aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/expmed.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/expmed.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/expmed.c')
-rw-r--r--gcc-4.9/gcc/expmed.c5881
1 files changed, 5881 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/expmed.c b/gcc-4.9/gcc/expmed.c
new file mode 100644
index 000000000..7c1c979f7
--- /dev/null
+++ b/gcc-4.9/gcc/expmed.c
@@ -0,0 +1,5881 @@
+/* Medium-level subroutines: convert bit-field store and extract
+ and shifts, multiplies and divides to rtl instructions.
+ Copyright (C) 1987-2014 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "diagnostic-core.h"
+#include "rtl.h"
+#include "tree.h"
+#include "stor-layout.h"
+#include "tm_p.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "expr.h"
+#include "optabs.h"
+#include "recog.h"
+#include "langhooks.h"
+#include "df.h"
+#include "target.h"
+#include "expmed.h"
+
+struct target_expmed default_target_expmed;
+#if SWITCHABLE_TARGET
+struct target_expmed *this_target_expmed = &default_target_expmed;
+#endif
+
+static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ rtx);
+static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ rtx);
+static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT,
+ rtx);
+static rtx extract_fixed_bit_field (enum machine_mode, rtx,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, rtx, int);
+static rtx extract_fixed_bit_field_1 (enum machine_mode, rtx,
+ unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, rtx, int);
+static rtx mask_rtx (enum machine_mode, int, int, int);
+static rtx lshift_value (enum machine_mode, unsigned HOST_WIDE_INT, int);
+static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
+ unsigned HOST_WIDE_INT, int);
+static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
+static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
+static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
+
+/* Test whether a value is zero of a power of two. */
+#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
+ (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
+
+struct init_expmed_rtl
+{
+ struct rtx_def reg;
+ struct rtx_def plus;
+ struct rtx_def neg;
+ struct rtx_def mult;
+ struct rtx_def sdiv;
+ struct rtx_def udiv;
+ struct rtx_def sdiv_32;
+ struct rtx_def smod_32;
+ struct rtx_def wide_mult;
+ struct rtx_def wide_lshr;
+ struct rtx_def wide_trunc;
+ struct rtx_def shift;
+ struct rtx_def shift_mult;
+ struct rtx_def shift_add;
+ struct rtx_def shift_sub0;
+ struct rtx_def shift_sub1;
+ struct rtx_def zext;
+ struct rtx_def trunc;
+
+ rtx pow2[MAX_BITS_PER_WORD];
+ rtx cint[MAX_BITS_PER_WORD];
+};
+
+static void
+init_expmed_one_conv (struct init_expmed_rtl *all, enum machine_mode to_mode,
+ enum machine_mode from_mode, bool speed)
+{
+ int to_size, from_size;
+ rtx which;
+
+ /* We're given no information about the true size of a partial integer,
+ only the size of the "full" integer it requires for storage. For
+ comparison purposes here, reduce the bit size by one in that case. */
+ to_size = (GET_MODE_BITSIZE (to_mode)
+ - (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT));
+ from_size = (GET_MODE_BITSIZE (from_mode)
+ - (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT));
+
+ /* Assume cost of zero-extend and sign-extend is the same. */
+ which = (to_size < from_size ? &all->trunc : &all->zext);
+
+ PUT_MODE (&all->reg, from_mode);
+ set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
+}
+
+static void
+init_expmed_one_mode (struct init_expmed_rtl *all,
+ enum machine_mode mode, int speed)
+{
+ int m, n, mode_bitsize;
+ enum machine_mode mode_from;
+
+ mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
+
+ PUT_MODE (&all->reg, mode);
+ PUT_MODE (&all->plus, mode);
+ PUT_MODE (&all->neg, mode);
+ PUT_MODE (&all->mult, mode);
+ PUT_MODE (&all->sdiv, mode);
+ PUT_MODE (&all->udiv, mode);
+ PUT_MODE (&all->sdiv_32, mode);
+ PUT_MODE (&all->smod_32, mode);
+ PUT_MODE (&all->wide_trunc, mode);
+ PUT_MODE (&all->shift, mode);
+ PUT_MODE (&all->shift_mult, mode);
+ PUT_MODE (&all->shift_add, mode);
+ PUT_MODE (&all->shift_sub0, mode);
+ PUT_MODE (&all->shift_sub1, mode);
+ PUT_MODE (&all->zext, mode);
+ PUT_MODE (&all->trunc, mode);
+
+ set_add_cost (speed, mode, set_src_cost (&all->plus, speed));
+ set_neg_cost (speed, mode, set_src_cost (&all->neg, speed));
+ set_mul_cost (speed, mode, set_src_cost (&all->mult, speed));
+ set_sdiv_cost (speed, mode, set_src_cost (&all->sdiv, speed));
+ set_udiv_cost (speed, mode, set_src_cost (&all->udiv, speed));
+
+ set_sdiv_pow2_cheap (speed, mode, (set_src_cost (&all->sdiv_32, speed)
+ <= 2 * add_cost (speed, mode)));
+ set_smod_pow2_cheap (speed, mode, (set_src_cost (&all->smod_32, speed)
+ <= 4 * add_cost (speed, mode)));
+
+ set_shift_cost (speed, mode, 0, 0);
+ {
+ int cost = add_cost (speed, mode);
+ set_shiftadd_cost (speed, mode, 0, cost);
+ set_shiftsub0_cost (speed, mode, 0, cost);
+ set_shiftsub1_cost (speed, mode, 0, cost);
+ }
+
+ n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
+ for (m = 1; m < n; m++)
+ {
+ XEXP (&all->shift, 1) = all->cint[m];
+ XEXP (&all->shift_mult, 1) = all->pow2[m];
+
+ set_shift_cost (speed, mode, m, set_src_cost (&all->shift, speed));
+ set_shiftadd_cost (speed, mode, m, set_src_cost (&all->shift_add, speed));
+ set_shiftsub0_cost (speed, mode, m, set_src_cost (&all->shift_sub0, speed));
+ set_shiftsub1_cost (speed, mode, m, set_src_cost (&all->shift_sub1, speed));
+ }
+
+ if (SCALAR_INT_MODE_P (mode))
+ {
+ for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
+ mode_from = (enum machine_mode)(mode_from + 1))
+ init_expmed_one_conv (all, mode, mode_from, speed);
+ }
+ if (GET_MODE_CLASS (mode) == MODE_INT)
+ {
+ enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
+ if (wider_mode != VOIDmode)
+ {
+ PUT_MODE (&all->zext, wider_mode);
+ PUT_MODE (&all->wide_mult, wider_mode);
+ PUT_MODE (&all->wide_lshr, wider_mode);
+ XEXP (&all->wide_lshr, 1) = GEN_INT (mode_bitsize);
+
+ set_mul_widen_cost (speed, wider_mode,
+ set_src_cost (&all->wide_mult, speed));
+ set_mul_highpart_cost (speed, mode,
+ set_src_cost (&all->wide_trunc, speed));
+ }
+ }
+}
+
+void
+init_expmed (void)
+{
+ struct init_expmed_rtl all;
+ enum machine_mode mode;
+ int m, speed;
+
+ memset (&all, 0, sizeof all);
+ for (m = 1; m < MAX_BITS_PER_WORD; m++)
+ {
+ all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
+ all.cint[m] = GEN_INT (m);
+ }
+
+ PUT_CODE (&all.reg, REG);
+ /* Avoid using hard regs in ways which may be unsupported. */
+ SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
+
+ PUT_CODE (&all.plus, PLUS);
+ XEXP (&all.plus, 0) = &all.reg;
+ XEXP (&all.plus, 1) = &all.reg;
+
+ PUT_CODE (&all.neg, NEG);
+ XEXP (&all.neg, 0) = &all.reg;
+
+ PUT_CODE (&all.mult, MULT);
+ XEXP (&all.mult, 0) = &all.reg;
+ XEXP (&all.mult, 1) = &all.reg;
+
+ PUT_CODE (&all.sdiv, DIV);
+ XEXP (&all.sdiv, 0) = &all.reg;
+ XEXP (&all.sdiv, 1) = &all.reg;
+
+ PUT_CODE (&all.udiv, UDIV);
+ XEXP (&all.udiv, 0) = &all.reg;
+ XEXP (&all.udiv, 1) = &all.reg;
+
+ PUT_CODE (&all.sdiv_32, DIV);
+ XEXP (&all.sdiv_32, 0) = &all.reg;
+ XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? all.cint[32] : GEN_INT (32);
+
+ PUT_CODE (&all.smod_32, MOD);
+ XEXP (&all.smod_32, 0) = &all.reg;
+ XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
+
+ PUT_CODE (&all.zext, ZERO_EXTEND);
+ XEXP (&all.zext, 0) = &all.reg;
+
+ PUT_CODE (&all.wide_mult, MULT);
+ XEXP (&all.wide_mult, 0) = &all.zext;
+ XEXP (&all.wide_mult, 1) = &all.zext;
+
+ PUT_CODE (&all.wide_lshr, LSHIFTRT);
+ XEXP (&all.wide_lshr, 0) = &all.wide_mult;
+
+ PUT_CODE (&all.wide_trunc, TRUNCATE);
+ XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
+
+ PUT_CODE (&all.shift, ASHIFT);
+ XEXP (&all.shift, 0) = &all.reg;
+
+ PUT_CODE (&all.shift_mult, MULT);
+ XEXP (&all.shift_mult, 0) = &all.reg;
+
+ PUT_CODE (&all.shift_add, PLUS);
+ XEXP (&all.shift_add, 0) = &all.shift_mult;
+ XEXP (&all.shift_add, 1) = &all.reg;
+
+ PUT_CODE (&all.shift_sub0, MINUS);
+ XEXP (&all.shift_sub0, 0) = &all.shift_mult;
+ XEXP (&all.shift_sub0, 1) = &all.reg;
+
+ PUT_CODE (&all.shift_sub1, MINUS);
+ XEXP (&all.shift_sub1, 0) = &all.reg;
+ XEXP (&all.shift_sub1, 1) = &all.shift_mult;
+
+ PUT_CODE (&all.trunc, TRUNCATE);
+ XEXP (&all.trunc, 0) = &all.reg;
+
+ for (speed = 0; speed < 2; speed++)
+ {
+ crtl->maybe_hot_insn_p = speed;
+ set_zero_cost (speed, set_src_cost (const0_rtx, speed));
+
+ for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
+ mode = (enum machine_mode)(mode + 1))
+ init_expmed_one_mode (&all, mode, speed);
+
+ if (MIN_MODE_PARTIAL_INT != VOIDmode)
+ for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
+ mode = (enum machine_mode)(mode + 1))
+ init_expmed_one_mode (&all, mode, speed);
+
+ if (MIN_MODE_VECTOR_INT != VOIDmode)
+ for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
+ mode = (enum machine_mode)(mode + 1))
+ init_expmed_one_mode (&all, mode, speed);
+ }
+
+ if (alg_hash_used_p ())
+ {
+ struct alg_hash_entry *p = alg_hash_entry_ptr (0);
+ memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
+ }
+ else
+ set_alg_hash_used_p (true);
+ default_rtl_profile ();
+}
+
+/* Return an rtx representing minus the value of X.
+ MODE is the intended mode of the result,
+ useful if X is a CONST_INT. */
+
+rtx
+negate_rtx (enum machine_mode mode, rtx x)
+{
+ rtx result = simplify_unary_operation (NEG, mode, x, mode);
+
+ if (result == 0)
+ result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
+
+ return result;
+}
+
+/* Adjust bitfield memory MEM so that it points to the first unit of mode
+ MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
+ If MODE is BLKmode, return a reference to every byte in the bitfield.
+ Set *NEW_BITNUM to the bit position of the field within the new memory. */
+
+static rtx
+narrow_bit_field_mem (rtx mem, enum machine_mode mode,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT *new_bitnum)
+{
+ if (mode == BLKmode)
+ {
+ *new_bitnum = bitnum % BITS_PER_UNIT;
+ HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
+ HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
+ / BITS_PER_UNIT);
+ return adjust_bitfield_address_size (mem, mode, offset, size);
+ }
+ else
+ {
+ unsigned int unit = GET_MODE_BITSIZE (mode);
+ *new_bitnum = bitnum % unit;
+ HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
+ return adjust_bitfield_address (mem, mode, offset);
+ }
+}
+
+/* The caller wants to perform insertion or extraction PATTERN on a
+ bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
+ BITREGION_START and BITREGION_END are as for store_bit_field
+ and FIELDMODE is the natural mode of the field.
+
+ Search for a mode that is compatible with the memory access
+ restrictions and (where applicable) with a register insertion or
+ extraction. Return the new memory on success, storing the adjusted
+ bit position in *NEW_BITNUM. Return null otherwise. */
+
+static rtx
+adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
+ rtx op0, HOST_WIDE_INT bitsize,
+ HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end,
+ enum machine_mode fieldmode,
+ unsigned HOST_WIDE_INT *new_bitnum)
+{
+ bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
+ bitregion_end, MEM_ALIGN (op0),
+ MEM_VOLATILE_P (op0));
+ enum machine_mode best_mode;
+ if (iter.next_mode (&best_mode))
+ {
+ /* We can use a memory in BEST_MODE. See whether this is true for
+ any wider modes. All other things being equal, we prefer to
+ use the widest mode possible because it tends to expose more
+ CSE opportunities. */
+ if (!iter.prefer_smaller_modes ())
+ {
+ /* Limit the search to the mode required by the corresponding
+ register insertion or extraction instruction, if any. */
+ enum machine_mode limit_mode = word_mode;
+ extraction_insn insn;
+ if (get_best_reg_extraction_insn (&insn, pattern,
+ GET_MODE_BITSIZE (best_mode),
+ fieldmode))
+ limit_mode = insn.field_mode;
+
+ enum machine_mode wider_mode;
+ while (iter.next_mode (&wider_mode)
+ && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
+ best_mode = wider_mode;
+ }
+ return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
+ new_bitnum);
+ }
+ return NULL_RTX;
+}
+
+/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
+ a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
+ offset is then BITNUM / BITS_PER_UNIT. */
+
+static bool
+lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT bitsize,
+ enum machine_mode struct_mode)
+{
+ if (BYTES_BIG_ENDIAN)
+ return (bitnum % BITS_PER_UNIT == 0
+ && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
+ || (bitnum + bitsize) % BITS_PER_WORD == 0));
+ else
+ return bitnum % BITS_PER_WORD == 0;
+}
+
+/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
+ containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
+ Return false if the access would touch memory outside the range
+ BITREGION_START to BITREGION_END for conformance to the C++ memory
+ model. */
+
+static bool
+strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ enum machine_mode fieldmode,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end)
+{
+ unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
+
+ /* -fstrict-volatile-bitfields must be enabled and we must have a
+ volatile MEM. */
+ if (!MEM_P (op0)
+ || !MEM_VOLATILE_P (op0)
+ || flag_strict_volatile_bitfields <= 0)
+ return false;
+
+ /* Non-integral modes likely only happen with packed structures.
+ Punt. */
+ if (!SCALAR_INT_MODE_P (fieldmode))
+ return false;
+
+ /* The bit size must not be larger than the field mode, and
+ the field mode must not be larger than a word. */
+ if (bitsize > modesize || modesize > BITS_PER_WORD)
+ return false;
+
+ /* Check for cases of unaligned fields that must be split. */
+ if (bitnum % BITS_PER_UNIT + bitsize > modesize
+ || (STRICT_ALIGNMENT
+ && bitnum % GET_MODE_ALIGNMENT (fieldmode) + bitsize > modesize))
+ return false;
+
+ /* Check for cases where the C++ memory model applies. */
+ if (bitregion_end != 0
+ && (bitnum - bitnum % modesize < bitregion_start
+ || bitnum - bitnum % modesize + modesize > bitregion_end))
+ return false;
+
+ return true;
+}
+
+/* Return true if OP is a memory and if a bitfield of size BITSIZE at
+ bit number BITNUM can be treated as a simple value of mode MODE. */
+
+static bool
+simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, enum machine_mode mode)
+{
+ return (MEM_P (op0)
+ && bitnum % BITS_PER_UNIT == 0
+ && bitsize == GET_MODE_BITSIZE (mode)
+ && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
+ || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
+ && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
+}
+
+/* Try to use instruction INSV to store VALUE into a field of OP0.
+ BITSIZE and BITNUM are as for store_bit_field. */
+
+static bool
+store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ rtx value)
+{
+ struct expand_operand ops[4];
+ rtx value1;
+ rtx xop0 = op0;
+ rtx last = get_last_insn ();
+ bool copy_back = false;
+
+ enum machine_mode op_mode = insv->field_mode;
+ unsigned int unit = GET_MODE_BITSIZE (op_mode);
+ if (bitsize == 0 || bitsize > unit)
+ return false;
+
+ if (MEM_P (xop0))
+ /* Get a reference to the first byte of the field. */
+ xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
+ &bitnum);
+ else
+ {
+ /* Convert from counting within OP0 to counting in OP_MODE. */
+ if (BYTES_BIG_ENDIAN)
+ bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
+
+ /* If xop0 is a register, we need it in OP_MODE
+ to make it acceptable to the format of insv. */
+ if (GET_CODE (xop0) == SUBREG)
+ /* We can't just change the mode, because this might clobber op0,
+ and we will need the original value of op0 if insv fails. */
+ xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
+ if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
+ xop0 = gen_lowpart_SUBREG (op_mode, xop0);
+ }
+
+ /* If the destination is a paradoxical subreg such that we need a
+ truncate to the inner mode, perform the insertion on a temporary and
+ truncate the result to the original destination. Note that we can't
+ just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
+ X) 0)) is (reg:N X). */
+ if (GET_CODE (xop0) == SUBREG
+ && REG_P (SUBREG_REG (xop0))
+ && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
+ op_mode))
+ {
+ rtx tem = gen_reg_rtx (op_mode);
+ emit_move_insn (tem, xop0);
+ xop0 = tem;
+ copy_back = true;
+ }
+
+ /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
+ "backwards" from the size of the unit we are inserting into.
+ Otherwise, we count bits from the most significant on a
+ BYTES/BITS_BIG_ENDIAN machine. */
+
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ bitnum = unit - bitsize - bitnum;
+
+ /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
+ value1 = value;
+ if (GET_MODE (value) != op_mode)
+ {
+ if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
+ {
+ /* Optimization: Don't bother really extending VALUE
+ if it has all the bits we will actually use. However,
+ if we must narrow it, be sure we do it correctly. */
+
+ if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
+ {
+ rtx tmp;
+
+ tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
+ if (! tmp)
+ tmp = simplify_gen_subreg (op_mode,
+ force_reg (GET_MODE (value),
+ value1),
+ GET_MODE (value), 0);
+ value1 = tmp;
+ }
+ else
+ value1 = gen_lowpart (op_mode, value1);
+ }
+ else if (CONST_INT_P (value))
+ value1 = gen_int_mode (INTVAL (value), op_mode);
+ else
+ /* Parse phase is supposed to make VALUE's data type
+ match that of the component reference, which is a type
+ at least as wide as the field; so VALUE should have
+ a mode that corresponds to that type. */
+ gcc_assert (CONSTANT_P (value));
+ }
+
+ create_fixed_operand (&ops[0], xop0);
+ create_integer_operand (&ops[1], bitsize);
+ create_integer_operand (&ops[2], bitnum);
+ create_input_operand (&ops[3], value1, op_mode);
+ if (maybe_expand_insn (insv->icode, 4, ops))
+ {
+ if (copy_back)
+ convert_move (op0, xop0, true);
+ return true;
+ }
+ delete_insns_since (last);
+ return false;
+}
+
+/* A subroutine of store_bit_field, with the same arguments. Return true
+ if the operation could be implemented.
+
+ If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
+ no other way of implementing the operation. If FALLBACK_P is false,
+ return false instead. */
+
+static bool
+store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end,
+ enum machine_mode fieldmode,
+ rtx value, bool fallback_p)
+{
+ rtx op0 = str_rtx;
+ rtx orig_value;
+
+ while (GET_CODE (op0) == SUBREG)
+ {
+ /* The following line once was done only if WORDS_BIG_ENDIAN,
+ but I think that is a mistake. WORDS_BIG_ENDIAN is
+ meaningful at a much higher level; when structures are copied
+ between memory and regs, the higher-numbered regs
+ always get higher addresses. */
+ int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
+ int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
+ int byte_offset = 0;
+
+ /* Paradoxical subregs need special handling on big endian machines. */
+ if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
+ {
+ int difference = inner_mode_size - outer_mode_size;
+
+ if (WORDS_BIG_ENDIAN)
+ byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
+ if (BYTES_BIG_ENDIAN)
+ byte_offset += difference % UNITS_PER_WORD;
+ }
+ else
+ byte_offset = SUBREG_BYTE (op0);
+
+ bitnum += byte_offset * BITS_PER_UNIT;
+ op0 = SUBREG_REG (op0);
+ }
+
+ /* No action is needed if the target is a register and if the field
+ lies completely outside that register. This can occur if the source
+ code contains an out-of-bounds access to a small array. */
+ if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
+ return true;
+
+ /* Use vec_set patterns for inserting parts of vectors whenever
+ available. */
+ if (VECTOR_MODE_P (GET_MODE (op0))
+ && !MEM_P (op0)
+ && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
+ && fieldmode == GET_MODE_INNER (GET_MODE (op0))
+ && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
+ && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
+ {
+ struct expand_operand ops[3];
+ enum machine_mode outermode = GET_MODE (op0);
+ enum machine_mode innermode = GET_MODE_INNER (outermode);
+ enum insn_code icode = optab_handler (vec_set_optab, outermode);
+ int pos = bitnum / GET_MODE_BITSIZE (innermode);
+
+ create_fixed_operand (&ops[0], op0);
+ create_input_operand (&ops[1], value, innermode);
+ create_integer_operand (&ops[2], pos);
+ if (maybe_expand_insn (icode, 3, ops))
+ return true;
+ }
+
+ /* If the target is a register, overwriting the entire object, or storing
+ a full-word or multi-word field can be done with just a SUBREG. */
+ if (!MEM_P (op0)
+ && bitsize == GET_MODE_BITSIZE (fieldmode)
+ && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
+ || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
+ {
+ /* Use the subreg machinery either to narrow OP0 to the required
+ words or to cope with mode punning between equal-sized modes.
