aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/function.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2016-02-24 13:48:45 -0800
committerDan Albert <danalbert@google.com>2016-02-24 13:51:18 -0800
commitb9de1157289455b0ca26daff519d4a0ddcd1fa13 (patch)
tree4c56cc0a34b91f17033a40a455f26652304f7b8d /gcc-4.8.1/gcc/function.c
parent098157a754787181cfa10e71325832448ddcea98 (diff)
downloadtoolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.tar.gz
toolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.tar.bz2
toolchain_gcc-b9de1157289455b0ca26daff519d4a0ddcd1fa13.zip
Update 4.8.1 to 4.8.3.
My previous drop was the wrong version. The platform mingw is currently using 4.8.3, not 4.8.1 (not sure how I got that wrong). From ftp://ftp.gnu.org/gnu/gcc/gcc-4.8.3/gcc-4.8.3.tar.bz2. Bug: http://b/26523949 Change-Id: Id85f1bdcbbaf78c7d0b5a69e74c798a08f341c35
Diffstat (limited to 'gcc-4.8.1/gcc/function.c')
-rw-r--r--gcc-4.8.1/gcc/function.c7205
1 files changed, 0 insertions, 7205 deletions
diff --git a/gcc-4.8.1/gcc/function.c b/gcc-4.8.1/gcc/function.c
deleted file mode 100644
index e673f21a5..000000000
--- a/gcc-4.8.1/gcc/function.c
+++ /dev/null
@@ -1,7205 +0,0 @@
-/* Expands front end tree to back end RTL for GCC.
- Copyright (C) 1987-2013 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* This file handles the generation of rtl code from tree structure
- at the level of the function as a whole.
- It creates the rtl expressions for parameters and auto variables
- and has full responsibility for allocating stack slots.
-
- `expand_function_start' is called at the beginning of a function,
- before the function body is parsed, and `expand_function_end' is
- called after parsing the body.
-
- Call `assign_stack_local' to allocate a stack slot for a local variable.
- This is usually done during the RTL generation for the function body,
- but it can also be done in the reload pass when a pseudo-register does
- not get a hard register. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl-error.h"
-#include "tree.h"
-#include "flags.h"
-#include "except.h"
-#include "function.h"
-#include "expr.h"
-#include "optabs.h"
-#include "libfuncs.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "output.h"
-#include "basic-block.h"
-#include "hashtab.h"
-#include "ggc.h"
-#include "tm_p.h"
-#include "langhooks.h"
-#include "target.h"
-#include "common/common-target.h"
-#include "gimple.h"
-#include "tree-pass.h"
-#include "predict.h"
-#include "df.h"
-#include "params.h"
-#include "bb-reorder.h"
-
-/* So we can assign to cfun in this file. */
-#undef cfun
-
-#ifndef STACK_ALIGNMENT_NEEDED
-#define STACK_ALIGNMENT_NEEDED 1
-#endif
-
-#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
-
-/* Some systems use __main in a way incompatible with its use in gcc, in these
- cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
- give the same symbol without quotes for an alternative entry point. You
- must define both, or neither. */
-#ifndef NAME__MAIN
-#define NAME__MAIN "__main"
-#endif
-
-/* Round a value to the lowest integer less than it that is a multiple of
- the required alignment. Avoid using division in case the value is
- negative. Assume the alignment is a power of two. */
-#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
-
-/* Similar, but round to the next highest integer that meets the
- alignment. */
-#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
-
-/* Nonzero once virtual register instantiation has been done.
- assign_stack_local uses frame_pointer_rtx when this is nonzero.
- calls.c:emit_library_call_value_1 uses it to set up
- post-instantiation libcalls. */
-int virtuals_instantiated;
-
-/* Assign unique numbers to labels generated for profiling, debugging, etc. */
-static GTY(()) int funcdef_no;
-
-/* These variables hold pointers to functions to create and destroy
- target specific, per-function data structures. */
-struct machine_function * (*init_machine_status) (void);
-
-/* The currently compiled function. */
-struct function *cfun = 0;
-
-/* These hashes record the prologue and epilogue insns. */
-static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
- htab_t prologue_insn_hash;
-static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
- htab_t epilogue_insn_hash;
-
-
-htab_t types_used_by_vars_hash = NULL;
-vec<tree, va_gc> *types_used_by_cur_var_decl;
-
-/* Forward declarations. */
-
-static struct temp_slot *find_temp_slot_from_address (rtx);
-static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
-static void pad_below (struct args_size *, enum machine_mode, tree);
-static void reorder_blocks_1 (rtx, tree, vec<tree> *);
-static int all_blocks (tree, tree *);
-static tree *get_block_vector (tree, int *);
-extern tree debug_find_var_in_block_tree (tree, tree);
-/* We always define `record_insns' even if it's not used so that we
- can always export `prologue_epilogue_contains'. */
-static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
-static bool contains (const_rtx, htab_t);
-static void prepare_function_start (void);
-static void do_clobber_return_reg (rtx, void *);
-static void do_use_return_reg (rtx, void *);
-static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
-
-/* Stack of nested functions. */
-/* Keep track of the cfun stack. */
-
-typedef struct function *function_p;
-
-static vec<function_p> function_context_stack;
-
-/* Save the current context for compilation of a nested function.
- This is called from language-specific code. */
-
-void
-push_function_context (void)
-{
- if (cfun == 0)
- allocate_struct_function (NULL, false);
-
- function_context_stack.safe_push (cfun);
- set_cfun (NULL);
-}
-
-/* Restore the last saved context, at the end of a nested function.
- This function is called from language-specific code. */
-
-void
-pop_function_context (void)
-{
- struct function *p = function_context_stack.pop ();
- set_cfun (p);
- current_function_decl = p->decl;
-
- /* Reset variables that have known state during rtx generation. */
- virtuals_instantiated = 0;
- generating_concat_p = 1;
-}
-
-/* Clear out all parts of the state in F that can safely be discarded
- after the function has been parsed, but not compiled, to let
- garbage collection reclaim the memory. */
-
-void
-free_after_parsing (struct function *f)
-{
- f->language = 0;
-}
-
-/* Clear out all parts of the state in F that can safely be discarded
- after the function has been compiled, to let garbage collection
- reclaim the memory. */
-
-void
-free_after_compilation (struct function *f)
-{
- prologue_insn_hash = NULL;
- epilogue_insn_hash = NULL;
-
- free (crtl->emit.regno_pointer_align);
-
- memset (crtl, 0, sizeof (struct rtl_data));
- f->eh = NULL;
- f->machine = NULL;
- f->cfg = NULL;
-
- regno_reg_rtx = NULL;
-}
-
-/* Return size needed for stack frame based on slots so far allocated.
- This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
- the caller may have to do that. */
-
-HOST_WIDE_INT
-get_frame_size (void)
-{
- if (FRAME_GROWS_DOWNWARD)
- return -frame_offset;
- else
- return frame_offset;
-}
-
-/* Issue an error message and return TRUE if frame OFFSET overflows in
- the signed target pointer arithmetics for function FUNC. Otherwise
- return FALSE. */
-
-bool
-frame_offset_overflow (HOST_WIDE_INT offset, tree func)
-{
- unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
-
- if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
- /* Leave room for the fixed part of the frame. */
- - 64 * UNITS_PER_WORD)
- {
- error_at (DECL_SOURCE_LOCATION (func),
- "total size of local objects too large");
- return TRUE;
- }
-
- return FALSE;
-}
-
-/* Return stack slot alignment in bits for TYPE and MODE. */
-
-static unsigned int
-get_stack_local_alignment (tree type, enum machine_mode mode)
-{
- unsigned int alignment;
-
- if (mode == BLKmode)
- alignment = BIGGEST_ALIGNMENT;
- else
- alignment = GET_MODE_ALIGNMENT (mode);
-
- /* Allow the frond-end to (possibly) increase the alignment of this
- stack slot. */
- if (! type)
- type = lang_hooks.types.type_for_mode (mode, 0);
-
- return STACK_SLOT_ALIGNMENT (type, mode, alignment);
-}
-
-/* Determine whether it is possible to fit a stack slot of size SIZE and
- alignment ALIGNMENT into an area in the stack frame that starts at
- frame offset START and has a length of LENGTH. If so, store the frame
- offset to be used for the stack slot in *POFFSET and return true;
- return false otherwise. This function will extend the frame size when
- given a start/length pair that lies at the end of the frame. */
-
-static bool
-try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
- HOST_WIDE_INT size, unsigned int alignment,
- HOST_WIDE_INT *poffset)
-{
- HOST_WIDE_INT this_frame_offset;
- int frame_off, frame_alignment, frame_phase;
-
- /* Calculate how many bytes the start of local variables is off from
- stack alignment. */
- frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
- frame_off = STARTING_FRAME_OFFSET % frame_alignment;
- frame_phase = frame_off ? frame_alignment - frame_off : 0;
-
- /* Round the frame offset to the specified alignment. */
-
- /* We must be careful here, since FRAME_OFFSET might be negative and
- division with a negative dividend isn't as well defined as we might
- like. So we instead assume that ALIGNMENT is a power of two and
- use logical operations which are unambiguous. */
- if (FRAME_GROWS_DOWNWARD)
- this_frame_offset
- = (FLOOR_ROUND (start + length - size - frame_phase,
- (unsigned HOST_WIDE_INT) alignment)
- + frame_phase);
- else
- this_frame_offset
- = (CEIL_ROUND (start - frame_phase,
- (unsigned HOST_WIDE_INT) alignment)
- + frame_phase);
-
- /* See if it fits. If this space is at the edge of the frame,
- consider extending the frame to make it fit. Our caller relies on
- this when allocating a new slot. */
- if (frame_offset == start && this_frame_offset < frame_offset)
- frame_offset = this_frame_offset;
- else if (this_frame_offset < start)
- return false;
- else if (start + length == frame_offset
- && this_frame_offset + size > start + length)
- frame_offset = this_frame_offset + size;
- else if (this_frame_offset + size > start + length)
- return false;
-
- *poffset = this_frame_offset;
- return true;
-}
-
-/* Create a new frame_space structure describing free space in the stack
- frame beginning at START and ending at END, and chain it into the
- function's frame_space_list. */
-
-static void
-add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
-{
- struct frame_space *space = ggc_alloc_frame_space ();
- space->next = crtl->frame_space_list;
- crtl->frame_space_list = space;
- space->start = start;
- space->length = end - start;
-}
-
-/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
- with machine mode MODE.
-
- ALIGN controls the amount of alignment for the address of the slot:
- 0 means according to MODE,
- -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
- -2 means use BITS_PER_UNIT,
- positive specifies alignment boundary in bits.
-
- KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
- alignment and ASLK_RECORD_PAD bit set if we should remember
- extra space we allocated for alignment purposes. When we are
- called from assign_stack_temp_for_type, it is not set so we don't
- track the same stack slot in two independent lists.
-
- We do not round to stack_boundary here. */
-
-rtx
-assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
- int align, int kind)
-{
- rtx x, addr;
- int bigend_correction = 0;
- HOST_WIDE_INT slot_offset = 0, old_frame_offset;
- unsigned int alignment, alignment_in_bits;
-
- if (align == 0)
- {
- alignment = get_stack_local_alignment (NULL, mode);
- alignment /= BITS_PER_UNIT;
- }
- else if (align == -1)
- {
- alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
- size = CEIL_ROUND (size, alignment);
- }
- else if (align == -2)
- alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
- else
- alignment = align / BITS_PER_UNIT;
-
- alignment_in_bits = alignment * BITS_PER_UNIT;
-
- /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
- if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
- {
- alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
- alignment = alignment_in_bits / BITS_PER_UNIT;
- }
-
- if (SUPPORTS_STACK_ALIGNMENT)
- {
- if (crtl->stack_alignment_estimated < alignment_in_bits)
- {
- if (!crtl->stack_realign_processed)
- crtl->stack_alignment_estimated = alignment_in_bits;
- else
- {
- /* If stack is realigned and stack alignment value
- hasn't been finalized, it is OK not to increase
- stack_alignment_estimated. The bigger alignment
- requirement is recorded in stack_alignment_needed
- below. */
- gcc_assert (!crtl->stack_realign_finalized);
- if (!crtl->stack_realign_needed)
- {
- /* It is OK to reduce the alignment as long as the
- requested size is 0 or the estimated stack
- alignment >= mode alignment. */
- gcc_assert ((kind & ASLK_REDUCE_ALIGN)
- || size == 0
- || (crtl->stack_alignment_estimated
- >= GET_MODE_ALIGNMENT (mode)));
- alignment_in_bits = crtl->stack_alignment_estimated;
- alignment = alignment_in_bits / BITS_PER_UNIT;
- }
- }
- }
- }
-
- if (crtl->stack_alignment_needed < alignment_in_bits)
- crtl->stack_alignment_needed = alignment_in_bits;
- if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
- crtl->max_used_stack_slot_alignment = alignment_in_bits;
-
- if (mode != BLKmode || size != 0)
- {
- if (kind & ASLK_RECORD_PAD)
- {
- struct frame_space **psp;
-
- for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
- {
- struct frame_space *space = *psp;
- if (!try_fit_stack_local (space->start, space->length, size,
- alignment, &slot_offset))
- continue;
- *psp = space->next;
- if (slot_offset > space->start)
- add_frame_space (space->start, slot_offset);
- if (slot_offset + size < space->start + space->length)
- add_frame_space (slot_offset + size,
- space->start + space->length);
- goto found_space;
- }
- }
- }
- else if (!STACK_ALIGNMENT_NEEDED)
- {
- slot_offset = frame_offset;
- goto found_space;
- }
-
- old_frame_offset = frame_offset;
-
- if (FRAME_GROWS_DOWNWARD)
- {
- frame_offset -= size;
- try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
-
- if (kind & ASLK_RECORD_PAD)
- {
- if (slot_offset > frame_offset)
- add_frame_space (frame_offset, slot_offset);
- if (slot_offset + size < old_frame_offset)
- add_frame_space (slot_offset + size, old_frame_offset);
- }
- }
- else
- {
- frame_offset += size;
- try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
-
- if (kind & ASLK_RECORD_PAD)
- {
- if (slot_offset > old_frame_offset)
- add_frame_space (old_frame_offset, slot_offset);
- if (slot_offset + size < frame_offset)
- add_frame_space (slot_offset + size, frame_offset);
- }
- }
-
- found_space:
- /* On a big-endian machine, if we are allocating more space than we will use,
- use the least significant bytes of those that are allocated. */
- if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
- bigend_correction = size - GET_MODE_SIZE (mode);
-
- /* If we have already instantiated virtual registers, return the actual
- address relative to the frame pointer. */
- if (virtuals_instantiated)
- addr = plus_constant (Pmode, frame_pointer_rtx,
- trunc_int_for_mode
- (slot_offset + bigend_correction
- + STARTING_FRAME_OFFSET, Pmode));
- else
- addr = plus_constant (Pmode, virtual_stack_vars_rtx,
- trunc_int_for_mode
- (slot_offset + bigend_correction,
- Pmode));
-
- x = gen_rtx_MEM (mode, addr);
- set_mem_align (x, alignment_in_bits);
- MEM_NOTRAP_P (x) = 1;
-
- stack_slot_list
- = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
-
- if (frame_offset_overflow (frame_offset, current_function_decl))
- frame_offset = 0;
-
- return x;
-}
-
-/* Wrap up assign_stack_local_1 with last parameter as false. */
-
-rtx
-assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
-{
- return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
-}
-
-/* In order to evaluate some expressions, such as function calls returning
- structures in memory, we need to temporarily allocate stack locations.
- We record each allocated temporary in the following structure.
-
- Associated with each temporary slot is a nesting level. When we pop up
- one level, all temporaries associated with the previous level are freed.
- Normally, all temporaries are freed after the execution of the statement
- in which they were created. However, if we are inside a ({...}) grouping,
- the result may be in a temporary and hence must be preserved. If the
- result could be in a temporary, we preserve it if we can determine which
- one it is in. If we cannot determine which temporary may contain the
- result, all temporaries are preserved. A temporary is preserved by
- pretending it was allocated at the previous nesting level. */
-
-struct GTY(()) temp_slot {
- /* Points to next temporary slot. */
- struct temp_slot *next;
- /* Points to previous temporary slot. */
- struct temp_slot *prev;
- /* The rtx to used to reference the slot. */
- rtx slot;
- /* The size, in units, of the slot. */
- HOST_WIDE_INT size;
- /* The type of the object in the slot, or zero if it doesn't correspond
- to a type. We use this to determine whether a slot can be reused.
- It can be reused if objects of the type of the new slot will always
- conflict with objects of the type of the old slot. */
- tree type;
- /* The alignment (in bits) of the slot. */
- unsigned int align;
- /* Nonzero if this temporary is currently in use. */
- char in_use;
- /* Nesting level at which this slot is being used. */
- int level;
- /* The offset of the slot from the frame_pointer, including extra space
- for alignment. This info is for combine_temp_slots. */
- HOST_WIDE_INT base_offset;
- /* The size of the slot, including extra space for alignment. This
- info is for combine_temp_slots. */
- HOST_WIDE_INT full_size;
-};
-
-/* A table of addresses that represent a stack slot. The table is a mapping
- from address RTXen to a temp slot. */
-static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
-static size_t n_temp_slots_in_use;
-
-/* Entry for the above hash table. */
-struct GTY(()) temp_slot_address_entry {
- hashval_t hash;
- rtx address;
- struct temp_slot *temp_slot;
-};
-
-/* Removes temporary slot TEMP from LIST. */
-
-static void
-cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
-{
- if (temp->next)
- temp->next->prev = temp->prev;
- if (temp->prev)
- temp->prev->next = temp->next;
- else
- *list = temp->next;
-
- temp->prev = temp->next = NULL;
-}
-
-/* Inserts temporary slot TEMP to LIST. */
-
-static void
-insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
-{
- temp->next = *list;
- if (*list)
- (*list)->prev = temp;
- temp->prev = NULL;
- *list = temp;
-}
-
-/* Returns the list of used temp slots at LEVEL. */
-
-static struct temp_slot **
-temp_slots_at_level (int level)
-{
- if (level >= (int) vec_safe_length (used_temp_slots))
- vec_safe_grow_cleared (used_temp_slots, level + 1);
-
- return &(*used_temp_slots)[level];
-}
-
-/* Returns the maximal temporary slot level. */
-
-static int
-max_slot_level (void)
-{
- if (!used_temp_slots)
- return -1;
-
- return used_temp_slots->length () - 1;
-}
-
-/* Moves temporary slot TEMP to LEVEL. */
-
-static void
-move_slot_to_level (struct temp_slot *temp, int level)
-{
- cut_slot_from_list (temp, temp_slots_at_level (temp->level));
- insert_slot_to_list (temp, temp_slots_at_level (level));
- temp->level = level;
-}
-
-/* Make temporary slot TEMP available. */
-
-static void
-make_slot_available (struct temp_slot *temp)
-{
- cut_slot_from_list (temp, temp_slots_at_level (temp->level));
- insert_slot_to_list (temp, &avail_temp_slots);
- temp->in_use = 0;
- temp->level = -1;
- n_temp_slots_in_use--;
-}
-
-/* Compute the hash value for an address -> temp slot mapping.
- The value is cached on the mapping entry. */
-static hashval_t
-temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
-{
- int do_not_record = 0;
- return hash_rtx (t->address, GET_MODE (t->address),
- &do_not_record, NULL, false);
-}
-
-/* Return the hash value for an address -> temp slot mapping. */
-static hashval_t
-temp_slot_address_hash (const void *p)
-{
- const struct temp_slot_address_entry *t;
- t = (const struct temp_slot_address_entry *) p;
- return t->hash;
-}
-
-/* Compare two address -> temp slot mapping entries. */
-static int
-temp_slot_address_eq (const void *p1, const void *p2)
-{
- const struct temp_slot_address_entry *t1, *t2;
- t1 = (const struct temp_slot_address_entry *) p1;
- t2 = (const struct temp_slot_address_entry *) p2;
- return exp_equiv_p (t1->address, t2->address, 0, true);
-}
-
-/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
-static void
-insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
-{
- void **slot;
- struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
- t->address = address;
- t->temp_slot = temp_slot;
- t->hash = temp_slot_address_compute_hash (t);
- slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
- *slot = t;
-}
-
-/* Remove an address -> temp slot mapping entry if the temp slot is
- not in use anymore. Callback for remove_unused_temp_slot_addresses. */
-static int
-remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- const struct temp_slot_address_entry *t;
- t = (const struct temp_slot_address_entry *) *slot;
- if (! t->temp_slot->in_use)
- htab_clear_slot (temp_slot_address_table, slot);
- return 1;
-}
-
-/* Remove all mappings of addresses to unused temp slots. */
-static void
-remove_unused_temp_slot_addresses (void)
-{
- /* Use quicker clearing if there aren't any active temp slots. */
- if (n_temp_slots_in_use)
- htab_traverse (temp_slot_address_table,
- remove_unused_temp_slot_addresses_1,
- NULL);
- else
- htab_empty (temp_slot_address_table);
-}
-
-/* Find the temp slot corresponding to the object at address X. */
-
-static struct temp_slot *
-find_temp_slot_from_address (rtx x)
-{
- struct temp_slot *p;
- struct temp_slot_address_entry tmp, *t;
-
- /* First try the easy way:
- See if X exists in the address -> temp slot mapping. */
- tmp.address = x;
- tmp.temp_slot = NULL;
- tmp.hash = temp_slot_address_compute_hash (&tmp);
- t = (struct temp_slot_address_entry *)
- htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
- if (t)
- return t->temp_slot;
-
- /* If we have a sum involving a register, see if it points to a temp
- slot. */
- if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
- && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
- return p;
- else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
- && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
- return p;
-
- /* Last resort: Address is a virtual stack var address. */
- if (GET_CODE (x) == PLUS
- && XEXP (x, 0) == virtual_stack_vars_rtx
- && CONST_INT_P (XEXP (x, 1)))
- {
- int i;
- for (i = max_slot_level (); i >= 0; i--)
- for (p = *temp_slots_at_level (i); p; p = p->next)
- {
- if (INTVAL (XEXP (x, 1)) >= p->base_offset
- && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
- return p;
- }
- }
-
- return NULL;
-}
-
-/* Allocate a temporary stack slot and record it for possible later
- reuse.
-
- MODE is the machine mode to be given to the returned rtx.
-
- SIZE is the size in units of the space required. We do no rounding here
- since assign_stack_local will do any required rounding.
-
- TYPE is the type that will be used for the stack slot. */
-
-rtx
-assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
- tree type)
-{
- unsigned int align;
- struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
- rtx slot;
-
- /* If SIZE is -1 it means that somebody tried to allocate a temporary
- of a variable size. */
- gcc_assert (size != -1);
-
- align = get_stack_local_alignment (type, mode);
-
- /* Try to find an available, already-allocated temporary of the proper
- mode which meets the size and alignment requirements. Choose the
- smallest one with the closest alignment.
-
- If assign_stack_temp is called outside of the tree->rtl expansion,
- we cannot reuse the stack slots (that may still refer to
- VIRTUAL_STACK_VARS_REGNUM). */
- if (!virtuals_instantiated)
- {
- for (p = avail_temp_slots; p; p = p->next)
- {
- if (p->align >= align && p->size >= size
- && GET_MODE (p->slot) == mode
- && objects_must_conflict_p (p->type, type)
- && (best_p == 0 || best_p->size > p->size
- || (best_p->size == p->size && best_p->align > p->align)))
- {
- if (p->align == align && p->size == size)
- {
- selected = p;
- cut_slot_from_list (selected, &avail_temp_slots);
- best_p = 0;
- break;
- }
- best_p = p;
- }
- }
- }
-
- /* Make our best, if any, the one to use. */
- if (best_p)
- {
- selected = best_p;
- cut_slot_from_list (selected, &avail_temp_slots);
-
- /* If there are enough aligned bytes left over, make them into a new
- temp_slot so that the extra bytes don't get wasted. Do this only
- for BLKmode slots, so that we can be sure of the alignment. */
- if (GET_MODE (best_p->slot) == BLKmode)
- {
- int alignment = best_p->align / BITS_PER_UNIT;
- HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
-
- if (best_p->size - rounded_size >= alignment)
- {
- p = ggc_alloc_temp_slot ();
- p->in_use = 0;
- p->size = best_p->size - rounded_size;
- p->base_offset = best_p->base_offset + rounded_size;
- p->full_size = best_p->full_size - rounded_size;
- p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
- p->align = best_p->align;
- p->type = best_p->type;
- insert_slot_to_list (p, &avail_temp_slots);
-
- stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
- stack_slot_list);
-
- best_p->size = rounded_size;
- best_p->full_size = rounded_size;
- }
- }
- }
-
- /* If we still didn't find one, make a new temporary. */
- if (selected == 0)
- {
- HOST_WIDE_INT frame_offset_old = frame_offset;
-
- p = ggc_alloc_temp_slot ();
-
- /* We are passing an explicit alignment request to assign_stack_local.
- One side effect of that is assign_stack_local will not round SIZE
- to ensure the frame offset remains suitably aligned.
