aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.9/gcc/config/rs6000
diff options
context:
space:
mode:
authorYiran Wang <yiran@google.com>2015-06-23 15:33:17 -0700
committerYiran Wang <yiran@google.com>2015-06-29 10:56:28 -0700
commit1d9fec7937f45dde5e04cac966a2d9a12f2fc15a (patch)
tree3fbcd18a379a05fd6d43491a107e1f36bc61b185 /gcc-4.9/gcc/config/rs6000
parentf378ebf14df0952eae870c9865bab8326aa8f137 (diff)
downloadtoolchain_gcc-1d9fec7937f45dde5e04cac966a2d9a12f2fc15a.tar.gz
toolchain_gcc-1d9fec7937f45dde5e04cac966a2d9a12f2fc15a.tar.bz2
toolchain_gcc-1d9fec7937f45dde5e04cac966a2d9a12f2fc15a.zip
Synchronize with google/gcc-4_9 to r224707 (from r214835)
Change-Id: I3d6f06fc613c8f8b6a82143dc44b7338483aac5d
Diffstat (limited to 'gcc-4.9/gcc/config/rs6000')
-rw-r--r--gcc-4.9/gcc/config/rs6000/altivec.h6
-rw-r--r--gcc-4.9/gcc/config/rs6000/altivec.md56
-rw-r--r--gcc-4.9/gcc/config/rs6000/darwin.h6
-rw-r--r--gcc-4.9/gcc/config/rs6000/linux-grte.h41
-rw-r--r--gcc-4.9/gcc/config/rs6000/predicates.md75
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000-builtin.def10
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000-c.c147
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000-protos.h5
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.c1367
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.md88
-rw-r--r--gcc-4.9/gcc/config/rs6000/rs6000.opt4
-rw-r--r--gcc-4.9/gcc/config/rs6000/rtems.h3
-rw-r--r--gcc-4.9/gcc/config/rs6000/sysv4.h6
-rw-r--r--gcc-4.9/gcc/config/rs6000/t-rtems73
-rw-r--r--gcc-4.9/gcc/config/rs6000/vsx.md227
-rw-r--r--gcc-4.9/gcc/config/rs6000/xcoff.h7
16 files changed, 1854 insertions, 267 deletions
diff --git a/gcc-4.9/gcc/config/rs6000/altivec.h b/gcc-4.9/gcc/config/rs6000/altivec.h
index 129cf6fa1..9ee0ae5ec 100644
--- a/gcc-4.9/gcc/config/rs6000/altivec.h
+++ b/gcc-4.9/gcc/config/rs6000/altivec.h
@@ -124,6 +124,7 @@
#define vec_vcfux __builtin_vec_vcfux
#define vec_cts __builtin_vec_cts
#define vec_ctu __builtin_vec_ctu
+#define vec_cpsgn __builtin_vec_copysign
#define vec_expte __builtin_vec_expte
#define vec_floor __builtin_vec_floor
#define vec_loge __builtin_vec_loge
@@ -214,8 +215,10 @@
#define vec_lvsl __builtin_vec_lvsl
#define vec_lvsr __builtin_vec_lvsr
#define vec_max __builtin_vec_max
+#define vec_mergee __builtin_vec_vmrgew
#define vec_mergeh __builtin_vec_mergeh
#define vec_mergel __builtin_vec_mergel
+#define vec_mergeo __builtin_vec_vmrgow
#define vec_min __builtin_vec_min
#define vec_mladd __builtin_vec_mladd
#define vec_msum __builtin_vec_msum
@@ -319,6 +322,8 @@
#define vec_sqrt __builtin_vec_sqrt
#define vec_vsx_ld __builtin_vec_vsx_ld
#define vec_vsx_st __builtin_vec_vsx_st
+#define vec_xl __builtin_vec_vsx_ld
+#define vec_xst __builtin_vec_vsx_st
/* Note, xxsldi and xxpermdi were added as __builtin_vsx_<xxx> functions
instead of __builtin_vec_<xxx> */
@@ -336,6 +341,7 @@
#define vec_vadduqm __builtin_vec_vadduqm
#define vec_vbpermq __builtin_vec_vbpermq
#define vec_vclz __builtin_vec_vclz
+#define vec_cntlz __builtin_vec_vclz
#define vec_vclzb __builtin_vec_vclzb
#define vec_vclzd __builtin_vec_vclzd
#define vec_vclzh __builtin_vec_vclzh
diff --git a/gcc-4.9/gcc/config/rs6000/altivec.md b/gcc-4.9/gcc/config/rs6000/altivec.md
index a8cfcb739..02ea14237 100644
--- a/gcc-4.9/gcc/config/rs6000/altivec.md
+++ b/gcc-4.9/gcc/config/rs6000/altivec.md
@@ -67,7 +67,7 @@
UNSPEC_VCTSXS
UNSPEC_VLOGEFP
UNSPEC_VEXPTEFP
- UNSPEC_VLSDOI
+ UNSPEC_VSLDOI
UNSPEC_VUNPACK_HI_SIGN
UNSPEC_VUNPACK_LO_SIGN
UNSPEC_VUNPACK_HI_SIGN_DIRECT
@@ -2077,7 +2077,7 @@
(unspec:VM [(match_operand:VM 1 "register_operand" "v")
(match_operand:VM 2 "register_operand" "v")
(match_operand:QI 3 "immediate_operand" "i")]
- UNSPEC_VLSDOI))]
+ UNSPEC_VSLDOI))]
"TARGET_ALTIVEC"
"vsldoi %0,%1,%2,%3"
[(set_attr "type" "vecperm")])
@@ -2297,7 +2297,31 @@
"dststt %0,%1,%2"
[(set_attr "type" "vecsimple")])
-(define_insn "altivec_lvsl"
+(define_expand "altivec_lvsl"
+ [(use (match_operand:V16QI 0 "register_operand" ""))
+ (use (match_operand:V16QI 1 "memory_operand" ""))]
+ "TARGET_ALTIVEC"
+{
+ if (VECTOR_ELT_ORDER_BIG)
+ emit_insn (gen_altivec_lvsl_direct (operands[0], operands[1]));
+ else
+ {
+ int i;
+ rtx mask, perm[16], constv, vperm;
+ mask = gen_reg_rtx (V16QImode);
+ emit_insn (gen_altivec_lvsl_direct (mask, operands[1]));
+ for (i = 0; i < 16; ++i)
+ perm[i] = GEN_INT (i);
+ constv = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm));
+ constv = force_reg (V16QImode, constv);
+ vperm = gen_rtx_UNSPEC (V16QImode, gen_rtvec (3, mask, mask, constv),
+ UNSPEC_VPERM);
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0], vperm));
+ }
+ DONE;
+})
+
+(define_insn "altivec_lvsl_direct"
[(set (match_operand:V16QI 0 "register_operand" "=v")
(unspec:V16QI [(match_operand:V16QI 1 "memory_operand" "Z")]
UNSPEC_LVSL))]
@@ -2305,7 +2329,31 @@
"lvsl %0,%y1"
[(set_attr "type" "vecload")])
-(define_insn "altivec_lvsr"
+(define_expand "altivec_lvsr"
+ [(use (match_operand:V16QI 0 "register_operand" ""))
+ (use (match_operand:V16QI 1 "memory_operand" ""))]
+ "TARGET_ALTIVEC"
+{
+ if (VECTOR_ELT_ORDER_BIG)
+ emit_insn (gen_altivec_lvsr_direct (operands[0], operands[1]));
+ else
+ {
+ int i;
+ rtx mask, perm[16], constv, vperm;
+ mask = gen_reg_rtx (V16QImode);
+ emit_insn (gen_altivec_lvsr_direct (mask, operands[1]));
+ for (i = 0; i < 16; ++i)
+ perm[i] = GEN_INT (i);
+ constv = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm));
+ constv = force_reg (V16QImode, constv);
+ vperm = gen_rtx_UNSPEC (V16QImode, gen_rtvec (3, mask, mask, constv),
+ UNSPEC_VPERM);
+ emit_insn (gen_rtx_SET (VOIDmode, operands[0], vperm));
+ }
+ DONE;
+})
+
+(define_insn "altivec_lvsr_direct"
[(set (match_operand:V16QI 0 "register_operand" "=v")
(unspec:V16QI [(match_operand:V16QI 1 "memory_operand" "Z")]
UNSPEC_LVSR))]
diff --git a/gcc-4.9/gcc/config/rs6000/darwin.h b/gcc-4.9/gcc/config/rs6000/darwin.h
index 0329f3f62..dfd181e43 100644
--- a/gcc-4.9/gcc/config/rs6000/darwin.h
+++ b/gcc-4.9/gcc/config/rs6000/darwin.h
@@ -206,7 +206,11 @@ extern int darwin_emit_branch_islands;
"vrsave", "vscr", \
"spe_acc", "spefscr", \
"sfp", \
- "tfhar", "tfiar", "texasr" \
+ "tfhar", "tfiar", "texasr", \
+ "rh0", "rh1", "rh2", "rh3", "rh4", "rh5", "rh6", "rh7", \
+ "rh8", "rh9", "rh10", "rh11", "rh12", "rh13", "rh14", "rh15", \
+ "rh16", "rh17", "rh18", "rh19", "rh20", "rh21", "rh22", "rh23", \
+ "rh24", "rh25", "rh26", "rh27", "rh28", "rh29", "rh30", "rh31" \
}
/* This outputs NAME to FILE. */
diff --git a/gcc-4.9/gcc/config/rs6000/linux-grte.h b/gcc-4.9/gcc/config/rs6000/linux-grte.h
index 53997f027..e69de29bb 100644
--- a/gcc-4.9/gcc/config/rs6000/linux-grte.h
+++ b/gcc-4.9/gcc/config/rs6000/linux-grte.h
@@ -1,41 +0,0 @@
-/* Definitions for Linux-based GRTE (Google RunTime Environment).
- Copyright (C) 2009,2010,2011,2012 Free Software Foundation, Inc.
- Contributed by Chris Demetriou and Ollie Wild.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-Under Section 7 of GPL version 3, you are granted additional
-permissions described in the GCC Runtime Library Exception, version
-3.1, as published by the Free Software Foundation.
-
-You should have received a copy of the GNU General Public License and
-a copy of the GCC Runtime Library Exception along with this program;
-see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
-<http://www.gnu.org/licenses/>. */
-
-/* Overrides LIB_LINUX_SPEC from sysv4.h. */
-#undef LIB_LINUX_SPEC
-#define LIB_LINUX_SPEC \
- "%{pthread:-lpthread} \
- %{shared:-lc} \
- %{!shared:%{mieee-fp:-lieee} %{profile:%(libc_p)}%{!profile:%(libc)}}"
-
-/* When GRTE links statically, it needs its NSS and resolver libraries
- linked in as well. Note that when linking statically, these are
- enclosed in a group by LINK_GCC_C_SEQUENCE_SPEC. */
-#undef LINUX_GRTE_EXTRA_SPECS
-#define LINUX_GRTE_EXTRA_SPECS \
- { "libc", "%{static:%(libc_static);:-lc}" }, \
- { "libc_p", "%{static:%(libc_p_static);:-lc_p}" }, \
- { "libc_static", "-lc -lresolv" }, \
- { "libc_p_static", "-lc_p -lresolv_p" },
diff --git a/gcc-4.9/gcc/config/rs6000/predicates.md b/gcc-4.9/gcc/config/rs6000/predicates.md
index 8c384b380..2f4046215 100644
--- a/gcc-4.9/gcc/config/rs6000/predicates.md
+++ b/gcc-4.9/gcc/config/rs6000/predicates.md
@@ -1783,7 +1783,7 @@
(define_predicate "fusion_gpr_mem_load"
(match_code "mem,sign_extend,zero_extend")
{
- rtx addr;
+ rtx addr, base, offset;
/* Handle sign/zero extend. */
if (GET_CODE (op) == ZERO_EXTEND
@@ -1813,24 +1813,79 @@
}
addr = XEXP (op, 0);
+ if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
+ return 0;
+
+ base = XEXP (addr, 0);
+ if (!base_reg_operand (base, GET_MODE (base)))
+ return 0;
+
+ offset = XEXP (addr, 1);
+
if (GET_CODE (addr) == PLUS)
+ return satisfies_constraint_I (offset);
+
+ else if (GET_CODE (addr) == LO_SUM)
{
- rtx base = XEXP (addr, 0);
- rtx offset = XEXP (addr, 1);
+ if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
+ return small_toc_ref (offset, GET_MODE (offset));
- return (base_reg_operand (base, GET_MODE (base))
- && satisfies_constraint_I (offset));
+ else if (TARGET_ELF && !TARGET_POWERPC64)
+ return CONSTANT_P (offset);
}
- else if (GET_CODE (addr) == LO_SUM)
+ return 0;
+})
+
+;; Match a GPR load (lbz, lhz, lwz, ld) that uses a combined address in the
+;; memory field with both the addis and the memory offset. Sign extension
+;; is not handled here, since lha and lwa are not fused.