+ In the latter case, use subreg on the rhs side, not lhs. */
+ rtx sub;
+
+ if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
+ {
+ sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
+ if (sub)
+ {
+ emit_move_insn (op0, sub);
+ return true;
+ }
+ }
+ else
+ {
+ sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
+ bitnum / BITS_PER_UNIT);
+ if (sub)
+ {
+ emit_move_insn (sub, value);
+ return true;
+ }
+ }
+ }
+
+ /* If the target is memory, storing any naturally aligned field can be
+ done with a simple store. For targets that support fast unaligned
+ memory, any naturally sized, unit aligned field can be done directly. */
+ if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
+ {
+ op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
+ emit_move_insn (op0, value);
+ return true;
+ }
+
+ /* Make sure we are playing with integral modes. Pun with subregs
+ if we aren't. This must come after the entire register case above,
+ since that case is valid for any mode. The following cases are only
+ valid for integral modes. */
+ {
+ enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
+ if (imode != GET_MODE (op0))
+ {
+ if (MEM_P (op0))
+ op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
+ else
+ {
+ gcc_assert (imode != BLKmode);
+ op0 = gen_lowpart (imode, op0);
+ }
+ }
+ }
+
+ /* Storing an lsb-aligned field in a register
+ can be done with a movstrict instruction. */
+
+ if (!MEM_P (op0)
+ && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
+ && bitsize == GET_MODE_BITSIZE (fieldmode)
+ && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
+ {
+ struct expand_operand ops[2];
+ enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
+ rtx arg0 = op0;
+ unsigned HOST_WIDE_INT subreg_off;
+
+ if (GET_CODE (arg0) == SUBREG)
+ {
+ /* Else we've got some float mode source being extracted into
+ a different float mode destination -- this combination of
+ subregs results in Severe Tire Damage. */
+ gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
+ || GET_MODE_CLASS (fieldmode) == MODE_INT
+ || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
+ arg0 = SUBREG_REG (arg0);
+ }
+
+ subreg_off = bitnum / BITS_PER_UNIT;
+ if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
+ {
+ arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
+
+ create_fixed_operand (&ops[0], arg0);
+ /* Shrink the source operand to FIELDMODE. */
+ create_convert_operand_to (&ops[1], value, fieldmode, false);
+ if (maybe_expand_insn (icode, 2, ops))
+ return true;
+ }
+ }
+
+ /* Handle fields bigger than a word. */
+
+ if (bitsize > BITS_PER_WORD)
+ {
+ /* Here we transfer the words of the field
+ in the order least significant first.
+ This is because the most significant word is the one which may
+ be less than full.
+ However, only do that if the value is not BLKmode. */
+
+ unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
+ unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
+ unsigned int i;
+ rtx last;
+
+ /* This is the mode we must force value to, so that there will be enough
+ subwords to extract. Note that fieldmode will often (always?) be
+ VOIDmode, because that is what store_field uses to indicate that this
+ is a bit field, but passing VOIDmode to operand_subword_force
+ is not allowed. */
+ fieldmode = GET_MODE (value);
+ if (fieldmode == VOIDmode)
+ fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
+
+ last = get_last_insn ();
+ for (i = 0; i < nwords; i++)
+ {
+ /* If I is 0, use the low-order word in both field and target;
+ if I is 1, use the next to lowest word; and so on. */
+ unsigned int wordnum = (backwards
+ ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
+ - i - 1
+ : i);
+ unsigned int bit_offset = (backwards
+ ? MAX ((int) bitsize - ((int) i + 1)
+ * BITS_PER_WORD,
+ 0)
+ : (int) i * BITS_PER_WORD);
+ rtx value_word = operand_subword_force (value, wordnum, fieldmode);
+ unsigned HOST_WIDE_INT new_bitsize =
+ MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
+
+ /* If the remaining chunk doesn't have full wordsize we have
+ to make sure that for big endian machines the higher order
+ bits are used. */
+ if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
+ value_word = simplify_expand_binop (word_mode, lshr_optab,
+ value_word,
+ GEN_INT (BITS_PER_WORD
+ - new_bitsize),
+ NULL_RTX, true,
+ OPTAB_LIB_WIDEN);
+
+ if (!store_bit_field_1 (op0, new_bitsize,
+ bitnum + bit_offset,
+ bitregion_start, bitregion_end,
+ word_mode,
+ value_word, fallback_p))
+ {
+ delete_insns_since (last);
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /* If VALUE has a floating-point or complex mode, access it as an
+ integer of the corresponding size. This can occur on a machine
+ with 64 bit registers that uses SFmode for float. It can also
+ occur for unaligned float or complex fields. */
+ orig_value = value;
+ if (GET_MODE (value) != VOIDmode
+ && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
+ && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
+ {
+ value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
+ emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
+ }
+
+ /* If OP0 is a multi-word register, narrow it to the affected word.
+ If the region spans two words, defer to store_split_bit_field. */
+ if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
+ {
+ op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
+ bitnum / BITS_PER_WORD * UNITS_PER_WORD);
+ gcc_assert (op0);
+ bitnum %= BITS_PER_WORD;
+ if (bitnum + bitsize > BITS_PER_WORD)
+ {
+ if (!fallback_p)
+ return false;
+
+ store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
+ bitregion_end, value);
+ return true;
+ }
+ }
+
+ /* From here on we can assume that the field to be stored in fits
+ within a word. If the destination is a register, it too fits
+ in a word. */
+
+ extraction_insn insv;
+ if (!MEM_P (op0)
+ && get_best_reg_extraction_insn (&insv, EP_insv,
+ GET_MODE_BITSIZE (GET_MODE (op0)),
+ fieldmode)
+ && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
+ return true;
+
+ /* If OP0 is a memory, try copying it to a register and seeing if a
+ cheap register alternative is available. */
+ if (MEM_P (op0))
+ {
+ if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
+ fieldmode)
+ && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
+ return true;
+
+ rtx last = get_last_insn ();
+
+ /* Try loading part of OP0 into a register, inserting the bitfield
+ into that, and then copying the result back to OP0. */
+ unsigned HOST_WIDE_INT bitpos;
+ rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ fieldmode, &bitpos);
+ if (xop0)
+ {
+ rtx tempreg = copy_to_reg (xop0);
+ if (store_bit_field_1 (tempreg, bitsize, bitpos,
+ bitregion_start, bitregion_end,
+ fieldmode, orig_value, false))
+ {
+ emit_move_insn (xop0, tempreg);
+ return true;
+ }
+ delete_insns_since (last);
+ }
+ }
+
+ if (!fallback_p)
+ return false;
+
+ store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
+ bitregion_end, value);
+ return true;
+}
+
+/* Generate code to store value from rtx VALUE
+ into a bit-field within structure STR_RTX
+ containing BITSIZE bits starting at bit BITNUM.
+
+ BITREGION_START is bitpos of the first bitfield in this region.
+ BITREGION_END is the bitpos of the ending bitfield in this region.
+ These two fields are 0, if the C++ memory model does not apply,
+ or we are not interested in keeping track of bitfield regions.
+
+ FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
+
+void
+store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end,
+ enum machine_mode fieldmode,
+ rtx value)
+{
+ /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
+ if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
+ bitregion_start, bitregion_end))
+ {
+ /* Storing any naturally aligned field can be done with a simple
+ store. For targets that support fast unaligned memory, any
+ naturally sized, unit aligned field can be done directly. */
+ if (simple_mem_bitfield_p (str_rtx, bitsize, bitnum, fieldmode))
+ {
+ str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
+ bitnum / BITS_PER_UNIT);
+ emit_move_insn (str_rtx, value);
+ }
+ else
+ {
+ str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
+ &bitnum);
+ /* Explicitly override the C/C++ memory model; ignore the
+ bit range so that we can do the access in the mode mandated
+ by -fstrict-volatile-bitfields instead. */
+ store_fixed_bit_field_1 (str_rtx, bitsize, bitnum, value);
+ }
+
+ return;
+ }
+
+ /* Under the C++0x memory model, we must not touch bits outside the
+ bit region. Adjust the address to start at the beginning of the
+ bit region. */
+ if (MEM_P (str_rtx) && bitregion_start > 0)
+ {
+ enum machine_mode bestmode;
+ HOST_WIDE_INT offset, size;
+
+ gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
+
+ offset = bitregion_start / BITS_PER_UNIT;
+ bitnum -= bitregion_start;
+ size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
+ bitregion_end -= bitregion_start;
+ bitregion_start = 0;
+ bestmode = get_best_mode (bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ MEM_ALIGN (str_rtx), VOIDmode,
+ MEM_VOLATILE_P (str_rtx));
+ str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
+ }
+
+ if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
+ bitregion_start, bitregion_end,
+ fieldmode, value, true))
+ gcc_unreachable ();
+}
+
+/* Use shifts and boolean operations to store VALUE into a bit field of
+ width BITSIZE in OP0, starting at bit BITNUM. */
+
+static void
+store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end,
+ rtx value)
+{
+ /* There is a case not handled here:
+ a structure with a known alignment of just a halfword
+ and a field split across two aligned halfwords within the structure.
+ Or likewise a structure with a known alignment of just a byte
+ and a field split across two bytes.
+ Such cases are not supposed to be able to occur. */
+
+ if (MEM_P (op0))
+ {
+ enum machine_mode mode = GET_MODE (op0);
+ if (GET_MODE_BITSIZE (mode) == 0
+ || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
+ mode = word_mode;
+ mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
+ MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
+
+ if (mode == VOIDmode)
+ {
+ /* The only way this should occur is if the field spans word
+ boundaries. */
+ store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
+ bitregion_end, value);
+ return;
+ }
+
+ op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
+ }
+
+ store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
+}
+
+/* Helper function for store_fixed_bit_field, stores
+ the bit field always using the MODE of OP0. */
+
+static void
+store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ rtx value)
+{
+ enum machine_mode mode;
+ rtx temp;
+ int all_zero = 0;
+ int all_one = 0;
+
+ mode = GET_MODE (op0);
+ gcc_assert (SCALAR_INT_MODE_P (mode));
+
+ /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
+ for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
+
+ if (BYTES_BIG_ENDIAN)
+ /* BITNUM is the distance between our msb
+ and that of the containing datum.
+ Convert it to the distance from the lsb. */
+ bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
+
+ /* Now BITNUM is always the distance between our lsb
+ and that of OP0. */
+
+ /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
+ we must first convert its mode to MODE. */
+
+ if (CONST_INT_P (value))
+ {
+ HOST_WIDE_INT v = INTVAL (value);
+
+ if (bitsize < HOST_BITS_PER_WIDE_INT)
+ v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
+
+ if (v == 0)
+ all_zero = 1;
+ else if ((bitsize < HOST_BITS_PER_WIDE_INT
+ && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
+ || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
+ all_one = 1;
+
+ value = lshift_value (mode, v, bitnum);
+ }
+ else
+ {
+ int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
+ && bitnum + bitsize != GET_MODE_BITSIZE (mode));
+
+ if (GET_MODE (value) != mode)
+ value = convert_to_mode (mode, value, 1);
+
+ if (must_and)
+ value = expand_binop (mode, and_optab, value,
+ mask_rtx (mode, 0, bitsize, 0),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ if (bitnum > 0)
+ value = expand_shift (LSHIFT_EXPR, mode, value,
+ bitnum, NULL_RTX, 1);
+ }
+
+ /* Now clear the chosen bits in OP0,
+ except that if VALUE is -1 we need not bother. */
+ /* We keep the intermediates in registers to allow CSE to combine
+ consecutive bitfield assignments. */
+
+ temp = force_reg (mode, op0);
+
+ if (! all_one)
+ {
+ temp = expand_binop (mode, and_optab, temp,
+ mask_rtx (mode, bitnum, bitsize, 1),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = force_reg (mode, temp);
+ }
+
+ /* Now logical-or VALUE into OP0, unless it is zero. */
+
+ if (! all_zero)
+ {
+ temp = expand_binop (mode, ior_optab, temp, value,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = force_reg (mode, temp);
+ }
+
+ if (op0 != temp)
+ {
+ op0 = copy_rtx (op0);
+ emit_move_insn (op0, temp);
+ }
+}
+
+/* Store a bit field that is split across multiple accessible memory objects.
+
+ OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
+ BITSIZE is the field width; BITPOS the position of its first bit
+ (within the word).
+ VALUE is the value to store.
+
+ This does not yet handle fields wider than BITS_PER_WORD. */
+
+static void
+store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitpos,
+ unsigned HOST_WIDE_INT bitregion_start,
+ unsigned HOST_WIDE_INT bitregion_end,
+ rtx value)
+{
+ unsigned int unit;
+ unsigned int bitsdone = 0;
+
+ /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
+ much at a time. */
+ if (REG_P (op0) || GET_CODE (op0) == SUBREG)
+ unit = BITS_PER_WORD;
+ else
+ unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
+
+ /* If OP0 is a memory with a mode, then UNIT must not be larger than
+ OP0's mode as well. Otherwise, store_fixed_bit_field will call us
+ again, and we will mutually recurse forever. */
+ if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
+ unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
+
+ /* If VALUE is a constant other than a CONST_INT, get it into a register in
+ WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
+ that VALUE might be a floating-point constant. */
+ if (CONSTANT_P (value) && !CONST_INT_P (value))
+ {
+ rtx word = gen_lowpart_common (word_mode, value);
+
+ if (word && (value != word))
+ value = word;
+ else
+ value = gen_lowpart_common (word_mode,
+ force_reg (GET_MODE (value) != VOIDmode
+ ? GET_MODE (value)
+ : word_mode, value));
+ }
+
+ while (bitsdone < bitsize)
+ {
+ unsigned HOST_WIDE_INT thissize;
+ rtx part, word;
+ unsigned HOST_WIDE_INT thispos;
+ unsigned HOST_WIDE_INT offset;
+
+ offset = (bitpos + bitsdone) / unit;
+ thispos = (bitpos + bitsdone) % unit;
+
+ /* When region of bytes we can touch is restricted, decrease
+ UNIT close to the end of the region as needed. If op0 is a REG
+ or SUBREG of REG, don't do this, as there can't be data races
+ on a register and we can expand shorter code in some cases. */
+ if (bitregion_end
+ && unit > BITS_PER_UNIT
+ && bitpos + bitsdone - thispos + unit > bitregion_end + 1
+ && !REG_P (op0)
+ && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
+ {
+ unit = unit / 2;
+ continue;
+ }
+
+ /* THISSIZE must not overrun a word boundary. Otherwise,
+ store_fixed_bit_field will call us again, and we will mutually
+ recurse forever. */
+ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
+ thissize = MIN (thissize, unit - thispos);
+
+ if (BYTES_BIG_ENDIAN)
+ {
+ /* Fetch successively less significant portions. */
+ if (CONST_INT_P (value))
+ part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
+ >> (bitsize - bitsdone - thissize))
+ & (((HOST_WIDE_INT) 1 << thissize) - 1));
+ else
+ {
+ int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
+ /* The args are chosen so that the last part includes the
+ lsb. Give extract_bit_field the value it needs (with
+ endianness compensation) to fetch the piece we want. */
+ part = extract_fixed_bit_field (word_mode, value, thissize,
+ total_bits - bitsize + bitsdone,
+ NULL_RTX, 1);
+ }
+ }
+ else
+ {
+ /* Fetch successively more significant portions. */
+ if (CONST_INT_P (value))
+ part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
+ >> bitsdone)
+ & (((HOST_WIDE_INT) 1 << thissize) - 1));
+ else
+ part = extract_fixed_bit_field (word_mode, value, thissize,
+ bitsdone, NULL_RTX, 1);
+ }
+
+ /* If OP0 is a register, then handle OFFSET here.
+
+ When handling multiword bitfields, extract_bit_field may pass
+ down a word_mode SUBREG of a larger REG for a bitfield that actually
+ crosses a word boundary. Thus, for a SUBREG, we must find
+ the current word starting from the base register. */
+ if (GET_CODE (op0) == SUBREG)
+ {
+ int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
+ + (offset * unit / BITS_PER_WORD);
+ enum machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
+ if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
+ word = word_offset ? const0_rtx : op0;
+ else
+ word = operand_subword_force (SUBREG_REG (op0), word_offset,
+ GET_MODE (SUBREG_REG (op0)));
+ offset &= BITS_PER_WORD / unit - 1;
+ }
+ else if (REG_P (op0))
+ {
+ enum machine_mode op0_mode = GET_MODE (op0);
+ if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
+ word = offset ? const0_rtx : op0;
+ else
+ word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
+ GET_MODE (op0));
+ offset &= BITS_PER_WORD / unit - 1;
+ }
+ else
+ word = op0;
+
+ /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
+ it is just an out-of-bounds access. Ignore it. */
+ if (word != const0_rtx)
+ store_fixed_bit_field (word, thissize, offset * unit + thispos,
+ bitregion_start, bitregion_end, part);
+ bitsdone += thissize;
+ }
+}
+
+/* A subroutine of extract_bit_field_1 that converts return value X
+ to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
+ to extract_bit_field. */
+
+static rtx
+convert_extracted_bit_field (rtx x, enum machine_mode mode,
+ enum machine_mode tmode, bool unsignedp)
+{
+ if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
+ return x;
+
+ /* If the x mode is not a scalar integral, first convert to the
+ integer mode of that size and then access it as a floating-point
+ value via a SUBREG. */
+ if (!SCALAR_INT_MODE_P (tmode))
+ {
+ enum machine_mode smode;
+
+ smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
+ x = convert_to_mode (smode, x, unsignedp);
+ x = force_reg (smode, x);
+ return gen_lowpart (tmode, x);
+ }
+
+ return convert_to_mode (tmode, x, unsignedp);
+}
+
+/* Try to use an ext(z)v pattern to extract a field from OP0.
+ Return the extracted value on success, otherwise return null.
+ EXT_MODE is the mode of the extraction and the other arguments
+ are as for extract_bit_field. */
+
+static rtx
+extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum,
+ int unsignedp, rtx target,
+ enum machine_mode mode, enum machine_mode tmode)
+{
+ struct expand_operand ops[4];
+ rtx spec_target = target;
+ rtx spec_target_subreg = 0;
+ enum machine_mode ext_mode = extv->field_mode;
+ unsigned unit = GET_MODE_BITSIZE (ext_mode);
+
+ if (bitsize == 0 || unit < bitsize)
+ return NULL_RTX;
+
+ if (MEM_P (op0))
+ /* Get a reference to the first byte of the field. */
+ op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
+ &bitnum);
+ else
+ {
+ /* Convert from counting within OP0 to counting in EXT_MODE. */
+ if (BYTES_BIG_ENDIAN)
+ bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
+
+ /* If op0 is a register, we need it in EXT_MODE to make it
+ acceptable to the format of ext(z)v. */
+ if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
+ return NULL_RTX;
+ if (REG_P (op0) && GET_MODE (op0) != ext_mode)
+ op0 = gen_lowpart_SUBREG (ext_mode, op0);
+ }
+
+ /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
+ "backwards" from the size of the unit we are extracting from.
+ Otherwise, we count bits from the most significant on a
+ BYTES/BITS_BIG_ENDIAN machine. */
+
+ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
+ bitnum = unit - bitsize - bitnum;
+
+ if (target == 0)
+ target = spec_target = gen_reg_rtx (tmode);
+
+ if (GET_MODE (target) != ext_mode)
+ {
+ /* Don't use LHS paradoxical subreg if explicit truncation is needed
+ between the mode of the extraction (word_mode) and the target
+ mode. Instead, create a temporary and use convert_move to set
+ the target. */
+ if (REG_P (target)
+ && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
+ {
+ target = gen_lowpart (ext_mode, target);
+ if (GET_MODE_PRECISION (ext_mode)
+ > GET_MODE_PRECISION (GET_MODE (spec_target)))
+ spec_target_subreg = target;
+ }
+ else
+ target = gen_reg_rtx (ext_mode);
+ }
+
+ create_output_operand (&ops[0], target, ext_mode);
+ create_fixed_operand (&ops[1], op0);
+ create_integer_operand (&ops[2], bitsize);
+ create_integer_operand (&ops[3], bitnum);
+ if (maybe_expand_insn (extv->icode, 4, ops))
+ {
+ target = ops[0].value;
+ if (target == spec_target)
+ return target;
+ if (target == spec_target_subreg)
+ return spec_target;
+ return convert_extracted_bit_field (target, mode, tmode, unsignedp);
+ }
+ return NULL_RTX;
+}
+
+/* A subroutine of extract_bit_field, with the same arguments.
