aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/ddg.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
committerBen Cheng <bccheng@google.com>2014-03-25 22:37:19 -0700
commit1bc5aee63eb72b341f506ad058502cd0361f0d10 (patch)
treec607e8252f3405424ff15bc2d00aa38dadbb2518 /gcc-4.9/gcc/ddg.c
parent283a0bf58fcf333c58a2a92c3ebbc41fb9eb1fdb (diff)
downloadtoolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.gz
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.tar.bz2
toolchain_gcc-1bc5aee63eb72b341f506ad058502cd0361f0d10.zip
Initial checkin of GCC 4.9.0 from trunk (r208799).
Change-Id: I48a3c08bb98542aa215912a75f03c0890e497dba
Diffstat (limited to 'gcc-4.9/gcc/ddg.c')
-rw-r--r--gcc-4.9/gcc/ddg.c1272
1 files changed, 1272 insertions, 0 deletions
diff --git a/gcc-4.9/gcc/ddg.c b/gcc-4.9/gcc/ddg.c
new file mode 100644
index 000000000..d6ee0c2e6
--- /dev/null
+++ b/gcc-4.9/gcc/ddg.c
@@ -0,0 +1,1272 @@
+/* DDG - Data Dependence Graph implementation.
+ Copyright (C) 2004-2014 Free Software Foundation, Inc.
+ Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "diagnostic-core.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "regs.h"
+#include "function.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "except.h"
+#include "recog.h"
+#include "sched-int.h"
+#include "target.h"
+#include "cfgloop.h"
+#include "sbitmap.h"
+#include "expr.h"
+#include "bitmap.h"
+#include "ddg.h"
+
+#ifdef INSN_SCHEDULING
+
+/* A flag indicating that a ddg edge belongs to an SCC or not. */
+enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
+
+/* Forward declarations. */
+static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
+static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
+static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
+static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
+ ddg_node_ptr, dep_t);
+static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
+ dep_type, dep_data_type, int);
+static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
+ dep_data_type, int, int);
+static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
+
+/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
+static bool mem_ref_p;
+
+/* Auxiliary function for mem_read_insn_p. */
+static int
+mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
+{
+ if (MEM_P (*x))
+ mem_ref_p = true;
+ return 0;
+}
+
+/* Auxiliary function for mem_read_insn_p. */
+static void
+mark_mem_use_1 (rtx *x, void *data)
+{
+ for_each_rtx (x, mark_mem_use, data);
+}
+
+/* Returns nonzero if INSN reads from memory. */
+static bool
+mem_read_insn_p (rtx insn)
+{
+ mem_ref_p = false;
+ note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
+ return mem_ref_p;
+}
+
+static void
+mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
+{
+ if (MEM_P (loc))
+ mem_ref_p = true;
+}
+
+/* Returns nonzero if INSN writes to memory. */
+static bool
+mem_write_insn_p (rtx insn)
+{
+ mem_ref_p = false;
+ note_stores (PATTERN (insn), mark_mem_store, NULL);
+ return mem_ref_p;
+}
+
+/* Returns nonzero if X has access to memory. */
+static bool
+rtx_mem_access_p (rtx x)
+{
+ int i, j;
+ const char *fmt;
+ enum rtx_code code;
+
+ if (x == 0)
+ return false;
+
+ if (MEM_P (x))
+ return true;
+
+ code = GET_CODE (x);
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ {
+ if (rtx_mem_access_p (XEXP (x, i)))
+ return true;
+ }
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ {
+ if (rtx_mem_access_p (XVECEXP (x, i, j)))
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Returns nonzero if INSN reads to or writes from memory. */
+static bool
+mem_access_insn_p (rtx insn)
+{
+ return rtx_mem_access_p (PATTERN (insn));
+}
+
+/* Return true if DEF_INSN contains address being auto-inc or auto-dec
+ which is used in USE_INSN. Otherwise return false. The result is
+ being used to decide whether to remove the edge between def_insn and
+ use_insn when -fmodulo-sched-allow-regmoves is set. This function
+ doesn't need to consider the specific address register; no reg_moves
+ will be allowed for any life range defined by def_insn and used
+ by use_insn, if use_insn uses an address register auto-inc'ed by
+ def_insn. */
+bool
+autoinc_var_is_used_p (rtx def_insn, rtx use_insn)
+{
+ rtx note;
+