+(define_predicate "fusion_gpr_mem_combo"
+ (match_code "mem,zero_extend")
+{
+ rtx addr, base, offset;
+
+ /* Handle zero extend. */
+ if (GET_CODE (op) == ZERO_EXTEND)
{
- rtx base = XEXP (addr, 0);
- rtx offset = XEXP (addr, 1);
+ op = XEXP (op, 0);
+ mode = GET_MODE (op);
+ }
+
+ if (!MEM_P (op))
+ return 0;
- if (!base_reg_operand (base, GET_MODE (base)))
+ switch (mode)
+ {
+ case QImode:
+ case HImode:
+ case SImode:
+ break;
+
+ case DImode:
+ if (!TARGET_POWERPC64)
return 0;
+ break;
- else if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
+ default:
+ return 0;
+ }
+
+ addr = XEXP (op, 0);
+ if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
+ return 0;
+
+ base = XEXP (addr, 0);
+ if (!fusion_gpr_addis (base, GET_MODE (base)))
+ return 0;
+
+ offset = XEXP (addr, 1);
+ if (GET_CODE (addr) == PLUS)
+ return satisfies_constraint_I (offset);
+
+ else if (GET_CODE (addr) == LO_SUM)
+ {
+ if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
return small_toc_ref (offset, GET_MODE (offset));
else if (TARGET_ELF && !TARGET_POWERPC64)
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def b/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def
index 220d1e970..9bb870394 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def
+++ b/gcc-4.9/gcc/config/rs6000/rs6000-builtin.def
@@ -1258,6 +1258,16 @@ BU_VSX_2 (VEC_MERGEL_V2DF, "mergel_2df", CONST, vsx_mergel_v2df)
BU_VSX_2 (VEC_MERGEL_V2DI, "mergel_2di", CONST, vsx_mergel_v2di)
BU_VSX_2 (VEC_MERGEH_V2DF, "mergeh_2df", CONST, vsx_mergeh_v2df)
BU_VSX_2 (VEC_MERGEH_V2DI, "mergeh_2di", CONST, vsx_mergeh_v2di)
+BU_VSX_2 (XXSPLTD_V2DF, "xxspltd_2df", CONST, vsx_xxspltd_v2df)
+BU_VSX_2 (XXSPLTD_V2DI, "xxspltd_2di", CONST, vsx_xxspltd_v2di)
+BU_VSX_2 (DIV_V2DI, "div_2di", CONST, vsx_div_v2di)
+BU_VSX_2 (UDIV_V2DI, "udiv_2di", CONST, vsx_udiv_v2di)
+BU_VSX_2 (MUL_V2DI, "mul_2di", CONST, vsx_mul_v2di)
+
+BU_VSX_2 (XVCVSXDDP_SCALE, "xvcvsxddp_scale", CONST, vsx_xvcvsxddp_scale)
+BU_VSX_2 (XVCVUXDDP_SCALE, "xvcvuxddp_scale", CONST, vsx_xvcvuxddp_scale)
+BU_VSX_2 (XVCVDPSXDS_SCALE, "xvcvdpsxds_scale", CONST, vsx_xvcvdpsxds_scale)
+BU_VSX_2 (XVCVDPUXDS_SCALE, "xvcvdpuxds_scale", CONST, vsx_xvcvdpuxds_scale)
/* VSX abs builtin functions. */
BU_VSX_A (XVABSDP, "xvabsdp", CONST, absv2df2)
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000-c.c b/gcc-4.9/gcc/config/rs6000/rs6000-c.c
index 46c4a9d8c..8dedeec26 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000-c.c
+++ b/gcc-4.9/gcc/config/rs6000/rs6000-c.c
@@ -597,6 +597,8 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0, 0 },
{ ALTIVEC_BUILTIN_VEC_ROUND, ALTIVEC_BUILTIN_VRFIN,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, 0, 0 },
+ { ALTIVEC_BUILTIN_VEC_ROUND, VSX_BUILTIN_XVRDPI,
+ RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0, 0 },
{ ALTIVEC_BUILTIN_VEC_RECIP, ALTIVEC_BUILTIN_VRECIPFP,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, 0 },
{ ALTIVEC_BUILTIN_VEC_RECIP, VSX_BUILTIN_RECIP_V2DF,
@@ -877,6 +879,18 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
RS6000_BTI_V2DF, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_AND, ALTIVEC_BUILTIN_VAND,
RS6000_BTI_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_V4SI, 0 },
@@ -931,6 +945,18 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
RS6000_BTI_V2DF, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_ANDC, ALTIVEC_BUILTIN_VANDC,
RS6000_BTI_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_V4SI, 0 },
@@ -1118,18 +1144,30 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V4SF, RS6000_BTI_unsigned_V4SI, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_CTF, ALTIVEC_BUILTIN_VCFSX,
RS6000_BTI_V4SF, RS6000_BTI_V4SI, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_CTF, VSX_BUILTIN_XVCVSXDDP_SCALE,
+ RS6000_BTI_V2DF, RS6000_BTI_V2DI, RS6000_BTI_INTSI, 0},
+ { ALTIVEC_BUILTIN_VEC_CTF, VSX_BUILTIN_XVCVUXDDP_SCALE,
+ RS6000_BTI_V2DF, RS6000_BTI_unsigned_V2DI, RS6000_BTI_INTSI, 0},
{ ALTIVEC_BUILTIN_VEC_VCFSX, ALTIVEC_BUILTIN_VCFSX,
RS6000_BTI_V4SF, RS6000_BTI_V4SI, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_VCFUX, ALTIVEC_BUILTIN_VCFUX,
RS6000_BTI_V4SF, RS6000_BTI_unsigned_V4SI, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_CTS, ALTIVEC_BUILTIN_VCTSXS,
RS6000_BTI_V4SI, RS6000_BTI_V4SF, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_CTS, VSX_BUILTIN_XVCVDPSXDS_SCALE,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DF, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_CTU, ALTIVEC_BUILTIN_VCTUXS,
RS6000_BTI_unsigned_V4SI, RS6000_BTI_V4SF, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_CTU, VSX_BUILTIN_XVCVDPUXDS_SCALE,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_V2DF, RS6000_BTI_INTSI, 0 },
{ VSX_BUILTIN_VEC_DIV, VSX_BUILTIN_XVDIVSP,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, 0 },
{ VSX_BUILTIN_VEC_DIV, VSX_BUILTIN_XVDIVDP,
RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0 },
+ { VSX_BUILTIN_VEC_DIV, VSX_BUILTIN_DIV_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { VSX_BUILTIN_VEC_DIV, VSX_BUILTIN_UDIV_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
{ ALTIVEC_BUILTIN_VEC_LD, ALTIVEC_BUILTIN_LVX_V2DF,
RS6000_BTI_V2DF, RS6000_BTI_INTSI, ~RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_LD, ALTIVEC_BUILTIN_LVX_V2DI,
@@ -1595,6 +1633,16 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_MERGEH, VSX_BUILTIN_VEC_MERGEH_V2DI,
RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEH, VSX_BUILTIN_VEC_MERGEH_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEH, VSX_BUILTIN_VEC_MERGEH_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEH, VSX_BUILTIN_VEC_MERGEH_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEH, VSX_BUILTIN_VEC_MERGEH_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEH, VSX_BUILTIN_VEC_MERGEH_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
{ ALTIVEC_BUILTIN_VEC_VMRGHW, ALTIVEC_BUILTIN_VMRGHW,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, 0 },
{ ALTIVEC_BUILTIN_VEC_VMRGHW, ALTIVEC_BUILTIN_VMRGHW,
@@ -1643,6 +1691,16 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_MERGEL, VSX_BUILTIN_VEC_MERGEL_V2DI,
RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEL, VSX_BUILTIN_VEC_MERGEL_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEL, VSX_BUILTIN_VEC_MERGEL_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEL, VSX_BUILTIN_VEC_MERGEL_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEL, VSX_BUILTIN_VEC_MERGEL_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_MERGEL, VSX_BUILTIN_VEC_MERGEL_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
{ ALTIVEC_BUILTIN_VEC_VMRGLW, ALTIVEC_BUILTIN_VMRGLW,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, 0 },
{ ALTIVEC_BUILTIN_VEC_VMRGLW, ALTIVEC_BUILTIN_VMRGLW,
@@ -1771,6 +1829,10 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, 0 },
{ VSX_BUILTIN_VEC_MUL, VSX_BUILTIN_XVMULDP,
RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0 },
+ { VSX_BUILTIN_VEC_MUL, VSX_BUILTIN_MUL_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { VSX_BUILTIN_VEC_MUL, VSX_BUILTIN_MUL_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
{ ALTIVEC_BUILTIN_VEC_MULE, ALTIVEC_BUILTIN_VMULEUB,
RS6000_BTI_unsigned_V8HI, RS6000_BTI_unsigned_V16QI, RS6000_BTI_unsigned_V16QI, 0 },
{ ALTIVEC_BUILTIN_VEC_MULE, ALTIVEC_BUILTIN_VMULESB,
@@ -1812,6 +1874,18 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
RS6000_BTI_V4SI, RS6000_BTI_V4SI, RS6000_BTI_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_NOR, ALTIVEC_BUILTIN_VNOR,
RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V4SI, 0 },
@@ -1842,6 +1916,18 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
RS6000_BTI_V2DF, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_OR, ALTIVEC_BUILTIN_VOR,
RS6000_BTI_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_V4SI, 0 },
@@ -1945,6 +2031,8 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_unsigned_V8HI, RS6000_BTI_V4SI, RS6000_BTI_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_PACKSU, P8V_BUILTIN_VPKSDUS,
RS6000_BTI_unsigned_V4SI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_PACKSU, P8V_BUILTIN_VPKSDUS,
+ RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
{ ALTIVEC_BUILTIN_VEC_VPKSWUS, ALTIVEC_BUILTIN_VPKSWUS,
RS6000_BTI_unsigned_V8HI, RS6000_BTI_V4SI, RS6000_BTI_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_VPKSHUS, ALTIVEC_BUILTIN_VPKSHUS,
@@ -2127,6 +2215,14 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V4SI, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_SPLAT, ALTIVEC_BUILTIN_VSPLTW,
RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_SPLAT, VSX_BUILTIN_XXSPLTD_V2DF,
+ RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_SPLAT, VSX_BUILTIN_XXSPLTD_V2DI,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_SPLAT, VSX_BUILTIN_XXSPLTD_V2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_INTSI, 0 },
+ { ALTIVEC_BUILTIN_VEC_SPLAT, VSX_BUILTIN_XXSPLTD_V2DI,
+ RS6000_BTI_bool_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_VSPLTW, ALTIVEC_BUILTIN_VSPLTW,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_INTSI, 0 },
{ ALTIVEC_BUILTIN_VEC_VSPLTW, ALTIVEC_BUILTIN_VSPLTW,
@@ -2519,6 +2615,18 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
RS6000_BTI_V2DF, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DF, 0 },
{ ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
+ RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
+ RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI, 0 },
+ { ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, 0 },
{ ALTIVEC_BUILTIN_VEC_XOR, ALTIVEC_BUILTIN_VXOR,
RS6000_BTI_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_V4SI, 0 },
@@ -2778,6 +2886,8 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_V2DF, RS6000_BTI_unsigned_V16QI },
{ ALTIVEC_BUILTIN_VEC_PERM, ALTIVEC_BUILTIN_VPERM_2DI,
RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_unsigned_V16QI },
+ { ALTIVEC_BUILTIN_VEC_PERM, ALTIVEC_BUILTIN_VPERM_2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V16QI },
{ ALTIVEC_BUILTIN_VEC_PERM, ALTIVEC_BUILTIN_VPERM_4SF,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_unsigned_V16QI },
{ ALTIVEC_BUILTIN_VEC_PERM, ALTIVEC_BUILTIN_VPERM_4SI,
@@ -2818,6 +2928,12 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_unsigned_V2DI },
{ ALTIVEC_BUILTIN_VEC_SEL, ALTIVEC_BUILTIN_VSEL_2DI,
RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI, RS6000_BTI_V2DI },
+ { ALTIVEC_BUILTIN_VEC_SEL, ALTIVEC_BUILTIN_VSEL_2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI },
+ { ALTIVEC_BUILTIN_VEC_SEL, ALTIVEC_BUILTIN_VSEL_2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI },
+ { ALTIVEC_BUILTIN_VEC_SEL, ALTIVEC_BUILTIN_VSEL_2DI,
+ RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_V2DI },
{ ALTIVEC_BUILTIN_VEC_SEL, ALTIVEC_BUILTIN_VSEL_4SF,
RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_V4SF, RS6000_BTI_bool_V4SI },
{ ALTIVEC_BUILTIN_VEC_SEL, ALTIVEC_BUILTIN_VSEL_4SF,
@@ -3267,6 +3383,8 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ VSX_BUILTIN_VEC_LD, VSX_BUILTIN_LXVD2X_V2DF,
RS6000_BTI_V2DF, RS6000_BTI_INTSI, ~RS6000_BTI_V2DF, 0 },
+ { VSX_BUILTIN_VEC_LD, VSX_BUILTIN_LXVD2X_V2DF,
+ RS6000_BTI_V2DF, RS6000_BTI_INTSI, ~RS6000_BTI_double, 0 },
{ VSX_BUILTIN_VEC_LD, VSX_BUILTIN_LXVD2X_V2DI,
RS6000_BTI_V2DI, RS6000_BTI_INTSI, ~RS6000_BTI_V2DI, 0 },
{ VSX_BUILTIN_VEC_LD, VSX_BUILTIN_LXVD2X_V2DI,
@@ -3321,6 +3439,8 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ VSX_BUILTIN_VEC_ST, VSX_BUILTIN_STXVD2X_V2DF,
RS6000_BTI_void, RS6000_BTI_V2DF, RS6000_BTI_INTSI, ~RS6000_BTI_V2DF },
+ { VSX_BUILTIN_VEC_ST, VSX_BUILTIN_STXVD2X_V2DF,
+ RS6000_BTI_void, RS6000_BTI_V2DF, RS6000_BTI_INTSI, ~RS6000_BTI_double },
{ VSX_BUILTIN_VEC_ST, VSX_BUILTIN_STXVD2X_V2DI,
RS6000_BTI_void, RS6000_BTI_V2DI, RS6000_BTI_INTSI, ~RS6000_BTI_V2DI },
{ VSX_BUILTIN_VEC_ST, VSX_BUILTIN_STXVD2X_V2DI,
@@ -3431,6 +3551,18 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_V4SI, RS6000_BTI_bool_V4SI },
{ ALTIVEC_BUILTIN_VEC_VCMPGT_P, ALTIVEC_BUILTIN_VCMPGTSW_P,
RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_V4SI, RS6000_BTI_V4SI },
+ { ALTIVEC_BUILTIN_VEC_VCMPGT_P, P8V_BUILTIN_VCMPGTUD_P,
+ RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_bool_V2DI, RS6000_BTI_unsigned_V2DI },
+ { ALTIVEC_BUILTIN_VEC_VCMPGT_P, P8V_BUILTIN_VCMPGTUD_P,
+ RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_bool_V2DI },
+ { ALTIVEC_BUILTIN_VEC_VCMPGT_P, P8V_BUILTIN_VCMPGTUD_P,
+ RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_unsigned_V2DI, RS6000_BTI_unsigned_V2DI },
+ { ALTIVEC_BUILTIN_VEC_VCMPGT_P, P8V_BUILTIN_VCMPGTSD_P,
+ RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_bool_V2DI, RS6000_BTI_V2DI },
+ { ALTIVEC_BUILTIN_VEC_VCMPGT_P, P8V_BUILTIN_VCMPGTSD_P,
+ RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_V2DI, RS6000_BTI_bool_V2DI },
+ { ALTIVEC_BUILTIN_VEC_VCMPGT_P, P8V_BUILTIN_VCMPGTSD_P,
+ RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_V2DI, RS6000_BTI_V2DI },
{ ALTIVEC_BUILTIN_VEC_VCMPGT_P, ALTIVEC_BUILTIN_VCMPGTFP_P,
RS6000_BTI_INTSI, RS6000_BTI_INTSI, RS6000_BTI_V4SF, RS6000_BTI_V4SF },
{ ALTIVEC_BUILTIN_VEC_VCMPGT_P, VSX_BUILTIN_XVCMPGTDP_P,
@@ -3889,12 +4021,16 @@ const struct altivec_builtin_types altivec_overloaded_builtins[] = {
{ P8V_BUILTIN_VEC_VMRGEW, P8V_BUILTIN_VMRGEW,
RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V4SI,
RS6000_BTI_unsigned_V4SI, 0 },
+ { P8V_BUILTIN_VEC_VMRGEW, P8V_BUILTIN_VMRGEW,
+ RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, 0 },
{ P8V_BUILTIN_VEC_VMRGOW, P8V_BUILTIN_VMRGOW,
RS6000_BTI_V4SI, RS6000_BTI_V4SI, RS6000_BTI_V4SI, 0 },
{ P8V_BUILTIN_VEC_VMRGOW, P8V_BUILTIN_VMRGOW,
RS6000_BTI_unsigned_V4SI, RS6000_BTI_unsigned_V4SI,
RS6000_BTI_unsigned_V4SI, 0 },
+ { P8V_BUILTIN_VEC_VMRGOW, P8V_BUILTIN_VMRGOW,
+ RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, RS6000_BTI_bool_V4SI, 0 },
{ P8V_BUILTIN_VEC_VPOPCNT, P8V_BUILTIN_VPOPCNTB,
RS6000_BTI_V16QI, RS6000_BTI_V16QI, 0, 0 },
@@ -4128,7 +4264,8 @@ altivec_build_resolved_builtin (tree *args, int n,
argument) is reversed. Patch the arguments here before building
the resolved CALL_EXPR. */
if (desc->code == ALTIVEC_BUILTIN_VEC_VCMPGE_P
- && desc->overloaded_code != ALTIVEC_BUILTIN_VCMPGEFP_P)
+ && desc->overloaded_code != ALTIVEC_BUILTIN_VCMPGEFP_P
+ && desc->overloaded_code != VSX_BUILTIN_XVCMPGEDP_P)
{
tree t;
t = args[2], args[2] = args[1], args[1] = t;
@@ -4186,6 +4323,14 @@ altivec_resolve_overloaded_builtin (location_t loc, tree fndecl,
if (TARGET_DEBUG_BUILTIN)
fprintf (stderr, "altivec_resolve_overloaded_builtin, code = %4d, %s\n",
(int)fcode, IDENTIFIER_POINTER (DECL_NAME (fndecl)));
+
+ /* vec_lvsl and vec_lvsr are deprecated for use with LE element order. */
+ if (fcode == ALTIVEC_BUILTIN_VEC_LVSL && !VECTOR_ELT_ORDER_BIG)
+ warning (OPT_Wdeprecated, "vec_lvsl is deprecated for little endian; use \
+assignment for unaligned loads and stores");
+ else if (fcode == ALTIVEC_BUILTIN_VEC_LVSR && !VECTOR_ELT_ORDER_BIG)
+ warning (OPT_Wdeprecated, "vec_lvsr is deprecated for little endian; use \
+assignment for unaligned loads and stores");
/* For now treat vec_splats and vec_promote as the same. */
if (fcode == ALTIVEC_BUILTIN_VEC_SPLATS
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000-protos.h b/gcc-4.9/gcc/config/rs6000/rs6000-protos.h
index 067a74aa6..aa8e76249 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000-protos.h
+++ b/gcc-4.9/gcc/config/rs6000/rs6000-protos.h
@@ -65,6 +65,7 @@ extern void altivec_expand_stvx_be (rtx, rtx, enum machine_mode, unsigned);
extern void altivec_expand_stvex_be (rtx, rtx, enum machine_mode, unsigned);
extern void rs6000_expand_extract_even (rtx, rtx, rtx);
extern void rs6000_expand_interleave (rtx, rtx, rtx, bool);
+extern void rs6000_scale_v2df (rtx, rtx, int);
extern void build_mask64_2_operands (rtx, rtx *);
extern int expand_block_clear (rtx[]);
extern int expand_block_move (rtx[]);
@@ -79,9 +80,9 @@ extern int mems_ok_for_quad_peep (rtx, rtx);
extern bool gpr_or_gpr_p (rtx, rtx);
extern bool direct_move_p (rtx, rtx);
extern bool quad_load_store_p (rtx, rtx);
-extern bool fusion_gpr_load_p (rtx *, bool);
+extern bool fusion_gpr_load_p (rtx, rtx, rtx, rtx);
extern void expand_fusion_gpr_load (rtx *);
-extern const char *emit_fusion_gpr_load (rtx *);
+extern const char *emit_fusion_gpr_load (rtx, rtx);
extern enum reg_class (*rs6000_preferred_reload_class_ptr) (rtx,
enum reg_class);
extern enum reg_class (*rs6000_secondary_reload_class_ptr) (enum reg_class,
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.c b/gcc-4.9/gcc/config/rs6000/rs6000.c
index 28ccf86df..730e6c8a6 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000.c
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.c
@@ -79,6 +79,9 @@
#include "dumpfile.h"
#include "cgraph.h"
#include "target-globals.h"
+#include "real.h"
+#include "context.h"
+#include "tree-pass.h"
#if TARGET_XCOFF
#include "xcoffout.h" /* get declarations of xcoff_*_section_name */
#endif
@@ -1171,6 +1174,7 @@ static bool rs6000_secondary_reload_move (enum rs6000_reg_type,
enum machine_mode,
secondary_reload_info *,
bool);
+rtl_opt_pass *make_pass_analyze_swaps (gcc::context*);
/* Hash table stuff for keeping track of TOC entries. */
@@ -1541,17 +1545,6 @@ static const struct attribute_spec rs6000_attribute_table[] =
#define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
#endif
-/* MPC604EUM 3.5.2 Weak Consistency between Multiple Processors
- The PowerPC architecture requires only weak consistency among
- processors--that is, memory accesses between processors need not be
- sequentially consistent and memory accesses among processors can occur
- in any order. The ability to order memory accesses weakly provides
- opportunities for more efficient use of the system bus. Unless a
- dependency exists, the 604e allows read operations to precede store
- operations. */
-#undef TARGET_RELAXED_ORDERING
-#define TARGET_RELAXED_ORDERING true
-
#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
@@ -4084,6 +4077,15 @@ static void
rs6000_option_override (void)
{
(void) rs6000_option_override_internal (true);
+
+ /* Register machine-specific passes. This needs to be done at start-up.
