aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ipa-inline-analysis.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/ipa-inline-analysis.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/ipa-inline-analysis.c')
-rw-r--r--gcc-4.9/gcc/ipa-inline-analysis.c4237
1 files changed, 4237 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ipa-inline-analysis.c b/gcc-4.9/gcc/ipa-inline-analysis.c
new file mode 100644
index 000000000..98f42ef1e
--- /dev/null
+++ b/gcc-4.9/gcc/ipa-inline-analysis.c
@@ -0,0 +1,4237 @@
+/* Inlining decision heuristics.
+ Copyright (C) 2003-2014 Free Software Foundation, Inc.
+ Contributed by Jan Hubicka
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Analysis used by the inliner and other passes limiting code size growth.
+
+ We estimate for each function
+ - function body size
+ - average function execution time
+ - inlining size benefit (that is how much of function body size
+ and its call sequence is expected to disappear by inlining)
+ - inlining time benefit
+ - function frame size
+ For each call
+ - call statement size and time
+
+ inlinie_summary datastructures store above information locally (i.e.
+ parameters of the function itself) and globally (i.e. parameters of
+ the function created by applying all the inline decisions already
+ present in the callgraph).
+
+ We provide accestor to the inline_summary datastructure and
+ basic logic updating the parameters when inlining is performed.
+
+ The summaries are context sensitive. Context means
+ 1) partial assignment of known constant values of operands
+ 2) whether function is inlined into the call or not.
+ It is easy to add more variants. To represent function size and time
+ that depends on context (i.e. it is known to be optimized away when
+ context is known either by inlining or from IP-CP and clonning),
+ we use predicates. Predicates are logical formulas in
+ conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
+ specifying what conditions must be true. Conditions are simple test
+ of the form described above.
+
+ In order to make predicate (possibly) true, all of its clauses must
+ be (possibly) true. To make clause (possibly) true, one of conditions
+ it mentions must be (possibly) true. There are fixed bounds on
+ number of clauses and conditions and all the manipulation functions
+ are conservative in positive direction. I.e. we may lose precision
+ by thinking that predicate may be true even when it is not.
+
+ estimate_edge_size and estimate_edge_growth can be used to query
+ function size/time in the given context. inline_merge_summary merges
+ properties of caller and callee after inlining.
+
+ Finally pass_inline_parameters is exported. This is used to drive
+ computation of function parameters used by the early inliner. IPA
+ inlined performs analysis via its analyze_function method. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "stringpool.h"
+#include "print-tree.h"
+#include "tree-inline.h"
+#include "langhooks.h"
+#include "flags.h"
+#include "diagnostic.h"
+#include "gimple-pretty-print.h"
+#include "params.h"
+#include "tree-pass.h"
+#include "coverage.h"
+#include "basic-block.h"
+#include "tree-ssa-alias.h"
+#include "internal-fn.h"
+#include "gimple-expr.h"
+#include "is-a.h"
+#include "gimple.h"
+#include "gimple-iterator.h"
+#include "gimple-ssa.h"
+#include "tree-cfg.h"
+#include "tree-phinodes.h"
+#include "ssa-iterators.h"
+#include "tree-ssanames.h"
+#include "tree-ssa-loop-niter.h"
+#include "tree-ssa-loop.h"
+#include "ipa-prop.h"
+#include "lto-streamer.h"
+#include "data-streamer.h"
+#include "tree-streamer.h"
+#include "ipa-inline.h"
+#include "alloc-pool.h"
+#include "cfgloop.h"
+#include "tree-scalar-evolution.h"
+#include "ipa-utils.h"
+#include "cilk.h"
+#include "cfgexpand.h"
+
+/* Estimate runtime of function can easilly run into huge numbers with many
+ nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
+ integer. For anything larger we use gcov_type. */
+#define MAX_TIME 500000
+
+/* Number of bits in integer, but we really want to be stable across different
+ hosts. */
+#define NUM_CONDITIONS 32
+
+enum predicate_conditions
+{
+ predicate_false_condition = 0,
+ predicate_not_inlined_condition = 1,
+ predicate_first_dynamic_condition = 2
+};
+
+/* Special condition code we use to represent test that operand is compile time
+ constant. */
+#define IS_NOT_CONSTANT ERROR_MARK
+/* Special condition code we use to represent test that operand is not changed
+ across invocation of the function. When operand IS_NOT_CONSTANT it is always
+ CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
+ of executions even when they are not compile time constants. */
+#define CHANGED IDENTIFIER_NODE
+
+/* Holders of ipa cgraph hooks: */
+static struct cgraph_node_hook_list *function_insertion_hook_holder;
+static struct cgraph_node_hook_list *node_removal_hook_holder;
+static struct cgraph_2node_hook_list *node_duplication_hook_holder;
+static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
+static struct cgraph_edge_hook_list *edge_removal_hook_holder;
+static void inline_node_removal_hook (struct cgraph_node *, void *);
+static void inline_node_duplication_hook (struct cgraph_node *,
+ struct cgraph_node *, void *);
+static void inline_edge_removal_hook (struct cgraph_edge *, void *);
+static void inline_edge_duplication_hook (struct cgraph_edge *,
+ struct cgraph_edge *, void *);
+
+/* VECtor holding inline summaries.
+ In GGC memory because conditions might point to constant trees. */
+vec<inline_summary_t, va_gc> *inline_summary_vec;
+vec<inline_edge_summary_t> inline_edge_summary_vec;
+
+/* Cached node/edge growths. */
+vec<int> node_growth_cache;
+vec<edge_growth_cache_entry> edge_growth_cache;
+
+/* Edge predicates goes here. */
+static alloc_pool edge_predicate_pool;
+
+/* Return true predicate (tautology).
+ We represent it by empty list of clauses. */
+
+static inline struct predicate
+true_predicate (void)
+{
+ struct predicate p;
+ p.clause[0] = 0;
+ return p;
+}
+
+
+/* Return predicate testing single condition number COND. */
+
+static inline struct predicate
+single_cond_predicate (int cond)
+{
+ struct predicate p;
+ p.clause[0] = 1 << cond;
+ p.clause[1] = 0;
+ return p;
+}
+
+
+/* Return false predicate. First clause require false condition. */
+
+static inline struct predicate
+false_predicate (void)
+{
+ return single_cond_predicate (predicate_false_condition);
+}
+
+
+/* Return true if P is (true). */
+
+static inline bool
+true_predicate_p (struct predicate *p)
+{
+ return !p->clause[0];
+}
+
+
+/* Return true if P is (false). */
+
+static inline bool
+false_predicate_p (struct predicate *p)
+{
+ if (p->clause[0] == (1 << predicate_false_condition))
+ {
+ gcc_checking_assert (!p->clause[1]
+ && p->clause[0] == 1 << predicate_false_condition);
+ return true;
+ }
+ return false;
+}
+
+
+/* Return predicate that is set true when function is not inlined. */
+
+static inline struct predicate
+not_inlined_predicate (void)
+{
+ return single_cond_predicate (predicate_not_inlined_condition);
+}
+
+/* Simple description of whether a memory load or a condition refers to a load
+ from an aggregate and if so, how and where from in the aggregate.
+ Individual fields have the same meaning like fields with the same name in
+ struct condition. */
+
+struct agg_position_info
+{
+ HOST_WIDE_INT offset;
+ bool agg_contents;
+ bool by_ref;
+};
+
+/* Add condition to condition list CONDS. AGGPOS describes whether the used
+ oprand is loaded from an aggregate and where in the aggregate it is. It can
+ be NULL, which means this not a load from an aggregate. */
+
+static struct predicate
+add_condition (struct inline_summary *summary, int operand_num,
+ struct agg_position_info *aggpos,
+ enum tree_code code, tree val)
+{
+ int i;
+ struct condition *c;
+ struct condition new_cond;
+ HOST_WIDE_INT offset;
+ bool agg_contents, by_ref;
+
+ if (aggpos)
+ {
+ offset = aggpos->offset;
+ agg_contents = aggpos->agg_contents;
+ by_ref = aggpos->by_ref;
+ }
+ else
+ {
+ offset = 0;
+ agg_contents = false;
+ by_ref = false;
+ }
+
+ gcc_checking_assert (operand_num >= 0);
+ for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
+ {
+ if (c->operand_num == operand_num
+ && c->code == code
+ && c->val == val
+ && c->agg_contents == agg_contents
+ && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
+ return single_cond_predicate (i + predicate_first_dynamic_condition);
+ }
+ /* Too many conditions. Give up and return constant true. */
+ if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
+ return true_predicate ();
+
+ new_cond.operand_num = operand_num;
+ new_cond.code = code;
+ new_cond.val = val;
+ new_cond.agg_contents = agg_contents;
+ new_cond.by_ref = by_ref;
+ new_cond.offset = offset;
+ vec_safe_push (summary->conds, new_cond);
+ return single_cond_predicate (i + predicate_first_dynamic_condition);
+}
+
+
+/* Add clause CLAUSE into the predicate P. */
+
+static inline void
+add_clause (conditions conditions, struct predicate *p, clause_t clause)
+{
+ int i;
+ int i2;
+ int insert_here = -1;
+ int c1, c2;
+
+ /* True clause. */
+ if (!clause)
+ return;
+
+ /* False clause makes the whole predicate false. Kill the other variants. */
+ if (clause == (1 << predicate_false_condition))
+ {
+ p->clause[0] = (1 << predicate_false_condition);
+ p->clause[1] = 0;
+ return;
+ }
+ if (false_predicate_p (p))
+ return;
+
+ /* No one should be silly enough to add false into nontrivial clauses. */
+ gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
+
+ /* Look where to insert the clause. At the same time prune out
+ clauses of P that are implied by the new clause and thus
+ redundant. */
+ for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
+ {
+ p->clause[i2] = p->clause[i];
+
+ if (!p->clause[i])
+ break;
+
+ /* If p->clause[i] implies clause, there is nothing to add. */
+ if ((p->clause[i] & clause) == p->clause[i])
+ {
+ /* We had nothing to add, none of clauses should've become
+ redundant. */
+ gcc_checking_assert (i == i2);
+ return;
+ }
+
+ if (p->clause[i] < clause && insert_here < 0)
+ insert_here = i2;
+
+ /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
+ Otherwise the p->clause[i] has to stay. */
+ if ((p->clause[i] & clause) != clause)
+ i2++;
+ }
+
+ /* Look for clauses that are obviously true. I.e.
+ op0 == 5 || op0 != 5. */
+ for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
+ {
+ condition *cc1;
+ if (!(clause & (1 << c1)))
+ continue;
+ cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
+ /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
+ and thus there is no point for looking for them. */
+ if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
+ continue;
+ for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
+ if (clause & (1 << c2))
+ {
+ condition *cc1 =
+ &(*conditions)[c1 - predicate_first_dynamic_condition];
+ condition *cc2 =
+ &(*conditions)[c2 - predicate_first_dynamic_condition];
+ if (cc1->operand_num == cc2->operand_num
+ && cc1->val == cc2->val
+ && cc2->code != IS_NOT_CONSTANT
+ && cc2->code != CHANGED
+ && cc1->code == invert_tree_comparison
+ (cc2->code,
+ HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
+ return;
+ }
+ }
+
+
+ /* We run out of variants. Be conservative in positive direction. */
+ if (i2 == MAX_CLAUSES)
+ return;
+ /* Keep clauses in decreasing order. This makes equivalence testing easy. */
+ p->clause[i2 + 1] = 0;
+ if (insert_here >= 0)
+ for (; i2 > insert_here; i2--)
+ p->clause[i2] = p->clause[i2 - 1];
+ else
+ insert_here = i2;
+ p->clause[insert_here] = clause;
+}
+
+
+/* Return P & P2. */
+
+static struct predicate
+and_predicates (conditions conditions,
+ struct predicate *p, struct predicate *p2)
+{
+ struct predicate out = *p;
+ int i;
+
+ /* Avoid busy work. */
+ if (false_predicate_p (p2) || true_predicate_p (p))
+ return *p2;
+ if (false_predicate_p (p) || true_predicate_p (p2))
+ return *p;
+
+ /* See how far predicates match. */
+ for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
+ {
+ gcc_checking_assert (i < MAX_CLAUSES);
+ }
+
+ /* Combine the predicates rest. */
+ for (; p2->clause[i]; i++)
+ {
+ gcc_checking_assert (i < MAX_CLAUSES);
+ add_clause (conditions, &out, p2->clause[i]);
+ }
+ return out;
+}
+
+
+/* Return true if predicates are obviously equal. */
+
+static inline bool
+predicates_equal_p (struct predicate *p, struct predicate *p2)
+{
+ int i;
+ for (i = 0; p->clause[i]; i++)
+ {
+ gcc_checking_assert (i < MAX_CLAUSES);
+ gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
+ gcc_checking_assert (!p2->clause[i]
+ || p2->clause[i] > p2->clause[i + 1]);
+ if (p->clause[i] != p2->clause[i])
+ return false;
+ }
+ return !p2->clause[i];
+}
+
+
+/* Return P | P2. */
+
+static struct predicate
+or_predicates (conditions conditions,
+ struct predicate *p, struct predicate *p2)
+{
+ struct predicate out = true_predicate ();
+ int i, j;
+
+ /* Avoid busy work. */
+ if (false_predicate_p (p2) || true_predicate_p (p))
+ return *p;
+ if (false_predicate_p (p) || true_predicate_p (p2))
+ return *p2;
+ if (predicates_equal_p (p, p2))
+ return *p;
+
+ /* OK, combine the predicates. */
+ for (i = 0; p->clause[i]; i++)
+ for (j = 0; p2->clause[j]; j++)
+ {
+ gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
+ add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
+ }
+ return out;
+}
+
+
+/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
+ if predicate P is known to be false. */
+
+static bool
+evaluate_predicate (struct predicate *p, clause_t possible_truths)
+{
+ int i;
+
+ /* True remains true. */
+ if (true_predicate_p (p))
+ return true;
+
+ gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
+
+ /* See if we can find clause we can disprove. */
+ for (i = 0; p->clause[i]; i++)
+ {
+ gcc_checking_assert (i < MAX_CLAUSES);
+ if (!(p->clause[i] & possible_truths))
+ return false;
+ }
+ return true;
+}
+
+/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
+ instruction will be recomputed per invocation of the inlined call. */
+
+static int
+predicate_probability (conditions conds,
+ struct predicate *p, clause_t possible_truths,
+ vec<inline_param_summary> inline_param_summary)
+{
+ int i;
+ int combined_prob = REG_BR_PROB_BASE;
