominance_info (CDI_DOMINATORS);
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ return paral_bb;
+}
+
+/* Generates code to execute the iterations of LOOP in N_THREADS
+ threads in parallel.
+
+ NITER describes number of iterations of LOOP.
+ REDUCTION_LIST describes the reductions existent in the LOOP. */
+
+static void
+gen_parallel_loop (struct loop *loop, reduction_info_table_type reduction_list,
+ unsigned n_threads, struct tree_niter_desc *niter)
+{
+ tree many_iterations_cond, type, nit;
+ tree arg_struct, new_arg_struct;
+ gimple_seq stmts;
+ basic_block parallel_head;
+ edge entry, exit;
+ struct clsn_data clsn_data;
+ unsigned prob;
+ location_t loc;
+ gimple cond_stmt;
+ unsigned int m_p_thread=2;
+
+ /* From
+
+ ---------------------------------------------------------------------
+ loop
+ {
+ IV = phi (INIT, IV + STEP)
+ BODY1;
+ if (COND)
+ break;
+ BODY2;
+ }
+ ---------------------------------------------------------------------
+
+ with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
+ we generate the following code:
+
+ ---------------------------------------------------------------------
+
+ if (MAY_BE_ZERO
+ || NITER < MIN_PER_THREAD * N_THREADS)
+ goto original;
+
+ BODY1;
+ store all local loop-invariant variables used in body of the loop to DATA.
+ GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
+ load the variables from DATA.
+ GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
+ BODY2;
+ BODY1;
+ GIMPLE_OMP_CONTINUE;
+ GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
+ GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
+ goto end;
+
+ original:
+ loop
+ {
+ IV = phi (INIT, IV + STEP)
+ BODY1;
+ if (COND)
+ break;
+ BODY2;
+ }
+
+ end:
+
+ */
+
+ /* Create two versions of the loop -- in the old one, we know that the
+ number of iterations is large enough, and we will transform it into the
+ loop that will be split to loop_fn, the new one will be used for the
+ remaining iterations. */
+
+ /* We should compute a better number-of-iterations value for outer loops.
+ That is, if we have
+
+ for (i = 0; i < n; ++i)
+ for (j = 0; j < m; ++j)
+ ...
+
+ we should compute nit = n * m, not nit = n.
+ Also may_be_zero handling would need to be adjusted. */
+
+ type = TREE_TYPE (niter->niter);
+ nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
+ NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
+
+ if (loop->inner)
+ m_p_thread=2;
+ else
+ m_p_thread=MIN_PER_THREAD;
+
+ many_iterations_cond =
+ fold_build2 (GE_EXPR, boolean_type_node,
+ nit, build_int_cst (type, m_p_thread * n_threads));
+
+ many_iterations_cond
+ = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ invert_truthvalue (unshare_expr (niter->may_be_zero)),
+ many_iterations_cond);
+ many_iterations_cond
+ = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
+ if (!is_gimple_condexpr (many_iterations_cond))
+ {
+ many_iterations_cond
+ = force_gimple_operand (many_iterations_cond, &stmts,
+ true, NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
+ }
+
+ initialize_original_copy_tables ();
+
+ /* We assume that the loop usually iterates a lot. */
+ prob = 4 * REG_BR_PROB_BASE / 5;
+ loop_version (loop, many_iterations_cond, NULL,
+ prob, prob, REG_BR_PROB_BASE - prob, true);
+ update_ssa (TODO_update_ssa);
+ free_original_copy_tables ();
+
+ /* Base all the induction variables in LOOP on a single control one. */
+ canonicalize_loop_ivs (loop, &nit, true);
+
+ /* Ensure that the exit condition is the first statement in the loop. */
+ transform_to_exit_first_loop (loop, reduction_list, nit);
+
+ /* Generate initializations for reductions. */
+ if (reduction_list.elements () > 0)
+ reduction_list.traverse <struct loop *, initialize_reductions> (loop);
+
+ /* Eliminate the references to local variables from the loop. */
+ gcc_assert (single_exit (loop));
+ entry = loop_preheader_edge (loop);
+ exit = single_dom_exit (loop);
+
+ eliminate_local_variables (entry, exit);
+ /* In the old loop, move all variables non-local to the loop to a structure
+ and back, and create separate decls for the variables used in loop. */
+ separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
+ &new_arg_struct, &clsn_data);
+
+ /* Create the parallel constructs. */
+ loc = UNKNOWN_LOCATION;
+ cond_stmt = last_stmt (loop->header);
+ if (cond_stmt)
+ loc = gimple_location (cond_stmt);
+ parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
+ new_arg_struct, n_threads, loc);
+ if (reduction_list.elements () > 0)
+ create_call_for_reduction (loop, reduction_list, &clsn_data);
+
+ scev_reset ();
+
+ /* Cancel the loop (it is simpler to do it here rather than to teach the
+ expander to do it). */
+ cancel_loop_tree (loop);
+
+ /* Free loop bound estimations that could contain references to
+ removed statements. */
+ FOR_EACH_LOOP (loop, 0)
+ free_numbers_of_iterations_estimates_loop (loop);
+
