aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/ada/a-cbmutr.adb
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
committerBen Cheng <bccheng@google.com>2012-10-01 10:30:31 -0700
commit82bcbebce43f0227f506d75a5b764b6847041bae (patch)
treefe9f8597b48a430c4daeb5123e3e8eb28e6f9da9 /gcc-4.7/gcc/ada/a-cbmutr.adb
parent3c052de3bb16ac53b6b6ed659ec7557eb84c7590 (diff)
downloadtoolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.gz
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.bz2
toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.zip
Initial check-in of gcc 4.7.2.
Change-Id: I4a2f5a921c21741a0e18bda986d77e5f1bef0365
Diffstat (limited to 'gcc-4.7/gcc/ada/a-cbmutr.adb')
-rw-r--r--gcc-4.7/gcc/ada/a-cbmutr.adb3388
1 files changed, 3388 insertions, 0 deletions
diff --git a/gcc-4.7/gcc/ada/a-cbmutr.adb b/gcc-4.7/gcc/ada/a-cbmutr.adb
new file mode 100644
index 000000000..e40c7bfc8
--- /dev/null
+++ b/gcc-4.7/gcc/ada/a-cbmutr.adb
@@ -0,0 +1,3388 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT LIBRARY COMPONENTS --
+-- --
+-- ADA.CONTAINERS.BOUNDED_MULTIWAY_TREES --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2011, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- This unit was originally developed by Matthew J Heaney. --
+------------------------------------------------------------------------------
+
+with Ada.Finalization; use Ada.Finalization;
+
+with System; use type System.Address;
+
+package body Ada.Containers.Bounded_Multiway_Trees is
+
+ --------------------
+ -- Root_Iterator --
+ --------------------
+
+ type Root_Iterator is abstract new Limited_Controlled and
+ Tree_Iterator_Interfaces.Forward_Iterator with
+ record
+ Container : Tree_Access;
+ Subtree : Count_Type;
+ end record;
+
+ overriding procedure Finalize (Object : in out Root_Iterator);
+
+ -----------------------
+ -- Subtree_Iterator --
+ -----------------------
+
+ type Subtree_Iterator is new Root_Iterator with null record;
+
+ overriding function First (Object : Subtree_Iterator) return Cursor;
+
+ overriding function Next
+ (Object : Subtree_Iterator;
+ Position : Cursor) return Cursor;
+
+ ---------------------
+ -- Child_Iterator --
+ ---------------------
+
+ type Child_Iterator is new Root_Iterator and
+ Tree_Iterator_Interfaces.Reversible_Iterator with null record;
+
+ overriding function First (Object : Child_Iterator) return Cursor;
+
+ overriding function Next
+ (Object : Child_Iterator;
+ Position : Cursor) return Cursor;
+
+ overriding function Last (Object : Child_Iterator) return Cursor;
+
+ overriding function Previous
+ (Object : Child_Iterator;
+ Position : Cursor) return Cursor;
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Initialize_Node (Container : in out Tree; Index : Count_Type);
+ procedure Initialize_Root (Container : in out Tree);
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ Initialize_Element : not null access procedure (Index : Count_Type);
+ New_Node : out Count_Type);
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ New_Item : Element_Type;
+ New_Node : out Count_Type);
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ New_Node : out Count_Type);
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ Stream : not null access Root_Stream_Type'Class;
+ New_Node : out Count_Type);
+
+ procedure Deallocate_Node
+ (Container : in out Tree;
+ X : Count_Type);
+
+ procedure Deallocate_Children
+ (Container : in out Tree;
+ Subtree : Count_Type;