+
+ /* True remains true. */
+ if (true_predicate_p (p))
+ return REG_BR_PROB_BASE;
+
+ if (false_predicate_p (p))
+ return 0;
+
+ gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
+
+ /* See if we can find clause we can disprove. */
+ for (i = 0; p->clause[i]; i++)
+ {
+ gcc_checking_assert (i < MAX_CLAUSES);
+ if (!(p->clause[i] & possible_truths))
+ return 0;
+ else
+ {
+ int this_prob = 0;
+ int i2;
+ if (!inline_param_summary.exists ())
+ return REG_BR_PROB_BASE;
+ for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
+ if ((p->clause[i] & possible_truths) & (1 << i2))
+ {
+ if (i2 >= predicate_first_dynamic_condition)
+ {
+ condition *c =
+ &(*conds)[i2 - predicate_first_dynamic_condition];
+ if (c->code == CHANGED
+ && (c->operand_num <
+ (int) inline_param_summary.length ()))
+ {
+ int iprob =
+ inline_param_summary[c->operand_num].change_prob;
+ this_prob = MAX (this_prob, iprob);
+ }
+ else
+ this_prob = REG_BR_PROB_BASE;
+ }
+ else
+ this_prob = REG_BR_PROB_BASE;
+ }
+ combined_prob = MIN (this_prob, combined_prob);
+ if (!combined_prob)
+ return 0;
+ }
+ }
+ return combined_prob;
+}
+
+
+/* Dump conditional COND. */
+
+static void
+dump_condition (FILE *f, conditions conditions, int cond)
+{
+ condition *c;
+ if (cond == predicate_false_condition)
+ fprintf (f, "false");
+ else if (cond == predicate_not_inlined_condition)
+ fprintf (f, "not inlined");
+ else
+ {
+ c = &(*conditions)[cond - predicate_first_dynamic_condition];
+ fprintf (f, "op%i", c->operand_num);
+ if (c->agg_contents)
+ fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
+ c->by_ref ? "ref " : "", c->offset);
+ if (c->code == IS_NOT_CONSTANT)
+ {
+ fprintf (f, " not constant");
+ return;
+ }
+ if (c->code == CHANGED)
+ {
+ fprintf (f, " changed");
+ return;
+ }
+ fprintf (f, " %s ", op_symbol_code (c->code));
+ print_generic_expr (f, c->val, 1);
+ }
+}
+
+
+/* Dump clause CLAUSE. */
+
+static void
+dump_clause (FILE *f, conditions conds, clause_t clause)
+{
+ int i;
+ bool found = false;
+ fprintf (f, "(");
+ if (!clause)
+ fprintf (f, "true");
+ for (i = 0; i < NUM_CONDITIONS; i++)
+ if (clause & (1 << i))
+ {
+ if (found)
+ fprintf (f, " || ");
+ found = true;
+ dump_condition (f, conds, i);
+ }
+ fprintf (f, ")");
+}
+
+
+/* Dump predicate PREDICATE. */
+
+static void
+dump_predicate (FILE *f, conditions conds, struct predicate *pred)
+{
+ int i;
+ if (true_predicate_p (pred))
+ dump_clause (f, conds, 0);
+ else
+ for (i = 0; pred->clause[i]; i++)
+ {
+ if (i)
+ fprintf (f, " && ");
+ dump_clause (f, conds, pred->clause[i]);
+ }
+ fprintf (f, "\n");
+}
+
+
+/* Dump inline hints. */
+void
+dump_inline_hints (FILE *f, inline_hints hints)
+{
+ if (!hints)
+ return;
+ fprintf (f, "inline hints:");
+ if (hints & INLINE_HINT_indirect_call)
+ {
+ hints &= ~INLINE_HINT_indirect_call;
+ fprintf (f, " indirect_call");
+ }
+ if (hints & INLINE_HINT_loop_iterations)
+ {
+ hints &= ~INLINE_HINT_loop_iterations;
+ fprintf (f, " loop_iterations");
+ }
+ if (hints & INLINE_HINT_loop_stride)
+ {
+ hints &= ~INLINE_HINT_loop_stride;
+ fprintf (f, " loop_stride");
+ }
+ if (hints & INLINE_HINT_same_scc)
+ {
+ hints &= ~INLINE_HINT_same_scc;
+ fprintf (f, " same_scc");
+ }
+ if (hints & INLINE_HINT_in_scc)
+ {
+ hints &= ~INLINE_HINT_in_scc;
+ fprintf (f, " in_scc");
+ }
+ if (hints & INLINE_HINT_cross_module)
+ {
+ hints &= ~INLINE_HINT_cross_module;
+ fprintf (f, " cross_module");
+ }
+ if (hints & INLINE_HINT_declared_inline)
+ {
+ hints &= ~INLINE_HINT_declared_inline;
+ fprintf (f, " declared_inline");
+ }
+ if (hints & INLINE_HINT_array_index)
+ {
+ hints &= ~INLINE_HINT_array_index;
+ fprintf (f, " array_index");
+ }
+ gcc_assert (!hints);
+}
+
+
+/* Record SIZE and TIME under condition PRED into the inline summary. */
+
+static void
+account_size_time (struct inline_summary *summary, int size, int time,
+ struct predicate *pred)
+{
+ size_time_entry *e;
+ bool found = false;
+ int i;
+
+ if (false_predicate_p (pred))
+ return;
+
+ /* We need to create initial empty unconitional clause, but otherwie
+ we don't need to account empty times and sizes. */
+ if (!size && !time && summary->entry)
+ return;
+
+ /* Watch overflow that might result from insane profiles. */
+ if (time > MAX_TIME * INLINE_TIME_SCALE)
+ time = MAX_TIME * INLINE_TIME_SCALE;
+ gcc_assert (time >= 0);
+
+ for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
+ if (predicates_equal_p (&e->predicate, pred))
+ {
+ found = true;
+ break;
+ }
+ if (i == 256)
+ {
+ i = 0;
+ found = true;
+ e = &(*summary->entry)[0];
+ gcc_assert (!e->predicate.clause[0]);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "\t\tReached limit on number of entries, "
+ "ignoring the predicate.");
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
+ {
+ fprintf (dump_file,
+ "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
+ ((double) size) / INLINE_SIZE_SCALE,
+ ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
+ dump_predicate (dump_file, summary->conds, pred);
+ }
+ if (!found)
+ {
+ struct size_time_entry new_entry;
+ new_entry.size = size;
+ new_entry.time = time;
+ new_entry.predicate = *pred;
+ vec_safe_push (summary->entry, new_entry);
+ }
+ else
+ {
+ e->size += size;
+ e->time += time;
+ if (e->time > MAX_TIME * INLINE_TIME_SCALE)
+ e->time = MAX_TIME * INLINE_TIME_SCALE;
+ }
+}
+
+/* Set predicate for edge E. */
+
+static void
+edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
+{
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ if (predicate && !true_predicate_p (predicate))
+ {
+ if (!es->predicate)
+ es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
+ *es->predicate = *predicate;
+ }
+ else
+ {
+ if (es->predicate)
+ pool_free (edge_predicate_pool, es->predicate);
+ es->predicate = NULL;
+ }
+}
+
+/* Set predicate for hint *P. */
+
+static void
+set_hint_predicate (struct predicate **p, struct predicate new_predicate)
+{
+ if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
+ {
+ if (*p)
+ pool_free (edge_predicate_pool, *p);
+ *p = NULL;
+ }
+ else
+ {
+ if (!*p)
+ *p = (struct predicate *) pool_alloc (edge_predicate_pool);
+ **p = new_predicate;
+ }
+}
+
+
+/* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
+ KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
+ Return clause of possible truths. When INLINE_P is true, assume that we are
+ inlining.
+
+ ERROR_MARK means compile time invariant. */
+
+static clause_t
+evaluate_conditions_for_known_args (struct cgraph_node *node,
+ bool inline_p,
+ vec<tree> known_vals,
+ vec<ipa_agg_jump_function_p>
+ known_aggs)
+{
+ clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
+ struct inline_summary *info = inline_summary (node);
+ int i;
+ struct condition *c;
+
+ for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
+ {
+ tree val;
+ tree res;
+
+ /* We allow call stmt to have fewer arguments than the callee function
+ (especially for K&R style programs). So bound check here (we assume
+ known_aggs vector, if non-NULL, has the same length as
+ known_vals). */
+ gcc_checking_assert (!known_aggs.exists ()
+ || (known_vals.length () == known_aggs.length ()));
+ if (c->operand_num >= (int) known_vals.length ())
+ {
+ clause |= 1 << (i + predicate_first_dynamic_condition);
+ continue;
+ }
+
+ if (c->agg_contents)
+ {
+ struct ipa_agg_jump_function *agg;
+
+ if (c->code == CHANGED
+ && !c->by_ref
+ && (known_vals[c->operand_num] == error_mark_node))
+ continue;
+
+ if (known_aggs.exists ())
+ {
+ agg = known_aggs[c->operand_num];
+ val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
+ }
+ else
+ val = NULL_TREE;
+ }
+ else
+ {
+ val = known_vals[c->operand_num];
+ if (val == error_mark_node && c->code != CHANGED)
+ val = NULL_TREE;
+ }
+
+ if (!val)
+ {
+ clause |= 1 << (i + predicate_first_dynamic_condition);
+ continue;
+ }
+ if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
+ continue;
+ res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
+ if (res && integer_zerop (res))
+ continue;
+ clause |= 1 << (i + predicate_first_dynamic_condition);
+ }
+ return clause;
+}
+
+
+/* Work out what conditions might be true at invocation of E. */
+
+static void
+evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
+ clause_t *clause_ptr,
+ vec<tree> *known_vals_ptr,
+ vec<tree> *known_binfos_ptr,
+ vec<ipa_agg_jump_function_p> *known_aggs_ptr)
+{
+ struct cgraph_node *callee =
+ cgraph_function_or_thunk_node (e->callee, NULL);
+ struct inline_summary *info = inline_summary (callee);
+ vec<tree> known_vals = vNULL;
+ vec<ipa_agg_jump_function_p> known_aggs = vNULL;
+
+ if (clause_ptr)
+ *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
+ if (known_vals_ptr)
+ known_vals_ptr->create (0);
+ if (known_binfos_ptr)
+ known_binfos_ptr->create (0);
+
+ if (ipa_node_params_vector.exists ()
+ && !e->call_stmt_cannot_inline_p
+ && ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
+ {
+ struct ipa_node_params *parms_info;
+ struct ipa_edge_args *args = IPA_EDGE_REF (e);
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ int i, count = ipa_get_cs_argument_count (args);
+
+ if (e->caller->global.inlined_to)
+ parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
+ else
+ parms_info = IPA_NODE_REF (e->caller);
+
+ if (count && (info->conds || known_vals_ptr))
+ known_vals.safe_grow_cleared (count);
+ if (count && (info->conds || known_aggs_ptr))
+ known_aggs.safe_grow_cleared (count);
+ if (count && known_binfos_ptr)
+ known_binfos_ptr->safe_grow_cleared (count);
+
+ for (i = 0; i < count; i++)
+ {
+ struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
+ tree cst = ipa_value_from_jfunc (parms_info, jf);
+ if (cst)
+ {
+ if (known_vals.exists () && TREE_CODE (cst) != TREE_BINFO)
+ known_vals[i] = cst;
+ else if (known_binfos_ptr != NULL
+ && TREE_CODE (cst) == TREE_BINFO)
+ (*known_binfos_ptr)[i] = cst;
+ }
+ else if (inline_p && !es->param[i].change_prob)
+ known_vals[i] = error_mark_node;
+ /* TODO: When IPA-CP starts propagating and merging aggregate jump
+ functions, use its knowledge of the caller too, just like the
+ scalar case above. */
+ known_aggs[i] = &jf->agg;
+ }
+ }
+
+ if (clause_ptr)
+ *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
+ known_vals, known_aggs);
+
+ if (known_vals_ptr)
+ *known_vals_ptr = known_vals;
+ else
+ known_vals.release ();
+
+ if (known_aggs_ptr)
+ *known_aggs_ptr = known_aggs;
+ else
+ known_aggs.release ();
+}
+
+
+/* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
+
+static void
+inline_summary_alloc (void)
+{
+ if (!node_removal_hook_holder)
+ node_removal_hook_holder =
+ cgraph_add_node_removal_hook (&inline_node_removal_hook, NULL);
+ if (!edge_removal_hook_holder)
+ edge_removal_hook_holder =
+ cgraph_add_edge_removal_hook (&inline_edge_removal_hook, NULL);
+ if (!node_duplication_hook_holder)
+ node_duplication_hook_holder =
+ cgraph_add_node_duplication_hook (&inline_node_duplication_hook, NULL);
+ if (!edge_duplication_hook_holder)
+ edge_duplication_hook_holder =
+ cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
+
+ if (vec_safe_length (inline_summary_vec) <= (unsigned) cgraph_max_uid)
+ vec_safe_grow_cleared (inline_summary_vec, cgraph_max_uid + 1);
+ if (inline_edge_summary_vec.length () <= (unsigned) cgraph_edge_max_uid)
+ inline_edge_summary_vec.safe_grow_cleared (cgraph_edge_max_uid + 1);
+ if (!edge_predicate_pool)
+ edge_predicate_pool = create_alloc_pool ("edge predicates",
+ sizeof (struct predicate), 10);
+}
+
+/* We are called multiple time for given function; clear
+ data from previous run so they are not cumulated. */
+
+static void
+reset_inline_edge_summary (struct cgraph_edge *e)
+{
+ if (e->uid < (int) inline_edge_summary_vec.length ())
+ {
+ struct inline_edge_summary *es = inline_edge_summary (e);
+
+ es->call_stmt_size = es->call_stmt_time = 0;
+ if (es->predicate)
+ pool_free (edge_predicate_pool, es->predicate);
+ es->predicate = NULL;
+ es->param.release ();
+ }
+}
+
+/* We are called multiple time for given function; clear
+ data from previous run so they are not cumulated. */
+
+static void
+reset_inline_summary (struct cgraph_node *node)
+{
+ struct inline_summary *info = inline_summary (node);
+ struct cgraph_edge *e;
+
+ info->self_size = info->self_time = 0;
+ info->estimated_stack_size = 0;
+ info->estimated_self_stack_size = 0;
+ info->stack_frame_offset = 0;
+ info->size = 0;
+ info->time = 0;
+ info->growth = 0;
+ info->scc_no = 0;
+ if (info->loop_iterations)
+ {
+ pool_free (edge_predicate_pool, info->loop_iterations);
+ info->loop_iterations = NULL;
+ }
+ if (info->loop_stride)
+ {
+ pool_free (edge_predicate_pool, info->loop_stride);
+ info->loop_stride = NULL;
+ }
+ if (info->array_index)
+ {
+ pool_free (edge_predicate_pool, info->array_index);
+ info->array_index = NULL;
+ }
+ vec_free (info->conds);
+ vec_free (info->entry);
+ for (e = node->callees; e; e = e->next_callee)
+ reset_inline_edge_summary (e);
+ for (e = node->indirect_calls; e; e = e->next_callee)
+ reset_inline_edge_summary (e);
+}
+
+/* Hook that is called by cgraph.c when a node is removed. */
+
+static void
+inline_node_removal_hook (struct cgraph_node *node,
+ void *data ATTRIBUTE_UNUSED)
+{
+ struct inline_summary *info;
+ if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
+ return;
+ info = inline_summary (node);
+ reset_inline_summary (node);
+ memset (info, 0, sizeof (inline_summary_t));
+}
+
+/* Remap predicate P of former function to be predicate of duplicated function.
+ POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
+ INFO is inline summary of the duplicated node. */
+
+static struct predicate
+remap_predicate_after_duplication (struct predicate *p,
+ clause_t possible_truths,
+ struct inline_summary *info)
+{
+ struct predicate new_predicate = true_predicate ();
+ int j;
+ for (j = 0; p->clause[j]; j++)
+ if (!(possible_truths & p->clause[j]))
+ {
+ new_predicate = false_predicate ();
+ break;
+ }
+ else
+ add_clause (info->conds, &new_predicate,
+ possible_truths & p->clause[j]);
+ return new_predicate;
+}
+
+/* Same as remap_predicate_after_duplication but handle hint predicate *P.
+ Additionally care about allocating new memory slot for updated predicate
+ and set it to NULL when it becomes true or false (and thus uninteresting).