+ It's convenient to do it here (like i386 does). */
+ opt_pass *pass_analyze_swaps = make_pass_analyze_swaps (g);
+
+ static struct register_pass_info analyze_swaps_info
+ = { pass_analyze_swaps, "cse1", 1, PASS_POS_INSERT_BEFORE };
+
+ register_pass (&analyze_swaps_info);
}
@@ -6896,24 +6898,6 @@ rs6000_delegitimize_address (rtx orig_x)
if (GET_CODE (y) == UNSPEC
&& XINT (y, 1) == UNSPEC_TOCREL)
{
-#ifdef ENABLE_CHECKING
- if (REG_P (XVECEXP (y, 0, 1))
- && REGNO (XVECEXP (y, 0, 1)) == TOC_REGISTER)
- {
- /* All good. */
- }
- else if (GET_CODE (XVECEXP (y, 0, 1)) == DEBUG_EXPR)
- {
- /* Weirdness alert. df_note_compute can replace r2 with a
- debug_expr when this unspec is in a debug_insn.
- Seen in gcc.dg/pr51957-1.c */
- }
- else
- {
- debug_rtx (orig_x);
- abort ();
- }
-#endif
y = XVECEXP (y, 0, 0);
#ifdef HAVE_AS_TLS
@@ -13842,8 +13826,8 @@ rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
case ALTIVEC_BUILTIN_MASK_FOR_LOAD:
case ALTIVEC_BUILTIN_MASK_FOR_STORE:
{
- int icode = (BYTES_BIG_ENDIAN ? (int) CODE_FOR_altivec_lvsr
- : (int) CODE_FOR_altivec_lvsl);
+ int icode = (BYTES_BIG_ENDIAN ? (int) CODE_FOR_altivec_lvsr_direct
+ : (int) CODE_FOR_altivec_lvsl_direct);
enum machine_mode tmode = insn_data[icode].operand[0].mode;
enum machine_mode mode = insn_data[icode].operand[1].mode;
tree arg;
@@ -13871,7 +13855,6 @@ rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
- /*pat = gen_altivec_lvsr (target, op);*/
pat = GEN_FCN (icode) (target, op);
if (!pat)
return 0;
@@ -16654,10 +16637,13 @@ rs6000_secondary_reload (bool in_p,
: (offset + 0x8000 < 0x10000 - extra /* legitimate_address_p */
&& (offset & 3) != 0))
{
+ /* -m32 -mpowerpc64 needs to use a 32-bit scratch register. */
if (in_p)
- sri->icode = CODE_FOR_reload_di_load;
+ sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_load
+ : CODE_FOR_reload_di_load);
else
- sri->icode = CODE_FOR_reload_di_store;
+ sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_store
+ : CODE_FOR_reload_di_store);
sri->extra_cost = 2;
ret = NO_REGS;
}
@@ -30923,6 +30909,23 @@ rs6000_expand_interleave (rtx target, rtx op0, rtx op1, bool highp)
rs6000_do_expand_vec_perm (target, op0, op1, vmode, nelt, perm);
}
+/* Scale a V2DF vector SRC by two to the SCALE and place in TGT. */
+void
+rs6000_scale_v2df (rtx tgt, rtx src, int scale)
+{
+ HOST_WIDE_INT hwi_scale (scale);
+ REAL_VALUE_TYPE r_pow;
+ rtvec v = rtvec_alloc (2);
+ rtx elt;
+ rtx scale_vec = gen_reg_rtx (V2DFmode);
+ (void)real_powi (&r_pow, DFmode, &dconst2, hwi_scale);
+ elt = CONST_DOUBLE_FROM_REAL_VALUE (r_pow, DFmode);
+ RTVEC_ELT (v, 0) = elt;
+ RTVEC_ELT (v, 1) = elt;
+ rs6000_expand_vector_init (scale_vec, gen_rtx_PARALLEL (V2DFmode, v));
+ emit_insn (gen_mulv2df3 (tgt, src, scale_vec));
+}
+
/* Return an RTX representing where to find the function value of a
function returning MODE. */
static rtx
@@ -32551,6 +32554,14 @@ rs6000_split_logical_inner (rtx dest,
if (complement_op2_p)
op2 = gen_rtx_NOT (mode, op2);
+ /* For canonical RTL, if only one arm is inverted it is the first. */
+ if (!complement_op1_p && complement_op2_p)
+ {
+ rtx temp = op1;
+ op1 = op2;
+ op2 = temp;
+ }
+
bool_rtx = ((code == NOT)
? gen_rtx_NOT (mode, op1)
: gen_rtx_fmt_ee (code, mode, op1, op2));
@@ -32755,25 +32766,14 @@ rs6000_split_logical (rtx operands[3],
/* Return true if the peephole2 can combine a load involving a combination of
an addis instruction and a load with an offset that can be fused together on
- a power8.
-
- The operands are:
- operands[0] register set with addis
- operands[1] value set via addis
- operands[2] target register being loaded
- operands[3] D-form memory reference using operands[0].
-
- In addition, we are passed a boolean that is true if this is a peephole2,
- and we can use see if the addis_reg is dead after the insn and can be
- replaced by the target register. */
+ a power8. */
bool
-fusion_gpr_load_p (rtx *operands, bool peep2_p)
+fusion_gpr_load_p (rtx addis_reg, /* register set via addis. */
+ rtx addis_value, /* addis value. */
+ rtx target, /* target register that is loaded. */
+ rtx mem) /* bottom part of the memory addr. */
{
- rtx addis_reg = operands[0];
- rtx addis_value = operands[1];
- rtx target = operands[2];
- rtx mem = operands[3];
rtx addr;
rtx base_reg;
@@ -32787,9 +32787,6 @@ fusion_gpr_load_p (rtx *operands, bool peep2_p)
if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
return false;
- if (!fusion_gpr_mem_load (mem, GET_MODE (mem)))
- return false;
-
/* Allow sign/zero extension. */
if (GET_CODE (mem) == ZERO_EXTEND
|| (GET_CODE (mem) == SIGN_EXTEND && TARGET_P8_FUSION_SIGN))
@@ -32798,22 +32795,22 @@ fusion_gpr_load_p (rtx *operands, bool peep2_p)
if (!MEM_P (mem))
return false;
+ if (!fusion_gpr_mem_load (mem, GET_MODE (mem)))
+ return false;
+
addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
return false;
/* Validate that the register used to load the high value is either the
- register being loaded, or we can safely replace its use in a peephole2.
+ register being loaded, or we can safely replace its use.
- If this is a peephole2, we assume that there are 2 instructions in the
- peephole (addis and load), so we want to check if the target register was
- not used in the memory address and the register to hold the addis result
- is dead after the peephole. */
+ This function is only called from the peephole2 pass and we assume that
+ there are 2 instructions in the peephole (addis and load), so we want to
+ check if the target register was not used in the memory address and the
+ register to hold the addis result is dead after the peephole. */
if (REGNO (addis_reg) != REGNO (target))
{
- if (!peep2_p)
- return false;
-
if (reg_mentioned_p (target, mem))
return false;
@@ -32854,9 +32851,6 @@ expand_fusion_gpr_load (rtx *operands)
enum machine_mode extend_mode = target_mode;
enum machine_mode ptr_mode = Pmode;
enum rtx_code extend = UNKNOWN;
- rtx addis_reg = ((ptr_mode == target_mode)
- ? target
- : simplify_subreg (ptr_mode, target, target_mode, 0));
if (GET_CODE (orig_mem) == ZERO_EXTEND
|| (TARGET_P8_FUSION_SIGN && GET_CODE (orig_mem) == SIGN_EXTEND))
@@ -32873,13 +32867,14 @@ expand_fusion_gpr_load (rtx *operands)
gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
offset = XEXP (orig_addr, 1);
- new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_reg, offset);
- new_mem = change_address (orig_mem, target_mode, new_addr);
+ new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
+ new_mem = replace_equiv_address_nv (orig_mem, new_addr);
if (extend != UNKNOWN)
new_mem = gen_rtx_fmt_e (ZERO_EXTEND, extend_mode, new_mem);
- emit_insn (gen_rtx_SET (VOIDmode, addis_reg, addis_value));
+ new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
+ UNSPEC_FUSION_GPR);
emit_insn (gen_rtx_SET (VOIDmode, target, new_mem));
if (extend == SIGN_EXTEND)
@@ -32898,55 +32893,40 @@ expand_fusion_gpr_load (rtx *operands)
}
/* Return a string to fuse an addis instruction with a gpr load to the same
- register that we loaded up the addis instruction. The code is complicated,
- so we call output_asm_insn directly, and just return "".
+ register that we loaded up the addis instruction. The address that is used
+ is the logical address that was formed during peephole2:
+ (lo_sum (high) (low-part))
- The operands are:
- operands[0] register set with addis (must be same reg as target).
- operands[1] value set via addis
- operands[2] target register being loaded
- operands[3] D-form memory reference using operands[0]. */
+ The code is complicated, so we call output_asm_insn directly, and just
+ return "". */
const char *
-emit_fusion_gpr_load (rtx *operands)
+emit_fusion_gpr_load (rtx target, rtx mem)
{
- rtx addis_reg = operands[0];
- rtx addis_value = operands[1];
- rtx target = operands[2];
- rtx mem = operands[3];
+ rtx addis_value;
rtx fuse_ops[10];
rtx addr;
rtx load_offset;
const char *addis_str = NULL;
const char *load_str = NULL;
- const char *extend_insn = NULL;
const char *mode_name = NULL;
char insn_template[80];
enum machine_mode mode;
const char *comment_str = ASM_COMMENT_START;
- bool sign_p = false;
- gcc_assert (REG_P (addis_reg) && REG_P (target));
- gcc_assert (REGNO (addis_reg) == REGNO (target));
-
- if (*comment_str == ' ')
- comment_str++;
-
- /* Allow sign/zero extension. */
if (GET_CODE (mem) == ZERO_EXTEND)
mem = XEXP (mem, 0);
- else if (GET_CODE (mem) == SIGN_EXTEND && TARGET_P8_FUSION_SIGN)
- {
- sign_p = true;
- mem = XEXP (mem, 0);
- }
+ gcc_assert (REG_P (target) && MEM_P (mem));
+
+ if (*comment_str == ' ')
+ comment_str++;
- gcc_assert (MEM_P (mem));
addr = XEXP (mem, 0);
if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
gcc_unreachable ();
+ addis_value = XEXP (addr, 0);
load_offset = XEXP (addr, 1);
/* Now emit the load instruction to the same register. */
@@ -32956,29 +32936,22 @@ emit_fusion_gpr_load (rtx *operands)
case QImode:
mode_name = "char";
load_str = "lbz";
- extend_insn = "extsb %0,%0";
break;
case HImode:
mode_name = "short";
load_str = "lhz";
- extend_insn = "extsh %0,%0";
break;
case SImode:
mode_name = "int";
load_str = "lwz";
- extend_insn = "extsw %0,%0";
break;
case DImode:
- if (TARGET_POWERPC64)
- {
- mode_name = "long";
- load_str = "ld";
- }
- else
- gcc_unreachable ();
+ gcc_assert (TARGET_POWERPC64);
+ mode_name = "long";
+ load_str = "ld";
break;
default:
@@ -33122,17 +33095,1191 @@ emit_fusion_gpr_load (rtx *operands)
else
fatal_insn ("Unable to generate load offset for fusion", load_offset);
- /* Handle sign extension. The peephole2 pass generates this as a separate
- insn, but we handle it just in case it got reattached. */
- if (sign_p)
+ return "";
+}
+
+/* Analyze vector computations and remove unnecessary doubleword
+ swaps (xxswapdi instructions). This pass is performed only
+ for little-endian VSX code generation.
+
+ For this specific case, loads and stores of 4x32 and 2x64 vectors
+ are inefficient. These are implemented using the lvx2dx and
+ stvx2dx instructions, which invert the order of doublewords in
+ a vector register. Thus the code generation inserts an xxswapdi
+ after each such load, and prior to each such store. (For spill
+ code after register assignment, an additional xxswapdi is inserted
+ following each store in order to return a hard register to its
+ unpermuted value.)
