aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ira-build.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/ira-build.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/ira-build.c')
-rw-r--r--gcc-4.9/gcc/ira-build.c3516
1 files changed, 3516 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ira-build.c b/gcc-4.9/gcc/ira-build.c
new file mode 100644
index 000000000..0396f379f
--- /dev/null
+++ b/gcc-4.9/gcc/ira-build.c
@@ -0,0 +1,3516 @@
+/* Building internal representation for IRA.
+ Copyright (C) 2006-2014 Free Software Foundation, Inc.
+ Contributed by Vladimir Makarov <vmakarov@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "target.h"
+#include "regs.h"
+#include "flags.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "diagnostic-core.h"
+#include "params.h"
+#include "df.h"
+#include "reload.h"
+#include "sparseset.h"
+#include "ira-int.h"
+#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
+
+static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx,
+ ira_loop_tree_node_t);
+
+/* The root of the loop tree corresponding to the all function. */
+ira_loop_tree_node_t ira_loop_tree_root;
+
+/* Height of the loop tree. */
+int ira_loop_tree_height;
+
+/* All nodes representing basic blocks are referred through the
+ following array. We can not use basic block member `aux' for this
+ because it is used for insertion of insns on edges. */
+ira_loop_tree_node_t ira_bb_nodes;
+
+/* All nodes representing loops are referred through the following
+ array. */
+ira_loop_tree_node_t ira_loop_nodes;
+
+/* And size of the ira_loop_nodes array. */
+unsigned int ira_loop_nodes_count;
+
+/* Map regno -> allocnos with given regno (see comments for
+ allocno member `next_regno_allocno'). */
+ira_allocno_t *ira_regno_allocno_map;
+
+/* Array of references to all allocnos. The order number of the
+ allocno corresponds to the index in the array. Removed allocnos
+ have NULL element value. */
+ira_allocno_t *ira_allocnos;
+
+/* Sizes of the previous array. */
+int ira_allocnos_num;
+
+/* Count of conflict record structures we've created, used when creating
+ a new conflict id. */
+int ira_objects_num;
+
+/* Map a conflict id to its conflict record. */
+ira_object_t *ira_object_id_map;
+
+/* Array of references to all allocno preferences. The order number
+ of the preference corresponds to the index in the array. */
+ira_pref_t *ira_prefs;
+
+/* Size of the previous array. */
+int ira_prefs_num;
+
+/* Array of references to all copies. The order number of the copy
+ corresponds to the index in the array. Removed copies have NULL
+ element value. */
+ira_copy_t *ira_copies;
+
+/* Size of the previous array. */
+int ira_copies_num;
+
+
+
+/* LAST_BASIC_BLOCK before generating additional insns because of live
+ range splitting. Emitting insns on a critical edge creates a new
+ basic block. */
+static int last_basic_block_before_change;
+
+/* Initialize some members in loop tree node NODE. Use LOOP_NUM for
+ the member loop_num. */
+static void
+init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num)
+{
+ int max_regno = max_reg_num ();
+
+ node->regno_allocno_map
+ = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
+ memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno);
+ memset (node->reg_pressure, 0, sizeof (node->reg_pressure));
+ node->all_allocnos = ira_allocate_bitmap ();
+ node->modified_regnos = ira_allocate_bitmap ();
+ node->border_allocnos = ira_allocate_bitmap ();
+ node->local_copies = ira_allocate_bitmap ();
+ node->loop_num = loop_num;
+ node->children = NULL;
+ node->subloops = NULL;
+}
+
+
+/* The following function allocates the loop tree nodes. If
+ CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
+ the root which corresponds the all function) will be not allocated
+ but nodes will still be allocated for basic blocks. */
+static void
+create_loop_tree_nodes (void)
+{
+ unsigned int i, j;
+ bool skip_p;
+ edge_iterator ei;
+ edge e;
+ vec<edge> edges;
+ loop_p loop;
+
+ ira_bb_nodes
+ = ((struct ira_loop_tree_node *)
+ ira_allocate (sizeof (struct ira_loop_tree_node)
+ * last_basic_block_for_fn (cfun)));
+ last_basic_block_before_change = last_basic_block_for_fn (cfun);
+ for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++)
+ {
+ ira_bb_nodes[i].regno_allocno_map = NULL;
+ memset (ira_bb_nodes[i].reg_pressure, 0,
+ sizeof (ira_bb_nodes[i].reg_pressure));
+ ira_bb_nodes[i].all_allocnos = NULL;
+ ira_bb_nodes[i].modified_regnos = NULL;
+ ira_bb_nodes[i].border_allocnos = NULL;
+ ira_bb_nodes[i].local_copies = NULL;
+ }
+ if (current_loops == NULL)
+ {
+ ira_loop_nodes_count = 1;
+ ira_loop_nodes = ((struct ira_loop_tree_node *)
+ ira_allocate (sizeof (struct ira_loop_tree_node)));
+ init_loop_tree_node (ira_loop_nodes, 0);
+ return;
+ }
+ ira_loop_nodes_count = number_of_loops (cfun);
+ ira_loop_nodes = ((struct ira_loop_tree_node *)
+ ira_allocate (sizeof (struct ira_loop_tree_node)
+ * ira_loop_nodes_count));
+ FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
+ {
+ if (loop_outer (loop) != NULL)
+ {
+ ira_loop_nodes[i].regno_allocno_map = NULL;
+ skip_p = false;
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ if (e->src != loop->latch
+ && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
+ {
+ skip_p = true;
+ break;
+ }
+ if (skip_p)
+ continue;
+ edges = get_loop_exit_edges (loop);
+ FOR_EACH_VEC_ELT (edges, j, e)
+ if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
+ {
+ skip_p = true;
+ break;
+ }
+ edges.release ();
+ if (skip_p)
+ continue;
+ }
+ init_loop_tree_node (&ira_loop_nodes[i], loop->num);
+ }
+}
+
+/* The function returns TRUE if there are more one allocation
+ region. */
+static bool
+more_one_region_p (void)
+{
+ unsigned int i;
+ loop_p loop;
+
+ if (current_loops != NULL)
+ FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
+ if (ira_loop_nodes[i].regno_allocno_map != NULL
+ && ira_loop_tree_root != &ira_loop_nodes[i])
+ return true;
+ return false;
+}
+
+/* Free the loop tree node of a loop. */
+static void
+finish_loop_tree_node (ira_loop_tree_node_t loop)
+{
+ if (loop->regno_allocno_map != NULL)
+ {
+ ira_assert (loop->bb == NULL);
+ ira_free_bitmap (loop->local_copies);
+ ira_free_bitmap (loop->border_allocnos);
+ ira_free_bitmap (loop->modified_regnos);
+ ira_free_bitmap (loop->all_allocnos);
+ ira_free (loop->regno_allocno_map);
+ loop->regno_allocno_map = NULL;
+ }
+}
+
+/* Free the loop tree nodes. */
+static void
+finish_loop_tree_nodes (void)
+{
+ unsigned int i;
+
+ for (i = 0; i < ira_loop_nodes_count; i++)
+ finish_loop_tree_node (&ira_loop_nodes[i]);
+ ira_free (ira_loop_nodes);
+ for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
+ {
+ if (ira_bb_nodes[i].local_copies != NULL)
+ ira_free_bitmap (ira_bb_nodes[i].local_copies);
+ if (ira_bb_nodes[i].border_allocnos != NULL)
+ ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
+ if (ira_bb_nodes[i].modified_regnos != NULL)
+ ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
+ if (ira_bb_nodes[i].all_allocnos != NULL)
+ ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
+ if (ira_bb_nodes[i].regno_allocno_map != NULL)
+ ira_free (ira_bb_nodes[i].regno_allocno_map);
+ }
+ ira_free (ira_bb_nodes);
+}
+
+
+
+/* The following recursive function adds LOOP to the loop tree
+ hierarchy. LOOP is added only once. If LOOP is NULL we adding
+ loop designating the whole function when CFG loops are not
+ built. */
+static void
+add_loop_to_tree (struct loop *loop)
+{
+ int loop_num;
+ struct loop *parent;
+ ira_loop_tree_node_t loop_node, parent_node;
+
+ /* We can not use loop node access macros here because of potential
+ checking and because the nodes are not initialized enough
+ yet. */
+ if (loop != NULL && loop_outer (loop) != NULL)
+ add_loop_to_tree (loop_outer (loop));
+ loop_num = loop != NULL ? loop->num : 0;
+ if (ira_loop_nodes[loop_num].regno_allocno_map != NULL
+ && ira_loop_nodes[loop_num].children == NULL)
+ {
+ /* We have not added loop node to the tree yet. */
+ loop_node = &ira_loop_nodes[loop_num];
+ loop_node->loop = loop;
+ loop_node->bb = NULL;
+ if (loop == NULL)
+ parent = NULL;
+ else
+ {
+ for (parent = loop_outer (loop);
+ parent != NULL;
+ parent = loop_outer (parent))
+ if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
+ break;
+ }
+ if (parent == NULL)
+ {
+ loop_node->next = NULL;
+ loop_node->subloop_next = NULL;
+ loop_node->parent = NULL;
+ }
+ else
+ {
+ parent_node = &ira_loop_nodes[parent->num];
+ loop_node->next = parent_node->children;
+ parent_node->children = loop_node;
+ loop_node->subloop_next = parent_node->subloops;
+ parent_node->subloops = loop_node;
+ loop_node->parent = parent_node;
+ }
+ }
+}
+
+/* The following recursive function sets up levels of nodes of the
+ tree given its root LOOP_NODE. The enumeration starts with LEVEL.