+ */
+
+static void
+remap_hint_predicate_after_duplication (struct predicate **p,
+ clause_t possible_truths,
+ struct inline_summary *info)
+{
+ struct predicate new_predicate;
+
+ if (!*p)
+ return;
+
+ new_predicate = remap_predicate_after_duplication (*p,
+ possible_truths, info);
+ /* We do not want to free previous predicate; it is used by node origin. */
+ *p = NULL;
+ set_hint_predicate (p, new_predicate);
+}
+
+
+/* Hook that is called by cgraph.c when a node is duplicated. */
+
+static void
+inline_node_duplication_hook (struct cgraph_node *src,
+ struct cgraph_node *dst,
+ ATTRIBUTE_UNUSED void *data)
+{
+ struct inline_summary *info;
+ inline_summary_alloc ();
+ info = inline_summary (dst);
+ memcpy (info, inline_summary (src), sizeof (struct inline_summary));
+ /* TODO: as an optimization, we may avoid copying conditions
+ that are known to be false or true. */
+ info->conds = vec_safe_copy (info->conds);
+
+ /* When there are any replacements in the function body, see if we can figure
+ out that something was optimized out. */
+ if (ipa_node_params_vector.exists () && dst->clone.tree_map)
+ {
+ vec<size_time_entry, va_gc> *entry = info->entry;
+ /* Use SRC parm info since it may not be copied yet. */
+ struct ipa_node_params *parms_info = IPA_NODE_REF (src);
+ vec<tree> known_vals = vNULL;
+ int count = ipa_get_param_count (parms_info);
+ int i, j;
+ clause_t possible_truths;
+ struct predicate true_pred = true_predicate ();
+ size_time_entry *e;
+ int optimized_out_size = 0;
+ bool inlined_to_p = false;
+ struct cgraph_edge *edge;
+
+ info->entry = 0;
+ known_vals.safe_grow_cleared (count);
+ for (i = 0; i < count; i++)
+ {
+ struct ipa_replace_map *r;
+
+ for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
+ {
+ if (((!r->old_tree && r->parm_num == i)
+ || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
+ && r->replace_p && !r->ref_p)
+ {
+ known_vals[i] = r->new_tree;
+ break;
+ }
+ }
+ }
+ possible_truths = evaluate_conditions_for_known_args (dst, false,
+ known_vals,
+ vNULL);
+ known_vals.release ();
+
+ account_size_time (info, 0, 0, &true_pred);
+
+ /* Remap size_time vectors.
+ Simplify the predicate by prunning out alternatives that are known
+ to be false.
+ TODO: as on optimization, we can also eliminate conditions known
+ to be true. */
+ for (i = 0; vec_safe_iterate (entry, i, &e); i++)
+ {
+ struct predicate new_predicate;
+ new_predicate = remap_predicate_after_duplication (&e->predicate,
+ possible_truths,
+ info);
+ if (false_predicate_p (&new_predicate))
+ optimized_out_size += e->size;
+ else
+ account_size_time (info, e->size, e->time, &new_predicate);
+ }
+
+ /* Remap edge predicates with the same simplification as above.
+ Also copy constantness arrays. */
+ for (edge = dst->callees; edge; edge = edge->next_callee)
+ {
+ struct predicate new_predicate;
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+
+ if (!edge->inline_failed)
+ inlined_to_p = true;
+ if (!es->predicate)
+ continue;
+ new_predicate = remap_predicate_after_duplication (es->predicate,
+ possible_truths,
+ info);
+ if (false_predicate_p (&new_predicate)
+ && !false_predicate_p (es->predicate))
+ {
+ optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
+ edge->frequency = 0;
+ }
+ edge_set_predicate (edge, &new_predicate);
+ }
+
+ /* Remap indirect edge predicates with the same simplificaiton as above.
+ Also copy constantness arrays. */
+ for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
+ {
+ struct predicate new_predicate;
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+
+ gcc_checking_assert (edge->inline_failed);
+ if (!es->predicate)
+ continue;
+ new_predicate = remap_predicate_after_duplication (es->predicate,
+ possible_truths,
+ info);
+ if (false_predicate_p (&new_predicate)
+ && !false_predicate_p (es->predicate))
+ {
+ optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
+ edge->frequency = 0;
+ }
+ edge_set_predicate (edge, &new_predicate);
+ }
+ remap_hint_predicate_after_duplication (&info->loop_iterations,
+ possible_truths, info);
+ remap_hint_predicate_after_duplication (&info->loop_stride,
+ possible_truths, info);
+ remap_hint_predicate_after_duplication (&info->array_index,
+ possible_truths, info);
+
+ /* If inliner or someone after inliner will ever start producing
+ non-trivial clones, we will get trouble with lack of information
+ about updating self sizes, because size vectors already contains
+ sizes of the calees. */
+ gcc_assert (!inlined_to_p || !optimized_out_size);
+ }
+ else
+ {
+ info->entry = vec_safe_copy (info->entry);
+ if (info->loop_iterations)
+ {
+ predicate p = *info->loop_iterations;
+ info->loop_iterations = NULL;
+ set_hint_predicate (&info->loop_iterations, p);
+ }
+ if (info->loop_stride)
+ {
+ predicate p = *info->loop_stride;
+ info->loop_stride = NULL;
+ set_hint_predicate (&info->loop_stride, p);
+ }
+ if (info->array_index)
+ {
+ predicate p = *info->array_index;
+ info->array_index = NULL;
+ set_hint_predicate (&info->array_index, p);
+ }
+ }
+ inline_update_overall_summary (dst);
+}
+
+
+/* Hook that is called by cgraph.c when a node is duplicated. */
+
+static void
+inline_edge_duplication_hook (struct cgraph_edge *src,
+ struct cgraph_edge *dst,
+ ATTRIBUTE_UNUSED void *data)
+{
+ struct inline_edge_summary *info;
+ struct inline_edge_summary *srcinfo;
+ inline_summary_alloc ();
+ info = inline_edge_summary (dst);
+ srcinfo = inline_edge_summary (src);
+ memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
+ info->predicate = NULL;
+ edge_set_predicate (dst, srcinfo->predicate);
+ info->param = srcinfo->param.copy ();
+}
+
+
+/* Keep edge cache consistent across edge removal. */
+
+static void
+inline_edge_removal_hook (struct cgraph_edge *edge,
+ void *data ATTRIBUTE_UNUSED)
+{
+ if (edge_growth_cache.exists ())
+ reset_edge_growth_cache (edge);
+ reset_inline_edge_summary (edge);
+}
+
+
+/* Initialize growth caches. */
+
+void
+initialize_growth_caches (void)
+{
+ if (cgraph_edge_max_uid)
+ edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
+ if (cgraph_max_uid)
+ node_growth_cache.safe_grow_cleared (cgraph_max_uid);
+}
+
+
+/* Free growth caches. */
+
+void
+free_growth_caches (void)
+{
+ edge_growth_cache.release ();
+ node_growth_cache.release ();
+}
+
+
+/* Dump edge summaries associated to NODE and recursively to all clones.
+ Indent by INDENT. */
+
+static void
+dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
+ struct inline_summary *info)
+{
+ struct cgraph_edge *edge;
+ for (edge = node->callees; edge; edge = edge->next_callee)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+ struct cgraph_node *callee =
+ cgraph_function_or_thunk_node (edge->callee, NULL);
+ int i;
+
+ fprintf (f,
+ "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
+ " time: %2i callee size:%2i stack:%2i",
+ indent, "", callee->name (), callee->order,
+ !edge->inline_failed
+ ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
+ indent, "", es->loop_depth, edge->frequency,
+ es->call_stmt_size, es->call_stmt_time,
+ (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
+ (int) inline_summary (callee)->estimated_stack_size);
+
+ if (es->predicate)
+ {
+ fprintf (f, " predicate: ");
+ dump_predicate (f, info->conds, es->predicate);
+ }
+ else
+ fprintf (f, "\n");
+ if (es->param.exists ())
+ for (i = 0; i < (int) es->param.length (); i++)
+ {
+ int prob = es->param[i].change_prob;
+
+ if (!prob)
+ fprintf (f, "%*s op%i is compile time invariant\n",
+ indent + 2, "", i);
+ else if (prob != REG_BR_PROB_BASE)
+ fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
+ prob * 100.0 / REG_BR_PROB_BASE);
+ }
+ if (!edge->inline_failed)
+ {
+ fprintf (f, "%*sStack frame offset %i, callee self size %i,"
+ " callee size %i\n",
+ indent + 2, "",
+ (int) inline_summary (callee)->stack_frame_offset,
+ (int) inline_summary (callee)->estimated_self_stack_size,
+ (int) inline_summary (callee)->estimated_stack_size);
+ dump_inline_edge_summary (f, indent + 2, callee, info);
+ }
+ }
+ for (edge = node->indirect_calls; edge; edge = edge->next_callee)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+ fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
+ " time: %2i",
+ indent, "",
+ es->loop_depth,
+ edge->frequency, es->call_stmt_size, es->call_stmt_time);
+ if (es->predicate)
+ {
+ fprintf (f, "predicate: ");
+ dump_predicate (f, info->conds, es->predicate);
+ }
+ else
+ fprintf (f, "\n");
+ }
+}
+
+
+void
+dump_inline_summary (FILE *f, struct cgraph_node *node)
+{
+ if (node->definition)
+ {
+ struct inline_summary *s = inline_summary (node);
+ size_time_entry *e;
+ int i;
+ fprintf (f, "Inline summary for %s/%i", node->name (),
+ node->order);
+ if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
+ fprintf (f, " always_inline");
+ if (s->inlinable)
+ fprintf (f, " inlinable");
+ fprintf (f, "\n self time: %i\n", s->self_time);
+ fprintf (f, " global time: %i\n", s->time);
+ fprintf (f, " self size: %i\n", s->self_size);
+ fprintf (f, " global size: %i\n", s->size);
+ fprintf (f, " self stack: %i\n",
+ (int) s->estimated_self_stack_size);
+ fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
+ if (s->growth)
+ fprintf (f, " estimated growth:%i\n", (int) s->growth);
+ if (s->scc_no)
+ fprintf (f, " In SCC: %i\n", (int) s->scc_no);
+ for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
+ {
+ fprintf (f, " size:%f, time:%f, predicate:",
+ (double) e->size / INLINE_SIZE_SCALE,
+ (double) e->time / INLINE_TIME_SCALE);
+ dump_predicate (f, s->conds, &e->predicate);
+ }
+ if (s->loop_iterations)
+ {
+ fprintf (f, " loop iterations:");
+ dump_predicate (f, s->conds, s->loop_iterations);
+ }
+ if (s->loop_stride)
+ {
+ fprintf (f, " loop stride:");
+ dump_predicate (f, s->conds, s->loop_stride);
+ }
+ if (s->array_index)
+ {
+ fprintf (f, " array index:");
+ dump_predicate (f, s->conds, s->array_index);
+ }
+ fprintf (f, " calls:\n");
+ dump_inline_edge_summary (f, 4, node, s);
+ fprintf (f, "\n");
+ }
+}
+
+DEBUG_FUNCTION void
+debug_inline_summary (struct cgraph_node *node)
+{
+ dump_inline_summary (stderr, node);
+}
+
+void
+dump_inline_summaries (FILE *f)
+{
+ struct cgraph_node *node;
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ if (!node->global.inlined_to)
+ dump_inline_summary (f, node);
+}
+
+/* Give initial reasons why inlining would fail on EDGE. This gets either
+ nullified or usually overwritten by more precise reasons later. */
+
+void
+initialize_inline_failed (struct cgraph_edge *e)
+{
+ struct cgraph_node *callee = e->callee;
+
+ if (e->indirect_unknown_callee)
+ e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
+ else if (!callee->definition)
+ e->inline_failed = CIF_BODY_NOT_AVAILABLE;
+ else if (callee->local.redefined_extern_inline)
+ e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
+ else if (e->call_stmt_cannot_inline_p)
+ e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
+ else if (cfun && fn_contains_cilk_spawn_p (cfun))
+ /* We can't inline if the function is spawing a function. */
+ e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
+ else
+ e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
+}
+
+/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
+ boolean variable pointed to by DATA. */
+
+static bool
+mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
+ void *data)
+{
+ bool *b = (bool *) data;
+ *b = true;
+ return true;
+}
+
+/* If OP refers to value of function parameter, return the corresponding
+ parameter. */
+
+static tree
+unmodified_parm_1 (gimple stmt, tree op)
+{
+ /* SSA_NAME referring to parm default def? */
+ if (TREE_CODE (op) == SSA_NAME
+ && SSA_NAME_IS_DEFAULT_DEF (op)
+ && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
+ return SSA_NAME_VAR (op);
+ /* Non-SSA parm reference? */
+ if (TREE_CODE (op) == PARM_DECL)
+ {
+ bool modified = false;
+
+ ao_ref refd;
+ ao_ref_init (&refd, op);
+ walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
+ NULL);
+ if (!modified)
+ return op;
+ }
+ return NULL_TREE;
+}
+
+/* If OP refers to value of function parameter, return the corresponding
+ parameter. Also traverse chains of SSA register assignments. */
+
+static tree
+unmodified_parm (gimple stmt, tree op)
+{
+ tree res = unmodified_parm_1 (stmt, op);
+ if (res)
+ return res;
+
+ if (TREE_CODE (op) == SSA_NAME
+ && !SSA_NAME_IS_DEFAULT_DEF (op)
+ && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
+ return unmodified_parm (SSA_NAME_DEF_STMT (op),
+ gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
+ return NULL_TREE;
+}
+
+/* If OP refers to a value of a function parameter or value loaded from an
+ aggregate passed to a parameter (either by value or reference), return TRUE
+ and store the number of the parameter to *INDEX_P and information whether
+ and how it has been loaded from an aggregate into *AGGPOS. INFO describes
+ the function parameters, STMT is the statement in which OP is used or
+ loaded. */
+
+static bool
+unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
+ gimple stmt, tree op, int *index_p,
+ struct agg_position_info *aggpos)
+{
+ tree res = unmodified_parm_1 (stmt, op);
+
+ gcc_checking_assert (aggpos);
+ if (res)
+ {
+ *index_p = ipa_get_param_decl_index (info, res);
+ if (*index_p < 0)
+ return false;
+ aggpos->agg_contents = false;
+ aggpos->by_ref = false;
+ return true;
+ }
+
+ if (TREE_CODE (op) == SSA_NAME)
+ {
+ if (SSA_NAME_IS_DEFAULT_DEF (op)
+ || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
+ return false;
+ stmt = SSA_NAME_DEF_STMT (op);
+ op = gimple_assign_rhs1 (stmt);
+ if (!REFERENCE_CLASS_P (op))
+ return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
+ aggpos);
+ }
+
+ aggpos->agg_contents = true;
+ return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
+ &aggpos->by_ref);
+}
+
+/* See if statement might disappear after inlining.
+ 0 - means not eliminated
+ 1 - half of statements goes away
+ 2 - for sure it is eliminated.
+ We are not terribly sophisticated, basically looking for simple abstraction
+ penalty wrappers. */
+
+static int
+eliminated_by_inlining_prob (gimple stmt)
+{
+ enum gimple_code code = gimple_code (stmt);
+ enum tree_code rhs_code;
+
+ if (!optimize)
+ return 0;
+
+ switch (code)
+ {
+ case GIMPLE_RETURN:
+ return 2;
+ case GIMPLE_ASSIGN:
+ if (gimple_num_ops (stmt) != 2)
+ return 0;
+
+ rhs_code = gimple_assign_rhs_code (stmt);
+
+ /* Casts of parameters, loads from parameters passed by reference
+ and stores to return value or parameters are often free after
+ inlining dua to SRA and further combining.