+ If FALLBACK_P is true, fall back to extract_fixed_bit_field
+ if we can find no other means of implementing the operation.
+ if FALLBACK_P is false, return NULL instead. */
+
+static rtx
+extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
+ enum machine_mode mode, enum machine_mode tmode,
+ bool fallback_p)
+{
+ rtx op0 = str_rtx;
+ enum machine_mode int_mode;
+ enum machine_mode mode1;
+
+ if (tmode == VOIDmode)
+ tmode = mode;
+
+ while (GET_CODE (op0) == SUBREG)
+ {
+ bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
+ op0 = SUBREG_REG (op0);
+ }
+
+ /* If we have an out-of-bounds access to a register, just return an
+ uninitialized register of the required mode. This can occur if the
+ source code contains an out-of-bounds access to a small array. */
+ if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
+ return gen_reg_rtx (tmode);
+
+ if (REG_P (op0)
+ && mode == GET_MODE (op0)
+ && bitnum == 0
+ && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
+ {
+ /* We're trying to extract a full register from itself. */
+ return op0;
+ }
+
+ /* See if we can get a better vector mode before extracting. */
+ if (VECTOR_MODE_P (GET_MODE (op0))
+ && !MEM_P (op0)
+ && GET_MODE_INNER (GET_MODE (op0)) != tmode)
+ {
+ enum machine_mode new_mode;
+
+ if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
+ new_mode = MIN_MODE_VECTOR_FLOAT;
+ else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
+ new_mode = MIN_MODE_VECTOR_FRACT;
+ else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
+ new_mode = MIN_MODE_VECTOR_UFRACT;
+ else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
+ new_mode = MIN_MODE_VECTOR_ACCUM;
+ else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
+ new_mode = MIN_MODE_VECTOR_UACCUM;
+ else
+ new_mode = MIN_MODE_VECTOR_INT;
+
+ for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
+ if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
+ && targetm.vector_mode_supported_p (new_mode))
+ break;
+ if (new_mode != VOIDmode)
+ op0 = gen_lowpart (new_mode, op0);
+ }
+
+ /* Use vec_extract patterns for extracting parts of vectors whenever
+ available. */
+ if (VECTOR_MODE_P (GET_MODE (op0))
+ && !MEM_P (op0)
+ && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
+ && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
+ == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
+ {
+ struct expand_operand ops[3];
+ enum machine_mode outermode = GET_MODE (op0);
+ enum machine_mode innermode = GET_MODE_INNER (outermode);
+ enum insn_code icode = optab_handler (vec_extract_optab, outermode);
+ unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
+
+ create_output_operand (&ops[0], target, innermode);
+ create_input_operand (&ops[1], op0, outermode);
+ create_integer_operand (&ops[2], pos);
+ if (maybe_expand_insn (icode, 3, ops))
+ {
+ target = ops[0].value;
+ if (GET_MODE (target) != mode)
+ return gen_lowpart (tmode, target);
+ return target;
+ }
+ }
+
+ /* Make sure we are playing with integral modes. Pun with subregs
+ if we aren't. */
+ {
+ enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
+ if (imode != GET_MODE (op0))
+ {
+ if (MEM_P (op0))
+ op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
+ else if (imode != BLKmode)
+ {
+ op0 = gen_lowpart (imode, op0);
+
+ /* If we got a SUBREG, force it into a register since we
+ aren't going to be able to do another SUBREG on it. */
+ if (GET_CODE (op0) == SUBREG)
+ op0 = force_reg (imode, op0);
+ }
+ else if (REG_P (op0))
+ {
+ rtx reg, subreg;
+ imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
+ MODE_INT);
+ reg = gen_reg_rtx (imode);
+ subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
+ emit_move_insn (subreg, op0);
+ op0 = reg;
+ bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
+ }
+ else
+ {
+ HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
+ rtx mem = assign_stack_temp (GET_MODE (op0), size);
+ emit_move_insn (mem, op0);
+ op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
+ }
+ }
+ }
+
+ /* ??? We currently assume TARGET is at least as big as BITSIZE.
+ If that's wrong, the solution is to test for it and set TARGET to 0
+ if needed. */
+
+ /* Get the mode of the field to use for atomic access or subreg
+ conversion. */
+ mode1 = mode;
+ if (SCALAR_INT_MODE_P (tmode))
+ {
+ enum machine_mode try_mode = mode_for_size (bitsize,
+ GET_MODE_CLASS (tmode), 0);
+ if (try_mode != BLKmode)
+ mode1 = try_mode;
+ }
+ gcc_assert (mode1 != BLKmode);
+
+ /* Extraction of a full MODE1 value can be done with a subreg as long
+ as the least significant bit of the value is the least significant
+ bit of either OP0 or a word of OP0. */
+ if (!MEM_P (op0)
+ && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
+ && bitsize == GET_MODE_BITSIZE (mode1)
+ && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
+ {
+ rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
+ bitnum / BITS_PER_UNIT);
+ if (sub)
+ return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
+ }
+
+ /* Extraction of a full MODE1 value can be done with a load as long as
+ the field is on a byte boundary and is sufficiently aligned. */
+ if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
+ {
+ op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
+ return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
+ }
+
+ /* Handle fields bigger than a word. */
+
+ if (bitsize > BITS_PER_WORD)
+ {
+ /* Here we transfer the words of the field
+ in the order least significant first.
+ This is because the most significant word is the one which may
+ be less than full. */
+
+ unsigned int backwards = WORDS_BIG_ENDIAN;
+ unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
+ unsigned int i;
+ rtx last;
+
+ if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
+ target = gen_reg_rtx (mode);
+
+ /* Indicate for flow that the entire target reg is being set. */
+ emit_clobber (target);
+
+ last = get_last_insn ();
+ for (i = 0; i < nwords; i++)
+ {
+ /* If I is 0, use the low-order word in both field and target;
+ if I is 1, use the next to lowest word; and so on. */
+ /* Word number in TARGET to use. */
+ unsigned int wordnum
+ = (backwards
+ ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
+ : i);
+ /* Offset from start of field in OP0. */
+ unsigned int bit_offset = (backwards
+ ? MAX ((int) bitsize - ((int) i + 1)
+ * BITS_PER_WORD,
+ 0)
+ : (int) i * BITS_PER_WORD);
+ rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
+ rtx result_part
+ = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
+ bitsize - i * BITS_PER_WORD),
+ bitnum + bit_offset, 1, target_part,
+ mode, word_mode, fallback_p);
+
+ gcc_assert (target_part);
+ if (!result_part)
+ {
+ delete_insns_since (last);
+ return NULL;
+ }
+
+ if (result_part != target_part)
+ emit_move_insn (target_part, result_part);
+ }
+
+ if (unsignedp)
+ {
+ /* Unless we've filled TARGET, the upper regs in a multi-reg value
+ need to be zero'd out. */
+ if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
+ {
+ unsigned int i, total_words;
+
+ total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
+ for (i = nwords; i < total_words; i++)
+ emit_move_insn
+ (operand_subword (target,
+ backwards ? total_words - i - 1 : i,
+ 1, VOIDmode),
+ const0_rtx);
+ }
+ return target;
+ }
+
+ /* Signed bit field: sign-extend with two arithmetic shifts. */
+ target = expand_shift (LSHIFT_EXPR, mode, target,
+ GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
+ return expand_shift (RSHIFT_EXPR, mode, target,
+ GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
+ }
+
+ /* If OP0 is a multi-word register, narrow it to the affected word.
+ If the region spans two words, defer to extract_split_bit_field. */
+ if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
+ {
+ op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
+ bitnum / BITS_PER_WORD * UNITS_PER_WORD);
+ bitnum %= BITS_PER_WORD;
+ if (bitnum + bitsize > BITS_PER_WORD)
+ {
+ if (!fallback_p)
+ return NULL_RTX;
+ target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
+ return convert_extracted_bit_field (target, mode, tmode, unsignedp);
+ }
+ }
+
+ /* From here on we know the desired field is smaller than a word.
+ If OP0 is a register, it too fits within a word. */
+ enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
+ extraction_insn extv;
+ if (!MEM_P (op0)
+ /* ??? We could limit the structure size to the part of OP0 that
+ contains the field, with appropriate checks for endianness
+ and TRULY_NOOP_TRUNCATION. */
+ && get_best_reg_extraction_insn (&extv, pattern,
+ GET_MODE_BITSIZE (GET_MODE (op0)),
+ tmode))
+ {
+ rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
+ unsignedp, target, mode,
+ tmode);
+ if (result)
+ return result;
+ }
+
+ /* If OP0 is a memory, try copying it to a register and seeing if a
+ cheap register alternative is available. */
+ if (MEM_P (op0))
+ {
+ if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
+ tmode))
+ {
+ rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
+ bitnum, unsignedp,
+ target, mode,
+ tmode);
+ if (result)
+ return result;
+ }
+
+ rtx last = get_last_insn ();
+
+ /* Try loading part of OP0 into a register and extracting the
+ bitfield from that. */
+ unsigned HOST_WIDE_INT bitpos;
+ rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
+ 0, 0, tmode, &bitpos);
+ if (xop0)
+ {
+ xop0 = copy_to_reg (xop0);
+ rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
+ unsignedp, target,
+ mode, tmode, false);
+ if (result)
+ return result;
+ delete_insns_since (last);
+ }
+ }
+
+ if (!fallback_p)
+ return NULL;
+
+ /* Find a correspondingly-sized integer field, so we can apply
+ shifts and masks to it. */
+ int_mode = int_mode_for_mode (tmode);
+ if (int_mode == BLKmode)
+ int_mode = int_mode_for_mode (mode);
+ /* Should probably push op0 out to memory and then do a load. */
+ gcc_assert (int_mode != BLKmode);
+
+ target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
+ target, unsignedp);
+ return convert_extracted_bit_field (target, mode, tmode, unsignedp);
+}
+
+/* Generate code to extract a byte-field from STR_RTX
+ containing BITSIZE bits, starting at BITNUM,
+ and put it in TARGET if possible (if TARGET is nonzero).
+ Regardless of TARGET, we return the rtx for where the value is placed.
+
+ STR_RTX is the structure containing the byte (a REG or MEM).
+ UNSIGNEDP is nonzero if this is an unsigned bit field.
+ MODE is the natural mode of the field value once extracted.
+ TMODE is the mode the caller would like the value to have;
+ but the value may be returned with type MODE instead.
+
+ If a TARGET is specified and we can store in it at no extra cost,
+ we do so, and return TARGET.
+ Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
+ if they are equally easy. */
+
+rtx
+extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
+ enum machine_mode mode, enum machine_mode tmode)
+{
+ enum machine_mode mode1;
+
+ /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
+ if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
+ mode1 = GET_MODE (str_rtx);
+ else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
+ mode1 = GET_MODE (target);
+ else
+ mode1 = tmode;
+
+ if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
+ {
+ rtx result;
+
+ /* Extraction of a full MODE1 value can be done with a load as long as
+ the field is on a byte boundary and is sufficiently aligned. */
+ if (simple_mem_bitfield_p (str_rtx, bitsize, bitnum, mode1))
+ result = adjust_bitfield_address (str_rtx, mode1,
+ bitnum / BITS_PER_UNIT);
+ else
+ {
+ str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
+ &bitnum);
+ result = extract_fixed_bit_field_1 (mode, str_rtx, bitsize, bitnum,
+ target, unsignedp);
+ }
+
+ return convert_extracted_bit_field (result, mode, tmode, unsignedp);
+ }
+
+ return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
+ target, mode, tmode, true);
+}
+
+/* Use shifts and boolean operations to extract a field of BITSIZE bits
+ from bit BITNUM of OP0.
+
+ UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
+ If TARGET is nonzero, attempts to store the value there
+ and return TARGET, but this is not guaranteed.
+ If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
+
+static rtx
+extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, rtx target,
+ int unsignedp)
+{
+ if (MEM_P (op0))
+ {
+ enum machine_mode mode
+ = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
+ MEM_VOLATILE_P (op0));
+
+ if (mode == VOIDmode)
+ /* The only way this should occur is if the field spans word
+ boundaries. */
+ return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
+
+ op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
+ }
+
+ return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
+ target, unsignedp);
+}
+
+/* Helper function for extract_fixed_bit_field, extracts
+ the bit field always using the MODE of OP0. */
+
+static rtx
+extract_fixed_bit_field_1 (enum machine_mode tmode, rtx op0,
+ unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitnum, rtx target,
+ int unsignedp)
+{
+ enum machine_mode mode = GET_MODE (op0);
+ gcc_assert (SCALAR_INT_MODE_P (mode));
+
+ /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
+ for invalid input, such as extract equivalent of f5 from
+ gcc.dg/pr48335-2.c. */
+
+ if (BYTES_BIG_ENDIAN)
+ /* BITNUM is the distance between our msb and that of OP0.
+ Convert it to the distance from the lsb. */
+ bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
+
+ /* Now BITNUM is always the distance between the field's lsb and that of OP0.
+ We have reduced the big-endian case to the little-endian case. */
+
+ if (unsignedp)
+ {
+ if (bitnum)
+ {
+ /* If the field does not already start at the lsb,
+ shift it so it does. */
+ /* Maybe propagate the target for the shift. */
+ rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
+ if (tmode != mode)
+ subtarget = 0;
+ op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
+ }
+ /* Convert the value to the desired mode. */
+ if (mode != tmode)
+ op0 = convert_to_mode (tmode, op0, 1);
+
+ /* Unless the msb of the field used to be the msb when we shifted,
+ mask out the upper bits. */
+
+ if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
+ return expand_binop (GET_MODE (op0), and_optab, op0,
+ mask_rtx (GET_MODE (op0), 0, bitsize, 0),
+ target, 1, OPTAB_LIB_WIDEN);
+ return op0;
+ }
+
+ /* To extract a signed bit-field, first shift its msb to the msb of the word,
+ then arithmetic-shift its lsb to the lsb of the word. */
+ op0 = force_reg (mode, op0);
+
+ /* Find the narrowest integer mode that contains the field. */
+
+ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
+ mode = GET_MODE_WIDER_MODE (mode))
+ if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
+ {
+ op0 = convert_to_mode (mode, op0, 0);
+ break;
+ }
+
+ if (mode != tmode)
+ target = 0;
+
+ if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
+ {
+ int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
+ /* Maybe propagate the target for the shift. */
+ rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
+ op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
+ }
+
+ return expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - bitsize, target, 0);
+}
+
+/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
+ of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
+ complement of that if COMPLEMENT. The mask is truncated if
+ necessary to the width of mode MODE. The mask is zero-extended if
+ BITSIZE+BITPOS is too small for MODE. */
+
+static rtx
+mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
+{
+ double_int mask;
+
+ mask = double_int::mask (bitsize);
+ mask = mask.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
+
+ if (complement)
+ mask = ~mask;
+
+ return immed_double_int_const (mask, mode);
+}
+
+/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
+ VALUE << BITPOS. */
+
+static rtx
+lshift_value (enum machine_mode mode, unsigned HOST_WIDE_INT value,
+ int bitpos)
+{
+ double_int val;
+
+ val = double_int::from_uhwi (value);
+ val = val.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
+
+ return immed_double_int_const (val, mode);
+}
+
+/* Extract a bit field that is split across two words
+ and return an RTX for the result.
+
+ OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
+ BITSIZE is the field width; BITPOS, position of its first bit, in the word.
+ UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
+
+static rtx
+extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
+ unsigned HOST_WIDE_INT bitpos, int unsignedp)
+{
+ unsigned int unit;
+ unsigned int bitsdone = 0;
+ rtx result = NULL_RTX;
+ int first = 1;
+
+ /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
+ much at a time. */
+ if (REG_P (op0) || GET_CODE (op0) == SUBREG)
+ unit = BITS_PER_WORD;
+ else
+ unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
+
+ while (bitsdone < bitsize)
+ {
+ unsigned HOST_WIDE_INT thissize;
+ rtx part, word;
+ unsigned HOST_WIDE_INT thispos;
+ unsigned HOST_WIDE_INT offset;
+
+ offset = (bitpos + bitsdone) / unit;
+ thispos = (bitpos + bitsdone) % unit;
+
+ /* THISSIZE must not overrun a word boundary. Otherwise,
+ extract_fixed_bit_field will call us again, and we will mutually
+ recurse forever. */
+ thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
+ thissize = MIN (thissize, unit - thispos);
+
+ /* If OP0 is a register, then handle OFFSET here.
+
+ When handling multiword bitfields, extract_bit_field may pass
+ down a word_mode SUBREG of a larger REG for a bitfield that actually
+ crosses a word boundary. Thus, for a SUBREG, we must find
+ the current word starting from the base register. */
+ if (GET_CODE (op0) == SUBREG)
+ {
+ int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
+ word = operand_subword_force (SUBREG_REG (op0), word_offset,
+ GET_MODE (SUBREG_REG (op0)));
+ offset = 0;
+ }
+ else if (REG_P (op0))
+ {
+ word = operand_subword_force (op0, offset, GET_MODE (op0));
+ offset = 0;
+ }
+ else
+ word = op0;
+
+ /* Extract the parts in bit-counting order,
+ whose meaning is determined by BYTES_PER_UNIT.
+ OFFSET is in UNITs, and UNIT is in bits. */
+ part = extract_fixed_bit_field (word_mode, word, thissize,
+ offset * unit + thispos, 0, 1);
+ bitsdone += thissize;
+
+ /* Shift this part into place for the result. */
+ if (BYTES_BIG_ENDIAN)
+ {
+ if (bitsize != bitsdone)
+ part = expand_shift (LSHIFT_EXPR, word_mode, part,
+ bitsize - bitsdone, 0, 1);
+ }
+ else
+ {
+ if (bitsdone != thissize)
+ part = expand_shift (LSHIFT_EXPR, word_mode, part,
+ bitsdone - thissize, 0, 1);
+ }
+
+ if (first)
+ result = part;
+ else
+ /* Combine the parts with bitwise or. This works
+ because we extracted each part as an unsigned bit field. */
+ result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
+ OPTAB_LIB_WIDEN);
+
+ first = 0;
+ }
+
+ /* Unsigned bit field: we are done. */
+ if (unsignedp)
+ return result;
+ /* Signed bit field: sign-extend with two arithmetic shifts. */
+ result = expand_shift (LSHIFT_EXPR, word_mode, result,
+ BITS_PER_WORD - bitsize, NULL_RTX, 0);
+ return expand_shift (RSHIFT_EXPR, word_mode, result,
+ BITS_PER_WORD - bitsize, NULL_RTX, 0);
+}
+
+/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
+ the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
+ MODE, fill the upper bits with zeros. Fail if the layout of either
+ mode is unknown (as for CC modes) or if the extraction would involve
+ unprofitable mode punning. Return the value on success, otherwise
+ return null.