+ The function returns maximal value of level in the tree + 1. */
+static int
+setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
+{
+ int height, max_height;
+ ira_loop_tree_node_t subloop_node;
+
+ ira_assert (loop_node->bb == NULL);
+ loop_node->level = level;
+ max_height = level + 1;
+ for (subloop_node = loop_node->subloops;
+ subloop_node != NULL;
+ subloop_node = subloop_node->subloop_next)
+ {
+ ira_assert (subloop_node->bb == NULL);
+ height = setup_loop_tree_level (subloop_node, level + 1);
+ if (height > max_height)
+ max_height = height;
+ }
+ return max_height;
+}
+
+/* Create the loop tree. The algorithm is designed to provide correct
+ order of loops (they are ordered by their last loop BB) and basic
+ blocks in the chain formed by member next. */
+static void
+form_loop_tree (void)
+{
+ basic_block bb;
+ struct loop *parent;
+ ira_loop_tree_node_t bb_node, loop_node;
+
+ /* We can not use loop/bb node access macros because of potential
+ checking and because the nodes are not initialized enough
+ yet. */
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ bb_node = &ira_bb_nodes[bb->index];
+ bb_node->bb = bb;
+ bb_node->loop = NULL;
+ bb_node->subloops = NULL;
+ bb_node->children = NULL;
+ bb_node->subloop_next = NULL;
+ bb_node->next = NULL;
+ if (current_loops == NULL)
+ parent = NULL;
+ else
+ {
+ for (parent = bb->loop_father;
+ parent != NULL;
+ parent = loop_outer (parent))
+ if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
+ break;
+ }
+ add_loop_to_tree (parent);
+ loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num];
+ bb_node->next = loop_node->children;
+ bb_node->parent = loop_node;
+ loop_node->children = bb_node;
+ }
+ ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0);
+ ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
+ ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
+}
+
+
+
+/* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
+ tree nodes. */
+static void
+rebuild_regno_allocno_maps (void)
+{
+ unsigned int l;
+ int max_regno, regno;
+ ira_allocno_t a;
+ ira_loop_tree_node_t loop_tree_node;
+ loop_p loop;
+ ira_allocno_iterator ai;
+
+ ira_assert (current_loops != NULL);
+ max_regno = max_reg_num ();
+ FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop)
+ if (ira_loop_nodes[l].regno_allocno_map != NULL)
+ {
+ ira_free (ira_loop_nodes[l].regno_allocno_map);
+ ira_loop_nodes[l].regno_allocno_map
+ = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
+ * max_regno);
+ memset (ira_loop_nodes[l].regno_allocno_map, 0,
+ sizeof (ira_allocno_t) * max_regno);
+ }
+ ira_free (ira_regno_allocno_map);
+ ira_regno_allocno_map
+ = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
+ memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ if (ALLOCNO_CAP_MEMBER (a) != NULL)
+ /* Caps are not in the regno allocno maps. */
+ continue;
+ regno = ALLOCNO_REGNO (a);
+ loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
+ ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
+ ira_regno_allocno_map[regno] = a;
+ if (loop_tree_node->regno_allocno_map[regno] == NULL)
+ /* Remember that we can create temporary allocnos to break
+ cycles in register shuffle. */
+ loop_tree_node->regno_allocno_map[regno] = a;
+ }
+}
+
+
+/* Pools for allocnos, allocno live ranges and objects. */
+static alloc_pool allocno_pool, live_range_pool, object_pool;
+
+/* Vec containing references to all created allocnos. It is a
+ container of array allocnos. */
+static vec<ira_allocno_t> allocno_vec;
+
+/* Vec containing references to all created ira_objects. It is a
+ container of ira_object_id_map. */
+static vec<ira_object_t> ira_object_id_map_vec;
+
+/* Initialize data concerning allocnos. */
+static void
+initiate_allocnos (void)
+{
+ live_range_pool
+ = create_alloc_pool ("live ranges",
+ sizeof (struct live_range), 100);
+ allocno_pool
+ = create_alloc_pool ("allocnos", sizeof (struct ira_allocno), 100);
+ object_pool
+ = create_alloc_pool ("objects", sizeof (struct ira_object), 100);
+ allocno_vec.create (max_reg_num () * 2);
+ ira_allocnos = NULL;
+ ira_allocnos_num = 0;
+ ira_objects_num = 0;
+ ira_object_id_map_vec.create (max_reg_num () * 2);
+ ira_object_id_map = NULL;
+ ira_regno_allocno_map
+ = (ira_allocno_t *) ira_allocate (max_reg_num ()
+ * sizeof (ira_allocno_t));
+ memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
+}
+
+/* Create and return an object corresponding to a new allocno A. */
+static ira_object_t
+ira_create_object (ira_allocno_t a, int subword)
+{
+ enum reg_class aclass = ALLOCNO_CLASS (a);
+ ira_object_t obj = (ira_object_t) pool_alloc (object_pool);
+
+ OBJECT_ALLOCNO (obj) = a;
+ OBJECT_SUBWORD (obj) = subword;
+ OBJECT_CONFLICT_ID (obj) = ira_objects_num;
+ OBJECT_CONFLICT_VEC_P (obj) = false;
+ OBJECT_CONFLICT_ARRAY (obj) = NULL;
+ OBJECT_NUM_CONFLICTS (obj) = 0;
+ COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
+ COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
+ IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
+ reg_class_contents[aclass]);
+ IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
+ reg_class_contents[aclass]);
+ OBJECT_MIN (obj) = INT_MAX;
+ OBJECT_MAX (obj) = -1;
+ OBJECT_LIVE_RANGES (obj) = NULL;
+
+ ira_object_id_map_vec.safe_push (obj);
+ ira_object_id_map
+ = ira_object_id_map_vec.address ();
+ ira_objects_num = ira_object_id_map_vec.length ();
+
+ return obj;
+}
+
+/* Create and return the allocno corresponding to REGNO in
+ LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
+ same regno if CAP_P is FALSE. */
+ira_allocno_t
+ira_create_allocno (int regno, bool cap_p,
+ ira_loop_tree_node_t loop_tree_node)
+{
+ ira_allocno_t a;
+
+ a = (ira_allocno_t) pool_alloc (allocno_pool);
+ ALLOCNO_REGNO (a) = regno;
+ ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
+ if (! cap_p)
+ {
+ ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
+ ira_regno_allocno_map[regno] = a;
+ if (loop_tree_node->regno_allocno_map[regno] == NULL)
+ /* Remember that we can create temporary allocnos to break
+ cycles in register shuffle on region borders (see
+ ira-emit.c). */
+ loop_tree_node->regno_allocno_map[regno] = a;
+ }
+ ALLOCNO_CAP (a) = NULL;
+ ALLOCNO_CAP_MEMBER (a) = NULL;
+ ALLOCNO_NUM (a) = ira_allocnos_num;
+ bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
+ ALLOCNO_NREFS (a) = 0;
+ ALLOCNO_FREQ (a) = 0;
+ ALLOCNO_HARD_REGNO (a) = -1;
+ ALLOCNO_CALL_FREQ (a) = 0;
+ ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
+ ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0;
+#ifdef STACK_REGS
+ ALLOCNO_NO_STACK_REG_P (a) = false;
+ ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
+#endif
+ ALLOCNO_DONT_REASSIGN_P (a) = false;
+ ALLOCNO_BAD_SPILL_P (a) = false;
+ ALLOCNO_ASSIGNED_P (a) = false;
+ ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
+ ALLOCNO_PREFS (a) = NULL;
+ ALLOCNO_COPIES (a) = NULL;
+ ALLOCNO_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_CLASS (a) = NO_REGS;
+ ALLOCNO_UPDATED_CLASS_COST (a) = 0;
+ ALLOCNO_CLASS_COST (a) = 0;
+ ALLOCNO_MEMORY_COST (a) = 0;
+ ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
+ ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
+ ALLOCNO_NUM_OBJECTS (a) = 0;
+
+ ALLOCNO_ADD_DATA (a) = NULL;
+ allocno_vec.safe_push (a);
+ ira_allocnos = allocno_vec.address ();
+ ira_allocnos_num = allocno_vec.length ();
+
+ return a;
+}
+
+/* Set up register class for A and update its conflict hard
+ registers. */
+void
+ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass)
+{
+ ira_allocno_object_iterator oi;
+ ira_object_t obj;
+
+ ALLOCNO_CLASS (a) = aclass;
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
+ {
+ IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
+ reg_class_contents[aclass]);
+ IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
+ reg_class_contents[aclass]);
+ }
+}
+
+/* Determine the number of objects we should associate with allocno A
+ and allocate them. */
+void
+ira_create_allocno_objects (ira_allocno_t a)
+{
+ enum machine_mode mode = ALLOCNO_MODE (a);
+ enum reg_class aclass = ALLOCNO_CLASS (a);
+ int n = ira_reg_class_max_nregs[aclass][mode];
+ int i;
+
+ if (GET_MODE_SIZE (mode) != 2 * UNITS_PER_WORD || n != 2)
+ n = 1;
+
+ ALLOCNO_NUM_OBJECTS (a) = n;
+ for (i = 0; i < n; i++)
+ ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
+}
+
+/* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
+ ALLOCNO_OBJECT structures. This must be called after the allocno
+ classes are known. */
+static void
+create_allocno_objects (void)
+{
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ ira_create_allocno_objects (a);
+}
+
+/* Merge hard register conflict information for all objects associated with
+ allocno TO into the corresponding objects associated with FROM.
+ If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
+static void
+merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
+ bool total_only)
+{
+ int i;
+ gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
+ for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
+ {
+ ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
+ ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
+
+ if (!total_only)
+ IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
+ OBJECT_CONFLICT_HARD_REGS (from_obj));
+ IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
+ OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
+ }
+#ifdef STACK_REGS
+ if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
+ ALLOCNO_NO_STACK_REG_P (to) = true;
+ if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
+ ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
+#endif
+}
+
+/* Update hard register conflict information for all objects associated with
+ A to include the regs in SET. */
+void
+ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
+{
+ ira_allocno_object_iterator i;
+ ira_object_t obj;
+
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
+ {
+ IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
+ IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
+ }
+}
+
+/* Return TRUE if a conflict vector with NUM elements is more
+ profitable than a conflict bit vector for OBJ. */
+bool
+ira_conflict_vector_profitable_p (ira_object_t obj, int num)
+{
+ int nw;
+ int max = OBJECT_MAX (obj);
+ int min = OBJECT_MIN (obj);
+
+ if (max < min)
+ /* We prefer a bit vector in such case because it does not result
+ in allocation. */
+ return false;
+
+ nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
+ return (2 * sizeof (ira_object_t) * (num + 1)
+ < 3 * nw * sizeof (IRA_INT_TYPE));
+}
+
+/* Allocates and initialize the conflict vector of OBJ for NUM
+ conflicting objects. */
+void
+ira_allocate_conflict_vec (ira_object_t obj, int num)
+{
+ int size;
+ ira_object_t *vec;
+
+ ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
+ num++; /* for NULL end marker */
+ size = sizeof (ira_object_t) * num;
+ OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
+ vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
+ vec[0] = NULL;
+ OBJECT_NUM_CONFLICTS (obj) = 0;
+ OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
+ OBJECT_CONFLICT_VEC_P (obj) = true;
+}
+
+/* Allocate and initialize the conflict bit vector of OBJ. */
+static void
+allocate_conflict_bit_vec (ira_object_t obj)
+{
+ unsigned int size;
+
+ ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
+ size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
+ / IRA_INT_BITS * sizeof (IRA_INT_TYPE));
+ OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
+ memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
+ OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
+ OBJECT_CONFLICT_VEC_P (obj) = false;
+}
+
+/* Allocate and initialize the conflict vector or conflict bit vector
+ of OBJ for NUM conflicting allocnos whatever is more profitable. */
+void
+ira_allocate_object_conflicts (ira_object_t obj, int num)
+{
+ if (ira_conflict_vector_profitable_p (obj, num))
+ ira_allocate_conflict_vec (obj, num);
+ else
+ allocate_conflict_bit_vec (obj);
+}
+
+/* Add OBJ2 to the conflicts of OBJ1. */
+static void
+add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
+{
+ int num;
+ unsigned int size;
+
+ if (OBJECT_CONFLICT_VEC_P (obj1))
+ {
+ ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
+ int curr_num = OBJECT_NUM_CONFLICTS (obj1);
+ num = curr_num + 2;
+ if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
+ {
+ ira_object_t *newvec;
+ size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
+ newvec = (ira_object_t *) ira_allocate (size);
+ memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
+ ira_free (vec);
+ vec = newvec;
+ OBJECT_CONFLICT_ARRAY (obj1) = vec;
+ OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
+ }
+ vec[num - 2] = obj2;
+ vec[num - 1] = NULL;
+ OBJECT_NUM_CONFLICTS (obj1)++;
+ }
+ else
+ {
+ int nw, added_head_nw, id;
+ IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
+
+ id = OBJECT_CONFLICT_ID (obj2);
+ if (OBJECT_MIN (obj1) > id)
+ {
+ /* Expand head of the bit vector. */
+ added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
+ nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
+ size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
+ if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
+ {
+ memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
+ vec, nw * sizeof (IRA_INT_TYPE));
+ memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
+ }
+ else
+ {
+ size
+ = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
+ vec = (IRA_INT_TYPE *) ira_allocate (size);
+ memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
+ OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
+ memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
+ memset ((char *) vec
+ + (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
+ 0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
+ ira_free (OBJECT_CONFLICT_ARRAY (obj1));
+ OBJECT_CONFLICT_ARRAY (obj1) = vec;
+ OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
+ }
+ OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
+ }
+ else if (OBJECT_MAX (obj1) < id)
+ {
+ nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
+ size = nw * sizeof (IRA_INT_TYPE);
+ if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
+ {
+ /* Expand tail of the bit vector. */
+ size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
+ vec = (IRA_INT_TYPE *) ira_allocate (size);
+ memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
+ memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
+ 0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
+ ira_free (OBJECT_CONFLICT_ARRAY (obj1));
+ OBJECT_CONFLICT_ARRAY (obj1) = vec;
+ OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
+ }
+ OBJECT_MAX (obj1) = id;
+ }
+ SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
+ }
+}
+
+/* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
+static void
+ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
+{
+ add_to_conflicts (obj1, obj2);
+ add_to_conflicts (obj2, obj1);
+}
+
+/* Clear all conflicts of OBJ. */
+static void
+clear_conflicts (ira_object_t obj)
+{
+ if (OBJECT_CONFLICT_VEC_P (obj))
+ {
+ OBJECT_NUM_CONFLICTS (obj) = 0;
+ OBJECT_CONFLICT_VEC (obj)[0] = NULL;
+ }
+ else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
+ {
+ int nw;
+
+ nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
+ memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
+ }
+}
+
+/* The array used to find duplications in conflict vectors of
+ allocnos. */
+static int *conflict_check;
+
+/* The value used to mark allocation presence in conflict vector of
+ the current allocno. */
+static int curr_conflict_check_tick;
+
+/* Remove duplications in conflict vector of OBJ. */
+static void
+compress_conflict_vec (ira_object_t obj)
+{
+ ira_object_t *vec, conflict_obj;
+ int i, j;
+
+ ira_assert (OBJECT_CONFLICT_VEC_P (obj));
+ vec = OBJECT_CONFLICT_VEC (obj);
+ curr_conflict_check_tick++;
+ for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
+ {
+ int id = OBJECT_CONFLICT_ID (conflict_obj);
+ if (conflict_check[id] != curr_conflict_check_tick)
+ {
+ conflict_check[id] = curr_conflict_check_tick;
+ vec[j++] = conflict_obj;
+ }
+ }
+ OBJECT_NUM_CONFLICTS (obj) = j;
+ vec[j] = NULL;
+}
+
+/* Remove duplications in conflict vectors of all allocnos. */
+static void
+compress_conflict_vecs (void)
+{
+ ira_object_t obj;
+ ira_object_iterator oi;
+
+ conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
+ memset (conflict_check, 0, sizeof (int) * ira_objects_num);
+ curr_conflict_check_tick = 0;
+ FOR_EACH_OBJECT (obj, oi)
+ {
+ if (OBJECT_CONFLICT_VEC_P (obj))
+ compress_conflict_vec (obj);
+ }
+ ira_free (conflict_check);
+}
+
+/* This recursive function outputs allocno A and if it is a cap the
+ function outputs its members. */
+void
+ira_print_expanded_allocno (ira_allocno_t a)
+{
+ basic_block bb;
+
+ fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
+ if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
+ fprintf (ira_dump_file, ",b%d", bb->index);
+ else
+ fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
+ if (ALLOCNO_CAP_MEMBER (a) != NULL)
+ {
+ fprintf (ira_dump_file, ":");
+ ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
+ }
+ fprintf (ira_dump_file, ")");
+}
+
+/* Create and return the cap representing allocno A in the
+ parent loop. */
+static ira_allocno_t
+create_cap_allocno (ira_allocno_t a)
+{
+ ira_allocno_t cap;
+ ira_loop_tree_node_t parent;
+ enum reg_class aclass;
+
+ parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
+ cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
+ ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
+ aclass = ALLOCNO_CLASS (a);
+ ira_set_allocno_class (cap, aclass);
+ ira_create_allocno_objects (cap);
+ ALLOCNO_CAP_MEMBER (cap) = a;
+ ALLOCNO_CAP (a) = cap;
+ ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a);
+ ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
+ ira_allocate_and_copy_costs
+ (&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a));
+ ira_allocate_and_copy_costs
+ (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass,
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
+ ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
+ ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
+ ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
+ ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
+
+ merge_hard_reg_conflicts (a, cap, false);
+
+ ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
+ ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
+ if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
+ {
+ fprintf (ira_dump_file, " Creating cap ");
+ ira_print_expanded_allocno (cap);
+ fprintf (ira_dump_file, "\n");
+ }
+ return cap;
+}
+
+/* Create and return a live range for OBJECT with given attributes. */
+live_range_t
+ira_create_live_range (ira_object_t obj, int start, int finish,
+ live_range_t next)
+{
+ live_range_t p;
+
+ p = (live_range_t) pool_alloc (live_range_pool);
+ p->object = obj;
+ p->start = start;
+ p->finish = finish;
+ p->next = next;
+ return p;
+}
+
+/* Create a new live range for OBJECT and queue it at the head of its
+ live range list. */
+void
+ira_add_live_range_to_object (ira_object_t object, int start, int finish)
+{
+ live_range_t p;
+ p = ira_create_live_range (object, start, finish,
+ OBJECT_LIVE_RANGES (object));
+ OBJECT_LIVE_RANGES (object) = p;
+}
+
+/* Copy allocno live range R and return the result. */
+static live_range_t
+copy_live_range (live_range_t r)
+{
+ live_range_t p;
+
+ p = (live_range_t) pool_alloc (live_range_pool);
+ *p = *r;
+ return p;
+}
+
+/* Copy allocno live range list given by its head R and return the
+ result. */
+live_range_t
+ira_copy_live_range_list (live_range_t r)
+{
+ live_range_t p, first, last;
+
+ if (r == NULL)
+ return NULL;
+ for (first = last = NULL; r != NULL; r = r->next)
+ {
+ p = copy_live_range (r);
+ if (first == NULL)
+ first = p;
+ else
+ last->next = p;
+ last = p;
+ }
+ return first;
+}
+
+/* Merge ranges R1 and R2 and returns the result. The function
+ maintains the order of ranges and tries to minimize number of the
+ result ranges. */
+live_range_t
+ira_merge_live_ranges (live_range_t r1, live_range_t r2)
+{
+ live_range_t first, last, temp;
+
+ if (r1 == NULL)
+ return r2;
+ if (r2 == NULL)
+ return r1;
+ for (first = last = NULL; r1 != NULL && r2 != NULL;)
+ {
+ if (r1->start < r2->start)
+ {
+ temp = r1;
+ r1 = r2;
+ r2 = temp;
+ }
+ if (r1->start <= r2->finish + 1)
+ {
+ /* Intersected ranges: merge r1 and r2 into r1. */
+ r1->start = r2->start;
+ if (r1->finish < r2->finish)
+ r1->finish = r2->finish;
+ temp = r2;
+ r2 = r2->next;
+ ira_finish_live_range (temp);
+ if (r2 == NULL)
+ {
+ /* To try to merge with subsequent ranges in r1. */
+ r2 = r1->next;
+ r1->next = NULL;
+ }
+ }
+ else
+ {
+ /* Add r1 to the result. */
+ if (first == NULL)
+ first = last = r1;
+ else
+ {
+ last->next = r1;
+ last = r1;
+ }
+ r1 = r1->next;
+ if (r1 == NULL)
+ {
+ /* To try to merge with subsequent ranges in r2. */
+ r1 = r2->next;
+ r2->next = NULL;
+ }
+ }
+ }
+ if (r1 != NULL)
+ {
+ if (first == NULL)
+ first = r1;
+ else
+ last->next = r1;
+ ira_assert (r1->next == NULL);
+ }
+ else if (r2 != NULL)
+ {
+ if (first == NULL)
+ first = r2;
+ else
+ last->next = r2;
+ ira_assert (r2->next == NULL);
+ }
+ else
+ {
+ ira_assert (last->next == NULL);
+ }
+ return first;
+}
+
+/* Return TRUE if live ranges R1 and R2 intersect. */
+bool
+ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
+{
+ /* Remember the live ranges are always kept ordered. */
+ while (r1 != NULL && r2 != NULL)
+ {
+ if (r1->start > r2->finish)
+ r1 = r1->next;
+ else if (r2->start > r1->finish)
+ r2 = r2->next;
+ else
+ return true;
+ }
+ return false;
+}
+
+/* Free allocno live range R. */
+void
+ira_finish_live_range (live_range_t r)
+{
+ pool_free (live_range_pool, r);
+}
+
+/* Free list of allocno live ranges starting with R. */
+void
+ira_finish_live_range_list (live_range_t r)
+{
+ live_range_t next_r;
+
+ for (; r != NULL; r = next_r)
+ {
+ next_r = r->next;
+ ira_finish_live_range (r);
+ }
+}
+
+/* Free updated register costs of allocno A. */
+void
+ira_free_allocno_updated_costs (ira_allocno_t a)
+{
+ enum reg_class aclass;
+
+ aclass = ALLOCNO_CLASS (a);
+ if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
+ ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
+ ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
+ if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
+ ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
+ aclass);
+ ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
+}
+
+/* Free and nullify all cost vectors allocated earlier for allocno
+ A. */
+static void
+ira_free_allocno_costs (ira_allocno_t a)
+{
+ enum reg_class aclass = ALLOCNO_CLASS (a);
+ ira_object_t obj;
+ ira_allocno_object_iterator oi;
+
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
+ {
+ ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
+ ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
+ if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
+ ira_free (OBJECT_CONFLICT_ARRAY (obj));
+ pool_free (object_pool, obj);
+ }
+
+ ira_allocnos[ALLOCNO_NUM (a)] = NULL;
+ if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
+ ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass);
+ if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
+ ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass);
+ if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
+ ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
+ if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
+ ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
+ aclass);
+ ALLOCNO_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
+ ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
+}
+
+/* Free the memory allocated for allocno A. */
+static void
+finish_allocno (ira_allocno_t a)
+{
+ ira_free_allocno_costs (a);
+ pool_free (allocno_pool, a);
+}
+
+/* Free the memory allocated for all allocnos. */
+static void
+finish_allocnos (void)
+{
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ finish_allocno (a);
+ ira_free (ira_regno_allocno_map);
+ ira_object_id_map_vec.release ();
+ allocno_vec.release ();
+ free_alloc_pool (allocno_pool);
+ free_alloc_pool (object_pool);
+ free_alloc_pool (live_range_pool);
+}
+
+
+
+/* Pools for allocno preferences. */
+static alloc_pool pref_pool;
+
+/* Vec containing references to all created preferences. It is a
+ container of array ira_prefs. */
+static vec<ira_pref_t> pref_vec;
+
+/* The function initializes data concerning allocno prefs. */
+static void
+initiate_prefs (void)
+{
+ pref_pool
+ = create_alloc_pool ("prefs", sizeof (struct ira_allocno_pref), 100);
+ pref_vec.create (get_max_uid ());
+ ira_prefs = NULL;
+ ira_prefs_num = 0;
+}
+
+/* Return pref for A and HARD_REGNO if any. */
+static ira_pref_t
+find_allocno_pref (ira_allocno_t a, int hard_regno)
+{
+ ira_pref_t pref;
+
+ for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
+ if (pref->allocno == a && pref->hard_regno == hard_regno)
+ return pref;
+ return NULL;
+}
+
+/* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */
+ira_pref_t
+ira_create_pref (ira_allocno_t a, int hard_regno, int freq)
+{
+ ira_pref_t pref;
+
+ pref = (ira_pref_t) pool_alloc (pref_pool);
+ pref->num = ira_prefs_num;
+ pref->allocno = a;
+ pref->hard_regno = hard_regno;
+ pref->freq = freq;
+ pref_vec.safe_push (pref);
+ ira_prefs = pref_vec.address ();
+ ira_prefs_num = pref_vec.length ();
+ return pref;
+}
+
+/* Attach a pref PREF to the cooresponding allocno. */
+static void
+add_allocno_pref_to_list (ira_pref_t pref)
+{
+ ira_allocno_t a = pref->allocno;
+
+ pref->next_pref = ALLOCNO_PREFS (a);
+ ALLOCNO_PREFS (a) = pref;
+}
+
+/* Create (or update frequency if the pref already exists) the pref of
+ allocnos A preferring HARD_REGNO with frequency FREQ. */
+void
+ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq)
+{
+ ira_pref_t pref;
+
+ if (freq <= 0)
+ return;
+ if ((pref = find_allocno_pref (a, hard_regno)) != NULL)
+ {
+ pref->freq += freq;
+ return;
+ }
+ pref = ira_create_pref (a, hard_regno, freq);
+ ira_assert (a != NULL);
+ add_allocno_pref_to_list (pref);
+}
+
+/* Print info about PREF into file F. */
+static void
+print_pref (FILE *f, ira_pref_t pref)
+{
+ fprintf (f, " pref%d:a%d(r%d)<-hr%d@%d\n", pref->num,
+ ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno),
+ pref->hard_regno, pref->freq);
+}
+
