aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/postreload.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-26 05:37:19 (GMT)
committerBen Cheng <bccheng@google.com>2014-03-26 05:37:19 (GMT)
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/postreload.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/postreload.c')
-rw-r--r--gcc-4.9/gcc/postreload.c2378
1 files changed, 2378 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/postreload.c b/gcc-4.9/gcc/postreload.c
new file mode 100644
index 0000000..9bfffe5
--- /dev/null
+++ b/gcc-4.9/gcc/postreload.c
@@ -0,0 +1,2378 @@
+/* Perform simple optimizations to clean up the result of reload.
+ Copyright (C) 1987-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+
+#include "machmode.h"
+#include "hard-reg-set.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "obstack.h"
+#include "insn-config.h"
+#include "flags.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "regs.h"
+#include "basic-block.h"
+#include "reload.h"
+#include "recog.h"
+#include "cselib.h"
+#include "diagnostic-core.h"
+#include "except.h"
+#include "tree.h"
+#include "target.h"
+#include "tree-pass.h"
+#include "df.h"
+#include "dbgcnt.h"
+
+static int reload_cse_noop_set_p (rtx);
+static bool reload_cse_simplify (rtx, rtx);
+static void reload_cse_regs_1 (void);
+static int reload_cse_simplify_set (rtx, rtx);
+static int reload_cse_simplify_operands (rtx, rtx);
+
+static void reload_combine (void);
+static void reload_combine_note_use (rtx *, rtx, int, rtx);
+static void reload_combine_note_store (rtx, const_rtx, void *);
+
+static bool reload_cse_move2add (rtx);
+static void move2add_note_store (rtx, const_rtx, void *);
+
+/* Call cse / combine like post-reload optimization phases.
+ FIRST is the first instruction. */
+
+static void
+reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
+{
+ bool moves_converted;
+ reload_cse_regs_1 ();
+ reload_combine ();
+ moves_converted = reload_cse_move2add (first);
+ if (flag_expensive_optimizations)
+ {
+ if (moves_converted)
+ reload_combine ();
+ reload_cse_regs_1 ();
+ }
+}
+
+/* See whether a single set SET is a noop. */
+static int
+reload_cse_noop_set_p (rtx set)
+{
+ if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
+ return 0;
+
+ return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
+}
+
+/* Try to simplify INSN. Return true if the CFG may have changed. */
+static bool
+reload_cse_simplify (rtx insn, rtx testreg)
+{
+ rtx body = PATTERN (insn);
+ basic_block insn_bb = BLOCK_FOR_INSN (insn);
+ unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
+
+ if (GET_CODE (body) == SET)
+ {
+ int count = 0;
+
+ /* Simplify even if we may think it is a no-op.
+ We may think a memory load of a value smaller than WORD_SIZE
+ is redundant because we haven't taken into account possible
+ implicit extension. reload_cse_simplify_set() will bring
+ this out, so it's safer to simplify before we delete. */
+ count += reload_cse_simplify_set (body, insn);
+
+ if (!count && reload_cse_noop_set_p (body))
+ {
+ rtx value = SET_DEST (body);
+ if (REG_P (value)
+ && ! REG_FUNCTION_VALUE_P (value))
+ value = 0;
+ if (check_for_inc_dec (insn))
+ delete_insn_and_edges (insn);
+ /* We're done with this insn. */
+ goto done;
+ }
+
+ if (count > 0)
+ apply_change_group ();
+ else
+ reload_cse_simplify_operands (insn, testreg);
+ }
+ else if (GET_CODE (body) == PARALLEL)
+ {
+ int i;
+ int count = 0;
+ rtx value = NULL_RTX;
+
+ /* Registers mentioned in the clobber list for an asm cannot be reused
+ within the body of the asm. Invalidate those registers now so that
+ we don't try to substitute values for them. */
+ if (asm_noperands (body) >= 0)
+ {
+ for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
+ {
+ rtx part = XVECEXP (body, 0, i);
+ if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
+ cselib_invalidate_rtx (XEXP (part, 0));
+ }
+ }
+
+ /* If every action in a PARALLEL is a noop, we can delete
+ the entire PARALLEL. */
+ for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
+ {
+ rtx part = XVECEXP (body, 0, i);
+ if (GET_CODE (part) == SET)
+ {
+ if (! reload_cse_noop_set_p (part))
+ break;
+ if (REG_P (SET_DEST (part))
+ && REG_FUNCTION_VALUE_P (SET_DEST (part)))
+ {
+ if (value)
+ break;
+ value = SET_DEST (part);
+ }
+ }
+ else if (GET_CODE (part) != CLOBBER)
+ break;
+ }
+
+ if (i < 0)
+ {
+ if (check_for_inc_dec (insn))
+ delete_insn_and_edges (insn);
+ /* We're done with this insn. */
+ goto done;
+ }
+
+ /* It's not a no-op, but we can try to simplify it. */
+ for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
+ if (GET_CODE (XVECEXP (body, 0, i)) == SET)
+ count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
+
+ if (count > 0)
+ apply_change_group ();
+ else
+ reload_cse_simplify_operands (insn, testreg);
+ }
+
+done:
+ return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
+}
+
+/* Do a very simple CSE pass over the hard registers.
+
+ This function detects no-op moves where we happened to assign two
+ different pseudo-registers to the same hard register, and then
+ copied one to the other. Reload will generate a useless
+ instruction copying a register to itself.
+
+ This function also detects cases where we load a value from memory
+ into two different registers, and (if memory is more expensive than
+ registers) changes it to simply copy the first register into the
+ second register.
+
+ Another optimization is performed that scans the operands of each
+ instruction to see whether the value is already available in a
+ hard register. It then replaces the operand with the hard register
+ if possible, much like an optional reload would. */
+
+static void
+reload_cse_regs_1 (void)
+{
+ bool cfg_changed = false;
+ basic_block bb;
+ rtx insn;
+ rtx testreg = gen_rtx_REG (VOIDmode, -1);
+
+ cselib_init (CSELIB_RECORD_MEMORY);
+ init_alias_analysis ();
+
+ FOR_EACH_BB_FN (bb, cfun)
+ FOR_BB_INSNS (bb, insn)
+ {
+ if (INSN_P (insn))
+ cfg_changed |= reload_cse_simplify (insn, testreg);
+
+ cselib_process_insn (insn);
+ }
+
+ /* Clean up. */
+ end_alias_analysis ();
+ cselib_finish ();
+ if (cfg_changed)
+ cleanup_cfg (0);
+}
+
+/* Try to simplify a single SET instruction. SET is the set pattern.
+ INSN is the instruction it came from.
+ This function only handles one case: if we set a register to a value
+ which is not a register, we try to find that value in some other register
+ and change the set into a register copy. */
+
+static int
+reload_cse_simplify_set (rtx set, rtx insn)
+{
+ int did_change = 0;
+ int dreg;
+ rtx src;
+ reg_class_t dclass;
+ int old_cost;
+ cselib_val *val;
+ struct elt_loc_list *l;
+#ifdef LOAD_EXTEND_OP
+ enum rtx_code extend_op = UNKNOWN;
+#endif
+ bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
+
+ dreg = true_regnum (SET_DEST (set));
+ if (dreg < 0)
+ return 0;
+
+ src = SET_SRC (set);
+ if (side_effects_p (src) || true_regnum (src) >= 0)
+ return 0;
+
+ dclass = REGNO_REG_CLASS (dreg);
+
+#ifdef LOAD_EXTEND_OP
+ /* When replacing a memory with a register, we need to honor assumptions
+ that combine made wrt the contents of sign bits. We'll do this by
+ generating an extend instruction instead of a reg->reg copy. Thus
+ the destination must be a register that we can widen. */
+ if (MEM_P (src)
+ && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
+ && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
+ && !REG_P (SET_DEST (set)))
+ return 0;
+#endif
+
+ val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
+ if (! val)
+ return 0;
+
+ /* If memory loads are cheaper than register copies, don't change them. */
+ if (MEM_P (src))
+ old_cost = memory_move_cost (GET_MODE (src), dclass, true);
+ else if (REG_P (src))
+ old_cost = register_move_cost (GET_MODE (src),
+ REGNO_REG_CLASS (REGNO (src)), dclass);
+ else
+ old_cost = set_src_cost (src, speed);
+
+ for (l = val->locs; l; l = l->next)
+ {
+ rtx this_rtx = l->loc;
+ int this_cost;
+
+ if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
+ {
+#ifdef LOAD_EXTEND_OP
+ if (extend_op != UNKNOWN)
+ {
+ HOST_WIDE_INT this_val;
+
+ /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
+ constants, such as SYMBOL_REF, cannot be extended. */
+ if (!CONST_INT_P (this_rtx))
+ continue;
+
+ this_val = INTVAL (this_rtx);
+ switch (extend_op)
+ {
+ case ZERO_EXTEND:
+ this_val &= GET_MODE_MASK (GET_MODE (src));
+ break;
+ case SIGN_EXTEND:
+ /* ??? In theory we're already extended. */
+ if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ this_rtx = GEN_INT (this_val);
+ }
+#endif
+ this_cost = set_src_cost (this_rtx, speed);
+ }
+ else if (REG_P (this_rtx))
+ {
+#ifdef LOAD_EXTEND_OP
+ if (extend_op != UNKNOWN)
+ {
+ this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
+ this_cost = set_src_cost (this_rtx, speed);
+ }
+ else
+#endif
+ this_cost = register_move_cost (GET_MODE (this_rtx),
+ REGNO_REG_CLASS (REGNO (this_rtx)),
+ dclass);
+ }
+ else
+ continue;
+
+ /* If equal costs, prefer registers over anything else. That
+ tends to lead to smaller instructions on some machines. */
+ if (this_cost < old_cost
+ || (this_cost == old_cost
+ && REG_P (this_rtx)
+ && !REG_P (SET_SRC (set))))
+ {
+#ifdef LOAD_EXTEND_OP
+ if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
+ && extend_op != UNKNOWN
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
+ word_mode,
+ REGNO_REG_CLASS (REGNO (SET_DEST (set))))
+#endif
+ )
+ {
+ rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
+ ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
+ validate_change (insn, &SET_DEST (set), wide_dest, 1);
+ }
+#endif
+
+ validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
+ old_cost = this_cost, did_change = 1;
+ }
+ }
+
+ return did_change;
+}
+
+/* Try to replace operands in INSN with equivalent values that are already
+ in registers. This can be viewed as optional reloading.