+
+ This is different from gen_lowpart* in these respects:
+
+ - the returned value must always be considered an rvalue
+
+ - when MODE is wider than SRC_MODE, the extraction involves
+ a zero extension
+
+ - when MODE is smaller than SRC_MODE, the extraction involves
+ a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
+
+ In other words, this routine performs a computation, whereas the
+ gen_lowpart* routines are conceptually lvalue or rvalue subreg
+ operations. */
+
+rtx
+extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
+{
+ enum machine_mode int_mode, src_int_mode;
+
+ if (mode == src_mode)
+ return src;
+
+ if (CONSTANT_P (src))
+ {
+ /* simplify_gen_subreg can't be used here, as if simplify_subreg
+ fails, it will happily create (subreg (symbol_ref)) or similar
+ invalid SUBREGs. */
+ unsigned int byte = subreg_lowpart_offset (mode, src_mode);
+ rtx ret = simplify_subreg (mode, src, src_mode, byte);
+ if (ret)
+ return ret;
+
+ if (GET_MODE (src) == VOIDmode
+ || !validate_subreg (mode, src_mode, src, byte))
+ return NULL_RTX;
+
+ src = force_reg (GET_MODE (src), src);
+ return gen_rtx_SUBREG (mode, src, byte);
+ }
+
+ if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
+ return NULL_RTX;
+
+ if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
+ && MODES_TIEABLE_P (mode, src_mode))
+ {
+ rtx x = gen_lowpart_common (mode, src);
+ if (x)
+ return x;
+ }
+
+ src_int_mode = int_mode_for_mode (src_mode);
+ int_mode = int_mode_for_mode (mode);
+ if (src_int_mode == BLKmode || int_mode == BLKmode)
+ return NULL_RTX;
+
+ if (!MODES_TIEABLE_P (src_int_mode, src_mode))
+ return NULL_RTX;
+ if (!MODES_TIEABLE_P (int_mode, mode))
+ return NULL_RTX;
+
+ src = gen_lowpart (src_int_mode, src);
+ src = convert_modes (int_mode, src_int_mode, src, true);
+ src = gen_lowpart (mode, src);
+ return src;
+}
+
+/* Add INC into TARGET. */
+
+void
+expand_inc (rtx target, rtx inc)
+{
+ rtx value = expand_binop (GET_MODE (target), add_optab,
+ target, inc,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (value != target)
+ emit_move_insn (target, value);
+}
+
+/* Subtract DEC from TARGET. */
+
+void
+expand_dec (rtx target, rtx dec)
+{
+ rtx value = expand_binop (GET_MODE (target), sub_optab,
+ target, dec,
+ target, 0, OPTAB_LIB_WIDEN);
+ if (value != target)
+ emit_move_insn (target, value);
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the rtx for the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is. */
+
+static rtx
+expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
+ rtx amount, rtx target, int unsignedp)
+{
+ rtx op1, temp = 0;
+ int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
+ int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
+ optab lshift_optab = ashl_optab;
+ optab rshift_arith_optab = ashr_optab;
+ optab rshift_uns_optab = lshr_optab;
+ optab lrotate_optab = rotl_optab;
+ optab rrotate_optab = rotr_optab;
+ enum machine_mode op1_mode;
+ int attempt;
+ bool speed = optimize_insn_for_speed_p ();
+
+ op1 = amount;
+ op1_mode = GET_MODE (op1);
+
+ /* Determine whether the shift/rotate amount is a vector, or scalar. If the
+ shift amount is a vector, use the vector/vector shift patterns. */
+ if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
+ {
+ lshift_optab = vashl_optab;
+ rshift_arith_optab = vashr_optab;
+ rshift_uns_optab = vlshr_optab;
+ lrotate_optab = vrotl_optab;
+ rrotate_optab = vrotr_optab;
+ }
+
+ /* Previously detected shift-counts computed by NEGATE_EXPR
+ and shifted in the other direction; but that does not work
+ on all machines. */
+
+ if (SHIFT_COUNT_TRUNCATED)
+ {
+ if (CONST_INT_P (op1)
+ && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
+ (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
+ op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
+ % GET_MODE_BITSIZE (mode));
+ else if (GET_CODE (op1) == SUBREG
+ && subreg_lowpart_p (op1)
+ && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
+ && SCALAR_INT_MODE_P (GET_MODE (op1)))
+ op1 = SUBREG_REG (op1);
+ }
+
+ /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
+ prefer left rotation, if op1 is from bitsize / 2 + 1 to
+ bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
+ amount instead. */
+ if (rotate
+ && CONST_INT_P (op1)
+ && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (mode) / 2 + left,
+ GET_MODE_BITSIZE (mode) - 1))
+ {
+ op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
+ left = !left;
+ code = left ? LROTATE_EXPR : RROTATE_EXPR;
+ }
+
+ if (op1 == const0_rtx)
+ return shifted;
+
+ /* Check whether its cheaper to implement a left shift by a constant
+ bit count by a sequence of additions. */
+ if (code == LSHIFT_EXPR
+ && CONST_INT_P (op1)
+ && INTVAL (op1) > 0
+ && INTVAL (op1) < GET_MODE_PRECISION (mode)
+ && INTVAL (op1) < MAX_BITS_PER_WORD
+ && (shift_cost (speed, mode, INTVAL (op1))
+ > INTVAL (op1) * add_cost (speed, mode))
+ && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
+ {
+ int i;
+ for (i = 0; i < INTVAL (op1); i++)
+ {
+ temp = force_reg (mode, shifted);
+ shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
+ unsignedp, OPTAB_LIB_WIDEN);
+ }
+ return shifted;
+ }
+
+ for (attempt = 0; temp == 0 && attempt < 3; attempt++)
+ {
+ enum optab_methods methods;
+
+ if (attempt == 0)
+ methods = OPTAB_DIRECT;
+ else if (attempt == 1)
+ methods = OPTAB_WIDEN;
+ else
+ methods = OPTAB_LIB_WIDEN;
+
+ if (rotate)
+ {
+ /* Widening does not work for rotation. */
+ if (methods == OPTAB_WIDEN)
+ continue;
+ else if (methods == OPTAB_LIB_WIDEN)
+ {
+ /* If we have been unable to open-code this by a rotation,
+ do it as the IOR of two shifts. I.e., to rotate A
+ by N bits, compute
+ (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
+ where C is the bitsize of A.
+
+ It is theoretically possible that the target machine might
+ not be able to perform either shift and hence we would
+ be making two libcalls rather than just the one for the
+ shift (similarly if IOR could not be done). We will allow
+ this extremely unlikely lossage to avoid complicating the
+ code below. */
+
+ rtx subtarget = target == shifted ? 0 : target;
+ rtx new_amount, other_amount;
+ rtx temp1;
+
+ new_amount = op1;
+ if (op1 == const0_rtx)
+ return shifted;
+ else if (CONST_INT_P (op1))
+ other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
+ - INTVAL (op1));
+ else
+ {
+ other_amount
+ = simplify_gen_unary (NEG, GET_MODE (op1),
+ op1, GET_MODE (op1));
+ HOST_WIDE_INT mask = GET_MODE_PRECISION (mode) - 1;
+ other_amount
+ = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
+ gen_int_mode (mask, GET_MODE (op1)));
+ }
+
+ shifted = force_reg (mode, shifted);
+
+ temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
+ mode, shifted, new_amount, 0, 1);
+ temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
+ mode, shifted, other_amount,
+ subtarget, 1);
+ return expand_binop (mode, ior_optab, temp, temp1, target,
+ unsignedp, methods);
+ }
+
+ temp = expand_binop (mode,
+ left ? lrotate_optab : rrotate_optab,
+ shifted, op1, target, unsignedp, methods);
+ }
+ else if (unsignedp)
+ temp = expand_binop (mode,
+ left ? lshift_optab : rshift_uns_optab,
+ shifted, op1, target, unsignedp, methods);
+
+ /* Do arithmetic shifts.
+ Also, if we are going to widen the operand, we can just as well
+ use an arithmetic right-shift instead of a logical one. */
+ if (temp == 0 && ! rotate
+ && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
+ {
+ enum optab_methods methods1 = methods;
+
+ /* If trying to widen a log shift to an arithmetic shift,
+ don't accept an arithmetic shift of the same size. */
+ if (unsignedp)
+ methods1 = OPTAB_MUST_WIDEN;
+
+ /* Arithmetic shift */
+
+ temp = expand_binop (mode,
+ left ? lshift_optab : rshift_arith_optab,
+ shifted, op1, target, unsignedp, methods1);
+ }
+
+ /* We used to try extzv here for logical right shifts, but that was
+ only useful for one machine, the VAX, and caused poor code
+ generation there for lshrdi3, so the code was deleted and a
+ define_expand for lshrsi3 was added to vax.md. */
+ }
+
+ gcc_assert (temp);
+ return temp;
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is. */
+
+rtx
+expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
+ int amount, rtx target, int unsignedp)
+{
+ return expand_shift_1 (code, mode,
+ shifted, GEN_INT (amount), target, unsignedp);
+}
+
+/* Output a shift instruction for expression code CODE,
+ with SHIFTED being the rtx for the value to shift,
+ and AMOUNT the tree for the amount to shift by.
+ Store the result in the rtx TARGET, if that is convenient.
+ If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
+ Return the rtx for where the value is. */
+
+rtx
+expand_variable_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
+ tree amount, rtx target, int unsignedp)
+{
+ return expand_shift_1 (code, mode,
+ shifted, expand_normal (amount), target, unsignedp);
+}
+
+
+/* Indicates the type of fixup needed after a constant multiplication.
+ BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
+ the result should be negated, and ADD_VARIANT means that the
+ multiplicand should be added to the result. */
+enum mult_variant {basic_variant, negate_variant, add_variant};
+
+static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
+ const struct mult_cost *, enum machine_mode mode);
+static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
+ struct algorithm *, enum mult_variant *, int);
+static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
+ const struct algorithm *, enum mult_variant);
+static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
+static rtx extract_high_half (enum machine_mode, rtx);
+static rtx expmed_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
+static rtx expmed_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
+ int, int);
+/* Compute and return the best algorithm for multiplying by T.
+ The algorithm must cost less than cost_limit
+ If retval.cost >= COST_LIMIT, no algorithm was found and all
+ other field of the returned struct are undefined.
+ MODE is the machine mode of the multiplication. */
+
+static void
+synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
+ const struct mult_cost *cost_limit, enum machine_mode mode)
+{
+ int m;
+ struct algorithm *alg_in, *best_alg;
+ struct mult_cost best_cost;
+ struct mult_cost new_limit;
+ int op_cost, op_latency;
+ unsigned HOST_WIDE_INT orig_t = t;
+ unsigned HOST_WIDE_INT q;
+ int maxm, hash_index;
+ bool cache_hit = false;
+ enum alg_code cache_alg = alg_zero;
+ bool speed = optimize_insn_for_speed_p ();
+ enum machine_mode imode;
+ struct alg_hash_entry *entry_ptr;
+
+ /* Indicate that no algorithm is yet found. If no algorithm
+ is found, this value will be returned and indicate failure. */
+ alg_out->cost.cost = cost_limit->cost + 1;
+ alg_out->cost.latency = cost_limit->latency + 1;
+
+ if (cost_limit->cost < 0
+ || (cost_limit->cost == 0 && cost_limit->latency <= 0))
+ return;
+
+ /* Be prepared for vector modes. */
+ imode = GET_MODE_INNER (mode);
+ if (imode == VOIDmode)
+ imode = mode;
+
+ maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
+
+ /* Restrict the bits of "t" to the multiplication's mode. */
+ t &= GET_MODE_MASK (imode);
+
+ /* t == 1 can be done in zero cost. */
+ if (t == 1)
+ {
+ alg_out->ops = 1;
+ alg_out->cost.cost = 0;
+ alg_out->cost.latency = 0;
+ alg_out->op[0] = alg_m;
+ return;
+ }
+
+ /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
+ fail now. */
+ if (t == 0)
+ {
+ if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
+ return;
+ else
+ {
+ alg_out->ops = 1;
+ alg_out->cost.cost = zero_cost (speed);
+ alg_out->cost.latency = zero_cost (speed);
+ alg_out->op[0] = alg_zero;
+ return;
+ }
+ }
+
+ /* We'll be needing a couple extra algorithm structures now. */
+
+ alg_in = XALLOCA (struct algorithm);
+ best_alg = XALLOCA (struct algorithm);
+ best_cost = *cost_limit;
+
+ /* Compute the hash index. */
+ hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
+
+ /* See if we already know what to do for T. */
+ entry_ptr = alg_hash_entry_ptr (hash_index);
+ if (entry_ptr->t == t
+ && entry_ptr->mode == mode
+ && entry_ptr->mode == mode
+ && entry_ptr->speed == speed
+ && entry_ptr->alg != alg_unknown)
+ {
+ cache_alg = entry_ptr->alg;
+
+ if (cache_alg == alg_impossible)
+ {
+ /* The cache tells us that it's impossible to synthesize
+ multiplication by T within entry_ptr->cost. */
+ if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
+ /* COST_LIMIT is at least as restrictive as the one
+ recorded in the hash table, in which case we have no
+ hope of synthesizing a multiplication. Just
+ return. */
+ return;
+
+ /* If we get here, COST_LIMIT is less restrictive than the
+ one recorded in the hash table, so we may be able to
+ synthesize a multiplication. Proceed as if we didn't
+ have the cache entry. */
+ }
+ else
+ {
+ if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
+ /* The cached algorithm shows that this multiplication
+ requires more cost than COST_LIMIT. Just return. This
+ way, we don't clobber this cache entry with
+ alg_impossible but retain useful information. */
+ return;
+
+ cache_hit = true;
+
+ switch (cache_alg)
+ {
+ case alg_shift:
+ goto do_alg_shift;
+
+ case alg_add_t_m2:
+ case alg_sub_t_m2:
+ goto do_alg_addsub_t_m2;
+
+ case alg_add_factor:
+ case alg_sub_factor:
+ goto do_alg_addsub_factor;
+
+ case alg_add_t2_m:
+ goto do_alg_add_t2_m;
+
+ case alg_sub_t2_m:
+ goto do_alg_sub_t2_m;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+ }
+
+ /* If we have a group of zero bits at the low-order part of T, try
+ multiplying by the remaining bits and then doing a shift. */
+
+ if ((t & 1) == 0)
+ {
+ do_alg_shift:
+ m = floor_log2 (t & -t); /* m = number of low zero bits */
+ if (m < maxm)
+ {
+ q = t >> m;
+ /* The function expand_shift will choose between a shift and
+ a sequence of additions, so the observed cost is given as
+ MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
+ op_cost = m * add_cost (speed, mode);
+ if (shift_cost (speed, mode, m) < op_cost)
+ op_cost = shift_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, q, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_shift;
+ }
+
+ /* See if treating ORIG_T as a signed number yields a better
+ sequence. Try this sequence only for a negative ORIG_T
+ as it would be useless for a non-negative ORIG_T. */
+ if ((HOST_WIDE_INT) orig_t < 0)
+ {
+ /* Shift ORIG_T as follows because a right shift of a
+ negative-valued signed type is implementation
+ defined. */
+ q = ~(~orig_t >> m);
+ /* The function expand_shift will choose between a shift
+ and a sequence of additions, so the observed cost is
+ given as MIN (m * add_cost(speed, mode),
+ shift_cost(speed, mode, m)). */
+ op_cost = m * add_cost (speed, mode);
+ if (shift_cost (speed, mode, m) < op_cost)
+ op_cost = shift_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, q, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_shift;
+ }
+ }
+ }
+ if (cache_hit)
+ goto done;
+ }
+
+ /* If we have an odd number, add or subtract one. */
+ if ((t & 1) != 0)
+ {
+ unsigned HOST_WIDE_INT w;
+
+ do_alg_addsub_t_m2:
+ for (w = 1; (w & t) != 0; w <<= 1)
+ ;
+ /* If T was -1, then W will be zero after the loop. This is another
+ case where T ends with ...111. Handling this with (T + 1) and
+ subtract 1 produces slightly better code and results in algorithm
+ selection much faster than treating it like the ...0111 case
+ below. */
+ if (w == 0
+ || (w > 2
+ /* Reject the case where t is 3.
+ Thus we prefer addition in that case. */
+ && t != 3))
+ {
+ /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
+
+ op_cost = add_cost (speed, mode);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, t + 1, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = 0;
+ best_alg->op[best_alg->ops] = alg_sub_t_m2;
+ }
+ }
+ else
+ {
+ /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
+
+ op_cost = add_cost (speed, mode);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, t - 1, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = 0;
+ best_alg->op[best_alg->ops] = alg_add_t_m2;
+ }
+ }
+
+ /* We may be able to calculate a * -7, a * -15, a * -31, etc
+ quickly with a - a * n for some appropriate constant n. */
+ m = exact_log2 (-orig_t + 1);
+ if (m >= 0 && m < maxm)
+ {
+ op_cost = shiftsub1_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
+ &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_t_m2;
+ }
+ }
+
+ if (cache_hit)
+ goto done;
+ }
+
+ /* Look for factors of t of the form
+ t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
+ If we find such a factor, we can multiply by t using an algorithm that
+ multiplies by q, shift the result by m and add/subtract it to itself.
+
+ We search for large factors first and loop down, even if large factors
+ are less probable than small; if we find a large factor we will find a
+ good sequence quickly, and therefore be able to prune (by decreasing
+ COST_LIMIT) the search. */
+
+ do_alg_addsub_factor:
+ for (m = floor_log2 (t - 1); m >= 2; m--)
+ {
+ unsigned HOST_WIDE_INT d;
+
+ d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
+ if (t % d == 0 && t > d && m < maxm
+ && (!cache_hit || cache_alg == alg_add_factor))
+ {
+ /* If the target has a cheap shift-and-add instruction use
+ that in preference to a shift insn followed by an add insn.
+ Assume that the shift-and-add is "atomic" with a latency
+ equal to its cost, otherwise assume that on superscalar
+ hardware the shift may be executed concurrently with the
+ earlier steps in the algorithm. */
+ op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
+ if (shiftadd_cost (speed, mode, m) < op_cost)
+ {
+ op_cost = shiftadd_cost (speed, mode, m);
+ op_latency = op_cost;
+ }
+ else
+ op_latency = add_cost (speed, mode);
+
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_latency;
+ synth_mult (alg_in, t / d, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_latency;
+ if (alg_in->cost.latency < op_cost)
+ alg_in->cost.latency = op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_add_factor;
+ }
+ /* Other factors will have been taken care of in the recursion. */
+ break;
+ }
+
+ d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
+ if (t % d == 0 && t > d && m < maxm
+ && (!cache_hit || cache_alg == alg_sub_factor))
+ {
+ /* If the target has a cheap shift-and-subtract insn use
+ that in preference to a shift insn followed by a sub insn.
+ Assume that the shift-and-sub is "atomic" with a latency
+ equal to it's cost, otherwise assume that on superscalar
+ hardware the shift may be executed concurrently with the
+ earlier steps in the algorithm. */
+ op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
+ if (shiftsub0_cost (speed, mode, m) < op_cost)
+ {
+ op_cost = shiftsub0_cost (speed, mode, m);
+ op_latency = op_cost;
+ }
+ else
+ op_latency = add_cost (speed, mode);
+
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_latency;
+ synth_mult (alg_in, t / d, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_latency;
+ if (alg_in->cost.latency < op_cost)
+ alg_in->cost.latency = op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_factor;
+ }
+ break;
+ }
+ }
+ if (cache_hit)
+ goto done;
+
+ /* Try shift-and-add (load effective address) instructions,
+ i.e. do a*3, a*5, a*9. */
+ if ((t & 1) != 0)
+ {
+ do_alg_add_t2_m:
+ q = t - 1;
+ q = q & -q;
+ m = exact_log2 (q);
+ if (m >= 0 && m < maxm)
+ {
+ op_cost = shiftadd_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_add_t2_m;
+ }
+ }
+ if (cache_hit)
+ goto done;
+
+ do_alg_sub_t2_m:
+ q = t + 1;
+ q = q & -q;
+ m = exact_log2 (q);
+ if (m >= 0 && m < maxm)
+ {
+ op_cost = shiftsub0_cost (speed, mode, m);
+ new_limit.cost = best_cost.cost - op_cost;
+ new_limit.latency = best_cost.latency - op_cost;
+ synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
+
+ alg_in->cost.cost += op_cost;
+ alg_in->cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
+ {
+ struct algorithm *x;
+ best_cost = alg_in->cost;
+ x = alg_in, alg_in = best_alg, best_alg = x;
+ best_alg->log[best_alg->ops] = m;
+ best_alg->op[best_alg->ops] = alg_sub_t2_m;
+ }
+ }
+ if (cache_hit)
+ goto done;
+ }
+
+ done:
+ /* If best_cost has not decreased, we have not found any algorithm. */
+ if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
+ {
+ /* We failed to find an algorithm. Record alg_impossible for
+ this case (that is, <T, MODE, COST_LIMIT>) so that next time
+ we are asked to find an algorithm for T within the same or
+ lower COST_LIMIT, we can immediately return to the
+ caller. */
+ entry_ptr->t = t;
+ entry_ptr->mode = mode;
+ entry_ptr->speed = speed;
+ entry_ptr->alg = alg_impossible;
+ entry_ptr->cost = *cost_limit;
+ return;
+ }
+
+ /* Cache the result. */
+ if (!cache_hit)
+ {
+ entry_ptr->t = t;
+ entry_ptr->mode = mode;
+ entry_ptr->speed = speed;
+ entry_ptr->alg = best_alg->op[best_alg->ops];
+ entry_ptr->cost.cost = best_cost.cost;
+ entry_ptr->cost.latency = best_cost.latency;
+ }
+
+ /* If we are getting a too long sequence for `struct algorithm'
+ to record, make this search fail. */
+ if (best_alg->ops == MAX_BITS_PER_WORD)
+ return;
+
+ /* Copy the algorithm from temporary space to the space at alg_out.
+ We avoid using structure assignment because the majority of
+ best_alg is normally undefined, and this is a critical function. */
+ alg_out->ops = best_alg->ops + 1;
+ alg_out->cost = best_cost;
+ memcpy (alg_out->op, best_alg->op,
+ alg_out->ops * sizeof *alg_out->op);
+ memcpy (alg_out->log, best_alg->log,
+ alg_out->ops * sizeof *alg_out->log);
+}
+
+/* Find the cheapest way of multiplying a value of mode MODE by VAL.
+ Try three variations:
+
+ - a shift/add sequence based on VAL itself
+ - a shift/add sequence based on -VAL, followed by a negation
+ - a shift/add sequence based on VAL - 1, followed by an addition.
+
+ Return true if the cheapest of these cost less than MULT_COST,
+ describing the algorithm in *ALG and final fixup in *VARIANT. */
+
+static bool
+choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
+ struct algorithm *alg, enum mult_variant *variant,
+ int mult_cost)
+{
+ struct algorithm alg2;
+ struct mult_cost limit;
+ int op_cost;
+ bool speed = optimize_insn_for_speed_p ();
+
+ /* Fail quickly for impossible bounds. */
+ if (mult_cost < 0)
+ return false;
+
+ /* Ensure that mult_cost provides a reasonable upper bound.