+ Count : in out Count_Type);
+
+ procedure Deallocate_Subtree
+ (Container : in out Tree;
+ Subtree : Count_Type;
+ Count : in out Count_Type);
+
+ function Equal_Children
+ (Left_Tree : Tree;
+ Left_Subtree : Count_Type;
+ Right_Tree : Tree;
+ Right_Subtree : Count_Type) return Boolean;
+
+ function Equal_Subtree
+ (Left_Tree : Tree;
+ Left_Subtree : Count_Type;
+ Right_Tree : Tree;
+ Right_Subtree : Count_Type) return Boolean;
+
+ procedure Iterate_Children
+ (Container : Tree;
+ Subtree : Count_Type;
+ Process : not null access procedure (Position : Cursor));
+
+ procedure Iterate_Subtree
+ (Container : Tree;
+ Subtree : Count_Type;
+ Process : not null access procedure (Position : Cursor));
+
+ procedure Copy_Children
+ (Source : Tree;
+ Source_Parent : Count_Type;
+ Target : in out Tree;
+ Target_Parent : Count_Type;
+ Count : in out Count_Type);
+
+ procedure Copy_Subtree
+ (Source : Tree;
+ Source_Subtree : Count_Type;
+ Target : in out Tree;
+ Target_Parent : Count_Type;
+ Target_Subtree : out Count_Type;
+ Count : in out Count_Type);
+
+ function Find_In_Children
+ (Container : Tree;
+ Subtree : Count_Type;
+ Item : Element_Type) return Count_Type;
+
+ function Find_In_Subtree
+ (Container : Tree;
+ Subtree : Count_Type;
+ Item : Element_Type) return Count_Type;
+
+ function Child_Count
+ (Container : Tree;
+ Parent : Count_Type) return Count_Type;
+
+ function Subtree_Node_Count
+ (Container : Tree;
+ Subtree : Count_Type) return Count_Type;
+
+ function Is_Reachable
+ (Container : Tree;
+ From, To : Count_Type) return Boolean;
+
+ function Root_Node (Container : Tree) return Count_Type;
+
+ procedure Remove_Subtree
+ (Container : in out Tree;
+ Subtree : Count_Type);
+
+ procedure Insert_Subtree_Node
+ (Container : in out Tree;
+ Subtree : Count_Type'Base;
+ Parent : Count_Type;
+ Before : Count_Type'Base);
+
+ procedure Insert_Subtree_List
+ (Container : in out Tree;
+ First : Count_Type'Base;
+ Last : Count_Type'Base;
+ Parent : Count_Type;
+ Before : Count_Type'Base);
+
+ procedure Splice_Children
+ (Container : in out Tree;
+ Target_Parent : Count_Type;
+ Before : Count_Type'Base;
+ Source_Parent : Count_Type);
+
+ procedure Splice_Children
+ (Target : in out Tree;
+ Target_Parent : Count_Type;
+ Before : Count_Type'Base;
+ Source : in out Tree;
+ Source_Parent : Count_Type);
+
+ procedure Splice_Subtree
+ (Target : in out Tree;
+ Parent : Count_Type;
+ Before : Count_Type'Base;
+ Source : in out Tree;
+ Position : in out Count_Type); -- source on input, target on output
+
+ ---------
+ -- "=" --
+ ---------
+
+ function "=" (Left, Right : Tree) return Boolean is
+ begin
+ if Left'Address = Right'Address then
+ return True;
+ end if;
+
+ if Left.Count /= Right.Count then
+ return False;
+ end if;
+
+ if Left.Count = 0 then
+ return True;
+ end if;
+
+ return Equal_Children
+ (Left_Tree => Left,
+ Left_Subtree => Root_Node (Left),
+ Right_Tree => Right,
+ Right_Subtree => Root_Node (Right));
+ end "=";
+
+ -------------------
+ -- Allocate_Node --
+ -------------------
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ Initialize_Element : not null access procedure (Index : Count_Type);
+ New_Node : out Count_Type)
+ is
+ begin
+ if Container.Free >= 0 then
+ New_Node := Container.Free;
+ pragma Assert (New_Node in Container.Elements'Range);
+
+ -- We always perform the assignment first, before we change container
+ -- state, in order to defend against exceptions duration assignment.