+/* Print info about PREF into stderr. */
+void
+ira_debug_pref (ira_pref_t pref)
+{
+ print_pref (stderr, pref);
+}
+
+/* Print info about all prefs into file F. */
+static void
+print_prefs (FILE *f)
+{
+ ira_pref_t pref;
+ ira_pref_iterator pi;
+
+ FOR_EACH_PREF (pref, pi)
+ print_pref (f, pref);
+}
+
+/* Print info about all prefs into stderr. */
+void
+ira_debug_prefs (void)
+{
+ print_prefs (stderr);
+}
+
+/* Print info about prefs involving allocno A into file F. */
+static void
+print_allocno_prefs (FILE *f, ira_allocno_t a)
+{
+ ira_pref_t pref;
+
+ fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
+ for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
+ fprintf (f, " pref%d:hr%d@%d", pref->num, pref->hard_regno, pref->freq);
+ fprintf (f, "\n");
+}
+
+/* Print info about prefs involving allocno A into stderr. */
+void
+ira_debug_allocno_prefs (ira_allocno_t a)
+{
+ print_allocno_prefs (stderr, a);
+}
+
+/* The function frees memory allocated for PREF. */
+static void
+finish_pref (ira_pref_t pref)
+{
+ ira_prefs[pref->num] = NULL;
+ pool_free (pref_pool, pref);
+}
+
+/* Remove PREF from the list of allocno prefs and free memory for
+ it. */
+void
+ira_remove_pref (ira_pref_t pref)
+{
+ ira_pref_t cpref, prev;
+
+ if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
+ fprintf (ira_dump_file, " Removing pref%d:hr%d@%d\n",
+ pref->num, pref->hard_regno, pref->freq);
+ for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno);
+ cpref != NULL;
+ prev = cpref, cpref = cpref->next_pref)
+ if (cpref == pref)
+ break;
+ ira_assert (cpref != NULL);
+ if (prev == NULL)
+ ALLOCNO_PREFS (pref->allocno) = pref->next_pref;
+ else
+ prev->next_pref = pref->next_pref;
+ finish_pref (pref);
+}
+
+/* Remove all prefs of allocno A. */
+void
+ira_remove_allocno_prefs (ira_allocno_t a)
+{
+ ira_pref_t pref, next_pref;
+
+ for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
+ {
+ next_pref = pref->next_pref;
+ finish_pref (pref);
+ }
+ ALLOCNO_PREFS (a) = NULL;
+}
+
+/* Free memory allocated for all prefs. */
+static void
+finish_prefs (void)
+{
+ ira_pref_t pref;
+ ira_pref_iterator pi;
+
+ FOR_EACH_PREF (pref, pi)
+ finish_pref (pref);
+ pref_vec.release ();
+ free_alloc_pool (pref_pool);
+}
+
+
+
+/* Pools for copies. */
+static alloc_pool copy_pool;
+
+/* Vec containing references to all created copies. It is a
+ container of array ira_copies. */
+static vec<ira_copy_t> copy_vec;
+
+/* The function initializes data concerning allocno copies. */
+static void
+initiate_copies (void)
+{
+ copy_pool
+ = create_alloc_pool ("copies", sizeof (struct ira_allocno_copy), 100);
+ copy_vec.create (get_max_uid ());
+ ira_copies = NULL;
+ ira_copies_num = 0;
+}
+
+/* Return copy connecting A1 and A2 and originated from INSN of
+ LOOP_TREE_NODE if any. */
+static ira_copy_t
+find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx insn,
+ ira_loop_tree_node_t loop_tree_node)
+{
+ ira_copy_t cp, next_cp;
+ ira_allocno_t another_a;
+
+ for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
+ {
+ if (cp->first == a1)
+ {
+ next_cp = cp->next_first_allocno_copy;
+ another_a = cp->second;
+ }
+ else if (cp->second == a1)
+ {
+ next_cp = cp->next_second_allocno_copy;
+ another_a = cp->first;
+ }
+ else
+ gcc_unreachable ();
+ if (another_a == a2 && cp->insn == insn
+ && cp->loop_tree_node == loop_tree_node)
+ return cp;
+ }
+ return NULL;
+}
+
+/* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
+ SECOND, FREQ, CONSTRAINT_P, and INSN. */
+ira_copy_t
+ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
+ bool constraint_p, rtx insn,
+ ira_loop_tree_node_t loop_tree_node)
+{
+ ira_copy_t cp;
+
+ cp = (ira_copy_t) pool_alloc (copy_pool);
+ cp->num = ira_copies_num;
+ cp->first = first;
+ cp->second = second;
+ cp->freq = freq;
+ cp->constraint_p = constraint_p;
+ cp->insn = insn;
+ cp->loop_tree_node = loop_tree_node;
+ copy_vec.safe_push (cp);
+ ira_copies = copy_vec.address ();
+ ira_copies_num = copy_vec.length ();
+ return cp;
+}
+
+/* Attach a copy CP to allocnos involved into the copy. */
+static void
+add_allocno_copy_to_list (ira_copy_t cp)
+{
+ ira_allocno_t first = cp->first, second = cp->second;
+
+ cp->prev_first_allocno_copy = NULL;
+ cp->prev_second_allocno_copy = NULL;
+ cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
+ if (cp->next_first_allocno_copy != NULL)
+ {
+ if (cp->next_first_allocno_copy->first == first)
+ cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
+ else
+ cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
+ }
+ cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
+ if (cp->next_second_allocno_copy != NULL)
+ {
+ if (cp->next_second_allocno_copy->second == second)
+ cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
+ else
+ cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
+ }
+ ALLOCNO_COPIES (first) = cp;
+ ALLOCNO_COPIES (second) = cp;
+}
+
+/* Make a copy CP a canonical copy where number of the
+ first allocno is less than the second one. */
+static void
+swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
+{
+ ira_allocno_t temp;
+ ira_copy_t temp_cp;
+
+ if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
+ return;
+
+ temp = cp->first;
+ cp->first = cp->second;
+ cp->second = temp;
+
+ temp_cp = cp->prev_first_allocno_copy;
+ cp->prev_first_allocno_copy = cp->prev_second_allocno_copy;
+ cp->prev_second_allocno_copy = temp_cp;
+
+ temp_cp = cp->next_first_allocno_copy;
+ cp->next_first_allocno_copy = cp->next_second_allocno_copy;
+ cp->next_second_allocno_copy = temp_cp;
+}
+
+/* Create (or update frequency if the copy already exists) and return
+ the copy of allocnos FIRST and SECOND with frequency FREQ
+ corresponding to move insn INSN (if any) and originated from
+ LOOP_TREE_NODE. */
+ira_copy_t
+ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
+ bool constraint_p, rtx insn,
+ ira_loop_tree_node_t loop_tree_node)
+{
+ ira_copy_t cp;
+
+ if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
+ {
+ cp->freq += freq;
+ return cp;
+ }
+ cp = ira_create_copy (first, second, freq, constraint_p, insn,
+ loop_tree_node);
+ ira_assert (first != NULL && second != NULL);
+ add_allocno_copy_to_list (cp);
+ swap_allocno_copy_ends_if_necessary (cp);
+ return cp;
+}
+
+/* Print info about copy CP into file F. */
+static void
+print_copy (FILE *f, ira_copy_t cp)
+{
+ fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
+ ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
+ ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
+ cp->insn != NULL
+ ? "move" : cp->constraint_p ? "constraint" : "shuffle");
+}
+
+DEBUG_FUNCTION void
+debug (ira_allocno_copy &ref)
+{
+ print_copy (stderr, &ref);
+}
+
+DEBUG_FUNCTION void
+debug (ira_allocno_copy *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+/* Print info about copy CP into stderr. */
+void
+ira_debug_copy (ira_copy_t cp)
+{
+ print_copy (stderr, cp);
+}
+
+/* Print info about all copies into file F. */
+static void
+print_copies (FILE *f)
+{
+ ira_copy_t cp;
+ ira_copy_iterator ci;
+
+ FOR_EACH_COPY (cp, ci)
+ print_copy (f, cp);
+}
+
+/* Print info about all copies into stderr. */
+void
+ira_debug_copies (void)
+{
+ print_copies (stderr);
+}
+
+/* Print info about copies involving allocno A into file F. */
+static void
+print_allocno_copies (FILE *f, ira_allocno_t a)
+{
+ ira_allocno_t another_a;
+ ira_copy_t cp, next_cp;
+
+ fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
+ for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
+ {
+ if (cp->first == a)
+ {
+ next_cp = cp->next_first_allocno_copy;
+ another_a = cp->second;
+ }
+ else if (cp->second == a)
+ {
+ next_cp = cp->next_second_allocno_copy;
+ another_a = cp->first;
+ }
+ else
+ gcc_unreachable ();
+ fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
+ ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
+ }
+ fprintf (f, "\n");
+}
+
+DEBUG_FUNCTION void
+debug (ira_allocno &ref)
+{
+ print_allocno_copies (stderr, &ref);
+}
+
+DEBUG_FUNCTION void
+debug (ira_allocno *ptr)
+{
+ if (ptr)
+ debug (*ptr);
+ else
+ fprintf (stderr, "<nil>\n");
+}
+
+
+/* Print info about copies involving allocno A into stderr. */
+void
+ira_debug_allocno_copies (ira_allocno_t a)
+{
+ print_allocno_copies (stderr, a);
+}
+
+/* The function frees memory allocated for copy CP. */
+static void
+finish_copy (ira_copy_t cp)
+{
+ pool_free (copy_pool, cp);
+}
+
+
+/* Free memory allocated for all copies. */
+static void
+finish_copies (void)
+{
+ ira_copy_t cp;
+ ira_copy_iterator ci;
+
+ FOR_EACH_COPY (cp, ci)
+ finish_copy (cp);
+ copy_vec.release ();
+ free_alloc_pool (copy_pool);
+}
+
+
+
+/* Pools for cost vectors. It is defined only for allocno classes. */
+static alloc_pool cost_vector_pool[N_REG_CLASSES];
+
+/* The function initiates work with hard register cost vectors. It
+ creates allocation pool for each allocno class. */
+static void
+initiate_cost_vectors (void)
+{
+ int i;
+ enum reg_class aclass;
+
+ for (i = 0; i < ira_allocno_classes_num; i++)
+ {
+ aclass = ira_allocno_classes[i];
+ cost_vector_pool[aclass]
+ = create_alloc_pool ("cost vectors",
+ sizeof (int) * ira_class_hard_regs_num[aclass],
+ 100);
+ }
+}
+
+/* Allocate and return a cost vector VEC for ACLASS. */
+int *
+ira_allocate_cost_vector (reg_class_t aclass)
+{
+ return (int *) pool_alloc (cost_vector_pool[(int) aclass]);
+}
+
+/* Free a cost vector VEC for ACLASS. */
+void
+ira_free_cost_vector (int *vec, reg_class_t aclass)
+{
+ ira_assert (vec != NULL);
+ pool_free (cost_vector_pool[(int) aclass], vec);
+}
+
+/* Finish work with hard register cost vectors. Release allocation
+ pool for each allocno class. */
+static void
+finish_cost_vectors (void)
+{
+ int i;
+ enum reg_class aclass;
+
+ for (i = 0; i < ira_allocno_classes_num; i++)
+ {
+ aclass = ira_allocno_classes[i];
+ free_alloc_pool (cost_vector_pool[aclass]);
+ }
+}
+
+
+
+/* Compute a post-ordering of the reverse control flow of the loop body
+ designated by the children nodes of LOOP_NODE, whose body nodes in
+ pre-order are input as LOOP_PREORDER. Return a VEC with a post-order
+ of the reverse loop body.
+
+ For the post-order of the reverse CFG, we visit the basic blocks in
+ LOOP_PREORDER array in the reverse order of where they appear.
+ This is important: We do not just want to compute a post-order of
+ the reverse CFG, we want to make a best-guess for a visiting order that
+ minimizes the number of chain elements per allocno live range. If the
+ blocks would be visited in a different order, we would still compute a
+ correct post-ordering but it would be less likely that two nodes
+ connected by an edge in the CFG are neighbours in the topsort. */
+
+static vec<ira_loop_tree_node_t>
+ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED,
+ vec<ira_loop_tree_node_t> loop_preorder)
+{
+ vec<ira_loop_tree_node_t> topsort_nodes = vNULL;
+ unsigned int n_loop_preorder;
+
+ n_loop_preorder = loop_preorder.length ();
+ if (n_loop_preorder != 0)
+ {
+ ira_loop_tree_node_t subloop_node;
+ unsigned int i;
+ auto_vec<ira_loop_tree_node_t> dfs_stack;
+
+ /* This is a bit of strange abuse of the BB_VISITED flag: We use
+ the flag to mark blocks we still have to visit to add them to
+ our post-order. Define an alias to avoid confusion. */
+#define BB_TO_VISIT BB_VISITED
+
+ FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
+ {
+ gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT));
+ subloop_node->bb->flags |= BB_TO_VISIT;
+ }
+
+ topsort_nodes.create (n_loop_preorder);
+ dfs_stack.create (n_loop_preorder);
+
+ FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node)
+ {
+ if (! (subloop_node->bb->flags & BB_TO_VISIT))
+ continue;
+
+ subloop_node->bb->flags &= ~BB_TO_VISIT;
+ dfs_stack.quick_push (subloop_node);
+ while (! dfs_stack.is_empty ())
+ {
+ edge e;
+ edge_iterator ei;
+
+ ira_loop_tree_node_t n = dfs_stack.last ();
+ FOR_EACH_EDGE (e, ei, n->bb->preds)
+ {
+ ira_loop_tree_node_t pred_node;
+ basic_block pred_bb = e->src;
+
+ if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
+ continue;
+
+ pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index);
+ if (pred_node != n
+ && (pred_node->bb->flags & BB_TO_VISIT))
+ {
+ pred_node->bb->flags &= ~BB_TO_VISIT;
+ dfs_stack.quick_push (pred_node);
+ }
+ }
+ if (n == dfs_stack.last ())
+ {
+ dfs_stack.pop ();
+ topsort_nodes.quick_push (n);
+ }
+ }
+ }
+
+#undef BB_TO_VISIT
+ }
+
+ gcc_assert (topsort_nodes.length () == n_loop_preorder);
+ return topsort_nodes;
+}
+
+/* The current loop tree node and its regno allocno map. */
+ira_loop_tree_node_t ira_curr_loop_tree_node;
+ira_allocno_t *ira_curr_regno_allocno_map;
+
+/* This recursive function traverses loop tree with root LOOP_NODE
+ calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
+ correspondingly in preorder and postorder. The function sets up
+ IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
+ basic block nodes of LOOP_NODE is also processed (before its
+ subloop nodes).
+
+ If BB_P is set and POSTORDER_FUNC is given, the basic blocks in
+ the loop are passed in the *reverse* post-order of the *reverse*
+ CFG. This is only used by ira_create_allocno_live_ranges, which
+ wants to visit basic blocks in this order to minimize the number
+ of elements per live range chain.