+ Assume that half of statements goes away. */
+ if (rhs_code == CONVERT_EXPR
+ || rhs_code == NOP_EXPR
+ || rhs_code == VIEW_CONVERT_EXPR
+ || rhs_code == ADDR_EXPR
+ || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+ tree lhs = gimple_assign_lhs (stmt);
+ tree inner_rhs = get_base_address (rhs);
+ tree inner_lhs = get_base_address (lhs);
+ bool rhs_free = false;
+ bool lhs_free = false;
+
+ if (!inner_rhs)
+ inner_rhs = rhs;
+ if (!inner_lhs)
+ inner_lhs = lhs;
+
+ /* Reads of parameter are expected to be free. */
+ if (unmodified_parm (stmt, inner_rhs))
+ rhs_free = true;
+ /* Match expressions of form &this->field. Those will most likely
+ combine with something upstream after inlining. */
+ else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
+ {
+ tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
+ if (TREE_CODE (op) == PARM_DECL)
+ rhs_free = true;
+ else if (TREE_CODE (op) == MEM_REF
+ && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
+ rhs_free = true;
+ }
+
+ /* When parameter is not SSA register because its address is taken
+ and it is just copied into one, the statement will be completely
+ free after inlining (we will copy propagate backward). */
+ if (rhs_free && is_gimple_reg (lhs))
+ return 2;
+
+ /* Reads of parameters passed by reference
+ expected to be free (i.e. optimized out after inlining). */
+ if (TREE_CODE (inner_rhs) == MEM_REF
+ && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
+ rhs_free = true;
+
+ /* Copying parameter passed by reference into gimple register is
+ probably also going to copy propagate, but we can't be quite
+ sure. */
+ if (rhs_free && is_gimple_reg (lhs))
+ lhs_free = true;
+
+ /* Writes to parameters, parameters passed by value and return value
+ (either dirrectly or passed via invisible reference) are free.
+
+ TODO: We ought to handle testcase like
+ struct a {int a,b;};
+ struct a
+ retrurnsturct (void)
+ {
+ struct a a ={1,2};
+ return a;
+ }
+
+ This translate into:
+
+ retrurnsturct ()
+ {
+ int a$b;
+ int a$a;
+ struct a a;
+ struct a D.2739;
+
+ <bb 2>:
+ D.2739.a = 1;
+ D.2739.b = 2;
+ return D.2739;
+
+ }
+ For that we either need to copy ipa-split logic detecting writes
+ to return value. */
+ if (TREE_CODE (inner_lhs) == PARM_DECL
+ || TREE_CODE (inner_lhs) == RESULT_DECL
+ || (TREE_CODE (inner_lhs) == MEM_REF
+ && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
+ || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
+ && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
+ && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
+ (inner_lhs,
+ 0))) == RESULT_DECL))))
+ lhs_free = true;
+ if (lhs_free
+ && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
+ rhs_free = true;
+ if (lhs_free && rhs_free)
+ return 1;
+ }
+ return 0;
+ default:
+ return 0;
+ }
+}
+
+
+/* If BB ends by a conditional we can turn into predicates, attach corresponding
+ predicates to the CFG edges. */
+
+static void
+set_cond_stmt_execution_predicate (struct ipa_node_params *info,
+ struct inline_summary *summary,
+ basic_block bb)
+{
+ gimple last;
+ tree op;
+ int index;
+ struct agg_position_info aggpos;
+ enum tree_code code, inverted_code;
+ edge e;
+ edge_iterator ei;
+ gimple set_stmt;
+ tree op2;
+
+ last = last_stmt (bb);
+ if (!last || gimple_code (last) != GIMPLE_COND)
+ return;
+ if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
+ return;
+ op = gimple_cond_lhs (last);
+ /* TODO: handle conditionals like
+ var = op0 < 4;
+ if (var != 0). */
+ if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
+ {
+ code = gimple_cond_code (last);
+ inverted_code
+ = invert_tree_comparison (code,
+ HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ struct predicate p = add_condition (summary, index, &aggpos,
+ e->flags & EDGE_TRUE_VALUE
+ ? code : inverted_code,
+ gimple_cond_rhs (last));
+ e->aux = pool_alloc (edge_predicate_pool);
+ *(struct predicate *) e->aux = p;
+ }
+ }
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return;
+ /* Special case
+ if (builtin_constant_p (op))
+ constant_code
+ else
+ nonconstant_code.
+ Here we can predicate nonconstant_code. We can't
+ really handle constant_code since we have no predicate
+ for this and also the constant code is not known to be
+ optimized away when inliner doen't see operand is constant.
+ Other optimizers might think otherwise. */
+ if (gimple_cond_code (last) != NE_EXPR
+ || !integer_zerop (gimple_cond_rhs (last)))
+ return;
+ set_stmt = SSA_NAME_DEF_STMT (op);
+ if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
+ || gimple_call_num_args (set_stmt) != 1)
+ return;
+ op2 = gimple_call_arg (set_stmt, 0);
+ if (!unmodified_parm_or_parm_agg_item
+ (info, set_stmt, op2, &index, &aggpos))
+ return;
+ FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
+ {
+ struct predicate p = add_condition (summary, index, &aggpos,
+ IS_NOT_CONSTANT, NULL_TREE);
+ e->aux = pool_alloc (edge_predicate_pool);
+ *(struct predicate *) e->aux = p;
+ }
+}
+
+
+/* If BB ends by a switch we can turn into predicates, attach corresponding
+ predicates to the CFG edges. */
+
+static void
+set_switch_stmt_execution_predicate (struct ipa_node_params *info,
+ struct inline_summary *summary,
+ basic_block bb)
+{
+ gimple last;
+ tree op;
+ int index;
+ struct agg_position_info aggpos;
+ edge e;
+ edge_iterator ei;
+ size_t n;
+ size_t case_idx;
+
+ last = last_stmt (bb);
+ if (!last || gimple_code (last) != GIMPLE_SWITCH)
+ return;
+ op = gimple_switch_index (last);
+ if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
+ return;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ e->aux = pool_alloc (edge_predicate_pool);
+ *(struct predicate *) e->aux = false_predicate ();
+ }
+ n = gimple_switch_num_labels (last);
+ for (case_idx = 0; case_idx < n; ++case_idx)
+ {
+ tree cl = gimple_switch_label (last, case_idx);
+ tree min, max;
+ struct predicate p;
+
+ e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
+ min = CASE_LOW (cl);
+ max = CASE_HIGH (cl);
+
+ /* For default we might want to construct predicate that none
+ of cases is met, but it is bit hard to do not having negations
+ of conditionals handy. */
+ if (!min && !max)
+ p = true_predicate ();
+ else if (!max)
+ p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
+ else
+ {
+ struct predicate p1, p2;
+ p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
+ p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
+ p = and_predicates (summary->conds, &p1, &p2);
+ }
+ *(struct predicate *) e->aux
+ = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
+ }
+}
+
+
+/* For each BB in NODE attach to its AUX pointer predicate under
+ which it is executable. */
+
+static void
+compute_bb_predicates (struct cgraph_node *node,
+ struct ipa_node_params *parms_info,
+ struct inline_summary *summary)
+{
+ struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
+ bool done = false;
+ basic_block bb;
+
+ FOR_EACH_BB_FN (bb, my_function)
+ {
+ set_cond_stmt_execution_predicate (parms_info, summary, bb);
+ set_switch_stmt_execution_predicate (parms_info, summary, bb);
+ }
+
+ /* Entry block is always executable. */
+ ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
+ = pool_alloc (edge_predicate_pool);
+ *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
+ = true_predicate ();
+
+ /* A simple dataflow propagation of predicates forward in the CFG.
+ TODO: work in reverse postorder. */
+ while (!done)
+ {
+ done = true;
+ FOR_EACH_BB_FN (bb, my_function)
+ {
+ struct predicate p = false_predicate ();
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (e->src->aux)
+ {
+ struct predicate this_bb_predicate
+ = *(struct predicate *) e->src->aux;
+ if (e->aux)
+ this_bb_predicate
+ = and_predicates (summary->conds, &this_bb_predicate,
+ (struct predicate *) e->aux);
+ p = or_predicates (summary->conds, &p, &this_bb_predicate);
+ if (true_predicate_p (&p))
+ break;
+ }
+ }
+ if (false_predicate_p (&p))
+ gcc_assert (!bb->aux);
+ else
+ {
+ if (!bb->aux)
+ {
+ done = false;
+ bb->aux = pool_alloc (edge_predicate_pool);
+ *((struct predicate *) bb->aux) = p;
+ }
+ else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
+ {
+ /* This OR operation is needed to ensure monotonous data flow
+ in the case we hit the limit on number of clauses and the
+ and/or operations above give approximate answers. */
+ p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
+ if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
+ {
+ done = false;
+ *((struct predicate *) bb->aux) = p;
+ }
+ }
+ }
+ }
+ }
+}
+
+
+/* We keep info about constantness of SSA names. */
+
+typedef struct predicate predicate_t;
+/* Return predicate specifying when the STMT might have result that is not
+ a compile time constant. */
+
+static struct predicate
+will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
+ struct inline_summary *summary,
+ tree expr,
+ vec<predicate_t> nonconstant_names)
+{
+ tree parm;
+ int index;
+
+ while (UNARY_CLASS_P (expr))
+ expr = TREE_OPERAND (expr, 0);
+
+ parm = unmodified_parm (NULL, expr);
+ if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
+ return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
+ if (is_gimple_min_invariant (expr))
+ return false_predicate ();
+ if (TREE_CODE (expr) == SSA_NAME)
+ return nonconstant_names[SSA_NAME_VERSION (expr)];
+ if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
+ {
+ struct predicate p1 = will_be_nonconstant_expr_predicate
+ (info, summary, TREE_OPERAND (expr, 0),
+ nonconstant_names);
+ struct predicate p2;
+ if (true_predicate_p (&p1))
+ return p1;
+ p2 = will_be_nonconstant_expr_predicate (info, summary,
+ TREE_OPERAND (expr, 1),
+ nonconstant_names);
+ return or_predicates (summary->conds, &p1, &p2);
+ }
+ else if (TREE_CODE (expr) == COND_EXPR)
+ {
+ struct predicate p1 = will_be_nonconstant_expr_predicate
+ (info, summary, TREE_OPERAND (expr, 0),
+ nonconstant_names);
+ struct predicate p2;
+ if (true_predicate_p (&p1))
+ return p1;
+ p2 = will_be_nonconstant_expr_predicate (info, summary,
+ TREE_OPERAND (expr, 1),
+ nonconstant_names);
+ if (true_predicate_p (&p2))
+ return p2;
+ p1 = or_predicates (summary->conds, &p1, &p2);
+ p2 = will_be_nonconstant_expr_predicate (info, summary,
+ TREE_OPERAND (expr, 2),
+ nonconstant_names);
+ return or_predicates (summary->conds, &p1, &p2);
+ }
+ else
+ {
+ debug_tree (expr);
+ gcc_unreachable ();
+ }
+ return false_predicate ();
+}
+
+
+/* Return predicate specifying when the STMT might have result that is not
+ a compile time constant. */
+
+static struct predicate
+will_be_nonconstant_predicate (struct ipa_node_params *info,
+ struct inline_summary *summary,
+ gimple stmt,
+ vec<predicate_t> nonconstant_names)
+{
+ struct predicate p = true_predicate ();
+ ssa_op_iter iter;
+ tree use;
+ struct predicate op_non_const;
+ bool is_load;
+ int base_index;
+ struct agg_position_info aggpos;
+
+ /* What statments might be optimized away
+ when their arguments are constant
+ TODO: also trivial builtins.
+ builtin_constant_p is already handled later. */
+ if (gimple_code (stmt) != GIMPLE_ASSIGN
+ && gimple_code (stmt) != GIMPLE_COND
+ && gimple_code (stmt) != GIMPLE_SWITCH)
+ return p;
+
+ /* Stores will stay anyway. */
+ if (gimple_store_p (stmt))
+ return p;
+
+ is_load = gimple_assign_load_p (stmt);
+
+ /* Loads can be optimized when the value is known. */
+ if (is_load)
+ {
+ tree op;
+ gcc_assert (gimple_assign_single_p (stmt));
+ op = gimple_assign_rhs1 (stmt);
+ if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
+ &aggpos))
+ return p;
+ }
+ else
+ base_index = -1;
+
+ /* See if we understand all operands before we start
+ adding conditionals. */
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
+ {
+ tree parm = unmodified_parm (stmt, use);
+ /* For arguments we can build a condition. */
+ if (parm && ipa_get_param_decl_index (info, parm) >= 0)
+ continue;
+ if (TREE_CODE (use) != SSA_NAME)
+ return p;
+ /* If we know when operand is constant,
+ we still can say something useful. */
+ if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
+ continue;
+ return p;
+ }
+
+ if (is_load)
+ op_non_const =
+ add_condition (summary, base_index, &aggpos, CHANGED, NULL);
+ else
+ op_non_const = false_predicate ();
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
+ {
+ tree parm = unmodified_parm (stmt, use);
+ int index;
+
+ if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
+ {
+ if (index != base_index)
+ p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
+ else
+ continue;
+ }
+ else
+ p = nonconstant_names[SSA_NAME_VERSION (use)];
+ op_non_const = or_predicates (summary->conds, &p, &op_non_const);
+ }
+ if (gimple_code (stmt) == GIMPLE_ASSIGN
+ && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
+ nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
+ = op_non_const;
+ return op_non_const;
+}
+
+struct record_modified_bb_info
+{
+ bitmap bb_set;
+ gimple stmt;
+};
+
+/* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
+ set except for info->stmt. */
+
+static bool
+record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
+{
+ struct record_modified_bb_info *info =
+ (struct record_modified_bb_info *) data;
+ if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
+ return false;
+ bitmap_set_bit (info->bb_set,
+ SSA_NAME_IS_DEFAULT_DEF (vdef)
+ ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
+ : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
+ return false;
+}
+
+/* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
+ will change since last invocation of STMT.
+
+ Value 0 is reserved for compile time invariants.
+ For common parameters it is REG_BR_PROB_BASE. For loop invariants it
+ ought to be REG_BR_PROB_BASE / estimated_iters. */
+
+static int
+param_change_prob (gimple stmt, int i)
+{
+ tree op = gimple_call_arg (stmt, i);
+ basic_block bb = gimple_bb (stmt);
+ tree base;
+
+ /* Global invariants neve change. */
+ if (is_gimple_min_invariant (op))
+ return 0;
+ /* We would have to do non-trivial analysis to really work out what
+ is the probability of value to change (i.e. when init statement
+ is in a sibling loop of the call).
+
+ We do an conservative estimate: when call is executed N times more often
+ than the statement defining value, we take the frequency 1/N. */
+ if (TREE_CODE (op) == SSA_NAME)
+ {
+ int init_freq;
+
+ if (!bb->frequency)
+ return REG_BR_PROB_BASE;
+
+ if (SSA_NAME_IS_DEFAULT_DEF (op))
+ init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
+ else
+ init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
+
+ if (!init_freq)
+ init_freq = 1;
+ if (init_freq < bb->frequency)
+ return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
+ else
+ return REG_BR_PROB_BASE;
+ }
+
+ base = get_base_address (op);
+ if (base)
+ {
+ ao_ref refd;
+ int max;
+ struct record_modified_bb_info info;
+ bitmap_iterator bi;
+ unsigned index;
+ tree init = ctor_for_folding (base);
+
+ if (init != error_mark_node)
+ return 0;
+ if (!bb->frequency)
+ return REG_BR_PROB_BASE;
+ ao_ref_init (&refd, op);
+ info.stmt = stmt;
+ info.bb_set = BITMAP_ALLOC (NULL);
+ walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
+ NULL);
+ if (bitmap_bit_p (info.bb_set, bb->index))
+ {
+ BITMAP_FREE (info.bb_set);
+ return REG_BR_PROB_BASE;
+ }
+
+ /* Assume that every memory is initialized at entry.