+
+ Initialize_Element (New_Node);
+
+ Container.Free := Container.Nodes (New_Node).Next;
+
+ else
+ -- A negative free store value means that the links of the nodes in
+ -- the free store have not been initialized. In this case, the nodes
+ -- are physically contiguous in the array, starting at the index that
+ -- is the absolute value of the Container.Free, and continuing until
+ -- the end of the array (Nodes'Last).
+
+ New_Node := abs Container.Free;
+ pragma Assert (New_Node in Container.Elements'Range);
+
+ -- As above, we perform this assignment first, before modifying any
+ -- container state.
+
+ Initialize_Element (New_Node);
+
+ Container.Free := Container.Free - 1;
+
+ if abs Container.Free > Container.Capacity then
+ Container.Free := 0;
+ end if;
+ end if;
+
+ Initialize_Node (Container, New_Node);
+ end Allocate_Node;
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ New_Item : Element_Type;
+ New_Node : out Count_Type)
+ is
+ procedure Initialize_Element (Index : Count_Type);
+
+ procedure Initialize_Element (Index : Count_Type) is
+ begin
+ Container.Elements (Index) := New_Item;
+ end Initialize_Element;
+
+ begin
+ Allocate_Node (Container, Initialize_Element'Access, New_Node);
+ end Allocate_Node;
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ Stream : not null access Root_Stream_Type'Class;
+ New_Node : out Count_Type)
+ is
+ procedure Initialize_Element (Index : Count_Type);
+
+ procedure Initialize_Element (Index : Count_Type) is
+ begin
+ Element_Type'Read (Stream, Container.Elements (Index));
+ end Initialize_Element;
+
+ begin
+ Allocate_Node (Container, Initialize_Element'Access, New_Node);
+ end Allocate_Node;
+
+ procedure Allocate_Node
+ (Container : in out Tree;
+ New_Node : out Count_Type)
+ is
+ procedure Initialize_Element (Index : Count_Type) is null;
+ begin
+ Allocate_Node (Container, Initialize_Element'Access, New_Node);
+ end Allocate_Node;
+
+ -------------------
+ -- Ancestor_Find --
+ -------------------
+
+ function Ancestor_Find
+ (Position : Cursor;
+ Item : Element_Type) return Cursor
+ is
+ R, N : Count_Type;
+
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ -- Commented-out pending ruling by ARG. ???
+
+ -- if Position.Container /= Container'Unrestricted_Access then
+ -- raise Program_Error with "Position cursor not in container";
+ -- end if;
+
+ -- AI-0136 says to raise PE if Position equals the root node. This does
+ -- not seem correct, as this value is just the limiting condition of the
+ -- search. For now we omit this check, pending a ruling from the ARG.
+ -- ???
+ --
+ -- if Is_Root (Position) then
+ -- raise Program_Error with "Position cursor designates root";
+ -- end if;
+
+ R := Root_Node (Position.Container.all);
+ N := Position.Node;
+ while N /= R loop
+ if Position.Container.Elements (N) = Item then
+ return Cursor'(Position.Container, N);
+ end if;
+
+ N := Position.Container.Nodes (N).Parent;
+ end loop;
+
+ return No_Element;
+ end Ancestor_Find;
+
+ ------------------
+ -- Append_Child --
+ ------------------
+
+ procedure Append_Child
+ (Container : in out Tree;
+ Parent : Cursor;
+ New_Item : Element_Type;
+ Count : Count_Type := 1)
+ is
+ Nodes : Tree_Node_Array renames Container.Nodes;
+ First, Last : Count_Type;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Count = 0 then
+ return;
+ end if;
+
+ if Container.Count > Container.Capacity - Count then
+ raise Constraint_Error
+ with "requested count exceeds available storage";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Container.Count = 0 then
+ Initialize_Root (Container);
+ end if;
+
+ Allocate_Node (Container, New_Item, First);
+ Nodes (First).Parent := Parent.Node;
+
+ Last := First;
+ for J in Count_Type'(2) .. Count loop
+ Allocate_Node (Container, New_Item, Nodes (Last).Next);
+ Nodes (Nodes (Last).Next).Parent := Parent.Node;
+ Nodes (Nodes (Last).Next).Prev := Last;
+
+ Last := Nodes (Last).Next;
+ end loop;
+
+ Insert_Subtree_List
+ (Container => Container,
+ First => First,
+ Last => Last,
+ Parent => Parent.Node,
+ Before => No_Node); -- means "insert at end of list"
+
+ Container.Count := Container.Count + Count;
+ end Append_Child;
+
+ ------------
+ -- Assign --
+ ------------
+
+ procedure Assign (Target : in out Tree; Source : Tree) is
+ Target_Count : Count_Type;
+
+ begin
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Target.Capacity < Source.Count then
+ raise Capacity_Error -- ???