+ Note that the loop tree nodes are still visited in the normal,
+ forward post-order of the loop tree. */
+
+void
+ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
+ void (*preorder_func) (ira_loop_tree_node_t),
+ void (*postorder_func) (ira_loop_tree_node_t))
+{
+ ira_loop_tree_node_t subloop_node;
+
+ ira_assert (loop_node->bb == NULL);
+ ira_curr_loop_tree_node = loop_node;
+ ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
+
+ if (preorder_func != NULL)
+ (*preorder_func) (loop_node);
+
+ if (bb_p)
+ {
+ auto_vec<ira_loop_tree_node_t> loop_preorder;
+ unsigned int i;
+
+ /* Add all nodes to the set of nodes to visit. The IRA loop tree
+ is set up such that nodes in the loop body appear in a pre-order
+ of their place in the CFG. */
+ for (subloop_node = loop_node->children;
+ subloop_node != NULL;
+ subloop_node = subloop_node->next)
+ if (subloop_node->bb != NULL)
+ loop_preorder.safe_push (subloop_node);
+
+ if (preorder_func != NULL)
+ FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
+ (*preorder_func) (subloop_node);
+
+ if (postorder_func != NULL)
+ {
+ vec<ira_loop_tree_node_t> loop_rev_postorder =
+ ira_loop_tree_body_rev_postorder (loop_node, loop_preorder);
+ FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node)
+ (*postorder_func) (subloop_node);
+ loop_rev_postorder.release ();
+ }
+ }
+
+ for (subloop_node = loop_node->subloops;
+ subloop_node != NULL;
+ subloop_node = subloop_node->subloop_next)
+ {
+ ira_assert (subloop_node->bb == NULL);
+ ira_traverse_loop_tree (bb_p, subloop_node,
+ preorder_func, postorder_func);
+ }
+
+ ira_curr_loop_tree_node = loop_node;
+ ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
+
+ if (postorder_func != NULL)
+ (*postorder_func) (loop_node);
+}
+
+
+
+/* The basic block currently being processed. */
+static basic_block curr_bb;
+
+/* This recursive function creates allocnos corresponding to
+ pseudo-registers containing in X. True OUTPUT_P means that X is
+ a lvalue. */
+static void
+create_insn_allocnos (rtx x, bool output_p)
+{
+ int i, j;
+ const char *fmt;
+ enum rtx_code code = GET_CODE (x);
+
+ if (code == REG)
+ {
+ int regno;
+
+ if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
+ {
+ ira_allocno_t a;
+
+ if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
+ a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
+
+ ALLOCNO_NREFS (a)++;
+ ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
+ if (output_p)
+ bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
+ }
+ return;
+ }
+ else if (code == SET)
+ {
+ create_insn_allocnos (SET_DEST (x), true);
+ create_insn_allocnos (SET_SRC (x), false);
+ return;
+ }
+ else if (code == CLOBBER)
+ {
+ create_insn_allocnos (XEXP (x, 0), true);
+ return;
+ }
+ else if (code == MEM)
+ {
+ create_insn_allocnos (XEXP (x, 0), false);
+ return;
+ }
+ else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
+ code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
+ {
+ create_insn_allocnos (XEXP (x, 0), true);
+ create_insn_allocnos (XEXP (x, 0), false);
+ return;
+ }
+
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ create_insn_allocnos (XEXP (x, i), output_p);
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ create_insn_allocnos (XVECEXP (x, i, j), output_p);
+ }
+}
+
+/* Create allocnos corresponding to pseudo-registers living in the
+ basic block represented by the corresponding loop tree node
+ BB_NODE. */
+static void
+create_bb_allocnos (ira_loop_tree_node_t bb_node)
+{
+ basic_block bb;
+ rtx insn;
+ unsigned int i;
+ bitmap_iterator bi;
+
+ curr_bb = bb = bb_node->bb;
+ ira_assert (bb != NULL);
+ FOR_BB_INSNS_REVERSE (bb, insn)
+ if (NONDEBUG_INSN_P (insn))
+ create_insn_allocnos (PATTERN (insn), false);
+ /* It might be a allocno living through from one subloop to
+ another. */
+ EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi)
+ if (ira_curr_regno_allocno_map[i] == NULL)
+ ira_create_allocno (i, false, ira_curr_loop_tree_node);
+}
+
+/* Create allocnos corresponding to pseudo-registers living on edge E
+ (a loop entry or exit). Also mark the allocnos as living on the
+ loop border. */
+static void
+create_loop_allocnos (edge e)
+{
+ unsigned int i;
+ bitmap live_in_regs, border_allocnos;
+ bitmap_iterator bi;
+ ira_loop_tree_node_t parent;
+
+ live_in_regs = df_get_live_in (e->dest);
+ border_allocnos = ira_curr_loop_tree_node->border_allocnos;
+ EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src),
+ FIRST_PSEUDO_REGISTER, i, bi)
+ if (bitmap_bit_p (live_in_regs, i))
+ {
+ if (ira_curr_regno_allocno_map[i] == NULL)
+ {
+ /* The order of creations is important for right
+ ira_regno_allocno_map. */
+ if ((parent = ira_curr_loop_tree_node->parent) != NULL
+ && parent->regno_allocno_map[i] == NULL)
+ ira_create_allocno (i, false, parent);
+ ira_create_allocno (i, false, ira_curr_loop_tree_node);
+ }
+ bitmap_set_bit (border_allocnos,
+ ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
+ }
+}
+
+/* Create allocnos corresponding to pseudo-registers living in loop
+ represented by the corresponding loop tree node LOOP_NODE. This
+ function is called by ira_traverse_loop_tree. */
+static void
+create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
+{
+ if (loop_node->bb != NULL)
+ create_bb_allocnos (loop_node);
+ else if (loop_node != ira_loop_tree_root)
+ {
+ int i;
+ edge_iterator ei;
+ edge e;
+ vec<edge> edges;
+
+ ira_assert (current_loops != NULL);
+ FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
+ if (e->src != loop_node->loop->latch)
+ create_loop_allocnos (e);
+
+ edges = get_loop_exit_edges (loop_node->loop);
+ FOR_EACH_VEC_ELT (edges, i, e)
+ create_loop_allocnos (e);
+ edges.release ();
+ }
+}
+
+/* Propagate information about allocnos modified inside the loop given
+ by its LOOP_TREE_NODE to its parent. */
+static void
+propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
+{
+ if (loop_tree_node == ira_loop_tree_root)
+ return;
+ ira_assert (loop_tree_node->bb == NULL);
+ bitmap_ior_into (loop_tree_node->parent->modified_regnos,
+ loop_tree_node->modified_regnos);
+}
+
+/* Propagate new info about allocno A (see comments about accumulated
+ info in allocno definition) to the corresponding allocno on upper
+ loop tree level. So allocnos on upper levels accumulate
+ information about the corresponding allocnos in nested regions.
+ The new info means allocno info finally calculated in this
+ file. */
+static void
+propagate_allocno_info (void)
+{
+ int i;
+ ira_allocno_t a, parent_a;
+ ira_loop_tree_node_t parent;
+ enum reg_class aclass;
+
+ if (flag_ira_region != IRA_REGION_ALL
+ && flag_ira_region != IRA_REGION_MIXED)
+ return;
+ for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
+ for (a = ira_regno_allocno_map[i];
+ a != NULL;
+ a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
+ if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
+ && (parent_a = parent->regno_allocno_map[i]) != NULL
+ /* There are no caps yet at this point. So use
+ border_allocnos to find allocnos for the propagation. */
+ && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
+ ALLOCNO_NUM (a)))
+ {
+ if (! ALLOCNO_BAD_SPILL_P (a))
+ ALLOCNO_BAD_SPILL_P (parent_a) = false;
+ ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
+ ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
+ ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
+ merge_hard_reg_conflicts (a, parent_a, true);
+ ALLOCNO_CALLS_CROSSED_NUM (parent_a)
+ += ALLOCNO_CALLS_CROSSED_NUM (a);
+ ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
+ += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
+ ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
+ += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
+ aclass = ALLOCNO_CLASS (a);
+ ira_assert (aclass == ALLOCNO_CLASS (parent_a));
+ ira_allocate_and_accumulate_costs
+ (&ALLOCNO_HARD_REG_COSTS (parent_a), aclass,
+ ALLOCNO_HARD_REG_COSTS (a));
+ ira_allocate_and_accumulate_costs
+ (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
+ aclass,
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
+ ALLOCNO_CLASS_COST (parent_a)
+ += ALLOCNO_CLASS_COST (a);
+ ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
+ }
+}
+
+/* Create allocnos corresponding to pseudo-registers in the current
+ function. Traverse the loop tree for this. */
+static void
+create_allocnos (void)
+{
+ /* We need to process BB first to correctly link allocnos by member
+ next_regno_allocno. */
+ ira_traverse_loop_tree (true, ira_loop_tree_root,
+ create_loop_tree_node_allocnos, NULL);
+ if (optimize)
+ ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
+ propagate_modified_regnos);
+}
+
+
+
+/* The page contains function to remove some regions from a separate
+ register allocation. We remove regions whose separate allocation
+ will hardly improve the result. As a result we speed up regional
+ register allocation. */
+
+/* The function changes the object in range list given by R to OBJ. */
+static void
+change_object_in_range_list (live_range_t r, ira_object_t obj)
+{
+ for (; r != NULL; r = r->next)
+ r->object = obj;
+}
+
+/* Move all live ranges associated with allocno FROM to allocno TO. */
+static void
+move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
+{
+ int i;
+ int n = ALLOCNO_NUM_OBJECTS (from);
+
+ gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
+
+ for (i = 0; i < n; i++)
+ {
+ ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
+ ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
+ live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
+
+ if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
+ {
+ fprintf (ira_dump_file,
+ " Moving ranges of a%dr%d to a%dr%d: ",
+ ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
+ ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
+ ira_print_live_range_list (ira_dump_file, lr);
+ }
+ change_object_in_range_list (lr, to_obj);
+ OBJECT_LIVE_RANGES (to_obj)
+ = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
+ OBJECT_LIVE_RANGES (from_obj) = NULL;
+ }
+}
+
+static void
+copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
+{
+ int i;
+ int n = ALLOCNO_NUM_OBJECTS (from);
+
+ gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
+
+ for (i = 0; i < n; i++)
+ {
+ ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
+ ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
+ live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
+
+ if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
+ {
+ fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
+ ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
+ ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
+ ira_print_live_range_list (ira_dump_file, lr);
+ }
+ lr = ira_copy_live_range_list (lr);
+ change_object_in_range_list (lr, to_obj);
+ OBJECT_LIVE_RANGES (to_obj)
+ = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
+ }
+}
+
+/* Return TRUE if NODE represents a loop with low register
+ pressure. */
+static bool
+low_pressure_loop_node_p (ira_loop_tree_node_t node)
+{
+ int i;
+ enum reg_class pclass;
+
+ if (node->bb != NULL)
+ return false;
+
+ for (i = 0; i < ira_pressure_classes_num; i++)
+ {
+ pclass = ira_pressure_classes[i];
+ if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass]
+ && ira_class_hard_regs_num[pclass] > 1)
+ return false;
+ }
+ return true;
+}
+
+#ifdef STACK_REGS
+/* Return TRUE if LOOP has a complex enter or exit edge. We don't
+ form a region from such loop if the target use stack register
+ because reg-stack.c can not deal with such edges. */
+static bool
+loop_with_complex_edge_p (struct loop *loop)
+{
+ int i;
+ edge_iterator ei;
+ edge e;
+ vec<edge> edges;
+ bool res;
+
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ if (e->flags & EDGE_EH)
+ return true;
+ edges = get_loop_exit_edges (loop);
+ res = false;
+ FOR_EACH_VEC_ELT (edges, i, e)
+ if (e->flags & EDGE_COMPLEX)
+ {
+ res = true;
+ break;
+ }
+ edges.release ();
+ return res;
+}
+#endif
+
+/* Sort loops for marking them for removal. We put already marked
+ loops first, then less frequent loops next, and then outer loops
+ next. */
+static int
+loop_compare_func (const void *v1p, const void *v2p)
+{
+ int diff;
+ ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
+ ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
+
+ ira_assert (l1->parent != NULL && l2->parent != NULL);
+ if (l1->to_remove_p && ! l2->to_remove_p)
+ return -1;
+ if (! l1->to_remove_p && l2->to_remove_p)
+ return 1;
+ if ((diff = l1->loop->header->frequency - l2->loop->header->frequency) != 0)
+ return diff;
+ if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
+ return diff;
+ /* Make sorting stable. */
+ return l1->loop_num - l2->loop_num;
+}
+
+/* Mark loops which should be removed from regional allocation. We