+ TODO: Can we easilly determine if value is always defined
+ and thus we may skip entry block? */
+ if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
+ max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
+ else
+ max = 1;
+
+ EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
+ max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
+
+ BITMAP_FREE (info.bb_set);
+ if (max < bb->frequency)
+ return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
+ else
+ return REG_BR_PROB_BASE;
+ }
+ return REG_BR_PROB_BASE;
+}
+
+/* Find whether a basic block BB is the final block of a (half) diamond CFG
+ sub-graph and if the predicate the condition depends on is known. If so,
+ return true and store the pointer the predicate in *P. */
+
+static bool
+phi_result_unknown_predicate (struct ipa_node_params *info,
+ struct inline_summary *summary, basic_block bb,
+ struct predicate *p,
+ vec<predicate_t> nonconstant_names)
+{
+ edge e;
+ edge_iterator ei;
+ basic_block first_bb = NULL;
+ gimple stmt;
+
+ if (single_pred_p (bb))
+ {
+ *p = false_predicate ();
+ return true;
+ }
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ if (single_succ_p (e->src))
+ {
+ if (!single_pred_p (e->src))
+ return false;
+ if (!first_bb)
+ first_bb = single_pred (e->src);
+ else if (single_pred (e->src) != first_bb)
+ return false;
+ }
+ else
+ {
+ if (!first_bb)
+ first_bb = e->src;
+ else if (e->src != first_bb)
+ return false;
+ }
+ }
+
+ if (!first_bb)
+ return false;
+
+ stmt = last_stmt (first_bb);
+ if (!stmt
+ || gimple_code (stmt) != GIMPLE_COND
+ || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
+ return false;
+
+ *p = will_be_nonconstant_expr_predicate (info, summary,
+ gimple_cond_lhs (stmt),
+ nonconstant_names);
+ if (true_predicate_p (p))
+ return false;
+ else
+ return true;
+}
+
+/* Given a PHI statement in a function described by inline properties SUMMARY
+ and *P being the predicate describing whether the selected PHI argument is
+ known, store a predicate for the result of the PHI statement into
+ NONCONSTANT_NAMES, if possible. */
+
+static void
+predicate_for_phi_result (struct inline_summary *summary, gimple phi,
+ struct predicate *p,
+ vec<predicate_t> nonconstant_names)
+{
+ unsigned i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree arg = gimple_phi_arg (phi, i)->def;
+ if (!is_gimple_min_invariant (arg))
+ {
+ gcc_assert (TREE_CODE (arg) == SSA_NAME);
+ *p = or_predicates (summary->conds, p,
+ &nonconstant_names[SSA_NAME_VERSION (arg)]);
+ if (true_predicate_p (p))
+ return;
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\t\tphi predicate: ");
+ dump_predicate (dump_file, summary->conds, p);
+ }
+ nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
+}
+
+/* Return predicate specifying when array index in access OP becomes non-constant. */
+
+static struct predicate
+array_index_predicate (struct inline_summary *info,
+ vec< predicate_t> nonconstant_names, tree op)
+{
+ struct predicate p = false_predicate ();
+ while (handled_component_p (op))
+ {
+ if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
+ {
+ if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
+ p = or_predicates (info->conds, &p,
+ &nonconstant_names[SSA_NAME_VERSION
+ (TREE_OPERAND (op, 1))]);
+ }
+ op = TREE_OPERAND (op, 0);
+ }
+ return p;
+}
+
+/* For a typical usage of __builtin_expect (a<b, 1), we
+ may introduce an extra relation stmt:
+ With the builtin, we have
+ t1 = a <= b;
+ t2 = (long int) t1;
+ t3 = __builtin_expect (t2, 1);
+ if (t3 != 0)
+ goto ...
+ Without the builtin, we have
+ if (a<=b)
+ goto...
+ This affects the size/time estimation and may have
+ an impact on the earlier inlining.
+ Here find this pattern and fix it up later. */
+
+static gimple
+find_foldable_builtin_expect (basic_block bb)
+{
+ gimple_stmt_iterator bsi;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+ if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
+ || (is_gimple_call (stmt)
+ && gimple_call_internal_p (stmt)
+ && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
+ {
+ tree var = gimple_call_lhs (stmt);
+ tree arg = gimple_call_arg (stmt, 0);
+ use_operand_p use_p;
+ gimple use_stmt;
+ bool match = false;
+ bool done = false;
+
+ if (!var || !arg)
+ continue;
+ gcc_assert (TREE_CODE (var) == SSA_NAME);
+
+ while (TREE_CODE (arg) == SSA_NAME)
+ {
+ gimple stmt_tmp = SSA_NAME_DEF_STMT (arg);
+ if (!is_gimple_assign (stmt_tmp))
+ break;
+ switch (gimple_assign_rhs_code (stmt_tmp))
+ {
+ case LT_EXPR:
+ case LE_EXPR:
+ case GT_EXPR:
+ case GE_EXPR:
+ case EQ_EXPR:
+ case NE_EXPR:
+ match = true;
+ done = true;
+ break;
+ case NOP_EXPR:
+ break;
+ default:
+ done = true;
+ break;
+ }
+ if (done)
+ break;
+ arg = gimple_assign_rhs1 (stmt_tmp);
+ }
+
+ if (match && single_imm_use (var, &use_p, &use_stmt)
+ && gimple_code (use_stmt) == GIMPLE_COND)
+ return use_stmt;
+ }
+ }
+ return NULL;
+}
+
+/* Return true when the basic blocks contains only clobbers followed by RESX.
+ Such BBs are kept around to make removal of dead stores possible with
+ presence of EH and will be optimized out by optimize_clobbers later in the
+ game.
+
+ NEED_EH is used to recurse in case the clobber has non-EH predecestors
+ that can be clobber only, too.. When it is false, the RESX is not necessary
+ on the end of basic block. */
+
+static bool
+clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
+{
+ gimple_stmt_iterator gsi = gsi_last_bb (bb);
+ edge_iterator ei;
+ edge e;
+
+ if (need_eh)
+ {
+ if (gsi_end_p (gsi))
+ return false;
+ if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
+ return false;
+ gsi_prev (&gsi);
+ }
+ else if (!single_succ_p (bb))
+ return false;
+
+ for (; !gsi_end_p (gsi); gsi_prev (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ if (is_gimple_debug (stmt))
+ continue;
+ if (gimple_clobber_p (stmt))
+ continue;
+ if (gimple_code (stmt) == GIMPLE_LABEL)
+ break;
+ return false;
+ }
+
+ /* See if all predecestors are either throws or clobber only BBs. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (!(e->flags & EDGE_EH)
+ && !clobber_only_eh_bb_p (e->src, false))
+ return false;
+
+ return true;
+}
+
+/* Compute function body size parameters for NODE.
+ When EARLY is true, we compute only simple summaries without
+ non-trivial predicates to drive the early inliner. */
+
+static void
+estimate_function_body_sizes (struct cgraph_node *node, bool early)
+{
+ gcov_type time = 0;
+ /* Estimate static overhead for function prologue/epilogue and alignment. */
+ int size = 2;
+ /* Benefits are scaled by probability of elimination that is in range
+ <0,2>. */
+ basic_block bb;
+ gimple_stmt_iterator bsi;
+ struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
+ int freq;
+ struct inline_summary *info = inline_summary (node);
+ struct predicate bb_predicate;
+ struct ipa_node_params *parms_info = NULL;
+ vec<predicate_t> nonconstant_names = vNULL;
+ int nblocks, n;
+ int *order;
+ predicate array_index = true_predicate ();
+ gimple fix_builtin_expect_stmt;
+
+ info->conds = NULL;
+ info->entry = NULL;
+
+ if (optimize && !early)
+ {
+ calculate_dominance_info (CDI_DOMINATORS);
+ loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
+
+ if (ipa_node_params_vector.exists ())
+ {
+ parms_info = IPA_NODE_REF (node);
+ nonconstant_names.safe_grow_cleared
+ (SSANAMES (my_function)->length ());
+ }
+ }
+
+ if (dump_file)
+ fprintf (dump_file, "\nAnalyzing function body size: %s\n",
+ node->name ());
+
+ /* When we run into maximal number of entries, we assign everything to the
+ constant truth case. Be sure to have it in list. */
+ bb_predicate = true_predicate ();
+ account_size_time (info, 0, 0, &bb_predicate);
+
+ bb_predicate = not_inlined_predicate ();
+ account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
+
+ gcc_assert (my_function && my_function->cfg);
+ if (parms_info)
+ compute_bb_predicates (node, parms_info, info);
+ gcc_assert (cfun == my_function);
+ order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
+ nblocks = pre_and_rev_post_order_compute (NULL, order, false);
+ for (n = 0; n < nblocks; n++)
+ {
+ bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
+ freq = compute_call_stmt_bb_frequency (node->decl, bb);
+ if (clobber_only_eh_bb_p (bb))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n Ignoring BB %i;"
+ " it will be optimized away by cleanup_clobbers\n",
+ bb->index);
+ continue;
+ }
+
+ /* TODO: Obviously predicates can be propagated down across CFG. */
+ if (parms_info)
+ {
+ if (bb->aux)
+ bb_predicate = *(struct predicate *) bb->aux;
+ else
+ bb_predicate = false_predicate ();
+ }
+ else
+ bb_predicate = true_predicate ();
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\n BB %i predicate:", bb->index);
+ dump_predicate (dump_file, info->conds, &bb_predicate);
+ }
+
+ if (parms_info && nonconstant_names.exists ())
+ {
+ struct predicate phi_predicate;
+ bool first_phi = true;
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ if (first_phi
+ && !phi_result_unknown_predicate (parms_info, info, bb,
+ &phi_predicate,
+ nonconstant_names))
+ break;
+ first_phi = false;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " ");
+ print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
+ }
+ predicate_for_phi_result (info, gsi_stmt (bsi), &phi_predicate,
+ nonconstant_names);
+ }
+ }
+
+ fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ gimple stmt = gsi_stmt (bsi);
+ int this_size = estimate_num_insns (stmt, &eni_size_weights);
+ int this_time = estimate_num_insns (stmt, &eni_time_weights);
+ int prob;
+ struct predicate will_be_nonconstant;
+
+ /* This relation stmt should be folded after we remove
+ buildin_expect call. Adjust the cost here. */
+ if (stmt == fix_builtin_expect_stmt)
+ {
+ this_size--;
+ this_time--;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
+ ((double) freq) / CGRAPH_FREQ_BASE, this_size,
+ this_time);
+ }
+
+ if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
+ {
+ struct predicate this_array_index;
+ this_array_index =
+ array_index_predicate (info, nonconstant_names,
+ gimple_assign_rhs1 (stmt));
+ if (!false_predicate_p (&this_array_index))
+ array_index =
+ and_predicates (info->conds, &array_index,
+ &this_array_index);
+ }
+ if (gimple_store_p (stmt) && nonconstant_names.exists ())
+ {
+ struct predicate this_array_index;
+ this_array_index =
+ array_index_predicate (info, nonconstant_names,
+ gimple_get_lhs (stmt));
+ if (!false_predicate_p (&this_array_index))
+ array_index =
+ and_predicates (info->conds, &array_index,
+ &this_array_index);
+ }
+
+
+ if (is_gimple_call (stmt)
+ && !gimple_call_internal_p (stmt))
+ {
+ struct cgraph_edge *edge = cgraph_edge (node, stmt);
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+
+ /* Special case: results of BUILT_IN_CONSTANT_P will be always
+ resolved as constant. We however don't want to optimize
+ out the cgraph edges. */
+ if (nonconstant_names.exists ()
+ && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
+ && gimple_call_lhs (stmt)
+ && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
+ {
+ struct predicate false_p = false_predicate ();
+ nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
+ = false_p;
+ }
+ if (ipa_node_params_vector.exists ())
+ {
+ int count = gimple_call_num_args (stmt);
+ int i;
+
+ if (count)
+ es->param.safe_grow_cleared (count);
+ for (i = 0; i < count; i++)
+ {
+ int prob = param_change_prob (stmt, i);
+ gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
+ es->param[i].change_prob = prob;
+ }
+ }
+
+ es->call_stmt_size = this_size;
+ es->call_stmt_time = this_time;
+ es->loop_depth = bb_loop_depth (bb);
+ edge_set_predicate (edge, &bb_predicate);
+ }
+
+ /* TODO: When conditional jump or swithc is known to be constant, but
+ we did not translate it into the predicates, we really can account
+ just maximum of the possible paths. */
+ if (parms_info)
+ will_be_nonconstant
+ = will_be_nonconstant_predicate (parms_info, info,
+ stmt, nonconstant_names);
+ if (this_time || this_size)
+ {
+ struct predicate p;
+
+ this_time *= freq;
+
+ prob = eliminated_by_inlining_prob (stmt);
+ if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "\t\t50%% will be eliminated by inlining\n");
+ if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
+
+ if (parms_info)
+ p = and_predicates (info->conds, &bb_predicate,
+ &will_be_nonconstant);
+ else
+ p = true_predicate ();
+
+ if (!false_predicate_p (&p))
+ {
+ time += this_time;
+ size += this_size;
+ if (time > MAX_TIME * INLINE_TIME_SCALE)
+ time = MAX_TIME * INLINE_TIME_SCALE;
+ }
+
+ /* We account everything but the calls. Calls have their own
+ size/time info attached to cgraph edges. This is necessary
+ in order to make the cost disappear after inlining. */
+ if (!is_gimple_call (stmt))
+ {
+ if (prob)
+ {
+ struct predicate ip = not_inlined_predicate ();
+ ip = and_predicates (info->conds, &ip, &p);
+ account_size_time (info, this_size * prob,
+ this_time * prob, &ip);
+ }
+ if (prob != 2)
+ account_size_time (info, this_size * (2 - prob),
+ this_time * (2 - prob), &p);
+ }
+
+ gcc_assert (time >= 0);
+ gcc_assert (size >= 0);
+ }
+ }
+ }
+ set_hint_predicate (&inline_summary (node)->array_index, array_index);
+ time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
+ if (time > MAX_TIME)
+ time = MAX_TIME;
+ free (order);
+
+ if (!early && nonconstant_names.exists ())
+ {
+ struct loop *loop;
+ predicate loop_iterations = true_predicate ();
+ predicate loop_stride = true_predicate ();
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ flow_loops_dump (dump_file, NULL, 0);
+ scev_initialize ();
+ FOR_EACH_LOOP (loop, 0)
+ {
+ vec<edge> exits;
+ edge ex;
+ unsigned int j, i;
+ struct tree_niter_desc niter_desc;
+ basic_block *body = get_loop_body (loop);
+ bb_predicate = *(struct predicate *) loop->header->aux;
+
+ exits = get_loop_exit_edges (loop);
+ FOR_EACH_VEC_ELT (exits, j, ex)
+ if (number_of_iterations_exit (loop, ex, &niter_desc, false)
+ && !is_gimple_min_invariant (niter_desc.niter))
+ {
+ predicate will_be_nonconstant
+ = will_be_nonconstant_expr_predicate (parms_info, info,
+ niter_desc.niter,
+ nonconstant_names);
+ if (!true_predicate_p (&will_be_nonconstant))
+ will_be_nonconstant = and_predicates (info->conds,
+ &bb_predicate,
+ &will_be_nonconstant);
+ if (!true_predicate_p (&will_be_nonconstant)
+ && !false_predicate_p (&will_be_nonconstant))
+ /* This is slightly inprecise. We may want to represent each
+ loop with independent predicate. */
+ loop_iterations =
+ and_predicates (info->conds, &loop_iterations,
+ &will_be_nonconstant);
+ }
+ exits.release ();
+
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ gimple_stmt_iterator gsi;
+ bb_predicate = *(struct predicate *) body[i]->aux;
+ for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
+ gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ affine_iv iv;
+ ssa_op_iter iter;
+ tree use;
+
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
+ {
+ predicate will_be_nonconstant;
+
+ if (!simple_iv
+ (loop, loop_containing_stmt (stmt), use, &iv, true)
+ || is_gimple_min_invariant (iv.step))
+ continue;
+ will_be_nonconstant
+ = will_be_nonconstant_expr_predicate (parms_info, info,
+ iv.step,
+ nonconstant_names);
+ if (!true_predicate_p (&will_be_nonconstant))
+ will_be_nonconstant
+ = and_predicates (info->conds,
+ &bb_predicate,
+ &will_be_nonconstant);
+ if (!true_predicate_p (&will_be_nonconstant)
+ && !false_predicate_p (&will_be_nonconstant))
+ /* This is slightly inprecise. We may want to represent
+ each loop with independent predicate. */
+ loop_stride =
+ and_predicates (info->conds, &loop_stride,
+ &will_be_nonconstant);
+ }
+ }
+ }
+ free (body);
+ }
+ set_hint_predicate (&inline_summary (node)->loop_iterations,
+ loop_iterations);
+ set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
+ scev_finalize ();
+ }
+ FOR_ALL_BB_FN (bb, my_function)
+ {
+ edge e;
+ edge_iterator ei;
+
+ if (bb->aux)
+ pool_free (edge_predicate_pool, bb->aux);
+ bb->aux = NULL;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (e->aux)
+ pool_free (edge_predicate_pool, e->aux);
+ e->aux = NULL;
+ }
+ }
+ inline_summary (node)->self_time = time;
+ inline_summary (node)->self_size = size;
+ nonconstant_names.release ();
+ if (optimize && !early)
+ {
+ loop_optimizer_finalize ();
+ free_dominance_info (CDI_DOMINATORS);
+ }
+ if (dump_file)
+ {
+ fprintf (dump_file, "\n");
+ dump_inline_summary (dump_file, node);
+ }
+}
+
+
+/* Compute parameters of functions used by inliner.