+
+ For each non-register operand in the insn, see if any hard regs are
+ known to be equivalent to that operand. Record the alternatives which
+ can accept these hard registers. Among all alternatives, select the
+ ones which are better or equal to the one currently matching, where
+ "better" is in terms of '?' and '!' constraints. Among the remaining
+ alternatives, select the one which replaces most operands with
+ hard registers. */
+
+static int
+reload_cse_simplify_operands (rtx insn, rtx testreg)
+{
+ int i, j;
+
+ /* For each operand, all registers that are equivalent to it. */
+ HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
+
+ const char *constraints[MAX_RECOG_OPERANDS];
+
+ /* Vector recording how bad an alternative is. */
+ int *alternative_reject;
+ /* Vector recording how many registers can be introduced by choosing
+ this alternative. */
+ int *alternative_nregs;
+ /* Array of vectors recording, for each operand and each alternative,
+ which hard register to substitute, or -1 if the operand should be
+ left as it is. */
+ int *op_alt_regno[MAX_RECOG_OPERANDS];
+ /* Array of alternatives, sorted in order of decreasing desirability. */
+ int *alternative_order;
+
+ extract_insn (insn);
+
+ if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
+ return 0;
+
+ /* Figure out which alternative currently matches. */
+ if (! constrain_operands (1))
+ fatal_insn_not_found (insn);
+
+ alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
+ alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
+ alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
+ memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
+ memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
+
+ /* For each operand, find out which regs are equivalent. */
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ cselib_val *v;
+ struct elt_loc_list *l;
+ rtx op;
+
+ CLEAR_HARD_REG_SET (equiv_regs[i]);
+
+ /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
+ right, so avoid the problem here. Likewise if we have a constant
+ and the insn pattern doesn't tell us the mode we need. */
+ if (LABEL_P (recog_data.operand[i])
+ || (CONSTANT_P (recog_data.operand[i])
+ && recog_data.operand_mode[i] == VOIDmode))
+ continue;
+
+ op = recog_data.operand[i];
+#ifdef LOAD_EXTEND_OP
+ if (MEM_P (op)
+ && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
+ && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
+ {
+ rtx set = single_set (insn);
+
+ /* We might have multiple sets, some of which do implicit
+ extension. Punt on this for now. */
+ if (! set)
+ continue;
+ /* If the destination is also a MEM or a STRICT_LOW_PART, no
+ extension applies.
+ Also, if there is an explicit extension, we don't have to
+ worry about an implicit one. */
+ else if (MEM_P (SET_DEST (set))
+ || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
+ || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
+ || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
+ ; /* Continue ordinary processing. */
+#ifdef CANNOT_CHANGE_MODE_CLASS
+ /* If the register cannot change mode to word_mode, it follows that
+ it cannot have been used in word_mode. */
+ else if (REG_P (SET_DEST (set))
+ && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
+ word_mode,
+ REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
+ ; /* Continue ordinary processing. */
+#endif
+ /* If this is a straight load, make the extension explicit. */
+ else if (REG_P (SET_DEST (set))
+ && recog_data.n_operands == 2
+ && SET_SRC (set) == op
+ && SET_DEST (set) == recog_data.operand[1-i])
+ {
+ validate_change (insn, recog_data.operand_loc[i],
+ gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
+ word_mode, op),
+ 1);
+ validate_change (insn, recog_data.operand_loc[1-i],
+ gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
+ 1);
+ if (! apply_change_group ())
+ return 0;
+ return reload_cse_simplify_operands (insn, testreg);
+ }
+ else
+ /* ??? There might be arithmetic operations with memory that are
+ safe to optimize, but is it worth the trouble? */
+ continue;
+ }
+#endif /* LOAD_EXTEND_OP */
+ if (side_effects_p (op))
+ continue;
+ v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
+ if (! v)
+ continue;
+
+ for (l = v->locs; l; l = l->next)
+ if (REG_P (l->loc))
+ SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
+ }
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ enum machine_mode mode;
+ int regno;
+ const char *p;
+
+ op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
+ for (j = 0; j < recog_data.n_alternatives; j++)
+ op_alt_regno[i][j] = -1;
+
+ p = constraints[i] = recog_data.constraints[i];
+ mode = recog_data.operand_mode[i];
+
+ /* Add the reject values for each alternative given by the constraints
+ for this operand. */
+ j = 0;
+ while (*p != '\0')
+ {
+ char c = *p++;
+ if (c == ',')
+ j++;
+ else if (c == '?')
+ alternative_reject[j] += 3;
+ else if (c == '!')
+ alternative_reject[j] += 300;
+ }
+
+ /* We won't change operands which are already registers. We
+ also don't want to modify output operands. */
+ regno = true_regnum (recog_data.operand[i]);
+ if (regno >= 0
+ || constraints[i][0] == '='
+ || constraints[i][0] == '+')
+ continue;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ {
+ enum reg_class rclass = NO_REGS;
+
+ if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
+ continue;
+
+ SET_REGNO_RAW (testreg, regno);
+ PUT_MODE (testreg, mode);
+
+ /* We found a register equal to this operand. Now look for all
+ alternatives that can accept this register and have not been
+ assigned a register they can use yet. */
+ j = 0;
+ p = constraints[i];
+ for (;;)
+ {
+ char c = *p;
+
+ switch (c)
+ {
+ case '=': case '+': case '?':
+ case '#': case '&': case '!':
+ case '*': case '%':
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ case '<': case '>': case 'V': case 'o':
+ case 'E': case 'F': case 'G': case 'H':
+ case 's': case 'i': case 'n':
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O': case 'P':
+ case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
+ /* These don't say anything we care about. */
+ break;
+
+ case 'g': case 'r':
+ rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS];
+ break;
+
+ default:
+ rclass
+ = (reg_class_subunion
+ [(int) rclass]
+ [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
+ break;
+
+ case ',': case '\0':
+ /* See if REGNO fits this alternative, and set it up as the
+ replacement register if we don't have one for this
+ alternative yet and the operand being replaced is not
+ a cheap CONST_INT. */
+ if (op_alt_regno[i][j] == -1
+ && recog_data.alternative_enabled_p[j]
+ && reg_fits_class_p (testreg, rclass, 0, mode)
+ && (!CONST_INT_P (recog_data.operand[i])
+ || (set_src_cost (recog_data.operand[i],
+ optimize_bb_for_speed_p
+ (BLOCK_FOR_INSN (insn)))
+ > set_src_cost (testreg,
+ optimize_bb_for_speed_p
+ (BLOCK_FOR_INSN (insn))))))
+ {
+ alternative_nregs[j]++;
+ op_alt_regno[i][j] = regno;
+ }
+ j++;
+ rclass = NO_REGS;
+ break;
+ }
+ p += CONSTRAINT_LEN (c, p);
+
+ if (c == '\0')
+ break;
+ }
+ }
+ }
+
+ /* Record all alternatives which are better or equal to the currently
+ matching one in the alternative_order array. */
+ for (i = j = 0; i < recog_data.n_alternatives; i++)
+ if (alternative_reject[i] <= alternative_reject[which_alternative])
+ alternative_order[j++] = i;
+ recog_data.n_alternatives = j;
+
+ /* Sort it. Given a small number of alternatives, a dumb algorithm
+ won't hurt too much. */
+ for (i = 0; i < recog_data.n_alternatives - 1; i++)
+ {
+ int best = i;
+ int best_reject = alternative_reject[alternative_order[i]];
+ int best_nregs = alternative_nregs[alternative_order[i]];
+ int tmp;
+
+ for (j = i + 1; j < recog_data.n_alternatives; j++)
+ {
+ int this_reject = alternative_reject[alternative_order[j]];
+ int this_nregs = alternative_nregs[alternative_order[j]];
+
+ if (this_reject < best_reject
+ || (this_reject == best_reject && this_nregs > best_nregs))
+ {
+ best = j;
+ best_reject = this_reject;
+ best_nregs = this_nregs;
+ }
+ }
+
+ tmp = alternative_order[best];
+ alternative_order[best] = alternative_order[i];
+ alternative_order[i] = tmp;
+ }
+
+ /* Substitute the operands as determined by op_alt_regno for the best
+ alternative. */
+ j = alternative_order[0];
+
+ for (i = 0; i < recog_data.n_operands; i++)
+ {
+ enum machine_mode mode = recog_data.operand_mode[i];
+ if (op_alt_regno[i][j] == -1)
+ continue;
+
+ validate_change (insn, recog_data.operand_loc[i],
+ gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
+ }
+
+ for (i = recog_data.n_dups - 1; i >= 0; i--)
+ {
+ int op = recog_data.dup_num[i];
+ enum machine_mode mode = recog_data.operand_mode[op];
+
+ if (op_alt_regno[op][j] == -1)
+ continue;
+
+ validate_change (insn, recog_data.dup_loc[i],
+ gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
+ }
+
+ return apply_change_group ();
+}
+
+/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
+ addressing now.