+ Any constant multiplication can be performed with less
+ than 2 * bits additions. */
+ op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
+ if (mult_cost > op_cost)
+ mult_cost = op_cost;
+
+ *variant = basic_variant;
+ limit.cost = mult_cost;
+ limit.latency = mult_cost;
+ synth_mult (alg, val, &limit, mode);
+
+ /* This works only if the inverted value actually fits in an
+ `unsigned int' */
+ if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
+ {
+ op_cost = neg_cost (speed, mode);
+ if (MULT_COST_LESS (&alg->cost, mult_cost))
+ {
+ limit.cost = alg->cost.cost - op_cost;
+ limit.latency = alg->cost.latency - op_cost;
+ }
+ else
+ {
+ limit.cost = mult_cost - op_cost;
+ limit.latency = mult_cost - op_cost;
+ }
+
+ synth_mult (&alg2, -val, &limit, mode);
+ alg2.cost.cost += op_cost;
+ alg2.cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
+ *alg = alg2, *variant = negate_variant;
+ }
+
+ /* This proves very useful for division-by-constant. */
+ op_cost = add_cost (speed, mode);
+ if (MULT_COST_LESS (&alg->cost, mult_cost))
+ {
+ limit.cost = alg->cost.cost - op_cost;
+ limit.latency = alg->cost.latency - op_cost;
+ }
+ else
+ {
+ limit.cost = mult_cost - op_cost;
+ limit.latency = mult_cost - op_cost;
+ }
+
+ synth_mult (&alg2, val - 1, &limit, mode);
+ alg2.cost.cost += op_cost;
+ alg2.cost.latency += op_cost;
+ if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
+ *alg = alg2, *variant = add_variant;
+
+ return MULT_COST_LESS (&alg->cost, mult_cost);
+}
+
+/* A subroutine of expand_mult, used for constant multiplications.
+ Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
+ convenient. Use the shift/add sequence described by ALG and apply
+ the final fixup specified by VARIANT. */
+
+static rtx
+expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
+ rtx target, const struct algorithm *alg,
+ enum mult_variant variant)
+{
+ HOST_WIDE_INT val_so_far;
+ rtx insn, accum, tem;
+ int opno;
+ enum machine_mode nmode;
+
+ /* Avoid referencing memory over and over and invalid sharing
+ on SUBREGs. */
+ op0 = force_reg (mode, op0);
+
+ /* ACCUM starts out either as OP0 or as a zero, depending on
+ the first operation. */
+
+ if (alg->op[0] == alg_zero)
+ {
+ accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
+ val_so_far = 0;
+ }
+ else if (alg->op[0] == alg_m)
+ {
+ accum = copy_to_mode_reg (mode, op0);
+ val_so_far = 1;
+ }
+ else
+ gcc_unreachable ();
+
+ for (opno = 1; opno < alg->ops; opno++)
+ {
+ int log = alg->log[opno];
+ rtx shift_subtarget = optimize ? 0 : accum;
+ rtx add_target
+ = (opno == alg->ops - 1 && target != 0 && variant != add_variant
+ && !optimize)
+ ? target : 0;
+ rtx accum_target = optimize ? 0 : accum;
+ rtx accum_inner;
+
+ switch (alg->op[opno])
+ {
+ case alg_shift:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+ /* REG_EQUAL note will be attached to the following insn. */
+ emit_move_insn (accum, tem);
+ val_so_far <<= log;
+ break;
+
+ case alg_add_t_m2:
+ tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far += (HOST_WIDE_INT) 1 << log;
+ break;
+
+ case alg_sub_t_m2:
+ tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far -= (HOST_WIDE_INT) 1 << log;
+ break;
+
+ case alg_add_t2_m:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ log, shift_subtarget, 0);
+ accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
+ add_target ? add_target : accum_target);
+ val_so_far = (val_so_far << log) + 1;
+ break;
+
+ case alg_sub_t2_m:
+ accum = expand_shift (LSHIFT_EXPR, mode, accum,
+ log, shift_subtarget, 0);
+ accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
+ add_target ? add_target : accum_target);
+ val_so_far = (val_so_far << log) - 1;
+ break;
+
+ case alg_add_factor:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
+ add_target ? add_target : accum_target);
+ val_so_far += val_so_far << log;
+ break;
+
+ case alg_sub_factor:
+ tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
+ accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
+ (add_target
+ ? add_target : (optimize ? 0 : tem)));
+ val_so_far = (val_so_far << log) - val_so_far;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (SCALAR_INT_MODE_P (mode))
+ {
+ /* Write a REG_EQUAL note on the last insn so that we can cse
+ multiplication sequences. Note that if ACCUM is a SUBREG,
+ we've set the inner register and must properly indicate that. */
+ tem = op0, nmode = mode;
+ accum_inner = accum;
+ if (GET_CODE (accum) == SUBREG)
+ {
+ accum_inner = SUBREG_REG (accum);
+ nmode = GET_MODE (accum_inner);
+ tem = gen_lowpart (nmode, op0);
+ }
+
+ insn = get_last_insn ();
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_MULT (nmode, tem,
+ gen_int_mode (val_so_far, nmode)),
+ accum_inner);
+ }
+ }
+
+ if (variant == negate_variant)
+ {
+ val_so_far = -val_so_far;
+ accum = expand_unop (mode, neg_optab, accum, target, 0);
+ }
+ else if (variant == add_variant)
+ {
+ val_so_far = val_so_far + 1;
+ accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
+ }
+
+ /* Compare only the bits of val and val_so_far that are significant
+ in the result mode, to avoid sign-/zero-extension confusion. */
+ nmode = GET_MODE_INNER (mode);
+ if (nmode == VOIDmode)
+ nmode = mode;
+ val &= GET_MODE_MASK (nmode);
+ val_so_far &= GET_MODE_MASK (nmode);
+ gcc_assert (val == val_so_far);
+
+ return accum;
+}
+
+/* Perform a multiplication and return an rtx for the result.
+ MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
+ TARGET is a suggestion for where to store the result (an rtx).
+
+ We check specially for a constant integer as OP1.
+ If you want this check for OP0 as well, then before calling
+ you should swap the two operands if OP0 would be constant. */
+
+rtx
+expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
+ int unsignedp)
+{
+ enum mult_variant variant;
+ struct algorithm algorithm;
+ rtx scalar_op1;
+ int max_cost;
+ bool speed = optimize_insn_for_speed_p ();
+ bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
+
+ if (CONSTANT_P (op0))
+ {
+ rtx temp = op0;
+ op0 = op1;
+ op1 = temp;
+ }
+
+ /* For vectors, there are several simplifications that can be made if
+ all elements of the vector constant are identical. */
+ scalar_op1 = op1;
+ if (GET_CODE (op1) == CONST_VECTOR)
+ {
+ int i, n = CONST_VECTOR_NUNITS (op1);
+ scalar_op1 = CONST_VECTOR_ELT (op1, 0);
+ for (i = 1; i < n; ++i)
+ if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
+ goto skip_scalar;
+ }
+
+ if (INTEGRAL_MODE_P (mode))
+ {
+ rtx fake_reg;
+ HOST_WIDE_INT coeff;
+ bool is_neg;
+ int mode_bitsize;
+
+ if (op1 == CONST0_RTX (mode))
+ return op1;
+ if (op1 == CONST1_RTX (mode))
+ return op0;
+ if (op1 == CONSTM1_RTX (mode))
+ return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
+ op0, target, 0);
+
+ if (do_trapv)
+ goto skip_synth;
+
+ /* If mode is integer vector mode, check if the backend supports
+ vector lshift (by scalar or vector) at all. If not, we can't use
+ synthetized multiply. */
+ if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
+ && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
+ && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
+ goto skip_synth;
+
+ /* These are the operations that are potentially turned into
+ a sequence of shifts and additions. */
+ mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
+
+ /* synth_mult does an `unsigned int' multiply. As long as the mode is
+ less than or equal in size to `unsigned int' this doesn't matter.
+ If the mode is larger than `unsigned int', then synth_mult works
+ only if the constant value exactly fits in an `unsigned int' without
+ any truncation. This means that multiplying by negative values does
+ not work; results are off by 2^32 on a 32 bit machine. */
+
+ if (CONST_INT_P (scalar_op1))
+ {
+ coeff = INTVAL (scalar_op1);
+ is_neg = coeff < 0;
+ }
+ else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
+ {
+ /* If we are multiplying in DImode, it may still be a win
+ to try to work with shifts and adds. */
+ if (CONST_DOUBLE_HIGH (scalar_op1) == 0
+ && (CONST_DOUBLE_LOW (scalar_op1) > 0
+ || (CONST_DOUBLE_LOW (scalar_op1) < 0
+ && EXACT_POWER_OF_2_OR_ZERO_P
+ (CONST_DOUBLE_LOW (scalar_op1)))))
+ {
+ coeff = CONST_DOUBLE_LOW (scalar_op1);
+ is_neg = false;
+ }
+ else if (CONST_DOUBLE_LOW (scalar_op1) == 0)
+ {
+ coeff = CONST_DOUBLE_HIGH (scalar_op1);
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+ {
+ int shift = floor_log2 (coeff) + HOST_BITS_PER_WIDE_INT;
+ if (shift < HOST_BITS_PER_DOUBLE_INT - 1
+ || mode_bitsize <= HOST_BITS_PER_DOUBLE_INT)
+ return expand_shift (LSHIFT_EXPR, mode, op0,
+ shift, target, unsignedp);
+ }
+ goto skip_synth;
+ }
+ else
+ goto skip_synth;
+ }
+ else
+ goto skip_synth;
+
+ /* We used to test optimize here, on the grounds that it's better to
+ produce a smaller program when -O is not used. But this causes
+ such a terrible slowdown sometimes that it seems better to always
+ use synth_mult. */
+
+ /* Special case powers of two. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
+ && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
+ return expand_shift (LSHIFT_EXPR, mode, op0,
+ floor_log2 (coeff), target, unsignedp);
+
+ fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+
+ /* Attempt to handle multiplication of DImode values by negative
+ coefficients, by performing the multiplication by a positive
+ multiplier and then inverting the result. */
+ if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
+ {
+ /* Its safe to use -coeff even for INT_MIN, as the
+ result is interpreted as an unsigned coefficient.
+ Exclude cost of op0 from max_cost to match the cost
+ calculation of the synth_mult. */
+ coeff = -(unsigned HOST_WIDE_INT) coeff;
+ max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
+ - neg_cost (speed, mode));
+ if (max_cost <= 0)
+ goto skip_synth;
+
+ /* Special case powers of two. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+ {
+ rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
+ floor_log2 (coeff), target, unsignedp);
+ return expand_unop (mode, neg_optab, temp, target, 0);
+ }
+
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant,
+ max_cost))
+ {
+ rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
+ &algorithm, variant);
+ return expand_unop (mode, neg_optab, temp, target, 0);
+ }
+ goto skip_synth;
+ }
+
+ /* Exclude cost of op0 from max_cost to match the cost
+ calculation of the synth_mult. */
+ max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
+ return expand_mult_const (mode, op0, coeff, target,
+ &algorithm, variant);
+ }
+ skip_synth:
+
+ /* Expand x*2.0 as x+x. */
+ if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
+ {
+ REAL_VALUE_TYPE d;
+ REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
+
+ if (REAL_VALUES_EQUAL (d, dconst2))
+ {
+ op0 = force_reg (GET_MODE (op0), op0);
+ return expand_binop (mode, add_optab, op0, op0,
+ target, unsignedp, OPTAB_LIB_WIDEN);
+ }
+ }
+ skip_scalar:
+
+ /* This used to use umul_optab if unsigned, but for non-widening multiply
+ there is no difference between signed and unsigned. */
+ op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
+ op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
+ gcc_assert (op0);
+ return op0;
+}
+
+/* Return a cost estimate for multiplying a register by the given
+ COEFFicient in the given MODE and SPEED. */
+
+int
+mult_by_coeff_cost (HOST_WIDE_INT coeff, enum machine_mode mode, bool speed)
+{
+ int max_cost;
+ struct algorithm algorithm;
+ enum mult_variant variant;
+
+ rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
+ max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
+ return algorithm.cost.cost;
+ else
+ return max_cost;
+}
+
+/* Perform a widening multiplication and return an rtx for the result.
+ MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
+ TARGET is a suggestion for where to store the result (an rtx).
+ THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
+ or smul_widen_optab.
+
+ We check specially for a constant integer as OP1, comparing the
+ cost of a widening multiply against the cost of a sequence of shifts
+ and adds. */
+
+rtx
+expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
+ int unsignedp, optab this_optab)
+{
+ bool speed = optimize_insn_for_speed_p ();
+ rtx cop1;
+
+ if (CONST_INT_P (op1)
+ && GET_MODE (op0) != VOIDmode
+ && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
+ this_optab == umul_widen_optab))
+ && CONST_INT_P (cop1)
+ && (INTVAL (cop1) >= 0
+ || HWI_COMPUTABLE_MODE_P (mode)))
+ {
+ HOST_WIDE_INT coeff = INTVAL (cop1);
+ int max_cost;
+ enum mult_variant variant;
+ struct algorithm algorithm;
+
+ /* Special case powers of two. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
+ {
+ op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
+ return expand_shift (LSHIFT_EXPR, mode, op0,
+ floor_log2 (coeff), target, unsignedp);
+ }
+
+ /* Exclude cost of op0 from max_cost to match the cost
+ calculation of the synth_mult. */
+ max_cost = mul_widen_cost (speed, mode);
+ if (choose_mult_variant (mode, coeff, &algorithm, &variant,
+ max_cost))
+ {
+ op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
+ return expand_mult_const (mode, op0, coeff, target,
+ &algorithm, variant);
+ }
+ }
+ return expand_binop (mode, this_optab, op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+}
+
+/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
+ replace division by D, and put the least significant N bits of the result
+ in *MULTIPLIER_PTR and return the most significant bit.
+
+ The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
+ needed precision is in PRECISION (should be <= N).
+
+ PRECISION should be as small as possible so this function can choose
+ multiplier more freely.
+
+ The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
+ is to be used for a final right shift is placed in *POST_SHIFT_PTR.
+
+ Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
+ where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
+
+unsigned HOST_WIDE_INT
+choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
+ unsigned HOST_WIDE_INT *multiplier_ptr,
+ int *post_shift_ptr, int *lgup_ptr)
+{
+ double_int mhigh, mlow;
+ int lgup, post_shift;
+ int pow, pow2;
+
+ /* lgup = ceil(log2(divisor)); */
+ lgup = ceil_log2 (d);
+
+ gcc_assert (lgup <= n);
+
+ pow = n + lgup;
+ pow2 = n + lgup - precision;
+
+ /* We could handle this with some effort, but this case is much
+ better handled directly with a scc insn, so rely on caller using
+ that. */
+ gcc_assert (pow != HOST_BITS_PER_DOUBLE_INT);
+
+ /* mlow = 2^(N + lgup)/d */
+ double_int val = double_int_zero.set_bit (pow);
+ mlow = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
+
+ /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
+ val |= double_int_zero.set_bit (pow2);
+ mhigh = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
+
+ gcc_assert (!mhigh.high || val.high - d < d);
+ gcc_assert (mhigh.high <= 1 && mlow.high <= 1);
+ /* Assert that mlow < mhigh. */
+ gcc_assert (mlow.ult (mhigh));
+
+ /* If precision == N, then mlow, mhigh exceed 2^N
+ (but they do not exceed 2^(N+1)). */
+
+ /* Reduce to lowest terms. */
+ for (post_shift = lgup; post_shift > 0; post_shift--)
+ {
+ int shft = HOST_BITS_PER_WIDE_INT - 1;
+ unsigned HOST_WIDE_INT ml_lo = (mlow.high << shft) | (mlow.low >> 1);
+ unsigned HOST_WIDE_INT mh_lo = (mhigh.high << shft) | (mhigh.low >> 1);
+ if (ml_lo >= mh_lo)
+ break;
+
+ mlow = double_int::from_uhwi (ml_lo);
+ mhigh = double_int::from_uhwi (mh_lo);
+ }
+
+ *post_shift_ptr = post_shift;
+ *lgup_ptr = lgup;
+ if (n < HOST_BITS_PER_WIDE_INT)
+ {
+ unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
+ *multiplier_ptr = mhigh.low & mask;
+ return mhigh.low >= mask;
+ }
+ else
+ {
+ *multiplier_ptr = mhigh.low;
+ return mhigh.high;
+ }
+}
+
+/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
+ congruent to 1 (mod 2**N). */
+
+static unsigned HOST_WIDE_INT
+invert_mod2n (unsigned HOST_WIDE_INT x, int n)
+{
+ /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
+
+ /* The algorithm notes that the choice y = x satisfies
+ x*y == 1 mod 2^3, since x is assumed odd.
+ Each iteration doubles the number of bits of significance in y. */
+
+ unsigned HOST_WIDE_INT mask;
+ unsigned HOST_WIDE_INT y = x;
+ int nbit = 3;
+
+ mask = (n == HOST_BITS_PER_WIDE_INT
+ ? ~(unsigned HOST_WIDE_INT) 0
+ : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
+
+ while (nbit < n)
+ {
+ y = y * (2 - x*y) & mask; /* Modulo 2^N */
+ nbit *= 2;
+ }
+ return y;
+}
+
+/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
+ flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
+ product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
+ to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
+ become signed.
+
+ The result is put in TARGET if that is convenient.
+
+ MODE is the mode of operation. */
+
+rtx
+expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
+ rtx op1, rtx target, int unsignedp)
+{
+ rtx tem;
+ enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
+ tem = expand_and (mode, tem, op1, NULL_RTX);
+ adj_operand
+ = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
+ adj_operand);
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op1,
+ GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
+ tem = expand_and (mode, tem, op0, NULL_RTX);
+ target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
+ target);
+
+ return target;
+}
+
+/* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
+
+static rtx
+extract_high_half (enum machine_mode mode, rtx op)
+{
+ enum machine_mode wider_mode;
+
+ if (mode == word_mode)
+ return gen_highpart (mode, op);
+
+ gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
+
+ wider_mode = GET_MODE_WIDER_MODE (mode);
+ op = expand_shift (RSHIFT_EXPR, wider_mode, op,
+ GET_MODE_BITSIZE (mode), 0, 1);
+ return convert_modes (mode, wider_mode, op, 0);
+}
+
+/* Like expmed_mult_highpart, but only consider using a multiplication
+ optab. OP1 is an rtx for the constant operand. */
+
+static rtx
+expmed_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
+ rtx target, int unsignedp, int max_cost)
+{
+ rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
+ enum machine_mode wider_mode;
+ optab moptab;
+ rtx tem;
+ int size;
+ bool speed = optimize_insn_for_speed_p ();
+
+ gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
+
+ wider_mode = GET_MODE_WIDER_MODE (mode);
+ size = GET_MODE_BITSIZE (mode);
+
+ /* Firstly, try using a multiplication insn that only generates the needed
+ high part of the product, and in the sign flavor of unsignedp. */
+ if (mul_highpart_cost (speed, mode) < max_cost)
+ {
+ moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
+ tem = expand_binop (mode, moptab, op0, narrow_op1, target,
+ unsignedp, OPTAB_DIRECT);
+ if (tem)
+ return tem;
+ }
+
+ /* Secondly, same as above, but use sign flavor opposite of unsignedp.
+ Need to adjust the result after the multiplication. */
+ if (size - 1 < BITS_PER_WORD
+ && (mul_highpart_cost (speed, mode)
+ + 2 * shift_cost (speed, mode, size-1)
+ + 4 * add_cost (speed, mode) < max_cost))
+ {
+ moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
+ tem = expand_binop (mode, moptab, op0, narrow_op1, target,
+ unsignedp, OPTAB_DIRECT);
+ if (tem)
+ /* We used the wrong signedness. Adjust the result. */
+ return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
+ tem, unsignedp);
+ }
+
+ /* Try widening multiplication. */
+ moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
+ if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
+ && mul_widen_cost (speed, wider_mode) < max_cost)
+ {
+ tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
+ unsignedp, OPTAB_WIDEN);
+ if (tem)
+ return extract_high_half (mode, tem);
+ }
+
+ /* Try widening the mode and perform a non-widening multiplication. */
+ if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
+ && size - 1 < BITS_PER_WORD
+ && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
+ < max_cost))
+ {
+ rtx insns, wop0, wop1;
+
+ /* We need to widen the operands, for example to ensure the
+ constant multiplier is correctly sign or zero extended.
+ Use a sequence to clean-up any instructions emitted by
+ the conversions if things don't work out. */
+ start_sequence ();
+ wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
+ wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
+ tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
+ unsignedp, OPTAB_WIDEN);
+ insns = get_insns ();
+ end_sequence ();
+
+ if (tem)
+ {
+ emit_insn (insns);
+ return extract_high_half (mode, tem);
+ }
+ }
+
+ /* Try widening multiplication of opposite signedness, and adjust. */
+ moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
+ if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
+ && size - 1 < BITS_PER_WORD
+ && (mul_widen_cost (speed, wider_mode)
+ + 2 * shift_cost (speed, mode, size-1)
+ + 4 * add_cost (speed, mode) < max_cost))
+ {
+ tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
+ NULL_RTX, ! unsignedp, OPTAB_WIDEN);
+ if (tem != 0)
+ {
+ tem = extract_high_half (mode, tem);
+ /* We used the wrong signedness. Adjust the result. */
+ return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
+ target, unsignedp);
+ }
+ }
+
+ return 0;
+}
+
+/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
+ putting the high half of the result in TARGET if that is convenient,
+ and return where the result is. If the operation can not be performed,
+ 0 is returned.
+
+ MODE is the mode of operation and result.
+
+ UNSIGNEDP nonzero means unsigned multiply.