+ with "Target capacity is less than Source count";
+ end if;
+
+ Target.Clear; -- Checks busy bit
+
+ if Source.Count = 0 then
+ return;
+ end if;
+
+ Initialize_Root (Target);
+
+ -- Copy_Children returns the number of nodes that it allocates, but it
+ -- does this by incrementing the count value passed in, so we must
+ -- initialize the count before calling Copy_Children.
+
+ Target_Count := 0;
+
+ Copy_Children
+ (Source => Source,
+ Source_Parent => Root_Node (Source),
+ Target => Target,
+ Target_Parent => Root_Node (Target),
+ Count => Target_Count);
+
+ pragma Assert (Target_Count = Source.Count);
+ Target.Count := Source.Count;
+ end Assign;
+
+ -----------------
+ -- Child_Count --
+ -----------------
+
+ function Child_Count (Parent : Cursor) return Count_Type is
+ begin
+ if Parent = No_Element then
+ return 0;
+
+ elsif Parent.Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ return 0;
+
+ else
+ return Child_Count (Parent.Container.all, Parent.Node);
+ end if;
+ end Child_Count;
+
+ function Child_Count
+ (Container : Tree;
+ Parent : Count_Type) return Count_Type
+ is
+ NN : Tree_Node_Array renames Container.Nodes;
+ CC : Children_Type renames NN (Parent).Children;
+
+ Result : Count_Type;
+ Node : Count_Type'Base;
+
+ begin
+ Result := 0;
+ Node := CC.First;
+ while Node > 0 loop
+ Result := Result + 1;
+ Node := NN (Node).Next;
+ end loop;
+
+ return Result;
+ end Child_Count;
+
+ -----------------
+ -- Child_Depth --
+ -----------------
+
+ function Child_Depth (Parent, Child : Cursor) return Count_Type is
+ Result : Count_Type;
+ N : Count_Type'Base;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Child = No_Element then
+ raise Constraint_Error with "Child cursor has no element";
+ end if;
+
+ if Parent.Container /= Child.Container then
+ raise Program_Error with "Parent and Child in different containers";
+ end if;
+
+ if Parent.Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ pragma Assert (Child = Parent);
+ return 0;
+ end if;
+
+ Result := 0;
+ N := Child.Node;
+ while N /= Parent.Node loop
+ Result := Result + 1;
+ N := Parent.Container.Nodes (N).Parent;
+
+ if N < 0 then
+ raise Program_Error with "Parent is not ancestor of Child";
+ end if;
+ end loop;
+
+ return Result;
+ end Child_Depth;
+
+ -----------
+ -- Clear --
+ -----------
+
+ procedure Clear (Container : in out Tree) is
+ Container_Count : constant Count_Type := Container.Count;
+ Count : Count_Type;
+
+ begin
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Container_Count = 0 then
+ return;
+ end if;
+
+ Container.Count := 0;
+
+ -- Deallocate_Children returns the number of nodes that it deallocates,
+ -- but it does this by incrementing the count value that is passed in,
+ -- so we must first initialize the count return value before calling it.