+ This code might also be useful when reload gave up on reg+reg addressing
+ because of clashes between the return register and INDEX_REG_CLASS. */
+
+/* The maximum number of uses of a register we can keep track of to
+ replace them with reg+reg addressing. */
+#define RELOAD_COMBINE_MAX_USES 16
+
+/* Describes a recorded use of a register. */
+struct reg_use
+{
+ /* The insn where a register has been used. */
+ rtx insn;
+ /* Points to the memory reference enclosing the use, if any, NULL_RTX
+ otherwise. */
+ rtx containing_mem;
+ /* Location of the register within INSN. */
+ rtx *usep;
+ /* The reverse uid of the insn. */
+ int ruid;
+};
+
+/* If the register is used in some unknown fashion, USE_INDEX is negative.
+ If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
+ indicates where it is first set or clobbered.
+ Otherwise, USE_INDEX is the index of the last encountered use of the
+ register (which is first among these we have seen since we scan backwards).
+ USE_RUID indicates the first encountered, i.e. last, of these uses.
+ If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
+ with a constant offset; OFFSET contains this constant in that case.
+ STORE_RUID is always meaningful if we only want to use a value in a
+ register in a different place: it denotes the next insn in the insn
+ stream (i.e. the last encountered) that sets or clobbers the register.
+ REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
+static struct
+ {
+ struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
+ rtx offset;
+ int use_index;
+ int store_ruid;
+ int real_store_ruid;
+ int use_ruid;
+ bool all_offsets_match;
+ } reg_state[FIRST_PSEUDO_REGISTER];
+
+/* Reverse linear uid. This is increased in reload_combine while scanning
+ the instructions from last to first. It is used to set last_label_ruid
+ and the store_ruid / use_ruid fields in reg_state. */
+static int reload_combine_ruid;
+
+/* The RUID of the last label we encountered in reload_combine. */
+static int last_label_ruid;
+
+/* The RUID of the last jump we encountered in reload_combine. */
+static int last_jump_ruid;
+
+/* The register numbers of the first and last index register. A value of
+ -1 in LAST_INDEX_REG indicates that we've previously computed these
+ values and found no suitable index registers. */
+static int first_index_reg = -1;
+static int last_index_reg;
+
+#define LABEL_LIVE(LABEL) \
+ (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
+
+/* Subroutine of reload_combine_split_ruids, called to fix up a single
+ ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
+
+static inline void
+reload_combine_split_one_ruid (int *pruid, int split_ruid)
+{
+ if (*pruid > split_ruid)
+ (*pruid)++;
+}
+
+/* Called when we insert a new insn in a position we've already passed in
+ the scan. Examine all our state, increasing all ruids that are higher
+ than SPLIT_RUID by one in order to make room for a new insn. */
+
+static void
+reload_combine_split_ruids (int split_ruid)
+{
+ unsigned i;
+
+ reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
+ reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
+ reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int j, idx = reg_state[i].use_index;
+ reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
+ reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
+ reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
+ split_ruid);
+ if (idx < 0)
+ continue;
+ for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
+ {
+ reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
+ split_ruid);
+ }
+ }
+}
+
+/* Called when we are about to rescan a previously encountered insn with
+ reload_combine_note_use after modifying some part of it. This clears all
+ information about uses in that particular insn. */
+
+static void
+reload_combine_purge_insn_uses (rtx insn)
+{
+ unsigned i;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ {
+ int j, k, idx = reg_state[i].use_index;
+ if (idx < 0)
+ continue;
+ j = k = RELOAD_COMBINE_MAX_USES;
+ while (j-- > idx)
+ {
+ if (reg_state[i].reg_use[j].insn != insn)
+ {
+ k--;
+ if (k != j)
+ reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
+ }
+ }
+ reg_state[i].use_index = k;
+ }
+}
+
+/* Called when we need to forget about all uses of REGNO after an insn
+ which is identified by RUID. */
+
+static void
+reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
+{
+ int j, k, idx = reg_state[regno].use_index;
+ if (idx < 0)
+ return;
+ j = k = RELOAD_COMBINE_MAX_USES;
+ while (j-- > idx)
+ {
+ if (reg_state[regno].reg_use[j].ruid >= ruid)
+ {
+ k--;
+ if (k != j)
+ reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
+ }
+ }
+ reg_state[regno].use_index = k;
+}
+
+/* Find the use of REGNO with the ruid that is highest among those
+ lower than RUID_LIMIT, and return it if it is the only use of this
+ reg in the insn. Return NULL otherwise. */
+
+static struct reg_use *
+reload_combine_closest_single_use (unsigned regno, int ruid_limit)
+{
+ int i, best_ruid = 0;
+ int use_idx = reg_state[regno].use_index;
+ struct reg_use *retval;
+
+ if (use_idx < 0)
+ return NULL;
+ retval = NULL;
+ for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
+ {
+ struct reg_use *use = reg_state[regno].reg_use + i;
+ int this_ruid = use->ruid;
+ if (this_ruid >= ruid_limit)
+ continue;
+ if (this_ruid > best_ruid)
+ {
+ best_ruid = this_ruid;
+ retval = use;
+ }
+ else if (this_ruid == best_ruid)
+ retval = NULL;
+ }
+ if (last_label_ruid >= best_ruid)
+ return NULL;
+ return retval;
+}
+
+/* After we've moved an add insn, fix up any debug insns that occur
+ between the old location of the add and the new location. REG is
+ the destination register of the add insn; REPLACEMENT is the
+ SET_SRC of the add. FROM and TO specify the range in which we
+ should make this change on debug insns. */
+
+static void
+fixup_debug_insns (rtx reg, rtx replacement, rtx from, rtx to)
+{
+ rtx insn;
+ for (insn = from; insn != to; insn = NEXT_INSN (insn))
+ {
+ rtx t;
+
+ if (!DEBUG_INSN_P (insn))
+ continue;
+
+ t = INSN_VAR_LOCATION_LOC (insn);
+ t = simplify_replace_rtx (t, reg, replacement);
+ validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
+ }
+}
+
+/* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
+ with SRC in the insn described by USE, taking costs into account. Return
+ true if we made the replacement. */
+
+static bool
+try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
+{
+ rtx use_insn = use->insn;
+ rtx mem = use->containing_mem;
+ bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
+
+ if (mem != NULL_RTX)
+ {
+ addr_space_t as = MEM_ADDR_SPACE (mem);
+ rtx oldaddr = XEXP (mem, 0);
+ rtx newaddr = NULL_RTX;
+ int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
+ int new_cost;
+
+ newaddr = simplify_replace_rtx (oldaddr, reg, src);
+ if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
+ {
+ XEXP (mem, 0) = newaddr;
+ new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
+ XEXP (mem, 0) = oldaddr;
+ if (new_cost <= old_cost
+ && validate_change (use_insn,
+ &XEXP (mem, 0), newaddr, 0))
+ return true;
+ }
+ }
+ else
+ {
+ rtx new_set = single_set (use_insn);
+ if (new_set
+ && REG_P (SET_DEST (new_set))
+ && GET_CODE (SET_SRC (new_set)) == PLUS
+ && REG_P (XEXP (SET_SRC (new_set), 0))
+ && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
+ {
+ rtx new_src;
+ int old_cost = set_src_cost (SET_SRC (new_set), speed);
+
+ gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
+ new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
+
+ if (set_src_cost (new_src, speed) <= old_cost
+ && validate_change (use_insn, &SET_SRC (new_set),
+ new_src, 0))
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Called by reload_combine when scanning INSN. This function tries to detect
+ patterns where a constant is added to a register, and the result is used
+ in an address.