-
- So for requests which depended on the rounding of SIZE, we go ahead
- and round it now. We also make sure ALIGNMENT is at least
- BIGGEST_ALIGNMENT. */
- gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
- p->slot = assign_stack_local_1 (mode,
- (mode == BLKmode
- ? CEIL_ROUND (size,
- (int) align
- / BITS_PER_UNIT)
- : size),
- align, 0);
-
- p->align = align;
-
- /* The following slot size computation is necessary because we don't
- know the actual size of the temporary slot until assign_stack_local
- has performed all the frame alignment and size rounding for the
- requested temporary. Note that extra space added for alignment
- can be either above or below this stack slot depending on which
- way the frame grows. We include the extra space if and only if it
- is above this slot. */
- if (FRAME_GROWS_DOWNWARD)
- p->size = frame_offset_old - frame_offset;
- else
- p->size = size;
-
- /* Now define the fields used by combine_temp_slots. */
- if (FRAME_GROWS_DOWNWARD)
- {
- p->base_offset = frame_offset;
- p->full_size = frame_offset_old - frame_offset;
- }
- else
- {
- p->base_offset = frame_offset_old;
- p->full_size = frame_offset - frame_offset_old;
- }
-
- selected = p;
- }
-
- p = selected;
- p->in_use = 1;
- p->type = type;
- p->level = temp_slot_level;
- n_temp_slots_in_use++;
-
- pp = temp_slots_at_level (p->level);
- insert_slot_to_list (p, pp);
- insert_temp_slot_address (XEXP (p->slot, 0), p);
-
- /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
- slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
- stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
-
- /* If we know the alias set for the memory that will be used, use
- it. If there's no TYPE, then we don't know anything about the
- alias set for the memory. */
- set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
- set_mem_align (slot, align);
-
- /* If a type is specified, set the relevant flags. */
- if (type != 0)
- MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
- MEM_NOTRAP_P (slot) = 1;
-
- return slot;
-}
-
-/* Allocate a temporary stack slot and record it for possible later
- reuse. First two arguments are same as in preceding function. */
-
-rtx
-assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
-{
- return assign_stack_temp_for_type (mode, size, NULL_TREE);
-}
-
-/* Assign a temporary.
- If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
- and so that should be used in error messages. In either case, we
- allocate of the given type.
- MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
- it is 0 if a register is OK.
- DONT_PROMOTE is 1 if we should not promote values in register
- to wider modes. */
-
-rtx
-assign_temp (tree type_or_decl, int memory_required,
- int dont_promote ATTRIBUTE_UNUSED)
-{
- tree type, decl;
- enum machine_mode mode;
-#ifdef PROMOTE_MODE
- int unsignedp;
-#endif
-
- if (DECL_P (type_or_decl))
- decl = type_or_decl, type = TREE_TYPE (decl);
- else
- decl = NULL, type = type_or_decl;
-
- mode = TYPE_MODE (type);
-#ifdef PROMOTE_MODE
- unsignedp = TYPE_UNSIGNED (type);
-#endif
-
- if (mode == BLKmode || memory_required)
- {
- HOST_WIDE_INT size = int_size_in_bytes (type);
- rtx tmp;
-
- /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
- problems with allocating the stack space. */
- if (size == 0)
- size = 1;
-
- /* Unfortunately, we don't yet know how to allocate variable-sized
- temporaries. However, sometimes we can find a fixed upper limit on
- the size, so try that instead. */
- else if (size == -1)
- size = max_int_size_in_bytes (type);
-
- /* The size of the temporary may be too large to fit into an integer. */
- /* ??? Not sure this should happen except for user silliness, so limit
- this to things that aren't compiler-generated temporaries. The
- rest of the time we'll die in assign_stack_temp_for_type. */
- if (decl && size == -1
- && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
- {
- error ("size of variable %q+D is too large", decl);
- size = 1;
- }
-
- tmp = assign_stack_temp_for_type (mode, size, type);
- return tmp;
- }
-
-#ifdef PROMOTE_MODE
- if (! dont_promote)
- mode = promote_mode (type, mode, &unsignedp);
-#endif
-
- return gen_reg_rtx (mode);
-}
-
-/* Combine temporary stack slots which are adjacent on the stack.
-
- This allows for better use of already allocated stack space. This is only
- done for BLKmode slots because we can be sure that we won't have alignment
- problems in this case. */
-
-static void
-combine_temp_slots (void)
-{
- struct temp_slot *p, *q, *next, *next_q;
- int num_slots;
-
- /* We can't combine slots, because the information about which slot
- is in which alias set will be lost. */
- if (flag_strict_aliasing)
- return;
-
- /* If there are a lot of temp slots, don't do anything unless
- high levels of optimization. */
- if (! flag_expensive_optimizations)
- for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
- if (num_slots > 100 || (num_slots > 10 && optimize == 0))
- return;
-
- for (p = avail_temp_slots; p; p = next)
- {
- int delete_p = 0;
-
- next = p->next;
-
- if (GET_MODE (p->slot) != BLKmode)
- continue;
-
- for (q = p->next; q; q = next_q)
- {
- int delete_q = 0;
-
- next_q = q->next;
-
- if (GET_MODE (q->slot) != BLKmode)
- continue;
-
- if (p->base_offset + p->full_size == q->base_offset)
- {
- /* Q comes after P; combine Q into P. */
- p->size += q->size;
- p->full_size += q->full_size;
- delete_q = 1;
- }
- else if (q->base_offset + q->full_size == p->base_offset)
- {
- /* P comes after Q; combine P into Q. */
- q->size += p->size;
- q->full_size += p->full_size;
- delete_p = 1;
- break;
- }
- if (delete_q)
- cut_slot_from_list (q, &avail_temp_slots);
- }
-
- /* Either delete P or advance past it. */
- if (delete_p)
- cut_slot_from_list (p, &avail_temp_slots);
- }
-}
-
-/* Indicate that NEW_RTX is an alternate way of referring to the temp
- slot that previously was known by OLD_RTX. */
-
-void
-update_temp_slot_address (rtx old_rtx, rtx new_rtx)
-{
- struct temp_slot *p;
-
- if (rtx_equal_p (old_rtx, new_rtx))
- return;
-
- p = find_temp_slot_from_address (old_rtx);
-
- /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
- NEW_RTX is a register, see if one operand of the PLUS is a
- temporary location. If so, NEW_RTX points into it. Otherwise,
- if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
- in common between them. If so, try a recursive call on those
- values. */
- if (p == 0)
- {
- if (GET_CODE (old_rtx) != PLUS)
- return;
-
- if (REG_P (new_rtx))
- {
- update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
- update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
- return;
- }
- else if (GET_CODE (new_rtx) != PLUS)
- return;
-
- if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
- update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
- else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
- update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
- else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
- update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
- else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
- update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
-
- return;
- }
-
- /* Otherwise add an alias for the temp's address. */
- insert_temp_slot_address (new_rtx, p);
-}
-
-/* If X could be a reference to a temporary slot, mark that slot as
- belonging to the to one level higher than the current level. If X
- matched one of our slots, just mark that one. Otherwise, we can't
- easily predict which it is, so upgrade all of them.
-
- This is called when an ({...}) construct occurs and a statement
- returns a value in memory. */
-
-void
-preserve_temp_slots (rtx x)
-{
- struct temp_slot *p = 0, *next;
-
- if (x == 0)
- return;
-
- /* If X is a register that is being used as a pointer, see if we have
- a temporary slot we know it points to. */
- if (REG_P (x) && REG_POINTER (x))
- p = find_temp_slot_from_address (x);
-
- /* If X is not in memory or is at a constant address, it cannot be in
- a temporary slot. */
- if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
- return;
-
- /* First see if we can find a match. */
- if (p == 0)
- p = find_temp_slot_from_address (XEXP (x, 0));
-
- if (p != 0)
- {
- if (p->level == temp_slot_level)
- move_slot_to_level (p, temp_slot_level - 1);
- return;
- }
-
- /* Otherwise, preserve all non-kept slots at this level. */
- for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
- {
- next = p->next;
- move_slot_to_level (p, temp_slot_level - 1);
- }
-}
-
-/* Free all temporaries used so far. This is normally called at the
- end of generating code for a statement. */
-
-void
-free_temp_slots (void)
-{
- struct temp_slot *p, *next;
- bool some_available = false;
-
- for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
- {
- next = p->next;
- make_slot_available (p);
- some_available = true;
- }
-
- if (some_available)
- {
- remove_unused_temp_slot_addresses ();
- combine_temp_slots ();
- }
-}
-
-/* Push deeper into the nesting level for stack temporaries. */
-
-void
-push_temp_slots (void)
-{
- temp_slot_level++;
-}
-
-/* Pop a temporary nesting level. All slots in use in the current level
- are freed. */
-
-void
-pop_temp_slots (void)
-{
- free_temp_slots ();
- temp_slot_level--;
-}
-
-/* Initialize temporary slots. */
-
-void
-init_temp_slots (void)
-{
- /* We have not allocated any temporaries yet. */
- avail_temp_slots = 0;
- vec_alloc (used_temp_slots, 0);
- temp_slot_level = 0;
- n_temp_slots_in_use = 0;
-
- /* Set up the table to map addresses to temp slots. */
- if (! temp_slot_address_table)
- temp_slot_address_table = htab_create_ggc (32,
- temp_slot_address_hash,
- temp_slot_address_eq,
- NULL);
- else
- htab_empty (temp_slot_address_table);
-}
-
-/* Functions and data structures to keep track of the values hard regs
- had at the start of the function. */
-
-/* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
- and has_hard_reg_initial_val.. */
-typedef struct GTY(()) initial_value_pair {
- rtx hard_reg;
- rtx pseudo;
-} initial_value_pair;
-/* ??? This could be a VEC but there is currently no way to define an
- opaque VEC type. This could be worked around by defining struct
- initial_value_pair in function.h. */
-typedef struct GTY(()) initial_value_struct {
- int num_entries;
- int max_entries;
- initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
-} initial_value_struct;
-
-/* If a pseudo represents an initial hard reg (or expression), return
- it, else return NULL_RTX. */
-
-rtx
-get_hard_reg_initial_reg (rtx reg)
-{
- struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
- int i;
-
- if (ivs == 0)
- return NULL_RTX;
-
- for (i = 0; i < ivs->num_entries; i++)
- if (rtx_equal_p (ivs->entries[i].pseudo, reg))
- return ivs->entries[i].hard_reg;
-
- return NULL_RTX;
-}
-
-/* Make sure that there's a pseudo register of mode MODE that stores the
- initial value of hard register REGNO. Return an rtx for such a pseudo. */
-
-rtx
-get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
-{
- struct initial_value_struct *ivs;
- rtx rv;
-
- rv = has_hard_reg_initial_val (mode, regno);
- if (rv)
- return rv;
-
- ivs = crtl->hard_reg_initial_vals;
- if (ivs == 0)
- {
- ivs = ggc_alloc_initial_value_struct ();
- ivs->num_entries = 0;
- ivs->max_entries = 5;
- ivs->entries = ggc_alloc_vec_initial_value_pair (5);
- crtl->hard_reg_initial_vals = ivs;
- }
-
- if (ivs->num_entries >= ivs->max_entries)
- {
- ivs->max_entries += 5;
- ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
- ivs->max_entries);
- }
-
- ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
- ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
-
- return ivs->entries[ivs->num_entries++].pseudo;
-}
-
-/* See if get_hard_reg_initial_val has been used to create a pseudo
- for the initial value of hard register REGNO in mode MODE. Return
- the associated pseudo if so, otherwise return NULL. */
-
-rtx
-has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
-{
- struct initial_value_struct *ivs;
- int i;
-
- ivs = crtl->hard_reg_initial_vals;
- if (ivs != 0)
- for (i = 0; i < ivs->num_entries; i++)
- if (GET_MODE (ivs->entries[i].hard_reg) == mode
- && REGNO (ivs->entries[i].hard_reg) == regno)
- return ivs->entries[i].pseudo;
-
- return NULL_RTX;
-}
-
-unsigned int
-emit_initial_value_sets (void)
-{
- struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
- int i;
- rtx seq;
-
- if (ivs == 0)
- return 0;
-
- start_sequence ();
- for (i = 0; i < ivs->num_entries; i++)
- emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
- seq = get_insns ();
- end_sequence ();
-
- emit_insn_at_entry (seq);
- return 0;
-}
-
-/* Return the hardreg-pseudoreg initial values pair entry I and
- TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
-bool
-initial_value_entry (int i, rtx *hreg, rtx *preg)
-{
- struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
- if (!ivs || i >= ivs->num_entries)
- return false;
-
- *hreg = ivs->entries[i].hard_reg;
- *preg = ivs->entries[i].pseudo;
- return true;
-}
-
-/* These routines are responsible for converting virtual register references
- to the actual hard register references once RTL generation is complete.
-
- The following four variables are used for communication between the
- routines. They contain the offsets of the virtual registers from their
- respective hard registers. */
-
-static int in_arg_offset;
-static int var_offset;
-static int dynamic_offset;
-static int out_arg_offset;
-static int cfa_offset;
-
-/* In most machines, the stack pointer register is equivalent to the bottom
- of the stack. */
-
-#ifndef STACK_POINTER_OFFSET
-#define STACK_POINTER_OFFSET 0
-#endif
-
-/* If not defined, pick an appropriate default for the offset of dynamically
- allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
- REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
-
-#ifndef STACK_DYNAMIC_OFFSET
-
-/* The bottom of the stack points to the actual arguments. If
- REG_PARM_STACK_SPACE is defined, this includes the space for the register
- parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
- stack space for register parameters is not pushed by the caller, but
- rather part of the fixed stack areas and hence not included in
- `crtl->outgoing_args_size'. Nevertheless, we must allow
- for it when allocating stack dynamic objects. */
-
-#if defined(REG_PARM_STACK_SPACE)
-#define STACK_DYNAMIC_OFFSET(FNDECL) \
-((ACCUMULATE_OUTGOING_ARGS \
- ? (crtl->outgoing_args_size \
- + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
- : REG_PARM_STACK_SPACE (FNDECL))) \
- : 0) + (STACK_POINTER_OFFSET))
-#else
-#define STACK_DYNAMIC_OFFSET(FNDECL) \
-((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
- + (STACK_POINTER_OFFSET))
-#endif
-#endif
-
-
-/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
- is a virtual register, return the equivalent hard register and set the
- offset indirectly through the pointer. Otherwise, return 0. */
-
-static rtx
-instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
-{
- rtx new_rtx;
- HOST_WIDE_INT offset;
-
- if (x == virtual_incoming_args_rtx)
- {
- if (stack_realign_drap)
- {
- /* Replace virtual_incoming_args_rtx with internal arg
- pointer if DRAP is used to realign stack. */
- new_rtx = crtl->args.internal_arg_pointer;
- offset = 0;
- }
- else
- new_rtx = arg_pointer_rtx, offset = in_arg_offset;
- }
- else if (x == virtual_stack_vars_rtx)
- new_rtx = frame_pointer_rtx, offset = var_offset;
- else if (x == virtual_stack_dynamic_rtx)
- new_rtx = stack_pointer_rtx, offset = dynamic_offset;
- else if (x == virtual_outgoing_args_rtx)
- new_rtx = stack_pointer_rtx, offset = out_arg_offset;
- else if (x == virtual_cfa_rtx)
- {
-#ifdef FRAME_POINTER_CFA_OFFSET
- new_rtx = frame_pointer_rtx;
-#else
- new_rtx = arg_pointer_rtx;
-#endif
- offset = cfa_offset;
- }
- else if (x == virtual_preferred_stack_boundary_rtx)
- {
- new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
- offset = 0;
- }
- else
- return NULL_RTX;
-
- *poffset = offset;
- return new_rtx;
-}
-
-/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
- Instantiate any virtual registers present inside of *LOC. The expression
- is simplified, as much as possible, but is not to be considered "valid"
- in any sense implied by the target. If any change is made, set CHANGED
- to true. */
-
-static int
-instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
-{
- HOST_WIDE_INT offset;
- bool *changed = (bool *) data;
- rtx x, new_rtx;
-
- x = *loc;
- if (x == 0)
- return 0;
-
- switch (GET_CODE (x))
- {
- case REG:
- new_rtx = instantiate_new_reg (x, &offset);
- if (new_rtx)
- {
- *loc = plus_constant (GET_MODE (x), new_rtx, offset);
- if (changed)
- *changed = true;
- }
- return -1;
-
- case PLUS:
- new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
- if (new_rtx)
- {
- new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
- *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
- if (changed)
- *changed = true;
- return -1;
- }
-
- /* FIXME -- from old code */
- /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
- we can commute the PLUS and SUBREG because pointers into the
- frame are well-behaved. */
- break;
-
- default:
- break;
- }
-
- return 0;
-}
-
-/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
- matches the predicate for insn CODE operand OPERAND. */
-
-static int
-safe_insn_predicate (int code, int operand, rtx x)
-{
- return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
-}
-
-/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
- registers present inside of insn. The result will be a valid insn. */
-
-static void
-instantiate_virtual_regs_in_insn (rtx insn)
-{
- HOST_WIDE_INT offset;
- int insn_code, i;
- bool any_change = false;
- rtx set, new_rtx, x, seq;
-
- /* There are some special cases to be handled first. */
- set = single_set (insn);
- if (set)
- {
- /* We're allowed to assign to a virtual register. This is interpreted
- to mean that the underlying register gets assigned the inverse
- transformation. This is used, for example, in the handling of
- non-local gotos. */
- new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
- if (new_rtx)
- {
- start_sequence ();
-
- for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
- x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
- GEN_INT (-offset));
- x = force_operand (x, new_rtx);
- if (x != new_rtx)
- emit_move_insn (new_rtx, x);
-
- seq = get_insns ();
- end_sequence ();
-
- emit_insn_before (seq, insn);
- delete_insn (insn);
- return;
- }
-
- /* Handle a straight copy from a virtual register by generating a
- new add insn. The difference between this and falling through
- to the generic case is avoiding a new pseudo and eliminating a
- move insn in the initial rtl stream. */
- new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
- if (new_rtx && offset != 0
- && REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
- {
- start_sequence ();
-
- x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
- new_rtx, GEN_INT (offset), SET_DEST (set),
- 1, OPTAB_LIB_WIDEN);
- if (x != SET_DEST (set))
- emit_move_insn (SET_DEST (set), x);
-
- seq = get_insns ();
- end_sequence ();
-
- emit_insn_before (seq, insn);
- delete_insn (insn);
- return;
- }
-
- extract_insn (insn);
- insn_code = INSN_CODE (insn);
-
- /* Handle a plus involving a virtual register by determining if the
- operands remain valid if they're modified in place. */
- if (GET_CODE (SET_SRC (set)) == PLUS
- && recog_data.n_operands >= 3
- && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
- && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
- && CONST_INT_P (recog_data.operand[2])
- && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
- {
- offset += INTVAL (recog_data.operand[2]);
-
- /* If the sum is zero, then replace with a plain move. */
- if (offset == 0
- && REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
- {
- start_sequence ();
- emit_move_insn (SET_DEST (set), new_rtx);
- seq = get_insns ();
- end_sequence ();
-
- emit_insn_before (seq, insn);
- delete_insn (insn);
- return;
- }
-
- x = gen_int_mode (offset, recog_data.operand_mode[2]);
-
- /* Using validate_change and apply_change_group here leaves
- recog_data in an invalid state. Since we know exactly what
- we want to check, do those two by hand. */
- if (safe_insn_predicate (insn_code, 1, new_rtx)
- && safe_insn_predicate (insn_code, 2, x))
- {
- *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
- *recog_data.operand_loc[2] = recog_data.operand[2] = x;
- any_change = true;
-
- /* Fall through into the regular operand fixup loop in
- order to take care of operands other than 1 and 2. */
- }
- }
- }
- else
- {
- extract_insn (insn);
- insn_code = INSN_CODE (insn);
- }
-
- /* In the general case, we expect virtual registers to appear only in
- operands, and then only as either bare registers or inside memories. */
- for (i = 0; i < recog_data.n_operands; ++i)
- {
- x = recog_data.operand[i];
- switch (GET_CODE (x))
- {
- case MEM:
- {
- rtx addr = XEXP (x, 0);
- bool changed = false;
-
- for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
- if (!changed)
- continue;
-
- start_sequence ();
- x = replace_equiv_address (x, addr);
- /* It may happen that the address with the virtual reg
- was valid (e.g. based on the virtual stack reg, which might
- be acceptable to the predicates with all offsets), whereas
- the address now isn't anymore, for instance when the address
- is still offsetted, but the base reg isn't virtual-stack-reg
- anymore. Below we would do a force_reg on the whole operand,
- but this insn might actually only accept memory. Hence,
- before doing that last resort, try to reload the address into
- a register, so this operand stays a MEM. */
- if (!safe_insn_predicate (insn_code, i, x))
- {
- addr = force_reg (GET_MODE (addr), addr);
- x = replace_equiv_address (x, addr);
- }
- seq = get_insns ();
- end_sequence ();
- if (seq)
- emit_insn_before (seq, insn);
- }
- break;
-
- case REG:
- new_rtx = instantiate_new_reg (x, &offset);
- if (new_rtx == NULL)
- continue;
- if (offset == 0)
- x = new_rtx;
- else
- {
- start_sequence ();
-
- /* Careful, special mode predicates may have stuff in
- insn_data[insn_code].operand[i].mode that isn't useful
- to us for computing a new value. */
- /* ??? Recognize address_operand and/or "p" constraints
- to see if (plus new offset) is a valid before we put
- this through expand_simple_binop. */
- x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
- GEN_INT (offset), NULL_RTX,
- 1, OPTAB_LIB_WIDEN);
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, insn);
- }
- break;
-
- case SUBREG:
- new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
- if (new_rtx == NULL)
- continue;
- if (offset != 0)
- {
- start_sequence ();
- new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
- GEN_INT (offset), NULL_RTX,
- 1, OPTAB_LIB_WIDEN);
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, insn);
- }
- x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
- GET_MODE (new_rtx), SUBREG_BYTE (x));
- gcc_assert (x);
- break;
-
- default:
- continue;
- }
-
- /* At this point, X contains the new value for the operand.