+
+ Count := 0;
+
+ Deallocate_Children
+ (Container => Container,
+ Subtree => Root_Node (Container),
+ Count => Count);
+
+ pragma Assert (Count = Container_Count);
+ end Clear;
+
+ ------------------------
+ -- Constant_Reference --
+ ------------------------
+
+ function Constant_Reference
+ (Container : aliased Tree;
+ Position : Cursor) return Constant_Reference_Type
+ is
+ begin
+ if Position.Container = null then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with
+ "Position cursor designates wrong container";
+ end if;
+
+ if Position.Node = Root_Node (Container) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ -- Implement Vet for multiway tree???
+ -- pragma Assert (Vet (Position),
+ -- "Position cursor in Constant_Reference is bad");
+
+ return (Element => Container.Elements (Position.Node)'Access);
+ end Constant_Reference;
+
+ --------------
+ -- Contains --
+ --------------
+
+ function Contains
+ (Container : Tree;
+ Item : Element_Type) return Boolean
+ is
+ begin
+ return Find (Container, Item) /= No_Element;
+ end Contains;
+
+ ----------
+ -- Copy --
+ ----------
+
+ function Copy
+ (Source : Tree;
+ Capacity : Count_Type := 0) return Tree
+ is
+ C : Count_Type;
+
+ begin
+ if Capacity = 0 then
+ C := Source.Count;
+ elsif Capacity >= Source.Count then
+ C := Capacity;
+ else
+ raise Capacity_Error with "Capacity value too small";
+ end if;
+
+ return Target : Tree (Capacity => C) do
+ Initialize_Root (Target);
+
+ if Source.Count = 0 then
+ return;
+ end if;
+
+ Copy_Children
+ (Source => Source,
+ Source_Parent => Root_Node (Source),
+ Target => Target,
+ Target_Parent => Root_Node (Target),
+ Count => Target.Count);
+
+ pragma Assert (Target.Count = Source.Count);
+ end return;
+ end Copy;
+
+ -------------------
+ -- Copy_Children --
+ -------------------
+
+ procedure Copy_Children
+ (Source : Tree;
+ Source_Parent : Count_Type;
+ Target : in out Tree;
+ Target_Parent : Count_Type;
+ Count : in out Count_Type)
+ is
+ S_Nodes : Tree_Node_Array renames Source.Nodes;
+ S_Node : Tree_Node_Type renames S_Nodes (Source_Parent);
+
+ T_Nodes : Tree_Node_Array renames Target.Nodes;
+ T_Node : Tree_Node_Type renames T_Nodes (Target_Parent);
+
+ pragma Assert (T_Node.Children.First <= 0);
+ pragma Assert (T_Node.Children.Last <= 0);
+
+ T_CC : Children_Type;
+ C : Count_Type'Base;
+
+ begin
+ -- We special-case the first allocation, in order to establish the
+ -- representation invariants for type Children_Type.
+
+ C := S_Node.Children.First;
+
+ if C <= 0 then -- source parent has no children
+ return;
+ end if;
+
+ Copy_Subtree
+ (Source => Source,
+ Source_Subtree => C,
+ Target => Target,
+ Target_Parent => Target_Parent,
+ Target_Subtree => T_CC.First,
+ Count => Count);
+
+ T_CC.Last := T_CC.First;
+
+ -- The representation invariants for the Children_Type list have been
+ -- established, so we can now copy the remaining children of Source.
+
+ C := S_Nodes (C).Next;
+ while C > 0 loop
+ Copy_Subtree
+ (Source => Source,
+ Source_Subtree => C,
+ Target => Target,
+ Target_Parent => Target_Parent,
+ Target_Subtree => T_Nodes (T_CC.Last).Next,
+ Count => Count);
+
+ T_Nodes (T_Nodes (T_CC.Last).Next).Prev := T_CC.Last;
+ T_CC.Last := T_Nodes (T_CC.Last).Next;
+
+ C := S_Nodes (C).Next;
+ end loop;
+
+ -- We add the newly-allocated children to their parent list only after
+ -- the allocation has succeeded, in order to preserve invariants of the
+ -- parent.