+ Return true if no further processing is needed on INSN; false if it wasn't
+ recognized and should be handled normally. */
+
+static bool
+reload_combine_recognize_const_pattern (rtx insn)
+{
+ int from_ruid = reload_combine_ruid;
+ rtx set, pat, reg, src, addreg;
+ unsigned int regno;
+ struct reg_use *use;
+ bool must_move_add;
+ rtx add_moved_after_insn = NULL_RTX;
+ int add_moved_after_ruid = 0;
+ int clobbered_regno = -1;
+
+ set = single_set (insn);
+ if (set == NULL_RTX)
+ return false;
+
+ reg = SET_DEST (set);
+ src = SET_SRC (set);
+ if (!REG_P (reg)
+ || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
+ || GET_MODE (reg) != Pmode
+ || reg == stack_pointer_rtx)
+ return false;
+
+ regno = REGNO (reg);
+
+ /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
+ uses of REG1 inside an address, or inside another add insn. If
+ possible and profitable, merge the addition into subsequent
+ uses. */
+ if (GET_CODE (src) != PLUS
+ || !REG_P (XEXP (src, 0))
+ || !CONSTANT_P (XEXP (src, 1)))
+ return false;
+
+ addreg = XEXP (src, 0);
+ must_move_add = rtx_equal_p (reg, addreg);
+
+ pat = PATTERN (insn);
+ if (must_move_add && set != pat)
+ {
+ /* We have to be careful when moving the add; apart from the
+ single_set there may also be clobbers. Recognize one special
+ case, that of one clobber alongside the set (likely a clobber
+ of the CC register). */
+ gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
+ if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
+ || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
+ || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
+ return false;
+ clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
+ }
+
+ do
+ {
+ use = reload_combine_closest_single_use (regno, from_ruid);
+
+ if (use)
+ /* Start the search for the next use from here. */
+ from_ruid = use->ruid;
+
+ if (use && GET_MODE (*use->usep) == Pmode)
+ {
+ bool delete_add = false;
+ rtx use_insn = use->insn;
+ int use_ruid = use->ruid;
+
+ /* Avoid moving the add insn past a jump. */
+ if (must_move_add && use_ruid <= last_jump_ruid)
+ break;
+
+ /* If the add clobbers another hard reg in parallel, don't move
+ it past a real set of this hard reg. */
+ if (must_move_add && clobbered_regno >= 0
+ && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
+ break;
+
+#ifdef HAVE_cc0
+ /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
+ if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
+ break;
+#endif
+
+ gcc_assert (reg_state[regno].store_ruid <= use_ruid);
+ /* Avoid moving a use of ADDREG past a point where it is stored. */
+ if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
+ break;
+
+ /* We also must not move the addition past an insn that sets
+ the same register, unless we can combine two add insns. */
+ if (must_move_add && reg_state[regno].store_ruid == use_ruid)
+ {
+ if (use->containing_mem == NULL_RTX)
+ delete_add = true;
+ else
+ break;
+ }
+
+ if (try_replace_in_use (use, reg, src))
+ {
+ reload_combine_purge_insn_uses (use_insn);
+ reload_combine_note_use (&PATTERN (use_insn), use_insn,
+ use_ruid, NULL_RTX);
+
+ if (delete_add)
+ {
+ fixup_debug_insns (reg, src, insn, use_insn);
+ delete_insn (insn);
+ return true;
+ }
+ if (must_move_add)
+ {
+ add_moved_after_insn = use_insn;
+ add_moved_after_ruid = use_ruid;
+ }
+ continue;
+ }
+ }
+ /* If we get here, we couldn't handle this use. */
+ if (must_move_add)
+ break;
+ }
+ while (use);
+
+ if (!must_move_add || add_moved_after_insn == NULL_RTX)
+ /* Process the add normally. */
+ return false;
+
+ fixup_debug_insns (reg, src, insn, add_moved_after_insn);
+
+ reorder_insns (insn, insn, add_moved_after_insn);
+ reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
+ reload_combine_split_ruids (add_moved_after_ruid - 1);
+ reload_combine_note_use (&PATTERN (insn), insn,
+ add_moved_after_ruid, NULL_RTX);
+ reg_state[regno].store_ruid = add_moved_after_ruid;
+
+ return true;
+}
+
+/* Called by reload_combine when scanning INSN. Try to detect a pattern we
+ can handle and improve. Return true if no further processing is needed on
+ INSN; false if it wasn't recognized and should be handled normally. */
+
+static bool
+reload_combine_recognize_pattern (rtx insn)
+{
+ rtx set, reg, src;
+ unsigned int regno;
+
+ set = single_set (insn);
+ if (set == NULL_RTX)
+ return false;
+
+ reg = SET_DEST (set);
+ src = SET_SRC (set);
+ if (!REG_P (reg)
+ || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
+ return false;
+
+ regno = REGNO (reg);
+
+ /* Look for (set (REGX) (CONST_INT))
+ (set (REGX) (PLUS (REGX) (REGY)))
+ ...
+ ... (MEM (REGX)) ...
+ and convert it to
+ (set (REGZ) (CONST_INT))
+ ...
+ ... (MEM (PLUS (REGZ) (REGY)))... .
+
+ First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
+ and that we know all uses of REGX before it dies.