+ remove a loop with low register pressure inside another loop with
+ register pressure. In this case a separate allocation of the loop
+ hardly helps (for irregular register file architecture it could
+ help by choosing a better hard register in the loop but we prefer
+ faster allocation even in this case). We also remove cheap loops
+ if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
+ exit or enter edges are removed too because the allocation might
+ require put pseudo moves on the EH edges (we could still do this
+ for pseudos with caller saved hard registers in some cases but it
+ is impossible to say here or during top-down allocation pass what
+ hard register the pseudos get finally). */
+static void
+mark_loops_for_removal (void)
+{
+ int i, n;
+ ira_loop_tree_node_t *sorted_loops;
+ loop_p loop;
+
+ ira_assert (current_loops != NULL);
+ sorted_loops
+ = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
+ * number_of_loops (cfun));
+ for (n = i = 0; vec_safe_iterate (get_loops (cfun), i, &loop); i++)
+ if (ira_loop_nodes[i].regno_allocno_map != NULL)
+ {
+ if (ira_loop_nodes[i].parent == NULL)
+ {
+ /* Don't remove the root. */
+ ira_loop_nodes[i].to_remove_p = false;
+ continue;
+ }
+ sorted_loops[n++] = &ira_loop_nodes[i];
+ ira_loop_nodes[i].to_remove_p
+ = ((low_pressure_loop_node_p (ira_loop_nodes[i].parent)
+ && low_pressure_loop_node_p (&ira_loop_nodes[i]))
+#ifdef STACK_REGS
+ || loop_with_complex_edge_p (ira_loop_nodes[i].loop)
+#endif
+ );
+ }
+ qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
+ for (i = 0; n - i + 1 > IRA_MAX_LOOPS_NUM; i++)
+ {
+ sorted_loops[i]->to_remove_p = true;
+ if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
+ fprintf
+ (ira_dump_file,
+ " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
+ sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index,
+ sorted_loops[i]->loop->header->frequency,
+ loop_depth (sorted_loops[i]->loop),
+ low_pressure_loop_node_p (sorted_loops[i]->parent)
+ && low_pressure_loop_node_p (sorted_loops[i])
+ ? "low pressure" : "cheap loop");
+ }
+ ira_free (sorted_loops);
+}
+
+/* Mark all loops but root for removing. */
+static void
+mark_all_loops_for_removal (void)
+{
+ int i;
+ loop_p loop;
+
+ ira_assert (current_loops != NULL);
+ FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
+ if (ira_loop_nodes[i].regno_allocno_map != NULL)
+ {
+ if (ira_loop_nodes[i].parent == NULL)
+ {
+ /* Don't remove the root. */
+ ira_loop_nodes[i].to_remove_p = false;
+ continue;
+ }
+ ira_loop_nodes[i].to_remove_p = true;
+ if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
+ fprintf
+ (ira_dump_file,
+ " Mark loop %d (header %d, freq %d, depth %d) for removal\n",
+ ira_loop_nodes[i].loop_num,
+ ira_loop_nodes[i].loop->header->index,
+ ira_loop_nodes[i].loop->header->frequency,
+ loop_depth (ira_loop_nodes[i].loop));
+ }
+}
+
+/* Definition of vector of loop tree nodes. */
+
+/* Vec containing references to all removed loop tree nodes. */
+static vec<ira_loop_tree_node_t> removed_loop_vec;
+
+/* Vec containing references to all children of loop tree nodes. */
+static vec<ira_loop_tree_node_t> children_vec;
+
+/* Remove subregions of NODE if their separate allocation will not
+ improve the result. */
+static void
+remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
+{
+ unsigned int start;
+ bool remove_p;
+ ira_loop_tree_node_t subnode;
+
+ remove_p = node->to_remove_p;
+ if (! remove_p)
+ children_vec.safe_push (node);
+ start = children_vec.length ();
+ for (subnode = node->children; subnode != NULL; subnode = subnode->next)
+ if (subnode->bb == NULL)
+ remove_uneccesary_loop_nodes_from_loop_tree (subnode);
+ else
+ children_vec.safe_push (subnode);
+ node->children = node->subloops = NULL;
+ if (remove_p)
+ {
+ removed_loop_vec.safe_push (node);
+ return;
+ }
+ while (children_vec.length () > start)
+ {
+ subnode = children_vec.pop ();
+ subnode->parent = node;
+ subnode->next = node->children;
+ node->children = subnode;
+ if (subnode->bb == NULL)
+ {
+ subnode->subloop_next = node->subloops;
+ node->subloops = subnode;
+ }
+ }
+}
+
+/* Return TRUE if NODE is inside PARENT. */
+static bool
+loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
+{
+ for (node = node->parent; node != NULL; node = node->parent)
+ if (node == parent)
+ return true;
+ return false;
+}
+
+/* Sort allocnos according to their order in regno allocno list. */
+static int
+regno_allocno_order_compare_func (const void *v1p, const void *v2p)
+{
+ ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
+ ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
+ ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
+ ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
+
+ if (loop_is_inside_p (n1, n2))
+ return -1;
+ else if (loop_is_inside_p (n2, n1))
+ return 1;
+ /* If allocnos are equally good, sort by allocno numbers, so that
+ the results of qsort leave nothing to chance. We put allocnos
+ with higher number first in the list because it is the original
+ order for allocnos from loops on the same levels. */
+ return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
+}
+
+/* This array is used to sort allocnos to restore allocno order in
+ the regno allocno list. */
+static ira_allocno_t *regno_allocnos;
+
+/* Restore allocno order for REGNO in the regno allocno list. */
+static void
+ira_rebuild_regno_allocno_list (int regno)
+{
+ int i, n;
+ ira_allocno_t a;
+
+ for (n = 0, a = ira_regno_allocno_map[regno];
+ a != NULL;
+ a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
+ regno_allocnos[n++] = a;
+ ira_assert (n > 0);
+ qsort (regno_allocnos, n, sizeof (ira_allocno_t),
+ regno_allocno_order_compare_func);
+ for (i = 1; i < n; i++)
+ ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
+ ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
+ ira_regno_allocno_map[regno] = regno_allocnos[0];
+ if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
+ fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
+}
+
+/* Propagate info from allocno FROM_A to allocno A. */
+static void
+propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
+{
+ enum reg_class aclass;
+
+ merge_hard_reg_conflicts (from_a, a, false);
+ ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
+ ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
+ ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
+ ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
+ ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)
+ += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a);
+ ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
+ += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
+ if (! ALLOCNO_BAD_SPILL_P (from_a))
+ ALLOCNO_BAD_SPILL_P (a) = false;
+ aclass = ALLOCNO_CLASS (from_a);
+ ira_assert (aclass == ALLOCNO_CLASS (a));
+ ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass,
+ ALLOCNO_HARD_REG_COSTS (from_a));
+ ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
+ aclass,
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
+ ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a);
+ ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
+}
+
+/* Remove allocnos from loops removed from the allocation
+ consideration. */
+static void
+remove_unnecessary_allocnos (void)
+{
+ int regno;
+ bool merged_p, rebuild_p;
+ ira_allocno_t a, prev_a, next_a, parent_a;
+ ira_loop_tree_node_t a_node, parent;
+
+ merged_p = false;
+ regno_allocnos = NULL;
+ for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
+ {
+ rebuild_p = false;
+ for (prev_a = NULL, a = ira_regno_allocno_map[regno];
+ a != NULL;
+ a = next_a)
+ {
+ next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
+ a_node = ALLOCNO_LOOP_TREE_NODE (a);
+ if (! a_node->to_remove_p)
+ prev_a = a;
+ else
+ {
+ for (parent = a_node->parent;
+ (parent_a = parent->regno_allocno_map[regno]) == NULL
+ && parent->to_remove_p;
+ parent = parent->parent)
+ ;
+ if (parent_a == NULL)
+ {
+ /* There are no allocnos with the same regno in
+ upper region -- just move the allocno to the
+ upper region. */
+ prev_a = a;
+ ALLOCNO_LOOP_TREE_NODE (a) = parent;
+ parent->regno_allocno_map[regno] = a;
+ bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
+ rebuild_p = true;
+ }
+ else
+ {
+ /* Remove the allocno and update info of allocno in
+ the upper region. */
+ if (prev_a == NULL)
+ ira_regno_allocno_map[regno] = next_a;
+ else
+ ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
+ move_allocno_live_ranges (a, parent_a);
+ merged_p = true;
+ propagate_some_info_from_allocno (parent_a, a);
+ /* Remove it from the corresponding regno allocno
+ map to avoid info propagation of subsequent
+ allocno into this already removed allocno. */
+ a_node->regno_allocno_map[regno] = NULL;
+ ira_remove_allocno_prefs (a);
+ finish_allocno (a);
+ }
+ }
+ }
+ if (rebuild_p)
+ /* We need to restore the order in regno allocno list. */
+ {
+ if (regno_allocnos == NULL)
+ regno_allocnos
+ = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
+ * ira_allocnos_num);
+ ira_rebuild_regno_allocno_list (regno);
+ }
+ }
+ if (merged_p)
+ ira_rebuild_start_finish_chains ();
+ if (regno_allocnos != NULL)
+ ira_free (regno_allocnos);
+}
+
+/* Remove allocnos from all loops but the root. */
+static void
+remove_low_level_allocnos (void)
+{
+ int regno;
+ bool merged_p, propagate_p;
+ ira_allocno_t a, top_a;
+ ira_loop_tree_node_t a_node, parent;
+ ira_allocno_iterator ai;
+
+ merged_p = false;
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ a_node = ALLOCNO_LOOP_TREE_NODE (a);
+ if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
+ continue;
+ regno = ALLOCNO_REGNO (a);
+ if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
+ {
+ ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
+ ira_loop_tree_root->regno_allocno_map[regno] = a;
+ continue;
+ }
+ propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
+ /* Remove the allocno and update info of allocno in the upper
+ region. */
+ move_allocno_live_ranges (a, top_a);
+ merged_p = true;
+ if (propagate_p)
+ propagate_some_info_from_allocno (top_a, a);
+ }
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ a_node = ALLOCNO_LOOP_TREE_NODE (a);
+ if (a_node == ira_loop_tree_root)
+ continue;
+ parent = a_node->parent;
+ regno = ALLOCNO_REGNO (a);
+ if (ALLOCNO_CAP_MEMBER (a) != NULL)
+ ira_assert (ALLOCNO_CAP (a) != NULL);
+ else if (ALLOCNO_CAP (a) == NULL)
+ ira_assert (parent->regno_allocno_map[regno] != NULL);
+ }
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ regno = ALLOCNO_REGNO (a);
+ if (ira_loop_tree_root->regno_allocno_map[regno] == a)
+ {
+ ira_object_t obj;
+ ira_allocno_object_iterator oi;
+
+ ira_regno_allocno_map[regno] = a;
+ ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
+ ALLOCNO_CAP_MEMBER (a) = NULL;
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
+ COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
+ OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
+#ifdef STACK_REGS
+ if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
+ ALLOCNO_NO_STACK_REG_P (a) = true;
+#endif
+ }
+ else
+ {
+ ira_remove_allocno_prefs (a);
+ finish_allocno (a);
+ }
+ }
+ if (merged_p)
+ ira_rebuild_start_finish_chains ();
+}
+
+/* Remove loops from consideration. We remove all loops except for
+ root if ALL_P or loops for which a separate allocation will not
+ improve the result. We have to do this after allocno creation and
+ their costs and allocno class evaluation because only after that
+ the register pressure can be known and is calculated. */
+static void
+remove_unnecessary_regions (bool all_p)
+{
+ if (current_loops == NULL)
+ return;
+ if (all_p)
+ mark_all_loops_for_removal ();
+ else
+ mark_loops_for_removal ();
+ children_vec.create (last_basic_block_for_fn (cfun)
+ + number_of_loops (cfun));
+ removed_loop_vec.create (last_basic_block_for_fn (cfun)
+ + number_of_loops (cfun));
+ remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root);
+ children_vec.release ();
+ if (all_p)
+ remove_low_level_allocnos ();
+ else
+ remove_unnecessary_allocnos ();
+ while (removed_loop_vec.length () > 0)
+ finish_loop_tree_node (removed_loop_vec.pop ());
+ removed_loop_vec.release ();
+}
+
+
+
+/* At this point true value of allocno attribute bad_spill_p means
+ that there is an insn where allocno occurs and where the allocno
+ can not be used as memory. The function updates the attribute, now
+ it can be true only for allocnos which can not be used as memory in
+ an insn and in whose live ranges there is other allocno deaths.
+ Spilling allocnos with true value will not improve the code because
+ it will not make other allocnos colorable and additional reloads
+ for the corresponding pseudo will be generated in reload pass for
+ each insn it occurs.