+
+ The extra xxswapdi instructions reduce performance. This can be
+ particularly bad for vectorized code. The purpose of this pass
+ is to reduce the number of xxswapdi instructions required for
+ correctness.
+
+ The primary insight is that much code that operates on vectors
+ does not care about the relative order of elements in a register,
+ so long as the correct memory order is preserved. If we have
+ a computation where all input values are provided by lvxd2x/xxswapdi
+ sequences, all outputs are stored using xxswapdi/stvxd2x sequences,
+ and all intermediate computations are pure SIMD (independent of
+ element order), then all the xxswapdi's associated with the loads
+ and stores may be removed.
+
+ This pass uses some of the infrastructure and logical ideas from
+ the "web" pass in web.c. We create maximal webs of computations
+ fitting the description above using union-find. Each such web is
+ then optimized by removing its unnecessary xxswapdi instructions.
+
+ The pass is placed prior to global optimization so that we can
+ perform the optimization in the safest and simplest way possible;
+ that is, by replacing each xxswapdi insn with a register copy insn.
+ Subsequent forward propagation will remove copies where possible.
+
+ There are some operations sensitive to element order for which we
+ can still allow the operation, provided we modify those operations.
+ These include CONST_VECTORs, for which we must swap the first and
+ second halves of the constant vector; and SUBREGs, for which we
+ must adjust the byte offset to account for the swapped doublewords.
+ A remaining opportunity would be non-immediate-form splats, for
+ which we should adjust the selected lane of the input. We should
+ also make code generation adjustments for sum-across operations,
+ since this is a common vectorizer reduction.
+
+ Because we run prior to the first split, we can see loads and stores
+ here that match *vsx_le_perm_{load,store}_<mode>. These are vanilla
+ vector loads and stores that have not yet been split into a permuting
+ load/store and a swap. (One way this can happen is with a builtin
+ call to vec_vsx_{ld,st}.) We can handle these as well, but rather
+ than deleting a swap, we convert the load/store into a permuting
+ load/store (which effectively removes the swap). */
+
+/* Notes on Permutes
+
+ We do not currently handle computations that contain permutes. There
+ is a general transformation that can be performed correctly, but it
+ may introduce more expensive code than it replaces. To handle these
+ would require a cost model to determine when to perform the optimization.
+ This commentary records how this could be done if desired.
+
+ The most general permute is something like this (example for V16QI):
+
+ (vec_select:V16QI (vec_concat:V32QI (op1:V16QI) (op2:V16QI))
+ (parallel [(const_int a0) (const_int a1)
+ ...
+ (const_int a14) (const_int a15)]))
+
+ where a0,...,a15 are in [0,31] and select elements from op1 and op2
+ to produce in the result.
+
+ Regardless of mode, we can convert the PARALLEL to a mask of 16
+ byte-element selectors. Let's call this M, with M[i] representing
+ the ith byte-element selector value. Then if we swap doublewords
+ throughout the computation, we can get correct behavior by replacing
+ M with M' as follows:
+
+ { M[i+8]+8 : i < 8, M[i+8] in [0,7] U [16,23]
+ M'[i] = { M[i+8]-8 : i < 8, M[i+8] in [8,15] U [24,31]
+ { M[i-8]+8 : i >= 8, M[i-8] in [0,7] U [16,23]
+ { M[i-8]-8 : i >= 8, M[i-8] in [8,15] U [24,31]
+
+ This seems promising at first, since we are just replacing one mask
+ with another. But certain masks are preferable to others. If M
+ is a mask that matches a vmrghh pattern, for example, M' certainly
+ will not. Instead of a single vmrghh, we would generate a load of
+ M' and a vperm. So we would need to know how many xxswapd's we can
+ remove as a result of this transformation to determine if it's
+ profitable; and preferably the logic would need to be aware of all
+ the special preferable masks.
+
+ Another form of permute is an UNSPEC_VPERM, in which the mask is
+ already in a register. In some cases, this mask may be a constant
+ that we can discover with ud-chains, in which case the above
+ transformation is ok. However, the common usage here is for the
+ mask to be produced by an UNSPEC_LVSL, in which case the mask
+ cannot be known at compile time. In such a case we would have to
+ generate several instructions to compute M' as above at run time,
+ and a cost model is needed again. */
+
+/* This is based on the union-find logic in web.c. web_entry_base is
+ defined in df.h. */
+class swap_web_entry : public web_entry_base
+{
+ public:
+ /* Pointer to the insn. */
+ rtx insn;
+ /* Set if insn contains a mention of a vector register. All other
+ fields are undefined if this field is unset. */
+ unsigned int is_relevant : 1;
+ /* Set if insn is a load. */
+ unsigned int is_load : 1;
+ /* Set if insn is a store. */
+ unsigned int is_store : 1;
+ /* Set if insn is a doubleword swap. This can either be a register swap
+ or a permuting load or store (test is_load and is_store for this). */
+ unsigned int is_swap : 1;
+ /* Set if the insn has a live-in use of a parameter register. */
+ unsigned int is_live_in : 1;
+ /* Set if the insn has a live-out def of a return register. */
+ unsigned int is_live_out : 1;
+ /* Set if the insn contains a subreg reference of a vector register. */
+ unsigned int contains_subreg : 1;
+ /* Set if the insn contains a 128-bit integer operand. */
+ unsigned int is_128_int : 1;
+ /* Set if this is a call-insn. */
+ unsigned int is_call : 1;
+ /* Set if this insn does not perform a vector operation for which
+ element order matters, or if we know how to fix it up if it does.
+ Undefined if is_swap is set. */
+ unsigned int is_swappable : 1;
+ /* A nonzero value indicates what kind of special handling for this
+ insn is required if doublewords are swapped. Undefined if
+ is_swappable is not set. */
+ unsigned int special_handling : 3;
+ /* Set if the web represented by this entry cannot be optimized. */
+ unsigned int web_not_optimizable : 1;
+ /* Set if this insn should be deleted. */
+ unsigned int will_delete : 1;
+};
+
+enum special_handling_values {
+ SH_NONE = 0,
+ SH_CONST_VECTOR,
+ SH_SUBREG,
+ SH_NOSWAP_LD,
+ SH_NOSWAP_ST,
+ SH_EXTRACT,
+ SH_SPLAT
+};
+
+/* Union INSN with all insns containing definitions that reach USE.
+ Detect whether USE is live-in to the current function. */
+static void
+union_defs (swap_web_entry *insn_entry, rtx insn, df_ref use)
+{
+ struct df_link *link = DF_REF_CHAIN (use);
+
+ if (!link)
+ insn_entry[INSN_UID (insn)].is_live_in = 1;
+
+ while (link)
{
- gcc_assert (extend_insn != NULL);
- output_asm_insn (extend_insn, fuse_ops);
+ if (DF_REF_IS_ARTIFICIAL (link->ref))
+ insn_entry[INSN_UID (insn)].is_live_in = 1;
+
+ if (DF_REF_INSN_INFO (link->ref))
+ {
+ rtx def_insn = DF_REF_INSN (link->ref);
+ (void)unionfind_union (insn_entry + INSN_UID (insn),
+ insn_entry + INSN_UID (def_insn));
+ }
+
+ link = link->next;
}
+}
- return "";
+/* Union INSN with all insns containing uses reached from DEF.
+ Detect whether DEF is live-out from the current function. */
+static void
+union_uses (swap_web_entry *insn_entry, rtx insn, df_ref def)
+{
+ struct df_link *link = DF_REF_CHAIN (def);
+
+ if (!link)
+ insn_entry[INSN_UID (insn)].is_live_out = 1;
+
+ while (link)
+ {
+ /* This could be an eh use or some other artificial use;
+ we treat these all the same (killing the optimization). */
+ if (DF_REF_IS_ARTIFICIAL (link->ref))
+ insn_entry[INSN_UID (insn)].is_live_out = 1;
+
+ if (DF_REF_INSN_INFO (link->ref))
+ {
+ rtx use_insn = DF_REF_INSN (link->ref);
+ (void)unionfind_union (insn_entry + INSN_UID (insn),
+ insn_entry + INSN_UID (use_insn));
+ }
+
+ link = link->next;
+ }
+}
+
+/* Return 1 iff INSN is a load insn, including permuting loads that
+ represent an lvxd2x instruction; else return 0. */
+static unsigned int
+insn_is_load_p (rtx insn)
+{
+ rtx body = PATTERN (insn);
+
+ if (GET_CODE (body) == SET)
+ {
+ if (GET_CODE (SET_SRC (body)) == MEM)
+ return 1;
+
+ if (GET_CODE (SET_SRC (body)) == VEC_SELECT
+ && GET_CODE (XEXP (SET_SRC (body), 0)) == MEM)
+ return 1;
+
+ return 0;
+ }
+
+ if (GET_CODE (body) != PARALLEL)
+ return 0;
+
+ rtx set = XVECEXP (body, 0, 0);
+
+ if (GET_CODE (set) == SET && GET_CODE (SET_SRC (set)) == MEM)
+ return 1;
+
+ return 0;
+}
+
+/* Return 1 iff INSN is a store insn, including permuting stores that
+ represent an stvxd2x instruction; else return 0. */
+static unsigned int
+insn_is_store_p (rtx insn)
+{
+ rtx body = PATTERN (insn);
+ if (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == MEM)
+ return 1;
+ if (GET_CODE (body) != PARALLEL)
+ return 0;
+ rtx set = XVECEXP (body, 0, 0);
+ if (GET_CODE (set) == SET && GET_CODE (SET_DEST (set)) == MEM)
+ return 1;
+ return 0;
}
+/* Return 1 iff INSN swaps doublewords. This may be a reg-reg swap,
+ a permuting load, or a permuting store. */
+static unsigned int
+insn_is_swap_p (rtx insn)
+{
+ rtx body = PATTERN (insn);
+ if (GET_CODE (body) != SET)
+ return 0;
+ rtx rhs = SET_SRC (body);
+ if (GET_CODE (rhs) != VEC_SELECT)
+ return 0;
+ rtx parallel = XEXP (rhs, 1);
+ if (GET_CODE (parallel) != PARALLEL)
+ return 0;
+ unsigned int len = XVECLEN (parallel, 0);
+ if (len != 2 && len != 4 && len != 8 && len != 16)
+ return 0;
+ for (unsigned int i = 0; i < len / 2; ++i)
+ {
+ rtx op = XVECEXP (parallel, 0, i);
+ if (GET_CODE (op) != CONST_INT || INTVAL (op) != len / 2 + i)
+ return 0;
+ }
+ for (unsigned int i = len / 2; i < len; ++i)
+ {
+ rtx op = XVECEXP (parallel, 0, i);
+ if (GET_CODE (op) != CONST_INT || INTVAL (op) != i - len / 2)
+ return 0;
+ }
+ return 1;
+}
+
+/* Return 1 iff OP is an operand that will not be affected by having
+ vector doublewords swapped in memory. */
+static unsigned int
+rtx_is_swappable_p (rtx op, unsigned int *special)
+{
+ enum rtx_code code = GET_CODE (op);
+ int i, j;
+ rtx parallel;
+
+ switch (code)
+ {
+ case LABEL_REF:
+ case SYMBOL_REF:
+ case CLOBBER:
+ case REG:
+ return 1;
+
+ case VEC_CONCAT:
+ case ASM_INPUT:
+ case ASM_OPERANDS:
+ return 0;
+
+ case CONST_VECTOR:
+ {
+ *special = SH_CONST_VECTOR;
+ return 1;
+ }
+
+ case VEC_DUPLICATE:
+ /* Opportunity: If XEXP (op, 0) has the same mode as the result,
+ and XEXP (op, 1) is a PARALLEL with a single QImode const int,
+ it represents a vector splat for which we can do special
+ handling. */
+ if (GET_CODE (XEXP (op, 0)) == CONST_INT)
+ return 1;
+ else if (GET_CODE (XEXP (op, 0)) == REG
+ && GET_MODE_INNER (GET_MODE (op)) == GET_MODE (XEXP (op, 0)))
+ /* This catches V2DF and V2DI splat, at a minimum. */
+ return 1;
+ else if (GET_CODE (XEXP (op, 0)) == VEC_SELECT)
+ /* If the duplicated item is from a select, defer to the select
+ processing to see if we can change the lane for the splat. */
+ return rtx_is_swappable_p (XEXP (op, 0), special);
+ else
+ return 0;
+
+ case VEC_SELECT:
+ /* A vec_extract operation is ok if we change the lane. */
+ if (GET_CODE (XEXP (op, 0)) == REG
+ && GET_MODE_INNER (GET_MODE (XEXP (op, 0))) == GET_MODE (op)
+ && GET_CODE ((parallel = XEXP (op, 1))) == PARALLEL
+ && XVECLEN (parallel, 0) == 1
+ && GET_CODE (XVECEXP (parallel, 0, 0)) == CONST_INT)
+ {
+ *special = SH_EXTRACT;
+ return 1;
+ }
+ else
+ return 0;
+
+ case UNSPEC:
+ {
+ /* Various operations are unsafe for this optimization, at least
+ without significant additional work. Permutes are obviously
+ problematic, as both the permute control vector and the ordering
+ of the target values are invalidated by doubleword swapping.
+ Vector pack and unpack modify the number of vector lanes.
+ Merge-high/low will not operate correctly on swapped operands.
+ Vector shifts across element boundaries are clearly uncool,
+ as are vector select and concatenate operations. Vector
+ sum-across instructions define one operand with a specific
+ order-dependent element, so additional fixup code would be
+ needed to make those work. Vector set and non-immediate-form
+ vector splat are element-order sensitive. A few of these
+ cases might be workable with special handling if required. */
+ int val = XINT (op, 1);
+ switch (val)
+ {
+ default:
+ break;
+ case UNSPEC_VMRGH_DIRECT:
+ case UNSPEC_VMRGL_DIRECT:
+ case UNSPEC_VPACK_SIGN_SIGN_SAT:
+ case UNSPEC_VPACK_SIGN_UNS_SAT:
+ case UNSPEC_VPACK_UNS_UNS_MOD:
+ case UNSPEC_VPACK_UNS_UNS_MOD_DIRECT:
+ case UNSPEC_VPACK_UNS_UNS_SAT:
+ case UNSPEC_VPERM:
+ case UNSPEC_VPERM_UNS:
+ case UNSPEC_VPERMHI:
+ case UNSPEC_VPERMSI:
+ case UNSPEC_VPKPX:
+ case UNSPEC_VSLDOI:
+ case UNSPEC_VSLO:
+ case UNSPEC_VSRO:
+ case UNSPEC_VSUM2SWS:
+ case UNSPEC_VSUM4S:
+ case UNSPEC_VSUM4UBS:
+ case UNSPEC_VSUMSWS:
+ case UNSPEC_VSUMSWS_DIRECT:
+ case UNSPEC_VSX_CONCAT:
+ case UNSPEC_VSX_SET:
+ case UNSPEC_VSX_SLDWI:
+ case UNSPEC_VUNPACK_HI_SIGN:
+ case UNSPEC_VUNPACK_HI_SIGN_DIRECT:
+ case UNSPEC_VUNPACK_LO_SIGN:
+ case UNSPEC_VUNPACK_LO_SIGN_DIRECT:
+ case UNSPEC_VUPKHPX:
+ case UNSPEC_VUPKHS_V4SF:
+ case UNSPEC_VUPKHU_V4SF:
+ case UNSPEC_VUPKLPX:
+ case UNSPEC_VUPKLS_V4SF:
+ case UNSPEC_VUPKLU_V4SF:
+ /* The following could be handled as an idiom with XXSPLTW.