- Validate the new value vs the insn predicate. Note that
- asm insns will have insn_code -1 here. */
- if (!safe_insn_predicate (insn_code, i, x))
- {
- start_sequence ();
- if (REG_P (x))
- {
- gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
- x = copy_to_reg (x);
- }
- else
- x = force_reg (insn_data[insn_code].operand[i].mode, x);
- seq = get_insns ();
- end_sequence ();
- if (seq)
- emit_insn_before (seq, insn);
- }
-
- *recog_data.operand_loc[i] = recog_data.operand[i] = x;
- any_change = true;
- }
-
- if (any_change)
- {
- /* Propagate operand changes into the duplicates. */
- for (i = 0; i < recog_data.n_dups; ++i)
- *recog_data.dup_loc[i]
- = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
-
- /* Force re-recognition of the instruction for validation. */
- INSN_CODE (insn) = -1;
- }
-
- if (asm_noperands (PATTERN (insn)) >= 0)
- {
- if (!check_asm_operands (PATTERN (insn)))
- {
- error_for_asm (insn, "impossible constraint in %<asm%>");
- /* For asm goto, instead of fixing up all the edges
- just clear the template and clear input operands
- (asm goto doesn't have any output operands). */
- if (JUMP_P (insn))
- {
- rtx asm_op = extract_asm_operands (PATTERN (insn));
- ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
- ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
- ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
- }
- else
- delete_insn (insn);
- }
- }
- else
- {
- if (recog_memoized (insn) < 0)
- fatal_insn_not_found (insn);
- }
-}
-
-/* Subroutine of instantiate_decls. Given RTL representing a decl,
- do any instantiation required. */
-
-void
-instantiate_decl_rtl (rtx x)
-{
- rtx addr;
-
- if (x == 0)
- return;
-
- /* If this is a CONCAT, recurse for the pieces. */
- if (GET_CODE (x) == CONCAT)
- {
- instantiate_decl_rtl (XEXP (x, 0));
- instantiate_decl_rtl (XEXP (x, 1));
- return;
- }
-
- /* If this is not a MEM, no need to do anything. Similarly if the
- address is a constant or a register that is not a virtual register. */
- if (!MEM_P (x))
- return;
-
- addr = XEXP (x, 0);
- if (CONSTANT_P (addr)
- || (REG_P (addr)
- && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
- || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
- return;
-
- for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
-}
-
-/* Helper for instantiate_decls called via walk_tree: Process all decls
- in the given DECL_VALUE_EXPR. */
-
-static tree
-instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
-{
- tree t = *tp;
- if (! EXPR_P (t))
- {
- *walk_subtrees = 0;
- if (DECL_P (t))
- {
- if (DECL_RTL_SET_P (t))
- instantiate_decl_rtl (DECL_RTL (t));
- if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
- && DECL_INCOMING_RTL (t))
- instantiate_decl_rtl (DECL_INCOMING_RTL (t));
- if ((TREE_CODE (t) == VAR_DECL
- || TREE_CODE (t) == RESULT_DECL)
- && DECL_HAS_VALUE_EXPR_P (t))
- {
- tree v = DECL_VALUE_EXPR (t);
- walk_tree (&v, instantiate_expr, NULL, NULL);
- }
- }
- }
- return NULL;
-}
-
-/* Subroutine of instantiate_decls: Process all decls in the given
- BLOCK node and all its subblocks. */
-
-static void
-instantiate_decls_1 (tree let)
-{
- tree t;
-
- for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
- {
- if (DECL_RTL_SET_P (t))
- instantiate_decl_rtl (DECL_RTL (t));
- if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
- {
- tree v = DECL_VALUE_EXPR (t);
- walk_tree (&v, instantiate_expr, NULL, NULL);
- }
- }
-
- /* Process all subblocks. */
- for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
- instantiate_decls_1 (t);
-}
-
-/* Scan all decls in FNDECL (both variables and parameters) and instantiate
- all virtual registers in their DECL_RTL's. */
-
-static void
-instantiate_decls (tree fndecl)
-{
- tree decl;
- unsigned ix;
-
- /* Process all parameters of the function. */
- for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
- {
- instantiate_decl_rtl (DECL_RTL (decl));
- instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
- if (DECL_HAS_VALUE_EXPR_P (decl))
- {
- tree v = DECL_VALUE_EXPR (decl);
- walk_tree (&v, instantiate_expr, NULL, NULL);
- }
- }
-
- if ((decl = DECL_RESULT (fndecl))
- && TREE_CODE (decl) == RESULT_DECL)
- {
- if (DECL_RTL_SET_P (decl))
- instantiate_decl_rtl (DECL_RTL (decl));
- if (DECL_HAS_VALUE_EXPR_P (decl))
- {
- tree v = DECL_VALUE_EXPR (decl);
- walk_tree (&v, instantiate_expr, NULL, NULL);
- }
- }
-
- /* Now process all variables defined in the function or its subblocks. */
- instantiate_decls_1 (DECL_INITIAL (fndecl));
-
- FOR_EACH_LOCAL_DECL (cfun, ix, decl)
- if (DECL_RTL_SET_P (decl))
- instantiate_decl_rtl (DECL_RTL (decl));
- vec_free (cfun->local_decls);
-}
-
-/* Pass through the INSNS of function FNDECL and convert virtual register
- references to hard register references. */
-
-static unsigned int
-instantiate_virtual_regs (void)
-{
- rtx insn;
-
- /* Compute the offsets to use for this function. */
- in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
- var_offset = STARTING_FRAME_OFFSET;
- dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
- out_arg_offset = STACK_POINTER_OFFSET;
-#ifdef FRAME_POINTER_CFA_OFFSET
- cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
-#else
- cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
-#endif
-
- /* Initialize recognition, indicating that volatile is OK. */
- init_recog ();
-
- /* Scan through all the insns, instantiating every virtual register still
- present. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn))
- {
- /* These patterns in the instruction stream can never be recognized.
- Fortunately, they shouldn't contain virtual registers either. */
- if (GET_CODE (PATTERN (insn)) == USE
- || GET_CODE (PATTERN (insn)) == CLOBBER
- || GET_CODE (PATTERN (insn)) == ADDR_VEC
- || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
- || GET_CODE (PATTERN (insn)) == ASM_INPUT)
- continue;
- else if (DEBUG_INSN_P (insn))
- for_each_rtx (&INSN_VAR_LOCATION (insn),
- instantiate_virtual_regs_in_rtx, NULL);
- else
- instantiate_virtual_regs_in_insn (insn);
-
- if (INSN_DELETED_P (insn))
- continue;
-
- for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
-
- /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
- if (CALL_P (insn))
- for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
- instantiate_virtual_regs_in_rtx, NULL);
- }
-
- /* Instantiate the virtual registers in the DECLs for debugging purposes. */
- instantiate_decls (current_function_decl);
-
- targetm.instantiate_decls ();
-
- /* Indicate that, from now on, assign_stack_local should use
- frame_pointer_rtx. */
- virtuals_instantiated = 1;
-
- return 0;
-}
-
-struct rtl_opt_pass pass_instantiate_virtual_regs =
-{
- {
- RTL_PASS,
- "vregs", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- NULL, /* gate */
- instantiate_virtual_regs, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_NONE, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0 /* todo_flags_finish */
- }
-};
-
-
-/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
- This means a type for which function calls must pass an address to the
- function or get an address back from the function.
- EXP may be a type node or an expression (whose type is tested). */
-
-int
-aggregate_value_p (const_tree exp, const_tree fntype)
-{
- const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
- int i, regno, nregs;
- rtx reg;
-
- if (fntype)
- switch (TREE_CODE (fntype))
- {
- case CALL_EXPR:
- {
- tree fndecl = get_callee_fndecl (fntype);
- fntype = (fndecl
- ? TREE_TYPE (fndecl)
- : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
- }
- break;
- case FUNCTION_DECL:
- fntype = TREE_TYPE (fntype);
- break;
- case FUNCTION_TYPE:
- case METHOD_TYPE:
- break;
- case IDENTIFIER_NODE:
- fntype = NULL_TREE;
- break;
- default:
- /* We don't expect other tree types here. */
- gcc_unreachable ();
- }
-
- if (VOID_TYPE_P (type))
- return 0;
-
- /* If a record should be passed the same as its first (and only) member
- don't pass it as an aggregate. */
- if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
- return aggregate_value_p (first_field (type), fntype);
-
- /* If the front end has decided that this needs to be passed by
- reference, do so. */
- if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
- && DECL_BY_REFERENCE (exp))
- return 1;
-
- /* Function types that are TREE_ADDRESSABLE force return in memory. */
- if (fntype && TREE_ADDRESSABLE (fntype))
- return 1;
-
- /* Types that are TREE_ADDRESSABLE must be constructed in memory,
- and thus can't be returned in registers. */
- if (TREE_ADDRESSABLE (type))
- return 1;
-
- if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
- return 1;
-
- if (targetm.calls.return_in_memory (type, fntype))
- return 1;
-
- /* Make sure we have suitable call-clobbered regs to return
- the value in; if not, we must return it in memory. */
- reg = hard_function_value (type, 0, fntype, 0);
-
- /* If we have something other than a REG (e.g. a PARALLEL), then assume
- it is OK. */
- if (!REG_P (reg))
- return 0;
-
- regno = REGNO (reg);
- nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
- for (i = 0; i < nregs; i++)
- if (! call_used_regs[regno + i])
- return 1;
-
- return 0;
-}
-
-/* Return true if we should assign DECL a pseudo register; false if it
- should live on the local stack. */
-
-bool
-use_register_for_decl (const_tree decl)
-{
- if (!targetm.calls.allocate_stack_slots_for_args())
- return true;
-
- /* Honor volatile. */
- if (TREE_SIDE_EFFECTS (decl))
- return false;
-
- /* Honor addressability. */
- if (TREE_ADDRESSABLE (decl))
- return false;
-
- /* Only register-like things go in registers. */
- if (DECL_MODE (decl) == BLKmode)
- return false;
-
- /* If -ffloat-store specified, don't put explicit float variables
- into registers. */
- /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
- propagates values across these stores, and it probably shouldn't. */
- if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
- return false;
-
- /* If we're not interested in tracking debugging information for
- this decl, then we can certainly put it in a register. */
- if (DECL_IGNORED_P (decl))
- return true;
-
- if (optimize)
- return true;
-
- if (!DECL_REGISTER (decl))
- return false;
-
- switch (TREE_CODE (TREE_TYPE (decl)))
- {
- case RECORD_TYPE:
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- /* When not optimizing, disregard register keyword for variables with
- types containing methods, otherwise the methods won't be callable
- from the debugger. */
- if (TYPE_METHODS (TREE_TYPE (decl)))
- return false;
- break;
- default:
- break;
- }
-
- return true;
-}
-
-/* Return true if TYPE should be passed by invisible reference. */
-
-bool
-pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
- tree type, bool named_arg)
-{
- if (type)
- {
- /* If this type contains non-trivial constructors, then it is
- forbidden for the middle-end to create any new copies. */
- if (TREE_ADDRESSABLE (type))
- return true;
-
- /* GCC post 3.4 passes *all* variable sized types by reference. */
- if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
- return true;
-
- /* If a record type should be passed the same as its first (and only)
- member, use the type and mode of that member. */
- if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
- {
- type = TREE_TYPE (first_field (type));
- mode = TYPE_MODE (type);
- }
- }
-
- return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
- type, named_arg);
-}
-
-/* Return true if TYPE, which is passed by reference, should be callee
- copied instead of caller copied. */
-
-bool
-reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
- tree type, bool named_arg)
-{
- if (type && TREE_ADDRESSABLE (type))
- return false;
- return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
- named_arg);
-}
-
-/* Structures to communicate between the subroutines of assign_parms.
- The first holds data persistent across all parameters, the second
- is cleared out for each parameter. */
-
-struct assign_parm_data_all
-{
- /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
- should become a job of the target or otherwise encapsulated. */
- CUMULATIVE_ARGS args_so_far_v;
- cumulative_args_t args_so_far;
- struct args_size stack_args_size;
- tree function_result_decl;
- tree orig_fnargs;
- rtx first_conversion_insn;
- rtx last_conversion_insn;
- HOST_WIDE_INT pretend_args_size;
- HOST_WIDE_INT extra_pretend_bytes;
- int reg_parm_stack_space;
-};
-
-struct assign_parm_data_one
-{
- tree nominal_type;
- tree passed_type;
- rtx entry_parm;
- rtx stack_parm;
- enum machine_mode nominal_mode;
- enum machine_mode passed_mode;
- enum machine_mode promoted_mode;
- struct locate_and_pad_arg_data locate;
- int partial;
- BOOL_BITFIELD named_arg : 1;
- BOOL_BITFIELD passed_pointer : 1;
- BOOL_BITFIELD on_stack : 1;
- BOOL_BITFIELD loaded_in_reg : 1;
-};
-
-/* A subroutine of assign_parms. Initialize ALL. */
-
-static void
-assign_parms_initialize_all (struct assign_parm_data_all *all)
-{
- tree fntype ATTRIBUTE_UNUSED;
-
- memset (all, 0, sizeof (*all));
-
- fntype = TREE_TYPE (current_function_decl);
-
-#ifdef INIT_CUMULATIVE_INCOMING_ARGS
- INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
-#else
- INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
- current_function_decl, -1);
-#endif
- all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
-
-#ifdef REG_PARM_STACK_SPACE
- all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
-#endif
-}
-
-/* If ARGS contains entries with complex types, split the entry into two
- entries of the component type. Return a new list of substitutions are
- needed, else the old list. */
-
-static void
-split_complex_args (vec<tree> *args)
-{
- unsigned i;
- tree p;
-
- FOR_EACH_VEC_ELT (*args, i, p)
- {
- tree type = TREE_TYPE (p);
- if (TREE_CODE (type) == COMPLEX_TYPE
- && targetm.calls.split_complex_arg (type))
- {
- tree decl;
- tree subtype = TREE_TYPE (type);
- bool addressable = TREE_ADDRESSABLE (p);
-
- /* Rewrite the PARM_DECL's type with its component. */
- p = copy_node (p);
- TREE_TYPE (p) = subtype;
- DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
- DECL_MODE (p) = VOIDmode;
- DECL_SIZE (p) = NULL;
- DECL_SIZE_UNIT (p) = NULL;
- /* If this arg must go in memory, put it in a pseudo here.
- We can't allow it to go in memory as per normal parms,
- because the usual place might not have the imag part
- adjacent to the real part. */
- DECL_ARTIFICIAL (p) = addressable;
- DECL_IGNORED_P (p) = addressable;
- TREE_ADDRESSABLE (p) = 0;
- layout_decl (p, 0);
- (*args)[i] = p;
-
- /* Build a second synthetic decl. */
- decl = build_decl (EXPR_LOCATION (p),
- PARM_DECL, NULL_TREE, subtype);
- DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
- DECL_ARTIFICIAL (decl) = addressable;
- DECL_IGNORED_P (decl) = addressable;
- layout_decl (decl, 0);
- args->safe_insert (++i, decl);
- }
- }
-}
-
-/* A subroutine of assign_parms. Adjust the parameter list to incorporate
- the hidden struct return argument, and (abi willing) complex args.
- Return the new parameter list. */
-
-static vec<tree>
-assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
-{
- tree fndecl = current_function_decl;
- tree fntype = TREE_TYPE (fndecl);
- vec<tree> fnargs = vNULL;
- tree arg;
-
- for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
- fnargs.safe_push (arg);
-
- all->orig_fnargs = DECL_ARGUMENTS (fndecl);
-
- /* If struct value address is treated as the first argument, make it so. */
- if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
- && ! cfun->returns_pcc_struct
- && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
- {
- tree type = build_pointer_type (TREE_TYPE (fntype));
- tree decl;
-
- decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
- PARM_DECL, get_identifier (".result_ptr"), type);
- DECL_ARG_TYPE (decl) = type;
- DECL_ARTIFICIAL (decl) = 1;
- DECL_NAMELESS (decl) = 1;
- TREE_CONSTANT (decl) = 1;
-
- DECL_CHAIN (decl) = all->orig_fnargs;
- all->orig_fnargs = decl;
- fnargs.safe_insert (0, decl);
-
- all->function_result_decl = decl;
- }
-
- /* If the target wants to split complex arguments into scalars, do so. */
- if (targetm.calls.split_complex_arg)
- split_complex_args (&fnargs);
-
- return fnargs;
-}
-
-/* A subroutine of assign_parms. Examine PARM and pull out type and mode
- data for the parameter. Incorporate ABI specifics such as pass-by-
- reference and type promotion. */
-
-static void
-assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
- struct assign_parm_data_one *data)
-{
- tree nominal_type, passed_type;
- enum machine_mode nominal_mode, passed_mode, promoted_mode;
- int unsignedp;
-
- memset (data, 0, sizeof (*data));
-
- /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
- if (!cfun->stdarg)
- data->named_arg = 1; /* No variadic parms. */
- else if (DECL_CHAIN (parm))
- data->named_arg = 1; /* Not the last non-variadic parm. */
- else if (targetm.calls.strict_argument_naming (all->args_so_far))
- data->named_arg = 1; /* Only variadic ones are unnamed. */
- else
- data->named_arg = 0; /* Treat as variadic. */
-
- nominal_type = TREE_TYPE (parm);
- passed_type = DECL_ARG_TYPE (parm);
-
- /* Look out for errors propagating this far. Also, if the parameter's
- type is void then its value doesn't matter. */
- if (TREE_TYPE (parm) == error_mark_node
- /* This can happen after weird syntax errors
- or if an enum type is defined among the parms. */
- || TREE_CODE (parm) != PARM_DECL
- || passed_type == NULL
- || VOID_TYPE_P (nominal_type))
- {
- nominal_type = passed_type = void_type_node;
- nominal_mode = passed_mode = promoted_mode = VOIDmode;
- goto egress;
- }
-
- /* Find mode of arg as it is passed, and mode of arg as it should be
- during execution of this function. */
- passed_mode = TYPE_MODE (passed_type);
- nominal_mode = TYPE_MODE (nominal_type);
-
- /* If the parm is to be passed as a transparent union or record, use the
- type of the first field for the tests below. We have already verified
- that the modes are the same. */
- if ((TREE_CODE (passed_type) == UNION_TYPE
- || TREE_CODE (passed_type) == RECORD_TYPE)
- && TYPE_TRANSPARENT_AGGR (passed_type))
- passed_type = TREE_TYPE (first_field (passed_type));
-
- /* See if this arg was passed by invisible reference. */
- if (pass_by_reference (&all->args_so_far_v, passed_mode,
- passed_type, data->named_arg))
- {
- passed_type = nominal_type = build_pointer_type (passed_type);
- data->passed_pointer = true;
- passed_mode = nominal_mode = Pmode;
- }
-
- /* Find mode as it is passed by the ABI. */
- unsignedp = TYPE_UNSIGNED (passed_type);
- promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
- TREE_TYPE (current_function_decl), 0);
-
- egress:
- data->nominal_type = nominal_type;
- data->passed_type = passed_type;
- data->nominal_mode = nominal_mode;
- data->passed_mode = passed_mode;
- data->promoted_mode = promoted_mode;
-}
-
-/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
-
-static void
-assign_parms_setup_varargs (struct assign_parm_data_all *all,
- struct assign_parm_data_one *data, bool no_rtl)
-{
- int varargs_pretend_bytes = 0;
-
- targetm.calls.setup_incoming_varargs (all->args_so_far,
- data->promoted_mode,
- data->passed_type,
- &varargs_pretend_bytes, no_rtl);
-
- /* If the back-end has requested extra stack space, record how much is
- needed. Do not change pretend_args_size otherwise since it may be
- nonzero from an earlier partial argument. */
- if (varargs_pretend_bytes > 0)
- all->pretend_args_size = varargs_pretend_bytes;
-}
-
-/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
- the incoming location of the current parameter. */
-
-static void
-assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
- struct assign_parm_data_one *data)
-{
- HOST_WIDE_INT pretend_bytes = 0;
- rtx entry_parm;
- bool in_regs;
-
- if (data->promoted_mode == VOIDmode)
- {
- data->entry_parm = data->stack_parm = const0_rtx;
- return;
- }
-
- entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
- data->promoted_mode,
- data->passed_type,
- data->named_arg);
-
- if (entry_parm == 0)
- data->promoted_mode = data->passed_mode;
-
- /* Determine parm's home in the stack, in case it arrives in the stack
- or we should pretend it did. Compute the stack position and rtx where
- the argument arrives and its size.
-
- There is one complexity here: If this was a parameter that would
- have been passed in registers, but wasn't only because it is
- __builtin_va_alist, we want locate_and_pad_parm to treat it as if
- it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
- In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
- as it was the previous time. */
- in_regs = entry_parm != 0;
-#ifdef STACK_PARMS_IN_REG_PARM_AREA
- in_regs = true;
-#endif
- if (!in_regs && !data->named_arg)
- {
- if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
- {
- rtx tem;
- tem = targetm.calls.function_incoming_arg (all->args_so_far,
- data->promoted_mode,
- data->passed_type, true);
- in_regs = tem != NULL;
- }
- }
-
- /* If this parameter was passed both in registers and in the stack, use
- the copy on the stack. */
- if (targetm.calls.must_pass_in_stack (data->promoted_mode,
- data->passed_type))
- entry_parm = 0;
-
- if (entry_parm)
- {
- int partial;
-
- partial = targetm.calls.arg_partial_bytes (all->args_so_far,
- data->promoted_mode,
- data->passed_type,
- data->named_arg);
- data->partial = partial;
-
- /* The caller might already have allocated stack space for the
- register parameters. */
- if (partial != 0 && all->reg_parm_stack_space == 0)
- {
- /* Part of this argument is passed in registers and part
- is passed on the stack. Ask the prologue code to extend
- the stack part so that we can recreate the full value.
-
- PRETEND_BYTES is the size of the registers we need to store.
- CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
- stack space that the prologue should allocate.
-
- Internally, gcc assumes that the argument pointer is aligned
- to STACK_BOUNDARY bits. This is used both for alignment
- optimizations (see init_emit) and to locate arguments that are
- aligned to more than PARM_BOUNDARY bits. We must preserve this
- invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
- a stack boundary. */
-
- /* We assume at most one partial arg, and it must be the first
- argument on the stack. */
- gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
-
- pretend_bytes = partial;
- all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
-
- /* We want to align relative to the actual stack pointer, so
- don't include this in the stack size until later. */
- all->extra_pretend_bytes = all->pretend_args_size;
- }
- }
-
- locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
- entry_parm ? data->partial : 0, current_function_decl,
- &all->stack_args_size, &data->locate);
-
- /* Update parm_stack_boundary if this parameter is passed in the
- stack. */
- if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
- crtl->parm_stack_boundary = data->locate.boundary;
-
- /* Adjust offsets to include the pretend args. */
- pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
- data->locate.slot_offset.constant += pretend_bytes;
- data->locate.offset.constant += pretend_bytes;
-
- data->entry_parm = entry_parm;
-}
-
-/* A subroutine of assign_parms. If there is actually space on the stack
- for this parm, count it in stack_args_size and return true. */
-
-static bool
-assign_parm_is_stack_parm (struct assign_parm_data_all *all,
- struct assign_parm_data_one *data)
-{
- /* Trivially true if we've no incoming register. */
- if (data->entry_parm == NULL)
- ;
- /* Also true if we're partially in registers and partially not,
- since we've arranged to drop the entire argument on the stack. */
- else if (data->partial != 0)
- ;
- /* Also true if the target says that it's passed in both registers
- and on the stack. */
- else if (GET_CODE (data->entry_parm) == PARALLEL
- && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
- ;
- /* Also true if the target says that there's stack allocated for
- all register parameters. */
- else if (all->reg_parm_stack_space > 0)
- ;
- /* Otherwise, no, this parameter has no ABI defined stack slot. */
- else
- return false;
-
- all->stack_args_size.constant += data->locate.size.constant;
- if (data->locate.size.var)
- ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
-
- return true;
-}
-
-/* A subroutine of assign_parms. Given that this parameter is allocated
- stack space by the ABI, find it. */
-
-static void
-assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
-{
- rtx offset_rtx, stack_parm;
- unsigned int align, boundary;
-
- /* If we're passing this arg using a reg, make its stack home the
- aligned stack slot. */
- if (data->entry_parm)
- offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
- else
- offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
-
- stack_parm = crtl->args.internal_arg_pointer;
- if (offset_rtx != const0_rtx)
- stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
- stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
-
- if (!data->passed_pointer)
- {
- set_mem_attributes (stack_parm, parm, 1);
- /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
- while promoted mode's size is needed. */
- if (data->promoted_mode != BLKmode
- && data->promoted_mode != DECL_MODE (parm))
- {
- set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
- if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
- {
- int offset = subreg_lowpart_offset (DECL_MODE (parm),
- data->promoted_mode);
- if (offset)
- set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
- }
- }
- }
-
- boundary = data->locate.boundary;
- align = BITS_PER_UNIT;
-
- /* If we're padding upward, we know that the alignment of the slot
- is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
- intentionally forcing upward padding. Otherwise we have to come
- up with a guess at the alignment based on OFFSET_RTX. */
- if (data->locate.where_pad != downward || data->entry_parm)
- align = boundary;
- else if (CONST_INT_P (offset_rtx))
- {
- align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
- align = align & -align;
- }
- set_mem_align (stack_parm, align);
-
- if (data->entry_parm)
- set_reg_attrs_for_parm (data->entry_parm, stack_parm);
-
- data->stack_parm = stack_parm;
-}
-
-/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
- always valid and contiguous. */
-
-static void
-assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
-{
- rtx entry_parm = data->entry_parm;
- rtx stack_parm = data->stack_parm;
-
- /* If this parm was passed part in regs and part in memory, pretend it
- arrived entirely in memory by pushing the register-part onto the stack.
- In the special case of a DImode or DFmode that is split, we could put
- it together in a pseudoreg directly, but for now that's not worth
- bothering with. */
- if (data->partial != 0)
- {
- /* Handle calls that pass values in multiple non-contiguous
- locations. The Irix 6 ABI has examples of this. */
- if (GET_CODE (entry_parm) == PARALLEL)
- emit_group_store (validize_mem (stack_parm), entry_parm,
- data->passed_type,
- int_size_in_bytes (data->passed_type));
- else
- {
- gcc_assert (data->partial % UNITS_PER_WORD == 0);
- move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
- data->partial / UNITS_PER_WORD);
- }
-
- entry_parm = stack_parm;
- }
-
- /* If we didn't decide this parm came in a register, by default it came
- on the stack. */
- else if (entry_parm == NULL)
- entry_parm = stack_parm;
-
- /* When an argument is passed in multiple locations, we can't make use
- of this information, but we can save some copying if the whole argument
- is passed in a single register. */
- else if (GET_CODE (entry_parm) == PARALLEL
- && data->nominal_mode != BLKmode
- && data->passed_mode != BLKmode)
- {
- size_t i, len = XVECLEN (entry_parm, 0);
-
- for (i = 0; i < len; i++)
- if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
- && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
- && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
- == data->passed_mode)
- && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
- {
- entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
- break;
- }
- }
-
- data->entry_parm = entry_parm;
-}
-
-/* A subroutine of assign_parms. Reconstitute any values which were
- passed in multiple registers and would fit in a single register. */
-
-static void
-assign_parm_remove_parallels (struct assign_parm_data_one *data)
-{
- rtx entry_parm = data->entry_parm;
-
- /* Convert the PARALLEL to a REG of the same mode as the parallel.