+ Also, explicitly check that REGX != REGY; our life information
+ does not yet show whether REGY changes in this insn. */
+
+ if (GET_CODE (src) == PLUS
+ && reg_state[regno].all_offsets_match
+ && last_index_reg != -1
+ && REG_P (XEXP (src, 1))
+ && rtx_equal_p (XEXP (src, 0), reg)
+ && !rtx_equal_p (XEXP (src, 1), reg)
+ && reg_state[regno].use_index >= 0
+ && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
+ && last_label_ruid < reg_state[regno].use_ruid)
+ {
+ rtx base = XEXP (src, 1);
+ rtx prev = prev_nonnote_nondebug_insn (insn);
+ rtx prev_set = prev ? single_set (prev) : NULL_RTX;
+ rtx index_reg = NULL_RTX;
+ rtx reg_sum = NULL_RTX;
+ int i;
+
+ /* Now we need to set INDEX_REG to an index register (denoted as
+ REGZ in the illustration above) and REG_SUM to the expression
+ register+register that we want to use to substitute uses of REG
+ (typically in MEMs) with. First check REG and BASE for being
+ index registers; we can use them even if they are not dead. */
+ if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
+ || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
+ REGNO (base)))
+ {
+ index_reg = reg;
+ reg_sum = src;
+ }
+ else
+ {
+ /* Otherwise, look for a free index register. Since we have
+ checked above that neither REG nor BASE are index registers,
+ if we find anything at all, it will be different from these
+ two registers. */
+ for (i = first_index_reg; i <= last_index_reg; i++)
+ {
+ if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
+ && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
+ && reg_state[i].store_ruid <= reg_state[regno].use_ruid
+ && (call_used_regs[i] || df_regs_ever_live_p (i))
+ && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
+ && !fixed_regs[i] && !global_regs[i]
+ && hard_regno_nregs[i][GET_MODE (reg)] == 1
+ && targetm.hard_regno_scratch_ok (i))
+ {
+ index_reg = gen_rtx_REG (GET_MODE (reg), i);
+ reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
+ break;
+ }
+ }
+ }
+
+ /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
+ (REGY), i.e. BASE, is not clobbered before the last use we'll
+ create. */
+ if (reg_sum
+ && prev_set
+ && CONST_INT_P (SET_SRC (prev_set))
+ && rtx_equal_p (SET_DEST (prev_set), reg)
+ && (reg_state[REGNO (base)].store_ruid
+ <= reg_state[regno].use_ruid))
+ {
+ /* Change destination register and, if necessary, the constant
+ value in PREV, the constant loading instruction. */
+ validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
+ if (reg_state[regno].offset != const0_rtx)
+ validate_change (prev,
+ &SET_SRC (prev_set),
+ GEN_INT (INTVAL (SET_SRC (prev_set))
+ + INTVAL (reg_state[regno].offset)),
+ 1);
+
+ /* Now for every use of REG that we have recorded, replace REG
+ with REG_SUM. */
+ for (i = reg_state[regno].use_index;
+ i < RELOAD_COMBINE_MAX_USES; i++)
+ validate_unshare_change (reg_state[regno].reg_use[i].insn,
+ reg_state[regno].reg_use[i].usep,
+ /* Each change must have its own
+ replacement. */
+ reg_sum, 1);
+
+ if (apply_change_group ())
+ {
+ struct reg_use *lowest_ruid = NULL;
+
+ /* For every new use of REG_SUM, we have to record the use
+ of BASE therein, i.e. operand 1. */
+ for (i = reg_state[regno].use_index;
+ i < RELOAD_COMBINE_MAX_USES; i++)
+ {
+ struct reg_use *use = reg_state[regno].reg_use + i;
+ reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
+ use->ruid, use->containing_mem);
+ if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
+ lowest_ruid = use;
+ }
+
+ fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
+
+ /* Delete the reg-reg addition. */
+ delete_insn (insn);
+
+ if (reg_state[regno].offset != const0_rtx)
+ /* Previous REG_EQUIV / REG_EQUAL notes for PREV
+ are now invalid. */
+ remove_reg_equal_equiv_notes (prev);
+
+ reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+static void
+reload_combine (void)
+{
+ rtx insn, prev;
+ basic_block bb;
+ unsigned int r;
+ int min_labelno, n_labels;
+ HARD_REG_SET ever_live_at_start, *label_live;
+
+ /* To avoid wasting too much time later searching for an index register,
+ determine the minimum and maximum index register numbers. */
+ if (INDEX_REG_CLASS == NO_REGS)
+ last_index_reg = -1;
+ else if (first_index_reg == -1 && last_index_reg == 0)
+ {
+ for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
+ {
+ if (first_index_reg == -1)
+ first_index_reg = r;
+
+ last_index_reg = r;
+ }
+
+ /* If no index register is available, we can quit now. Set LAST_INDEX_REG
+ to -1 so we'll know to quit early the next time we get here. */
+ if (first_index_reg == -1)
+ {
+ last_index_reg = -1;
+ return;
+ }
+ }
+
+ /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
+ information is a bit fuzzy immediately after reload, but it's
+ still good enough to determine which registers are live at a jump
+ destination. */
+ min_labelno = get_first_label_num ();
+ n_labels = max_label_num () - min_labelno;
+ label_live = XNEWVEC (HARD_REG_SET, n_labels);
+ CLEAR_HARD_REG_SET (ever_live_at_start);
+
+ FOR_EACH_BB_REVERSE_FN (bb, cfun)
+ {
+ insn = BB_HEAD (bb);
+ if (LABEL_P (insn))
+ {
+ HARD_REG_SET live;
+ bitmap live_in = df_get_live_in (bb);
+
+ REG_SET_TO_HARD_REG_SET (live, live_in);
+ compute_use_by_pseudos (&live, live_in);
+ COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
+ IOR_HARD_REG_SET (ever_live_at_start, live);
+ }
+ }
+
+ /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
+ last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
+ for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
+ {
+ reg_state[r].store_ruid = 0;
+ reg_state[r].real_store_ruid = 0;
+ if (fixed_regs[r])
+ reg_state[r].use_index = -1;
+ else
+ reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
+ }
+
+ for (insn = get_last_insn (); insn; insn = prev)
+ {
+ bool control_flow_insn;
+ rtx note;
+
+ prev = PREV_INSN (insn);
+
+ /* We cannot do our optimization across labels. Invalidating all the use
+ information we have would be costly, so we just note where the label
+ is and then later disable any optimization that would cross it. */
+ if (LABEL_P (insn))
+ last_label_ruid = reload_combine_ruid;
+ else if (BARRIER_P (insn))
+ {
+ /* Crossing a barrier resets all the use information. */
+ for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
+ if (! fixed_regs[r])
+ reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
+ }
+ else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
+ /* Optimizations across insns being marked as volatile must be
+ prevented. All the usage information is invalidated
+ here. */
+ for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
+ if (! fixed_regs[r]
+ && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
+ reg_state[r].use_index = -1;
+
+ if (! NONDEBUG_INSN_P (insn))
+ continue;
+
+ reload_combine_ruid++;
+
+ control_flow_insn = control_flow_insn_p (insn);
+ if (control_flow_insn)
+ last_jump_ruid = reload_combine_ruid;
+
+ if (reload_combine_recognize_const_pattern (insn)
+ || reload_combine_recognize_pattern (insn))
+ continue;
+
+ note_stores (PATTERN (insn), reload_combine_note_store, NULL);
+
+ if (CALL_P (insn))
+ {
+ rtx link;
+
+ for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
+ if (call_used_regs[r])
+ {
+ reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
+ reg_state[r].store_ruid = reload_combine_ruid;
+ }
+
+ for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
+ link = XEXP (link, 1))
+ {
+ rtx setuse = XEXP (link, 0);
+ rtx usage_rtx = XEXP (setuse, 0);
+ if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
+ && REG_P (usage_rtx))
+ {
+ unsigned int i;
+ unsigned int start_reg = REGNO (usage_rtx);
+ unsigned int num_regs
+ = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
+ unsigned int end_reg = start_reg + num_regs - 1;
+ for (i = start_reg; i <= end_reg; i++)
+ if (GET_CODE (XEXP (link, 0)) == CLOBBER)
+ {
+ reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
+ reg_state[i].store_ruid = reload_combine_ruid;
+ }
+ else
+ reg_state[i].use_index = -1;
+ }
+ }
+ }
+
+ if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
+ {
+ /* Non-spill registers might be used at the call destination in
+ some unknown fashion, so we have to mark the unknown use. */
+ HARD_REG_SET *live;
+
+ if ((condjump_p (insn) || condjump_in_parallel_p (insn))
+ && JUMP_LABEL (insn))
+ {
+ if (ANY_RETURN_P (JUMP_LABEL (insn)))
+ live = NULL;
+ else
+ live = &LABEL_LIVE (JUMP_LABEL (insn));
+ }
+ else
+ live = &ever_live_at_start;
+
+ if (live)
+ for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
+ if (TEST_HARD_REG_BIT (*live, r))
+ reg_state[r].use_index = -1;
+ }
+
+ reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
+ NULL_RTX);
+
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ {
+ if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
+ {
+ int regno = REGNO (XEXP (note, 0));
+ reg_state[regno].store_ruid = reload_combine_ruid;
+ reg_state[regno].real_store_ruid = reload_combine_ruid;
+ reg_state[regno].use_index = -1;
+ }
+ }
+ }
+
+ free (label_live);
+}
+
+/* Check if DST is a register or a subreg of a register; if it is,
+ update store_ruid, real_store_ruid and use_index in the reg_state
+ structure accordingly. Called via note_stores from reload_combine. */
+
+static void
+reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
+{
+ int regno = 0;
+ int i;
+ enum machine_mode mode = GET_MODE (dst);
+
+ if (GET_CODE (dst) == SUBREG)
+ {
+ regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
+ GET_MODE (SUBREG_REG (dst)),
+ SUBREG_BYTE (dst),
+ GET_MODE (dst));
+ dst = SUBREG_REG (dst);
+ }
+
+ /* Some targets do argument pushes without adding REG_INC notes. */
+
+ if (MEM_P (dst))
+ {
+ dst = XEXP (dst, 0);
+ if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
+ || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
+ || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
+ {
+ regno = REGNO (XEXP (dst, 0));
+ mode = GET_MODE (XEXP (dst, 0));
+ for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
+ {
+ /* We could probably do better, but for now mark the register
+ as used in an unknown fashion and set/clobbered at this
+ insn. */
+ reg_state[i].use_index = -1;
+ reg_state[i].store_ruid = reload_combine_ruid;
+ reg_state[i].real_store_ruid = reload_combine_ruid;
+ }
+ }
+ else
+ return;
+ }
+
+ if (!REG_P (dst))
+ return;
+ regno += REGNO (dst);
+
+ /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
+ careful with registers / register parts that are not full words.