+ for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
+ if (REG_NOTE_KIND (note) == REG_INC
+ && reg_referenced_p (XEXP (note, 0), PATTERN (use_insn)))
+ return true;
+
+ return false;
+}
+
+/* Return true if one of the definitions in INSN has MODE_CC. Otherwise
+ return false. */
+static bool
+def_has_ccmode_p (rtx insn)
+{
+ df_ref *def;
+
+ for (def = DF_INSN_DEFS (insn); *def; def++)
+ {
+ enum machine_mode mode = GET_MODE (DF_REF_REG (*def));
+
+ if (GET_MODE_CLASS (mode) == MODE_CC)
+ return true;
+ }
+
+ return false;
+}
+
+/* Computes the dependence parameters (latency, distance etc.), creates
+ a ddg_edge and adds it to the given DDG. */
+static void
+create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
+ ddg_node_ptr dest_node, dep_t link)
+{
+ ddg_edge_ptr e;
+ int latency, distance = 0;
+ dep_type t = TRUE_DEP;
+ dep_data_type dt = (mem_access_insn_p (src_node->insn)
+ && mem_access_insn_p (dest_node->insn) ? MEM_DEP
+ : REG_DEP);
+ gcc_assert (src_node->cuid < dest_node->cuid);
+ gcc_assert (link);
+
+ /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
+ if (DEP_TYPE (link) == REG_DEP_ANTI)
+ t = ANTI_DEP;
+ else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
+ t = OUTPUT_DEP;
+
+ gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
+ gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
+
+ /* We currently choose not to create certain anti-deps edges and
+ compensate for that by generating reg-moves based on the life-range
+ analysis. The anti-deps that will be deleted are the ones which
+ have true-deps edges in the opposite direction (in other words
+ the kernel has only one def of the relevant register).
+ If the address that is being auto-inc or auto-dec in DEST_NODE
+ is used in SRC_NODE then do not remove the edge to make sure
+ reg-moves will not be created for this address.
+ TODO: support the removal of all anti-deps edges, i.e. including those
+ whose register has multiple defs in the loop. */
+ if (flag_modulo_sched_allow_regmoves
+ && (t == ANTI_DEP && dt == REG_DEP)
+ && !def_has_ccmode_p (dest_node->insn)
+ && !autoinc_var_is_used_p (dest_node->insn, src_node->insn))
+ {
+ rtx set;
+
+ set = single_set (dest_node->insn);
+ /* TODO: Handle registers that REG_P is not true for them, i.e.
+ subregs and special registers. */
+ if (set && REG_P (SET_DEST (set)))
+ {
+ int regno = REGNO (SET_DEST (set));
+ df_ref first_def;
+ struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
+
+ first_def = df_bb_regno_first_def_find (g->bb, regno);
+ gcc_assert (first_def);
+
+ if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
+ return;
+ }
+ }
+
+ latency = dep_cost (link);
+ e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
+ add_edge_to_ddg (g, e);
+}
+
+/* The same as the above function, but it doesn't require a link parameter. */
+static void
+create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
+ dep_type d_t, dep_data_type d_dt, int distance)
+{
+ ddg_edge_ptr e;
+ int l;
+ enum reg_note dep_kind;
+ struct _dep _dep, *dep = &_dep;
+
+ gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
+ gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
+
+ if (d_t == ANTI_DEP)
+ dep_kind = REG_DEP_ANTI;
+ else if (d_t == OUTPUT_DEP)
+ dep_kind = REG_DEP_OUTPUT;
+ else
+ {
+ gcc_assert (d_t == TRUE_DEP);
+
+ dep_kind = REG_DEP_TRUE;
+ }
+
+ init_dep (dep, from->insn, to->insn, dep_kind);
+
+ l = dep_cost (dep);
+
+ e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
+ if (distance > 0)
+ add_backarc_to_ddg (g, e);
+ else
+ add_edge_to_ddg (g, e);
+}
+
+
+/* Given a downwards exposed register def LAST_DEF (which is the last
+ definition of that register in the bb), add inter-loop true dependences
+ to all its uses in the next iteration, an output dependence to the
+ first def of the same register (possibly itself) in the next iteration
+ and anti-dependences from its uses in the current iteration to the
+ first definition in the next iteration. */
+static void
+add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
+{
+ int regno = DF_REF_REGNO (last_def);
+ struct df_link *r_use;
+ int has_use_in_bb_p = false;
+ rtx def_insn = DF_REF_INSN (last_def);
+ ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
+ ddg_node_ptr use_node;