- This can be done with register operations rather than on the
- stack, even if we will store the reconstituted parameter on the
- stack later. */
- if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
- {
- rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
- emit_group_store (parmreg, entry_parm, data->passed_type,
- GET_MODE_SIZE (GET_MODE (entry_parm)));
- entry_parm = parmreg;
- }
-
- data->entry_parm = entry_parm;
-}
-
-/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
- always valid and properly aligned. */
-
-static void
-assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
-{
- rtx stack_parm = data->stack_parm;
-
- /* If we can't trust the parm stack slot to be aligned enough for its
- ultimate type, don't use that slot after entry. We'll make another
- stack slot, if we need one. */
- if (stack_parm
- && ((STRICT_ALIGNMENT
- && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
- || (data->nominal_type
- && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
- && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
- stack_parm = NULL;
-
- /* If parm was passed in memory, and we need to convert it on entry,
- don't store it back in that same slot. */
- else if (data->entry_parm == stack_parm
- && data->nominal_mode != BLKmode
- && data->nominal_mode != data->passed_mode)
- stack_parm = NULL;
-
- /* If stack protection is in effect for this function, don't leave any
- pointers in their passed stack slots. */
- else if (crtl->stack_protect_guard
- && (flag_stack_protect == 2
- || data->passed_pointer
- || POINTER_TYPE_P (data->nominal_type)))
- stack_parm = NULL;
-
- data->stack_parm = stack_parm;
-}
-
-/* A subroutine of assign_parms. Return true if the current parameter
- should be stored as a BLKmode in the current frame. */
-
-static bool
-assign_parm_setup_block_p (struct assign_parm_data_one *data)
-{
- if (data->nominal_mode == BLKmode)
- return true;
- if (GET_MODE (data->entry_parm) == BLKmode)
- return true;
-
-#ifdef BLOCK_REG_PADDING
- /* Only assign_parm_setup_block knows how to deal with register arguments
- that are padded at the least significant end. */
- if (REG_P (data->entry_parm)
- && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
- && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
- == (BYTES_BIG_ENDIAN ? upward : downward)))
- return true;
-#endif
-
- return false;
-}
-
-/* A subroutine of assign_parms. Arrange for the parameter to be
- present and valid in DATA->STACK_RTL. */
-
-static void
-assign_parm_setup_block (struct assign_parm_data_all *all,
- tree parm, struct assign_parm_data_one *data)
-{
- rtx entry_parm = data->entry_parm;
- rtx stack_parm = data->stack_parm;
- HOST_WIDE_INT size;
- HOST_WIDE_INT size_stored;
-
- if (GET_CODE (entry_parm) == PARALLEL)
- entry_parm = emit_group_move_into_temps (entry_parm);
-
- size = int_size_in_bytes (data->passed_type);
- size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
- if (stack_parm == 0)
- {
- DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
- stack_parm = assign_stack_local (BLKmode, size_stored,
- DECL_ALIGN (parm));
- if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
- PUT_MODE (stack_parm, GET_MODE (entry_parm));
- set_mem_attributes (stack_parm, parm, 1);
- }
-
- /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
- calls that pass values in multiple non-contiguous locations. */
- if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
- {
- rtx mem;
-
- /* Note that we will be storing an integral number of words.
- So we have to be careful to ensure that we allocate an
- integral number of words. We do this above when we call
- assign_stack_local if space was not allocated in the argument
- list. If it was, this will not work if PARM_BOUNDARY is not
- a multiple of BITS_PER_WORD. It isn't clear how to fix this
- if it becomes a problem. Exception is when BLKmode arrives
- with arguments not conforming to word_mode. */
-
- if (data->stack_parm == 0)
- ;
- else if (GET_CODE (entry_parm) == PARALLEL)
- ;
- else
- gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
-
- mem = validize_mem (stack_parm);
-
- /* Handle values in multiple non-contiguous locations. */
- if (GET_CODE (entry_parm) == PARALLEL)
- {
- push_to_sequence2 (all->first_conversion_insn,
- all->last_conversion_insn);
- emit_group_store (mem, entry_parm, data->passed_type, size);
- all->first_conversion_insn = get_insns ();
- all->last_conversion_insn = get_last_insn ();
- end_sequence ();
- }
-
- else if (size == 0)
- ;
-
- /* If SIZE is that of a mode no bigger than a word, just use
- that mode's store operation. */
- else if (size <= UNITS_PER_WORD)
- {
- enum machine_mode mode
- = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
-
- if (mode != BLKmode
-#ifdef BLOCK_REG_PADDING
- && (size == UNITS_PER_WORD
- || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
- != (BYTES_BIG_ENDIAN ? upward : downward)))
-#endif
- )
- {
- rtx reg;
-
- /* We are really truncating a word_mode value containing
- SIZE bytes into a value of mode MODE. If such an
- operation requires no actual instructions, we can refer
- to the value directly in mode MODE, otherwise we must
- start with the register in word_mode and explicitly
- convert it. */
- if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
- reg = gen_rtx_REG (mode, REGNO (entry_parm));
- else
- {
- reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
- reg = convert_to_mode (mode, copy_to_reg (reg), 1);
- }
- emit_move_insn (change_address (mem, mode, 0), reg);
- }
-
- /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
- machine must be aligned to the left before storing
- to memory. Note that the previous test doesn't
- handle all cases (e.g. SIZE == 3). */
- else if (size != UNITS_PER_WORD
-#ifdef BLOCK_REG_PADDING
- && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
- == downward)
-#else
- && BYTES_BIG_ENDIAN
-#endif
- )
- {
- rtx tem, x;
- int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
- rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
-
- x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
- tem = change_address (mem, word_mode, 0);
- emit_move_insn (tem, x);
- }
- else
- move_block_from_reg (REGNO (entry_parm), mem,
- size_stored / UNITS_PER_WORD);
- }
- else
- move_block_from_reg (REGNO (entry_parm), mem,
- size_stored / UNITS_PER_WORD);
- }
- else if (data->stack_parm == 0)
- {
- push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
- emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
- BLOCK_OP_NORMAL);
- all->first_conversion_insn = get_insns ();
- all->last_conversion_insn = get_last_insn ();
- end_sequence ();
- }
-
- data->stack_parm = stack_parm;
- SET_DECL_RTL (parm, stack_parm);
-}
-
-/* A subroutine of assign_parms. Allocate a pseudo to hold the current
- parameter. Get it there. Perform all ABI specified conversions. */
-
-static void
-assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
- struct assign_parm_data_one *data)
-{
- rtx parmreg, validated_mem;
- rtx equiv_stack_parm;
- enum machine_mode promoted_nominal_mode;
- int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
- bool did_conversion = false;
- bool need_conversion, moved;
-
- /* Store the parm in a pseudoregister during the function, but we may
- need to do it in a wider mode. Using 2 here makes the result
- consistent with promote_decl_mode and thus expand_expr_real_1. */
- promoted_nominal_mode
- = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
- TREE_TYPE (current_function_decl), 2);
-
- parmreg = gen_reg_rtx (promoted_nominal_mode);
-
- if (!DECL_ARTIFICIAL (parm))
- mark_user_reg (parmreg);
-
- /* If this was an item that we received a pointer to,
- set DECL_RTL appropriately. */
- if (data->passed_pointer)
- {
- rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
- set_mem_attributes (x, parm, 1);
- SET_DECL_RTL (parm, x);
- }
- else
- SET_DECL_RTL (parm, parmreg);
-
- assign_parm_remove_parallels (data);
-
- /* Copy the value into the register, thus bridging between
- assign_parm_find_data_types and expand_expr_real_1. */
-
- equiv_stack_parm = data->stack_parm;
- validated_mem = validize_mem (data->entry_parm);
-
- need_conversion = (data->nominal_mode != data->passed_mode
- || promoted_nominal_mode != data->promoted_mode);
- moved = false;
-
- if (need_conversion
- && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
- && data->nominal_mode == data->passed_mode
- && data->nominal_mode == GET_MODE (data->entry_parm))
- {
- /* ENTRY_PARM has been converted to PROMOTED_MODE, its
- mode, by the caller. We now have to convert it to
- NOMINAL_MODE, if different. However, PARMREG may be in
- a different mode than NOMINAL_MODE if it is being stored
- promoted.
-
- If ENTRY_PARM is a hard register, it might be in a register
- not valid for operating in its mode (e.g., an odd-numbered
- register for a DFmode). In that case, moves are the only
- thing valid, so we can't do a convert from there. This
- occurs when the calling sequence allow such misaligned
- usages.
-
- In addition, the conversion may involve a call, which could
- clobber parameters which haven't been copied to pseudo
- registers yet.
-
- First, we try to emit an insn which performs the necessary
- conversion. We verify that this insn does not clobber any
- hard registers. */
-
- enum insn_code icode;
- rtx op0, op1;
-
- icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
- unsignedp);
-
- op0 = parmreg;
- op1 = validated_mem;
- if (icode != CODE_FOR_nothing
- && insn_operand_matches (icode, 0, op0)
- && insn_operand_matches (icode, 1, op1))
- {
- enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
- rtx insn, insns, t = op1;
- HARD_REG_SET hardregs;
-
- start_sequence ();
- /* If op1 is a hard register that is likely spilled, first
- force it into a pseudo, otherwise combiner might extend
- its lifetime too much. */
- if (GET_CODE (t) == SUBREG)
- t = SUBREG_REG (t);
- if (REG_P (t)
- && HARD_REGISTER_P (t)
- && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
- && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
- {
- t = gen_reg_rtx (GET_MODE (op1));
- emit_move_insn (t, op1);
- }
- else
- t = op1;
- insn = gen_extend_insn (op0, t, promoted_nominal_mode,
- data->passed_mode, unsignedp);
- emit_insn (insn);
- insns = get_insns ();
-
- moved = true;
- CLEAR_HARD_REG_SET (hardregs);
- for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
- {
- if (INSN_P (insn))
- note_stores (PATTERN (insn), record_hard_reg_sets,
- &hardregs);
- if (!hard_reg_set_empty_p (hardregs))
- moved = false;
- }
-
- end_sequence ();
-
- if (moved)
- {
- emit_insn (insns);
- if (equiv_stack_parm != NULL_RTX)
- equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
- equiv_stack_parm);
- }
- }
- }
-
- if (moved)
- /* Nothing to do. */
- ;
- else if (need_conversion)
- {
- /* We did not have an insn to convert directly, or the sequence
- generated appeared unsafe. We must first copy the parm to a
- pseudo reg, and save the conversion until after all
- parameters have been moved. */
-
- int save_tree_used;
- rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
-
- emit_move_insn (tempreg, validated_mem);
-
- push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
- tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
-
- if (GET_CODE (tempreg) == SUBREG
- && GET_MODE (tempreg) == data->nominal_mode
- && REG_P (SUBREG_REG (tempreg))
- && data->nominal_mode == data->passed_mode
- && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
- && GET_MODE_SIZE (GET_MODE (tempreg))
- < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
- {
- /* The argument is already sign/zero extended, so note it
- into the subreg. */
- SUBREG_PROMOTED_VAR_P (tempreg) = 1;
- SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
- }
-
- /* TREE_USED gets set erroneously during expand_assignment. */
- save_tree_used = TREE_USED (parm);
- expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
- TREE_USED (parm) = save_tree_used;
- all->first_conversion_insn = get_insns ();
- all->last_conversion_insn = get_last_insn ();
- end_sequence ();
-
- did_conversion = true;
- }
- else
- emit_move_insn (parmreg, validated_mem);
-
- /* If we were passed a pointer but the actual value can safely live
- in a register, put it in one. */
- if (data->passed_pointer
- && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
- /* If by-reference argument was promoted, demote it. */
- && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
- || use_register_for_decl (parm)))
- {
- /* We can't use nominal_mode, because it will have been set to
- Pmode above. We must use the actual mode of the parm. */
- parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
- mark_user_reg (parmreg);
-
- if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
- {
- rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
- int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
-
- push_to_sequence2 (all->first_conversion_insn,
- all->last_conversion_insn);
- emit_move_insn (tempreg, DECL_RTL (parm));
- tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
- emit_move_insn (parmreg, tempreg);
- all->first_conversion_insn = get_insns ();
- all->last_conversion_insn = get_last_insn ();
- end_sequence ();
-
- did_conversion = true;
- }
- else
- emit_move_insn (parmreg, DECL_RTL (parm));
-
- SET_DECL_RTL (parm, parmreg);
-
- /* STACK_PARM is the pointer, not the parm, and PARMREG is
- now the parm. */
- data->stack_parm = NULL;
- }
-
- /* Mark the register as eliminable if we did no conversion and it was
- copied from memory at a fixed offset, and the arg pointer was not
- copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
- offset formed an invalid address, such memory-equivalences as we
- make here would screw up life analysis for it. */
- if (data->nominal_mode == data->passed_mode
- && !did_conversion
- && data->stack_parm != 0
- && MEM_P (data->stack_parm)
- && data->locate.offset.var == 0
- && reg_mentioned_p (virtual_incoming_args_rtx,
- XEXP (data->stack_parm, 0)))
- {
- rtx linsn = get_last_insn ();
- rtx sinsn, set;
-
- /* Mark complex types separately. */
- if (GET_CODE (parmreg) == CONCAT)
- {
- enum machine_mode submode
- = GET_MODE_INNER (GET_MODE (parmreg));
- int regnor = REGNO (XEXP (parmreg, 0));
- int regnoi = REGNO (XEXP (parmreg, 1));
- rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
- rtx stacki = adjust_address_nv (data->stack_parm, submode,
- GET_MODE_SIZE (submode));
-
- /* Scan backwards for the set of the real and
- imaginary parts. */
- for (sinsn = linsn; sinsn != 0;
- sinsn = prev_nonnote_insn (sinsn))
- {
- set = single_set (sinsn);
- if (set == 0)
- continue;
-
- if (SET_DEST (set) == regno_reg_rtx [regnoi])
- set_unique_reg_note (sinsn, REG_EQUIV, stacki);
- else if (SET_DEST (set) == regno_reg_rtx [regnor])
- set_unique_reg_note (sinsn, REG_EQUIV, stackr);
- }
- }
- else
- set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
- }
-
- /* For pointer data type, suggest pointer register. */
- if (POINTER_TYPE_P (TREE_TYPE (parm)))
- mark_reg_pointer (parmreg,
- TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
-}
-
-/* A subroutine of assign_parms. Allocate stack space to hold the current
- parameter. Get it there. Perform all ABI specified conversions. */
-
-static void
-assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
- struct assign_parm_data_one *data)
-{
- /* Value must be stored in the stack slot STACK_PARM during function
- execution. */
- bool to_conversion = false;
-
- assign_parm_remove_parallels (data);
-
- if (data->promoted_mode != data->nominal_mode)
- {
- /* Conversion is required. */
- rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
-
- emit_move_insn (tempreg, validize_mem (data->entry_parm));
-
- push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
- to_conversion = true;
-
- data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
- TYPE_UNSIGNED (TREE_TYPE (parm)));
-
- if (data->stack_parm)
- {
- int offset = subreg_lowpart_offset (data->nominal_mode,
- GET_MODE (data->stack_parm));
- /* ??? This may need a big-endian conversion on sparc64. */
- data->stack_parm
- = adjust_address (data->stack_parm, data->nominal_mode, 0);
- if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
- set_mem_offset (data->stack_parm,
- MEM_OFFSET (data->stack_parm) + offset);
- }
- }
-
- if (data->entry_parm != data->stack_parm)
- {
- rtx src, dest;
-
- if (data->stack_parm == 0)
- {
- int align = STACK_SLOT_ALIGNMENT (data->passed_type,
- GET_MODE (data->entry_parm),
- TYPE_ALIGN (data->passed_type));
- data->stack_parm
- = assign_stack_local (GET_MODE (data->entry_parm),
- GET_MODE_SIZE (GET_MODE (data->entry_parm)),
- align);
- set_mem_attributes (data->stack_parm, parm, 1);
- }
-
- dest = validize_mem (data->stack_parm);
- src = validize_mem (data->entry_parm);
-
- if (MEM_P (src))
- {
- /* Use a block move to handle potentially misaligned entry_parm. */
- if (!to_conversion)
- push_to_sequence2 (all->first_conversion_insn,
- all->last_conversion_insn);
- to_conversion = true;
-
- emit_block_move (dest, src,
- GEN_INT (int_size_in_bytes (data->passed_type)),
- BLOCK_OP_NORMAL);
- }
- else
- emit_move_insn (dest, src);
- }
-
- if (to_conversion)
- {
- all->first_conversion_insn = get_insns ();
- all->last_conversion_insn = get_last_insn ();
- end_sequence ();
- }
-
- SET_DECL_RTL (parm, data->stack_parm);
-}
-
-/* A subroutine of assign_parms. If the ABI splits complex arguments, then
- undo the frobbing that we did in assign_parms_augmented_arg_list. */
-
-static void
-assign_parms_unsplit_complex (struct assign_parm_data_all *all,
- vec<tree> fnargs)
-{
- tree parm;
- tree orig_fnargs = all->orig_fnargs;
- unsigned i = 0;
-
- for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
- {
- if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
- && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
- {
- rtx tmp, real, imag;
- enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
-
- real = DECL_RTL (fnargs[i]);
- imag = DECL_RTL (fnargs[i + 1]);
- if (inner != GET_MODE (real))
- {
- real = gen_lowpart_SUBREG (inner, real);
- imag = gen_lowpart_SUBREG (inner, imag);
- }
-
- if (TREE_ADDRESSABLE (parm))
- {
- rtx rmem, imem;
- HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
- int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
- DECL_MODE (parm),
- TYPE_ALIGN (TREE_TYPE (parm)));
-
- /* split_complex_arg put the real and imag parts in
- pseudos. Move them to memory. */
- tmp = assign_stack_local (DECL_MODE (parm), size, align);
- set_mem_attributes (tmp, parm, 1);
- rmem = adjust_address_nv (tmp, inner, 0);
- imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
- push_to_sequence2 (all->first_conversion_insn,
- all->last_conversion_insn);
- emit_move_insn (rmem, real);
- emit_move_insn (imem, imag);
- all->first_conversion_insn = get_insns ();
- all->last_conversion_insn = get_last_insn ();
- end_sequence ();
- }
- else
- tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
- SET_DECL_RTL (parm, tmp);
-
- real = DECL_INCOMING_RTL (fnargs[i]);
- imag = DECL_INCOMING_RTL (fnargs[i + 1]);
- if (inner != GET_MODE (real))
- {
- real = gen_lowpart_SUBREG (inner, real);
- imag = gen_lowpart_SUBREG (inner, imag);
- }
- tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
- set_decl_incoming_rtl (parm, tmp, false);
- i++;
- }
- }
-}
-
-/* Assign RTL expressions to the function's parameters. This may involve
- copying them into registers and using those registers as the DECL_RTL. */
-
-static void
-assign_parms (tree fndecl)
-{
- struct assign_parm_data_all all;
- tree parm;
- vec<tree> fnargs;
- unsigned i;
-
- crtl->args.internal_arg_pointer
- = targetm.calls.internal_arg_pointer ();
-
- assign_parms_initialize_all (&all);
- fnargs = assign_parms_augmented_arg_list (&all);
-
- FOR_EACH_VEC_ELT (fnargs, i, parm)
- {
- struct assign_parm_data_one data;
-
- /* Extract the type of PARM; adjust it according to ABI. */
- assign_parm_find_data_types (&all, parm, &data);
-
- /* Early out for errors and void parameters. */
- if (data.passed_mode == VOIDmode)
- {
- SET_DECL_RTL (parm, const0_rtx);
- DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
- continue;
- }
-
- /* Estimate stack alignment from parameter alignment. */
- if (SUPPORTS_STACK_ALIGNMENT)
- {
- unsigned int align
- = targetm.calls.function_arg_boundary (data.promoted_mode,
- data.passed_type);
- align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
- align);
- if (TYPE_ALIGN (data.nominal_type) > align)
- align = MINIMUM_ALIGNMENT (data.nominal_type,
- TYPE_MODE (data.nominal_type),
- TYPE_ALIGN (data.nominal_type));
- if (crtl->stack_alignment_estimated < align)
- {
- gcc_assert (!crtl->stack_realign_processed);
- crtl->stack_alignment_estimated = align;
- }
- }
-
- if (cfun->stdarg && !DECL_CHAIN (parm))
- assign_parms_setup_varargs (&all, &data, false);
-
- /* Find out where the parameter arrives in this function. */
- assign_parm_find_entry_rtl (&all, &data);
-
- /* Find out where stack space for this parameter might be. */
- if (assign_parm_is_stack_parm (&all, &data))
- {
- assign_parm_find_stack_rtl (parm, &data);
- assign_parm_adjust_entry_rtl (&data);
- }
-
- /* Record permanently how this parm was passed. */
- if (data.passed_pointer)
- {
- rtx incoming_rtl
- = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
- data.entry_parm);
- set_decl_incoming_rtl (parm, incoming_rtl, true);
- }
- else
- set_decl_incoming_rtl (parm, data.entry_parm, false);
-
- /* Update info on where next arg arrives in registers. */
- targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
- data.passed_type, data.named_arg);
-
- assign_parm_adjust_stack_rtl (&data);
-
- if (assign_parm_setup_block_p (&data))
- assign_parm_setup_block (&all, parm, &data);
- else if (data.passed_pointer || use_register_for_decl (parm))
- assign_parm_setup_reg (&all, parm, &data);
- else
- assign_parm_setup_stack (&all, parm, &data);
- }
-
- if (targetm.calls.split_complex_arg)
- assign_parms_unsplit_complex (&all, fnargs);
-
- fnargs.release ();
-
- /* Output all parameter conversion instructions (possibly including calls)
- now that all parameters have been copied out of hard registers. */
- emit_insn (all.first_conversion_insn);
-
- /* Estimate reload stack alignment from scalar return mode. */
- if (SUPPORTS_STACK_ALIGNMENT)
- {
- if (DECL_RESULT (fndecl))
- {
- tree type = TREE_TYPE (DECL_RESULT (fndecl));
- enum machine_mode mode = TYPE_MODE (type);
-
- if (mode != BLKmode
- && mode != VOIDmode
- && !AGGREGATE_TYPE_P (type))
- {
- unsigned int align = GET_MODE_ALIGNMENT (mode);
- if (crtl->stack_alignment_estimated < align)
- {
- gcc_assert (!crtl->stack_realign_processed);
- crtl->stack_alignment_estimated = align;
- }
- }
- }
- }
-
- /* If we are receiving a struct value address as the first argument, set up
- the RTL for the function result. As this might require code to convert
- the transmitted address to Pmode, we do this here to ensure that possible
- preliminary conversions of the address have been emitted already. */
- if (all.function_result_decl)
- {
- tree result = DECL_RESULT (current_function_decl);
- rtx addr = DECL_RTL (all.function_result_decl);
- rtx x;
-
- if (DECL_BY_REFERENCE (result))
- {
- SET_DECL_VALUE_EXPR (result, all.function_result_decl);
- x = addr;
- }
- else
- {
- SET_DECL_VALUE_EXPR (result,
- build1 (INDIRECT_REF, TREE_TYPE (result),
- all.function_result_decl));
- addr = convert_memory_address (Pmode, addr);
- x = gen_rtx_MEM (DECL_MODE (result), addr);
- set_mem_attributes (x, result, 1);
- }
-
- DECL_HAS_VALUE_EXPR_P (result) = 1;
-
- SET_DECL_RTL (result, x);
- }
-
- /* We have aligned all the args, so add space for the pretend args. */
- crtl->args.pretend_args_size = all.pretend_args_size;
- all.stack_args_size.constant += all.extra_pretend_bytes;
- crtl->args.size = all.stack_args_size.constant;
-
- /* Adjust function incoming argument size for alignment and
- minimum length. */
-
-#ifdef REG_PARM_STACK_SPACE
- crtl->args.size = MAX (crtl->args.size,
- REG_PARM_STACK_SPACE (fndecl));
-#endif
-
- crtl->args.size = CEIL_ROUND (crtl->args.size,
- PARM_BOUNDARY / BITS_PER_UNIT);
-
-#ifdef ARGS_GROW_DOWNWARD
- crtl->args.arg_offset_rtx
- = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
- : expand_expr (size_diffop (all.stack_args_size.var,
- size_int (-all.stack_args_size.constant)),
- NULL_RTX, VOIDmode, EXPAND_NORMAL));
-#else
- crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
-#endif
-
- /* See how many bytes, if any, of its args a function should try to pop
- on return. */
-
- crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
- TREE_TYPE (fndecl),
- crtl->args.size);
-
- /* For stdarg.h function, save info about
- regs and stack space used by the named args. */
-
- crtl->args.info = all.args_so_far_v;
-
- /* Set the rtx used for the function return value. Put this in its
- own variable so any optimizers that need this information don't have
- to include tree.h. Do this here so it gets done when an inlined
- function gets output. */
-
- crtl->return_rtx
- = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
- ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
-
- /* If scalar return value was computed in a pseudo-reg, or was a named
- return value that got dumped to the stack, copy that to the hard
- return register. */
- if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
- {
- tree decl_result = DECL_RESULT (fndecl);
- rtx decl_rtl = DECL_RTL (decl_result);
-
- if (REG_P (decl_rtl)
- ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
- : DECL_REGISTER (decl_result))
- {
- rtx real_decl_rtl;
-
- real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
- fndecl, true);
- REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
- /* The delay slot scheduler assumes that crtl->return_rtx
- holds the hard register containing the return value, not a
- temporary pseudo. */
- crtl->return_rtx = real_decl_rtl;
- }
- }
-}
-
-/* A subroutine of gimplify_parameters, invoked via walk_tree.