+ Similarly for ZERO_EXTRACT. */
+ if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
+ || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
+ {
+ for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
+ {
+ reg_state[i].use_index = -1;
+ reg_state[i].store_ruid = reload_combine_ruid;
+ reg_state[i].real_store_ruid = reload_combine_ruid;
+ }
+ }
+ else
+ {
+ for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
+ {
+ reg_state[i].store_ruid = reload_combine_ruid;
+ if (GET_CODE (set) == SET)
+ reg_state[i].real_store_ruid = reload_combine_ruid;
+ reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
+ }
+ }
+}
+
+/* XP points to a piece of rtl that has to be checked for any uses of
+ registers.
+ *XP is the pattern of INSN, or a part of it.
+ Called from reload_combine, and recursively by itself. */
+static void
+reload_combine_note_use (rtx *xp, rtx insn, int ruid, rtx containing_mem)
+{
+ rtx x = *xp;
+ enum rtx_code code = x->code;
+ const char *fmt;
+ int i, j;
+ rtx offset = const0_rtx; /* For the REG case below. */
+
+ switch (code)
+ {
+ case SET:
+ if (REG_P (SET_DEST (x)))
+ {
+ reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
+ return;
+ }
+ break;
+
+ case USE:
+ /* If this is the USE of a return value, we can't change it. */
+ if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
+ {
+ /* Mark the return register as used in an unknown fashion. */
+ rtx reg = XEXP (x, 0);
+ int regno = REGNO (reg);
+ int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
+
+ while (--nregs >= 0)
+ reg_state[regno + nregs].use_index = -1;
+ return;
+ }
+ break;
+
+ case CLOBBER:
+ if (REG_P (SET_DEST (x)))
+ {
+ /* No spurious CLOBBERs of pseudo registers may remain. */
+ gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
+ return;
+ }
+ break;
+
+ case PLUS:
+ /* We are interested in (plus (reg) (const_int)) . */
+ if (!REG_P (XEXP (x, 0))
+ || !CONST_INT_P (XEXP (x, 1)))
+ break;
+ offset = XEXP (x, 1);
+ x = XEXP (x, 0);
+ /* Fall through. */
+ case REG:
+ {
+ int regno = REGNO (x);
+ int use_index;
+ int nregs;
+
+ /* No spurious USEs of pseudo registers may remain. */
+ gcc_assert (regno < FIRST_PSEUDO_REGISTER);
+
+ nregs = hard_regno_nregs[regno][GET_MODE (x)];
+
+ /* We can't substitute into multi-hard-reg uses. */
+ if (nregs > 1)
+ {
+ while (--nregs >= 0)
+ reg_state[regno + nregs].use_index = -1;
+ return;
+ }
+
+ /* We may be called to update uses in previously seen insns.
+ Don't add uses beyond the last store we saw. */
+ if (ruid < reg_state[regno].store_ruid)
+ return;
+
+ /* If this register is already used in some unknown fashion, we
+ can't do anything.
+ If we decrement the index from zero to -1, we can't store more
+ uses, so this register becomes used in an unknown fashion. */
+ use_index = --reg_state[regno].use_index;
+ if (use_index < 0)
+ return;
+
+ if (use_index == RELOAD_COMBINE_MAX_USES - 1)
+ {
+ /* This is the first use of this register we have seen since we
+ marked it as dead. */
+ reg_state[regno].offset = offset;
+ reg_state[regno].all_offsets_match = true;
+ reg_state[regno].use_ruid = ruid;
+ }
+ else
+ {
+ if (reg_state[regno].use_ruid > ruid)
+ reg_state[regno].use_ruid = ruid;
+
+ if (! rtx_equal_p (offset, reg_state[regno].offset))
+ reg_state[regno].all_offsets_match = false;
+ }
+
+ reg_state[regno].reg_use[use_index].insn = insn;
+ reg_state[regno].reg_use[use_index].ruid = ruid;
+ reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
+ reg_state[regno].reg_use[use_index].usep = xp;
+ return;
+ }
+
+ case MEM:
+ containing_mem = x;
+ break;
+
+ default:
+ break;
+ }
+
+ /* Recursively process the components of X. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
+ else if (fmt[i] == 'E')
+ {
+ for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+ reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
+ containing_mem);
+ }
+ }
+}
+
+/* See if we can reduce the cost of a constant by replacing a move
+ with an add. We track situations in which a register is set to a
+ constant or to a register plus a constant. */
+/* We cannot do our optimization across labels. Invalidating all the
+ information about register contents we have would be costly, so we
+ use move2add_last_label_luid to note where the label is and then
+ later disable any optimization that would cross it.
+ reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
+ are only valid if reg_set_luid[n] is greater than
+ move2add_last_label_luid.
+ For a set that established a new (potential) base register with
+ non-constant value, we use move2add_luid from the place where the
+ setting insn is encountered; registers based off that base then
+ get the same reg_set_luid. Constants all get
+ move2add_last_label_luid + 1 as their reg_set_luid. */
+static int reg_set_luid[FIRST_PSEUDO_REGISTER];
+
+/* If reg_base_reg[n] is negative, register n has been set to
+ reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
+ If reg_base_reg[n] is non-negative, register n has been set to the
+ sum of reg_offset[n] and the value of register reg_base_reg[n]
+ before reg_set_luid[n], calculated in mode reg_mode[n] .
+ For multi-hard-register registers, all but the first one are
+ recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
+ marks it as invalid. */
+static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
+static int reg_base_reg[FIRST_PSEUDO_REGISTER];
+static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
+static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
+
+/* move2add_luid is linearly increased while scanning the instructions
+ from first to last. It is used to set reg_set_luid in
+ reload_cse_move2add and move2add_note_store. */
+static int move2add_luid;
+
+/* move2add_last_label_luid is set whenever a label is found. Labels
+ invalidate all previously collected reg_offset data. */
+static int move2add_last_label_luid;
+
+/* ??? We don't know how zero / sign extension is handled, hence we
+ can't go from a narrower to a wider mode. */
+#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
+ (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
+ || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
+ && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
+
+/* Record that REG is being set to a value with the mode of REG. */
+
+static void
+move2add_record_mode (rtx reg)
+{
+ int regno, nregs;
+ enum machine_mode mode = GET_MODE (reg);
+
+ if (GET_CODE (reg) == SUBREG)
+ {
+ regno = subreg_regno (reg);
+ nregs = subreg_nregs (reg);
+ }
+ else if (REG_P (reg))
+ {
+ regno = REGNO (reg);
+ nregs = hard_regno_nregs[regno][mode];
+ }
+ else
+ gcc_unreachable ();
+ for (int i = nregs - 1; i > 0; i--)
+ reg_mode[regno + i] = BLKmode;
+ reg_mode[regno] = mode;
+}
+
+/* Record that REG is being set to the sum of SYM and OFF. */
+
+static void
+move2add_record_sym_value (rtx reg, rtx sym, rtx off)
+{
+ int regno = REGNO (reg);
+
+ move2add_record_mode (reg);
+ reg_set_luid[regno] = move2add_luid;
+ reg_base_reg[regno] = -1;
+ reg_symbol_ref[regno] = sym;
+ reg_offset[regno] = INTVAL (off);
+}
+
+/* Check if REGNO contains a valid value in MODE. */
+
+static bool
+move2add_valid_value_p (int regno, enum machine_mode mode)
+{
+ if (reg_set_luid[regno] <= move2add_last_label_luid)
+ return false;
+
+ if (mode != reg_mode[regno])
+ {
+ if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
+ return false;
+ /* The value loaded into regno in reg_mode[regno] is also valid in
+ mode after truncation only if (REG:mode regno) is the lowpart of
+ (REG:reg_mode[regno] regno). Now, for big endian, the starting
+ regno of the lowpart might be different. */
+ int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
+ s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
+ if (s_off != 0)
+ /* We could in principle adjust regno, check reg_mode[regno] to be
+ BLKmode, and return s_off to the caller (vs. -1 for failure),
+ but we currently have no callers that could make use of this
+ information. */
+ return false;
+ }
+
+ for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
+ if (reg_mode[regno + i] != BLKmode)
+ return false;
+ return true;
+}
+
+/* This function is called with INSN that sets REG to (SYM + OFF),
+ while REG is known to already have value (SYM + offset).
+ This function tries to change INSN into an add instruction
+ (set (REG) (plus (REG) (OFF - offset))) using the known value.
+ It also updates the information about REG's known value.
+ Return true if we made a change. */
+
+static bool
+move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx insn)
+{
+ rtx pat = PATTERN (insn);
+ rtx src = SET_SRC (pat);
+ int regno = REGNO (reg);
+ rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
+ GET_MODE (reg));
+ bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
+ bool changed = false;
+
+ /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
+ use (set (reg) (reg)) instead.