+ EARLY is true when we compute parameters for the early inliner */
+
+void
+compute_inline_parameters (struct cgraph_node *node, bool early)
+{
+ HOST_WIDE_INT self_stack_size;
+ struct cgraph_edge *e;
+ struct inline_summary *info;
+
+ gcc_assert (!node->global.inlined_to);
+
+ inline_summary_alloc ();
+
+ info = inline_summary (node);
+ reset_inline_summary (node);
+
+ /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
+ Once this happen, we will need to more curefully predict call
+ statement size. */
+ if (node->thunk.thunk_p)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (node->callees);
+ struct predicate t = true_predicate ();
+
+ info->inlinable = 0;
+ node->callees->call_stmt_cannot_inline_p = true;
+ node->local.can_change_signature = false;
+ es->call_stmt_time = 1;
+ es->call_stmt_size = 1;
+ account_size_time (info, 0, 0, &t);
+ return;
+ }
+
+ /* Even is_gimple_min_invariant rely on current_function_decl. */
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+
+ /* Estimate the stack size for the function if we're optimizing. */
+ self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
+ info->estimated_self_stack_size = self_stack_size;
+ info->estimated_stack_size = self_stack_size;
+ info->stack_frame_offset = 0;
+
+ /* Can this function be inlined at all? */
+ if (!optimize && !lookup_attribute ("always_inline",
+ DECL_ATTRIBUTES (node->decl)))
+ info->inlinable = false;
+ else
+ info->inlinable = tree_inlinable_function_p (node->decl);
+
+ /* Type attributes can use parameter indices to describe them. */
+ if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
+ node->local.can_change_signature = false;
+ else
+ {
+ /* Otherwise, inlinable functions always can change signature. */
+ if (info->inlinable)
+ node->local.can_change_signature = true;
+ else
+ {
+ /* Functions calling builtin_apply can not change signature. */
+ for (e = node->callees; e; e = e->next_callee)
+ {
+ tree cdecl = e->callee->decl;
+ if (DECL_BUILT_IN (cdecl)
+ && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
+ && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
+ || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
+ break;
+ }
+ node->local.can_change_signature = !e;
+ }
+ }
+ estimate_function_body_sizes (node, early);
+
+ for (e = node->callees; e; e = e->next_callee)
+ if (symtab_comdat_local_p (e->callee))
+ break;
+ node->calls_comdat_local = (e != NULL);
+
+ /* Inlining characteristics are maintained by the cgraph_mark_inline. */
+ info->time = info->self_time;
+ info->size = info->self_size;
+ info->stack_frame_offset = 0;
+ info->estimated_stack_size = info->estimated_self_stack_size;
+#ifdef ENABLE_CHECKING
+ inline_update_overall_summary (node);
+ gcc_assert (info->time == info->self_time && info->size == info->self_size);
+#endif
+
+ pop_cfun ();
+}
+
+
+/* Compute parameters of functions used by inliner using
+ current_function_decl. */
+
+static unsigned int
+compute_inline_parameters_for_current (void)
+{
+ compute_inline_parameters (cgraph_get_node (current_function_decl), true);
+ return 0;
+}
+
+namespace {
+
+const pass_data pass_data_inline_parameters =
+{
+ GIMPLE_PASS, /* type */
+ "inline_param", /* name */
+ OPTGROUP_INLINE, /* optinfo_flags */
+ false, /* has_gate */
+ true, /* has_execute */
+ TV_INLINE_PARAMETERS, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_inline_parameters : public gimple_opt_pass
+{
+public:
+ pass_inline_parameters (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_inline_parameters, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
+ unsigned int execute () {
+ return compute_inline_parameters_for_current ();
+ }
+
+}; // class pass_inline_parameters
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_inline_parameters (gcc::context *ctxt)
+{
+ return new pass_inline_parameters (ctxt);
+}
+
+
+/* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
+ KNOWN_BINFOS. */
+
+static bool
+estimate_edge_devirt_benefit (struct cgraph_edge *ie,
+ int *size, int *time,
+ vec<tree> known_vals,
+ vec<tree> known_binfos,
+ vec<ipa_agg_jump_function_p> known_aggs)
+{
+ tree target;
+ struct cgraph_node *callee;
+ struct inline_summary *isummary;
+
+ if (!known_vals.exists () && !known_binfos.exists ())
+ return false;
+ if (!flag_indirect_inlining)
+ return false;
+
+ target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos,
+ known_aggs);
+ if (!target)
+ return false;
+
+ /* Account for difference in cost between indirect and direct calls. */
+ *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
+ *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
+ gcc_checking_assert (*time >= 0);
+ gcc_checking_assert (*size >= 0);
+
+ callee = cgraph_get_node (target);
+ if (!callee || !callee->definition)
+ return false;
+ isummary = inline_summary (callee);
+ return isummary->inlinable;
+}
+
+/* Increase SIZE and TIME for size and time needed to handle edge E. */
+
+static inline void
+estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *time,
+ int prob,
+ vec<tree> known_vals,
+ vec<tree> known_binfos,
+ vec<ipa_agg_jump_function_p> known_aggs,
+ inline_hints *hints)
+{
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ int call_size = es->call_stmt_size;
+ int call_time = es->call_stmt_time;
+ if (!e->callee
+ && estimate_edge_devirt_benefit (e, &call_size, &call_time,
+ known_vals, known_binfos, known_aggs)
+ && hints && cgraph_maybe_hot_edge_p (e))
+ *hints |= INLINE_HINT_indirect_call;
+ *size += call_size * INLINE_SIZE_SCALE;
+ *time += apply_probability ((gcov_type) call_time, prob)
+ * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
+ if (*time > MAX_TIME * INLINE_TIME_SCALE)
+ *time = MAX_TIME * INLINE_TIME_SCALE;
+}
+
+
+
+/* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
+ POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
+ site. */
+
+static void
+estimate_calls_size_and_time (struct cgraph_node *node, int *size, int *time,
+ inline_hints *hints,
+ clause_t possible_truths,
+ vec<tree> known_vals,
+ vec<tree> known_binfos,
+ vec<ipa_agg_jump_function_p> known_aggs)
+{
+ struct cgraph_edge *e;
+ for (e = node->callees; e; e = e->next_callee)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ if (!es->predicate
+ || evaluate_predicate (es->predicate, possible_truths))
+ {
+ if (e->inline_failed)
+ {
+ /* Predicates of calls shall not use NOT_CHANGED codes,
+ sowe do not need to compute probabilities. */
+ estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
+ known_vals, known_binfos,
+ known_aggs, hints);
+ }
+ else
+ estimate_calls_size_and_time (e->callee, size, time, hints,
+ possible_truths,
+ known_vals, known_binfos,
+ known_aggs);
+ }
+ }
+ for (e = node->indirect_calls; e; e = e->next_callee)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ if (!es->predicate
+ || evaluate_predicate (es->predicate, possible_truths))
+ estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
+ known_vals, known_binfos, known_aggs,
+ hints);
+ }
+}
+
+
+/* Estimate size and time needed to execute NODE assuming
+ POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
+ about NODE's arguments. */
+
+static void
+estimate_node_size_and_time (struct cgraph_node *node,
+ clause_t possible_truths,
+ vec<tree> known_vals,
+ vec<tree> known_binfos,
+ vec<ipa_agg_jump_function_p> known_aggs,
+ int *ret_size, int *ret_time,
+ inline_hints *ret_hints,
+ vec<inline_param_summary>
+ inline_param_summary)
+{
+ struct inline_summary *info = inline_summary (node);
+ size_time_entry *e;
+ int size = 0;
+ int time = 0;
+ inline_hints hints = 0;
+ int i;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ bool found = false;
+ fprintf (dump_file, " Estimating body: %s/%i\n"
+ " Known to be false: ", node->name (),
+ node->order);
+
+ for (i = predicate_not_inlined_condition;
+ i < (predicate_first_dynamic_condition
+ + (int) vec_safe_length (info->conds)); i++)
+ if (!(possible_truths & (1 << i)))
+ {
+ if (found)
+ fprintf (dump_file, ", ");
+ found = true;
+ dump_condition (dump_file, info->conds, i);
+ }
+ }
+
+ for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
+ if (evaluate_predicate (&e->predicate, possible_truths))
+ {
+ size += e->size;
+ gcc_checking_assert (e->time >= 0);
+ gcc_checking_assert (time >= 0);
+ if (!inline_param_summary.exists ())
+ time += e->time;
+ else
+ {
+ int prob = predicate_probability (info->conds,
+ &e->predicate,
+ possible_truths,
+ inline_param_summary);
+ gcc_checking_assert (prob >= 0);
+ gcc_checking_assert (prob <= REG_BR_PROB_BASE);
+ time += apply_probability ((gcov_type) e->time, prob);
+ }
+ if (time > MAX_TIME * INLINE_TIME_SCALE)
+ time = MAX_TIME * INLINE_TIME_SCALE;
+ gcc_checking_assert (time >= 0);
+
+ }
+ gcc_checking_assert (size >= 0);
+ gcc_checking_assert (time >= 0);
+
+ if (info->loop_iterations
+ && !evaluate_predicate (info->loop_iterations, possible_truths))
+ hints |= INLINE_HINT_loop_iterations;
+ if (info->loop_stride
+ && !evaluate_predicate (info->loop_stride, possible_truths))
+ hints |= INLINE_HINT_loop_stride;
+ if (info->array_index
+ && !evaluate_predicate (info->array_index, possible_truths))
+ hints |= INLINE_HINT_array_index;
+ if (info->scc_no)
+ hints |= INLINE_HINT_in_scc;
+ if (DECL_DECLARED_INLINE_P (node->decl))
+ hints |= INLINE_HINT_declared_inline;
+
+ estimate_calls_size_and_time (node, &size, &time, &hints, possible_truths,
+ known_vals, known_binfos, known_aggs);
+ gcc_checking_assert (size >= 0);
+ gcc_checking_assert (time >= 0);
+ time = RDIV (time, INLINE_TIME_SCALE);
+ size = RDIV (size, INLINE_SIZE_SCALE);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
+ if (ret_time)
+ *ret_time = time;
+ if (ret_size)
+ *ret_size = size;
+ if (ret_hints)
+ *ret_hints = hints;
+ return;
+}
+
+
+/* Estimate size and time needed to execute callee of EDGE assuming that
+ parameters known to be constant at caller of EDGE are propagated.
+ KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
+ and types for parameters. */
+
+void
+estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
+ vec<tree> known_vals,
+ vec<tree> known_binfos,
+ vec<ipa_agg_jump_function_p> known_aggs,
+ int *ret_size, int *ret_time,
+ inline_hints *hints)
+{
+ clause_t clause;
+
+ clause = evaluate_conditions_for_known_args (node, false, known_vals,
+ known_aggs);
+ estimate_node_size_and_time (node, clause, known_vals, known_binfos,
+ known_aggs, ret_size, ret_time, hints, vNULL);
+}
+
+/* Translate all conditions from callee representation into caller
+ representation and symbolically evaluate predicate P into new predicate.
+
+ INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
+ is summary of function predicate P is from. OPERAND_MAP is array giving
+ callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
+ callee conditions that may be true in caller context. TOPLEV_PREDICATE is
+ predicate under which callee is executed. OFFSET_MAP is an array of of
+ offsets that need to be added to conditions, negative offset means that
+ conditions relying on values passed by reference have to be discarded
+ because they might not be preserved (and should be considered offset zero
+ for other purposes). */
+
+static struct predicate
+remap_predicate (struct inline_summary *info,
+ struct inline_summary *callee_info,
+ struct predicate *p,
+ vec<int> operand_map,
+ vec<int> offset_map,
+ clause_t possible_truths, struct predicate *toplev_predicate)
+{
+ int i;
+ struct predicate out = true_predicate ();
+
+ /* True predicate is easy. */
+ if (true_predicate_p (p))
+ return *toplev_predicate;
+ for (i = 0; p->clause[i]; i++)
+ {
+ clause_t clause = p->clause[i];
+ int cond;
+ struct predicate clause_predicate = false_predicate ();
+
+ gcc_assert (i < MAX_CLAUSES);
+
+ for (cond = 0; cond < NUM_CONDITIONS; cond++)
+ /* Do we have condition we can't disprove? */
+ if (clause & possible_truths & (1 << cond))
+ {
+ struct predicate cond_predicate;
+ /* Work out if the condition can translate to predicate in the
+ inlined function. */
+ if (cond >= predicate_first_dynamic_condition)
+ {
+ struct condition *c;
+
+ c = &(*callee_info->conds)[cond
+ -
+ predicate_first_dynamic_condition];
+ /* See if we can remap condition operand to caller's operand.