+#ifdef ENABLE_CHECKING
+ struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
+#endif
+ df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
+
+ gcc_assert (last_def_node);
+ gcc_assert (first_def);
+
+#ifdef ENABLE_CHECKING
+ if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
+ gcc_assert (!bitmap_bit_p (&bb_info->gen,
+ DF_REF_ID (first_def)));
+#endif
+
+ /* Create inter-loop true dependences and anti dependences. */
+ for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
+ {
+ rtx use_insn = DF_REF_INSN (r_use->ref);
+
+ if (BLOCK_FOR_INSN (use_insn) != g->bb)
+ continue;
+
+ /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
+ use_node = get_node_of_insn (g, use_insn);
+ gcc_assert (use_node);
+ has_use_in_bb_p = true;
+ if (use_node->cuid <= last_def_node->cuid)
+ {
+ /* Add true deps from last_def to it's uses in the next
+ iteration. Any such upwards exposed use appears before
+ the last_def def. */
+ create_ddg_dep_no_link (g, last_def_node, use_node,
+ DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
+ REG_DEP, 1);
+ }
+ else if (!DEBUG_INSN_P (use_insn))
+ {
+ /* Add anti deps from last_def's uses in the current iteration
+ to the first def in the next iteration. We do not add ANTI
+ dep when there is an intra-loop TRUE dep in the opposite
+ direction, but use regmoves to fix such disregarded ANTI
+ deps when broken. If the first_def reaches the USE then
+ there is such a dep. */
+ ddg_node_ptr first_def_node = get_node_of_insn (g,
+ DF_REF_INSN (first_def));
+
+ gcc_assert (first_def_node);
+
+ /* Always create the edge if the use node is a branch in
+ order to prevent the creation of reg-moves.
+ If the address that is being auto-inc or auto-dec in LAST_DEF
+ is used in USE_INSN then do not remove the edge to make sure
+ reg-moves will not be created for that address. */
+ if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
+ || !flag_modulo_sched_allow_regmoves
+ || JUMP_P (use_node->insn)
+ || autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn)
+ || def_has_ccmode_p (DF_REF_INSN (last_def)))
+ create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
+ REG_DEP, 1);
+
+ }
+ }
+ /* Create an inter-loop output dependence between LAST_DEF (which is the
+ last def in its block, being downwards exposed) and the first def in
+ its block. Avoid creating a self output dependence. Avoid creating
+ an output dependence if there is a dependence path between the two
+ defs starting with a true dependence to a use which can be in the
+ next iteration; followed by an anti dependence of that use to the
+ first def (i.e. if there is a use between the two defs.) */
+ if (!has_use_in_bb_p)
+ {
+ ddg_node_ptr dest_node;
+
+ if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
+ return;
+
+ dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
+ gcc_assert (dest_node);
+ create_ddg_dep_no_link (g, last_def_node, dest_node,
+ OUTPUT_DEP, REG_DEP, 1);
+ }
+}
+/* Build inter-loop dependencies, by looking at DF analysis backwards. */
+static void
+build_inter_loop_deps (ddg_ptr g)
+{
+ unsigned rd_num;
+ struct df_rd_bb_info *rd_bb_info;
+ bitmap_iterator bi;
+
+ rd_bb_info = DF_RD_BB_INFO (g->bb);
+
+ /* Find inter-loop register output, true and anti deps. */
+ EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
+ {
+ df_ref rd = DF_DEFS_GET (rd_num);
+
+ add_cross_iteration_register_deps (g, rd);
+ }
+}
+
+
+static int
+walk_mems_2 (rtx *x, rtx mem)
+{
+ if (MEM_P (*x))
+ {
+ if (may_alias_p (*x, mem))
+ return 1;
+
+ return -1;
+ }
+ return 0;
+}
+
+static int
+walk_mems_1 (rtx *x, rtx *pat)
+{
+ if (MEM_P (*x))
+ {
+ /* Visit all MEMs in *PAT and check independence. */
+ if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
+ /* Indicate that dependence was determined and stop traversal. */
+ return 1;
+
+ return -1;
+ }
+ return 0;
+}
+
+/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
+static int
+insns_may_alias_p (rtx insn1, rtx insn2)
+{
+ /* For each pair of MEMs in INSN1 and INSN2 check their independence. */
+ return for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
+ &PATTERN (insn2));
+}
+
+/* Given two nodes, analyze their RTL insns and add intra-loop mem deps
+ to ddg G. */
+static void
+add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