+ These place a scalar in BE element zero, but the XXSPLTW
+ will currently expect it in BE element 2 in a swapped
+ region. When one of these feeds an XXSPLTW with no other
+ defs/uses either way, we can avoid the lane change for
+ XXSPLTW and things will be correct. TBD. */
+ case UNSPEC_VSX_CVDPSPN:
+ case UNSPEC_VSX_CVSPDP:
+ case UNSPEC_VSX_CVSPDPN:
+ return 0;
+ case UNSPEC_VSPLT_DIRECT:
+ *special = SH_SPLAT;
+ return 1;
+ }
+ }
+
+ default:
+ break;
+ }
+
+ const char *fmt = GET_RTX_FORMAT (code);
+ int ok = 1;
+
+ for (i = 0; i < GET_RTX_LENGTH (code); ++i)
+ if (fmt[i] == 'e' || fmt[i] == 'u')
+ {
+ unsigned int special_op = SH_NONE;
+ ok &= rtx_is_swappable_p (XEXP (op, i), &special_op);
+ /* Ensure we never have two kinds of special handling
+ for the same insn. */
+ if (*special != SH_NONE && special_op != SH_NONE
+ && *special != special_op)
+ return 0;
+ *special = special_op;
+ }
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (op, i); ++j)
+ {
+ unsigned int special_op = SH_NONE;
+ ok &= rtx_is_swappable_p (XVECEXP (op, i, j), &special_op);
+ /* Ensure we never have two kinds of special handling
+ for the same insn. */
+ if (*special != SH_NONE && special_op != SH_NONE
+ && *special != special_op)
+ return 0;
+ *special = special_op;
+ }
+
+ return ok;
+}
+
+/* Return 1 iff INSN is an operand that will not be affected by
+ having vector doublewords swapped in memory (in which case
+ *SPECIAL is unchanged), or that can be modified to be correct
+ if vector doublewords are swapped in memory (in which case
+ *SPECIAL is changed to a value indicating how). */
+static unsigned int
+insn_is_swappable_p (swap_web_entry *insn_entry, rtx insn,
+ unsigned int *special)
+{
+ /* Calls are always bad. */
+ if (GET_CODE (insn) == CALL_INSN)
+ return 0;
+
+ /* Loads and stores seen here are not permuting, but we can still
+ fix them up by converting them to permuting ones. Exceptions:
+ UNSPEC_LVE, UNSPEC_LVX, and UNSPEC_STVX, which have a PARALLEL
+ body instead of a SET; and UNSPEC_STVE, which has an UNSPEC
+ for the SET source. */
+ rtx body = PATTERN (insn);
+ int i = INSN_UID (insn);
+
+ if (insn_entry[i].is_load)
+ {
+ if (GET_CODE (body) == SET)
+ {
+ *special = SH_NOSWAP_LD;
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ if (insn_entry[i].is_store)
+ {
+ if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) != UNSPEC)
+ {
+ *special = SH_NOSWAP_ST;
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ /* Otherwise check the operands for vector lane violations. */
+ return rtx_is_swappable_p (body, special);
+}
+
+enum chain_purpose { FOR_LOADS, FOR_STORES };
+
+/* Return true if the UD or DU chain headed by LINK is non-empty,
+ and every entry on the chain references an insn that is a
+ register swap. Furthermore, if PURPOSE is FOR_LOADS, each such
+ register swap must have only permuting loads as reaching defs.
+ If PURPOSE is FOR_STORES, each such register swap must have only
+ register swaps or permuting stores as reached uses. */
+static bool
+chain_contains_only_swaps (swap_web_entry *insn_entry, struct df_link *link,
+ enum chain_purpose purpose)
+{
+ if (!link)
+ return false;
+
+ for (; link; link = link->next)
+ {
+ if (!VECTOR_MODE_P (GET_MODE (DF_REF_REG (link->ref))))
+ continue;
+
+ if (DF_REF_IS_ARTIFICIAL (link->ref))
+ return false;
+
+ rtx reached_insn = DF_REF_INSN (link->ref);
+ unsigned uid = INSN_UID (reached_insn);
+
+ if (!insn_entry[uid].is_swap || insn_entry[uid].is_load
+ || insn_entry[uid].is_store)
+ return false;
+
+ if (purpose == FOR_LOADS)
+ {
+ df_ref *use_rec;
+ for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
+ {
+ df_ref use = *use_rec;
+ struct df_link *swap_link = DF_REF_CHAIN (use);
+
+ while (swap_link)
+ {
+ if (DF_REF_IS_ARTIFICIAL (link->ref))
+ return false;
+
+ rtx swap_def_insn = DF_REF_INSN (swap_link->ref);
+ unsigned uid2 = INSN_UID (swap_def_insn);
+
+ /* Only permuting loads are allowed. */
+ if (!insn_entry[uid2].is_swap || !insn_entry[uid2].is_load)
+ return false;
+
+ swap_link = swap_link->next;
+ }
+ }
+ }
+ else if (purpose == FOR_STORES)
+ {
+ df_ref *def_rec;
+ for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
+ {
+ df_ref def = *def_rec;
+ struct df_link *swap_link = DF_REF_CHAIN (def);
+
+ while (swap_link)
+ {
+ if (DF_REF_IS_ARTIFICIAL (link->ref))
+ return false;
+
+ rtx swap_use_insn = DF_REF_INSN (swap_link->ref);
+ unsigned uid2 = INSN_UID (swap_use_insn);
+
+ /* Permuting stores or register swaps are allowed. */
+ if (!insn_entry[uid2].is_swap || insn_entry[uid2].is_load)
+ return false;
+
+ swap_link = swap_link->next;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+/* Mark the xxswapdi instructions associated with permuting loads and
+ stores for removal. Note that we only flag them for deletion here,
+ as there is a possibility of a swap being reached from multiple
+ loads, etc. */
+static void
+mark_swaps_for_removal (swap_web_entry *insn_entry, unsigned int i)
+{
+ rtx insn = insn_entry[i].insn;
+ unsigned uid = INSN_UID (insn);
+
+ if (insn_entry[i].is_load)
+ {
+ df_ref *def_rec;
+ for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
+ {
+ df_ref def = *def_rec;
+ struct df_link *link = DF_REF_CHAIN (def);
+
+ /* We know by now that these are swaps, so we can delete
+ them confidently. */
+ while (link)
+ {
+ rtx use_insn = DF_REF_INSN (link->ref);
+ insn_entry[INSN_UID (use_insn)].will_delete = 1;
+ link = link->next;
+ }
+ }
+ }
+ else if (insn_entry[i].is_store)
+ {
+ df_ref *use_rec;
+ for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
+ {
+ df_ref use = *use_rec;
+ /* Ignore uses for addressability. */
+ machine_mode mode = GET_MODE (DF_REF_REG (use));
+ if (!VECTOR_MODE_P (mode))
+ continue;
+
+ struct df_link *link = DF_REF_CHAIN (use);
+
+ /* We know by now that these are swaps, so we can delete
+ them confidently. */
+ while (link)
+ {
+ rtx def_insn = DF_REF_INSN (link->ref);
+ insn_entry[INSN_UID (def_insn)].will_delete = 1;
+ link = link->next;
+ }
+ }
+ }
+}
+
+/* OP is either a CONST_VECTOR or an expression containing one.
+ Swap the first half of the vector with the second in the first
+ case. Recurse to find it in the second. */
+static void
+swap_const_vector_halves (rtx op)
+{
+ int i;
+ enum rtx_code code = GET_CODE (op);
+ if (GET_CODE (op) == CONST_VECTOR)
+ {
+ int half_units = GET_MODE_NUNITS (GET_MODE (op)) / 2;
+ for (i = 0; i < half_units; ++i)
+ {
+ rtx temp = CONST_VECTOR_ELT (op, i);
+ CONST_VECTOR_ELT (op, i) = CONST_VECTOR_ELT (op, i + half_units);
+ CONST_VECTOR_ELT (op, i + half_units) = temp;
+ }
+ }
+ else
+ {
+ int j;
+ const char *fmt = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); ++i)
+ if (fmt[i] == 'e' || fmt[i] == 'u')
+ swap_const_vector_halves (XEXP (op, i));
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (op, i); ++j)
+ swap_const_vector_halves (XVECEXP (op, i, j));
+ }
+}
+
+/* Find all subregs of a vector expression that perform a narrowing,
+ and adjust the subreg index to account for doubleword swapping. */
+static void
+adjust_subreg_index (rtx op)
+{
+ enum rtx_code code = GET_CODE (op);
+ if (code == SUBREG
+ && (GET_MODE_SIZE (GET_MODE (op))
+ < GET_MODE_SIZE (GET_MODE (XEXP (op, 0)))))
+ {
+ unsigned int index = SUBREG_BYTE (op);
+ if (index < 8)
+ index += 8;
+ else
+ index -= 8;
+ SUBREG_BYTE (op) = index;
+ }
+
+ const char *fmt = GET_RTX_FORMAT (code);
+ int i,j;
+ for (i = 0; i < GET_RTX_LENGTH (code); ++i)
+ if (fmt[i] == 'e' || fmt[i] == 'u')
+ adjust_subreg_index (XEXP (op, i));
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (op, i); ++j)
+ adjust_subreg_index (XVECEXP (op, i, j));
+}
+
+/* Convert the non-permuting load INSN to a permuting one. */
+static void
+permute_load (rtx insn)
+{
+ rtx body = PATTERN (insn);
+ rtx mem_op = SET_SRC (body);
+ rtx tgt_reg = SET_DEST (body);
+ machine_mode mode = GET_MODE (tgt_reg);
+ int n_elts = GET_MODE_NUNITS (mode);
+ int half_elts = n_elts / 2;
+ rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
+ int i, j;
+ for (i = 0, j = half_elts; i < half_elts; ++i, ++j)
+ XVECEXP (par, 0, i) = GEN_INT (j);
+ for (i = half_elts, j = 0; j < half_elts; ++i, ++j)
+ XVECEXP (par, 0, i) = GEN_INT (j);
+ rtx sel = gen_rtx_VEC_SELECT (mode, mem_op, par);
+ SET_SRC (body) = sel;
+ INSN_CODE (insn) = -1; /* Force re-recognition. */
+ df_insn_rescan (insn);
+
+ if (dump_file)
+ fprintf (dump_file, "Replacing load %d with permuted load\n",
+ INSN_UID (insn));
+}
+
+/* Convert the non-permuting store INSN to a permuting one. */
+static void
+permute_store (rtx insn)
+{
+ rtx body = PATTERN (insn);
+ rtx src_reg = SET_SRC (body);
+ machine_mode mode = GET_MODE (src_reg);
+ int n_elts = GET_MODE_NUNITS (mode);
+ int half_elts = n_elts / 2;
+ rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
+ int i, j;
+ for (i = 0, j = half_elts; i < half_elts; ++i, ++j)
+ XVECEXP (par, 0, i) = GEN_INT (j);
+ for (i = half_elts, j = 0; j < half_elts; ++i, ++j)
+ XVECEXP (par, 0, i) = GEN_INT (j);
+ rtx sel = gen_rtx_VEC_SELECT (mode, src_reg, par);
+ SET_SRC (body) = sel;
+ INSN_CODE (insn) = -1; /* Force re-recognition. */
+ df_insn_rescan (insn);
+
+ if (dump_file)
+ fprintf (dump_file, "Replacing store %d with permuted store\n",
+ INSN_UID (insn));
+}
+
+/* Given OP that contains a vector extract operation, adjust the index
+ of the extracted lane to account for the doubleword swap. */
+static void
+adjust_extract (rtx insn)
+{
+ rtx src = SET_SRC (PATTERN (insn));
+ /* The vec_select may be wrapped in a vec_duplicate for a splat, so
+ account for that. */
+ rtx sel = GET_CODE (src) == VEC_DUPLICATE ? XEXP (src, 0) : src;
+ rtx par = XEXP (sel, 1);
+ int half_elts = GET_MODE_NUNITS (GET_MODE (XEXP (sel, 0))) >> 1;
+ int lane = INTVAL (XVECEXP (par, 0, 0));
+ lane = lane >= half_elts ? lane - half_elts : lane + half_elts;
+ XVECEXP (par, 0, 0) = GEN_INT (lane);
+ INSN_CODE (insn) = -1; /* Force re-recognition. */
+ df_insn_rescan (insn);
+
+ if (dump_file)
+ fprintf (dump_file, "Changing lane for extract %d\n", INSN_UID (insn));
+}
+
+/* Given OP that contains a vector direct-splat operation, adjust the index
+ of the source lane to account for the doubleword swap. */
+static void
+adjust_splat (rtx insn)
+{
+ rtx body = PATTERN (insn);
+ rtx unspec = XEXP (body, 1);
+ int half_elts = GET_MODE_NUNITS (GET_MODE (unspec)) >> 1;
+ int lane = INTVAL (XVECEXP (unspec, 0, 1));
+ lane = lane >= half_elts ? lane - half_elts : lane + half_elts;
+ XVECEXP (unspec, 0, 1) = GEN_INT (lane);
+ INSN_CODE (insn) = -1; /* Force re-recognition. */
+ df_insn_rescan (insn);
+
+ if (dump_file)
+ fprintf (dump_file, "Changing lane for splat %d\n", INSN_UID (insn));
+}
+
+/* The insn described by INSN_ENTRY[I] can be swapped, but only
+ with special handling. Take care of that here. */
+static void
+handle_special_swappables (swap_web_entry *insn_entry, unsigned i)
+{
+ rtx insn = insn_entry[i].insn;
+ rtx body = PATTERN (insn);
+
+ switch (insn_entry[i].special_handling)
+ {
+ default:
+ gcc_unreachable ();
+ case SH_CONST_VECTOR:
+ {
+ /* A CONST_VECTOR will only show up somewhere in the RHS of a SET. */
+ gcc_assert (GET_CODE (body) == SET);
+ rtx rhs = SET_SRC (body);
+ swap_const_vector_halves (rhs);
+ if (dump_file)
+ fprintf (dump_file, "Swapping constant halves in insn %d\n", i);
+ break;
+ }
+ case SH_SUBREG:
+ /* A subreg of the same size is already safe. For subregs that
+ select a smaller portion of a reg, adjust the index for
+ swapped doublewords. */
+ adjust_subreg_index (body);
+ if (dump_file)
+ fprintf (dump_file, "Adjusting subreg in insn %d\n", i);
+ break;
+ case SH_NOSWAP_LD:
+ /* Convert a non-permuting load to a permuting one. */
+ permute_load (insn);
+ break;
+ case SH_NOSWAP_ST:
+ /* Convert a non-permuting store to a permuting one. */
+ permute_store (insn);
+ break;
+ case SH_EXTRACT:
+ /* Change the lane on an extract operation. */
+ adjust_extract (insn);
+ break;
+ case SH_SPLAT:
+ /* Change the lane on a direct-splat operation. */
+ adjust_splat (insn);
+ break;
+ }
+}
+
+/* Find the insn from the Ith table entry, which is known to be a
+ register swap Y = SWAP(X). Replace it with a copy Y = X. */
+static void
+replace_swap_with_copy (swap_web_entry *insn_entry, unsigned i)
+{
+ rtx insn = insn_entry[i].insn;
+ rtx body = PATTERN (insn);
+ rtx src_reg = XEXP (SET_SRC (body), 0);
+ rtx copy = gen_rtx_SET (VOIDmode, SET_DEST (body), src_reg);
+ rtx new_insn = emit_insn_before (copy, insn);
+ set_block_for_insn (new_insn, BLOCK_FOR_INSN (insn));
+ df_insn_rescan (new_insn);
+
+ if (dump_file)
+ {
+ unsigned int new_uid = INSN_UID (new_insn);
+ fprintf (dump_file, "Replacing swap %d with copy %d\n", i, new_uid);
+ }
+
+ df_insn_delete (insn);
+ remove_insn (insn);
+ INSN_DELETED_P (insn) = 1;
+}
+
+/* Dump the swap table to DUMP_FILE. */
+static void
+dump_swap_insn_table (swap_web_entry *insn_entry)
+{
+ int e = get_max_uid ();
+ fprintf (dump_file, "\nRelevant insns with their flag settings\n\n");
+
+ for (int i = 0; i < e; ++i)
+ if (insn_entry[i].is_relevant)
+ {
+ swap_web_entry *pred_entry = (swap_web_entry *)insn_entry[i].pred ();
+ fprintf (dump_file, "%6d %6d ", i,
+ pred_entry && pred_entry->insn
+ ? INSN_UID (pred_entry->insn) : 0);
+ if (insn_entry[i].is_load)
+ fputs ("load ", dump_file);
+ if (insn_entry[i].is_store)
+ fputs ("store ", dump_file);
+ if (insn_entry[i].is_swap)
+ fputs ("swap ", dump_file);
+ if (insn_entry[i].is_live_in)
+ fputs ("live-in ", dump_file);
+ if (insn_entry[i].is_live_out)
+ fputs ("live-out ", dump_file);
+ if (insn_entry[i].contains_subreg)
+ fputs ("subreg ", dump_file);
+ if (insn_entry[i].is_128_int)
+ fputs ("int128 ", dump_file);
+ if (insn_entry[i].is_call)
+ fputs ("call ", dump_file);
+ if (insn_entry[i].is_swappable)
+ {
+ fputs ("swappable ", dump_file);
+ if (insn_entry[i].special_handling == SH_CONST_VECTOR)
+ fputs ("special:constvec ", dump_file);
+ else if (insn_entry[i].special_handling == SH_SUBREG)
+ fputs ("special:subreg ", dump_file);
+ else if (insn_entry[i].special_handling == SH_NOSWAP_LD)
+ fputs ("special:load ", dump_file);
+ else if (insn_entry[i].special_handling == SH_NOSWAP_ST)
+ fputs ("special:store ", dump_file);
+ else if (insn_entry[i].special_handling == SH_EXTRACT)
+ fputs ("special:extract ", dump_file);
+ else if (insn_entry[i].special_handling == SH_SPLAT)
+ fputs ("special:splat ", dump_file);
+ }
+ if (insn_entry[i].web_not_optimizable)
+ fputs ("unoptimizable ", dump_file);
+ if (insn_entry[i].will_delete)
+ fputs ("delete ", dump_file);
+ fputs ("\n", dump_file);
+ }
+ fputs ("\n", dump_file);
+}
+
+/* Main entry point for this pass. */
+unsigned int
+rs6000_analyze_swaps (function *fun)
+{
+ swap_web_entry *insn_entry;
+ basic_block bb;
+ rtx insn;
+
+ /* Dataflow analysis for use-def chains. */
+ df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
+ df_chain_add_problem (DF_DU_CHAIN | DF_UD_CHAIN);
+ df_analyze ();
+ df_set_flags (DF_DEFER_INSN_RESCAN);
+
+ /* Allocate structure to represent webs of insns. */
+ insn_entry = XCNEWVEC (swap_web_entry, get_max_uid ());
+
+ /* Walk the insns to gather basic data. */
+ FOR_ALL_BB_FN (bb, fun)
+ FOR_BB_INSNS (bb, insn)
+ {
+ unsigned int uid = INSN_UID (insn);
+ if (NONDEBUG_INSN_P (insn))
+ {
+ insn_entry[uid].insn = insn;
+
+ if (GET_CODE (insn) == CALL_INSN)
+ insn_entry[uid].is_call = 1;
+
+ /* Walk the uses and defs to see if we mention vector regs.