+
+ This is a trick mentioned in one classic article of Chaitin etc
+ which is frequently omitted in other implementations of RA based on
+ graph coloring. */
+static void
+update_bad_spill_attribute (void)
+{
+ int i;
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+ ira_allocno_object_iterator aoi;
+ ira_object_t obj;
+ live_range_t r;
+ enum reg_class aclass;
+ bitmap_head dead_points[N_REG_CLASSES];
+
+ for (i = 0; i < ira_allocno_classes_num; i++)
+ {
+ aclass = ira_allocno_classes[i];
+ bitmap_initialize (&dead_points[aclass], &reg_obstack);
+ }
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ aclass = ALLOCNO_CLASS (a);
+ if (aclass == NO_REGS)
+ continue;
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
+ for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
+ bitmap_set_bit (&dead_points[aclass], r->finish);
+ }
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ aclass = ALLOCNO_CLASS (a);
+ if (aclass == NO_REGS)
+ continue;
+ if (! ALLOCNO_BAD_SPILL_P (a))
+ continue;
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
+ {
+ for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
+ {
+ for (i = r->start + 1; i < r->finish; i++)
+ if (bitmap_bit_p (&dead_points[aclass], i))
+ break;
+ if (i < r->finish)
+ break;
+ }
+ if (r != NULL)
+ {
+ ALLOCNO_BAD_SPILL_P (a) = false;
+ break;
+ }
+ }
+ }
+ for (i = 0; i < ira_allocno_classes_num; i++)
+ {
+ aclass = ira_allocno_classes[i];
+ bitmap_clear (&dead_points[aclass]);
+ }
+}
+
+
+
+/* Set up minimal and maximal live range points for allocnos. */
+static void
+setup_min_max_allocno_live_range_point (void)
+{
+ int i;
+ ira_allocno_t a, parent_a, cap;
+ ira_allocno_iterator ai;
+#ifdef ENABLE_IRA_CHECKING
+ ira_object_iterator oi;
+ ira_object_t obj;
+#endif
+ live_range_t r;
+ ira_loop_tree_node_t parent;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ int n = ALLOCNO_NUM_OBJECTS (a);
+
+ for (i = 0; i < n; i++)
+ {
+ ira_object_t obj = ALLOCNO_OBJECT (a, i);
+ r = OBJECT_LIVE_RANGES (obj);
+ if (r == NULL)
+ continue;
+ OBJECT_MAX (obj) = r->finish;
+ for (; r->next != NULL; r = r->next)
+ ;
+ OBJECT_MIN (obj) = r->start;
+ }
+ }
+ for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
+ for (a = ira_regno_allocno_map[i];
+ a != NULL;
+ a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
+ {
+ int j;
+ int n = ALLOCNO_NUM_OBJECTS (a);
+
+ for (j = 0; j < n; j++)
+ {
+ ira_object_t obj = ALLOCNO_OBJECT (a, j);
+ ira_object_t parent_obj;
+
+ if (OBJECT_MAX (obj) < 0)
+ continue;
+ ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
+ /* Accumulation of range info. */
+ if (ALLOCNO_CAP (a) != NULL)
+ {
+ for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
+ {
+ ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
+ if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
+ OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
+ if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
+ OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
+ }
+ continue;
+ }
+ if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
+ continue;
+ parent_a = parent->regno_allocno_map[i];
+ parent_obj = ALLOCNO_OBJECT (parent_a, j);
+ if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
+ OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
+ if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
+ OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
+ }
+ }
+#ifdef ENABLE_IRA_CHECKING
+ FOR_EACH_OBJECT (obj, oi)
+ {
+ if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point)
+ && (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point))
+ continue;
+ gcc_unreachable ();
+ }
+#endif
+}
+
+/* Sort allocnos according to their live ranges. Allocnos with
+ smaller allocno class are put first unless we use priority
+ coloring. Allocnos with the same class are ordered according
+ their start (min). Allocnos with the same start are ordered
+ according their finish (max). */
+static int
+object_range_compare_func (const void *v1p, const void *v2p)
+{
+ int diff;
+ ira_object_t obj1 = *(const ira_object_t *) v1p;
+ ira_object_t obj2 = *(const ira_object_t *) v2p;
+ ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
+ ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
+
+ if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
+ return diff;
+ if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
+ return diff;
+ return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
+}
+
+/* Sort ira_object_id_map and set up conflict id of allocnos. */
+static void
+sort_conflict_id_map (void)
+{
+ int i, num;
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+
+ num = 0;
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ ira_allocno_object_iterator oi;
+ ira_object_t obj;
+
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
+ ira_object_id_map[num++] = obj;
+ }
+ qsort (ira_object_id_map, num, sizeof (ira_object_t),
+ object_range_compare_func);
+ for (i = 0; i < num; i++)
+ {
+ ira_object_t obj = ira_object_id_map[i];
+
+ gcc_assert (obj != NULL);
+ OBJECT_CONFLICT_ID (obj) = i;
+ }
+ for (i = num; i < ira_objects_num; i++)
+ ira_object_id_map[i] = NULL;
+}
+
+/* Set up minimal and maximal conflict ids of allocnos with which
+ given allocno can conflict. */
+static void
+setup_min_max_conflict_allocno_ids (void)
+{
+ int aclass;
+ int i, j, min, max, start, finish, first_not_finished, filled_area_start;
+ int *live_range_min, *last_lived;
+ int word0_min, word0_max;
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+
+ live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
+ aclass = -1;
+ first_not_finished = -1;
+ for (i = 0; i < ira_objects_num; i++)
+ {
+ ira_object_t obj = ira_object_id_map[i];
+
+ if (obj == NULL)
+ continue;
+
+ a = OBJECT_ALLOCNO (obj);
+
+ if (aclass < 0)
+ {
+ aclass = ALLOCNO_CLASS (a);
+ min = i;
+ first_not_finished = i;
+ }
+ else
+ {
+ start = OBJECT_MIN (obj);
+ /* If we skip an allocno, the allocno with smaller ids will
+ be also skipped because of the secondary sorting the
+ range finishes (see function
+ object_range_compare_func). */
+ while (first_not_finished < i
+ && start > OBJECT_MAX (ira_object_id_map
+ [first_not_finished]))
+ first_not_finished++;
+ min = first_not_finished;
+ }
+ if (min == i)
+ /* We could increase min further in this case but it is good
+ enough. */
+ min++;
+ live_range_min[i] = OBJECT_MIN (obj);
+ OBJECT_MIN (obj) = min;
+ }
+ last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
+ aclass = -1;
+ filled_area_start = -1;
+ for (i = ira_objects_num - 1; i >= 0; i--)
+ {
+ ira_object_t obj = ira_object_id_map[i];
+
+ if (obj == NULL)
+ continue;
+
+ a = OBJECT_ALLOCNO (obj);
+ if (aclass < 0)
+ {
+ aclass = ALLOCNO_CLASS (a);
+ for (j = 0; j < ira_max_point; j++)
+ last_lived[j] = -1;
+ filled_area_start = ira_max_point;
+ }
+ min = live_range_min[i];
+ finish = OBJECT_MAX (obj);
+ max = last_lived[finish];
+ if (max < 0)
+ /* We could decrease max further in this case but it is good
+ enough. */
+ max = OBJECT_CONFLICT_ID (obj) - 1;
+ OBJECT_MAX (obj) = max;
+ /* In filling, we can go further A range finish to recognize
+ intersection quickly because if the finish of subsequently
+ processed allocno (it has smaller conflict id) range is
+ further A range finish than they are definitely intersected
+ (the reason for this is the allocnos with bigger conflict id
+ have their range starts not smaller than allocnos with
+ smaller ids. */
+ for (j = min; j < filled_area_start; j++)
+ last_lived[j] = i;
+ filled_area_start = min;
+ }
+ ira_free (last_lived);
+ ira_free (live_range_min);
+
+ /* For allocnos with more than one object, we may later record extra conflicts in
+ subobject 0 that we cannot really know about here.
+ For now, simply widen the min/max range of these subobjects. */
+
+ word0_min = INT_MAX;
+ word0_max = INT_MIN;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ int n = ALLOCNO_NUM_OBJECTS (a);
+ ira_object_t obj0;
+
+ if (n < 2)
+ continue;
+ obj0 = ALLOCNO_OBJECT (a, 0);
+ if (OBJECT_CONFLICT_ID (obj0) < word0_min)
+ word0_min = OBJECT_CONFLICT_ID (obj0);
+ if (OBJECT_CONFLICT_ID (obj0) > word0_max)
+ word0_max = OBJECT_CONFLICT_ID (obj0);
+ }
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ int n = ALLOCNO_NUM_OBJECTS (a);
+ ira_object_t obj0;
+
+ if (n < 2)
+ continue;
+ obj0 = ALLOCNO_OBJECT (a, 0);
+ if (OBJECT_MIN (obj0) > word0_min)
+ OBJECT_MIN (obj0) = word0_min;
+ if (OBJECT_MAX (obj0) < word0_max)
+ OBJECT_MAX (obj0) = word0_max;
+ }
+}
+
+
+
+static void
+create_caps (void)
+{
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+ ira_loop_tree_node_t loop_tree_node;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
+ continue;
+ if (ALLOCNO_CAP_MEMBER (a) != NULL)
+ create_cap_allocno (a);
+ else if (ALLOCNO_CAP (a) == NULL)
+ {
+ loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
+ if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
+ create_cap_allocno (a);
+ }
+ }
+}
+
+
+
+/* The page contains code transforming more one region internal
+ representation (IR) to one region IR which is necessary for reload.