+ Otherwise give up. */
+ if (!operand_map.exists ()
+ || (int) operand_map.length () <= c->operand_num
+ || operand_map[c->operand_num] == -1
+ /* TODO: For non-aggregate conditions, adding an offset is
+ basically an arithmetic jump function processing which
+ we should support in future. */
+ || ((!c->agg_contents || !c->by_ref)
+ && offset_map[c->operand_num] > 0)
+ || (c->agg_contents && c->by_ref
+ && offset_map[c->operand_num] < 0))
+ cond_predicate = true_predicate ();
+ else
+ {
+ struct agg_position_info ap;
+ HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
+ if (offset_delta < 0)
+ {
+ gcc_checking_assert (!c->agg_contents || !c->by_ref);
+ offset_delta = 0;
+ }
+ gcc_assert (!c->agg_contents
+ || c->by_ref || offset_delta == 0);
+ ap.offset = c->offset + offset_delta;
+ ap.agg_contents = c->agg_contents;
+ ap.by_ref = c->by_ref;
+ cond_predicate = add_condition (info,
+ operand_map[c->operand_num],
+ &ap, c->code, c->val);
+ }
+ }
+ /* Fixed conditions remains same, construct single
+ condition predicate. */
+ else
+ {
+ cond_predicate.clause[0] = 1 << cond;
+ cond_predicate.clause[1] = 0;
+ }
+ clause_predicate = or_predicates (info->conds, &clause_predicate,
+ &cond_predicate);
+ }
+ out = and_predicates (info->conds, &out, &clause_predicate);
+ }
+ return and_predicates (info->conds, &out, toplev_predicate);
+}
+
+
+/* Update summary information of inline clones after inlining.
+ Compute peak stack usage. */
+
+static void
+inline_update_callee_summaries (struct cgraph_node *node, int depth)
+{
+ struct cgraph_edge *e;
+ struct inline_summary *callee_info = inline_summary (node);
+ struct inline_summary *caller_info = inline_summary (node->callers->caller);
+ HOST_WIDE_INT peak;
+
+ callee_info->stack_frame_offset
+ = caller_info->stack_frame_offset
+ + caller_info->estimated_self_stack_size;
+ peak = callee_info->stack_frame_offset
+ + callee_info->estimated_self_stack_size;
+ if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
+ inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
+ ipa_propagate_frequency (node);
+ for (e = node->callees; e; e = e->next_callee)
+ {
+ if (!e->inline_failed)
+ inline_update_callee_summaries (e->callee, depth);
+ inline_edge_summary (e)->loop_depth += depth;
+ }
+ for (e = node->indirect_calls; e; e = e->next_callee)
+ inline_edge_summary (e)->loop_depth += depth;
+}
+
+/* Update change_prob of EDGE after INLINED_EDGE has been inlined.
+ When functoin A is inlined in B and A calls C with parameter that
+ changes with probability PROB1 and C is known to be passthroug
+ of argument if B that change with probability PROB2, the probability
+ of change is now PROB1*PROB2. */
+
+static void
+remap_edge_change_prob (struct cgraph_edge *inlined_edge,
+ struct cgraph_edge *edge)
+{
+ if (ipa_node_params_vector.exists ())
+ {
+ int i;
+ struct ipa_edge_args *args = IPA_EDGE_REF (edge);
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+ struct inline_edge_summary *inlined_es
+ = inline_edge_summary (inlined_edge);
+
+ for (i = 0; i < ipa_get_cs_argument_count (args); i++)
+ {
+ struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
+ if (jfunc->type == IPA_JF_PASS_THROUGH
+ && (ipa_get_jf_pass_through_formal_id (jfunc)
+ < (int) inlined_es->param.length ()))
+ {
+ int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
+ int prob1 = es->param[i].change_prob;
+ int prob2 = inlined_es->param[jf_formal_id].change_prob;
+ int prob = combine_probabilities (prob1, prob2);
+
+ if (prob1 && prob2 && !prob)
+ prob = 1;
+
+ es->param[i].change_prob = prob;
+ }
+ }
+ }
+}
+
+/* Update edge summaries of NODE after INLINED_EDGE has been inlined.
+
+ Remap predicates of callees of NODE. Rest of arguments match
+ remap_predicate.
+
+ Also update change probabilities. */
+
+static void
+remap_edge_summaries (struct cgraph_edge *inlined_edge,
+ struct cgraph_node *node,
+ struct inline_summary *info,
+ struct inline_summary *callee_info,
+ vec<int> operand_map,
+ vec<int> offset_map,
+ clause_t possible_truths,
+ struct predicate *toplev_predicate)
+{
+ struct cgraph_edge *e;
+ for (e = node->callees; e; e = e->next_callee)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ struct predicate p;
+
+ if (e->inline_failed)
+ {
+ remap_edge_change_prob (inlined_edge, e);
+
+ if (es->predicate)
+ {
+ p = remap_predicate (info, callee_info,
+ es->predicate, operand_map, offset_map,
+ possible_truths, toplev_predicate);
+ edge_set_predicate (e, &p);
+ /* TODO: We should remove the edge for code that will be
+ optimized out, but we need to keep verifiers and tree-inline
+ happy. Make it cold for now. */
+ if (false_predicate_p (&p))
+ {
+ e->count = 0;
+ e->frequency = 0;
+ }
+ }
+ else
+ edge_set_predicate (e, toplev_predicate);
+ }
+ else
+ remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
+ operand_map, offset_map, possible_truths,
+ toplev_predicate);
+ }
+ for (e = node->indirect_calls; e; e = e->next_callee)
+ {
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ struct predicate p;
+
+ remap_edge_change_prob (inlined_edge, e);
+ if (es->predicate)
+ {
+ p = remap_predicate (info, callee_info,
+ es->predicate, operand_map, offset_map,
+ possible_truths, toplev_predicate);
+ edge_set_predicate (e, &p);
+ /* TODO: We should remove the edge for code that will be optimized
+ out, but we need to keep verifiers and tree-inline happy.
+ Make it cold for now. */
+ if (false_predicate_p (&p))
+ {
+ e->count = 0;
+ e->frequency = 0;
+ }
+ }
+ else
+ edge_set_predicate (e, toplev_predicate);
+ }
+}
+
+/* Same as remap_predicate, but set result into hint *HINT. */
+
+static void
+remap_hint_predicate (struct inline_summary *info,
+ struct inline_summary *callee_info,
+ struct predicate **hint,
+ vec<int> operand_map,
+ vec<int> offset_map,
+ clause_t possible_truths,
+ struct predicate *toplev_predicate)
+{
+ predicate p;
+
+ if (!*hint)
+ return;
+ p = remap_predicate (info, callee_info,
+ *hint,
+ operand_map, offset_map,
+ possible_truths, toplev_predicate);
+ if (!false_predicate_p (&p) && !true_predicate_p (&p))
+ {
+ if (!*hint)
+ set_hint_predicate (hint, p);
+ else
+ **hint = and_predicates (info->conds, *hint, &p);
+ }
+}
+
+/* We inlined EDGE. Update summary of the function we inlined into. */
+
+void
+inline_merge_summary (struct cgraph_edge *edge)
+{
+ struct inline_summary *callee_info = inline_summary (edge->callee);
+ struct cgraph_node *to = (edge->caller->global.inlined_to
+ ? edge->caller->global.inlined_to : edge->caller);
+ struct inline_summary *info = inline_summary (to);
+ clause_t clause = 0; /* not_inline is known to be false. */
+ size_time_entry *e;
+ vec<int> operand_map = vNULL;
+ vec<int> offset_map = vNULL;
+ int i;
+ struct predicate toplev_predicate;
+ struct predicate true_p = true_predicate ();
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+
+ if (es->predicate)
+ toplev_predicate = *es->predicate;
+ else
+ toplev_predicate = true_predicate ();
+
+ if (ipa_node_params_vector.exists () && callee_info->conds)
+ {
+ struct ipa_edge_args *args = IPA_EDGE_REF (edge);
+ int count = ipa_get_cs_argument_count (args);
+ int i;
+
+ evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
+ if (count)
+ {
+ operand_map.safe_grow_cleared (count);
+ offset_map.safe_grow_cleared (count);
+ }
+ for (i = 0; i < count; i++)
+ {
+ struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
+ int map = -1;
+
+ /* TODO: handle non-NOPs when merging. */
+ if (jfunc->type == IPA_JF_PASS_THROUGH)
+ {
+ if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
+ map = ipa_get_jf_pass_through_formal_id (jfunc);
+ if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
+ offset_map[i] = -1;
+ }
+ else if (jfunc->type == IPA_JF_ANCESTOR)
+ {
+ HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
+ if (offset >= 0 && offset < INT_MAX)
+ {
+ map = ipa_get_jf_ancestor_formal_id (jfunc);
+ if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
+ offset = -1;
+ offset_map[i] = offset;
+ }
+ }
+ operand_map[i] = map;
+ gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
+ }
+ }
+ for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
+ {
+ struct predicate p = remap_predicate (info, callee_info,
+ &e->predicate, operand_map,
+ offset_map, clause,
+ &toplev_predicate);
+ if (!false_predicate_p (&p))
+ {
+ gcov_type add_time = ((gcov_type) e->time * edge->frequency
+ + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
+ int prob = predicate_probability (callee_info->conds,
+ &e->predicate,
+ clause, es->param);
+ add_time = apply_probability ((gcov_type) add_time, prob);
+ if (add_time > MAX_TIME * INLINE_TIME_SCALE)
+ add_time = MAX_TIME * INLINE_TIME_SCALE;
+ if (prob != REG_BR_PROB_BASE
+ && dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\t\tScaling time by probability:%f\n",
+ (double) prob / REG_BR_PROB_BASE);
+ }
+ account_size_time (info, e->size, add_time, &p);
+ }
+ }
+ remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
+ offset_map, clause, &toplev_predicate);
+ remap_hint_predicate (info, callee_info,
+ &callee_info->loop_iterations,
+ operand_map, offset_map, clause, &toplev_predicate);
+ remap_hint_predicate (info, callee_info,
+ &callee_info->loop_stride,
+ operand_map, offset_map, clause, &toplev_predicate);
+ remap_hint_predicate (info, callee_info,
+ &callee_info->array_index,
+ operand_map, offset_map, clause, &toplev_predicate);
+
+ inline_update_callee_summaries (edge->callee,
+ inline_edge_summary (edge)->loop_depth);
+
+ /* We do not maintain predicates of inlined edges, free it. */
+ edge_set_predicate (edge, &true_p);
+ /* Similarly remove param summaries. */
+ es->param.release ();
+ operand_map.release ();
+ offset_map.release ();
+}
+
+/* For performance reasons inline_merge_summary is not updating overall size
+ and time. Recompute it. */
+
+void
+inline_update_overall_summary (struct cgraph_node *node)
+{
+ struct inline_summary *info = inline_summary (node);
+ size_time_entry *e;
+ int i;
+
+ info->size = 0;
+ info->time = 0;
+ for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
+ {
+ info->size += e->size, info->time += e->time;
+ if (info->time > MAX_TIME * INLINE_TIME_SCALE)
+ info->time = MAX_TIME * INLINE_TIME_SCALE;
+ }
+ estimate_calls_size_and_time (node, &info->size, &info->time, NULL,
+ ~(clause_t) (1 << predicate_false_condition),
+ vNULL, vNULL, vNULL);
+ info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
+ info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
+}
+
+/* Return hints derrived from EDGE. */
+int
+simple_edge_hints (struct cgraph_edge *edge)
+{
+ int hints = 0;
+ struct cgraph_node *to = (edge->caller->global.inlined_to
+ ? edge->caller->global.inlined_to : edge->caller);
+ if (inline_summary (to)->scc_no
+ && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
+ && !cgraph_edge_recursive_p (edge))
+ hints |= INLINE_HINT_same_scc;
+
+ if (to->lto_file_data && edge->callee->lto_file_data
+ && to->lto_file_data != edge->callee->lto_file_data)
+ hints |= INLINE_HINT_cross_module;
+
+ return hints;
+}
+
+/* Estimate the time cost for the caller when inlining EDGE.
+ Only to be called via estimate_edge_time, that handles the
+ caching mechanism.
+
+ When caching, also update the cache entry. Compute both time and
+ size, since we always need both metrics eventually. */
+
+int
+do_estimate_edge_time (struct cgraph_edge *edge)
+{
+ int time;
+ int size;
+ inline_hints hints;
+ struct cgraph_node *callee;
+ clause_t clause;
+ vec<tree> known_vals;
+ vec<tree> known_binfos;
+ vec<ipa_agg_jump_function_p> known_aggs;
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+
+ callee = cgraph_function_or_thunk_node (edge->callee, NULL);
+
+ gcc_checking_assert (edge->inline_failed);
+ evaluate_properties_for_edge (edge, true,
+ &clause, &known_vals, &known_binfos,
+ &known_aggs);
+ estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
+ known_aggs, &size, &time, &hints, es->param);
+ known_vals.release ();
+ known_binfos.release ();
+ known_aggs.release ();
+ gcc_checking_assert (size >= 0);
+ gcc_checking_assert (time >= 0);
+
+ /* When caching, update the cache entry. */
+ if (edge_growth_cache.exists ())
+ {
+ if ((int) edge_growth_cache.length () <= edge->uid)
+ edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
+ edge_growth_cache[edge->uid].time = time + (time >= 0);
+
+ edge_growth_cache[edge->uid].size = size + (size >= 0);
+ hints |= simple_edge_hints (edge);
+ edge_growth_cache[edge->uid].hints = hints + 1;
+ }
+ return time;
+}
+
+
+/* Return estimated callee growth after inlining EDGE.
+ Only to be called via estimate_edge_size. */
+
+int
+do_estimate_edge_size (struct cgraph_edge *edge)
+{
+ int size;
+ struct cgraph_node *callee;
+ clause_t clause;
+ vec<tree> known_vals;
+ vec<tree> known_binfos;
+ vec<ipa_agg_jump_function_p> known_aggs;
+
+ /* When we do caching, use do_estimate_edge_time to populate the entry. */
+
+ if (edge_growth_cache.exists ())
+ {
+ do_estimate_edge_time (edge);
+ size = edge_growth_cache[edge->uid].size;
+ gcc_checking_assert (size);
+ return size - (size > 0);
+ }
+
+ callee = cgraph_function_or_thunk_node (edge->callee, NULL);
+
+ /* Early inliner runs without caching, go ahead and do the dirty work. */
+ gcc_checking_assert (edge->inline_failed);
+ evaluate_properties_for_edge (edge, true,
+ &clause, &known_vals, &known_binfos,
+ &known_aggs);
+ estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
+ known_aggs, &size, NULL, NULL, vNULL);
+ known_vals.release ();
+ known_binfos.release ();
+ known_aggs.release ();
+ return size;
+}
+
+
+/* Estimate the growth of the caller when inlining EDGE.