+ We don't delete this insn, nor do we convert it into a
+ note, to avoid losing register notes or the return
+ value flag. jump2 already knows how to get rid of
+ no-op moves. */
+ if (new_src == const0_rtx)
+ {
+ /* If the constants are different, this is a
+ truncation, that, if turned into (set (reg)
+ (reg)), would be discarded. Maybe we should
+ try a truncMN pattern? */
+ if (INTVAL (off) == reg_offset [regno])
+ changed = validate_change (insn, &SET_SRC (pat), reg, 0);
+ }
+ else
+ {
+ struct full_rtx_costs oldcst, newcst;
+ rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
+
+ get_full_set_rtx_cost (pat, &oldcst);
+ SET_SRC (pat) = tem;
+ get_full_set_rtx_cost (pat, &newcst);
+ SET_SRC (pat) = src;
+
+ if (costs_lt_p (&newcst, &oldcst, speed)
+ && have_add2_insn (reg, new_src))
+ changed = validate_change (insn, &SET_SRC (pat), tem, 0);
+ else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
+ {
+ enum machine_mode narrow_mode;
+ for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
+ narrow_mode != VOIDmode
+ && narrow_mode != GET_MODE (reg);
+ narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
+ {
+ if (have_insn_for (STRICT_LOW_PART, narrow_mode)
+ && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
+ == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
+ {
+ rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
+ rtx narrow_src = gen_int_mode (INTVAL (off),
+ narrow_mode);
+ rtx new_set
+ = gen_rtx_SET (VOIDmode,
+ gen_rtx_STRICT_LOW_PART (VOIDmode,
+ narrow_reg),
+ narrow_src);
+ changed = validate_change (insn, &PATTERN (insn),
+ new_set, 0);
+ if (changed)
+ break;
+ }
+ }
+ }
+ }
+ move2add_record_sym_value (reg, sym, off);
+ return changed;
+}
+
+
+/* This function is called with INSN that sets REG to (SYM + OFF),
+ but REG doesn't have known value (SYM + offset). This function
+ tries to find another register which is known to already have
+ value (SYM + offset) and change INSN into an add instruction
+ (set (REG) (plus (the found register) (OFF - offset))) if such
+ a register is found. It also updates the information about
+ REG's known value.
+ Return true iff we made a change. */
+
+static bool
+move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx insn)
+{
+ rtx pat = PATTERN (insn);
+ rtx src = SET_SRC (pat);
+ int regno = REGNO (reg);
+ int min_regno = 0;
+ bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
+ int i;
+ bool changed = false;
+ struct full_rtx_costs oldcst, newcst, mincst;
+ rtx plus_expr;
+
+ init_costs_to_max (&mincst);
+ get_full_set_rtx_cost (pat, &oldcst);
+
+ plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
+ SET_SRC (pat) = plus_expr;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (move2add_valid_value_p (i, GET_MODE (reg))
+ && reg_base_reg[i] < 0
+ && reg_symbol_ref[i] != NULL_RTX
+ && rtx_equal_p (sym, reg_symbol_ref[i]))
+ {
+ rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
+ GET_MODE (reg));
+ /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
+ use (set (reg) (reg)) instead.
+ We don't delete this insn, nor do we convert it into a
+ note, to avoid losing register notes or the return
+ value flag. jump2 already knows how to get rid of
+ no-op moves. */
+ if (new_src == const0_rtx)
+ {
+ init_costs_to_zero (&mincst);
+ min_regno = i;
+ break;
+ }
+ else
+ {
+ XEXP (plus_expr, 1) = new_src;
+ get_full_set_rtx_cost (pat, &newcst);
+
+ if (costs_lt_p (&newcst, &mincst, speed))
+ {
+ mincst = newcst;
+ min_regno = i;
+ }
+ }
+ }
+ SET_SRC (pat) = src;
+
+ if (costs_lt_p (&mincst, &oldcst, speed))
+ {
+ rtx tem;
+
+ tem = gen_rtx_REG (GET_MODE (reg), min_regno);
+ if (i != min_regno)
+ {
+ rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
+ GET_MODE (reg));
+ tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
+ }
+ if (validate_change (insn, &SET_SRC (pat), tem, 0))
+ changed = true;
+ }
+ reg_set_luid[regno] = move2add_luid;
+ move2add_record_sym_value (reg, sym, off);
+ return changed;
+}
+
+/* Convert move insns with constant inputs to additions if they are cheaper.
+ Return true if any changes were made. */
+static bool
+reload_cse_move2add (rtx first)
+{
+ int i;
+ rtx insn;
+ bool changed = false;
+
+ for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
+ {
+ reg_set_luid[i] = 0;
+ reg_offset[i] = 0;
+ reg_base_reg[i] = 0;
+ reg_symbol_ref[i] = NULL_RTX;
+ reg_mode[i] = VOIDmode;
+ }
+
+ move2add_last_label_luid = 0;
+ move2add_luid = 2;
+ for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
+ {
+ rtx pat, note;
+
+ if (LABEL_P (insn))
+ {
+ move2add_last_label_luid = move2add_luid;
+ /* We're going to increment move2add_luid twice after a
+ label, so that we can use move2add_last_label_luid + 1 as
+ the luid for constants. */
+ move2add_luid++;
+ continue;
+ }
+ if (! INSN_P (insn))
+ continue;
+ pat = PATTERN (insn);
+ /* For simplicity, we only perform this optimization on
+ straightforward SETs. */
+ if (GET_CODE (pat) == SET
+ && REG_P (SET_DEST (pat)))
+ {
+ rtx reg = SET_DEST (pat);
+ int regno = REGNO (reg);
+ rtx src = SET_SRC (pat);
+
+ /* Check if we have valid information on the contents of this
+ register in the mode of REG. */
+ if (move2add_valid_value_p (regno, GET_MODE (reg))
+ && dbg_cnt (cse2_move2add))
+ {
+ /* Try to transform (set (REGX) (CONST_INT A))
+ ...
+ (set (REGX) (CONST_INT B))
+ to
+ (set (REGX) (CONST_INT A))
+ ...
+ (set (REGX) (plus (REGX) (CONST_INT B-A)))
+ or
+ (set (REGX) (CONST_INT A))
+ ...
+ (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
+ */
+
+ if (CONST_INT_P (src)
+ && reg_base_reg[regno] < 0
+ && reg_symbol_ref[regno] == NULL_RTX)
+ {
+ changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
+ continue;
+ }
+
+ /* Try to transform (set (REGX) (REGY))
+ (set (REGX) (PLUS (REGX) (CONST_INT A)))
+ ...
+ (set (REGX) (REGY))
+ (set (REGX) (PLUS (REGX) (CONST_INT B)))
+ to
+ (set (REGX) (REGY))
+ (set (REGX) (PLUS (REGX) (CONST_INT A)))
+ ...
+ (set (REGX) (plus (REGX) (CONST_INT B-A))) */
+ else if (REG_P (src)
+ && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
+ && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
+ && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
+ {
+ rtx next = next_nonnote_nondebug_insn (insn);
+ rtx set = NULL_RTX;
+ if (next)
+ set = single_set (next);
+ if (set
+ && SET_DEST (set) == reg
+ && GET_CODE (SET_SRC (set)) == PLUS
+ && XEXP (SET_SRC (set), 0) == reg
+ && CONST_INT_P (XEXP (SET_SRC (set), 1)))
+ {
+ rtx src3 = XEXP (SET_SRC (set), 1);
+ unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
+ HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
+ HOST_WIDE_INT regno_offset = reg_offset[regno];
+ rtx new_src =
+ gen_int_mode (added_offset
+ + base_offset
+ - regno_offset,
+ GET_MODE (reg));
+ bool success = false;
+ bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
+
+ if (new_src == const0_rtx)
+ /* See above why we create (set (reg) (reg)) here. */
+ success
+ = validate_change (next, &SET_SRC (set), reg, 0);
+ else
+ {
+ rtx old_src = SET_SRC (set);
+ struct full_rtx_costs oldcst, newcst;
+ rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
+
+ get_full_set_rtx_cost (set, &oldcst);
+ SET_SRC (set) = tem;
+ get_full_set_src_cost (tem, &newcst);
+ SET_SRC (set) = old_src;
+ costs_add_n_insns (&oldcst, 1);
+
+ if (costs_lt_p (&newcst, &oldcst, speed)
+ && have_add2_insn (reg, new_src))
+ {
+ rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
+ success
+ = validate_change (next, &PATTERN (next),
+ newpat, 0);
+ }
+ }
+ if (success)
+ delete_insn (insn);
+ changed |= success;
+ insn = next;
+ move2add_record_mode (reg);
+ reg_offset[regno]
+ = trunc_int_for_mode (added_offset + base_offset,
+ GET_MODE (reg));
+ continue;
+ }
+ }
+ }
+
+ /* Try to transform
+ (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
+ ...