+
+ MAX_COST is the total allowed cost for the expanded RTL. */
+
+static rtx
+expmed_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
+ rtx target, int unsignedp, int max_cost)
+{
+ enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
+ unsigned HOST_WIDE_INT cnst1;
+ int extra_cost;
+ bool sign_adjust = false;
+ enum mult_variant variant;
+ struct algorithm alg;
+ rtx tem;
+ bool speed = optimize_insn_for_speed_p ();
+
+ gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
+ /* We can't support modes wider than HOST_BITS_PER_INT. */
+ gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
+
+ cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
+
+ /* We can't optimize modes wider than BITS_PER_WORD.
+ ??? We might be able to perform double-word arithmetic if
+ mode == word_mode, however all the cost calculations in
+ synth_mult etc. assume single-word operations. */
+ if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
+ return expmed_mult_highpart_optab (mode, op0, op1, target,
+ unsignedp, max_cost);
+
+ extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
+
+ /* Check whether we try to multiply by a negative constant. */
+ if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
+ {
+ sign_adjust = true;
+ extra_cost += add_cost (speed, mode);
+ }
+
+ /* See whether shift/add multiplication is cheap enough. */
+ if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
+ max_cost - extra_cost))
+ {
+ /* See whether the specialized multiplication optabs are
+ cheaper than the shift/add version. */
+ tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
+ alg.cost.cost + extra_cost);
+ if (tem)
+ return tem;
+
+ tem = convert_to_mode (wider_mode, op0, unsignedp);
+ tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
+ tem = extract_high_half (mode, tem);
+
+ /* Adjust result for signedness. */
+ if (sign_adjust)
+ tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
+
+ return tem;
+ }
+ return expmed_mult_highpart_optab (mode, op0, op1, target,
+ unsignedp, max_cost);
+}
+
+
+/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
+
+static rtx
+expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
+{
+ unsigned HOST_WIDE_INT masklow, maskhigh;
+ rtx result, temp, shift, label;
+ int logd;
+
+ logd = floor_log2 (d);
+ result = gen_reg_rtx (mode);
+
+ /* Avoid conditional branches when they're expensive. */
+ if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
+ && optimize_insn_for_speed_p ())
+ {
+ rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
+ mode, 0, -1);
+ if (signmask)
+ {
+ signmask = force_reg (mode, signmask);
+ masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
+ shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
+
+ /* Use the rtx_cost of a LSHIFTRT instruction to determine
+ which instruction sequence to use. If logical right shifts
+ are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
+ use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
+
+ temp = gen_rtx_LSHIFTRT (mode, result, shift);
+ if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
+ || (set_src_cost (temp, optimize_insn_for_speed_p ())
+ > COSTS_N_INSNS (2)))
+ {
+ temp = expand_binop (mode, xor_optab, op0, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, sub_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, and_optab, temp,
+ gen_int_mode (masklow, mode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, xor_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, sub_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ }
+ else
+ {
+ signmask = expand_binop (mode, lshr_optab, signmask, shift,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ signmask = force_reg (mode, signmask);
+
+ temp = expand_binop (mode, add_optab, op0, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, and_optab, temp,
+ gen_int_mode (masklow, mode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, sub_optab, temp, signmask,
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ }
+ return temp;
+ }
+ }
+
+ /* Mask contains the mode's signbit and the significant bits of the
+ modulus. By including the signbit in the operation, many targets
+ can avoid an explicit compare operation in the following comparison
+ against zero. */
+
+ masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
+ if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ masklow |= HOST_WIDE_INT_M1U << (GET_MODE_BITSIZE (mode) - 1);
+ maskhigh = -1;
+ }
+ else
+ maskhigh = HOST_WIDE_INT_M1U
+ << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
+
+ temp = expand_binop (mode, and_optab, op0,
+ immed_double_const (masklow, maskhigh, mode),
+ result, 1, OPTAB_LIB_WIDEN);
+ if (temp != result)
+ emit_move_insn (result, temp);
+
+ label = gen_label_rtx ();
+ do_cmp_and_jump (result, const0_rtx, GE, mode, label);
+
+ temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
+ 0, OPTAB_LIB_WIDEN);
+ masklow = HOST_WIDE_INT_M1U << logd;
+ maskhigh = -1;
+ temp = expand_binop (mode, ior_optab, temp,
+ immed_double_const (masklow, maskhigh, mode),
+ result, 1, OPTAB_LIB_WIDEN);
+ temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
+ 0, OPTAB_LIB_WIDEN);
+ if (temp != result)
+ emit_move_insn (result, temp);
+ emit_label (label);
+ return result;
+}
+
+/* Expand signed division of OP0 by a power of two D in mode MODE.
+ This routine is only called for positive values of D. */
+
+static rtx
+expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
+{
+ rtx temp, label;
+ int logd;
+
+ logd = floor_log2 (d);
+
+ if (d == 2
+ && BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 1)
+ {
+ temp = gen_reg_rtx (mode);
+ temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
+ temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
+ 0, OPTAB_LIB_WIDEN);
+ return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+ }
+
+#ifdef HAVE_conditional_move
+ if (BRANCH_COST (optimize_insn_for_speed_p (), false)
+ >= 2)
+ {
+ rtx temp2;
+
+ start_sequence ();
+ temp2 = copy_to_mode_reg (mode, op0);
+ temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ temp = force_reg (mode, temp);
+
+ /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
+ temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
+ mode, temp, temp2, mode, 0);
+ if (temp2)
+ {
+ rtx seq = get_insns ();
+ end_sequence ();
+ emit_insn (seq);
+ return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
+ }
+ end_sequence ();
+ }
+#endif
+
+ if (BRANCH_COST (optimize_insn_for_speed_p (),
+ false) >= 2)
+ {
+ int ushift = GET_MODE_BITSIZE (mode) - logd;
+
+ temp = gen_reg_rtx (mode);
+ temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
+ if (shift_cost (optimize_insn_for_speed_p (), mode, ushift)
+ > COSTS_N_INSNS (1))
+ temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
+ NULL_RTX, 0, OPTAB_LIB_WIDEN);
+ else
+ temp = expand_shift (RSHIFT_EXPR, mode, temp,
+ ushift, NULL_RTX, 1);
+ temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
+ 0, OPTAB_LIB_WIDEN);
+ return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+ }
+
+ label = gen_label_rtx ();
+ temp = copy_to_mode_reg (mode, op0);
+ do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
+ expand_inc (temp, gen_int_mode (d - 1, mode));
+ emit_label (label);
+ return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
+}
+
+/* Emit the code to divide OP0 by OP1, putting the result in TARGET
+ if that is convenient, and returning where the result is.
+ You may request either the quotient or the remainder as the result;
+ specify REM_FLAG nonzero to get the remainder.
+
+ CODE is the expression code for which kind of division this is;
+ it controls how rounding is done. MODE is the machine mode to use.
+ UNSIGNEDP nonzero means do unsigned division. */
+
+/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
+ and then correct it by or'ing in missing high bits
+ if result of ANDI is nonzero.
+ For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
+ This could optimize to a bfexts instruction.
+ But C doesn't use these operations, so their optimizations are
+ left for later. */
+/* ??? For modulo, we don't actually need the highpart of the first product,
+ the low part will do nicely. And for small divisors, the second multiply
+ can also be a low-part only multiply or even be completely left out.
+ E.g. to calculate the remainder of a division by 3 with a 32 bit
+ multiply, multiply with 0x55555556 and extract the upper two bits;
+ the result is exact for inputs up to 0x1fffffff.
+ The input range can be reduced by using cross-sum rules.
+ For odd divisors >= 3, the following table gives right shift counts
+ so that if a number is shifted by an integer multiple of the given
+ amount, the remainder stays the same:
+ 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
+ 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
+ 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
+ 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
+ 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
+
+ Cross-sum rules for even numbers can be derived by leaving as many bits
+ to the right alone as the divisor has zeros to the right.
+ E.g. if x is an unsigned 32 bit number:
+ (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
+ */
+
+rtx
+expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
+ rtx op0, rtx op1, rtx target, int unsignedp)
+{
+ enum machine_mode compute_mode;
+ rtx tquotient;
+ rtx quotient = 0, remainder = 0;
+ rtx last;
+ int size;
+ rtx insn;
+ optab optab1, optab2;
+ int op1_is_constant, op1_is_pow2 = 0;
+ int max_cost, extra_cost;
+ static HOST_WIDE_INT last_div_const = 0;
+ bool speed = optimize_insn_for_speed_p ();
+
+ op1_is_constant = CONST_INT_P (op1);
+ if (op1_is_constant)
+ {
+ unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
+ if (unsignedp)
+ ext_op1 &= GET_MODE_MASK (mode);
+ op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
+ || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
+ }
+
+ /*
+ This is the structure of expand_divmod:
+
+ First comes code to fix up the operands so we can perform the operations
+ correctly and efficiently.
+
+ Second comes a switch statement with code specific for each rounding mode.
+ For some special operands this code emits all RTL for the desired
+ operation, for other cases, it generates only a quotient and stores it in
+ QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
+ to indicate that it has not done anything.
+
+ Last comes code that finishes the operation. If QUOTIENT is set and
+ REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
+ QUOTIENT is not set, it is computed using trunc rounding.
+
+ We try to generate special code for division and remainder when OP1 is a
+ constant. If |OP1| = 2**n we can use shifts and some other fast
+ operations. For other values of OP1, we compute a carefully selected
+ fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
+ by m.
+
+ In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
+ half of the product. Different strategies for generating the product are
+ implemented in expmed_mult_highpart.
+
+ If what we actually want is the remainder, we generate that by another
+ by-constant multiplication and a subtraction. */
+
+ /* We shouldn't be called with OP1 == const1_rtx, but some of the
+ code below will malfunction if we are, so check here and handle
+ the special case if so. */
+ if (op1 == const1_rtx)
+ return rem_flag ? const0_rtx : op0;
+
+ /* When dividing by -1, we could get an overflow.
+ negv_optab can handle overflows. */
+ if (! unsignedp && op1 == constm1_rtx)
+ {
+ if (rem_flag)
+ return const0_rtx;
+ return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
+ ? negv_optab : neg_optab, op0, target, 0);
+ }
+
+ if (target
+ /* Don't use the function value register as a target
+ since we have to read it as well as write it,
+ and function-inlining gets confused by this. */
+ && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
+ /* Don't clobber an operand while doing a multi-step calculation. */
+ || ((rem_flag || op1_is_constant)
+ && (reg_mentioned_p (target, op0)
+ || (MEM_P (op0) && MEM_P (target))))
+ || reg_mentioned_p (target, op1)
+ || (MEM_P (op1) && MEM_P (target))))
+ target = 0;
+
+ /* Get the mode in which to perform this computation. Normally it will
+ be MODE, but sometimes we can't do the desired operation in MODE.
+ If so, pick a wider mode in which we can do the operation. Convert
+ to that mode at the start to avoid repeated conversions.
+
+ First see what operations we need. These depend on the expression
+ we are evaluating. (We assume that divxx3 insns exist under the
+ same conditions that modxx3 insns and that these insns don't normally
+ fail. If these assumptions are not correct, we may generate less
+ efficient code in some cases.)
+
+ Then see if we find a mode in which we can open-code that operation
+ (either a division, modulus, or shift). Finally, check for the smallest
+ mode for which we can do the operation with a library call. */
+
+ /* We might want to refine this now that we have division-by-constant
+ optimization. Since expmed_mult_highpart tries so many variants, it is
+ not straightforward to generalize this. Maybe we should make an array
+ of possible modes in init_expmed? Save this for GCC 2.7. */
+
+ optab1 = ((op1_is_pow2 && op1 != const0_rtx)
+ ? (unsignedp ? lshr_optab : ashr_optab)
+ : (unsignedp ? udiv_optab : sdiv_optab));
+ optab2 = ((op1_is_pow2 && op1 != const0_rtx)
+ ? optab1
+ : (unsignedp ? udivmod_optab : sdivmod_optab));
+
+ for (compute_mode = mode; compute_mode != VOIDmode;
+ compute_mode = GET_MODE_WIDER_MODE (compute_mode))
+ if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
+ || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
+ break;
+
+ if (compute_mode == VOIDmode)
+ for (compute_mode = mode; compute_mode != VOIDmode;
+ compute_mode = GET_MODE_WIDER_MODE (compute_mode))
+ if (optab_libfunc (optab1, compute_mode)
+ || optab_libfunc (optab2, compute_mode))
+ break;
+
+ /* If we still couldn't find a mode, use MODE, but expand_binop will
+ probably die. */
+ if (compute_mode == VOIDmode)
+ compute_mode = mode;
+
+ if (target && GET_MODE (target) == compute_mode)
+ tquotient = target;
+ else
+ tquotient = gen_reg_rtx (compute_mode);
+
+ size = GET_MODE_BITSIZE (compute_mode);
+#if 0
+ /* It should be possible to restrict the precision to GET_MODE_BITSIZE
+ (mode), and thereby get better code when OP1 is a constant. Do that
+ later. It will require going over all usages of SIZE below. */
+ size = GET_MODE_BITSIZE (mode);
+#endif
+
+ /* Only deduct something for a REM if the last divide done was
+ for a different constant. Then set the constant of the last
+ divide. */
+ max_cost = (unsignedp
+ ? udiv_cost (speed, compute_mode)
+ : sdiv_cost (speed, compute_mode));
+ if (rem_flag && ! (last_div_const != 0 && op1_is_constant
+ && INTVAL (op1) == last_div_const))
+ max_cost -= (mul_cost (speed, compute_mode)
+ + add_cost (speed, compute_mode));
+
+ last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
+
+ /* Now convert to the best mode to use. */
+ if (compute_mode != mode)
+ {
+ op0 = convert_modes (compute_mode, mode, op0, unsignedp);
+ op1 = convert_modes (compute_mode, mode, op1, unsignedp);
+
+ /* convert_modes may have placed op1 into a register, so we
+ must recompute the following. */
+ op1_is_constant = CONST_INT_P (op1);
+ op1_is_pow2 = (op1_is_constant
+ && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
+ || (! unsignedp
+ && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
+ }
+
+ /* If one of the operands is a volatile MEM, copy it into a register. */
+
+ if (MEM_P (op0) && MEM_VOLATILE_P (op0))
+ op0 = force_reg (compute_mode, op0);
+ if (MEM_P (op1) && MEM_VOLATILE_P (op1))
+ op1 = force_reg (compute_mode, op1);
+
+ /* If we need the remainder or if OP1 is constant, we need to
+ put OP0 in a register in case it has any queued subexpressions. */
+ if (rem_flag || op1_is_constant)
+ op0 = force_reg (compute_mode, op0);
+
+ last = get_last_insn ();
+
+ /* Promote floor rounding to trunc rounding for unsigned operations. */
+ if (unsignedp)
+ {
+ if (code == FLOOR_DIV_EXPR)
+ code = TRUNC_DIV_EXPR;
+ if (code == FLOOR_MOD_EXPR)
+ code = TRUNC_MOD_EXPR;
+ if (code == EXACT_DIV_EXPR && op1_is_pow2)
+ code = TRUNC_DIV_EXPR;
+ }
+
+ if (op1 != const0_rtx)
+ switch (code)
+ {
+ case TRUNC_MOD_EXPR:
+ case TRUNC_DIV_EXPR:
+ if (op1_is_constant)
+ {
+ if (unsignedp)
+ {
+ unsigned HOST_WIDE_INT mh, ml;
+ int pre_shift, post_shift;
+ int dummy;
+ unsigned HOST_WIDE_INT d = (INTVAL (op1)
+ & GET_MODE_MASK (compute_mode));
+
+ if (EXACT_POWER_OF_2_OR_ZERO_P (d))
+ {
+ pre_shift = floor_log2 (d);
+ if (rem_flag)
+ {
+ unsigned HOST_WIDE_INT mask
+ = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
+ remainder
+ = expand_binop (compute_mode, and_optab, op0,
+ gen_int_mode (mask, compute_mode),
+ remainder, 1,
+ OPTAB_LIB_WIDEN);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+ quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ pre_shift, tquotient, 1);
+ }
+ else if (size <= HOST_BITS_PER_WIDE_INT)
+ {
+ if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
+ {
+ /* Most significant bit of divisor is set; emit an scc
+ insn. */
+ quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
+ compute_mode, 1, 1);
+ }
+ else
+ {
+ /* Find a suitable multiplier and right shift count
+ instead of multiplying with D. */
+
+ mh = choose_multiplier (d, size, size,
+ &ml, &post_shift, &dummy);
+
+ /* If the suggested multiplier is more than SIZE bits,
+ we can do better for even divisors, using an
+ initial right shift. */
+ if (mh != 0 && (d & 1) == 0)
+ {
+ pre_shift = floor_log2 (d & -d);
+ mh = choose_multiplier (d >> pre_shift, size,
+ size - pre_shift,
+ &ml, &post_shift, &dummy);
+ gcc_assert (!mh);
+ }
+ else
+ pre_shift = 0;
+
+ if (mh != 0)
+ {
+ rtx t1, t2, t3, t4;
+
+ if (post_shift - 1 >= BITS_PER_WORD)
+ goto fail1;
+
+ extra_cost
+ = (shift_cost (speed, compute_mode, post_shift - 1)
+ + shift_cost (speed, compute_mode, 1)
+ + 2 * add_cost (speed, compute_mode));
+ t1 = expmed_mult_highpart
+ (compute_mode, op0,
+ gen_int_mode (ml, compute_mode),
+ NULL_RTX, 1, max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = force_operand (gen_rtx_MINUS (compute_mode,
+ op0, t1),
+ NULL_RTX);
+ t3 = expand_shift (RSHIFT_EXPR, compute_mode,
+ t2, 1, NULL_RTX, 1);
+ t4 = force_operand (gen_rtx_PLUS (compute_mode,
+ t1, t3),
+ NULL_RTX);
+ quotient = expand_shift
+ (RSHIFT_EXPR, compute_mode, t4,
+ post_shift - 1, tquotient, 1);
+ }
+ else
+ {
+ rtx t1, t2;
+
+ if (pre_shift >= BITS_PER_WORD
+ || post_shift >= BITS_PER_WORD)
+ goto fail1;
+
+ t1 = expand_shift
+ (RSHIFT_EXPR, compute_mode, op0,
+ pre_shift, NULL_RTX, 1);
+ extra_cost
+ = (shift_cost (speed, compute_mode, pre_shift)
+ + shift_cost (speed, compute_mode, post_shift));
+ t2 = expmed_mult_highpart
+ (compute_mode, t1,
+ gen_int_mode (ml, compute_mode),
+ NULL_RTX, 1, max_cost - extra_cost);
+ if (t2 == 0)
+ goto fail1;
+ quotient = expand_shift
+ (RSHIFT_EXPR, compute_mode, t2,
+ post_shift, tquotient, 1);
+ }
+ }
+ }
+ else /* Too wide mode to use tricky code */
+ break;
+
+ insn = get_last_insn ();
+ if (insn != last)
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_UDIV (compute_mode, op0, op1),
+ quotient);
+ }
+ else /* TRUNC_DIV, signed */
+ {
+ unsigned HOST_WIDE_INT ml;
+ int lgup, post_shift;
+ rtx mlr;
+ HOST_WIDE_INT d = INTVAL (op1);
+ unsigned HOST_WIDE_INT abs_d;
+
+ /* Since d might be INT_MIN, we have to cast to
+ unsigned HOST_WIDE_INT before negating to avoid
+ undefined signed overflow. */
+ abs_d = (d >= 0
+ ? (unsigned HOST_WIDE_INT) d
+ : - (unsigned HOST_WIDE_INT) d);
+
+ /* n rem d = n rem -d */
+ if (rem_flag && d < 0)
+ {
+ d = abs_d;
+ op1 = gen_int_mode (abs_d, compute_mode);
+ }
+
+ if (d == 1)
+ quotient = op0;
+ else if (d == -1)
+ quotient = expand_unop (compute_mode, neg_optab, op0,
+ tquotient, 0);
+ else if (HOST_BITS_PER_WIDE_INT >= size
+ && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
+ {
+ /* This case is not handled correctly below. */
+ quotient = emit_store_flag (tquotient, EQ, op0, op1,
+ compute_mode, 1, 1);
+ if (quotient == 0)
+ goto fail1;
+ }
+ else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
+ && (rem_flag
+ ? smod_pow2_cheap (speed, compute_mode)
+ : sdiv_pow2_cheap (speed, compute_mode))
+ /* We assume that cheap metric is true if the
+ optab has an expander for this mode. */
+ && ((optab_handler ((rem_flag ? smod_optab
+ : sdiv_optab),
+ compute_mode)
+ != CODE_FOR_nothing)
+ || (optab_handler (sdivmod_optab,
+ compute_mode)
+ != CODE_FOR_nothing)))
+ ;
+ else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
+ {
+ if (rem_flag)
+ {
+ remainder = expand_smod_pow2 (compute_mode, op0, d);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+
+ if (sdiv_pow2_cheap (speed, compute_mode)
+ && ((optab_handler (sdiv_optab, compute_mode)
+ != CODE_FOR_nothing)
+ || (optab_handler (sdivmod_optab, compute_mode)
+ != CODE_FOR_nothing)))
+ quotient = expand_divmod (0, TRUNC_DIV_EXPR,
+ compute_mode, op0,
+ gen_int_mode (abs_d,
+ compute_mode),
+ NULL_RTX, 0);
+ else
+ quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
+
+ /* We have computed OP0 / abs(OP1). If OP1 is negative,
+ negate the quotient. */
+ if (d < 0)
+ {
+ insn = get_last_insn ();
+ if (insn != last
+ && abs_d < ((unsigned HOST_WIDE_INT) 1
+ << (HOST_BITS_PER_WIDE_INT - 1)))
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_DIV (compute_mode, op0,
+ gen_int_mode
+ (abs_d,
+ compute_mode)),
+ quotient);
+
+ quotient = expand_unop (compute_mode, neg_optab,
+ quotient, quotient, 0);
+ }
+ }
+ else if (size <= HOST_BITS_PER_WIDE_INT)
+ {
+ choose_multiplier (abs_d, size, size - 1,
+ &ml, &post_shift, &lgup);
+ if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
+ {
+ rtx t1, t2, t3;
+
+ if (post_shift >= BITS_PER_WORD
+ || size - 1 >= BITS_PER_WORD)
+ goto fail1;
+
+ extra_cost = (shift_cost (speed, compute_mode, post_shift)
+ + shift_cost (speed, compute_mode, size - 1)
+ + add_cost (speed, compute_mode));
+ t1 = expmed_mult_highpart
+ (compute_mode, op0, gen_int_mode (ml, compute_mode),
+ NULL_RTX, 0, max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = expand_shift
+ (RSHIFT_EXPR, compute_mode, t1,
+ post_shift, NULL_RTX, 0);
+ t3 = expand_shift
+ (RSHIFT_EXPR, compute_mode, op0,
+ size - 1, NULL_RTX, 0);
+ if (d < 0)
+ quotient
+ = force_operand (gen_rtx_MINUS (compute_mode,
+ t3, t2),
+ tquotient);
+ else
+ quotient
+ = force_operand (gen_rtx_MINUS (compute_mode,
+ t2, t3),
+ tquotient);
+ }
+ else
+ {
+ rtx t1, t2, t3, t4;
+
+ if (post_shift >= BITS_PER_WORD
+ || size - 1 >= BITS_PER_WORD)
+ goto fail1;
+
+ ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
+ mlr = gen_int_mode (ml, compute_mode);
+ extra_cost = (shift_cost (speed, compute_mode, post_shift)
+ + shift_cost (speed, compute_mode, size - 1)
+ + 2 * add_cost (speed, compute_mode));
+ t1 = expmed_mult_highpart (compute_mode, op0, mlr,
+ NULL_RTX, 0,
+ max_cost - extra_cost);
+ if (t1 == 0)
+ goto fail1;
+ t2 = force_operand (gen_rtx_PLUS (compute_mode,
+ t1, op0),
+ NULL_RTX);
+ t3 = expand_shift
+ (RSHIFT_EXPR, compute_mode, t2,
+ post_shift, NULL_RTX, 0);
+ t4 = expand_shift
+ (RSHIFT_EXPR, compute_mode, op0,
+ size - 1, NULL_RTX, 0);
+ if (d < 0)
+ quotient
+ = force_operand (gen_rtx_MINUS (compute_mode,
+ t4, t3),
+ tquotient);
+ else
+ quotient
+ = force_operand (gen_rtx_MINUS (compute_mode,
+ t3, t4),
+ tquotient);
+ }
+ }
+ else /* Too wide mode to use tricky code */
+ break;
+
+ insn = get_last_insn ();
+ if (insn != last)
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_DIV (compute_mode, op0, op1),
+ quotient);
+ }
+ break;
+ }
+ fail1:
+ delete_insns_since (last);
+ break;
+
+ case FLOOR_DIV_EXPR:
+ case FLOOR_MOD_EXPR:
+ /* We will come here only for signed operations. */
+ if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
+ {
+ unsigned HOST_WIDE_INT mh, ml;
+ int pre_shift, lgup, post_shift;
+ HOST_WIDE_INT d = INTVAL (op1);
+
+ if (d > 0)
+ {
+ /* We could just as easily deal with negative constants here,
+ but it does not seem worth the trouble for GCC 2.6. */
+ if (EXACT_POWER_OF_2_OR_ZERO_P (d))
+ {
+ pre_shift = floor_log2 (d);
+ if (rem_flag)
+ {
+ unsigned HOST_WIDE_INT mask
+ = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
+ remainder = expand_binop
+ (compute_mode, and_optab, op0,
+ gen_int_mode (mask, compute_mode),
+ remainder, 0, OPTAB_LIB_WIDEN);
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+ quotient = expand_shift
+ (RSHIFT_EXPR, compute_mode, op0,
+ pre_shift, tquotient, 0);
+ }
+ else
+ {
+ rtx t1, t2, t3, t4;
+
+ mh = choose_multiplier (d, size, size - 1,
+ &ml, &post_shift, &lgup);
+ gcc_assert (!mh);
+
+ if (post_shift < BITS_PER_WORD
+ && size - 1 < BITS_PER_WORD)
+ {
+ t1 = expand_shift
+ (RSHIFT_EXPR, compute_mode, op0,
+ size - 1, NULL_RTX, 0);
+ t2 = expand_binop (compute_mode, xor_optab, op0, t1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ extra_cost = (shift_cost (speed, compute_mode, post_shift)
+ + shift_cost (speed, compute_mode, size - 1)
+ + 2 * add_cost (speed, compute_mode));
+ t3 = expmed_mult_highpart
+ (compute_mode, t2, gen_int_mode (ml, compute_mode),
+ NULL_RTX, 1, max_cost - extra_cost);
+ if (t3 != 0)
+ {
+ t4 = expand_shift
+ (RSHIFT_EXPR, compute_mode, t3,
+ post_shift, NULL_RTX, 1);
+ quotient = expand_binop (compute_mode, xor_optab,
+ t4, t1, tquotient, 0,
+ OPTAB_WIDEN);
+ }
+ }
+ }
+ }
+ else
+ {
+ rtx nsign, t1, t2, t3, t4;
+ t1 = force_operand (gen_rtx_PLUS (compute_mode,
+ op0, constm1_rtx), NULL_RTX);
+ t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
+ 0, OPTAB_WIDEN);
+ nsign = expand_shift
+ (RSHIFT_EXPR, compute_mode, t2,
+ size - 1, NULL_RTX, 0);
+ t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
+ NULL_RTX);
+ t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
+ NULL_RTX, 0);
+ if (t4)
+ {
+ rtx t5;
+ t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
+ NULL_RTX, 0);
+ quotient = force_operand (gen_rtx_PLUS (compute_mode,
+ t4, t5),
+ tquotient);
+ }
+ }
+ }
+
+ if (quotient != 0)
+ break;
+ delete_insns_since (last);
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the quotient
+ or remainder to get floor rounding, once we have the remainder.