- For all seen types, gimplify their sizes. */
-
-static tree
-gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
-{
- tree t = *tp;
-
- *walk_subtrees = 0;
- if (TYPE_P (t))
- {
- if (POINTER_TYPE_P (t))
- *walk_subtrees = 1;
- else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
- && !TYPE_SIZES_GIMPLIFIED (t))
- {
- gimplify_type_sizes (t, (gimple_seq *) data);
- *walk_subtrees = 1;
- }
- }
-
- return NULL;
-}
-
-/* Gimplify the parameter list for current_function_decl. This involves
- evaluating SAVE_EXPRs of variable sized parameters and generating code
- to implement callee-copies reference parameters. Returns a sequence of
- statements to add to the beginning of the function. */
-
-gimple_seq
-gimplify_parameters (void)
-{
- struct assign_parm_data_all all;
- tree parm;
- gimple_seq stmts = NULL;
- vec<tree> fnargs;
- unsigned i;
-
- assign_parms_initialize_all (&all);
- fnargs = assign_parms_augmented_arg_list (&all);
-
- FOR_EACH_VEC_ELT (fnargs, i, parm)
- {
- struct assign_parm_data_one data;
-
- /* Extract the type of PARM; adjust it according to ABI. */
- assign_parm_find_data_types (&all, parm, &data);
-
- /* Early out for errors and void parameters. */
- if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
- continue;
-
- /* Update info on where next arg arrives in registers. */
- targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
- data.passed_type, data.named_arg);
-
- /* ??? Once upon a time variable_size stuffed parameter list
- SAVE_EXPRs (amongst others) onto a pending sizes list. This
- turned out to be less than manageable in the gimple world.
- Now we have to hunt them down ourselves. */
- walk_tree_without_duplicates (&data.passed_type,
- gimplify_parm_type, &stmts);
-
- if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
- {
- gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
- gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
- }
-
- if (data.passed_pointer)
- {
- tree type = TREE_TYPE (data.passed_type);
- if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
- type, data.named_arg))
- {
- tree local, t;
-
- /* For constant-sized objects, this is trivial; for
- variable-sized objects, we have to play games. */
- if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
- && !(flag_stack_check == GENERIC_STACK_CHECK
- && compare_tree_int (DECL_SIZE_UNIT (parm),
- STACK_CHECK_MAX_VAR_SIZE) > 0))
- {
- local = create_tmp_var (type, get_name (parm));
- DECL_IGNORED_P (local) = 0;
- /* If PARM was addressable, move that flag over
- to the local copy, as its address will be taken,
- not the PARMs. Keep the parms address taken
- as we'll query that flag during gimplification. */
- if (TREE_ADDRESSABLE (parm))
- TREE_ADDRESSABLE (local) = 1;
- else if (TREE_CODE (type) == COMPLEX_TYPE
- || TREE_CODE (type) == VECTOR_TYPE)
- DECL_GIMPLE_REG_P (local) = 1;
- }
- else
- {
- tree ptr_type, addr;
-
- ptr_type = build_pointer_type (type);
- addr = create_tmp_reg (ptr_type, get_name (parm));
- DECL_IGNORED_P (addr) = 0;
- local = build_fold_indirect_ref (addr);
-
- t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
- t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
- size_int (DECL_ALIGN (parm)));
-
- /* The call has been built for a variable-sized object. */
- CALL_ALLOCA_FOR_VAR_P (t) = 1;
- t = fold_convert (ptr_type, t);
- t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
- gimplify_and_add (t, &stmts);
- }
-
- gimplify_assign (local, parm, &stmts);
-
- SET_DECL_VALUE_EXPR (parm, local);
- DECL_HAS_VALUE_EXPR_P (parm) = 1;
- }
- }
- }
-
- fnargs.release ();
-
- return stmts;
-}
-
-/* Compute the size and offset from the start of the stacked arguments for a
- parm passed in mode PASSED_MODE and with type TYPE.
-
- INITIAL_OFFSET_PTR points to the current offset into the stacked
- arguments.
-
- The starting offset and size for this parm are returned in
- LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
- nonzero, the offset is that of stack slot, which is returned in
- LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
- padding required from the initial offset ptr to the stack slot.
-
- IN_REGS is nonzero if the argument will be passed in registers. It will
- never be set if REG_PARM_STACK_SPACE is not defined.
-
- FNDECL is the function in which the argument was defined.
-
- There are two types of rounding that are done. The first, controlled by
- TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
- argument list to be aligned to the specific boundary (in bits). This
- rounding affects the initial and starting offsets, but not the argument
- size.
-
- The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
- optionally rounds the size of the parm to PARM_BOUNDARY. The
- initial offset is not affected by this rounding, while the size always
- is and the starting offset may be. */
-
-/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
- INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
- callers pass in the total size of args so far as
- INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
-
-void
-locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
- int partial, tree fndecl ATTRIBUTE_UNUSED,
- struct args_size *initial_offset_ptr,
- struct locate_and_pad_arg_data *locate)
-{
- tree sizetree;
- enum direction where_pad;
- unsigned int boundary, round_boundary;
- int reg_parm_stack_space = 0;
- int part_size_in_regs;
-
-#ifdef REG_PARM_STACK_SPACE
- reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
-
- /* If we have found a stack parm before we reach the end of the
- area reserved for registers, skip that area. */
- if (! in_regs)
- {
- if (reg_parm_stack_space > 0)
- {
- if (initial_offset_ptr->var)
- {
- initial_offset_ptr->var
- = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
- ssize_int (reg_parm_stack_space));
- initial_offset_ptr->constant = 0;
- }
- else if (initial_offset_ptr->constant < reg_parm_stack_space)
- initial_offset_ptr->constant = reg_parm_stack_space;
- }
- }
-#endif /* REG_PARM_STACK_SPACE */
-
- part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
-
- sizetree
- = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
- where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
- boundary = targetm.calls.function_arg_boundary (passed_mode, type);
- round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
- type);
- locate->where_pad = where_pad;
-
- /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
- if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
- boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
-
- locate->boundary = boundary;
-
- if (SUPPORTS_STACK_ALIGNMENT)
- {
- /* stack_alignment_estimated can't change after stack has been
- realigned. */
- if (crtl->stack_alignment_estimated < boundary)
- {
- if (!crtl->stack_realign_processed)
- crtl->stack_alignment_estimated = boundary;
- else
- {
- /* If stack is realigned and stack alignment value
- hasn't been finalized, it is OK not to increase
- stack_alignment_estimated. The bigger alignment
- requirement is recorded in stack_alignment_needed
- below. */
- gcc_assert (!crtl->stack_realign_finalized
- && crtl->stack_realign_needed);
- }
- }
- }
-
- /* Remember if the outgoing parameter requires extra alignment on the
- calling function side. */
- if (crtl->stack_alignment_needed < boundary)
- crtl->stack_alignment_needed = boundary;
- if (crtl->preferred_stack_boundary < boundary)
- crtl->preferred_stack_boundary = boundary;
-
-#ifdef ARGS_GROW_DOWNWARD
- locate->slot_offset.constant = -initial_offset_ptr->constant;
- if (initial_offset_ptr->var)
- locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
- initial_offset_ptr->var);
-
- {
- tree s2 = sizetree;
- if (where_pad != none
- && (!host_integerp (sizetree, 1)
- || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
- s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
- SUB_PARM_SIZE (locate->slot_offset, s2);
- }
-
- locate->slot_offset.constant += part_size_in_regs;
-
- if (!in_regs
-#ifdef REG_PARM_STACK_SPACE
- || REG_PARM_STACK_SPACE (fndecl) > 0
-#endif
- )
- pad_to_arg_alignment (&locate->slot_offset, boundary,
- &locate->alignment_pad);
-
- locate->size.constant = (-initial_offset_ptr->constant
- - locate->slot_offset.constant);
- if (initial_offset_ptr->var)
- locate->size.var = size_binop (MINUS_EXPR,
- size_binop (MINUS_EXPR,
- ssize_int (0),
- initial_offset_ptr->var),
- locate->slot_offset.var);
-
- /* Pad_below needs the pre-rounded size to know how much to pad
- below. */
- locate->offset = locate->slot_offset;
- if (where_pad == downward)
- pad_below (&locate->offset, passed_mode, sizetree);
-
-#else /* !ARGS_GROW_DOWNWARD */
- if (!in_regs
-#ifdef REG_PARM_STACK_SPACE
- || REG_PARM_STACK_SPACE (fndecl) > 0
-#endif
- )
- pad_to_arg_alignment (initial_offset_ptr, boundary,
- &locate->alignment_pad);
- locate->slot_offset = *initial_offset_ptr;
-
-#ifdef PUSH_ROUNDING
- if (passed_mode != BLKmode)
- sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
-#endif
-
- /* Pad_below needs the pre-rounded size to know how much to pad below
- so this must be done before rounding up. */
- locate->offset = locate->slot_offset;
- if (where_pad == downward)
- pad_below (&locate->offset, passed_mode, sizetree);
-
- if (where_pad != none
- && (!host_integerp (sizetree, 1)
- || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
- sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
-
- ADD_PARM_SIZE (locate->size, sizetree);
-
- locate->size.constant -= part_size_in_regs;
-#endif /* ARGS_GROW_DOWNWARD */
-
-#ifdef FUNCTION_ARG_OFFSET
- locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
-#endif
-}
-
-/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
- BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
-
-static void
-pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
- struct args_size *alignment_pad)
-{
- tree save_var = NULL_TREE;
- HOST_WIDE_INT save_constant = 0;
- int boundary_in_bytes = boundary / BITS_PER_UNIT;
- HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
-
-#ifdef SPARC_STACK_BOUNDARY_HACK
- /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
- the real alignment of %sp. However, when it does this, the
- alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
- if (SPARC_STACK_BOUNDARY_HACK)
- sp_offset = 0;
-#endif
-
- if (boundary > PARM_BOUNDARY)
- {
- save_var = offset_ptr->var;
- save_constant = offset_ptr->constant;
- }
-
- alignment_pad->var = NULL_TREE;
- alignment_pad->constant = 0;
-
- if (boundary > BITS_PER_UNIT)
- {
- if (offset_ptr->var)
- {
- tree sp_offset_tree = ssize_int (sp_offset);
- tree offset = size_binop (PLUS_EXPR,
- ARGS_SIZE_TREE (*offset_ptr),
- sp_offset_tree);
-#ifdef ARGS_GROW_DOWNWARD
- tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
-#else
- tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
-#endif
-
- offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
- /* ARGS_SIZE_TREE includes constant term. */
- offset_ptr->constant = 0;
- if (boundary > PARM_BOUNDARY)
- alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
- save_var);
- }
- else
- {
- offset_ptr->constant = -sp_offset +
-#ifdef ARGS_GROW_DOWNWARD
- FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
-#else
- CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
-#endif
- if (boundary > PARM_BOUNDARY)
- alignment_pad->constant = offset_ptr->constant - save_constant;
- }
- }
-}
-
-static void
-pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
-{
- if (passed_mode != BLKmode)
- {
- if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
- offset_ptr->constant
- += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
- / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
- - GET_MODE_SIZE (passed_mode));
- }
- else
- {
- if (TREE_CODE (sizetree) != INTEGER_CST
- || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
- {
- /* Round the size up to multiple of PARM_BOUNDARY bits. */
- tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
- /* Add it in. */
- ADD_PARM_SIZE (*offset_ptr, s2);
- SUB_PARM_SIZE (*offset_ptr, sizetree);
- }
- }
-}
-
-
-/* True if register REGNO was alive at a place where `setjmp' was
- called and was set more than once or is an argument. Such regs may
- be clobbered by `longjmp'. */
-
-static bool
-regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
-{
- /* There appear to be cases where some local vars never reach the
- backend but have bogus regnos. */
- if (regno >= max_reg_num ())
- return false;
-
- return ((REG_N_SETS (regno) > 1
- || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
- && REGNO_REG_SET_P (setjmp_crosses, regno));
-}
-
-/* Walk the tree of blocks describing the binding levels within a
- function and warn about variables the might be killed by setjmp or
- vfork. This is done after calling flow_analysis before register
- allocation since that will clobber the pseudo-regs to hard
- regs. */
-
-static void
-setjmp_vars_warning (bitmap setjmp_crosses, tree block)
-{
- tree decl, sub;
-
- for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
- {
- if (TREE_CODE (decl) == VAR_DECL
- && DECL_RTL_SET_P (decl)
- && REG_P (DECL_RTL (decl))
- && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
- warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
- " %<longjmp%> or %<vfork%>", decl);
- }
-
- for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
- setjmp_vars_warning (setjmp_crosses, sub);
-}
-
-/* Do the appropriate part of setjmp_vars_warning
- but for arguments instead of local variables. */
-
-static void
-setjmp_args_warning (bitmap setjmp_crosses)
-{
- tree decl;
- for (decl = DECL_ARGUMENTS (current_function_decl);
- decl; decl = DECL_CHAIN (decl))
- if (DECL_RTL (decl) != 0
- && REG_P (DECL_RTL (decl))
- && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
- warning (OPT_Wclobbered,
- "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
- decl);
-}
-
-/* Generate warning messages for variables live across setjmp. */
-
-void
-generate_setjmp_warnings (void)
-{
- bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
-
- if (n_basic_blocks == NUM_FIXED_BLOCKS
- || bitmap_empty_p (setjmp_crosses))
- return;
-
- setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
- setjmp_args_warning (setjmp_crosses);
-}
-
-
-/* Reverse the order of elements in the fragment chain T of blocks,
- and return the new head of the chain (old last element).
- In addition to that clear BLOCK_SAME_RANGE flags when needed
- and adjust BLOCK_SUPERCONTEXT from the super fragment to
- its super fragment origin. */
-
-static tree
-block_fragments_nreverse (tree t)
-{
- tree prev = 0, block, next, prev_super = 0;
- tree super = BLOCK_SUPERCONTEXT (t);
- if (BLOCK_FRAGMENT_ORIGIN (super))
- super = BLOCK_FRAGMENT_ORIGIN (super);
- for (block = t; block; block = next)
- {
- next = BLOCK_FRAGMENT_CHAIN (block);
- BLOCK_FRAGMENT_CHAIN (block) = prev;
- if ((prev && !BLOCK_SAME_RANGE (prev))
- || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
- != prev_super))
- BLOCK_SAME_RANGE (block) = 0;
- prev_super = BLOCK_SUPERCONTEXT (block);
- BLOCK_SUPERCONTEXT (block) = super;
- prev = block;
- }
- t = BLOCK_FRAGMENT_ORIGIN (t);
- if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
- != prev_super)
- BLOCK_SAME_RANGE (t) = 0;
- BLOCK_SUPERCONTEXT (t) = super;
- return prev;
-}
-
-/* Reverse the order of elements in the chain T of blocks,
- and return the new head of the chain (old last element).
- Also do the same on subblocks and reverse the order of elements
- in BLOCK_FRAGMENT_CHAIN as well. */
-
-static tree
-blocks_nreverse_all (tree t)
-{
- tree prev = 0, block, next;
- for (block = t; block; block = next)
- {
- next = BLOCK_CHAIN (block);
- BLOCK_CHAIN (block) = prev;
- if (BLOCK_FRAGMENT_CHAIN (block)
- && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
- {
- BLOCK_FRAGMENT_CHAIN (block)
- = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
- if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
- BLOCK_SAME_RANGE (block) = 0;
- }
- BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
- prev = block;
- }
- return prev;
-}
-
-
-/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
- and create duplicate blocks. */
-/* ??? Need an option to either create block fragments or to create
- abstract origin duplicates of a source block. It really depends
- on what optimization has been performed. */
-
-void
-reorder_blocks (void)
-{
- tree block = DECL_INITIAL (current_function_decl);
- vec<tree> block_stack;
-
- if (block == NULL_TREE)
- return;
-
- block_stack.create (10);
-
- /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
- clear_block_marks (block);
-
- /* Prune the old trees away, so that they don't get in the way. */
- BLOCK_SUBBLOCKS (block) = NULL_TREE;
- BLOCK_CHAIN (block) = NULL_TREE;
-
- /* Recreate the block tree from the note nesting. */
- reorder_blocks_1 (get_insns (), block, &block_stack);
- BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
-
- block_stack.release ();
-}
-
-/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
-
-void
-clear_block_marks (tree block)
-{
- while (block)
- {
- TREE_ASM_WRITTEN (block) = 0;
- clear_block_marks (BLOCK_SUBBLOCKS (block));
- block = BLOCK_CHAIN (block);
- }
-}
-
-static void
-reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
-{
- rtx insn;
- tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
-
- for (insn = insns; insn; insn = NEXT_INSN (insn))
- {
- if (NOTE_P (insn))
- {
- if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
- {
- tree block = NOTE_BLOCK (insn);
- tree origin;
-
- gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
- origin = block;
-
- if (prev_end)
- BLOCK_SAME_RANGE (prev_end) = 0;
- prev_end = NULL_TREE;
-
- /* If we have seen this block before, that means it now
- spans multiple address regions. Create a new fragment. */
- if (TREE_ASM_WRITTEN (block))
- {
- tree new_block = copy_node (block);
-
- BLOCK_SAME_RANGE (new_block) = 0;
- BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
- BLOCK_FRAGMENT_CHAIN (new_block)
- = BLOCK_FRAGMENT_CHAIN (origin);
- BLOCK_FRAGMENT_CHAIN (origin) = new_block;
-
- NOTE_BLOCK (insn) = new_block;
- block = new_block;
- }
-
- if (prev_beg == current_block && prev_beg)
- BLOCK_SAME_RANGE (block) = 1;
-
- prev_beg = origin;
-
- BLOCK_SUBBLOCKS (block) = 0;
- TREE_ASM_WRITTEN (block) = 1;
- /* When there's only one block for the entire function,
- current_block == block and we mustn't do this, it
- will cause infinite recursion. */
- if (block != current_block)
- {
- tree super;
- if (block != origin)
- gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
- || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
- (origin))
- == current_block);
- if (p_block_stack->is_empty ())
- super = current_block;
- else
- {
- super = p_block_stack->last ();
- gcc_assert (super == current_block
- || BLOCK_FRAGMENT_ORIGIN (super)
- == current_block);
- }
- BLOCK_SUPERCONTEXT (block) = super;
- BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
- BLOCK_SUBBLOCKS (current_block) = block;
- current_block = origin;
- }
- p_block_stack->safe_push (block);
- }
- else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
- {
- NOTE_BLOCK (insn) = p_block_stack->pop ();
- current_block = BLOCK_SUPERCONTEXT (current_block);
- if (BLOCK_FRAGMENT_ORIGIN (current_block))
- current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
- prev_beg = NULL_TREE;
- prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
- ? NOTE_BLOCK (insn) : NULL_TREE;
- }
- }
- else
- {
- prev_beg = NULL_TREE;
- if (prev_end)
- BLOCK_SAME_RANGE (prev_end) = 0;
- prev_end = NULL_TREE;
- }
- }
-}
-
-/* Reverse the order of elements in the chain T of blocks,
- and return the new head of the chain (old last element). */
-
-tree
-blocks_nreverse (tree t)
-{
- tree prev = 0, block, next;
- for (block = t; block; block = next)
- {
- next = BLOCK_CHAIN (block);
- BLOCK_CHAIN (block) = prev;
- prev = block;
- }
- return prev;
-}
-
-/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
- by modifying the last node in chain 1 to point to chain 2. */
-
-tree
-block_chainon (tree op1, tree op2)
-{
- tree t1;
-
- if (!op1)
- return op2;
- if (!op2)
- return op1;
-
- for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
- continue;
- BLOCK_CHAIN (t1) = op2;
-
-#ifdef ENABLE_TREE_CHECKING
- {
- tree t2;
- for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
- gcc_assert (t2 != t1);
- }
-#endif
-
- return op1;
-}
-
-/* Count the subblocks of the list starting with BLOCK. If VECTOR is
- non-NULL, list them all into VECTOR, in a depth-first preorder
- traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
- blocks. */
-
-static int
-all_blocks (tree block, tree *vector)
-{
- int n_blocks = 0;
-
- while (block)
- {
- TREE_ASM_WRITTEN (block) = 0;
-
- /* Record this block. */
- if (vector)
- vector[n_blocks] = block;
-
- ++n_blocks;
-
- /* Record the subblocks, and their subblocks... */
- n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
- vector ? vector + n_blocks : 0);
- block = BLOCK_CHAIN (block);
- }
-
- return n_blocks;
-}
-
-/* Return a vector containing all the blocks rooted at BLOCK. The
- number of elements in the vector is stored in N_BLOCKS_P. The
- vector is dynamically allocated; it is the caller's responsibility
- to call `free' on the pointer returned. */
-
-static tree *
-get_block_vector (tree block, int *n_blocks_p)
-{
- tree *block_vector;
-
- *n_blocks_p = all_blocks (block, NULL);
- block_vector = XNEWVEC (tree, *n_blocks_p);
- all_blocks (block, block_vector);
-
- return block_vector;
-}
-
-static GTY(()) int next_block_index = 2;
-
-/* Set BLOCK_NUMBER for all the blocks in FN. */
-
-void
-number_blocks (tree fn)
-{
- int i;
- int n_blocks;
- tree *block_vector;
-
- /* For SDB and XCOFF debugging output, we start numbering the blocks
- from 1 within each function, rather than keeping a running
- count. */
-#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
- if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
- next_block_index = 1;
-#endif
-
- block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
-
- /* The top-level BLOCK isn't numbered at all. */
- for (i = 1; i < n_blocks; ++i)
- /* We number the blocks from two. */
- BLOCK_NUMBER (block_vector[i]) = next_block_index++;
-
- free (block_vector);
-
- return;
-}
-
-/* If VAR is present in a subblock of BLOCK, return the subblock. */
-
-DEBUG_FUNCTION tree
-debug_find_var_in_block_tree (tree var, tree block)
-{
- tree t;
-
- for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
- if (t == var)
- return block;
-
- for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
- {
- tree ret = debug_find_var_in_block_tree (var, t);
- if (ret)
- return ret;
- }
-
- return NULL_TREE;
-}
-
-/* Keep track of whether we're in a dummy function context. If we are,
- we don't want to invoke the set_current_function hook, because we'll
- get into trouble if the hook calls target_reinit () recursively or
- when the initial initialization is not yet complete. */
-
-static bool in_dummy_function;
-
-/* Invoke the target hook when setting cfun. Update the optimization options
- if the function uses different options than the default. */
-
-static void
-invoke_set_current_function_hook (tree fndecl)
-{
- if (!in_dummy_function)
- {
- tree opts = ((fndecl)
- ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
- : optimization_default_node);
-
- if (!opts)
- opts = optimization_default_node;
-
- /* Change optimization options if needed. */
- if (optimization_current_node != opts)
- {
- optimization_current_node = opts;
- cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
- }
-
- targetm.set_current_function (fndecl);
- this_fn_optabs = this_target_optabs;
-
- if (opts != optimization_default_node)
- {
- init_tree_optimization_optabs (opts);
- if (TREE_OPTIMIZATION_OPTABS (opts))
- this_fn_optabs = (struct target_optabs *)
- TREE_OPTIMIZATION_OPTABS (opts);
- }
- }
-}
-
-/* cfun should never be set directly; use this function. */
-
-void
-set_cfun (struct function *new_cfun)
-{
- if (cfun != new_cfun)
- {
- cfun = new_cfun;
- invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
- }
-}
-
-/* Initialized with NOGC, making this poisonous to the garbage collector. */
-
-static vec<function_p> cfun_stack;
-
-/* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
- current_function_decl accordingly. */
-
-void
-push_cfun (struct function *new_cfun)
-{
- gcc_assert ((!cfun && !current_function_decl)
- || (cfun && current_function_decl == cfun->decl));
- cfun_stack.safe_push (cfun);
- current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
- set_cfun (new_cfun);
-}
-
-/* Pop cfun from the stack. Also set current_function_decl accordingly. */
-
-void
-pop_cfun (void)
-{
- struct function *new_cfun = cfun_stack.pop ();
- /* When in_dummy_function, we do have a cfun but current_function_decl is
- NULL. We also allow pushing NULL cfun and subsequently changing
- current_function_decl to something else and have both restored by
- pop_cfun. */
- gcc_checking_assert (in_dummy_function
- || !cfun
- || current_function_decl == cfun->decl);
- set_cfun (new_cfun);
- current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
-}
-
-/* Return value of funcdef and increase it. */
-int
-get_next_funcdef_no (void)
-{
- return funcdef_no++;
-}
-
-/* Return value of funcdef. */
-int
-get_last_funcdef_no (void)
-{
- return funcdef_no;
-}
-
-/* Allocate a function structure for FNDECL and set its contents
- to the defaults. Set cfun to the newly-allocated object.