+{
+
+ if ((from->cuid == to->cuid)
+ || !insns_may_alias_p (from->insn, to->insn))
+ /* Do not create edge if memory references have disjoint alias sets
+ or 'to' and 'from' are the same instruction. */
+ return;
+
+ if (mem_write_insn_p (from->insn))
+ {
+ if (mem_read_insn_p (to->insn))
+ create_ddg_dep_no_link (g, from, to,
+ DEBUG_INSN_P (to->insn)
+ ? ANTI_DEP : TRUE_DEP, MEM_DEP, 0);
+ else
+ create_ddg_dep_no_link (g, from, to,
+ DEBUG_INSN_P (to->insn)
+ ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 0);
+ }
+ else if (!mem_read_insn_p (to->insn))
+ create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0);
+}
+
+/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
+ to ddg G. */
+static void
+add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
+{
+ if (!insns_may_alias_p (from->insn, to->insn))
+ /* Do not create edge if memory references have disjoint alias sets. */
+ return;
+
+ if (mem_write_insn_p (from->insn))
+ {
+ if (mem_read_insn_p (to->insn))
+ create_ddg_dep_no_link (g, from, to,
+ DEBUG_INSN_P (to->insn)
+ ? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
+ else if (from->cuid != to->cuid)
+ create_ddg_dep_no_link (g, from, to,
+ DEBUG_INSN_P (to->insn)
+ ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
+ }
+ else
+ {
+ if (mem_read_insn_p (to->insn))
+ return;
+ else if (from->cuid != to->cuid)
+ {
+ create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
+ if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
+ create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
+ else
+ create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
+ }
+ }
+
+}
+
+/* Perform intra-block Data Dependency analysis and connect the nodes in
+ the DDG. We assume the loop has a single basic block. */
+static void
+build_intra_loop_deps (ddg_ptr g)
+{
+ int i;
+ /* Hold the dependency analysis state during dependency calculations. */
+ struct deps_desc tmp_deps;
+ rtx head, tail;
+
+ /* Build the dependence information, using the sched_analyze function. */
+ init_deps_global ();
+ init_deps (&tmp_deps, false);
+
+ /* Do the intra-block data dependence analysis for the given block. */
+ get_ebb_head_tail (g->bb, g->bb, &head, &tail);
+ sched_analyze (&tmp_deps, head, tail);
+
+ /* Build intra-loop data dependencies using the scheduler dependency
+ analysis. */
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ ddg_node_ptr dest_node = &g->nodes[i];
+ sd_iterator_def sd_it;
+ dep_t dep;
+
+ if (! INSN_P (dest_node->insn))
+ continue;
+
+ FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
+ {
+ rtx src_insn = DEP_PRO (dep);
+ ddg_node_ptr src_node;
+
+ /* Don't add dependencies on debug insns to non-debug insns
+ to avoid codegen differences between -g and -g0. */
+ if (DEBUG_INSN_P (src_insn) && !DEBUG_INSN_P (dest_node->insn))
+ continue;
+
+ src_node = get_node_of_insn (g, src_insn);
+
+ if (!src_node)
+ continue;
+
+ create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
+ }
+
+ /* If this insn modifies memory, add an edge to all insns that access
+ memory. */
+ if (mem_access_insn_p (dest_node->insn))
+ {
+ int j;
+
+ for (j = 0; j <= i; j++)
+ {
+ ddg_node_ptr j_node = &g->nodes[j];
+ if (DEBUG_INSN_P (j_node->insn))
+ continue;
+ if (mem_access_insn_p (j_node->insn))
+ {
+ /* Don't bother calculating inter-loop dep if an intra-loop dep
+ already exists. */
+ if (! bitmap_bit_p (dest_node->successors, j))
+ add_inter_loop_mem_dep (g, dest_node, j_node);
+ /* If -fmodulo-sched-allow-regmoves
+ is set certain anti-dep edges are not created.
+ It might be that these anti-dep edges are on the
+ path from one memory instruction to another such that
+ removing these edges could cause a violation of the
+ memory dependencies. Thus we add intra edges between
+ every two memory instructions in this case. */
+ if (flag_modulo_sched_allow_regmoves
+ && !bitmap_bit_p (dest_node->predecessors, j))
+ add_intra_loop_mem_dep (g, j_node, dest_node);
+ }
+ }
+ }
+ }
+
+ /* Free the INSN_LISTs. */
+ finish_deps_global ();
+ free_deps (&tmp_deps);
+
+ /* Free dependencies. */
+ sched_free_deps (head, tail, false);
+}
+
+
+/* Given a basic block, create its DDG and return a pointer to a variable
+ of ddg type that represents it.