+ /* Expand the parallel constructs. We do it directly here instead of running
+ a separate expand_omp pass, since it is more efficient, and less likely to
+ cause troubles with further analyses not being able to deal with the
+ OMP trees. */
+
+ omp_expand_local (parallel_head);
+}
+
+/* Returns true when LOOP contains vector phi nodes. */
+
+static bool
+loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
+{
+ unsigned i;
+ basic_block *bbs = get_loop_body_in_dom_order (loop);
+ gimple_stmt_iterator gsi;
+ bool res = true;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
+ if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
+ goto end;
+
+ res = false;
+ end:
+ free (bbs);
+ return res;
+}
+
+/* Create a reduction_info struct, initialize it with REDUC_STMT
+ and PHI, insert it to the REDUCTION_LIST. */
+
+static void
+build_new_reduction (reduction_info_table_type reduction_list,
+ gimple reduc_stmt, gimple phi)
+{
+ reduction_info **slot;
+ struct reduction_info *new_reduction;
+
+ gcc_assert (reduc_stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file,
+ "Detected reduction. reduction stmt is: \n");
+ print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ new_reduction = XCNEW (struct reduction_info);
+
+ new_reduction->reduc_stmt = reduc_stmt;
+ new_reduction->reduc_phi = phi;
+ new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
+ new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
+ slot = reduction_list.find_slot (new_reduction, INSERT);
+ *slot = new_reduction;
+}
+
+/* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
+
+int
+set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
+{
+ struct reduction_info *const red = *slot;
+ gimple_set_uid (red->reduc_phi, red->reduc_version);
+ return 1;
+}
+
+/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
+
+static void
+gather_scalar_reductions (loop_p loop, reduction_info_table_type reduction_list)
+{
+ gimple_stmt_iterator gsi;
+ loop_vec_info simple_loop_info;
+
+ simple_loop_info = vect_analyze_loop_form (loop);
+
+ for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ affine_iv iv;
+ tree res = PHI_RESULT (phi);
+ bool double_reduc;
+
+ if (virtual_operand_p (res))
+ continue;
+
+ if (!simple_iv (loop, loop, res, &iv, true)
+ && simple_loop_info)
+ {
+ gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
+ phi, true,
+ &double_reduc);
+ if (reduc_stmt && !double_reduc)
+ build_new_reduction (reduction_list, reduc_stmt, phi);
+ }
+ }
+ destroy_loop_vec_info (simple_loop_info, true);
+
+ /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
+ and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
+ only now. */
+ reduction_list.traverse <void *, set_reduc_phi_uids> (NULL);
+}
+
+/* Try to initialize NITER for code generation part. */
+
+static bool
+try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
+{
+ edge exit = single_dom_exit (loop);
+
+ gcc_assert (exit);
+
+ /* We need to know # of iterations, and there should be no uses of values
+ defined inside loop outside of it, unless the values are invariants of
+ the loop. */
+ if (!number_of_iterations_exit (loop, exit, niter, false))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " FAILED: number of iterations not known\n");
+ return false;
+ }
+
+ return true;
+}
+
+/* Try to initialize REDUCTION_LIST for code generation part.
+ REDUCTION_LIST describes the reductions. */
+
+static bool
+try_create_reduction_list (loop_p loop,
+ reduction_info_table_type reduction_list)
+{
+ edge exit = single_dom_exit (loop);
+ gimple_stmt_iterator gsi;
+
+ gcc_assert (exit);
+
+ gather_scalar_reductions (loop, reduction_list);
+
+
+ for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ struct reduction_info *red;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ gimple reduc_phi;
+ tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+
+ if (!virtual_operand_p (val))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "phi is ");
+ print_gimple_stmt (dump_file, phi, 0, 0);
+ fprintf (dump_file, "arg of phi to exit: value ");
+ print_generic_expr (dump_file, val, 0);
+ fprintf (dump_file, " used outside loop\n");
+ fprintf (dump_file,
+ " checking if it a part of reduction pattern: \n");
+ }
+ if (reduction_list.elements () == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: it is not a part of reduction.\n");
+ return false;
+ }
+ reduc_phi = NULL;
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
+ {
+ if (!gimple_debug_bind_p (USE_STMT (use_p))
+ && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
+ {
+ reduc_phi = USE_STMT (use_p);
+ break;
+ }
+ }
+ red = reduction_phi (reduction_list, reduc_phi);
+ if (red == NULL)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: it is not a part of reduction.\n");
+ return false;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "reduction phi is ");
+ print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
+ fprintf (dump_file, "reduction stmt is ");