- Some of the helper functions invoked during initialization assume
- that cfun has already been set. Therefore, assign the new object
- directly into cfun and invoke the back end hook explicitly at the
- very end, rather than initializing a temporary and calling set_cfun
- on it.
-
- ABSTRACT_P is true if this is a function that will never be seen by
- the middle-end. Such functions are front-end concepts (like C++
- function templates) that do not correspond directly to functions
- placed in object files. */
-
-void
-allocate_struct_function (tree fndecl, bool abstract_p)
-{
- tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
-
- cfun = ggc_alloc_cleared_function ();
-
- init_eh_for_function ();
-
- if (init_machine_status)
- cfun->machine = (*init_machine_status) ();
-
-#ifdef OVERRIDE_ABI_FORMAT
- OVERRIDE_ABI_FORMAT (fndecl);
-#endif
-
- if (fndecl != NULL_TREE)
- {
- DECL_STRUCT_FUNCTION (fndecl) = cfun;
- cfun->decl = fndecl;
- current_function_funcdef_no = get_next_funcdef_no ();
- }
-
- invoke_set_current_function_hook (fndecl);
-
- if (fndecl != NULL_TREE)
- {
- tree result = DECL_RESULT (fndecl);
- if (!abstract_p && aggregate_value_p (result, fndecl))
- {
-#ifdef PCC_STATIC_STRUCT_RETURN
- cfun->returns_pcc_struct = 1;
-#endif
- cfun->returns_struct = 1;
- }
-
- cfun->stdarg = stdarg_p (fntype);
-
- /* Assume all registers in stdarg functions need to be saved. */
- cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
- cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
-
- /* ??? This could be set on a per-function basis by the front-end
- but is this worth the hassle? */
- cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
- }
-}
-
-/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
- instead of just setting it. */
-
-void
-push_struct_function (tree fndecl)
-{
- /* When in_dummy_function we might be in the middle of a pop_cfun and
- current_function_decl and cfun may not match. */
- gcc_assert (in_dummy_function
- || (!cfun && !current_function_decl)
- || (cfun && current_function_decl == cfun->decl));
- cfun_stack.safe_push (cfun);
- current_function_decl = fndecl;
- allocate_struct_function (fndecl, false);
-}
-
-/* Reset crtl and other non-struct-function variables to defaults as
- appropriate for emitting rtl at the start of a function. */
-
-static void
-prepare_function_start (void)
-{
- gcc_assert (!crtl->emit.x_last_insn);
- init_temp_slots ();
- init_emit ();
- init_varasm_status ();
- init_expr ();
- default_rtl_profile ();
-
- if (flag_stack_usage_info)
- {
- cfun->su = ggc_alloc_cleared_stack_usage ();
- cfun->su->static_stack_size = -1;
- }
-
- cse_not_expected = ! optimize;
-
- /* Caller save not needed yet. */
- caller_save_needed = 0;
-
- /* We haven't done register allocation yet. */
- reg_renumber = 0;
-
- /* Indicate that we have not instantiated virtual registers yet. */
- virtuals_instantiated = 0;
-
- /* Indicate that we want CONCATs now. */
- generating_concat_p = 1;
-
- /* Indicate we have no need of a frame pointer yet. */
- frame_pointer_needed = 0;
-}
-
-/* Initialize the rtl expansion mechanism so that we can do simple things
- like generate sequences. This is used to provide a context during global
- initialization of some passes. You must call expand_dummy_function_end
- to exit this context. */
-
-void
-init_dummy_function_start (void)
-{
- gcc_assert (!in_dummy_function);
- in_dummy_function = true;
- push_struct_function (NULL_TREE);
- prepare_function_start ();
-}
-
-/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
- and initialize static variables for generating RTL for the statements
- of the function. */
-
-void
-init_function_start (tree subr)
-{
- if (subr && DECL_STRUCT_FUNCTION (subr))
- set_cfun (DECL_STRUCT_FUNCTION (subr));
- else
- allocate_struct_function (subr, false);
- prepare_function_start ();
- decide_function_section (subr);
-
- /* Warn if this value is an aggregate type,
- regardless of which calling convention we are using for it. */
- if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
- warning (OPT_Waggregate_return, "function returns an aggregate");
-}
-
-
-void
-expand_main_function (void)
-{
-#if (defined(INVOKE__main) \
- || (!defined(HAS_INIT_SECTION) \
- && !defined(INIT_SECTION_ASM_OP) \
- && !defined(INIT_ARRAY_SECTION_ASM_OP)))
- emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
-#endif
-}
-
-/* Expand code to initialize the stack_protect_guard. This is invoked at
- the beginning of a function to be protected. */
-
-#ifndef HAVE_stack_protect_set
-# define HAVE_stack_protect_set 0
-# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
-#endif
-
-void
-stack_protect_prologue (void)
-{
- tree guard_decl = targetm.stack_protect_guard ();
- rtx x, y;
-
- x = expand_normal (crtl->stack_protect_guard);
- y = expand_normal (guard_decl);
-
- /* Allow the target to copy from Y to X without leaking Y into a
- register. */
- if (HAVE_stack_protect_set)
- {
- rtx insn = gen_stack_protect_set (x, y);
- if (insn)
- {
- emit_insn (insn);
- return;
- }
- }
-
- /* Otherwise do a straight move. */
- emit_move_insn (x, y);
-}
-
-/* Expand code to verify the stack_protect_guard. This is invoked at
- the end of a function to be protected. */
-
-#ifndef HAVE_stack_protect_test
-# define HAVE_stack_protect_test 0
-# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
-#endif
-
-void
-stack_protect_epilogue (void)
-{
- tree guard_decl = targetm.stack_protect_guard ();
- rtx label = gen_label_rtx ();
- rtx x, y, tmp;
-
- x = expand_normal (crtl->stack_protect_guard);
- y = expand_normal (guard_decl);
-
- /* Allow the target to compare Y with X without leaking either into
- a register. */
- switch (HAVE_stack_protect_test != 0)
- {
- case 1:
- tmp = gen_stack_protect_test (x, y, label);
- if (tmp)
- {
- emit_insn (tmp);
- break;
- }
- /* FALLTHRU */
-
- default:
- emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
- break;
- }
-
- /* The noreturn predictor has been moved to the tree level. The rtl-level
- predictors estimate this branch about 20%, which isn't enough to get
- things moved out of line. Since this is the only extant case of adding
- a noreturn function at the rtl level, it doesn't seem worth doing ought
- except adding the prediction by hand. */
- tmp = get_last_insn ();
- if (JUMP_P (tmp))
- predict_insn_def (tmp, PRED_NORETURN, TAKEN);
-
- expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
- free_temp_slots ();
- emit_label (label);
-}
-
-/* Start the RTL for a new function, and set variables used for
- emitting RTL.
- SUBR is the FUNCTION_DECL node.
- PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
- the function's parameters, which must be run at any return statement. */
-
-void
-expand_function_start (tree subr)
-{
- /* Make sure volatile mem refs aren't considered
- valid operands of arithmetic insns. */
- init_recog_no_volatile ();
-
- crtl->profile
- = (profile_flag
- && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
-
- crtl->limit_stack
- = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
-
- /* Make the label for return statements to jump to. Do not special
- case machines with special return instructions -- they will be
- handled later during jump, ifcvt, or epilogue creation. */
- return_label = gen_label_rtx ();
-
- /* Initialize rtx used to return the value. */
- /* Do this before assign_parms so that we copy the struct value address
- before any library calls that assign parms might generate. */
-
- /* Decide whether to return the value in memory or in a register. */
- if (aggregate_value_p (DECL_RESULT (subr), subr))
- {
- /* Returning something that won't go in a register. */
- rtx value_address = 0;
-
-#ifdef PCC_STATIC_STRUCT_RETURN
- if (cfun->returns_pcc_struct)
- {
- int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
- value_address = assemble_static_space (size);
- }
- else
-#endif
- {
- rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
- /* Expect to be passed the address of a place to store the value.
- If it is passed as an argument, assign_parms will take care of
- it. */
- if (sv)
- {
- value_address = gen_reg_rtx (Pmode);
- emit_move_insn (value_address, sv);
- }
- }
- if (value_address)
- {
- rtx x = value_address;
- if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
- {
- x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
- set_mem_attributes (x, DECL_RESULT (subr), 1);
- }
- SET_DECL_RTL (DECL_RESULT (subr), x);
- }
- }
- else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
- /* If return mode is void, this decl rtl should not be used. */
- SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
- else
- {
- /* Compute the return values into a pseudo reg, which we will copy
- into the true return register after the cleanups are done. */
- tree return_type = TREE_TYPE (DECL_RESULT (subr));
- if (TYPE_MODE (return_type) != BLKmode
- && targetm.calls.return_in_msb (return_type))
- /* expand_function_end will insert the appropriate padding in
- this case. Use the return value's natural (unpadded) mode
- within the function proper. */
- SET_DECL_RTL (DECL_RESULT (subr),
- gen_reg_rtx (TYPE_MODE (return_type)));
- else
- {
- /* In order to figure out what mode to use for the pseudo, we
- figure out what the mode of the eventual return register will
- actually be, and use that. */
- rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
-
- /* Structures that are returned in registers are not
- aggregate_value_p, so we may see a PARALLEL or a REG. */
- if (REG_P (hard_reg))
- SET_DECL_RTL (DECL_RESULT (subr),
- gen_reg_rtx (GET_MODE (hard_reg)));
- else
- {
- gcc_assert (GET_CODE (hard_reg) == PARALLEL);
- SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
- }
- }
-
- /* Set DECL_REGISTER flag so that expand_function_end will copy the
- result to the real return register(s). */
- DECL_REGISTER (DECL_RESULT (subr)) = 1;
- }
-
- /* Initialize rtx for parameters and local variables.
- In some cases this requires emitting insns. */
- assign_parms (subr);
-
- /* If function gets a static chain arg, store it. */
- if (cfun->static_chain_decl)
- {
- tree parm = cfun->static_chain_decl;
- rtx local, chain, insn;
-
- local = gen_reg_rtx (Pmode);
- chain = targetm.calls.static_chain (current_function_decl, true);
-
- set_decl_incoming_rtl (parm, chain, false);
- SET_DECL_RTL (parm, local);
- mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
-
- insn = emit_move_insn (local, chain);
-
- /* Mark the register as eliminable, similar to parameters. */
- if (MEM_P (chain)
- && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
- set_dst_reg_note (insn, REG_EQUIV, chain, local);
- }
-
- /* If the function receives a non-local goto, then store the
- bits we need to restore the frame pointer. */
- if (cfun->nonlocal_goto_save_area)
- {
- tree t_save;
- rtx r_save;
-
- tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
- gcc_assert (DECL_RTL_SET_P (var));
-
- t_save = build4 (ARRAY_REF,
- TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
- cfun->nonlocal_goto_save_area,
- integer_zero_node, NULL_TREE, NULL_TREE);
- r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
- gcc_assert (GET_MODE (r_save) == Pmode);
-
- emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
- update_nonlocal_goto_save_area ();
- }
-
- /* The following was moved from init_function_start.
- The move is supposed to make sdb output more accurate. */
- /* Indicate the beginning of the function body,
- as opposed to parm setup. */
- emit_note (NOTE_INSN_FUNCTION_BEG);
-
- gcc_assert (NOTE_P (get_last_insn ()));
-
- parm_birth_insn = get_last_insn ();
-
- if (crtl->profile)
- {
-#ifdef PROFILE_HOOK
- PROFILE_HOOK (current_function_funcdef_no);
-#endif
- }
-
- /* If we are doing generic stack checking, the probe should go here. */
- if (flag_stack_check == GENERIC_STACK_CHECK)
- stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
-}
-
-/* Undo the effects of init_dummy_function_start. */
-void
-expand_dummy_function_end (void)
-{
- gcc_assert (in_dummy_function);
-
- /* End any sequences that failed to be closed due to syntax errors. */
- while (in_sequence_p ())
- end_sequence ();
-
- /* Outside function body, can't compute type's actual size
- until next function's body starts. */
-
- free_after_parsing (cfun);
- free_after_compilation (cfun);
- pop_cfun ();
- in_dummy_function = false;
-}
-
-/* Call DOIT for each hard register used as a return value from
- the current function. */
-
-void
-diddle_return_value (void (*doit) (rtx, void *), void *arg)
-{
- rtx outgoing = crtl->return_rtx;
-
- if (! outgoing)
- return;
-
- if (REG_P (outgoing))
- (*doit) (outgoing, arg);
- else if (GET_CODE (outgoing) == PARALLEL)
- {
- int i;
-
- for (i = 0; i < XVECLEN (outgoing, 0); i++)
- {
- rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
-
- if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
- (*doit) (x, arg);
- }
- }
-}
-
-static void
-do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
-{
- emit_clobber (reg);
-}
-
-void
-clobber_return_register (void)
-{
- diddle_return_value (do_clobber_return_reg, NULL);
-
- /* In case we do use pseudo to return value, clobber it too. */
- if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
- {
- tree decl_result = DECL_RESULT (current_function_decl);
- rtx decl_rtl = DECL_RTL (decl_result);
- if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
- {
- do_clobber_return_reg (decl_rtl, NULL);
- }
- }
-}
-
-static void
-do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
-{
- emit_use (reg);
-}
-
-static void
-use_return_register (void)
-{
- diddle_return_value (do_use_return_reg, NULL);
-}
-
-/* Possibly warn about unused parameters. */
-void
-do_warn_unused_parameter (tree fn)
-{
- tree decl;
-
- for (decl = DECL_ARGUMENTS (fn);
- decl; decl = DECL_CHAIN (decl))
- if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
- && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
- && !TREE_NO_WARNING (decl))
- warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
-}
-
-static GTY(()) rtx initial_trampoline;
-
-/* Generate RTL for the end of the current function. */
-
-void
-expand_function_end (void)
-{
- rtx clobber_after;
-
- /* If arg_pointer_save_area was referenced only from a nested
- function, we will not have initialized it yet. Do that now. */
- if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
- get_arg_pointer_save_area ();
-
- /* If we are doing generic stack checking and this function makes calls,
- do a stack probe at the start of the function to ensure we have enough
- space for another stack frame. */
- if (flag_stack_check == GENERIC_STACK_CHECK)
- {
- rtx insn, seq;
-
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if (CALL_P (insn))
- {
- rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
- start_sequence ();
- if (STACK_CHECK_MOVING_SP)
- anti_adjust_stack_and_probe (max_frame_size, true);
- else
- probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
- seq = get_insns ();
- end_sequence ();
- set_insn_locations (seq, prologue_location);
- emit_insn_before (seq, stack_check_probe_note);
- break;
- }
- }
-
- /* End any sequences that failed to be closed due to syntax errors. */
- while (in_sequence_p ())
- end_sequence ();
-
- clear_pending_stack_adjust ();
- do_pending_stack_adjust ();
-
- /* Output a linenumber for the end of the function.
- SDB depends on this. */
- set_curr_insn_location (input_location);
-
- /* Before the return label (if any), clobber the return
- registers so that they are not propagated live to the rest of
- the function. This can only happen with functions that drop
- through; if there had been a return statement, there would
- have either been a return rtx, or a jump to the return label.
-
- We delay actual code generation after the current_function_value_rtx
- is computed. */
- clobber_after = get_last_insn ();
-
- /* Output the label for the actual return from the function. */
- emit_label (return_label);
-
- if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
- {
- /* Let except.c know where it should emit the call to unregister
- the function context for sjlj exceptions. */
- if (flag_exceptions)
- sjlj_emit_function_exit_after (get_last_insn ());
- }
- else
- {
- /* We want to ensure that instructions that may trap are not
- moved into the epilogue by scheduling, because we don't
- always emit unwind information for the epilogue. */
- if (cfun->can_throw_non_call_exceptions)
- emit_insn (gen_blockage ());
- }
-
- /* If this is an implementation of throw, do what's necessary to
- communicate between __builtin_eh_return and the epilogue. */
- expand_eh_return ();
-
- /* If scalar return value was computed in a pseudo-reg, or was a named
- return value that got dumped to the stack, copy that to the hard
- return register. */
- if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
- {
- tree decl_result = DECL_RESULT (current_function_decl);
- rtx decl_rtl = DECL_RTL (decl_result);
-
- if (REG_P (decl_rtl)
- ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
- : DECL_REGISTER (decl_result))
- {
- rtx real_decl_rtl = crtl->return_rtx;
-
- /* This should be set in assign_parms. */
- gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
-
- /* If this is a BLKmode structure being returned in registers,
- then use the mode computed in expand_return. Note that if
- decl_rtl is memory, then its mode may have been changed,
- but that crtl->return_rtx has not. */
- if (GET_MODE (real_decl_rtl) == BLKmode)
- PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
-
- /* If a non-BLKmode return value should be padded at the least
- significant end of the register, shift it left by the appropriate
- amount. BLKmode results are handled using the group load/store
- machinery. */
- if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
- && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
- {
- emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
- REGNO (real_decl_rtl)),
- decl_rtl);
- shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
- }
- /* If a named return value dumped decl_return to memory, then
- we may need to re-do the PROMOTE_MODE signed/unsigned
- extension. */
- else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
- {
- int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
- promote_function_mode (TREE_TYPE (decl_result),
- GET_MODE (decl_rtl), &unsignedp,
- TREE_TYPE (current_function_decl), 1);
-
- convert_move (real_decl_rtl, decl_rtl, unsignedp);
- }
- else if (GET_CODE (real_decl_rtl) == PARALLEL)
- {
- /* If expand_function_start has created a PARALLEL for decl_rtl,
- move the result to the real return registers. Otherwise, do
- a group load from decl_rtl for a named return. */
- if (GET_CODE (decl_rtl) == PARALLEL)
- emit_group_move (real_decl_rtl, decl_rtl);
- else
- emit_group_load (real_decl_rtl, decl_rtl,
- TREE_TYPE (decl_result),
- int_size_in_bytes (TREE_TYPE (decl_result)));
- }
- /* In the case of complex integer modes smaller than a word, we'll
- need to generate some non-trivial bitfield insertions. Do that
- on a pseudo and not the hard register. */
- else if (GET_CODE (decl_rtl) == CONCAT
- && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
- && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
- {
- int old_generating_concat_p;
- rtx tmp;
-
- old_generating_concat_p = generating_concat_p;
- generating_concat_p = 0;
- tmp = gen_reg_rtx (GET_MODE (decl_rtl));
- generating_concat_p = old_generating_concat_p;
-
- emit_move_insn (tmp, decl_rtl);
- emit_move_insn (real_decl_rtl, tmp);
- }
- else
- emit_move_insn (real_decl_rtl, decl_rtl);
- }
- }
-
- /* If returning a structure, arrange to return the address of the value
- in a place where debuggers expect to find it.
-
- If returning a structure PCC style,
- the caller also depends on this value.
- And cfun->returns_pcc_struct is not necessarily set. */
- if (cfun->returns_struct
- || cfun->returns_pcc_struct)
- {
- rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
- tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
- rtx outgoing;
-
- if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
- type = TREE_TYPE (type);
- else
- value_address = XEXP (value_address, 0);
-
- outgoing = targetm.calls.function_value (build_pointer_type (type),
- current_function_decl, true);
-
- /* Mark this as a function return value so integrate will delete the
- assignment and USE below when inlining this function. */
- REG_FUNCTION_VALUE_P (outgoing) = 1;
-
- /* The address may be ptr_mode and OUTGOING may be Pmode. */
- value_address = convert_memory_address (GET_MODE (outgoing),
- value_address);
-
- emit_move_insn (outgoing, value_address);
-
- /* Show return register used to hold result (in this case the address
- of the result. */
- crtl->return_rtx = outgoing;
- }
-
- /* Emit the actual code to clobber return register. */
- {
- rtx seq;
-
- start_sequence ();
- clobber_return_register ();
- seq = get_insns ();
- end_sequence ();
-
- emit_insn_after (seq, clobber_after);
- }
-
- /* Output the label for the naked return from the function. */
- if (naked_return_label)
- emit_label (naked_return_label);
-
- /* @@@ This is a kludge. We want to ensure that instructions that
- may trap are not moved into the epilogue by scheduling, because
- we don't always emit unwind information for the epilogue. */
- if (cfun->can_throw_non_call_exceptions
- && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
- emit_insn (gen_blockage ());
-
- /* If stack protection is enabled for this function, check the guard. */
- if (crtl->stack_protect_guard)
- stack_protect_epilogue ();
-
- /* If we had calls to alloca, and this machine needs
- an accurate stack pointer to exit the function,
- insert some code to save and restore the stack pointer. */
- if (! EXIT_IGNORE_STACK
- && cfun->calls_alloca)
- {
- rtx tem = 0, seq;
-
- start_sequence ();
- emit_stack_save (SAVE_FUNCTION, &tem);
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, parm_birth_insn);
-
- emit_stack_restore (SAVE_FUNCTION, tem);
- }
-
- /* ??? This should no longer be necessary since stupid is no longer with
- us, but there are some parts of the compiler (eg reload_combine, and
- sh mach_dep_reorg) that still try and compute their own lifetime info
- instead of using the general framework. */
- use_return_register ();
-}
-
-rtx
-get_arg_pointer_save_area (void)
-{
- rtx ret = arg_pointer_save_area;
-
- if (! ret)
- {
- ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
- arg_pointer_save_area = ret;
- }
-
- if (! crtl->arg_pointer_save_area_init)
- {
- rtx seq;
-
- /* Save the arg pointer at the beginning of the function. The
- generated stack slot may not be a valid memory address, so we
- have to check it and fix it if necessary. */
- start_sequence ();
- emit_move_insn (validize_mem (ret),
- crtl->args.internal_arg_pointer);
- seq = get_insns ();
- end_sequence ();
-
- push_topmost_sequence ();
- emit_insn_after (seq, entry_of_function ());
- pop_topmost_sequence ();
-
- crtl->arg_pointer_save_area_init = true;
- }
-
- return ret;
-}
-
-/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
- for the first time. */
-
-static void
-record_insns (rtx insns, rtx end, htab_t *hashp)
-{
- rtx tmp;
- htab_t hash = *hashp;
-
- if (hash == NULL)
- *hashp = hash
- = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
-
- for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
- {
- void **slot = htab_find_slot (hash, tmp, INSERT);
- gcc_assert (*slot == NULL);
- *slot = tmp;
- }
-}
-
-/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
- basic block, splitting or peepholes. If INSN is a prologue or epilogue
- insn, then record COPY as well. */
-
-void
-maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
-{
- htab_t hash;
- void **slot;
-
- hash = epilogue_insn_hash;
- if (!hash || !htab_find (hash, insn))
- {
- hash = prologue_insn_hash;
- if (!hash || !htab_find (hash, insn))
- return;
- }
-
- slot = htab_find_slot (hash, copy, INSERT);
- gcc_assert (*slot == NULL);
- *slot = copy;
-}
-
-/* Set the location of the insn chain starting at INSN to LOC. */
-static void
-set_insn_locations (rtx insn, int loc)
-{
- while (insn != NULL_RTX)
- {
- if (INSN_P (insn))
- INSN_LOCATION (insn) = loc;
- insn = NEXT_INSN (insn);
- }
-}
-
-/* Determine if any INSNs in HASH are, or are part of, INSN. Because
- we can be running after reorg, SEQUENCE rtl is possible. */
-
-static bool
-contains (const_rtx insn, htab_t hash)
-{
- if (hash == NULL)
- return false;
-
- if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
- {
- int i;
- for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
- if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
- return true;
- return false;
- }
-
- return htab_find (hash, insn) != NULL;
-}
-
-int
-prologue_epilogue_contains (const_rtx insn)
-{
- if (contains (insn, prologue_insn_hash))
- return 1;
- if (contains (insn, epilogue_insn_hash))
- return 1;
- return 0;
-}
-
-#ifdef HAVE_simple_return
-
-/* Return true if INSN requires the stack frame to be set up.
- PROLOGUE_USED contains the hard registers used in the function
- prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
- prologue to set up for the function. */
-bool
-requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
- HARD_REG_SET set_up_by_prologue)
-{
- df_ref *df_rec;
- HARD_REG_SET hardregs;
- unsigned regno;
-
- if (CALL_P (insn))
- return !SIBLING_CALL_P (insn);
-
- /* We need a frame to get the unique CFA expected by the unwinder. */
- if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
- return true;
-
- CLEAR_HARD_REG_SET (hardregs);
- for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
- {
- rtx dreg = DF_REF_REG (*df_rec);
-
- if (!REG_P (dreg))
- continue;
-
- add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
- REGNO (dreg));
- }
- if (hard_reg_set_intersect_p (hardregs, prologue_used))
- return true;
- AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- if (TEST_HARD_REG_BIT (hardregs, regno)
- && df_regs_ever_live_p (regno))
- return true;
-
- for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
- {
- rtx reg = DF_REF_REG (*df_rec);
-
- if (!REG_P (reg))
- continue;
-
- add_to_hard_reg_set (&hardregs, GET_MODE (reg),
- REGNO (reg));
- }
- if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
- return true;
-
- return false;
-}
-
-/* See whether BB has a single successor that uses [REGNO, END_REGNO),
- and if BB is its only predecessor. Return that block if so,
- otherwise return null. */
-
-static basic_block
-next_block_for_reg (basic_block bb, int regno, int end_regno)
-{
- edge e, live_edge;
- edge_iterator ei;
- bitmap live;
- int i;
-
- live_edge = NULL;
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- live = df_get_live_in (e->dest);
- for (i = regno; i < end_regno; i++)
- if (REGNO_REG_SET_P (live, i))
- {
- if (live_edge && live_edge != e)
- return NULL;
- live_edge = e;
- }
- }
-
- /* We can sometimes encounter dead code. Don't try to move it
- into the exit block. */
- if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
- return NULL;
-
- /* Reject targets of abnormal edges. This is needed for correctness
- on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
- exception edges even though it is generally treated as call-saved
- for the majority of the compilation. Moving across abnormal edges
- isn't going to be interesting for shrink-wrap usage anyway. */
- if (live_edge->flags & EDGE_ABNORMAL)
- return NULL;
-
- if (EDGE_COUNT (live_edge->dest->preds) > 1)
- return NULL;
-
- return live_edge->dest;
-}
-
-/* Try to move INSN from BB to a successor. Return true on success.