+ Notice that we compute also the final remainder value here,
+ and return the result right away. */
+ if (target == 0 || GET_MODE (target) != compute_mode)
+ target = gen_reg_rtx (compute_mode);
+
+ if (rem_flag)
+ {
+ remainder
+ = REG_P (target) ? target : gen_reg_rtx (compute_mode);
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient
+ = REG_P (target) ? target : gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (sdivmod_optab, op0, op1,
+ quotient, remainder, 0))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx tem;
+ rtx label = gen_label_rtx ();
+ do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
+ expand_dec (quotient, const1_rtx);
+ expand_inc (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx label1, label2, label3, label4, label5;
+ rtx adjusted_op0;
+ rtx tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ label3 = gen_label_rtx ();
+ label4 = gen_label_rtx ();
+ label5 = gen_label_rtx ();
+ do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label1);
+ expand_inc (adjusted_op0, const1_rtx);
+ emit_jump_insn (gen_jump (label4));
+ emit_barrier ();
+ emit_label (label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label3);
+ expand_dec (adjusted_op0, const1_rtx);
+ emit_label (label4);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_dec (quotient, const1_rtx);
+ emit_label (label5);
+ }
+ break;
+
+ case CEIL_DIV_EXPR:
+ case CEIL_MOD_EXPR:
+ if (unsignedp)
+ {
+ if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
+ {
+ rtx t1, t2, t3;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ floor_log2 (d), tquotient, 1);
+ t2 = expand_binop (compute_mode, and_optab, op0,
+ gen_int_mode (d - 1, compute_mode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ t3 = gen_reg_rtx (compute_mode);
+ t3 = emit_store_flag (t3, NE, t2, const0_rtx,
+ compute_mode, 1, 1);
+ if (t3 == 0)
+ {
+ rtx lab;
+ lab = gen_label_rtx ();
+ do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
+ expand_inc (t1, const1_rtx);
+ emit_label (lab);
+ quotient = t1;
+ }
+ else
+ quotient = force_operand (gen_rtx_PLUS (compute_mode,
+ t1, t3),
+ tquotient);
+ break;
+ }
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the
+ quotient or remainder to get ceiling rounding, once we have the
+ remainder. Notice that we compute also the final remainder
+ value here, and return the result right away. */
+ if (target == 0 || GET_MODE (target) != compute_mode)
+ target = gen_reg_rtx (compute_mode);
+
+ if (rem_flag)
+ {
+ remainder = (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient = (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
+ remainder, 1))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx label = gen_label_rtx ();
+ do_cmp_and_jump (remainder, const0_rtx, EQ,
+ compute_mode, label);
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx label1, label2;
+ rtx adjusted_op0, tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
+ compute_mode, label1);
+ emit_move_insn (quotient, const0_rtx);
+ emit_jump_insn (gen_jump (label2));
+ emit_barrier ();
+ emit_label (label1);
+ expand_dec (adjusted_op0, const1_rtx);
+ tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
+ quotient, 1, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_inc (quotient, const1_rtx);
+ emit_label (label2);
+ }
+ }
+ else /* signed */
+ {
+ if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
+ && INTVAL (op1) >= 0)
+ {
+ /* This is extremely similar to the code for the unsigned case
+ above. For 2.7 we should merge these variants, but for
+ 2.6.1 I don't want to touch the code for unsigned since that
+ get used in C. The signed case will only be used by other
+ languages (Ada). */
+
+ rtx t1, t2, t3;
+ unsigned HOST_WIDE_INT d = INTVAL (op1);
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ floor_log2 (d), tquotient, 0);
+ t2 = expand_binop (compute_mode, and_optab, op0,
+ gen_int_mode (d - 1, compute_mode),
+ NULL_RTX, 1, OPTAB_LIB_WIDEN);
+ t3 = gen_reg_rtx (compute_mode);
+ t3 = emit_store_flag (t3, NE, t2, const0_rtx,
+ compute_mode, 1, 1);
+ if (t3 == 0)
+ {
+ rtx lab;
+ lab = gen_label_rtx ();
+ do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
+ expand_inc (t1, const1_rtx);
+ emit_label (lab);
+ quotient = t1;
+ }
+ else
+ quotient = force_operand (gen_rtx_PLUS (compute_mode,
+ t1, t3),
+ tquotient);
+ break;
+ }
+
+ /* Try using an instruction that produces both the quotient and
+ remainder, using truncation. We can easily compensate the
+ quotient or remainder to get ceiling rounding, once we have the
+ remainder. Notice that we compute also the final remainder
+ value here, and return the result right away. */
+ if (target == 0 || GET_MODE (target) != compute_mode)
+ target = gen_reg_rtx (compute_mode);
+ if (rem_flag)
+ {
+ remainder= (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ quotient = gen_reg_rtx (compute_mode);
+ }
+ else
+ {
+ quotient = (REG_P (target)
+ ? target : gen_reg_rtx (compute_mode));
+ remainder = gen_reg_rtx (compute_mode);
+ }
+
+ if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
+ remainder, 0))
+ {
+ /* This could be computed with a branch-less sequence.
+ Save that for later. */
+ rtx tem;
+ rtx label = gen_label_rtx ();
+ do_cmp_and_jump (remainder, const0_rtx, EQ,
+ compute_mode, label);
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+ }
+
+ /* No luck with division elimination or divmod. Have to do it
+ by conditionally adjusting op0 *and* the result. */
+ {
+ rtx label1, label2, label3, label4, label5;
+ rtx adjusted_op0;
+ rtx tem;
+
+ quotient = gen_reg_rtx (compute_mode);
+ adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
+ label1 = gen_label_rtx ();
+ label2 = gen_label_rtx ();
+ label3 = gen_label_rtx ();
+ label4 = gen_label_rtx ();
+ label5 = gen_label_rtx ();
+ do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
+ compute_mode, label1);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label1);
+ expand_dec (adjusted_op0, const1_rtx);
+ emit_jump_insn (gen_jump (label4));
+ emit_barrier ();
+ emit_label (label2);
+ do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
+ compute_mode, label3);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ emit_jump_insn (gen_jump (label5));
+ emit_barrier ();
+ emit_label (label3);
+ expand_inc (adjusted_op0, const1_rtx);
+ emit_label (label4);
+ tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ if (tem != quotient)
+ emit_move_insn (quotient, tem);
+ expand_inc (quotient, const1_rtx);
+ emit_label (label5);
+ }
+ }
+ break;
+
+ case EXACT_DIV_EXPR:
+ if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
+ {
+ HOST_WIDE_INT d = INTVAL (op1);
+ unsigned HOST_WIDE_INT ml;
+ int pre_shift;
+ rtx t1;
+
+ pre_shift = floor_log2 (d & -d);
+ ml = invert_mod2n (d >> pre_shift, size);
+ t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
+ pre_shift, NULL_RTX, unsignedp);
+ quotient = expand_mult (compute_mode, t1,
+ gen_int_mode (ml, compute_mode),
+ NULL_RTX, 1);
+
+ insn = get_last_insn ();
+ set_dst_reg_note (insn, REG_EQUAL,
+ gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
+ compute_mode, op0, op1),
+ quotient);
+ }
+ break;
+
+ case ROUND_DIV_EXPR:
+ case ROUND_MOD_EXPR:
+ if (unsignedp)
+ {
+ rtx tem;
+ rtx label;
+ label = gen_label_rtx ();
+ quotient = gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
+ {
+ rtx tem;
+ quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
+ quotient, 1, OPTAB_LIB_WIDEN);
+ tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
+ remainder = expand_binop (compute_mode, sub_optab, op0, tem,
+ remainder, 1, OPTAB_LIB_WIDEN);
+ }
+ tem = plus_constant (compute_mode, op1, -1);
+ tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
+ do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
+ expand_inc (quotient, const1_rtx);
+ expand_dec (remainder, op1);
+ emit_label (label);
+ }
+ else
+ {
+ rtx abs_rem, abs_op1, tem, mask;
+ rtx label;
+ label = gen_label_rtx ();
+ quotient = gen_reg_rtx (compute_mode);
+ remainder = gen_reg_rtx (compute_mode);
+ if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
+ {
+ rtx tem;
+ quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
+ quotient, 0, OPTAB_LIB_WIDEN);
+ tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
+ remainder = expand_binop (compute_mode, sub_optab, op0, tem,
+ remainder, 0, OPTAB_LIB_WIDEN);
+ }
+ abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
+ abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
+ tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
+ 1, NULL_RTX, 1);
+ do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
+ tem = expand_binop (compute_mode, xor_optab, op0, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
+ size - 1, NULL_RTX, 0);
+ tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ tem = expand_binop (compute_mode, sub_optab, tem, mask,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ expand_inc (quotient, tem);
+ tem = expand_binop (compute_mode, xor_optab, mask, op1,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ tem = expand_binop (compute_mode, sub_optab, tem, mask,
+ NULL_RTX, 0, OPTAB_WIDEN);
+ expand_dec (remainder, tem);
+ emit_label (label);
+ }
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (quotient == 0)
+ {
+ if (target && GET_MODE (target) != compute_mode)
+ target = 0;
+
+ if (rem_flag)
+ {
+ /* Try to produce the remainder without producing the quotient.
+ If we seem to have a divmod pattern that does not require widening,
+ don't try widening here. We should really have a WIDEN argument
+ to expand_twoval_binop, since what we'd really like to do here is
+ 1) try a mod insn in compute_mode
+ 2) try a divmod insn in compute_mode
+ 3) try a div insn in compute_mode and multiply-subtract to get
+ remainder
+ 4) try the same things with widening allowed. */
+ remainder
+ = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+ op0, op1, target,
+ unsignedp,
+ ((optab_handler (optab2, compute_mode)
+ != CODE_FOR_nothing)
+ ? OPTAB_DIRECT : OPTAB_WIDEN));
+ if (remainder == 0)
+ {
+ /* No luck there. Can we do remainder and divide at once
+ without a library call? */
+ remainder = gen_reg_rtx (compute_mode);
+ if (! expand_twoval_binop ((unsignedp
+ ? udivmod_optab
+ : sdivmod_optab),
+ op0, op1,
+ NULL_RTX, remainder, unsignedp))
+ remainder = 0;
+ }
+
+ if (remainder)
+ return gen_lowpart (mode, remainder);
+ }
+
+ /* Produce the quotient. Try a quotient insn, but not a library call.
+ If we have a divmod in this mode, use it in preference to widening
+ the div (for this test we assume it will not fail). Note that optab2
+ is set to the one of the two optabs that the call below will use. */
+ quotient
+ = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
+ op0, op1, rem_flag ? NULL_RTX : target,
+ unsignedp,
+ ((optab_handler (optab2, compute_mode)
+ != CODE_FOR_nothing)
+ ? OPTAB_DIRECT : OPTAB_WIDEN));
+
+ if (quotient == 0)
+ {
+ /* No luck there. Try a quotient-and-remainder insn,
+ keeping the quotient alone. */
+ quotient = gen_reg_rtx (compute_mode);
+ if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
+ op0, op1,
+ quotient, NULL_RTX, unsignedp))
+ {
+ quotient = 0;
+ if (! rem_flag)
+ /* Still no luck. If we are not computing the remainder,
+ use a library call for the quotient. */
+ quotient = sign_expand_binop (compute_mode,
+ udiv_optab, sdiv_optab,
+ op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+ }
+ }
+ }
+
+ if (rem_flag)
+ {
+ if (target && GET_MODE (target) != compute_mode)
+ target = 0;
+
+ if (quotient == 0)
+ {
+ /* No divide instruction either. Use library for remainder. */
+ remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
+ op0, op1, target,
+ unsignedp, OPTAB_LIB_WIDEN);
+ /* No remainder function. Try a quotient-and-remainder
+ function, keeping the remainder. */
+ if (!remainder)
+ {
+ remainder = gen_reg_rtx (compute_mode);
+ if (!expand_twoval_binop_libfunc
+ (unsignedp ? udivmod_optab : sdivmod_optab,
+ op0, op1,
+ NULL_RTX, remainder,
+ unsignedp ? UMOD : MOD))
+ remainder = NULL_RTX;
+ }
+ }
+ else
+ {
+ /* We divided. Now finish doing X - Y * (X / Y). */
+ remainder = expand_mult (compute_mode, quotient, op1,
+ NULL_RTX, unsignedp);
+ remainder = expand_binop (compute_mode, sub_optab, op0,
+ remainder, target, unsignedp,
+ OPTAB_LIB_WIDEN);
+ }
+ }
+
+ return gen_lowpart (mode, rem_flag ? remainder : quotient);
+}
+
+/* Return a tree node with data type TYPE, describing the value of X.
+ Usually this is an VAR_DECL, if there is no obvious better choice.
+ X may be an expression, however we only support those expressions
+ generated by loop.c. */
+
+tree
+make_tree (tree type, rtx x)
+{
+ tree t;
+
+ switch (GET_CODE (x))
+ {
+ case CONST_INT:
+ {
+ HOST_WIDE_INT hi = 0;
+
+ if (INTVAL (x) < 0
+ && !(TYPE_UNSIGNED (type)
+ && (GET_MODE_BITSIZE (TYPE_MODE (type))
+ < HOST_BITS_PER_WIDE_INT)))
+ hi = -1;
+
+ t = build_int_cst_wide (type, INTVAL (x), hi);
+
+ return t;
+ }
+
+ case CONST_DOUBLE:
+ if (GET_MODE (x) == VOIDmode)
+ t = build_int_cst_wide (type,
+ CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
+ else
+ {
+ REAL_VALUE_TYPE d;
+
+ REAL_VALUE_FROM_CONST_DOUBLE (d, x);
+ t = build_real (type, d);
+ }
+
+ return t;
+
+ case CONST_VECTOR:
+ {
+ int units = CONST_VECTOR_NUNITS (x);
+ tree itype = TREE_TYPE (type);
+ tree *elts;
+ int i;
+
+ /* Build a tree with vector elements. */
+ elts = XALLOCAVEC (tree, units);
+ for (i = units - 1; i >= 0; --i)
+ {
+ rtx elt = CONST_VECTOR_ELT (x, i);
+ elts[i] = make_tree (itype, elt);
+ }
+
+ return build_vector (type, elts);
+ }
+
+ case PLUS:
+ return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case MINUS:
+ return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case NEG:
+ return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
+
+ case MULT:
+ return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case ASHIFT:
+ return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1)));
+
+ case LSHIFTRT:
+ t = unsigned_type_for (type);
+ return fold_convert (type, build2 (RSHIFT_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case ASHIFTRT:
+ t = signed_type_for (type);
+ return fold_convert (type, build2 (RSHIFT_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (type, XEXP (x, 1))));
+
+ case DIV:
+ if (TREE_CODE (type) != REAL_TYPE)
+ t = signed_type_for (type);
+ else
+ t = type;
+
+ return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (t, XEXP (x, 1))));
+ case UDIV:
+ t = unsigned_type_for (type);
+ return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
+ make_tree (t, XEXP (x, 0)),
+ make_tree (t, XEXP (x, 1))));
+
+ case SIGN_EXTEND:
+ case ZERO_EXTEND:
+ t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
+ GET_CODE (x) == ZERO_EXTEND);
+ return fold_convert (type, make_tree (t, XEXP (x, 0)));
+
+ case CONST:
+ return make_tree (type, XEXP (x, 0));
+
+ case SYMBOL_REF:
+ t = SYMBOL_REF_DECL (x);
+ if (t)
+ return fold_convert (type, build_fold_addr_expr (t));
+ /* else fall through. */
+
+ default:
+ t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
+
+ /* If TYPE is a POINTER_TYPE, we might need to convert X from
+ address mode to pointer mode. */
+ if (POINTER_TYPE_P (type))
+ x = convert_memory_address_addr_space
+ (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
+
+ /* Note that we do *not* use SET_DECL_RTL here, because we do not
+ want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
+ t->decl_with_rtl.rtl = x;
+
+ return t;
+ }
+}
+
+/* Compute the logical-and of OP0 and OP1, storing it in TARGET
+ and returning TARGET.