+ Record any constraints on optimization of such mentions. */
+ df_ref *use_rec;
+ for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
+ {
+ df_ref mention = *use_rec;
+ /* We use DF_REF_REAL_REG here to get inside any subregs. */
+ machine_mode mode = GET_MODE (DF_REF_REAL_REG (mention));
+
+ /* If a use gets its value from a call insn, it will be
+ a hard register and will look like (reg:V4SI 3 3).
+ The df analysis creates two mentions for GPR3 and GPR4,
+ both DImode. We must recognize this and treat it as a
+ vector mention to ensure the call is unioned with this
+ use. */
+ if (mode == DImode && DF_REF_INSN_INFO (mention))
+ {
+ rtx feeder = DF_REF_INSN (mention);
+ /* FIXME: It is pretty hard to get from the df mention
+ to the mode of the use in the insn. We arbitrarily
+ pick a vector mode here, even though the use might
+ be a real DImode. We can be too conservative
+ (create a web larger than necessary) because of
+ this, so consider eventually fixing this. */
+ if (GET_CODE (feeder) == CALL_INSN)
+ mode = V4SImode;
+ }
+
+ if (VECTOR_MODE_P (mode) || mode == TImode)
+ {
+ insn_entry[uid].is_relevant = 1;
+ if (mode == TImode || mode == V1TImode)
+ insn_entry[uid].is_128_int = 1;
+ if (DF_REF_INSN_INFO (mention))
+ insn_entry[uid].contains_subreg
+ = !rtx_equal_p (DF_REF_REG (mention),
+ DF_REF_REAL_REG (mention));
+ union_defs (insn_entry, insn, mention);
+ }
+ }
+ df_ref *def_rec;
+ for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
+ {
+ df_ref mention = *def_rec;
+ /* We use DF_REF_REAL_REG here to get inside any subregs. */
+ machine_mode mode = GET_MODE (DF_REF_REAL_REG (mention));
+
+ /* If we're loading up a hard vector register for a call,
+ it looks like (set (reg:V4SI 9 9) (...)). The df
+ analysis creates two mentions for GPR9 and GPR10, both
+ DImode. So relying on the mode from the mentions
+ isn't sufficient to ensure we union the call into the
+ web with the parameter setup code. */
+ if (mode == DImode && GET_CODE (insn) == SET
+ && VECTOR_MODE_P (GET_MODE (SET_DEST (insn))))
+ mode = GET_MODE (SET_DEST (insn));
+
+ if (VECTOR_MODE_P (mode) || mode == TImode)
+ {
+ insn_entry[uid].is_relevant = 1;
+ if (mode == TImode || mode == V1TImode)
+ insn_entry[uid].is_128_int = 1;
+ if (DF_REF_INSN_INFO (mention))
+ insn_entry[uid].contains_subreg
+ = !rtx_equal_p (DF_REF_REG (mention),
+ DF_REF_REAL_REG (mention));
+ /* REG_FUNCTION_VALUE_P is not valid for subregs. */
+ else if (REG_FUNCTION_VALUE_P (DF_REF_REG (mention)))
+ insn_entry[uid].is_live_out = 1;
+ union_uses (insn_entry, insn, mention);
+ }
+ }
+
+ if (insn_entry[uid].is_relevant)
+ {
+ /* Determine if this is a load or store. */
+ insn_entry[uid].is_load = insn_is_load_p (insn);
+ insn_entry[uid].is_store = insn_is_store_p (insn);
+
+ /* Determine if this is a doubleword swap. If not,
+ determine whether it can legally be swapped. */
+ if (insn_is_swap_p (insn))
+ insn_entry[uid].is_swap = 1;
+ else
+ {
+ unsigned int special = SH_NONE;
+ insn_entry[uid].is_swappable
+ = insn_is_swappable_p (insn_entry, insn, &special);
+ if (special != SH_NONE && insn_entry[uid].contains_subreg)
+ insn_entry[uid].is_swappable = 0;
+ else if (special != SH_NONE)
+ insn_entry[uid].special_handling = special;
+ else if (insn_entry[uid].contains_subreg)
+ insn_entry[uid].special_handling = SH_SUBREG;
+ }
+ }
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nSwap insn entry table when first built\n");
+ dump_swap_insn_table (insn_entry);
+ }
+
+ /* Record unoptimizable webs. */
+ unsigned e = get_max_uid (), i;
+ for (i = 0; i < e; ++i)
+ {
+ if (!insn_entry[i].is_relevant)
+ continue;
+
+ swap_web_entry *root
+ = (swap_web_entry*)(&insn_entry[i])->unionfind_root ();
+ unsigned uid = INSN_UID (insn_entry[i].insn);
+
+ if (insn_entry[i].is_live_in || insn_entry[i].is_live_out
+ || (insn_entry[i].contains_subreg
+ && insn_entry[i].special_handling != SH_SUBREG)
+ || insn_entry[i].is_128_int || insn_entry[i].is_call
+ || !(insn_entry[i].is_swappable || insn_entry[i].is_swap))
+ root->web_not_optimizable = 1;
+
+ /* If we have loads or stores that aren't permuting then the
+ optimization isn't appropriate. */
+ else if ((insn_entry[i].is_load || insn_entry[i].is_store)
+ && !insn_entry[i].is_swap && !insn_entry[i].is_swappable)
+ root->web_not_optimizable = 1;
+
+ /* If we have permuting loads or stores that are not accompanied
+ by a register swap, the optimization isn't appropriate. */
+ else if (insn_entry[i].is_load && insn_entry[i].is_swap)
+ {
+ df_ref *def_rec;
+
+ for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
+ {
+ df_ref def = *def_rec;
+ struct df_link *link = DF_REF_CHAIN (def);
+
+ if (!chain_contains_only_swaps (insn_entry, link, FOR_LOADS))
+ {
+ root->web_not_optimizable = 1;
+ break;
+ }
+ }
+ }
+ else if (insn_entry[i].is_store && insn_entry[i].is_swap)
+ {
+ df_ref *use_rec;
+
+ for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
+ {
+ df_ref use = *use_rec;
+ struct df_link *link = DF_REF_CHAIN (use);
+
+ if (!chain_contains_only_swaps (insn_entry, link, FOR_STORES))
+ {
+ root->web_not_optimizable = 1;
+ break;
+ }
+ }
+ }
+ }
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nSwap insn entry table after web analysis\n");
+ dump_swap_insn_table (insn_entry);
+ }
+
+ /* For each load and store in an optimizable web (which implies
+ the loads and stores are permuting), find the associated
+ register swaps and mark them for removal. Due to various
+ optimizations we may mark the same swap more than once. Also
+ perform special handling for swappable insns that require it. */
+ for (i = 0; i < e; ++i)
+ if ((insn_entry[i].is_load || insn_entry[i].is_store)
+ && insn_entry[i].is_swap)
+ {
+ swap_web_entry* root_entry
+ = (swap_web_entry*)((&insn_entry[i])->unionfind_root ());
+ if (!root_entry->web_not_optimizable)
+ mark_swaps_for_removal (insn_entry, i);
+ }
+ else if (insn_entry[i].is_swappable && insn_entry[i].special_handling)
+ {
+ swap_web_entry* root_entry
+ = (swap_web_entry*)((&insn_entry[i])->unionfind_root ());
+ if (!root_entry->web_not_optimizable)
+ handle_special_swappables (insn_entry, i);
+ }
+
+ /* Now delete the swaps marked for removal. */
+ for (i = 0; i < e; ++i)
+ if (insn_entry[i].will_delete)
+ replace_swap_with_copy (insn_entry, i);
+
+ /* Clean up. */
+ free (insn_entry);
+ return 0;
+}
+
+const pass_data pass_data_analyze_swaps =
+{
+ RTL_PASS, /* type */
+ "swaps", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ true, /* has_gate */
+ true, /* has_execute */
+ TV_NONE, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_df_finish, /* todo_flags_finish */
+};
+
+class pass_analyze_swaps : public rtl_opt_pass
+{
+public:
+ pass_analyze_swaps(gcc::context *ctxt)
+ : rtl_opt_pass(pass_data_analyze_swaps, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ bool gate ()
+ {
+ return (optimize > 0 && !BYTES_BIG_ENDIAN && TARGET_VSX
+ && rs6000_optimize_swaps);
+ }
+
+ unsigned int execute ()
+ {
+ return rs6000_analyze_swaps (cfun);
+ }
+
+}; // class pass_analyze_swaps
+
+rtl_opt_pass *
+make_pass_analyze_swaps (gcc::context *ctxt)
+{
+ return new pass_analyze_swaps (ctxt);
+}
struct gcc_target targetm = TARGET_INITIALIZER;
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.md b/gcc-4.9/gcc/config/rs6000/rs6000.md
index d078491e1..f77754aa1 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000.md
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.md
@@ -137,6 +137,7 @@
UNSPEC_UNPACK_128BIT
UNSPEC_PACK_128BIT
UNSPEC_LSQ
+ UNSPEC_FUSION_GPR
])
;;
@@ -328,8 +329,25 @@
(define_mode_attr f32_sv [(SF "stxsspx %x1,%y0") (SD "stxsiwzx %x1,%y0")])
; Definitions for 32-bit fpr direct move
+; At present, the decimal modes are not allowed in the traditional altivec
+; registers, so restrict the constraints to just the traditional FPRs.
(define_mode_attr f32_dm [(SF "wn") (SD "wh")])
+; Definitions for 32-bit VSX
+(define_mode_attr f32_vsx [(SF "ww") (SD "wn")])
+
+; Definitions for 32-bit use of altivec registers
+(define_mode_attr f32_av [(SF "wu") (SD "wn")])
+
+; Definitions for 64-bit VSX
+(define_mode_attr f64_vsx [(DF "ws") (DD "wn")])
+
+; Definitions for 64-bit direct move
+(define_mode_attr f64_dm [(DF "wk") (DD "wh")])
+
+; Definitions for 64-bit use of altivec registers
+(define_mode_attr f64_av [(DF "wv") (DD "wn")])
+
; These modes do not fit in integer registers in 32-bit mode.
; but on e500v2, the gpr are 64 bit registers
(define_mode_iterator DIFD [DI (DF "!TARGET_E500_DOUBLE") DD])
@@ -435,7 +453,7 @@
;; either.