+
+ T_Node.Children := T_CC;
+ end Copy_Children;
+
+ ------------------
+ -- Copy_Subtree --
+ ------------------
+
+ procedure Copy_Subtree
+ (Target : in out Tree;
+ Parent : Cursor;
+ Before : Cursor;
+ Source : Cursor)
+ is
+ Target_Subtree : Count_Type;
+ Target_Count : Count_Type;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Target'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Target'Unrestricted_Access then
+ raise Program_Error with "Before cursor not in container";
+ end if;
+
+ if Before.Container.Nodes (Before.Node).Parent /= Parent.Node then
+ raise Constraint_Error with "Before cursor not child of Parent";
+ end if;
+ end if;
+
+ if Source = No_Element then
+ return;
+ end if;
+
+ if Is_Root (Source) then
+ raise Constraint_Error with "Source cursor designates root";
+ end if;
+
+ if Target.Count = 0 then
+ Initialize_Root (Target);
+ end if;
+
+ -- Copy_Subtree returns a count of the number of nodes that it
+ -- allocates, but it works by incrementing the value that is passed
+ -- in. We must therefore initialize the count value before calling
+ -- Copy_Subtree.
+
+ Target_Count := 0;
+
+ Copy_Subtree
+ (Source => Source.Container.all,
+ Source_Subtree => Source.Node,
+ Target => Target,
+ Target_Parent => Parent.Node,
+ Target_Subtree => Target_Subtree,
+ Count => Target_Count);
+
+ Insert_Subtree_Node
+ (Container => Target,
+ Subtree => Target_Subtree,
+ Parent => Parent.Node,
+ Before => Before.Node);
+
+ Target.Count := Target.Count + Target_Count;
+ end Copy_Subtree;
+
+ procedure Copy_Subtree
+ (Source : Tree;
+ Source_Subtree : Count_Type;
+ Target : in out Tree;
+ Target_Parent : Count_Type;
+ Target_Subtree : out Count_Type;
+ Count : in out Count_Type)
+ is
+ T_Nodes : Tree_Node_Array renames Target.Nodes;
+
+ begin
+ -- First we allocate the root of the target subtree.
+
+ Allocate_Node
+ (Container => Target,
+ New_Item => Source.Elements (Source_Subtree),
+ New_Node => Target_Subtree);
+
+ T_Nodes (Target_Subtree).Parent := Target_Parent;
+ Count := Count + 1;
+
+ -- We now have a new subtree (for the Target tree), containing only a
+ -- copy of the corresponding element in the Source subtree. Next we copy
+ -- the children of the Source subtree as children of the new Target
+ -- subtree.
+
+ Copy_Children
+ (Source => Source,
+ Source_Parent => Source_Subtree,
+ Target => Target,
+ Target_Parent => Target_Subtree,
+ Count => Count);
+ end Copy_Subtree;
+
+ -------------------------
+ -- Deallocate_Children --
+ -------------------------
+
+ procedure Deallocate_Children
+ (Container : in out Tree;
+ Subtree : Count_Type;
+ Count : in out Count_Type)
+ is
+ Nodes : Tree_Node_Array renames Container.Nodes;
+ Node : Tree_Node_Type renames Nodes (Subtree); -- parent
+ CC : Children_Type renames Node.Children;
+ C : Count_Type'Base;
+
+ begin
+ while CC.First > 0 loop
+ C := CC.First;
+ CC.First := Nodes (C).Next;
+
+ Deallocate_Subtree (Container, C, Count);
+ end loop;
+
+ CC.Last := 0;
+ end Deallocate_Children;
+
+ ---------------------
+ -- Deallocate_Node --
+ ---------------------
+
+ procedure Deallocate_Node
+ (Container : in out Tree;
+ X : Count_Type)
+ is
+ NN : Tree_Node_Array renames Container.Nodes;
+ pragma Assert (X > 0);
+ pragma Assert (X <= NN'Last);
+
+ N : Tree_Node_Type renames NN (X);
+ pragma Assert (N.Parent /= X); -- node is active
+
+ begin
+ -- The tree container actually contains two lists: one for the "active"
+ -- nodes that contain elements that have been inserted onto the tree,
+ -- and another for the "inactive" nodes of the free store, from which
+ -- nodes are allocated when a new child is inserted in the tree.