+ Only to be called via estimate_edge_size. */
+
+inline_hints
+do_estimate_edge_hints (struct cgraph_edge *edge)
+{
+ inline_hints hints;
+ struct cgraph_node *callee;
+ clause_t clause;
+ vec<tree> known_vals;
+ vec<tree> known_binfos;
+ vec<ipa_agg_jump_function_p> known_aggs;
+
+ /* When we do caching, use do_estimate_edge_time to populate the entry. */
+
+ if (edge_growth_cache.exists ())
+ {
+ do_estimate_edge_time (edge);
+ hints = edge_growth_cache[edge->uid].hints;
+ gcc_checking_assert (hints);
+ return hints - 1;
+ }
+
+ callee = cgraph_function_or_thunk_node (edge->callee, NULL);
+
+ /* Early inliner runs without caching, go ahead and do the dirty work. */
+ gcc_checking_assert (edge->inline_failed);
+ evaluate_properties_for_edge (edge, true,
+ &clause, &known_vals, &known_binfos,
+ &known_aggs);
+ estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
+ known_aggs, NULL, NULL, &hints, vNULL);
+ known_vals.release ();
+ known_binfos.release ();
+ known_aggs.release ();
+ hints |= simple_edge_hints (edge);
+ return hints;
+}
+
+
+/* Estimate self time of the function NODE after inlining EDGE. */
+
+int
+estimate_time_after_inlining (struct cgraph_node *node,
+ struct cgraph_edge *edge)
+{
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+ if (!es->predicate || !false_predicate_p (es->predicate))
+ {
+ gcov_type time =
+ inline_summary (node)->time + estimate_edge_time (edge);
+ if (time < 0)
+ time = 0;
+ if (time > MAX_TIME)
+ time = MAX_TIME;
+ return time;
+ }
+ return inline_summary (node)->time;
+}
+
+
+/* Estimate the size of NODE after inlining EDGE which should be an
+ edge to either NODE or a call inlined into NODE. */
+
+int
+estimate_size_after_inlining (struct cgraph_node *node,
+ struct cgraph_edge *edge)
+{
+ struct inline_edge_summary *es = inline_edge_summary (edge);
+ if (!es->predicate || !false_predicate_p (es->predicate))
+ {
+ int size = inline_summary (node)->size + estimate_edge_growth (edge);
+ gcc_assert (size >= 0);
+ return size;
+ }
+ return inline_summary (node)->size;
+}
+
+
+struct growth_data
+{
+ struct cgraph_node *node;
+ bool self_recursive;
+ int growth;
+};
+
+
+/* Worker for do_estimate_growth. Collect growth for all callers. */
+
+static bool
+do_estimate_growth_1 (struct cgraph_node *node, void *data)
+{
+ struct cgraph_edge *e;
+ struct growth_data *d = (struct growth_data *) data;
+
+ for (e = node->callers; e; e = e->next_caller)
+ {
+ gcc_checking_assert (e->inline_failed);
+
+ if (e->caller == d->node
+ || (e->caller->global.inlined_to
+ && e->caller->global.inlined_to == d->node))
+ d->self_recursive = true;
+ d->growth += estimate_edge_growth (e);
+ }
+ return false;
+}
+
+
+/* Estimate the growth caused by inlining NODE into all callees. */
+
+int
+do_estimate_growth (struct cgraph_node *node)
+{
+ struct growth_data d = { node, 0, false };
+ struct inline_summary *info = inline_summary (node);
+
+ cgraph_for_node_and_aliases (node, do_estimate_growth_1, &d, true);
+
+ /* For self recursive functions the growth estimation really should be
+ infinity. We don't want to return very large values because the growth
+ plays various roles in badness computation fractions. Be sure to not
+ return zero or negative growths. */
+ if (d.self_recursive)
+ d.growth = d.growth < info->size ? info->size : d.growth;
+ else if (DECL_EXTERNAL (node->decl))
+ ;
+ else
+ {
+ if (cgraph_will_be_removed_from_program_if_no_direct_calls (node))
+ d.growth -= info->size;
+ /* COMDAT functions are very often not shared across multiple units
+ since they come from various template instantiations.
+ Take this into account. */
+ else if (DECL_COMDAT (node->decl)
+ && cgraph_can_remove_if_no_direct_calls_p (node))
+ d.growth -= (info->size
+ * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
+ + 50) / 100;
+ }
+
+ if (node_growth_cache.exists ())
+ {
+ if ((int) node_growth_cache.length () <= node->uid)
+ node_growth_cache.safe_grow_cleared (cgraph_max_uid);
+ node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
+ }
+ return d.growth;
+}
+
+
+/* This function performs intraprocedural analysis in NODE that is required to
+ inline indirect calls. */
+
+static void
+inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
+{
+ ipa_analyze_node (node);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ ipa_print_node_params (dump_file, node);
+ ipa_print_node_jump_functions (dump_file, node);
+ }
+}
+
+
+/* Note function body size. */
+
+static void
+inline_analyze_function (struct cgraph_node *node)
+{
+ push_cfun (DECL_STRUCT_FUNCTION (node->decl));
+
+ if (dump_file)
+ fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
+ node->name (), node->order);
+ if (optimize && !node->thunk.thunk_p)
+ inline_indirect_intraprocedural_analysis (node);
+ compute_inline_parameters (node, false);
+ if (!optimize)
+ {
+ struct cgraph_edge *e;
+ for (e = node->callees; e; e = e->next_callee)
+ {
+ if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
+ e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
+ e->call_stmt_cannot_inline_p = true;
+ }
+ for (e = node->indirect_calls; e; e = e->next_callee)
+ {
+ if (e->inline_failed == CIF_FUNCTION_NOT_CONSIDERED)
+ e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
+ e->call_stmt_cannot_inline_p = true;
+ }
+ }
+
+ pop_cfun ();
+}
+
+
+/* Called when new function is inserted to callgraph late. */
+
+static void
+add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
+{
+ inline_analyze_function (node);
+}
+
+
+/* Note function body size. */
+
+void
+inline_generate_summary (void)
+{
+ struct cgraph_node *node;
+
+ /* When not optimizing, do not bother to analyze. Inlining is still done
+ because edge redirection needs to happen there. */
+ if (!optimize && !flag_lto && !flag_wpa)
+ return;
+
+ function_insertion_hook_holder =
+ cgraph_add_function_insertion_hook (&add_new_function, NULL);
+
+ ipa_register_cgraph_hooks ();
+ inline_free_summary ();
+
+ FOR_EACH_DEFINED_FUNCTION (node)
+ if (!node->alias)
+ inline_analyze_function (node);
+}
+
+
+/* Read predicate from IB. */
+
+static struct predicate
+read_predicate (struct lto_input_block *ib)
+{
+ struct predicate out;
+ clause_t clause;
+ int k = 0;
+
+ do
+ {
+ gcc_assert (k <= MAX_CLAUSES);
+ clause = out.clause[k++] = streamer_read_uhwi (ib);
+ }
+ while (clause);
+
+ /* Zero-initialize the remaining clauses in OUT. */
+ while (k <= MAX_CLAUSES)
+ out.clause[k++] = 0;
+
+ return out;
+}
+
+
+/* Write inline summary for edge E to OB. */
+
+static void
+read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
+{
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ struct predicate p;
+ int length, i;
+
+ es->call_stmt_size = streamer_read_uhwi (ib);
+ es->call_stmt_time = streamer_read_uhwi (ib);
+ es->loop_depth = streamer_read_uhwi (ib);
+ p = read_predicate (ib);
+ edge_set_predicate (e, &p);
+ length = streamer_read_uhwi (ib);
+ if (length)
+ {
+ es->param.safe_grow_cleared (length);
+ for (i = 0; i < length; i++)
+ es->param[i].change_prob = streamer_read_uhwi (ib);
+ }
+}
+
+
+/* Stream in inline summaries from the section. */
+
+static void
+inline_read_section (struct lto_file_decl_data *file_data, const char *data,
+ size_t len)
+{
+ const struct lto_function_header *header =
+ (const struct lto_function_header *) data;
+ const int cfg_offset = sizeof (struct lto_function_header);
+ const int main_offset = cfg_offset + header->cfg_size;
+ const int string_offset = main_offset + header->main_size;
+ struct data_in *data_in;
+ struct lto_input_block ib;
+ unsigned int i, count2, j;
+ unsigned int f_count;
+
+ LTO_INIT_INPUT_BLOCK (ib, (const char *) data + main_offset, 0,
+ header->main_size);
+
+ data_in =
+ lto_data_in_create (file_data, (const char *) data + string_offset,
+ header->string_size, vNULL);
+ f_count = streamer_read_uhwi (&ib);
+ for (i = 0; i < f_count; i++)
+ {
+ unsigned int index;
+ struct cgraph_node *node;
+ struct inline_summary *info;
+ lto_symtab_encoder_t encoder;
+ struct bitpack_d bp;
+ struct cgraph_edge *e;
+ predicate p;
+
+ index = streamer_read_uhwi (&ib);
+ encoder = file_data->symtab_node_encoder;
+ node = cgraph (lto_symtab_encoder_deref (encoder, index));
+ info = inline_summary (node);
+
+ info->estimated_stack_size
+ = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
+ info->size = info->self_size = streamer_read_uhwi (&ib);
+ info->time = info->self_time = streamer_read_uhwi (&ib);
+
+ bp = streamer_read_bitpack (&ib);
+ info->inlinable = bp_unpack_value (&bp, 1);
+
+ count2 = streamer_read_uhwi (&ib);
+ gcc_assert (!info->conds);
+ for (j = 0; j < count2; j++)
+ {
+ struct condition c;
+ c.operand_num = streamer_read_uhwi (&ib);
+ c.code = (enum tree_code) streamer_read_uhwi (&ib);
+ c.val = stream_read_tree (&ib, data_in);
+ bp = streamer_read_bitpack (&ib);
+ c.agg_contents = bp_unpack_value (&bp, 1);
+ c.by_ref = bp_unpack_value (&bp, 1);
+ if (c.agg_contents)
+ c.offset = streamer_read_uhwi (&ib);
+ vec_safe_push (info->conds, c);
+ }
+ count2 = streamer_read_uhwi (&ib);
+ gcc_assert (!info->entry);
+ for (j = 0; j < count2; j++)
+ {
+ struct size_time_entry e;
+
+ e.size = streamer_read_uhwi (&ib);
+ e.time = streamer_read_uhwi (&ib);
+ e.predicate = read_predicate (&ib);
+
+ vec_safe_push (info->entry, e);
+ }
+
+ p = read_predicate (&ib);
+ set_hint_predicate (&info->loop_iterations, p);
+ p = read_predicate (&ib);
+ set_hint_predicate (&info->loop_stride, p);
+ p = read_predicate (&ib);
+ set_hint_predicate (&info->array_index, p);
+ for (e = node->callees; e; e = e->next_callee)
+ read_inline_edge_summary (&ib, e);
+ for (e = node->indirect_calls; e; e = e->next_callee)
+ read_inline_edge_summary (&ib, e);
+ }
+
+ lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
+ len);
+ lto_data_in_delete (data_in);
+}
+
+
+/* Read inline summary. Jump functions are shared among ipa-cp
+ and inliner, so when ipa-cp is active, we don't need to write them
+ twice. */
+
+void
+inline_read_summary (void)
+{
+ struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
+ struct lto_file_decl_data *file_data;
+ unsigned int j = 0;
+
+ inline_summary_alloc ();
+
+ while ((file_data = file_data_vec[j++]))
+ {
+ size_t len;
+ const char *data = lto_get_section_data (file_data,
+ LTO_section_inline_summary,
+ NULL, &len);
+ if (data)
+ inline_read_section (file_data, data, len);
+ else
+ /* Fatal error here. We do not want to support compiling ltrans units
+ with different version of compiler or different flags than the WPA
+ unit, so this should never happen. */
+ fatal_error ("ipa inline summary is missing in input file");
+ }
+ if (optimize)
+ {
+ ipa_register_cgraph_hooks ();
+ if (!flag_ipa_cp)
+ ipa_prop_read_jump_functions ();
+ }
+ function_insertion_hook_holder =
+ cgraph_add_function_insertion_hook (&add_new_function, NULL);
+}
+
+
+/* Write predicate P to OB. */
+
+static void
+write_predicate (struct output_block *ob, struct predicate *p)
+{
+ int j;
+ if (p)
+ for (j = 0; p->clause[j]; j++)
+ {
+ gcc_assert (j < MAX_CLAUSES);
+ streamer_write_uhwi (ob, p->clause[j]);
+ }
+ streamer_write_uhwi (ob, 0);
+}
+
+
+/* Write inline summary for edge E to OB. */
+
+static void
+write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
+{
+ struct inline_edge_summary *es = inline_edge_summary (e);
+ int i;
+
+ streamer_write_uhwi (ob, es->call_stmt_size);
+ streamer_write_uhwi (ob, es->call_stmt_time);
+ streamer_write_uhwi (ob, es->loop_depth);
+ write_predicate (ob, es->predicate);
+ streamer_write_uhwi (ob, es->param.length ());
+ for (i = 0; i < (int) es->param.length (); i++)
+ streamer_write_uhwi (ob, es->param[i].change_prob);
+}
+
+
+/* Write inline summary for node in SET.
+ Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
+ active, we don't need to write them twice. */
+
+void
+inline_write_summary (void)
+{
+ struct cgraph_node *node;
+ struct output_block *ob = create_output_block (LTO_section_inline_summary);
+ lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
+ unsigned int count = 0;
+ int i;
+
+ for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
+ {
+ symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
+ cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
+ if (cnode && cnode->definition && !cnode->alias)
+ count++;
+ }
+ streamer_write_uhwi (ob, count);
+
+ for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
+ {
+ symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
+ cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
+ if (cnode && (node = cnode)->definition && !node->alias)
+ {
+ struct inline_summary *info = inline_summary (node);
+ struct bitpack_d bp;
+ struct cgraph_edge *edge;
+ int i;
+ size_time_entry *e;
+ struct condition *c;
+
+ streamer_write_uhwi (ob,
+ lto_symtab_encoder_encode (encoder,
+
+ node));
+ streamer_write_hwi (ob, info->estimated_self_stack_size);
+ streamer_write_hwi (ob, info->self_size);
+ streamer_write_hwi (ob, info->self_time);
+ bp = bitpack_create (ob->main_stream);
+ bp_pack_value (&bp, info->inlinable, 1);
+ streamer_write_bitpack (&bp);
+ streamer_write_uhwi (ob, vec_safe_length (info->conds));
+ for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
+ {
+ streamer_write_uhwi (ob, c->operand_num);
+ streamer_write_uhwi (ob, c->code);
+ stream_write_tree (ob, c->val, true);
+ bp = bitpack_create (ob->main_stream);
+ bp_pack_value (&bp, c->agg_contents, 1);
+ bp_pack_value (&bp, c->by_ref, 1);
+ streamer_write_bitpack (&bp);
+ if (c->agg_contents)
+ streamer_write_uhwi (ob, c->offset);
+ }
+ streamer_write_uhwi (ob, vec_safe_length (info->entry));
+ for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
+ {
+ streamer_write_uhwi (ob, e->size);
+ streamer_write_uhwi (ob, e->time);
+ write_predicate (ob, &e->predicate);
+ }
+ write_predicate (ob, info->loop_iterations);
+ write_predicate (ob, info->loop_stride);
+ write_predicate (ob, info->array_index);
+ for (edge = node->callees; edge; edge = edge->next_callee)
+ write_inline_edge_summary (ob, edge);
+ for (edge = node->indirect_calls; edge; edge = edge->next_callee)
+ write_inline_edge_summary (ob, edge);
+ }
+ }
+ streamer_write_char_stream (ob->main_stream, 0);
+ produce_asm (ob, NULL);
+ destroy_output_block (ob);
+
+ if (optimize && !flag_ipa_cp)
+ ipa_prop_write_jump_functions ();
+}
+
+
+/* Release inline summary. */
+
+void
+inline_free_summary (void)
+{
+ struct cgraph_node *node;
+ if (!inline_edge_summary_vec.exists ())
+ return;
+ FOR_EACH_DEFINED_FUNCTION (node)
+ if (!node->alias)
+ reset_inline_summary (node);
+ if (function_insertion_hook_holder)
+ cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
+ function_insertion_hook_holder = NULL;
+ if (node_removal_hook_holder)
+ cgraph_remove_node_removal_hook (node_removal_hook_holder);
+ node_removal_hook_holder = NULL;
+ if (edge_removal_hook_holder)
+ cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
+ edge_removal_hook_holder = NULL;
+ if (node_duplication_hook_holder)
+ cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
+ node_duplication_hook_holder = NULL;
+ if (edge_duplication_hook_holder)
+ cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
+ edge_duplication_hook_holder = NULL;
+ vec_free (inline_summary_vec);
+ inline_edge_summary_vec.release ();
+ if (edge_predicate_pool)
+ free_alloc_pool (edge_predicate_pool);
+ edge_predicate_pool = 0;
+}