+ Initialize the ddg structure fields to the appropriate values. */
+ddg_ptr
+create_ddg (basic_block bb, int closing_branch_deps)
+{
+ ddg_ptr g;
+ rtx insn, first_note;
+ int i;
+ int num_nodes = 0;
+
+ g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
+
+ g->bb = bb;
+ g->closing_branch_deps = closing_branch_deps;
+
+ /* Count the number of insns in the BB. */
+ for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
+ insn = NEXT_INSN (insn))
+ {
+ if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
+ continue;
+
+ if (DEBUG_INSN_P (insn))
+ g->num_debug++;
+ else
+ {
+ if (mem_read_insn_p (insn))
+ g->num_loads++;
+ if (mem_write_insn_p (insn))
+ g->num_stores++;
+ }
+ num_nodes++;
+ }
+
+ /* There is nothing to do for this BB. */
+ if ((num_nodes - g->num_debug) <= 1)
+ {
+ free (g);
+ return NULL;
+ }
+
+ /* Allocate the nodes array, and initialize the nodes. */
+ g->num_nodes = num_nodes;
+ g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
+ g->closing_branch = NULL;
+ i = 0;
+ first_note = NULL_RTX;
+ for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
+ insn = NEXT_INSN (insn))
+ {
+ if (! INSN_P (insn))
+ {
+ if (! first_note && NOTE_P (insn)
+ && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
+ first_note = insn;
+ continue;
+ }
+ if (JUMP_P (insn))
+ {
+ gcc_assert (!g->closing_branch);
+ g->closing_branch = &g->nodes[i];
+ }
+ else if (GET_CODE (PATTERN (insn)) == USE)
+ {
+ if (! first_note)
+ first_note = insn;
+ continue;
+ }
+
+ g->nodes[i].cuid = i;
+ g->nodes[i].successors = sbitmap_alloc (num_nodes);
+ bitmap_clear (g->nodes[i].successors);
+ g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
+ bitmap_clear (g->nodes[i].predecessors);
+ g->nodes[i].first_note = (first_note ? first_note : insn);
+ g->nodes[i++].insn = insn;
+ first_note = NULL_RTX;
+ }
+
+ /* We must have found a branch in DDG. */
+ gcc_assert (g->closing_branch);
+
+
+ /* Build the data dependency graph. */
+ build_intra_loop_deps (g);
+ build_inter_loop_deps (g);
+ return g;
+}
+
+/* Free all the memory allocated for the DDG. */
+void
+free_ddg (ddg_ptr g)
+{
+ int i;
+
+ if (!g)
+ return;
+
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ ddg_edge_ptr e = g->nodes[i].out;
+
+ while (e)
+ {
+ ddg_edge_ptr next = e->next_out;
+
+ free (e);
+ e = next;
+ }
+ sbitmap_free (g->nodes[i].successors);
+ sbitmap_free (g->nodes[i].predecessors);
+ }
+ if (g->num_backarcs > 0)
+ free (g->backarcs);
+ free (g->nodes);
+ free (g);
+}
+
+void
+print_ddg_edge (FILE *file, ddg_edge_ptr e)
+{
+ char dep_c;
+
+ switch (e->type)
+ {
+ case OUTPUT_DEP :
+ dep_c = 'O';
+ break;
+ case ANTI_DEP :
+ dep_c = 'A';
+ break;
+ default:
+ dep_c = 'T';
+ }
+
+ fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
+ dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
+}
+
+/* Print the DDG nodes with there in/out edges to the dump file. */
+void
+print_ddg (FILE *file, ddg_ptr g)
+{
+ int i;
+
+ for (i = 0; i < g->num_nodes; i++)
+ {
+ ddg_edge_ptr e;
+
+ fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
+ print_rtl_single (file, g->nodes[i].insn);
+ fprintf (file, "OUT ARCS: ");
+ for (e = g->nodes[i].out; e; e = e->next_out)
+ print_ddg_edge (file, e);
+
+ fprintf (file, "\nIN ARCS: ");
+ for (e = g->nodes[i].in; e; e = e->next_in)
+ print_ddg_edge (file, e);
+
+ fprintf (file, "\n");
+ }
+}
+
+/* Print the given DDG in VCG format. */
+DEBUG_FUNCTION void
+vcg_print_ddg (FILE *file, ddg_ptr g)
+{
+ int src_cuid;
+
+ fprintf (file, "graph: {\n");
+ for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
+ {
+ ddg_edge_ptr e;
+ int src_uid = INSN_UID (g->nodes[src_cuid].insn);
+
+ fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
+ print_rtl_single (file, g->nodes[src_cuid].insn);
+ fprintf (file, "\"}\n");
+ for (e = g->nodes[src_cuid].out; e; e = e->next_out)
+ {
+ int dst_uid = INSN_UID (e->dest->insn);
+ int dst_cuid = e->dest->cuid;
+
+ /* Give the backarcs a different color. */
+ if (e->distance > 0)
+ fprintf (file, "backedge: {color: red ");
+ else
+ fprintf (file, "edge: { ");
+
+ fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
+ fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
+ fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
+ }
+ }
+ fprintf (file, "}\n");
+}
+
+/* Dump the sccs in SCCS. */
+void
+print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
+{
+ unsigned int u = 0;
+ sbitmap_iterator sbi;
+ int i;
+
+ if (!file)
+ return;
+
+ fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
+ for (i = 0; i < sccs->num_sccs; i++)
+ {
+ fprintf (file, "SCC number: %d\n", i);
+ EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
+ {
+ fprintf (file, "insn num %d\n", u);
+ print_rtl_single (file, g->nodes[u].insn);
+ }
+ }
+ fprintf (file, "\n");
+}
+
+/* Create an edge and initialize it with given values. */
+static ddg_edge_ptr
+create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
+ dep_type t, dep_data_type dt, int l, int d)
+{
+ ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
+
+ e->src = src;
+ e->dest = dest;
+ e->type = t;
+ e->data_type = dt;
+ e->latency = l;
+ e->distance = d;
+ e->next_in = e->next_out = NULL;
+ e->aux.info = 0;
+ return e;
+}
+
+/* Add the given edge to the in/out linked lists of the DDG nodes. */
+static void
+add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
+{
+ ddg_node_ptr src = e->src;
+ ddg_node_ptr dest = e->dest;
+
+ /* Should have allocated the sbitmaps. */
+ gcc_assert (src->successors && dest->predecessors);
+
+ bitmap_set_bit (src->successors, dest->cuid);
+ bitmap_set_bit (dest->predecessors, src->cuid);
+ e->next_in = dest->in;
+ dest->in = e;
+ e->next_out = src->out;
+ src->out = e;
+}
+
+
+
+/* Algorithm for computing the recurrence_length of an scc. We assume at
+ for now that cycles in the data dependence graph contain a single backarc.
+ This simplifies the algorithm, and can be generalized later. */
+static void
+set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
+{
+ int j;
+ int result = -1;
+
+ for (j = 0; j < scc->num_backarcs; j++)
+ {
+ ddg_edge_ptr backarc = scc->backarcs[j];
+ int length;
+ int distance = backarc->distance;
+ ddg_node_ptr src = backarc->dest;
+ ddg_node_ptr dest = backarc->src;
+
+ length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
+ if (length < 0 )
+ {
+ /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
+ continue;
+ }
+ length += backarc->latency;
+ result = MAX (result, (length / distance));
+ }
+ scc->recurrence_length = result;
+}
+
+/* Create a new SCC given the set of its nodes. Compute its recurrence_length
+ and mark edges that belong to this scc as IN_SCC. */
+static ddg_scc_ptr
+create_scc (ddg_ptr g, sbitmap nodes)
+{
+ ddg_scc_ptr scc;
+ unsigned int u = 0;
+ sbitmap_iterator sbi;
+
+ scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
+ scc->backarcs = NULL;
+ scc->num_backarcs = 0;
+ scc->nodes = sbitmap_alloc (g->num_nodes);
+ bitmap_copy (scc->nodes, nodes);
+
+ /* Mark the backarcs that belong to this SCC. */
+ EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
+ {
+ ddg_edge_ptr e;
+ ddg_node_ptr n = &g->nodes[u];
+
+ for (e = n->out; e; e = e->next_out)
+ if (bitmap_bit_p (nodes, e->dest->cuid))
+ {
+ e->aux.count = IN_SCC;
+ if (e->distance > 0)
+ add_backarc_to_scc (scc, e);
+ }
+ }
+
+ set_recurrence_length (scc, g);
+ return scc;
+}
+
+/* Cleans the memory allocation of a given SCC. */
+static void
+free_scc (ddg_scc_ptr scc)
+{
+ if (!scc)
+ return;
+
+ sbitmap_free (scc->nodes);
+ if (scc->num_backarcs > 0)
+ free (scc->backarcs);
+ free (scc);
+}
+
+
+/* Add a given edge known to be a backarc to the given DDG. */
+static void
+add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
+{
+ int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
+
+ add_edge_to_ddg (g, e);
+ g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
+ g->backarcs[g->num_backarcs++] = e;
+}
+
+/* Add backarc to an SCC. */
+static void
+add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
+{
+ int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
+
+ scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
+ scc->backarcs[scc->num_backarcs++] = e;