+
+ -- We desire that merely declaring a tree object should have only
+ -- minimal cost; specially, we want to avoid having to initialize the
+ -- free store (to fill in the links), especially if the capacity of the
+ -- tree object is large.
+
+ -- The head of the free list is indicated by Container.Free. If its
+ -- value is non-negative, then the free store has been initialized in
+ -- the "normal" way: Container.Free points to the head of the list of
+ -- free (inactive) nodes, and the value 0 means the free list is
+ -- empty. Each node on the free list has been initialized to point to
+ -- the next free node (via its Next component), and the value 0 means
+ -- that this is the last node of the free list.
+
+ -- If Container.Free is negative, then the links on the free store have
+ -- not been initialized. In this case the link values are implied: the
+ -- free store comprises the components of the node array started with
+ -- the absolute value of Container.Free, and continuing until the end of
+ -- the array (Nodes'Last).
+
+ -- We prefer to lazy-init the free store (in fact, we would prefer to
+ -- not initialize it at all, because such initialization is an O(n)
+ -- operation). The time when we need to actually initialize the nodes in
+ -- the free store is when the node that becomes inactive is not at the
+ -- end of the active list. The free store would then be discontigous and
+ -- so its nodes would need to be linked in the traditional way.
+
+ -- It might be possible to perform an optimization here. Suppose that
+ -- the free store can be represented as having two parts: one comprising
+ -- the non-contiguous inactive nodes linked together in the normal way,
+ -- and the other comprising the contiguous inactive nodes (that are not
+ -- linked together, at the end of the nodes array). This would allow us
+ -- to never have to initialize the free store, except in a lazy way as
+ -- nodes become inactive. ???
+
+ -- When an element is deleted from the list container, its node becomes
+ -- inactive, and so we set its Parent and Prev components to an
+ -- impossible value (the index of the node itself), to indicate that it
+ -- is now inactive. This provides a useful way to detect a dangling
+ -- cursor reference.
+
+ N.Parent := X; -- Node is deallocated (not on active list)
+ N.Prev := X;
+
+ if Container.Free >= 0 then
+ -- The free store has previously been initialized. All we need to do
+ -- here is link the newly-free'd node onto the free list.
+
+ N.Next := Container.Free;
+ Container.Free := X;
+
+ elsif X + 1 = abs Container.Free then
+ -- The free store has not been initialized, and the node becoming
+ -- inactive immediately precedes the start of the free store. All
+ -- we need to do is move the start of the free store back by one.
+
+ N.Next := X; -- Not strictly necessary, but marginally safer
+ Container.Free := Container.Free + 1;
+
+ else
+ -- The free store has not been initialized, and the node becoming
+ -- inactive does not immediately precede the free store. Here we
+ -- first initialize the free store (meaning the links are given
+ -- values in the traditional way), and then link the newly-free'd
+ -- node onto the head of the free store.
+
+ -- See the comments above for an optimization opportunity. If the
+ -- next link for a node on the free store is negative, then this
+ -- means the remaining nodes on the free store are physically
+ -- contiguous, starting at the absolute value of that index value.
+ -- ???