- USES and DEFS are the set of registers that are used and defined
- after INSN in BB. */
-
-static bool
-move_insn_for_shrink_wrap (basic_block bb, rtx insn,
- const HARD_REG_SET uses,
- const HARD_REG_SET defs)
-{
- rtx set, src, dest;
- bitmap live_out, live_in, bb_uses, bb_defs;
- unsigned int i, dregno, end_dregno, sregno, end_sregno;
- basic_block next_block;
-
- /* Look for a simple register copy. */
- set = single_set (insn);
- if (!set)
- return false;
- src = SET_SRC (set);
- dest = SET_DEST (set);
- if (!REG_P (dest) || !REG_P (src))
- return false;
-
- /* Make sure that the source register isn't defined later in BB. */
- sregno = REGNO (src);
- end_sregno = END_REGNO (src);
- if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
- return false;
-
- /* Make sure that the destination register isn't referenced later in BB. */
- dregno = REGNO (dest);
- end_dregno = END_REGNO (dest);
- if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
- || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
- return false;
-
- /* See whether there is a successor block to which we could move INSN. */
- next_block = next_block_for_reg (bb, dregno, end_dregno);
- if (!next_block)
- return false;
-
- /* At this point we are committed to moving INSN, but let's try to
- move it as far as we can. */
- do
- {
- live_out = df_get_live_out (bb);
- live_in = df_get_live_in (next_block);
- bb = next_block;
-
- /* Check whether BB uses DEST or clobbers DEST. We need to add
- INSN to BB if so. Either way, DEST is no longer live on entry,
- except for any part that overlaps SRC (next loop). */
- bb_uses = &DF_LR_BB_INFO (bb)->use;
- bb_defs = &DF_LR_BB_INFO (bb)->def;
- for (i = dregno; i < end_dregno; i++)
- {
- if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
- next_block = NULL;
- CLEAR_REGNO_REG_SET (live_out, i);
- CLEAR_REGNO_REG_SET (live_in, i);
- }
-
- /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
- Either way, SRC is now live on entry. */
- for (i = sregno; i < end_sregno; i++)
- {
- if (REGNO_REG_SET_P (bb_defs, i))
- next_block = NULL;
- SET_REGNO_REG_SET (live_out, i);
- SET_REGNO_REG_SET (live_in, i);
- }
-
- /* If we don't need to add the move to BB, look for a single
- successor block. */
- if (next_block)
- next_block = next_block_for_reg (next_block, dregno, end_dregno);
- }
- while (next_block);
-
- /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
- (next loop). */
- for (i = dregno; i < end_dregno; i++)
- {
- CLEAR_REGNO_REG_SET (bb_uses, i);
- SET_REGNO_REG_SET (bb_defs, i);
- }
-
- /* BB now uses SRC. */
- for (i = sregno; i < end_sregno; i++)
- SET_REGNO_REG_SET (bb_uses, i);
-
- emit_insn_after (PATTERN (insn), bb_note (bb));
- delete_insn (insn);
- return true;
-}
-
-/* Look for register copies in the first block of the function, and move
- them down into successor blocks if the register is used only on one
- path. This exposes more opportunities for shrink-wrapping. These
- kinds of sets often occur when incoming argument registers are moved
- to call-saved registers because their values are live across one or
- more calls during the function. */
-
-static void
-prepare_shrink_wrap (basic_block entry_block)
-{
- rtx insn, curr, x;
- HARD_REG_SET uses, defs;
- df_ref *ref;
-
- CLEAR_HARD_REG_SET (uses);
- CLEAR_HARD_REG_SET (defs);
- FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
- if (NONDEBUG_INSN_P (insn)
- && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
- {
- /* Add all defined registers to DEFs. */
- for (ref = DF_INSN_DEFS (insn); *ref; ref++)
- {
- x = DF_REF_REG (*ref);
- if (REG_P (x) && HARD_REGISTER_P (x))
- SET_HARD_REG_BIT (defs, REGNO (x));
- }
-
- /* Add all used registers to USESs. */
- for (ref = DF_INSN_USES (insn); *ref; ref++)
- {
- x = DF_REF_REG (*ref);
- if (REG_P (x) && HARD_REGISTER_P (x))
- SET_HARD_REG_BIT (uses, REGNO (x));
- }
- }
-}
-
-#endif
-
-#ifdef HAVE_return
-/* Insert use of return register before the end of BB. */
-
-static void
-emit_use_return_register_into_block (basic_block bb)
-{
- rtx seq;
- start_sequence ();
- use_return_register ();
- seq = get_insns ();
- end_sequence ();
- emit_insn_before (seq, BB_END (bb));
-}
-
-
-/* Create a return pattern, either simple_return or return, depending on
- simple_p. */
-
-static rtx
-gen_return_pattern (bool simple_p)
-{
-#ifdef HAVE_simple_return
- return simple_p ? gen_simple_return () : gen_return ();
-#else
- gcc_assert (!simple_p);
- return gen_return ();
-#endif
-}
-
-/* Insert an appropriate return pattern at the end of block BB. This
- also means updating block_for_insn appropriately. SIMPLE_P is
- the same as in gen_return_pattern and passed to it. */
-
-static void
-emit_return_into_block (bool simple_p, basic_block bb)
-{
- rtx jump, pat;
- jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
- pat = PATTERN (jump);
- if (GET_CODE (pat) == PARALLEL)
- pat = XVECEXP (pat, 0, 0);
- gcc_assert (ANY_RETURN_P (pat));
- JUMP_LABEL (jump) = pat;
-}
-#endif
-
-/* Set JUMP_LABEL for a return insn. */
-
-void
-set_return_jump_label (rtx returnjump)
-{
- rtx pat = PATTERN (returnjump);
- if (GET_CODE (pat) == PARALLEL)
- pat = XVECEXP (pat, 0, 0);
- if (ANY_RETURN_P (pat))
- JUMP_LABEL (returnjump) = pat;
- else
- JUMP_LABEL (returnjump) = ret_rtx;
-}
-
-#ifdef HAVE_simple_return
-/* Create a copy of BB instructions and insert at BEFORE. Redirect
- preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
-static void
-dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
- bitmap_head *need_prologue)
-{
- edge_iterator ei;
- edge e;
- rtx insn = BB_END (bb);
-
- /* We know BB has a single successor, so there is no need to copy a
- simple jump at the end of BB. */
- if (simplejump_p (insn))
- insn = PREV_INSN (insn);
-
- start_sequence ();
- duplicate_insn_chain (BB_HEAD (bb), insn);
- if (dump_file)
- {
- unsigned count = 0;
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if (active_insn_p (insn))
- ++count;
- fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
- bb->index, copy_bb->index, count);
- }
- insn = get_insns ();
- end_sequence ();
- emit_insn_before (insn, before);
-
- /* Redirect all the paths that need no prologue into copy_bb. */
- for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
- if (!bitmap_bit_p (need_prologue, e->src->index))
- {
- int freq = EDGE_FREQUENCY (e);
- copy_bb->count += e->count;
- copy_bb->frequency += EDGE_FREQUENCY (e);
- e->dest->count -= e->count;
- if (e->dest->count < 0)
- e->dest->count = 0;
- e->dest->frequency -= freq;
- if (e->dest->frequency < 0)
- e->dest->frequency = 0;
- redirect_edge_and_branch_force (e, copy_bb);
- continue;
- }
- else
- ei_next (&ei);
-}
-#endif
-
-#if defined (HAVE_return) || defined (HAVE_simple_return)
-/* Return true if there are any active insns between HEAD and TAIL. */
-static bool
-active_insn_between (rtx head, rtx tail)
-{
- while (tail)
- {
- if (active_insn_p (tail))
- return true;
- if (tail == head)
- return false;
- tail = PREV_INSN (tail);
- }
- return false;
-}
-
-/* LAST_BB is a block that exits, and empty of active instructions.
- Examine its predecessors for jumps that can be converted to
- (conditional) returns. */
-static vec<edge>
-convert_jumps_to_returns (basic_block last_bb, bool simple_p,
- vec<edge> unconverted ATTRIBUTE_UNUSED)
-{
- int i;
- basic_block bb;
- rtx label;
- edge_iterator ei;
- edge e;
- vec<basic_block> src_bbs;
-
- src_bbs.create (EDGE_COUNT (last_bb->preds));
- FOR_EACH_EDGE (e, ei, last_bb->preds)
- if (e->src != ENTRY_BLOCK_PTR)
- src_bbs.quick_push (e->src);
-
- label = BB_HEAD (last_bb);
-
- FOR_EACH_VEC_ELT (src_bbs, i, bb)
- {
- rtx jump = BB_END (bb);
-
- if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
- continue;
-
- e = find_edge (bb, last_bb);
-
- /* If we have an unconditional jump, we can replace that
- with a simple return instruction. */
- if (simplejump_p (jump))
- {
- /* The use of the return register might be present in the exit
- fallthru block. Either:
- - removing the use is safe, and we should remove the use in
- the exit fallthru block, or
- - removing the use is not safe, and we should add it here.
- For now, we conservatively choose the latter. Either of the
- 2 helps in crossjumping. */
- emit_use_return_register_into_block (bb);
-
- emit_return_into_block (simple_p, bb);
- delete_insn (jump);
- }
-
- /* If we have a conditional jump branching to the last
- block, we can try to replace that with a conditional
- return instruction. */
- else if (condjump_p (jump))
- {
- rtx dest;
-
- if (simple_p)
- dest = simple_return_rtx;
- else
- dest = ret_rtx;
- if (!redirect_jump (jump, dest, 0))
- {
-#ifdef HAVE_simple_return
- if (simple_p)
- {
- if (dump_file)
- fprintf (dump_file,
- "Failed to redirect bb %d branch.\n", bb->index);
- unconverted.safe_push (e);
- }
-#endif
- continue;
- }
-
- /* See comment in simplejump_p case above. */
- emit_use_return_register_into_block (bb);
-
- /* If this block has only one successor, it both jumps
- and falls through to the fallthru block, so we can't
- delete the edge. */
- if (single_succ_p (bb))
- continue;
- }
- else
- {
-#ifdef HAVE_simple_return
- if (simple_p)
- {
- if (dump_file)
- fprintf (dump_file,
- "Failed to redirect bb %d branch.\n", bb->index);
- unconverted.safe_push (e);
- }
-#endif
- continue;
- }
-
- /* Fix up the CFG for the successful change we just made. */
- redirect_edge_succ (e, EXIT_BLOCK_PTR);
- e->flags &= ~EDGE_CROSSING;
- }
- src_bbs.release ();
- return unconverted;
-}
-
-/* Emit a return insn for the exit fallthru block. */
-static basic_block
-emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
-{
- basic_block last_bb = exit_fallthru_edge->src;
-
- if (JUMP_P (BB_END (last_bb)))
- {
- last_bb = split_edge (exit_fallthru_edge);
- exit_fallthru_edge = single_succ_edge (last_bb);
- }
- emit_barrier_after (BB_END (last_bb));
- emit_return_into_block (simple_p, last_bb);
- exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
- return last_bb;
-}
-#endif
-
-
-/* Generate the prologue and epilogue RTL if the machine supports it. Thread
- this into place with notes indicating where the prologue ends and where
- the epilogue begins. Update the basic block information when possible.
-
- Notes on epilogue placement:
- There are several kinds of edges to the exit block:
- * a single fallthru edge from LAST_BB
- * possibly, edges from blocks containing sibcalls
- * possibly, fake edges from infinite loops
-
- The epilogue is always emitted on the fallthru edge from the last basic
- block in the function, LAST_BB, into the exit block.
-
- If LAST_BB is empty except for a label, it is the target of every
- other basic block in the function that ends in a return. If a
- target has a return or simple_return pattern (possibly with
- conditional variants), these basic blocks can be changed so that a
- return insn is emitted into them, and their target is adjusted to
- the real exit block.
-
- Notes on shrink wrapping: We implement a fairly conservative
- version of shrink-wrapping rather than the textbook one. We only
- generate a single prologue and a single epilogue. This is
- sufficient to catch a number of interesting cases involving early
- exits.
-
- First, we identify the blocks that require the prologue to occur before
- them. These are the ones that modify a call-saved register, or reference
- any of the stack or frame pointer registers. To simplify things, we then
- mark everything reachable from these blocks as also requiring a prologue.
- This takes care of loops automatically, and avoids the need to examine
- whether MEMs reference the frame, since it is sufficient to check for
- occurrences of the stack or frame pointer.
-
- We then compute the set of blocks for which the need for a prologue
- is anticipatable (borrowing terminology from the shrink-wrapping
- description in Muchnick's book). These are the blocks which either
- require a prologue themselves, or those that have only successors
- where the prologue is anticipatable. The prologue needs to be
- inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
- is not. For the moment, we ensure that only one such edge exists.
-
- The epilogue is placed as described above, but we make a
- distinction between inserting return and simple_return patterns
- when modifying other blocks that end in a return. Blocks that end
- in a sibcall omit the sibcall_epilogue if the block is not in
- ANTIC. */
-
-static void
-thread_prologue_and_epilogue_insns (void)
-{
- bool inserted;
-#ifdef HAVE_simple_return
- vec<edge> unconverted_simple_returns = vNULL;
- bool nonempty_prologue;
- bitmap_head bb_flags;
- unsigned max_grow_size;
-#endif
- rtx returnjump;
- rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
- rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
- edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
- edge_iterator ei;
-
- df_analyze ();
-
- rtl_profile_for_bb (ENTRY_BLOCK_PTR);
-
- inserted = false;
- seq = NULL_RTX;
- epilogue_end = NULL_RTX;
- returnjump = NULL_RTX;
-
- /* Can't deal with multiple successors of the entry block at the
- moment. Function should always have at least one entry
- point. */
- gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
- entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
- orig_entry_edge = entry_edge;
-
- split_prologue_seq = NULL_RTX;
- if (flag_split_stack
- && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
- == NULL))
- {
-#ifndef HAVE_split_stack_prologue
- gcc_unreachable ();
-#else
- gcc_assert (HAVE_split_stack_prologue);
-
- start_sequence ();
- emit_insn (gen_split_stack_prologue ());
- split_prologue_seq = get_insns ();
- end_sequence ();
-
- record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
- set_insn_locations (split_prologue_seq, prologue_location);
-#endif
- }
-
- prologue_seq = NULL_RTX;
-#ifdef HAVE_prologue
- if (HAVE_prologue)
- {
- start_sequence ();
- seq = gen_prologue ();
- emit_insn (seq);
-
- /* Insert an explicit USE for the frame pointer
- if the profiling is on and the frame pointer is required. */
- if (crtl->profile && frame_pointer_needed)
- emit_use (hard_frame_pointer_rtx);
-
- /* Retain a map of the prologue insns. */
- record_insns (seq, NULL, &prologue_insn_hash);
- emit_note (NOTE_INSN_PROLOGUE_END);
-
- /* Ensure that instructions are not moved into the prologue when
- profiling is on. The call to the profiling routine can be
- emitted within the live range of a call-clobbered register. */
- if (!targetm.profile_before_prologue () && crtl->profile)
- emit_insn (gen_blockage ());
-
- prologue_seq = get_insns ();
- end_sequence ();
- set_insn_locations (prologue_seq, prologue_location);
- }
-#endif
-
-#ifdef HAVE_simple_return
- bitmap_initialize (&bb_flags, &bitmap_default_obstack);
-
- /* Try to perform a kind of shrink-wrapping, making sure the
- prologue/epilogue is emitted only around those parts of the
- function that require it. */
-
- nonempty_prologue = false;
- for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
- if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
- {
- nonempty_prologue = true;
- break;
- }
-
- if (flag_shrink_wrap && HAVE_simple_return
- && (targetm.profile_before_prologue () || !crtl->profile)
- && nonempty_prologue && !crtl->calls_eh_return)
- {
- HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
- struct hard_reg_set_container set_up_by_prologue;
- rtx p_insn;
- vec<basic_block> vec;
- basic_block bb;
- bitmap_head bb_antic_flags;
- bitmap_head bb_on_list;
- bitmap_head bb_tail;
-
- if (dump_file)
- fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
-
- /* Compute the registers set and used in the prologue. */
- CLEAR_HARD_REG_SET (prologue_clobbered);
- CLEAR_HARD_REG_SET (prologue_used);
- for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
- {
- HARD_REG_SET this_used;
- if (!NONDEBUG_INSN_P (p_insn))
- continue;
-
- CLEAR_HARD_REG_SET (this_used);
- note_uses (&PATTERN (p_insn), record_hard_reg_uses,
- &this_used);
- AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
- IOR_HARD_REG_SET (prologue_used, this_used);
- note_stores (PATTERN (p_insn), record_hard_reg_sets,
- &prologue_clobbered);
- }
-
- prepare_shrink_wrap (entry_edge->dest);
-
- bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
- bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
- bitmap_initialize (&bb_tail, &bitmap_default_obstack);
-
- /* Find the set of basic blocks that require a stack frame,
- and blocks that are too big to be duplicated. */
-
- vec.create (n_basic_blocks);
-
- CLEAR_HARD_REG_SET (set_up_by_prologue.set);
- add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
- STACK_POINTER_REGNUM);
- add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
- if (frame_pointer_needed)
- add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
- HARD_FRAME_POINTER_REGNUM);
- if (pic_offset_table_rtx)
- add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
- PIC_OFFSET_TABLE_REGNUM);
- if (crtl->drap_reg)
- add_to_hard_reg_set (&set_up_by_prologue.set,
- GET_MODE (crtl->drap_reg),
- REGNO (crtl->drap_reg));
- if (targetm.set_up_by_prologue)
- targetm.set_up_by_prologue (&set_up_by_prologue);
-
- /* We don't use a different max size depending on
- optimize_bb_for_speed_p because increasing shrink-wrapping
- opportunities by duplicating tail blocks can actually result
- in an overall decrease in code size. */
- max_grow_size = get_uncond_jump_length ();
- max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
-
- FOR_EACH_BB (bb)
- {
- rtx insn;
- unsigned size = 0;
-
- FOR_BB_INSNS (bb, insn)
- if (NONDEBUG_INSN_P (insn))
- {
- if (requires_stack_frame_p (insn, prologue_used,
- set_up_by_prologue.set))
- {
- if (bb == entry_edge->dest)
- goto fail_shrinkwrap;
- bitmap_set_bit (&bb_flags, bb->index);
- vec.quick_push (bb);
- break;
- }
- else if (size <= max_grow_size)
- {
- size += get_attr_min_length (insn);
- if (size > max_grow_size)
- bitmap_set_bit (&bb_on_list, bb->index);
- }
- }
- }
-
- /* Blocks that really need a prologue, or are too big for tails. */
- bitmap_ior_into (&bb_on_list, &bb_flags);
-
- /* For every basic block that needs a prologue, mark all blocks
- reachable from it, so as to ensure they are also seen as
- requiring a prologue. */
- while (!vec.is_empty ())
- {
- basic_block tmp_bb = vec.pop ();
-
- FOR_EACH_EDGE (e, ei, tmp_bb->succs)
- if (e->dest != EXIT_BLOCK_PTR
- && bitmap_set_bit (&bb_flags, e->dest->index))
- vec.quick_push (e->dest);
- }
-
- /* Find the set of basic blocks that need no prologue, have a
- single successor, can be duplicated, meet a max size
- requirement, and go to the exit via like blocks. */
- vec.quick_push (EXIT_BLOCK_PTR);
- while (!vec.is_empty ())
- {
- basic_block tmp_bb = vec.pop ();
-
- FOR_EACH_EDGE (e, ei, tmp_bb->preds)
- if (single_succ_p (e->src)
- && !bitmap_bit_p (&bb_on_list, e->src->index)
- && can_duplicate_block_p (e->src))
- {
- edge pe;
- edge_iterator pei;
-
- /* If there is predecessor of e->src which doesn't
- need prologue and the edge is complex,
- we might not be able to redirect the branch
- to a copy of e->src. */
- FOR_EACH_EDGE (pe, pei, e->src->preds)
- if ((pe->flags & EDGE_COMPLEX) != 0
- && !bitmap_bit_p (&bb_flags, pe->src->index))
- break;
- if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
- vec.quick_push (e->src);
- }
- }
-
- /* Now walk backwards from every block that is marked as needing
- a prologue to compute the bb_antic_flags bitmap. Exclude
- tail blocks; They can be duplicated to be used on paths not
- needing a prologue. */
- bitmap_clear (&bb_on_list);
- bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
- FOR_EACH_BB (bb)
- {
- if (!bitmap_bit_p (&bb_antic_flags, bb->index))
- continue;
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
- && bitmap_set_bit (&bb_on_list, e->src->index))
- vec.quick_push (e->src);
- }
- while (!vec.is_empty ())
- {
- basic_block tmp_bb = vec.pop ();
- bool all_set = true;
-
- bitmap_clear_bit (&bb_on_list, tmp_bb->index);
- FOR_EACH_EDGE (e, ei, tmp_bb->succs)
- if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
- {
- all_set = false;
- break;
- }
-
- if (all_set)
- {
- bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
- FOR_EACH_EDGE (e, ei, tmp_bb->preds)
- if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
- && bitmap_set_bit (&bb_on_list, e->src->index))
- vec.quick_push (e->src);
- }
- }
- /* Find exactly one edge that leads to a block in ANTIC from
- a block that isn't. */
- if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
- FOR_EACH_BB (bb)
- {
- if (!bitmap_bit_p (&bb_antic_flags, bb->index))
- continue;
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
- {
- if (entry_edge != orig_entry_edge)
- {
- entry_edge = orig_entry_edge;
- if (dump_file)
- fprintf (dump_file, "More than one candidate edge.\n");
- goto fail_shrinkwrap;
- }
- if (dump_file)
- fprintf (dump_file, "Found candidate edge for "
- "shrink-wrapping, %d->%d.\n", e->src->index,
- e->dest->index);
- entry_edge = e;
- }
- }
-
- if (entry_edge != orig_entry_edge)
- {
- /* Test whether the prologue is known to clobber any register
- (other than FP or SP) which are live on the edge. */
- CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
- if (frame_pointer_needed)
- CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
- REG_SET_TO_HARD_REG_SET (live_on_edge,
- df_get_live_in (entry_edge->dest));
- if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
- {
- entry_edge = orig_entry_edge;
- if (dump_file)
- fprintf (dump_file,
- "Shrink-wrapping aborted due to clobber.\n");
- }
- }
- if (entry_edge != orig_entry_edge)
- {
- crtl->shrink_wrapped = true;
- if (dump_file)
- fprintf (dump_file, "Performing shrink-wrapping.\n");
-
- /* Find tail blocks reachable from both blocks needing a
- prologue and blocks not needing a prologue. */
- if (!bitmap_empty_p (&bb_tail))
- FOR_EACH_BB (bb)
- {
- bool some_pro, some_no_pro;
- if (!bitmap_bit_p (&bb_tail, bb->index))
- continue;
- some_pro = some_no_pro = false;
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- if (bitmap_bit_p (&bb_flags, e->src->index))
- some_pro = true;
- else
- some_no_pro = true;
- }
- if (some_pro && some_no_pro)
- vec.quick_push (bb);
- else
- bitmap_clear_bit (&bb_tail, bb->index);
- }
- /* Find the head of each tail. */
- while (!vec.is_empty ())
- {
- basic_block tbb = vec.pop ();
-
- if (!bitmap_bit_p (&bb_tail, tbb->index))
- continue;
-
- while (single_succ_p (tbb))
- {
- tbb = single_succ (tbb);
- bitmap_clear_bit (&bb_tail, tbb->index);
- }
- }
- /* Now duplicate the tails. */
- if (!bitmap_empty_p (&bb_tail))
- FOR_EACH_BB_REVERSE (bb)
- {
- basic_block copy_bb, tbb;
- rtx insert_point;
- int eflags;
-
- if (!bitmap_clear_bit (&bb_tail, bb->index))
- continue;
-
- /* Create a copy of BB, instructions and all, for
- use on paths that don't need a prologue.