+}
+
+/* Add the given SCC to the DDG. */
+static void
+add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
+{
+ int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
+
+ g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
+ g->sccs[g->num_sccs++] = scc;
+}
+
+/* Given the instruction INSN return the node that represents it. */
+ddg_node_ptr
+get_node_of_insn (ddg_ptr g, rtx insn)
+{
+ int i;
+
+ for (i = 0; i < g->num_nodes; i++)
+ if (insn == g->nodes[i].insn)
+ return &g->nodes[i];
+ return NULL;
+}
+
+/* Given a set OPS of nodes in the DDG, find the set of their successors
+ which are not in OPS, and set their bits in SUCC. Bits corresponding to
+ OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
+void
+find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
+{
+ unsigned int i = 0;
+ sbitmap_iterator sbi;
+
+ EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
+ {
+ const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
+ bitmap_ior (succ, succ, node_succ);
+ };
+
+ /* We want those that are not in ops. */
+ bitmap_and_compl (succ, succ, ops);
+}
+
+/* Given a set OPS of nodes in the DDG, find the set of their predecessors
+ which are not in OPS, and set their bits in PREDS. Bits corresponding to
+ OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
+void
+find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
+{
+ unsigned int i = 0;
+ sbitmap_iterator sbi;
+
+ EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
+ {
+ const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
+ bitmap_ior (preds, preds, node_preds);
+ };
+
+ /* We want those that are not in ops. */
+ bitmap_and_compl (preds, preds, ops);
+}
+
+
+/* Compare function to be passed to qsort to order the backarcs in descending
+ recMII order. */
+static int
+compare_sccs (const void *s1, const void *s2)
+{
+ const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
+ const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
+ return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
+
+}
+
+/* Order the backarcs in descending recMII order using compare_sccs. */
+static void
+order_sccs (ddg_all_sccs_ptr g)
+{
+ qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
+ (int (*) (const void *, const void *)) compare_sccs);
+}
+
+#ifdef ENABLE_CHECKING
+/* Check that every node in SCCS belongs to exactly one strongly connected
+ component and that no element of SCCS is empty. */
+static void
+check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
+{
+ int i = 0;
+ sbitmap tmp = sbitmap_alloc (num_nodes);
+
+ bitmap_clear (tmp);
+ for (i = 0; i < sccs->num_sccs; i++)
+ {
+ gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes));
+ /* Verify that every node in sccs is in exactly one strongly
+ connected component. */
+ gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes));
+ bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes);
+ }
+ sbitmap_free (tmp);
+}
+#endif
+
+/* Perform the Strongly Connected Components decomposing algorithm on the
+ DDG and return DDG_ALL_SCCS structure that contains them. */
+ddg_all_sccs_ptr
+create_ddg_all_sccs (ddg_ptr g)
+{
+ int i;
+ int num_nodes = g->num_nodes;
+ sbitmap from = sbitmap_alloc (num_nodes);
+ sbitmap to = sbitmap_alloc (num_nodes);
+ sbitmap scc_nodes = sbitmap_alloc (num_nodes);
+ ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
+ xmalloc (sizeof (struct ddg_all_sccs));
+
+ sccs->ddg = g;
+ sccs->sccs = NULL;
+ sccs->num_sccs = 0;
+
+ for (i = 0; i < g->num_backarcs; i++)
+ {
+ ddg_scc_ptr scc;
+ ddg_edge_ptr backarc = g->backarcs[i];
+ ddg_node_ptr src = backarc->src;
+ ddg_node_ptr dest = backarc->dest;
+
+ /* If the backarc already belongs to an SCC, continue. */
+ if (backarc->aux.count == IN_SCC)
+ continue;
+
+ bitmap_clear (scc_nodes);
+ bitmap_clear (from);
+ bitmap_clear (to);
+ bitmap_set_bit (from, dest->cuid);
+ bitmap_set_bit (to, src->cuid);
+
+ if (find_nodes_on_paths (scc_nodes, g, from, to))
+ {
+ scc = create_scc (g, scc_nodes);
+ add_scc_to_ddg (sccs, scc);
+ }
+ }
+ order_sccs (sccs);
+ sbitmap_free (from);