;; Mode attribute for boolean operation register constraints for output
-(define_mode_attr BOOL_REGS_OUTPUT [(TI "&r,r,r,wa,v")
+(define_mode_attr BOOL_REGS_OUTPUT [(TI "&r,r,r,wt,v")
(PTI "&r,r,r")
(V16QI "wa,v,&?r,?r,?r")
(V8HI "wa,v,&?r,?r,?r")
@@ -446,7 +464,7 @@
(V1TI "wa,v,&?r,?r,?r")])
;; Mode attribute for boolean operation register constraints for operand1
-(define_mode_attr BOOL_REGS_OP1 [(TI "r,0,r,wa,v")
+(define_mode_attr BOOL_REGS_OP1 [(TI "r,0,r,wt,v")
(PTI "r,0,r")
(V16QI "wa,v,r,0,r")
(V8HI "wa,v,r,0,r")
@@ -457,7 +475,7 @@
(V1TI "wa,v,r,0,r")])
;; Mode attribute for boolean operation register constraints for operand2
-(define_mode_attr BOOL_REGS_OP2 [(TI "r,r,0,wa,v")
+(define_mode_attr BOOL_REGS_OP2 [(TI "r,r,0,wt,v")
(PTI "r,r,0")
(V16QI "wa,v,r,r,0")
(V8HI "wa,v,r,r,0")
@@ -470,7 +488,7 @@
;; Mode attribute for boolean operation register constraints for operand1
;; for one_cmpl. To simplify things, we repeat the constraint where 0
;; is used for operand1 or operand2
-(define_mode_attr BOOL_REGS_UNARY [(TI "r,0,0,wa,v")
+(define_mode_attr BOOL_REGS_UNARY [(TI "r,0,0,wt,v")
(PTI "r,0,0")
(V16QI "wa,v,r,0,0")
(V8HI "wa,v,r,0,0")
@@ -8582,8 +8600,8 @@
[(set (match_operand:BOOL_128 0 "vlogical_operand" "=<BOOL_REGS_OUTPUT>")
(match_operator:BOOL_128 3 "boolean_operator"
[(not:BOOL_128
- (match_operand:BOOL_128 2 "vlogical_operand" "<BOOL_REGS_OP1>"))
- (match_operand:BOOL_128 1 "vlogical_operand" "<BOOL_REGS_OP2>")]))]
+ (match_operand:BOOL_128 2 "vlogical_operand" "<BOOL_REGS_OP2>"))
+ (match_operand:BOOL_128 1 "vlogical_operand" "<BOOL_REGS_OP1>")]))]
"TARGET_P8_VECTOR || (GET_CODE (operands[3]) == AND)"
{
if (TARGET_VSX && vsx_register_operand (operands[0], <MODE>mode))
@@ -8598,7 +8616,7 @@
&& reload_completed && int_reg_operand (operands[0], <MODE>mode)"
[(const_int 0)]
{
- rs6000_split_logical (operands, GET_CODE (operands[3]), false, true, false,
+ rs6000_split_logical (operands, GET_CODE (operands[3]), false, false, true,
NULL_RTX);
DONE;
}
@@ -8620,14 +8638,14 @@
[(set (match_operand:TI2 0 "int_reg_operand" "=&r,r,r")
(match_operator:TI2 3 "boolean_operator"
[(not:TI2
- (match_operand:TI2 1 "int_reg_operand" "r,0,r"))
- (match_operand:TI2 2 "int_reg_operand" "r,r,0")]))]
+ (match_operand:TI2 2 "int_reg_operand" "r,0,r"))
+ (match_operand:TI2 1 "int_reg_operand" "r,r,0")]))]
"!TARGET_P8_VECTOR && (GET_CODE (operands[3]) != AND)"
"#"
"reload_completed && !TARGET_P8_VECTOR && (GET_CODE (operands[3]) != AND)"
[(const_int 0)]
{
- rs6000_split_logical (operands, GET_CODE (operands[3]), false, true, false,
+ rs6000_split_logical (operands, GET_CODE (operands[3]), false, false, true,
NULL_RTX);
DONE;
}
@@ -9188,8 +9206,8 @@
}")
(define_insn "mov<mode>_hardfloat"
- [(set (match_operand:FMOVE32 0 "nonimmediate_operand" "=!r,!r,m,f,wa,wa,<f32_lr>,<f32_sm>,wu,Z,?<f32_dm>,?r,*c*l,!r,*h,!r,!r")
- (match_operand:FMOVE32 1 "input_operand" "r,m,r,f,wa,j,<f32_lm>,<f32_sr>,Z,wu,r,<f32_dm>,r,h,0,G,Fn"))]
+ [(set (match_operand:FMOVE32 0 "nonimmediate_operand" "=!r,!r,m,f,<f32_vsx>,<f32_vsx>,<f32_lr>,<f32_sm>,<f32_av>,Z,?<f32_dm>,?r,*c*l,!r,*h,!r,!r")
+ (match_operand:FMOVE32 1 "input_operand" "r,m,r,f,<f32_vsx>,j,<f32_lm>,<f32_sr>,Z,<f32_av>,r,<f32_dm>,r, h, 0, G,Fn"))]
"(gpc_reg_operand (operands[0], <MODE>mode)
|| gpc_reg_operand (operands[1], <MODE>mode))
&& (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_SINGLE_FLOAT)"
@@ -9390,8 +9408,8 @@
;; reloading.
(define_insn "*mov<mode>_hardfloat32"
- [(set (match_operand:FMOVE64 0 "nonimmediate_operand" "=m,d,d,wv,Z,wa,wa,Y,r,!r,!r,!r,!r")
- (match_operand:FMOVE64 1 "input_operand" "d,m,d,Z,wv,wa,j,r,Y,r,G,H,F"))]
+ [(set (match_operand:FMOVE64 0 "nonimmediate_operand" "=m,d,d,<f64_av>,Z,<f64_vsx>,<f64_vsx>,Y,r,!r,!r,!r,!r")
+ (match_operand:FMOVE64 1 "input_operand" "d,m,d,Z,<f64_av>,<f64_vsx>,j,r,Y,r,G,H,F"))]
"! TARGET_POWERPC64 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
&& (gpc_reg_operand (operands[0], <MODE>mode)
|| gpc_reg_operand (operands[1], <MODE>mode))"
@@ -9459,8 +9477,8 @@
; ld/std require word-aligned displacements -> 'Y' constraint.
; List Y->r and r->Y before r->r for reload.
(define_insn "*mov<mode>_hardfloat64"
- [(set (match_operand:FMOVE64 0 "nonimmediate_operand" "=m,d,d,wv,Z,wa,wa,Y,r,!r,*c*l,!r,*h,!r,!r,!r,r,wg,r,wk")
- (match_operand:FMOVE64 1 "input_operand" "d,m,d,Z,wv,wa,j,r,Y,r,r,h,0,G,H,F,wg,r,wk,r"))]
+ [(set (match_operand:FMOVE64 0 "nonimmediate_operand" "=m,d,d,<f64_av>,Z,<f64_vsx>,<f64_vsx>,Y,r,!r,*c*l,!r,*h,!r,!r,!r,r,wg,r,<f64_dm>")
+ (match_operand:FMOVE64 1 "input_operand" "d,m,d,Z,<f64_av>,<f64_vsx>,j,r,Y,r,r,h,0,G,H,F,wg,r,<f64_dm>,r"))]
"TARGET_POWERPC64 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
&& (gpc_reg_operand (operands[0], <MODE>mode)
|| gpc_reg_operand (operands[1], <MODE>mode))"
@@ -15714,22 +15732,9 @@
;; a GPR. The addis instruction must be adjacent to the load, and use the same
;; register that is being loaded. The fused ops must be physically adjacent.
-;; We use define_peephole for the actual addis/load, and the register used to
-;; hold the addis value must be the same as the register being loaded. We use
-;; define_peephole2 to change the register used for addis to be the register
-;; being loaded, since we can look at whether it is dead after the load insn.
-
-(define_peephole
- [(set (match_operand:P 0 "base_reg_operand" "")
- (match_operand:P 1 "fusion_gpr_addis" ""))
- (set (match_operand:INT1 2 "base_reg_operand" "")
- (match_operand:INT1 3 "fusion_gpr_mem_load" ""))]
- "TARGET_P8_FUSION && fusion_gpr_load_p (operands, false)"
-{
- return emit_fusion_gpr_load (operands);
-}
- [(set_attr "type" "load")
- (set_attr "length" "8")])
+;; Find cases where the addis that feeds into a load instruction is either used
+;; once or is the same as the target register, and replace it with the fusion
+;; insn
(define_peephole2
[(set (match_operand:P 0 "base_reg_operand" "")
@@ -15737,15 +15742,28 @@
(set (match_operand:INT1 2 "base_reg_operand" "")
(match_operand:INT1 3 "fusion_gpr_mem_load" ""))]
"TARGET_P8_FUSION
- && (REGNO (operands[0]) != REGNO (operands[2])
- || GET_CODE (operands[3]) == SIGN_EXTEND)
- && fusion_gpr_load_p (operands, true)"
+ && fusion_gpr_load_p (operands[0], operands[1], operands[2],
+ operands[3])"
[(const_int 0)]
{
expand_fusion_gpr_load (operands);
DONE;
})
+;; Fusion insn, created by the define_peephole2 above (and eventually by
+;; reload)
+
+(define_insn "fusion_gpr_load_<mode>"
+ [(set (match_operand:INT1 0 "base_reg_operand" "=&b")
+ (unspec:INT1 [(match_operand:INT1 1 "fusion_gpr_mem_combo" "")]
+ UNSPEC_FUSION_GPR))]
+ "TARGET_P8_FUSION"
+{
+ return emit_fusion_gpr_load (operands[0], operands[1]);
+}
+ [(set_attr "type" "load")
+ (set_attr "length" "8")])
+
;; Miscellaneous ISA 2.06 (power7) instructions
(define_insn "addg6s"
diff --git a/gcc-4.9/gcc/config/rs6000/rs6000.opt b/gcc-4.9/gcc/config/rs6000/rs6000.opt
index 4c1a02a52..4d0d5e73d 100644
--- a/gcc-4.9/gcc/config/rs6000/rs6000.opt
+++ b/gcc-4.9/gcc/config/rs6000/rs6000.opt
@@ -588,3 +588,7 @@ Allow double variables in upper registers with -mcpu=power7 or -mvsx
mupper-regs-sf
Target Undocumented Mask(UPPER_REGS_SF) Var(rs6000_isa_flags)
Allow float variables in upper registers with -mcpu=power8 or -mp8-vector
+
+moptimize-swaps
+Target Undocumented Var(rs6000_optimize_swaps) Init(1) Save
+Analyze and remove doubleword swaps from VSX computations.
diff --git a/gcc-4.9/gcc/config/rs6000/rtems.h b/gcc-4.9/gcc/config/rs6000/rtems.h
index 2402d5336..046488034 100644
--- a/gcc-4.9/gcc/config/rs6000/rtems.h
+++ b/gcc-4.9/gcc/config/rs6000/rtems.h
@@ -52,7 +52,8 @@
%{mcpu=750: %{!Dppc*: %{!Dmpc*: -Dmpc750} } } \
%{mcpu=821: %{!Dppc*: %{!Dmpc*: -Dmpc821} } } \
%{mcpu=860: %{!Dppc*: %{!Dmpc*: -Dmpc860} } } \
-%{mcpu=8540: %{!Dppc*: %{!Dmpc*: -Dppc8540} } }"
+%{mcpu=8540: %{!Dppc*: %{!Dmpc*: -Dppc8540} } } \
+%{mcpu=e6500: -D__PPC_CPU_E6500__}"
#undef SUBSUBTARGET_EXTRA_SPECS
#define SUBSUBTARGET_EXTRA_SPECS \
diff --git a/gcc-4.9/gcc/config/rs6000/sysv4.h b/gcc-4.9/gcc/config/rs6000/sysv4.h
index 7cc543319..9d456ddec 100644
--- a/gcc-4.9/gcc/config/rs6000/sysv4.h
+++ b/gcc-4.9/gcc/config/rs6000/sysv4.h
@@ -846,11 +846,6 @@ ncrtn.o%s"
#define CPP_OS_OPENBSD_SPEC "%{posix:-D_POSIX_SOURCE} %{pthread:-D_POSIX_THREADS}"
#endif
-/* These may be provided by rs6000/linux-grtev2.h. */
-#ifndef LINUX_GRTE_EXTRA_SPECS
-#define LINUX_GRTE_EXTRA_SPECS
-#endif
-
/* Define any extra SPECS that the compiler needs to generate. */
/* Override rs6000.h definition. */
#undef SUBTARGET_EXTRA_SPECS
@@ -916,7 +911,6 @@ ncrtn.o%s"
{ "cpp_os_openbsd", CPP_OS_OPENBSD_SPEC }, \
{ "cpp_os_default", CPP_OS_DEFAULT_SPEC }, \
{ "fbsd_dynamic_linker", FBSD_DYNAMIC_LINKER }, \
- LINUX_GRTE_EXTRA_SPECS \
SUBSUBTARGET_EXTRA_SPECS
#define SUBSUBTARGET_EXTRA_SPECS
diff --git a/gcc-4.9/gcc/config/rs6000/t-rtems b/gcc-4.9/gcc/config/rs6000/t-rtems