- Ideal placement of the copy is on a fall-thru edge
- or after a block that would jump to the copy. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!bitmap_bit_p (&bb_flags, e->src->index)
- && single_succ_p (e->src))
- break;
- if (e)
- {
- copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
- NULL_RTX, e->src);
- BB_COPY_PARTITION (copy_bb, e->src);
- }
- else
- {
- /* Otherwise put the copy at the end of the function. */
- copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
- EXIT_BLOCK_PTR->prev_bb);
- BB_COPY_PARTITION (copy_bb, bb);
- }
-
- insert_point = emit_note_after (NOTE_INSN_DELETED,
- BB_END (copy_bb));
- emit_barrier_after (BB_END (copy_bb));
-
- tbb = bb;
- while (1)
- {
- dup_block_and_redirect (tbb, copy_bb, insert_point,
- &bb_flags);
- tbb = single_succ (tbb);
- if (tbb == EXIT_BLOCK_PTR)
- break;
- e = split_block (copy_bb, PREV_INSN (insert_point));
- copy_bb = e->dest;
- }
-
- /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
- We have yet to add a simple_return to the tails,
- as we'd like to first convert_jumps_to_returns in
- case the block is no longer used after that. */
- eflags = EDGE_FAKE;
- if (CALL_P (PREV_INSN (insert_point))
- && SIBLING_CALL_P (PREV_INSN (insert_point)))
- eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
- make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
-
- /* verify_flow_info doesn't like a note after a
- sibling call. */
- delete_insn (insert_point);
- if (bitmap_empty_p (&bb_tail))
- break;
- }
- }
-
- fail_shrinkwrap:
- bitmap_clear (&bb_tail);
- bitmap_clear (&bb_antic_flags);
- bitmap_clear (&bb_on_list);
- vec.release ();
- }
-#endif
-
- if (split_prologue_seq != NULL_RTX)
- {
- insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
- inserted = true;
- }
- if (prologue_seq != NULL_RTX)
- {
- insert_insn_on_edge (prologue_seq, entry_edge);
- inserted = true;
- }
-
- /* If the exit block has no non-fake predecessors, we don't need
- an epilogue. */
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- if ((e->flags & EDGE_FAKE) == 0)
- break;
- if (e == NULL)
- goto epilogue_done;
-
- rtl_profile_for_bb (EXIT_BLOCK_PTR);
-
- exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
-
- /* If we're allowed to generate a simple return instruction, then by
- definition we don't need a full epilogue. If the last basic
- block before the exit block does not contain active instructions,
- examine its predecessors and try to emit (conditional) return
- instructions. */
-#ifdef HAVE_simple_return
- if (entry_edge != orig_entry_edge)
- {
- if (optimize)
- {
- unsigned i, last;
-
- /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
- (but won't remove). Stop at end of current preds. */
- last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
- for (i = 0; i < last; i++)
- {
- e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
- if (LABEL_P (BB_HEAD (e->src))
- && !bitmap_bit_p (&bb_flags, e->src->index)
- && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
- unconverted_simple_returns
- = convert_jumps_to_returns (e->src, true,
- unconverted_simple_returns);
- }
- }
-
- if (exit_fallthru_edge != NULL
- && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
- && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
- {
- basic_block last_bb;
-
- last_bb = emit_return_for_exit (exit_fallthru_edge, true);
- returnjump = BB_END (last_bb);
- exit_fallthru_edge = NULL;
- }
- }
-#endif
-#ifdef HAVE_return
- if (HAVE_return)
- {
- if (exit_fallthru_edge == NULL)
- goto epilogue_done;
-
- if (optimize)
- {
- basic_block last_bb = exit_fallthru_edge->src;
-
- if (LABEL_P (BB_HEAD (last_bb))
- && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
- convert_jumps_to_returns (last_bb, false, vNULL);
-
- if (EDGE_COUNT (last_bb->preds) != 0
- && single_succ_p (last_bb))
- {
- last_bb = emit_return_for_exit (exit_fallthru_edge, false);
- epilogue_end = returnjump = BB_END (last_bb);
-#ifdef HAVE_simple_return
- /* Emitting the return may add a basic block.
- Fix bb_flags for the added block. */
- if (last_bb != exit_fallthru_edge->src)
- bitmap_set_bit (&bb_flags, last_bb->index);
-#endif
- goto epilogue_done;
- }
- }
- }
-#endif
-
- /* A small fib -- epilogue is not yet completed, but we wish to re-use
- this marker for the splits of EH_RETURN patterns, and nothing else
- uses the flag in the meantime. */
- epilogue_completed = 1;
-
-#ifdef HAVE_eh_return
- /* Find non-fallthru edges that end with EH_RETURN instructions. On
- some targets, these get split to a special version of the epilogue
- code. In order to be able to properly annotate these with unwind
- info, try to split them now. If we get a valid split, drop an
- EPILOGUE_BEG note and mark the insns as epilogue insns. */
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- {
- rtx prev, last, trial;
-
- if (e->flags & EDGE_FALLTHRU)
- continue;
- last = BB_END (e->src);
- if (!eh_returnjump_p (last))
- continue;
-
- prev = PREV_INSN (last);
- trial = try_split (PATTERN (last), last, 1);
- if (trial == last)
- continue;
-
- record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
- emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
- }
-#endif
-
- /* If nothing falls through into the exit block, we don't need an
- epilogue. */
-
- if (exit_fallthru_edge == NULL)
- goto epilogue_done;
-
-#ifdef HAVE_epilogue
- if (HAVE_epilogue)
- {
- start_sequence ();
- epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
- seq = gen_epilogue ();
- if (seq)
- emit_jump_insn (seq);
-
- /* Retain a map of the epilogue insns. */
- record_insns (seq, NULL, &epilogue_insn_hash);
- set_insn_locations (seq, epilogue_location);
-
- seq = get_insns ();
- returnjump = get_last_insn ();
- end_sequence ();
-
- insert_insn_on_edge (seq, exit_fallthru_edge);
- inserted = true;
-
- if (JUMP_P (returnjump))
- set_return_jump_label (returnjump);
- }
- else
-#endif
- {
- basic_block cur_bb;
-
- if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
- goto epilogue_done;
- /* We have a fall-through edge to the exit block, the source is not
- at the end of the function, and there will be an assembler epilogue
- at the end of the function.
- We can't use force_nonfallthru here, because that would try to
- use return. Inserting a jump 'by hand' is extremely messy, so
- we take advantage of cfg_layout_finalize using
- fixup_fallthru_exit_predecessor. */
- cfg_layout_initialize (0);
- FOR_EACH_BB (cur_bb)
- if (cur_bb->index >= NUM_FIXED_BLOCKS
- && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
- cur_bb->aux = cur_bb->next_bb;
- cfg_layout_finalize ();
- }
-
-epilogue_done:
-
- default_rtl_profile ();
-
- if (inserted)
- {
- sbitmap blocks;
-
- commit_edge_insertions ();
-
- /* Look for basic blocks within the prologue insns. */
- blocks = sbitmap_alloc (last_basic_block);
- bitmap_clear (blocks);
- bitmap_set_bit (blocks, entry_edge->dest->index);
- bitmap_set_bit (blocks, orig_entry_edge->dest->index);
- find_many_sub_basic_blocks (blocks);
- sbitmap_free (blocks);
-
- /* The epilogue insns we inserted may cause the exit edge to no longer
- be fallthru. */
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- {
- if (((e->flags & EDGE_FALLTHRU) != 0)
- && returnjump_p (BB_END (e->src)))
- e->flags &= ~EDGE_FALLTHRU;
- }
- }
-
-#ifdef HAVE_simple_return
- /* If there were branches to an empty LAST_BB which we tried to
- convert to conditional simple_returns, but couldn't for some
- reason, create a block to hold a simple_return insn and redirect
- those remaining edges. */
- if (!unconverted_simple_returns.is_empty ())
- {
- basic_block simple_return_block_hot = NULL;
- basic_block simple_return_block_cold = NULL;
- edge pending_edge_hot = NULL;
- edge pending_edge_cold = NULL;
- basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
- int i;
-
- gcc_assert (entry_edge != orig_entry_edge);
-
- /* See if we can reuse the last insn that was emitted for the
- epilogue. */
- if (returnjump != NULL_RTX
- && JUMP_LABEL (returnjump) == simple_return_rtx)
- {
- e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
- if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
- simple_return_block_hot = e->dest;
- else
- simple_return_block_cold = e->dest;
- }
-
- /* Also check returns we might need to add to tail blocks. */
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- if (EDGE_COUNT (e->src->preds) != 0
- && (e->flags & EDGE_FAKE) != 0
- && !bitmap_bit_p (&bb_flags, e->src->index))
- {
- if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
- pending_edge_hot = e;
- else
- pending_edge_cold = e;
- }
-
- FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
- {
- basic_block *pdest_bb;
- edge pending;
-
- if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
- {
- pdest_bb = &simple_return_block_hot;
- pending = pending_edge_hot;
- }
- else
- {
- pdest_bb = &simple_return_block_cold;
- pending = pending_edge_cold;
- }
-
- if (*pdest_bb == NULL && pending != NULL)
- {
- emit_return_into_block (true, pending->src);
- pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
- *pdest_bb = pending->src;
- }
- else if (*pdest_bb == NULL)
- {
- basic_block bb;
- rtx start;
-
- bb = create_basic_block (NULL, NULL, exit_pred);
- BB_COPY_PARTITION (bb, e->src);
- start = emit_jump_insn_after (gen_simple_return (),
- BB_END (bb));
- JUMP_LABEL (start) = simple_return_rtx;
- emit_barrier_after (start);
-
- *pdest_bb = bb;
- make_edge (bb, EXIT_BLOCK_PTR, 0);
- }
- redirect_edge_and_branch_force (e, *pdest_bb);
- }
- unconverted_simple_returns.release ();
- }
-
- if (entry_edge != orig_entry_edge)
- {
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- if (EDGE_COUNT (e->src->preds) != 0
- && (e->flags & EDGE_FAKE) != 0
- && !bitmap_bit_p (&bb_flags, e->src->index))
- {
- emit_return_into_block (true, e->src);
- e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
- }
- }
-#endif
-
-#ifdef HAVE_sibcall_epilogue
- /* Emit sibling epilogues before any sibling call sites. */
- for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
- {
- basic_block bb = e->src;
- rtx insn = BB_END (bb);
- rtx ep_seq;
-
- if (!CALL_P (insn)
- || ! SIBLING_CALL_P (insn)
-#ifdef HAVE_simple_return
- || (entry_edge != orig_entry_edge
- && !bitmap_bit_p (&bb_flags, bb->index))
-#endif
- )
- {
- ei_next (&ei);
- continue;
- }
-
- ep_seq = gen_sibcall_epilogue ();
- if (ep_seq)
- {
- start_sequence ();
- emit_note (NOTE_INSN_EPILOGUE_BEG);
- emit_insn (ep_seq);
- seq = get_insns ();
- end_sequence ();
-
- /* Retain a map of the epilogue insns. Used in life analysis to
- avoid getting rid of sibcall epilogue insns. Do this before we
- actually emit the sequence. */
- record_insns (seq, NULL, &epilogue_insn_hash);
- set_insn_locations (seq, epilogue_location);
-
- emit_insn_before (seq, insn);
- }
- ei_next (&ei);
- }
-#endif
-
-#ifdef HAVE_epilogue
- if (epilogue_end)
- {
- rtx insn, next;
-
- /* Similarly, move any line notes that appear after the epilogue.
- There is no need, however, to be quite so anal about the existence
- of such a note. Also possibly move
- NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
- info generation. */
- for (insn = epilogue_end; insn; insn = next)
- {
- next = NEXT_INSN (insn);
- if (NOTE_P (insn)
- && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
- reorder_insns (insn, insn, PREV_INSN (epilogue_end));
- }
- }
-#endif
-
-#ifdef HAVE_simple_return
- bitmap_clear (&bb_flags);
-#endif
-
- /* Threading the prologue and epilogue changes the artificial refs
- in the entry and exit blocks. */
- epilogue_completed = 1;
- df_update_entry_exit_and_calls ();
-}
-
-/* Reposition the prologue-end and epilogue-begin notes after
- instruction scheduling. */
-
-void
-reposition_prologue_and_epilogue_notes (void)
-{
-#if defined (HAVE_prologue) || defined (HAVE_epilogue) \
- || defined (HAVE_sibcall_epilogue)
- /* Since the hash table is created on demand, the fact that it is
- non-null is a signal that it is non-empty. */
- if (prologue_insn_hash != NULL)
- {
- size_t len = htab_elements (prologue_insn_hash);
- rtx insn, last = NULL, note = NULL;
-
- /* Scan from the beginning until we reach the last prologue insn. */
- /* ??? While we do have the CFG intact, there are two problems:
- (1) The prologue can contain loops (typically probing the stack),
- which means that the end of the prologue isn't in the first bb.
- (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- {
- if (NOTE_P (insn))
- {
- if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
- note = insn;
- }
- else if (contains (insn, prologue_insn_hash))
- {
- last = insn;
- if (--len == 0)
- break;
- }
- }
-
- if (last)
- {
- if (note == NULL)
- {
- /* Scan forward looking for the PROLOGUE_END note. It should
- be right at the beginning of the block, possibly with other
- insn notes that got moved there. */
- for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
- {
- if (NOTE_P (note)
- && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
- break;
- }
- }
-
- /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
- if (LABEL_P (last))
- last = NEXT_INSN (last);
- reorder_insns (note, note, last);
- }
- }
-
- if (epilogue_insn_hash != NULL)
- {
- edge_iterator ei;
- edge e;
-
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- {
- rtx insn, first = NULL, note = NULL;
- basic_block bb = e->src;
-
- /* Scan from the beginning until we reach the first epilogue insn. */
- FOR_BB_INSNS (bb, insn)
- {
- if (NOTE_P (insn))
- {
- if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
- {
- note = insn;
- if (first != NULL)
- break;
- }
- }
- else if (first == NULL && contains (insn, epilogue_insn_hash))
- {
- first = insn;
- if (note != NULL)
- break;
- }
- }
-
- if (note)
- {
- /* If the function has a single basic block, and no real
- epilogue insns (e.g. sibcall with no cleanup), the
- epilogue note can get scheduled before the prologue
- note. If we have frame related prologue insns, having
- them scanned during the epilogue will result in a crash.
- In this case re-order the epilogue note to just before
- the last insn in the block. */
- if (first == NULL)
- first = BB_END (bb);
-
- if (PREV_INSN (first) != note)
- reorder_insns (note, note, PREV_INSN (first));
- }
- }
- }
-#endif /* HAVE_prologue or HAVE_epilogue */
-}
-
-/* Returns the name of function declared by FNDECL. */
-const char *
-fndecl_name (tree fndecl)
-{
- if (fndecl == NULL)
- return "(nofn)";
- return lang_hooks.decl_printable_name (fndecl, 2);
-}
-
-/* Returns the name of function FN. */
-const char *
-function_name (struct function *fn)
-{
- tree fndecl = (fn == NULL) ? NULL : fn->decl;
- return fndecl_name (fndecl);
-}
-
-/* Returns the name of the current function. */
-const char *
-current_function_name (void)
-{
- return function_name (cfun);
-}
-
-
-static unsigned int
-rest_of_handle_check_leaf_regs (void)
-{
-#ifdef LEAF_REGISTERS
- crtl->uses_only_leaf_regs
- = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
-#endif
- return 0;
-}
-
-/* Insert a TYPE into the used types hash table of CFUN. */
-
-static void
-used_types_insert_helper (tree type, struct function *func)
-{
- if (type != NULL && func != NULL)
- {
- void **slot;
-
- if (func->used_types_hash == NULL)
- func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
- htab_eq_pointer, NULL);
- slot = htab_find_slot (func->used_types_hash, type, INSERT);
- if (*slot == NULL)
- *slot = type;
- }
-}
-
-/* Given a type, insert it into the used hash table in cfun. */
-void
-used_types_insert (tree t)
-{
- while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
- if (TYPE_NAME (t))
- break;
- else
- t = TREE_TYPE (t);
- if (TREE_CODE (t) == ERROR_MARK)
- return;
- if (TYPE_NAME (t) == NULL_TREE
- || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
- t = TYPE_MAIN_VARIANT (t);
- if (debug_info_level > DINFO_LEVEL_NONE)
- {
- if (cfun)
- used_types_insert_helper (t, cfun);
- else
- {
- /* So this might be a type referenced by a global variable.
- Record that type so that we can later decide to emit its
- debug information. */
- vec_safe_push (types_used_by_cur_var_decl, t);
- }
- }
-}
-
-/* Helper to Hash a struct types_used_by_vars_entry. */
-
-static hashval_t
-hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
-{
- gcc_assert (entry && entry->var_decl && entry->type);
-
- return iterative_hash_object (entry->type,
- iterative_hash_object (entry->var_decl, 0));
-}
-
-/* Hash function of the types_used_by_vars_entry hash table. */
-
-hashval_t
-types_used_by_vars_do_hash (const void *x)
-{
- const struct types_used_by_vars_entry *entry =
- (const struct types_used_by_vars_entry *) x;
-
- return hash_types_used_by_vars_entry (entry);
-}
-
-/*Equality function of the types_used_by_vars_entry hash table. */
-
-int
-types_used_by_vars_eq (const void *x1, const void *x2)
-{
- const struct types_used_by_vars_entry *e1 =
- (const struct types_used_by_vars_entry *) x1;
- const struct types_used_by_vars_entry *e2 =
- (const struct types_used_by_vars_entry *)x2;
-
- return (e1->var_decl == e2->var_decl && e1->type == e2->type);
-}
-
-/* Inserts an entry into the types_used_by_vars_hash hash table. */
-
-void
-types_used_by_var_decl_insert (tree type, tree var_decl)
-{
- if (type != NULL && var_decl != NULL)
- {
- void **slot;
- struct types_used_by_vars_entry e;
- e.var_decl = var_decl;
- e.type = type;
- if (types_used_by_vars_hash == NULL)
- types_used_by_vars_hash =
- htab_create_ggc (37, types_used_by_vars_do_hash,
- types_used_by_vars_eq, NULL);
- slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
- hash_types_used_by_vars_entry (&e), INSERT);
- if (*slot == NULL)
- {
- struct types_used_by_vars_entry *entry;
- entry = ggc_alloc_types_used_by_vars_entry ();
- entry->type = type;
- entry->var_decl = var_decl;
- *slot = entry;
- }
- }
-}
-
-struct rtl_opt_pass pass_leaf_regs =
-{
- {
- RTL_PASS,
- "*leaf_regs", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- NULL, /* gate */
- rest_of_handle_check_leaf_regs, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_NONE, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0 /* todo_flags_finish */
- }
-};
-
-static unsigned int
-rest_of_handle_thread_prologue_and_epilogue (void)
-{
- if (optimize)
- cleanup_cfg (CLEANUP_EXPENSIVE);
-
- /* On some machines, the prologue and epilogue code, or parts thereof,
- can be represented as RTL. Doing so lets us schedule insns between
- it and the rest of the code and also allows delayed branch
- scheduling to operate in the epilogue. */
- thread_prologue_and_epilogue_insns ();
-
- /* The stack usage info is finalized during prologue expansion. */
- if (flag_stack_usage_info)
- output_stack_usage ();
-
- return 0;
-}
-
-struct rtl_opt_pass pass_thread_prologue_and_epilogue =
-{
- {
- RTL_PASS,
- "pro_and_epilogue", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- NULL, /* gate */
- rest_of_handle_thread_prologue_and_epilogue, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- TODO_verify_flow, /* todo_flags_start */
- TODO_df_verify |
- TODO_df_finish | TODO_verify_rtl_sharing |
- TODO_ggc_collect /* todo_flags_finish */
- }
-};
-
-
-/* This mini-pass fixes fall-out from SSA in asm statements that have
- in-out constraints. Say you start with
-
- orig = inout;
- asm ("": "+mr" (inout));
- use (orig);
-
- which is transformed very early to use explicit output and match operands:
-
- orig = inout;
- asm ("": "=mr" (inout) : "0" (inout));
- use (orig);
-
- Or, after SSA and copyprop,
-
- asm ("": "=mr" (inout_2) : "0" (inout_1));
- use (inout_1);
-
- Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
- they represent two separate values, so they will get different pseudo
- registers during expansion. Then, since the two operands need to match
- per the constraints, but use different pseudo registers, reload can
- only register a reload for these operands. But reloads can only be
- satisfied by hardregs, not by memory, so we need a register for this
- reload, just because we are presented with non-matching operands.
- So, even though we allow memory for this operand, no memory can be
- used for it, just because the two operands don't match. This can
- cause reload failures on register-starved targets.
-
- So it's a symptom of reload not being able to use memory for reloads
- or, alternatively it's also a symptom of both operands not coming into
- reload as matching (in which case the pseudo could go to memory just
- fine, as the alternative allows it, and no reload would be necessary).
- We fix the latter problem here, by transforming
-
- asm ("": "=mr" (inout_2) : "0" (inout_1));
-
- back to
-
- inout_2 = inout_1;
- asm ("": "=mr" (inout_2) : "0" (inout_2)); */
-
-static void
-match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
-{
- int i;
- bool changed = false;
- rtx op = SET_SRC (p_sets[0]);
- int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
- rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
- bool *output_matched = XALLOCAVEC (bool, noutputs);
-
- memset (output_matched, 0, noutputs * sizeof (bool));
- for (i = 0; i < ninputs; i++)
- {
- rtx input, output, insns;
- const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
- char *end;
- int match, j;
-
- if (*constraint == '%')
- constraint++;
-
- match = strtoul (constraint, &end, 10);
- if (end == constraint)
- continue;
-
- gcc_assert (match < noutputs);
- output = SET_DEST (p_sets[match]);
- input = RTVEC_ELT (inputs, i);
- /* Only do the transformation for pseudos. */
- if (! REG_P (output)
- || rtx_equal_p (output, input)
- || (GET_MODE (input) != VOIDmode
- && GET_MODE (input) != GET_MODE (output)))
- continue;
-
- /* We can't do anything if the output is also used as input,
- as we're going to overwrite it. */
- for (j = 0; j < ninputs; j++)
- if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
- break;
- if (j != ninputs)
- continue;
-
- /* Avoid changing the same input several times. For
- asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
- only change in once (to out1), rather than changing it
- first to out1 and afterwards to out2. */
- if (i > 0)
- {
- for (j = 0; j < noutputs; j++)
- if (output_matched[j] && input == SET_DEST (p_sets[j]))
- break;
- if (j != noutputs)
- continue;
- }
- output_matched[match] = true;
-
- start_sequence ();
- emit_move_insn (output, input);
- insns = get_insns ();
- end_sequence ();
- emit_insn_before (insns, insn);
-
- /* Now replace all mentions of the input with output. We can't
- just replace the occurrence in inputs[i], as the register might
- also be used in some other input (or even in an address of an
- output), which would mean possibly increasing the number of
- inputs by one (namely 'output' in addition), which might pose
- a too complicated problem for reload to solve. E.g. this situation:
-
- asm ("" : "=r" (output), "=m" (input) : "0" (input))
-
- Here 'input' is used in two occurrences as input (once for the
- input operand, once for the address in the second output operand).
- If we would replace only the occurrence of the input operand (to
- make the matching) we would be left with this:
-
- output = input
- asm ("" : "=r" (output), "=m" (input) : "0" (output))
-
- Now we suddenly have two different input values (containing the same
- value, but different pseudos) where we formerly had only one.
- With more complicated asms this might lead to reload failures
- which wouldn't have happen without this pass. So, iterate over
- all operands and replace all occurrences of the register used. */
- for (j = 0; j < noutputs; j++)
- if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
- && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
- SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
- input, output);
- for (j = 0; j < ninputs; j++)
- if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
- RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
- input, output);
-
- changed = true;
- }
-
- if (changed)
- df_insn_rescan (insn);
-}
-
-static unsigned
-rest_of_match_asm_constraints (void)
-{
- basic_block bb;
- rtx insn, pat, *p_sets;
- int noutputs;
-
- if (!crtl->has_asm_statement)
- return 0;
-
- df_set_flags (DF_DEFER_INSN_RESCAN);
- FOR_EACH_BB (bb)
- {
- FOR_BB_INSNS (bb, insn)
- {
- if (!INSN_P (insn))
- continue;
-
- pat = PATTERN (insn);
- if (GET_CODE (pat) == PARALLEL)
- p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
- else if (GET_CODE (pat) == SET)
- p_sets = &PATTERN (insn), noutputs = 1;
- else
- continue;
-
- if (GET_CODE (*p_sets) == SET
- && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
- match_asm_constraints_1 (insn, p_sets, noutputs);
- }
- }
-
- return TODO_df_finish;
-}
-
-struct rtl_opt_pass pass_match_asm_constraints =
-{
- {
- RTL_PASS,
- "asmcons", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- NULL, /* gate */
- rest_of_match_asm_constraints, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_NONE, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0 /* todo_flags_finish */
- }
-};
-
-
-#include "gt-function.h"