+ This transformation is called IR flattening. We might just rebuild
+ the IR for one region but we don't do it because it takes a lot of
+ time. */
+
+/* Map: regno -> allocnos which will finally represent the regno for
+ IR with one region. */
+static ira_allocno_t *regno_top_level_allocno_map;
+
+/* Find the allocno that corresponds to A at a level one higher up in the
+ loop tree. Returns NULL if A is a cap, or if it has no parent. */
+ira_allocno_t
+ira_parent_allocno (ira_allocno_t a)
+{
+ ira_loop_tree_node_t parent;
+
+ if (ALLOCNO_CAP (a) != NULL)
+ return NULL;
+
+ parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
+ if (parent == NULL)
+ return NULL;
+
+ return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
+}
+
+/* Find the allocno that corresponds to A at a level one higher up in the
+ loop tree. If ALLOCNO_CAP is set for A, return that. */
+ira_allocno_t
+ira_parent_or_cap_allocno (ira_allocno_t a)
+{
+ if (ALLOCNO_CAP (a) != NULL)
+ return ALLOCNO_CAP (a);
+
+ return ira_parent_allocno (a);
+}
+
+/* Process all allocnos originated from pseudo REGNO and copy live
+ ranges, hard reg conflicts, and allocno stack reg attributes from
+ low level allocnos to final allocnos which are destinations of
+ removed stores at a loop exit. Return true if we copied live
+ ranges. */
+static bool
+copy_info_to_removed_store_destinations (int regno)
+{
+ ira_allocno_t a;
+ ira_allocno_t parent_a = NULL;
+ ira_loop_tree_node_t parent;
+ bool merged_p;
+
+ merged_p = false;
+ for (a = ira_regno_allocno_map[regno];
+ a != NULL;
+ a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
+ {
+ if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))])
+ /* This allocno will be removed. */
+ continue;
+
+ /* Caps will be removed. */
+ ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
+ for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
+ parent != NULL;
+ parent = parent->parent)
+ if ((parent_a = parent->regno_allocno_map[regno]) == NULL
+ || (parent_a
+ == regno_top_level_allocno_map[REGNO
+ (allocno_emit_reg (parent_a))]
+ && ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p))
+ break;
+ if (parent == NULL || parent_a == NULL)
+ continue;
+
+ copy_allocno_live_ranges (a, parent_a);
+ merge_hard_reg_conflicts (a, parent_a, true);
+
+ ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
+ ALLOCNO_CALLS_CROSSED_NUM (parent_a)
+ += ALLOCNO_CALLS_CROSSED_NUM (a);
+ ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
+ += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
+ ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
+ += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
+ merged_p = true;
+ }
+ return merged_p;
+}
+
+/* Flatten the IR. In other words, this function transforms IR as if
+ it were built with one region (without loops). We could make it
+ much simpler by rebuilding IR with one region, but unfortunately it
+ takes a lot of time. MAX_REGNO_BEFORE_EMIT and
+ IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
+ IRA_MAX_POINT before emitting insns on the loop borders. */
+void
+ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
+{
+ int i, j;
+ bool keep_p;
+ int hard_regs_num;
+ bool new_pseudos_p, merged_p, mem_dest_p;
+ unsigned int n;
+ enum reg_class aclass;
+ ira_allocno_t a, parent_a, first, second, node_first, node_second;
+ ira_copy_t cp;
+ ira_loop_tree_node_t node;
+ live_range_t r;
+ ira_allocno_iterator ai;
+ ira_copy_iterator ci;
+
+ regno_top_level_allocno_map
+ = (ira_allocno_t *) ira_allocate (max_reg_num ()
+ * sizeof (ira_allocno_t));
+ memset (regno_top_level_allocno_map, 0,
+ max_reg_num () * sizeof (ira_allocno_t));
+ new_pseudos_p = merged_p = false;
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ ira_allocno_object_iterator oi;
+ ira_object_t obj;
+
+ if (ALLOCNO_CAP_MEMBER (a) != NULL)
+ /* Caps are not in the regno allocno maps and they are never
+ will be transformed into allocnos existing after IR
+ flattening. */
+ continue;
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
+ COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
+ OBJECT_CONFLICT_HARD_REGS (obj));
+#ifdef STACK_REGS
+ ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
+#endif
+ }
+ /* Fix final allocno attributes. */
+ for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
+ {
+ mem_dest_p = false;
+ for (a = ira_regno_allocno_map[i];
+ a != NULL;
+ a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
+ {
+ ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a);
+
+ ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
+ if (data->somewhere_renamed_p)
+ new_pseudos_p = true;
+ parent_a = ira_parent_allocno (a);
+ if (parent_a == NULL)
+ {
+ ALLOCNO_COPIES (a) = NULL;
+ regno_top_level_allocno_map[REGNO (data->reg)] = a;
+ continue;
+ }
+ ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
+
+ if (data->mem_optimized_dest != NULL)
+ mem_dest_p = true;
+ parent_data = ALLOCNO_EMIT_DATA (parent_a);
+ if (REGNO (data->reg) == REGNO (parent_data->reg))
+ {
+ merge_hard_reg_conflicts (a, parent_a, true);
+ move_allocno_live_ranges (a, parent_a);
+ merged_p = true;
+ parent_data->mem_optimized_dest_p
+ = (parent_data->mem_optimized_dest_p
+ || data->mem_optimized_dest_p);
+ continue;
+ }
+ new_pseudos_p = true;
+ for (;;)
+ {
+ ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
+ ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
+ ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
+ ALLOCNO_CALLS_CROSSED_NUM (parent_a)
+ -= ALLOCNO_CALLS_CROSSED_NUM (a);
+ ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
+ -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
+ ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
+ -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
+ ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
+ && ALLOCNO_NREFS (parent_a) >= 0
+ && ALLOCNO_FREQ (parent_a) >= 0);
+ aclass = ALLOCNO_CLASS (parent_a);
+ hard_regs_num = ira_class_hard_regs_num[aclass];
+ if (ALLOCNO_HARD_REG_COSTS (a) != NULL
+ && ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
+ for (j = 0; j < hard_regs_num; j++)
+ ALLOCNO_HARD_REG_COSTS (parent_a)[j]
+ -= ALLOCNO_HARD_REG_COSTS (a)[j];
+ if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
+ && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
+ for (j = 0; j < hard_regs_num; j++)
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
+ -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
+ ALLOCNO_CLASS_COST (parent_a)
+ -= ALLOCNO_CLASS_COST (a);
+ ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
+ parent_a = ira_parent_allocno (parent_a);
+ if (parent_a == NULL)
+ break;
+ }
+ ALLOCNO_COPIES (a) = NULL;
+ regno_top_level_allocno_map[REGNO (data->reg)] = a;
+ }
+ if (mem_dest_p && copy_info_to_removed_store_destinations (i))
+ merged_p = true;
+ }
+ ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
+ if (merged_p || ira_max_point_before_emit != ira_max_point)
+ ira_rebuild_start_finish_chains ();
+ if (new_pseudos_p)
+ {
+ sparseset objects_live;
+
+ /* Rebuild conflicts. */
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ ira_allocno_object_iterator oi;
+ ira_object_t obj;
+
+ if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
+ || ALLOCNO_CAP_MEMBER (a) != NULL)
+ continue;
+ FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
+ {
+ for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
+ ira_assert (r->object == obj);
+ clear_conflicts (obj);
+ }
+ }
+ objects_live = sparseset_alloc (ira_objects_num);
+ for (i = 0; i < ira_max_point; i++)
+ {
+ for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
+ {
+ ira_object_t obj = r->object;
+
+ a = OBJECT_ALLOCNO (obj);
+ if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
+ || ALLOCNO_CAP_MEMBER (a) != NULL)
+ continue;
+
+ aclass = ALLOCNO_CLASS (a);
+ sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
+ EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
+ {
+ ira_object_t live_obj = ira_object_id_map[n];
+ ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
+ enum reg_class live_aclass = ALLOCNO_CLASS (live_a);
+
+ if (ira_reg_classes_intersect_p[aclass][live_aclass]
+ /* Don't set up conflict for the allocno with itself. */
+ && live_a != a)
+ ira_add_conflict (obj, live_obj);
+ }
+ }
+
+ for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
+ sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
+ }
+ sparseset_free (objects_live);
+ compress_conflict_vecs ();
+ }
+ /* Mark some copies for removing and change allocnos in the rest
+ copies. */
+ FOR_EACH_COPY (cp, ci)
+ {
+ if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
+ || ALLOCNO_CAP_MEMBER (cp->second) != NULL)
+ {
+ if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
+ fprintf
+ (ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
+ cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
+ ALLOCNO_NUM (cp->first),
+ REGNO (allocno_emit_reg (cp->first)),
+ ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
+ ALLOCNO_NUM (cp->second),
+ REGNO (allocno_emit_reg (cp->second)));
+ cp->loop_tree_node = NULL;
+ continue;
+ }
+ first
+ = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))];
+ second
+ = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))];
+ node = cp->loop_tree_node;
+ if (node == NULL)
+ keep_p = true; /* It copy generated in ira-emit.c. */
+ else
+ {
+ /* Check that the copy was not propagated from level on
+ which we will have different pseudos. */
+ node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
+ node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
+ keep_p = ((REGNO (allocno_emit_reg (first))
+ == REGNO (allocno_emit_reg (node_first)))
+ && (REGNO (allocno_emit_reg (second))
+ == REGNO (allocno_emit_reg (node_second))));
+ }
+ if (keep_p)
+ {
+ cp->loop_tree_node = ira_loop_tree_root;
+ cp->first = first;
+ cp->second = second;
+ }
+ else
+ {
+ cp->loop_tree_node = NULL;
+ if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
+ fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
+ cp->num, ALLOCNO_NUM (cp->first),
+ REGNO (allocno_emit_reg (cp->first)),
+ ALLOCNO_NUM (cp->second),
+ REGNO (allocno_emit_reg (cp->second)));
+ }
+ }
+ /* Remove unnecessary allocnos on lower levels of the loop tree. */
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
+ || ALLOCNO_CAP_MEMBER (a) != NULL)
+ {
+ if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
+ fprintf (ira_dump_file, " Remove a%dr%d\n",
+ ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
+ ira_remove_allocno_prefs (a);
+ finish_allocno (a);
+ continue;
+ }
+ ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
+ ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a));
+ ALLOCNO_CAP (a) = NULL;
+ /* Restore updated costs for assignments from reload. */
+ ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
+ ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
+ if (! ALLOCNO_ASSIGNED_P (a))
+ ira_free_allocno_updated_costs (a);
+ ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
+ ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
+ }
+ /* Remove unnecessary copies. */
+ FOR_EACH_COPY (cp, ci)
+ {
+ if (cp->loop_tree_node == NULL)
+ {
+ ira_copies[cp->num] = NULL;
+ finish_copy (cp);
+ continue;
+ }
+ ira_assert
+ (ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
+ && ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
+ add_allocno_copy_to_list (cp);
+ swap_allocno_copy_ends_if_necessary (cp);
+ }
+ rebuild_regno_allocno_maps ();
+ if (ira_max_point != ira_max_point_before_emit)
+ ira_compress_allocno_live_ranges ();
+ ira_free (regno_top_level_allocno_map);
+}
+
+
+
+#ifdef ENABLE_IRA_CHECKING
+/* Check creation of all allocnos. Allocnos on lower levels should
+ have allocnos or caps on all upper levels. */
+static void
+check_allocno_creation (void)
+{
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+ ira_loop_tree_node_t loop_tree_node;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
+ ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
+ ALLOCNO_NUM (a)));
+ if (loop_tree_node == ira_loop_tree_root)
+ continue;
+ if (ALLOCNO_CAP_MEMBER (a) != NULL)
+ ira_assert (ALLOCNO_CAP (a) != NULL);
+ else if (ALLOCNO_CAP (a) == NULL)
+ ira_assert (loop_tree_node->parent
+ ->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
+ && bitmap_bit_p (loop_tree_node->border_allocnos,
+ ALLOCNO_NUM (a)));
+ }
+}
+#endif
+
+/* Identify allocnos which prefer a register class with a single hard register.
+ Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
+ less likely to use the preferred singleton register. */
+static void
+update_conflict_hard_reg_costs (void)
+{
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+ int i, index, min;
+
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ reg_class_t aclass = ALLOCNO_CLASS (a);
+ reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a));
+ int singleton = ira_class_singleton[pref][ALLOCNO_MODE (a)];
+ if (singleton < 0)
+ continue;
+ index = ira_class_hard_reg_index[(int) aclass][singleton];
+ if (index < 0)
+ continue;
+ if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
+ || ALLOCNO_HARD_REG_COSTS (a) == NULL)
+ continue;
+ min = INT_MAX;
+ for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--)
+ if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a)
+ && min > ALLOCNO_HARD_REG_COSTS (a)[i])
+ min = ALLOCNO_HARD_REG_COSTS (a)[i];
+ if (min == INT_MAX)
+ continue;
+ ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
+ aclass, 0);
+ ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
+ -= min - ALLOCNO_CLASS_COST (a);
+ }
+}
+
+/* Create a internal representation (IR) for IRA (allocnos, copies,
+ loop tree nodes). The function returns TRUE if we generate loop
+ structure (besides nodes representing all function and the basic
+ blocks) for regional allocation. A true return means that we
+ really need to flatten IR before the reload. */
+bool
+ira_build (void)
+{
+ bool loops_p;
+
+ df_analyze ();
+ initiate_cost_vectors ();
+ initiate_allocnos ();
+ initiate_prefs ();
+ initiate_copies ();
+ create_loop_tree_nodes ();
+ form_loop_tree ();
+ create_allocnos ();
+ ira_costs ();
+ create_allocno_objects ();
+ ira_create_allocno_live_ranges ();
+ remove_unnecessary_regions (false);
+ ira_compress_allocno_live_ranges ();
+ update_bad_spill_attribute ();
+ loops_p = more_one_region_p ();
+ if (loops_p)
+ {
+ propagate_allocno_info ();
+ create_caps ();
+ }
+ ira_tune_allocno_costs ();
+#ifdef ENABLE_IRA_CHECKING
+ check_allocno_creation ();
+#endif
+ setup_min_max_allocno_live_range_point ();
+ sort_conflict_id_map ();
+ setup_min_max_conflict_allocno_ids ();
+ ira_build_conflicts ();
+ update_conflict_hard_reg_costs ();
+ if (! ira_conflicts_p)
+ {
+ ira_allocno_t a;
+ ira_allocno_iterator ai;
+
+ /* Remove all regions but root one. */
+ if (loops_p)
+ {
+ remove_unnecessary_regions (true);
+ loops_p = false;
+ }
+ /* We don't save hard registers around calls for fast allocation
+ -- add caller clobbered registers as conflicting ones to
+ allocno crossing calls. */
+ FOR_EACH_ALLOCNO (a, ai)
+ if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
+ ior_hard_reg_conflicts (a, &call_used_reg_set);
+ }
+ if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
+ print_copies (ira_dump_file);
+ if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
+ print_prefs (ira_dump_file);
+ if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
+ {
+ int n, nr, nr_big;
+ ira_allocno_t a;
+ live_range_t r;
+ ira_allocno_iterator ai;
+
+ n = 0;
+ nr = 0;
+ nr_big = 0;
+ FOR_EACH_ALLOCNO (a, ai)
+ {
+ int j, nobj = ALLOCNO_NUM_OBJECTS (a);
+
+ if (nobj > 1)
+ nr_big++;
+ for (j = 0; j < nobj; j++)
+ {
+ ira_object_t obj = ALLOCNO_OBJECT (a, j);
+ n += OBJECT_NUM_CONFLICTS (obj);
+ for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
+ nr++;
+ }
+ }
+ fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
+ current_loops == NULL ? 1 : number_of_loops (cfun),
+ n_basic_blocks_for_fn (cfun), ira_max_point);
+ fprintf (ira_dump_file,
+ " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
+ ira_allocnos_num, nr_big, ira_copies_num, n, nr);
+ }
+ return loops_p;
+}
+
+/* Release the data created by function ira_build. */
+void
+ira_destroy (void)
+{
+ finish_loop_tree_nodes ();
+ finish_prefs ();
+ finish_copies ();
+ finish_allocnos ();
+ finish_cost_vectors ();
+ ira_finish_allocno_live_ranges ();
+}