+ print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
+ }
+ }
+ }
+
+ /* The iterations of the loop may communicate only through bivs whose
+ iteration space can be distributed efficiently. */
+ for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple phi = gsi_stmt (gsi);
+ tree def = PHI_RESULT (phi);
+ affine_iv iv;
+
+ if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
+ {
+ struct reduction_info *red;
+
+ red = reduction_phi (reduction_list, phi);
+ if (red == NULL)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: scalar dependency between iterations\n");
+ return false;
+ }
+ }
+ }
+
+
+ return true;
+}
+
+/* Detect parallel loops and generate parallel code using libgomp
+ primitives. Returns true if some loop was parallelized, false
+ otherwise. */
+
+bool
+parallelize_loops (void)
+{
+ unsigned n_threads = flag_tree_parallelize_loops;
+ bool changed = false;
+ struct loop *loop;
+ struct tree_niter_desc niter_desc;
+ reduction_info_table_type reduction_list;
+ struct obstack parloop_obstack;
+ HOST_WIDE_INT estimated;
+ source_location loop_loc;
+
+ /* Do not parallelize loops in the functions created by parallelization. */
+ if (parallelized_function_p (cfun->decl))
+ return false;
+ if (cfun->has_nonlocal_label)
+ return false;
+
+ gcc_obstack_init (&parloop_obstack);
+ reduction_list.create (10);
+ init_stmt_vec_info_vec ();
+
+ FOR_EACH_LOOP (loop, 0)
+ {
+ reduction_list.empty ();
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
+ if (loop->inner)
+ fprintf (dump_file, "loop %d is not innermost\n",loop->num);
+ else
+ fprintf (dump_file, "loop %d is innermost\n",loop->num);
+ }
+
+ /* If we use autopar in graphite pass, we use its marked dependency
+ checking results. */
+ if (flag_loop_parallelize_all && !loop->can_be_parallel)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "loop is not parallel according to graphite\n");
+ continue;
+ }
+
+ if (!single_dom_exit (loop))
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "loop is !single_dom_exit\n");
+
+ continue;
+ }
+
+ if (/* And of course, the loop must be parallelizable. */
+ !can_duplicate_loop_p (loop)
+ || loop_has_blocks_with_irreducible_flag (loop)
+ || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
+ /* FIXME: the check for vector phi nodes could be removed. */
+ || loop_has_vector_phi_nodes (loop))
+ continue;
+
+ estimated = estimated_stmt_executions_int (loop);
+ if (estimated == -1)
+ estimated = max_stmt_executions_int (loop);
+ /* FIXME: Bypass this check as graphite doesn't update the
+ count and frequency correctly now. */
+ if (!flag_loop_parallelize_all
+ && ((estimated != -1
+ && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
+ /* Do not bother with loops in cold areas. */
+ || optimize_loop_nest_for_size_p (loop)))
+ continue;
+
+ if (!try_get_loop_niter (loop, &niter_desc))
+ continue;
+
+ if (!try_create_reduction_list (loop, reduction_list))
+ continue;
+
+ if (!flag_loop_parallelize_all
+ && !loop_parallel_p (loop, &parloop_obstack))
+ continue;
+
+ changed = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (loop->inner)
+ fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
+ else
+ fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
+ loop_loc = find_loop_location (loop);
+ if (loop_loc != UNKNOWN_LOCATION)
+ fprintf (dump_file, "\nloop at %s:%d: ",
+ LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
+ }
+ gen_parallel_loop (loop, reduction_list,
+ n_threads, &niter_desc);
+ }
+
+ free_stmt_vec_info_vec ();
+ reduction_list.dispose ();
+ obstack_free (&parloop_obstack, NULL);
+
+ /* Parallelization will cause new function calls to be inserted through
+ which local variables will escape. Reset the points-to solution
+ for ESCAPED. */
+ if (changed)
+ pt_solution_reset (&cfun->gimple_df->escaped);
+
+ return changed;
+}
+
+/* Parallelization. */
+
+static bool
+gate_tree_parallelize_loops (void)
+{
+ return flag_tree_parallelize_loops > 1;
+}
+
+static unsigned
+tree_parallelize_loops (void)
+{
+ if (number_of_loops (cfun) <= 1)
+ return 0;
+
+ if (parallelize_loops ())
+ return TODO_cleanup_cfg | TODO_rebuild_alias;
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_parallelize_loops =
+{
+ GIMPLE_PASS, /* type */
+ "parloops", /* name */
+ OPTGROUP_LOOP, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
+ ( PROP_cfg | PROP_ssa ), /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_verify_flow, /* todo_flags_finish */
+};
+
+class pass_parallelize_loops : public gimple_opt_pass
+{
+public:
+ pass_parallelize_loops (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_tree_parallelize_loops (); }
+ unsigned int execute () { return tree_parallelize_loops (); }
+
+}; // class pass_parallelize_loops
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_parallelize_loops (gcc::context *ctxt)
+{
+ return new pass_parallelize_loops (ctxt);
+}
+
+
+#include "gt-tree-parloops.h"