index 426f75ac5..eadda0d20 100644
--- a/gcc-4.9/gcc/config/rs6000/t-rtems
+++ b/gcc-4.9/gcc/config/rs6000/t-rtems
@@ -18,16 +18,24 @@
# along with GCC; see the file COPYING3. If not see
# <http://www.gnu.org/licenses/>.
-MULTILIB_OPTIONS = \
-mcpu=403/mcpu=505/mcpu=603e/mcpu=604/mcpu=860/mcpu=7400/mcpu=8540 \
-msoft-float/mfloat-gprs=double
+MULTILIB_OPTIONS =
+MULTILIB_DIRNAMES =
+MULTILIB_MATCHES =
+MULTILIB_EXCEPTIONS =
+MULTILIB_REQUIRED =
+
+MULTILIB_OPTIONS += mcpu=403/mcpu=505/mcpu=603e/mcpu=604/mcpu=860/mcpu=7400/mcpu=8540/mcpu=e6500
+MULTILIB_DIRNAMES += m403 m505 m603e m604 m860 m7400 m8540 me6500
+
+MULTILIB_OPTIONS += m32
+MULTILIB_DIRNAMES += m32
-MULTILIB_DIRNAMES = \
-m403 m505 m603e m604 m860 m7400 m8540 \
-nof gprsdouble
+MULTILIB_OPTIONS += msoft-float/mfloat-gprs=double
+MULTILIB_DIRNAMES += nof gprsdouble
+
+MULTILIB_OPTIONS += mno-spe/mno-altivec
+MULTILIB_DIRNAMES += nospe noaltivec
-# MULTILIB_MATCHES = ${MULTILIB_MATCHES_FLOAT}
-MULTILIB_MATCHES =
MULTILIB_MATCHES += ${MULTILIB_MATCHES_ENDIAN}
MULTILIB_MATCHES += ${MULTILIB_MATCHES_SYSV}
# Map 405 to 403
@@ -52,37 +60,20 @@ MULTILIB_MATCHES += mcpu?8540=mcpu?8548
# (mfloat-gprs=single is implicit default)
MULTILIB_MATCHES += mcpu?8540=mcpu?8540/mfloat-gprs?single
-# Soft-float only, default implies msoft-float
-# NOTE: Must match with MULTILIB_MATCHES_FLOAT and MULTILIB_MATCHES
-MULTILIB_SOFTFLOAT_ONLY = \
-*mcpu=401/*msoft-float* \
-*mcpu=403/*msoft-float* \
-*mcpu=405/*msoft-float* \
-*mcpu=801/*msoft-float* \
-*mcpu=821/*msoft-float* \
-*mcpu=823/*msoft-float* \
-*mcpu=860/*msoft-float*
-
-# Hard-float only, take out msoft-float
-MULTILIB_HARDFLOAT_ONLY = \
-*mcpu=505/*msoft-float*
-
-# Targets which do not support gprs
-MULTILIB_NOGPRS = \
-mfloat-gprs=* \
-*mcpu=403/*mfloat-gprs=* \
-*mcpu=505/*mfloat-gprs=* \
-*mcpu=603e/*mfloat-gprs=* \
-*mcpu=604/*mfloat-gprs=* \
-*mcpu=860/*mfloat-gprs=* \
-*mcpu=7400/*mfloat-gprs=*
-
-MULTILIB_EXCEPTIONS =
-
-# Disallow -Dppc and -Dmpc without other options
-MULTILIB_EXCEPTIONS += Dppc* Dmpc*
+# Enumeration of multilibs
-MULTILIB_EXCEPTIONS += \
-${MULTILIB_SOFTFLOAT_ONLY} \
-${MULTILIB_HARDFLOAT_ONLY} \
-${MULTILIB_NOGPRS}
+MULTILIB_REQUIRED += msoft-float
+MULTILIB_REQUIRED += mcpu=403
+MULTILIB_REQUIRED += mcpu=505
+MULTILIB_REQUIRED += mcpu=603e
+MULTILIB_REQUIRED += mcpu=603e/msoft-float
+MULTILIB_REQUIRED += mcpu=604
+MULTILIB_REQUIRED += mcpu=604/msoft-float
+MULTILIB_REQUIRED += mcpu=7400
+MULTILIB_REQUIRED += mcpu=7400/msoft-float
+MULTILIB_REQUIRED += mcpu=8540
+MULTILIB_REQUIRED += mcpu=8540/msoft-float/mno-spe
+MULTILIB_REQUIRED += mcpu=8540/mfloat-gprs=double
+MULTILIB_REQUIRED += mcpu=860
+MULTILIB_REQUIRED += mcpu=e6500/m32
+MULTILIB_REQUIRED += mcpu=e6500/m32/msoft-float/mno-altivec
diff --git a/gcc-4.9/gcc/config/rs6000/vsx.md b/gcc-4.9/gcc/config/rs6000/vsx.md
index 2cf5e7a94..9aaf06428 100644
--- a/gcc-4.9/gcc/config/rs6000/vsx.md
+++ b/gcc-4.9/gcc/config/rs6000/vsx.md
@@ -260,6 +260,14 @@
UNSPEC_VSX_ROUND_IC
UNSPEC_VSX_SLDWI
UNSPEC_VSX_XXSPLTW
+ UNSPEC_VSX_XXSPLTD
+ UNSPEC_VSX_DIVSD
+ UNSPEC_VSX_DIVUD
+ UNSPEC_VSX_MULSD
+ UNSPEC_VSX_XVCVSXDDP
+ UNSPEC_VSX_XVCVUXDDP
+ UNSPEC_VSX_XVCVDPSXDS
+ UNSPEC_VSX_XVCVDPUXDS
])
;; VSX moves
@@ -746,6 +754,34 @@
[(set_attr "type" "<VStype_simple>")
(set_attr "fp_type" "<VSfptype_mul>")])
+; Emulate vector with scalar for vec_mul in V2DImode
+(define_insn_and_split "vsx_mul_v2di"
+ [(set (match_operand:V2DI 0 "vsx_register_operand" "=wa")
+ (unspec:V2DI [(match_operand:V2DI 1 "vsx_register_operand" "wa")
+ (match_operand:V2DI 2 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_MULSD))]
+ "VECTOR_MEM_VSX_P (V2DImode)"
+ "#"
+ "VECTOR_MEM_VSX_P (V2DImode) && !reload_completed && !reload_in_progress"
+ [(const_int 0)]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ rtx op2 = operands[2];
+ rtx op3 = gen_reg_rtx (DImode);
+ rtx op4 = gen_reg_rtx (DImode);
+ rtx op5 = gen_reg_rtx (DImode);
+ emit_insn (gen_vsx_extract_v2di (op3, op1, GEN_INT (0)));
+ emit_insn (gen_vsx_extract_v2di (op4, op2, GEN_INT (0)));
+ emit_insn (gen_muldi3 (op5, op3, op4));
+ emit_insn (gen_vsx_extract_v2di (op3, op1, GEN_INT (1)));
+ emit_insn (gen_vsx_extract_v2di (op4, op2, GEN_INT (1)));
+ emit_insn (gen_muldi3 (op3, op3, op4));
+ emit_insn (gen_vsx_concat_v2di (op0, op5, op3));
+}"
+ [(set_attr "type" "vecdouble")])
+
(define_insn "*vsx_div<mode>3"
[(set (match_operand:VSX_F 0 "vsx_register_operand" "=<VSr>,?<VSa>")
(div:VSX_F (match_operand:VSX_F 1 "vsx_register_operand" "<VSr>,<VSa>")
@@ -755,6 +791,61 @@
[(set_attr "type" "<VStype_div>")
(set_attr "fp_type" "<VSfptype_div>")])
+; Emulate vector with scalar for vec_div in V2DImode
+(define_insn_and_split "vsx_div_v2di"
+ [(set (match_operand:V2DI 0 "vsx_register_operand" "=wa")
+ (unspec:V2DI [(match_operand:V2DI 1 "vsx_register_operand" "wa")
+ (match_operand:V2DI 2 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_DIVSD))]
+ "VECTOR_MEM_VSX_P (V2DImode)"
+ "#"
+ "VECTOR_MEM_VSX_P (V2DImode) && !reload_completed && !reload_in_progress"
+ [(const_int 0)]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ rtx op2 = operands[2];
+ rtx op3 = gen_reg_rtx (DImode);
+ rtx op4 = gen_reg_rtx (DImode);
+ rtx op5 = gen_reg_rtx (DImode);
+ emit_insn (gen_vsx_extract_v2di (op3, op1, GEN_INT (0)));
+ emit_insn (gen_vsx_extract_v2di (op4, op2, GEN_INT (0)));
+ emit_insn (gen_divdi3 (op5, op3, op4));
+ emit_insn (gen_vsx_extract_v2di (op3, op1, GEN_INT (1)));
+ emit_insn (gen_vsx_extract_v2di (op4, op2, GEN_INT (1)));
+ emit_insn (gen_divdi3 (op3, op3, op4));
+ emit_insn (gen_vsx_concat_v2di (op0, op5, op3));
+}"
+ [(set_attr "type" "vecdiv")])
+
+(define_insn_and_split "vsx_udiv_v2di"
+ [(set (match_operand:V2DI 0 "vsx_register_operand" "=wa")
+ (unspec:V2DI [(match_operand:V2DI 1 "vsx_register_operand" "wa")
+ (match_operand:V2DI 2 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_DIVUD))]
+ "VECTOR_MEM_VSX_P (V2DImode)"
+ "#"
+ "VECTOR_MEM_VSX_P (V2DImode) && !reload_completed && !reload_in_progress"
+ [(const_int 0)]
+ "
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ rtx op2 = operands[2];
+ rtx op3 = gen_reg_rtx (DImode);
+ rtx op4 = gen_reg_rtx (DImode);
+ rtx op5 = gen_reg_rtx (DImode);
+ emit_insn (gen_vsx_extract_v2di (op3, op1, GEN_INT (0)));
+ emit_insn (gen_vsx_extract_v2di (op4, op2, GEN_INT (0)));
+ emit_insn (gen_udivdi3 (op5, op3, op4));
+ emit_insn (gen_vsx_extract_v2di (op3, op1, GEN_INT (1)));
+ emit_insn (gen_vsx_extract_v2di (op4, op2, GEN_INT (1)));
+ emit_insn (gen_udivdi3 (op3, op3, op4));
+ emit_insn (gen_vsx_concat_v2di (op0, op5, op3));
+}"
+ [(set_attr "type" "vecdiv")])
+
;; *tdiv* instruction returning the FG flag
(define_expand "vsx_tdiv<mode>3_fg"
[(set (match_dup 3)
@@ -904,11 +995,11 @@
;; multiply.
(define_insn "*vsx_fmav4sf4"
- [(set (match_operand:V4SF 0 "vsx_register_operand" "=ws,ws,?wa,?wa,v")
+ [(set (match_operand:V4SF 0 "vsx_register_operand" "=wf,wf,?wa,?wa,v")
(fma:V4SF
- (match_operand:V4SF 1 "vsx_register_operand" "%ws,ws,wa,wa,v")
- (match_operand:V4SF 2 "vsx_register_operand" "ws,0,wa,0,v")
- (match_operand:V4SF 3 "vsx_register_operand" "0,ws,0,wa,v")))]
+ (match_operand:V4SF 1 "vsx_register_operand" "%wf,wf,wa,wa,v")
+ (match_operand:V4SF 2 "vsx_register_operand" "wf,0,wa,0,v")
+ (match_operand:V4SF 3 "vsx_register_operand" "0,wf,0,wa,v")))]
"VECTOR_UNIT_VSX_P (V4SFmode)"
"@
xvmaddasp %x0,%x1,%x2
@@ -919,11 +1010,11 @@
[(set_attr "type" "vecfloat")])
(define_insn "*vsx_fmav2df4"
- [(set (match_operand:V2DF 0 "vsx_register_operand" "=ws,ws,?wa,?wa")
+ [(set (match_operand:V2DF 0 "vsx_register_operand" "=wd,wd,?wa,?wa")
(fma:V2DF
- (match_operand:V2DF 1 "vsx_register_operand" "%ws,ws,wa,wa")
- (match_operand:V2DF 2 "vsx_register_operand" "ws,0,wa,0")
- (match_operand:V2DF 3 "vsx_register_operand" "0,ws,0,wa")))]
+ (match_operand:V2DF 1 "vsx_register_operand" "%wd,wd,wa,wa")
+ (match_operand:V2DF 2 "vsx_register_operand" "wd,0,wa,0")
+ (match_operand:V2DF 3 "vsx_register_operand" "0,wd,0,wa")))]
"VECTOR_UNIT_VSX_P (V2DFmode)"
"@
xvmaddadp %x0,%x1,%x2
@@ -1268,6 +1359,102 @@
"xscvspdpn %x0,%x1"
[(set_attr "type" "fp")])
+;; Convert and scale (used by vec_ctf, vec_cts, vec_ctu for double/long long)
+
+(define_expand "vsx_xvcvsxddp_scale"
+ [(match_operand:V2DF 0 "vsx_register_operand" "")
+ (match_operand:V2DI 1 "vsx_register_operand" "")
+ (match_operand:QI 2 "immediate_operand" "")]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ int scale = INTVAL(operands[2]);
+ emit_insn (gen_vsx_xvcvsxddp (op0, op1));
+ if (scale != 0)
+ rs6000_scale_v2df (op0, op0, -scale);
+ DONE;
+})
+
+(define_insn "vsx_xvcvsxddp"
+ [(set (match_operand:V2DF 0 "vsx_register_operand" "=wa")
+ (unspec:V2DF [(match_operand:V2DI 1 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_XVCVSXDDP))]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+ "xvcvsxddp %x0,%x1"
+ [(set_attr "type" "vecdouble")])
+
+(define_expand "vsx_xvcvuxddp_scale"
+ [(match_operand:V2DF 0 "vsx_register_operand" "")
+ (match_operand:V2DI 1 "vsx_register_operand" "")
+ (match_operand:QI 2 "immediate_operand" "")]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ int scale = INTVAL(operands[2]);
+ emit_insn (gen_vsx_xvcvuxddp (op0, op1));
+ if (scale != 0)
+ rs6000_scale_v2df (op0, op0, -scale);
+ DONE;
+})
+
+(define_insn "vsx_xvcvuxddp"
+ [(set (match_operand:V2DF 0 "vsx_register_operand" "=wa")
+ (unspec:V2DF [(match_operand:V2DI 1 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_XVCVUXDDP))]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+ "xvcvuxddp %x0,%x1"
+ [(set_attr "type" "vecdouble")])
+
+(define_expand "vsx_xvcvdpsxds_scale"
+ [(match_operand:V2DI 0 "vsx_register_operand" "")
+ (match_operand:V2DF 1 "vsx_register_operand" "")
+ (match_operand:QI 2 "immediate_operand" "")]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ rtx tmp = gen_reg_rtx (V2DFmode);
+ int scale = INTVAL(operands[2]);
+ if (scale != 0)
+ rs6000_scale_v2df (tmp, op1, scale);
+ emit_insn (gen_vsx_xvcvdpsxds (op0, tmp));
+ DONE;
+})
+
+(define_insn "vsx_xvcvdpsxds"
+ [(set (match_operand:V2DI 0 "vsx_register_operand" "=wa")
+ (unspec:V2DI [(match_operand:V2DF 1 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_XVCVDPSXDS))]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+ "xvcvdpsxds %x0,%x1"
+ [(set_attr "type" "vecdouble")])
+
+(define_expand "vsx_xvcvdpuxds_scale"
+ [(match_operand:V2DI 0 "vsx_register_operand" "")
+ (match_operand:V2DF 1 "vsx_register_operand" "")
+ (match_operand:QI 2 "immediate_operand" "")]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+{
+ rtx op0 = operands[0];
+ rtx op1 = operands[1];
+ rtx tmp = gen_reg_rtx (V2DFmode);
+ int scale = INTVAL(operands[2]);
+ if (scale != 0)
+ rs6000_scale_v2df (tmp, op1, scale);
+ emit_insn (gen_vsx_xvcvdpuxds (op0, tmp));
+ DONE;
+})
+
+(define_insn "vsx_xvcvdpuxds"
+ [(set (match_operand:V2DI 0 "vsx_register_operand" "=wa")
+ (unspec:V2DI [(match_operand:V2DF 1 "vsx_register_operand" "wa")]
+ UNSPEC_VSX_XVCVDPUXDS))]
+ "VECTOR_UNIT_VSX_P (V2DFmode)"
+ "xvcvdpuxds %x0,%x1"
+ [(set_attr "type" "vecdouble")])
+
;; Convert from 64-bit to 32-bit types
;; Note, favor the Altivec registers since the usual use of these instructions
;; is in vector converts and we need to use the Altivec vperm instruction.
@@ -1359,8 +1546,8 @@
(define_insn "vsx_concat_<mode>"
[(set (match_operand:VSX_D 0 "vsx_register_operand" "=<VSr>,?<VSa>")
(vec_concat:VSX_D
- (match_operand:<VS_scalar> 1 "vsx_register_operand" "ws,<VSa>")
- (match_operand:<VS_scalar> 2 "vsx_register_operand" "ws,<VSa>")))]
+ (match_operand:<VS_scalar> 1 "vsx_register_operand" "<VS_64reg>,<VSa>")
+ (match_operand:<VS_scalar> 2 "vsx_register_operand" "<VS_64reg>,<VSa>")))]
"VECTOR_MEM_VSX_P (<MODE>mode)"
{
if (BYTES_BIG_ENDIAN)
@@ -1647,7 +1834,7 @@
[(set (match_operand:<VS_scalar> 0 "register_operand" "=d,wv,wr")
(vec_select:<VS_scalar>
(match_operand:VSX_D 1 "memory_operand" "m,Z,m")
- (parallel [(match_operand:QI 2 "vsx_scalar_64bit" "wD,wD,wD")])))]
+ (parallel [(const_int 0)])))]
"VECTOR_MEM_VSX_P (<MODE>mode)"
"@
lfd%U1%X1 %0,%1
@@ -1921,6 +2108,22 @@
"xxspltw %x0,%x1,%2"
[(set_attr "type" "vecperm")])
+;; V2DF/V2DI splat for use by vec_splat builtin
+(define_insn "vsx_xxspltd_<mode>"
+ [(set (match_operand:VSX_D 0 "vsx_register_operand" "=wa")
+ (unspec:VSX_D [(match_operand:VSX_D 1 "vsx_register_operand" "wa")
+ (match_operand:QI 2 "u5bit_cint_operand" "i")]
+ UNSPEC_VSX_XXSPLTD))]
+ "VECTOR_MEM_VSX_P (<MODE>mode)"
+{
+ if ((VECTOR_ELT_ORDER_BIG && INTVAL (operands[2]) == 0)
+ || (!VECTOR_ELT_ORDER_BIG && INTVAL (operands[2]) == 1))
+ return "xxpermdi %x0,%x1,%x1,0";
+ else
+ return "xxpermdi %x0,%x1,%x1,3";
+}
+ [(set_attr "type" "vecperm")])
+
;; V4SF/V4SI interleave
(define_insn "vsx_xxmrghw_<mode>"
[(set (match_operand:VSX_W 0 "vsx_register_operand" "=wf,?<VSa>")
@@ -2041,7 +2244,7 @@
;; to the top element of the V2DF array without doing an extract.
(define_insn_and_split "*vsx_reduc_<VEC_reduc_name>_v2df_scalar"
- [(set (match_operand:DF 0 "vfloat_operand" "=&ws,&?wa,ws,?wa")
+ [(set (match_operand:DF 0 "vfloat_operand" "=&ws,&?ws,ws,?ws")
(vec_select:DF
(VEC_reduc:V2DF
(vec_concat:V2DF
diff --git a/gcc-4.9/gcc/config/rs6000/xcoff.h b/gcc-4.9/gcc/config/rs6000/xcoff.h
index f2b7bd07a..10123313f 100644
--- a/gcc-4.9/gcc/config/rs6000/xcoff.h
+++ b/gcc-4.9/gcc/config/rs6000/xcoff.h
@@ -304,14 +304,15 @@
do { fputs (LOCAL_COMMON_ASM_OP, (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
if ((ALIGN) > 32) \
- fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",%s,%u\n", \
+ fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",%s%u_,%u\n", \
(SIZE), xcoff_bss_section_name, \
+ floor_log2 ((ALIGN) / BITS_PER_UNIT), \
floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
else if ((SIZE) > 4) \
- fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",%s,3\n", \
+ fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",%s3_,3\n", \
(SIZE), xcoff_bss_section_name); \
else \
- fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",%s\n", \
+ fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",%s,2\n", \
(SIZE), xcoff_bss_section_name); \
} while (0)
#endif