+ (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
+ to
+ (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
+ ...
+ (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
+ if ((GET_CODE (src) == SYMBOL_REF
+ || (GET_CODE (src) == CONST
+ && GET_CODE (XEXP (src, 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
+ && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
+ && dbg_cnt (cse2_move2add))
+ {
+ rtx sym, off;
+
+ if (GET_CODE (src) == SYMBOL_REF)
+ {
+ sym = src;
+ off = const0_rtx;
+ }
+ else
+ {
+ sym = XEXP (XEXP (src, 0), 0);
+ off = XEXP (XEXP (src, 0), 1);
+ }
+
+ /* If the reg already contains the value which is sum of
+ sym and some constant value, we can use an add2 insn. */
+ if (move2add_valid_value_p (regno, GET_MODE (reg))
+ && reg_base_reg[regno] < 0
+ && reg_symbol_ref[regno] != NULL_RTX
+ && rtx_equal_p (sym, reg_symbol_ref[regno]))
+ changed |= move2add_use_add2_insn (reg, sym, off, insn);
+
+ /* Otherwise, we have to find a register whose value is sum
+ of sym and some constant value. */
+ else
+ changed |= move2add_use_add3_insn (reg, sym, off, insn);
+
+ continue;
+ }
+ }
+
+ for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
+ {
+ if (REG_NOTE_KIND (note) == REG_INC
+ && REG_P (XEXP (note, 0)))
+ {
+ /* Reset the information about this register. */
+ int regno = REGNO (XEXP (note, 0));
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ move2add_record_mode (XEXP (note, 0));
+ reg_mode[regno] = VOIDmode;
+ }
+ }
+ }
+ note_stores (PATTERN (insn), move2add_note_store, insn);
+
+ /* If INSN is a conditional branch, we try to extract an
+ implicit set out of it. */
+ if (any_condjump_p (insn))
+ {
+ rtx cnd = fis_get_condition (insn);
+
+ if (cnd != NULL_RTX
+ && GET_CODE (cnd) == NE
+ && REG_P (XEXP (cnd, 0))
+ && !reg_set_p (XEXP (cnd, 0), insn)
+ /* The following two checks, which are also in
+ move2add_note_store, are intended to reduce the
+ number of calls to gen_rtx_SET to avoid memory
+ allocation if possible. */
+ && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
+ && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
+ && CONST_INT_P (XEXP (cnd, 1)))
+ {
+ rtx implicit_set =
+ gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
+ move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
+ }
+ }
+
+ /* If this is a CALL_INSN, all call used registers are stored with
+ unknown values. */
+ if (CALL_P (insn))
+ {
+ for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
+ {
+ if (call_used_regs[i])
+ /* Reset the information about this register. */
+ reg_mode[i] = VOIDmode;
+ }
+ }
+ }
+ return changed;
+}
+
+/* SET is a SET or CLOBBER that sets DST. DATA is the insn which
+ contains SET.
+ Update reg_set_luid, reg_offset and reg_base_reg accordingly.
+ Called from reload_cse_move2add via note_stores. */
+
+static void
+move2add_note_store (rtx dst, const_rtx set, void *data)
+{
+ rtx insn = (rtx) data;
+ unsigned int regno = 0;
+ enum machine_mode mode = GET_MODE (dst);
+
+ /* Some targets do argument pushes without adding REG_INC notes. */
+
+ if (MEM_P (dst))
+ {
+ dst = XEXP (dst, 0);
+ if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
+ || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
+ reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
+ return;
+ }
+
+ if (GET_CODE (dst) == SUBREG)
+ regno = subreg_regno (dst);
+ else if (REG_P (dst))
+ regno = REGNO (dst);
+ else
+ return;
+
+ if (SCALAR_INT_MODE_P (mode)
+ && GET_CODE (set) == SET)
+ {
+ rtx note, sym = NULL_RTX;
+ rtx off;
+
+ note = find_reg_equal_equiv_note (insn);
+ if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
+ {
+ sym = XEXP (note, 0);
+ off = const0_rtx;
+ }
+ else if (note && GET_CODE (XEXP (note, 0)) == CONST
+ && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
+ && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
+ {
+ sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
+ off = XEXP (XEXP (XEXP (note, 0), 0), 1);
+ }
+
+ if (sym != NULL_RTX)
+ {
+ move2add_record_sym_value (dst, sym, off);
+ return;
+ }
+ }
+
+ if (SCALAR_INT_MODE_P (mode)
+ && GET_CODE (set) == SET
+ && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
+ && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
+ {
+ rtx src = SET_SRC (set);
+ rtx base_reg;
+ unsigned HOST_WIDE_INT offset;
+ int base_regno;
+
+ switch (GET_CODE (src))
+ {
+ case PLUS:
+ if (REG_P (XEXP (src, 0)))
+ {
+ base_reg = XEXP (src, 0);
+
+ if (CONST_INT_P (XEXP (src, 1)))
+ offset = UINTVAL (XEXP (src, 1));
+ else if (REG_P (XEXP (src, 1))
+ && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
+ {
+ if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
+ && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
+ offset = reg_offset[REGNO (XEXP (src, 1))];
+ /* Maybe the first register is known to be a
+ constant. */
+ else if (move2add_valid_value_p (REGNO (base_reg), mode)
+ && reg_base_reg[REGNO (base_reg)] < 0
+ && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
+ {
+ offset = reg_offset[REGNO (base_reg)];
+ base_reg = XEXP (src, 1);
+ }
+ else
+ goto invalidate;
+ }
+ else
+ goto invalidate;
+
+ break;
+ }
+
+ goto invalidate;
+
+ case REG:
+ base_reg = src;
+ offset = 0;
+ break;
+
+ case CONST_INT:
+ /* Start tracking the register as a constant. */
+ reg_base_reg[regno] = -1;
+ reg_symbol_ref[regno] = NULL_RTX;
+ reg_offset[regno] = INTVAL (SET_SRC (set));
+ /* We assign the same luid to all registers set to constants. */
+ reg_set_luid[regno] = move2add_last_label_luid + 1;
+ move2add_record_mode (dst);
+ return;
+
+ default:
+ goto invalidate;
+ }
+
+ base_regno = REGNO (base_reg);
+ /* If information about the base register is not valid, set it
+ up as a new base register, pretending its value is known
+ starting from the current insn. */
+ if (!move2add_valid_value_p (base_regno, mode))
+ {
+ reg_base_reg[base_regno] = base_regno;
+ reg_symbol_ref[base_regno] = NULL_RTX;
+ reg_offset[base_regno] = 0;
+ reg_set_luid[base_regno] = move2add_luid;
+ gcc_assert (GET_MODE (base_reg) == mode);
+ move2add_record_mode (base_reg);
+ }
+
+ /* Copy base information from our base register. */
+ reg_set_luid[regno] = reg_set_luid[base_regno];
+ reg_base_reg[regno] = reg_base_reg[base_regno];
+ reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
+
+ /* Compute the sum of the offsets or constants. */
+ reg_offset[regno]
+ = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
+
+ move2add_record_mode (dst);
+ }
+ else
+ {
+ invalidate:
+ /* Invalidate the contents of the register. */
+ move2add_record_mode (dst);
+ reg_mode[regno] = VOIDmode;
+ }
+}
+
+static bool
+gate_handle_postreload (void)
+{
+ return (optimize > 0 && reload_completed);
+}
+
+
+static unsigned int
+rest_of_handle_postreload (void)
+{
+ if (!dbg_cnt (postreload_cse))
+ return 0;
+
+ /* Do a very simple CSE pass over just the hard registers. */
+ reload_cse_regs (get_insns ());
+ /* Reload_cse_regs can eliminate potentially-trapping MEMs.
+ Remove any EH edges associated with them. */
+ if (cfun->can_throw_non_call_exceptions
+ && purge_all_dead_edges ())
+ cleanup_cfg (0);
+
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_postreload_cse =
+{
+ RTL_PASS, /* type */
+ "postreload", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_RELOAD_CSE_REGS, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
+};
+
+class pass_postreload_cse : public rtl_opt_pass
+{
+public:
+ pass_postreload_cse (gcc::context *ctxt)
+ : rtl_opt_pass (pass_data_postreload_cse, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate () { return gate_handle_postreload (); }
+ unsigned int execute () { return rest_of_handle_postreload (); }
+
+}; // class pass_postreload_cse
+
+} // anon namespace
+
+rtl_opt_pass *
+make_pass_postreload_cse (gcc::context *ctxt)
+{
+ return new pass_postreload_cse (ctxt);
+}