+
+ If TARGET is 0, a pseudo-register or constant is returned. */
+
+rtx
+expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
+{
+ rtx tem = 0;
+
+ if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
+ tem = simplify_binary_operation (AND, mode, op0, op1);
+ if (tem == 0)
+ tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
+
+ if (target == 0)
+ target = tem;
+ else if (tem != target)
+ emit_move_insn (target, tem);
+ return target;
+}
+
+/* Helper function for emit_store_flag. */
+static rtx
+emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
+ enum machine_mode mode, enum machine_mode compare_mode,
+ int unsignedp, rtx x, rtx y, int normalizep,
+ enum machine_mode target_mode)
+{
+ struct expand_operand ops[4];
+ rtx op0, last, comparison, subtarget;
+ enum machine_mode result_mode = targetm.cstore_mode (icode);
+
+ last = get_last_insn ();
+ x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
+ y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
+ if (!x || !y)
+ {
+ delete_insns_since (last);
+ return NULL_RTX;
+ }
+
+ if (target_mode == VOIDmode)
+ target_mode = result_mode;
+ if (!target)
+ target = gen_reg_rtx (target_mode);
+
+ comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
+
+ create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
+ create_fixed_operand (&ops[1], comparison);
+ create_fixed_operand (&ops[2], x);
+ create_fixed_operand (&ops[3], y);
+ if (!maybe_expand_insn (icode, 4, ops))
+ {
+ delete_insns_since (last);
+ return NULL_RTX;
+ }
+ subtarget = ops[0].value;
+
+ /* If we are converting to a wider mode, first convert to
+ TARGET_MODE, then normalize. This produces better combining
+ opportunities on machines that have a SIGN_EXTRACT when we are
+ testing a single bit. This mostly benefits the 68k.
+
+ If STORE_FLAG_VALUE does not have the sign bit set when
+ interpreted in MODE, we can do this conversion as unsigned, which
+ is usually more efficient. */
+ if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
+ {
+ convert_move (target, subtarget,
+ val_signbit_known_clear_p (result_mode,
+ STORE_FLAG_VALUE));
+ op0 = target;
+ result_mode = target_mode;
+ }
+ else
+ op0 = subtarget;
+
+ /* If we want to keep subexpressions around, don't reuse our last
+ target. */
+ if (optimize)
+ subtarget = 0;
+
+ /* Now normalize to the proper value in MODE. Sometimes we don't
+ have to do anything. */
+ if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
+ ;
+ /* STORE_FLAG_VALUE might be the most negative number, so write
+ the comparison this way to avoid a compiler-time warning. */
+ else if (- normalizep == STORE_FLAG_VALUE)
+ op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
+
+ /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
+ it hard to use a value of just the sign bit due to ANSI integer
+ constant typing rules. */
+ else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
+ op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
+ GET_MODE_BITSIZE (result_mode) - 1, subtarget,
+ normalizep == 1);
+ else
+ {
+ gcc_assert (STORE_FLAG_VALUE & 1);
+
+ op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
+ if (normalizep == -1)
+ op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
+ }
+
+ /* If we were converting to a smaller mode, do the conversion now. */
+ if (target_mode != result_mode)
+ {
+ convert_move (target, op0, 0);
+ return target;
+ }
+ else
+ return op0;
+}
+
+
+/* A subroutine of emit_store_flag only including "tricks" that do not
+ need a recursive call. These are kept separate to avoid infinite
+ loops. */
+
+static rtx
+emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ enum machine_mode mode, int unsignedp, int normalizep,
+ enum machine_mode target_mode)
+{
+ rtx subtarget;
+ enum insn_code icode;
+ enum machine_mode compare_mode;
+ enum mode_class mclass;
+ enum rtx_code scode;
+ rtx tem;
+
+ if (unsignedp)
+ code = unsigned_condition (code);
+ scode = swap_condition (code);
+
+ /* If one operand is constant, make it the second one. Only do this
+ if the other operand is not constant as well. */
+
+ if (swap_commutative_operands_p (op0, op1))
+ {
+ tem = op0;
+ op0 = op1;
+ op1 = tem;
+ code = swap_condition (code);
+ }
+
+ if (mode == VOIDmode)
+ mode = GET_MODE (op0);
+
+ /* For some comparisons with 1 and -1, we can convert this to
+ comparisons with zero. This will often produce more opportunities for
+ store-flag insns. */
+
+ switch (code)
+ {
+ case LT:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = LE;
+ break;
+ case LE:
+ if (op1 == constm1_rtx)
+ op1 = const0_rtx, code = LT;
+ break;
+ case GE:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = GT;
+ break;
+ case GT:
+ if (op1 == constm1_rtx)
+ op1 = const0_rtx, code = GE;
+ break;
+ case GEU:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = NE;
+ break;
+ case LTU:
+ if (op1 == const1_rtx)
+ op1 = const0_rtx, code = EQ;
+ break;
+ default:
+ break;
+ }
+
+ /* If we are comparing a double-word integer with zero or -1, we can
+ convert the comparison into one involving a single word. */
+ if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
+ {
+ if ((code == EQ || code == NE)
+ && (op1 == const0_rtx || op1 == constm1_rtx))
+ {
+ rtx op00, op01;
+
+ /* Do a logical OR or AND of the two words and compare the
+ result. */
+ op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
+ op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
+ tem = expand_binop (word_mode,
+ op1 == const0_rtx ? ior_optab : and_optab,
+ op00, op01, NULL_RTX, unsignedp,
+ OPTAB_DIRECT);
+
+ if (tem != 0)
+ tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
+ unsignedp, normalizep);
+ }
+ else if ((code == LT || code == GE) && op1 == const0_rtx)
+ {
+ rtx op0h;
+
+ /* If testing the sign bit, can just test on high word. */
+ op0h = simplify_gen_subreg (word_mode, op0, mode,
+ subreg_highpart_offset (word_mode,
+ mode));
+ tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
+ unsignedp, normalizep);
+ }
+ else
+ tem = NULL_RTX;
+
+ if (tem)
+ {
+ if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
+ return tem;
+ if (!target)
+ target = gen_reg_rtx (target_mode);
+
+ convert_move (target, tem,
+ !val_signbit_known_set_p (word_mode,
+ (normalizep ? normalizep
+ : STORE_FLAG_VALUE)));
+ return target;
+ }
+ }
+
+ /* If this is A < 0 or A >= 0, we can do this by taking the ones
+ complement of A (for GE) and shifting the sign bit to the low bit. */
+ if (op1 == const0_rtx && (code == LT || code == GE)
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && (normalizep || STORE_FLAG_VALUE == 1
+ || val_signbit_p (mode, STORE_FLAG_VALUE)))
+ {
+ subtarget = target;
+
+ if (!target)
+ target_mode = mode;
+
+ /* If the result is to be wider than OP0, it is best to convert it
+ first. If it is to be narrower, it is *incorrect* to convert it
+ first. */
+ else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
+ {
+ op0 = convert_modes (target_mode, mode, op0, 0);
+ mode = target_mode;
+ }
+
+ if (target_mode != mode)
+ subtarget = 0;
+
+ if (code == GE)
+ op0 = expand_unop (mode, one_cmpl_optab, op0,
+ ((STORE_FLAG_VALUE == 1 || normalizep)
+ ? 0 : subtarget), 0);
+
+ if (STORE_FLAG_VALUE == 1 || normalizep)
+ /* If we are supposed to produce a 0/1 value, we want to do
+ a logical shift from the sign bit to the low-order bit; for
+ a -1/0 value, we do an arithmetic shift. */
+ op0 = expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - 1,
+ subtarget, normalizep != -1);
+
+ if (mode != target_mode)
+ op0 = convert_modes (target_mode, mode, op0, 0);
+
+ return op0;
+ }
+
+ mclass = GET_MODE_CLASS (mode);
+ for (compare_mode = mode; compare_mode != VOIDmode;
+ compare_mode = GET_MODE_WIDER_MODE (compare_mode))
+ {
+ enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
+ icode = optab_handler (cstore_optab, optab_mode);
+ if (icode != CODE_FOR_nothing)
+ {
+ do_pending_stack_adjust ();
+ tem = emit_cstore (target, icode, code, mode, compare_mode,
+ unsignedp, op0, op1, normalizep, target_mode);
+ if (tem)
+ return tem;
+
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ tem = emit_cstore (target, icode, scode, mode, compare_mode,
+ unsignedp, op1, op0, normalizep, target_mode);
+ if (tem)
+ return tem;
+ }
+ break;
+ }
+ }
+
+ return 0;
+}
+
+/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
+ and storing in TARGET. Normally return TARGET.
+ Return 0 if that cannot be done.
+
+ MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
+ it is VOIDmode, they cannot both be CONST_INT.
+
+ UNSIGNEDP is for the case where we have to widen the operands
+ to perform the operation. It says to use zero-extension.
+
+ NORMALIZEP is 1 if we should convert the result to be either zero
+ or one. Normalize is -1 if we should convert the result to be
+ either zero or -1. If NORMALIZEP is zero, the result will be left
+ "raw" out of the scc insn. */
+
+rtx
+emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ enum machine_mode mode, int unsignedp, int normalizep)
+{
+ enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
+ enum rtx_code rcode;
+ rtx subtarget;
+ rtx tem, last, trueval;
+
+ /* If we compare constants, we shouldn't use a store-flag operation,
+ but a constant load. We can get there via the vanilla route that
+ usually generates a compare-branch sequence, but will in this case
+ fold the comparison to a constant, and thus elide the branch. */
+ if (CONSTANT_P (op0) && CONSTANT_P (op1))
+ return NULL_RTX;
+
+ tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
+ target_mode);
+ if (tem)
+ return tem;
+
+ /* If we reached here, we can't do this with a scc insn, however there
+ are some comparisons that can be done in other ways. Don't do any
+ of these cases if branches are very cheap. */
+ if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
+ return 0;
+
+ /* See what we need to return. We can only return a 1, -1, or the
+ sign bit. */
+
+ if (normalizep == 0)
+ {
+ if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
+ normalizep = STORE_FLAG_VALUE;
+
+ else if (val_signbit_p (mode, STORE_FLAG_VALUE))
+ ;
+ else
+ return 0;
+ }
+
+ last = get_last_insn ();
+
+ /* If optimizing, use different pseudo registers for each insn, instead
+ of reusing the same pseudo. This leads to better CSE, but slows
+ down the compiler, since there are more pseudos */
+ subtarget = (!optimize
+ && (target_mode == mode)) ? target : NULL_RTX;
+ trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
+
+ /* For floating-point comparisons, try the reverse comparison or try
+ changing the "orderedness" of the comparison. */
+ if (GET_MODE_CLASS (mode) == MODE_FLOAT)
+ {
+ enum rtx_code first_code;
+ bool and_them;
+
+ rcode = reverse_condition_maybe_unordered (code);
+ if (can_compare_p (rcode, mode, ccp_store_flag)
+ && (code == ORDERED || code == UNORDERED
+ || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
+ || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
+ {
+ int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
+ || (STORE_FLAG_VALUE == -1 && normalizep == 1));
+
+ /* For the reverse comparison, use either an addition or a XOR. */
+ if (want_add
+ && rtx_cost (GEN_INT (normalizep), PLUS, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ STORE_FLAG_VALUE, target_mode);
+ if (tem)
+ return expand_binop (target_mode, add_optab, tem,
+ gen_int_mode (normalizep, target_mode),
+ target, 0, OPTAB_WIDEN);
+ }
+ else if (!want_add
+ && rtx_cost (trueval, XOR, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ normalizep, target_mode);
+ if (tem)
+ return expand_binop (target_mode, xor_optab, tem, trueval,
+ target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
+ }
+ }
+
+ delete_insns_since (last);
+
+ /* Cannot split ORDERED and UNORDERED, only try the above trick. */
+ if (code == ORDERED || code == UNORDERED)
+ return 0;
+
+ and_them = split_comparison (code, mode, &first_code, &code);
+
+ /* If there are no NaNs, the first comparison should always fall through.
+ Effectively change the comparison to the other one. */
+ if (!HONOR_NANS (mode))
+ {
+ gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
+ return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
+ target_mode);
+ }
+
+#ifdef HAVE_conditional_move
+ /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
+ conditional move. */
+ tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
+ normalizep, target_mode);
+ if (tem == 0)
+ return 0;
+
+ if (and_them)
+ tem = emit_conditional_move (target, code, op0, op1, mode,
+ tem, const0_rtx, GET_MODE (tem), 0);
+ else
+ tem = emit_conditional_move (target, code, op0, op1, mode,
+ trueval, tem, GET_MODE (tem), 0);
+
+ if (tem == 0)
+ delete_insns_since (last);
+ return tem;
+#else
+ return 0;
+#endif
+ }
+
+ /* The remaining tricks only apply to integer comparisons. */
+
+ if (GET_MODE_CLASS (mode) != MODE_INT)
+ return 0;
+
+ /* If this is an equality comparison of integers, we can try to exclusive-or
+ (or subtract) the two operands and use a recursive call to try the
+ comparison with zero. Don't do any of these cases if branches are
+ very cheap. */
+
+ if ((code == EQ || code == NE) && op1 != const0_rtx)
+ {
+ tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
+ OPTAB_WIDEN);
+
+ if (tem == 0)
+ tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
+ OPTAB_WIDEN);
+ if (tem != 0)
+ tem = emit_store_flag (target, code, tem, const0_rtx,
+ mode, unsignedp, normalizep);
+ if (tem != 0)
+ return tem;
+
+ delete_insns_since (last);
+ }
+
+ /* For integer comparisons, try the reverse comparison. However, for
+ small X and if we'd have anyway to extend, implementing "X != 0"
+ as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
+ rcode = reverse_condition (code);
+ if (can_compare_p (rcode, mode, ccp_store_flag)
+ && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
+ && code == NE
+ && GET_MODE_SIZE (mode) < UNITS_PER_WORD
+ && op1 == const0_rtx))
+ {
+ int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
+ || (STORE_FLAG_VALUE == -1 && normalizep == 1));
+
+ /* Again, for the reverse comparison, use either an addition or a XOR. */
+ if (want_add
+ && rtx_cost (GEN_INT (normalizep), PLUS, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ STORE_FLAG_VALUE, target_mode);
+ if (tem != 0)
+ tem = expand_binop (target_mode, add_optab, tem,
+ gen_int_mode (normalizep, target_mode),
+ target, 0, OPTAB_WIDEN);
+ }
+ else if (!want_add
+ && rtx_cost (trueval, XOR, 1,
+ optimize_insn_for_speed_p ()) == 0)
+ {
+ tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
+ normalizep, target_mode);
+ if (tem != 0)
+ tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
+ INTVAL (trueval) >= 0, OPTAB_WIDEN);
+ }
+
+ if (tem != 0)
+ return tem;
+ delete_insns_since (last);
+ }
+
+ /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
+ the constant zero. Reject all other comparisons at this point. Only
+ do LE and GT if branches are expensive since they are expensive on
+ 2-operand machines. */
+
+ if (op1 != const0_rtx
+ || (code != EQ && code != NE
+ && (BRANCH_COST (optimize_insn_for_speed_p (),
+ false) <= 1 || (code != LE && code != GT))))
+ return 0;
+
+ /* Try to put the result of the comparison in the sign bit. Assume we can't
+ do the necessary operation below. */
+
+ tem = 0;
+
+ /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
+ the sign bit set. */
+
+ if (code == LE)
+ {
+ /* This is destructive, so SUBTARGET can't be OP0. */
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
+ OPTAB_WIDEN);
+ if (tem)
+ tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
+ OPTAB_WIDEN);
+ }
+
+ /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
+ number of bits in the mode of OP0, minus one. */
+
+ if (code == GT)
+ {
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_shift (RSHIFT_EXPR, mode, op0,
+ GET_MODE_BITSIZE (mode) - 1,
+ subtarget, 0);
+ tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
+ OPTAB_WIDEN);
+ }
+
+ if (code == EQ || code == NE)
+ {
+ /* For EQ or NE, one way to do the comparison is to apply an operation
+ that converts the operand into a positive number if it is nonzero
+ or zero if it was originally zero. Then, for EQ, we subtract 1 and
+ for NE we negate. This puts the result in the sign bit. Then we
+ normalize with a shift, if needed.
+
+ Two operations that can do the above actions are ABS and FFS, so try
+ them. If that doesn't work, and MODE is smaller than a full word,
+ we can use zero-extension to the wider mode (an unsigned conversion)
+ as the operation. */
+
+ /* Note that ABS doesn't yield a positive number for INT_MIN, but
+ that is compensated by the subsequent overflow when subtracting
+ one / negating. */
+
+ if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
+ tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
+ else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
+ tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
+ else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
+ {
+ tem = convert_modes (word_mode, mode, op0, 1);
+ mode = word_mode;
+ }
+
+ if (tem != 0)
+ {
+ if (code == EQ)
+ tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
+ 0, OPTAB_WIDEN);
+ else
+ tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
+ }
+
+ /* If we couldn't do it that way, for NE we can "or" the two's complement
+ of the value with itself. For EQ, we take the one's complement of
+ that "or", which is an extra insn, so we only handle EQ if branches
+ are expensive. */
+
+ if (tem == 0
+ && (code == NE
+ || BRANCH_COST (optimize_insn_for_speed_p (),
+ false) > 1))
+ {
+ if (rtx_equal_p (subtarget, op0))
+ subtarget = 0;
+
+ tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
+ tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
+ OPTAB_WIDEN);
+
+ if (tem && code == EQ)
+ tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
+ }
+ }
+
+ if (tem && normalizep)
+ tem = expand_shift (RSHIFT_EXPR, mode, tem,
+ GET_MODE_BITSIZE (mode) - 1,
+ subtarget, normalizep == 1);
+
+ if (tem)
+ {
+ if (!target)
+ ;
+ else if (GET_MODE (tem) != target_mode)
+ {
+ convert_move (target, tem, 0);
+ tem = target;
+ }
+ else if (!subtarget)
+ {
+ emit_move_insn (target, tem);
+ tem = target;
+ }
+ }
+ else
+ delete_insns_since (last);
+
+ return tem;
+}
+
+/* Like emit_store_flag, but always succeeds. */
+
+rtx
+emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
+ enum machine_mode mode, int unsignedp, int normalizep)
+{
+ rtx tem, label;
+ rtx trueval, falseval;
+
+ /* First see if emit_store_flag can do the job. */
+ tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
+ if (tem != 0)
+ return tem;
+
+ if (!target)
+ target = gen_reg_rtx (word_mode);
+
+ /* If this failed, we have to do this with set/compare/jump/set code.
+ For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
+ trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
+ if (code == NE
+ && GET_MODE_CLASS (mode) == MODE_INT
+ && REG_P (target)
+ && op0 == target
+ && op1 == const0_rtx)
+ {
+ label = gen_label_rtx ();
+ do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
+ mode, NULL_RTX, NULL_RTX, label, -1);
+ emit_move_insn (target, trueval);
+ emit_label (label);
+ return target;
+ }
+
+ if (!REG_P (target)
+ || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
+ target = gen_reg_rtx (GET_MODE (target));
+
+ /* Jump in the right direction if the target cannot implement CODE
+ but can jump on its reverse condition. */
+ falseval = const0_rtx;
+ if (! can_compare_p (code, mode, ccp_jump)
+ && (! FLOAT_MODE_P (mode)
+ || code == ORDERED || code == UNORDERED
+ || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
+ || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
+ {
+ enum rtx_code rcode;
+ if (FLOAT_MODE_P (mode))
+ rcode = reverse_condition_maybe_unordered (code);
+ else
+ rcode = reverse_condition (code);
+
+ /* Canonicalize to UNORDERED for the libcall. */
+ if (can_compare_p (rcode, mode, ccp_jump)
+ || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
+ {
+ falseval = trueval;
+ trueval = const0_rtx;
+ code = rcode;
+ }
+ }
+
+ emit_move_insn (target, trueval);
+ label = gen_label_rtx ();
+ do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
+ NULL_RTX, label, -1);
+
+ emit_move_insn (target, falseval);
+ emit_label (label);
+
+ return target;
+}
+
+/* Perform possibly multi-word comparison and conditional jump to LABEL
+ if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
+ now a thin wrapper around do_compare_rtx_and_jump. */
+
+static void
+do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
+ rtx label)
+{
+ int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
+ do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
+ NULL_RTX, NULL_RTX, label, -1);
+}