+ sbitmap_free (to);
+ sbitmap_free (scc_nodes);
+#ifdef ENABLE_CHECKING
+ check_sccs (sccs, num_nodes);
+#endif
+ return sccs;
+}
+
+/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
+void
+free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
+{
+ int i;
+
+ if (!all_sccs)
+ return;
+
+ for (i = 0; i < all_sccs->num_sccs; i++)
+ free_scc (all_sccs->sccs[i]);
+
+ free (all_sccs->sccs);
+ free (all_sccs);
+}
+
+
+/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
+ nodes - find all nodes that lie on paths from FROM to TO (not excluding
+ nodes from FROM and TO). Return nonzero if nodes exist. */
+int
+find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
+{
+ int answer;
+ int change;
+ unsigned int u = 0;
+ int num_nodes = g->num_nodes;
+ sbitmap_iterator sbi;
+
+ sbitmap workset = sbitmap_alloc (num_nodes);
+ sbitmap reachable_from = sbitmap_alloc (num_nodes);
+ sbitmap reach_to = sbitmap_alloc (num_nodes);
+ sbitmap tmp = sbitmap_alloc (num_nodes);
+
+ bitmap_copy (reachable_from, from);
+ bitmap_copy (tmp, from);
+
+ change = 1;
+ while (change)
+ {
+ change = 0;
+ bitmap_copy (workset, tmp);
+ bitmap_clear (tmp);
+ EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
+ {
+ ddg_edge_ptr e;
+ ddg_node_ptr u_node = &g->nodes[u];
+
+ for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
+ {
+ ddg_node_ptr v_node = e->dest;
+ int v = v_node->cuid;
+
+ if (!bitmap_bit_p (reachable_from, v))
+ {
+ bitmap_set_bit (reachable_from, v);
+ bitmap_set_bit (tmp, v);
+ change = 1;
+ }
+ }
+ }
+ }
+
+ bitmap_copy (reach_to, to);
+ bitmap_copy (tmp, to);
+
+ change = 1;
+ while (change)
+ {
+ change = 0;
+ bitmap_copy (workset, tmp);
+ bitmap_clear (tmp);
+ EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
+ {
+ ddg_edge_ptr e;
+ ddg_node_ptr u_node = &g->nodes[u];
+
+ for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
+ {
+ ddg_node_ptr v_node = e->src;
+ int v = v_node->cuid;
+
+ if (!bitmap_bit_p (reach_to, v))
+ {
+ bitmap_set_bit (reach_to, v);
+ bitmap_set_bit (tmp, v);
+ change = 1;
+ }
+ }
+ }
+ }
+
+ answer = bitmap_and (result, reachable_from, reach_to);
+ sbitmap_free (workset);
+ sbitmap_free (reachable_from);
+ sbitmap_free (reach_to);
+ sbitmap_free (tmp);
+ return answer;
+}
+
+
+/* Updates the counts of U_NODE's successors (that belong to NODES) to be
+ at-least as large as the count of U_NODE plus the latency between them.
+ Sets a bit in TMP for each successor whose count was changed (increased).
+ Returns nonzero if any count was changed. */
+static int
+update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
+{
+ ddg_edge_ptr e;
+ int result = 0;
+
+ for (e = u_node->out; e; e = e->next_out)
+ {
+ ddg_node_ptr v_node = e->dest;
+ int v = v_node->cuid;
+
+ if (bitmap_bit_p (nodes, v)
+ && (e->distance == 0)
+ && (v_node->aux.count < u_node->aux.count + e->latency))
+ {
+ v_node->aux.count = u_node->aux.count + e->latency;
+ bitmap_set_bit (tmp, v);
+ result = 1;
+ }
+ }
+ return result;
+}
+
+
+/* Find the length of a longest path from SRC to DEST in G,
+ going only through NODES, and disregarding backarcs. */
+int
+longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
+{
+ int i;
+ unsigned int u = 0;
+ int change = 1;
+ int result;
+ int num_nodes = g->num_nodes;
+ sbitmap workset = sbitmap_alloc (num_nodes);
+ sbitmap tmp = sbitmap_alloc (num_nodes);
+
+
+ /* Data will hold the distance of the longest path found so far from
+ src to each node. Initialize to -1 = less than minimum. */
+ for (i = 0; i < g->num_nodes; i++)
+ g->nodes[i].aux.count = -1;
+ g->nodes[src].aux.count = 0;
+
+ bitmap_clear (tmp);
+ bitmap_set_bit (tmp, src);
+
+ while (change)
+ {
+ sbitmap_iterator sbi;
+
+ change = 0;
+ bitmap_copy (workset, tmp);
+ bitmap_clear (tmp);
+ EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
+ {
+ ddg_node_ptr u_node = &g->nodes[u];
+
+ change |= update_dist_to_successors (u_node, nodes, tmp);
+ }
+ }
+ result = g->nodes[dest].aux.count;
+ sbitmap_free (workset);
+ sbitmap_free (tmp);
+ return result;
+}
+
+#endif /* INSN_SCHEDULING */