+
+ Container.Free := abs Container.Free;
+
+ if Container.Free > Container.Capacity then
+ Container.Free := 0;
+
+ else
+ for J in Container.Free .. Container.Capacity - 1 loop
+ NN (J).Next := J + 1;
+ end loop;
+
+ NN (Container.Capacity).Next := 0;
+ end if;
+
+ NN (X).Next := Container.Free;
+ Container.Free := X;
+ end if;
+ end Deallocate_Node;
+
+ ------------------------
+ -- Deallocate_Subtree --
+ ------------------------
+
+ procedure Deallocate_Subtree
+ (Container : in out Tree;
+ Subtree : Count_Type;
+ Count : in out Count_Type)
+ is
+ begin
+ Deallocate_Children (Container, Subtree, Count);
+ Deallocate_Node (Container, Subtree);
+ Count := Count + 1;
+ end Deallocate_Subtree;
+
+ ---------------------
+ -- Delete_Children --
+ ---------------------
+
+ procedure Delete_Children
+ (Container : in out Tree;
+ Parent : Cursor)
+ is
+ Count : Count_Type;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ return;
+ end if;
+
+ -- Deallocate_Children returns a count of the number of nodes that it
+ -- deallocates, but it works by incrementing the value that is passed
+ -- in. We must therefore initialize the count value before calling
+ -- Deallocate_Children.
+
+ Count := 0;
+
+ Deallocate_Children (Container, Parent.Node, Count);
+ pragma Assert (Count <= Container.Count);
+
+ Container.Count := Container.Count - Count;
+ end Delete_Children;
+
+ -----------------
+ -- Delete_Leaf --
+ -----------------
+
+ procedure Delete_Leaf
+ (Container : in out Tree;
+ Position : in out Cursor)
+ is
+ X : Count_Type;
+
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Position cursor not in container";
+ end if;
+
+ if Is_Root (Position) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ if not Is_Leaf (Position) then
+ raise Constraint_Error with "Position cursor does not designate leaf";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ X := Position.Node;
+ Position := No_Element;
+
+ Remove_Subtree (Container, X);
+ Container.Count := Container.Count - 1;
+
+ Deallocate_Node (Container, X);
+ end Delete_Leaf;
+
+ --------------------
+ -- Delete_Subtree --
+ --------------------
+
+ procedure Delete_Subtree
+ (Container : in out Tree;
+ Position : in out Cursor)
+ is
+ X : Count_Type;
+ Count : Count_Type;
+
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Position cursor not in container";
+ end if;
+
+ if Is_Root (Position) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ X := Position.Node;
+ Position := No_Element;
+
+ Remove_Subtree (Container, X);
+
+ -- Deallocate_Subtree returns a count of the number of nodes that it
+ -- deallocates, but it works by incrementing the value that is passed
+ -- in. We must therefore initialize the count value before calling
+ -- Deallocate_Subtree.
+
+ Count := 0;
+
+ Deallocate_Subtree (Container, X, Count);
+ pragma Assert (Count <= Container.Count);
+
+ Container.Count := Container.Count - Count;
+ end Delete_Subtree;
+
+ -----------
+ -- Depth --
+ -----------
+
+ function Depth (Position : Cursor) return Count_Type is
+ Result : Count_Type;
+ N : Count_Type'Base;
+
+ begin
+ if Position = No_Element then
+ return 0;
+ end if;
+
+ if Is_Root (Position) then
+ return 1;
+ end if;
+
+ Result := 0;
+ N := Position.Node;
+ while N >= 0 loop
+ N := Position.Container.Nodes (N).Parent;
+ Result := Result + 1;
+ end loop;
+
+ return Result;
+ end Depth;
+
+ -------------
+ -- Element --
+ -------------
+
+ function Element (Position : Cursor) return Element_Type is
+ begin
+ if Position.Container = null then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Node = Root_Node (Position.Container.all) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ return Position.Container.Elements (Position.Node);
+ end Element;
+
+ --------------------
+ -- Equal_Children --
+ --------------------
+
+ function Equal_Children
+ (Left_Tree : Tree;
+ Left_Subtree : Count_Type;
+ Right_Tree : Tree;
+ Right_Subtree : Count_Type) return Boolean
+ is
+ L_NN : Tree_Node_Array renames Left_Tree.Nodes;
+ R_NN : Tree_Node_Array renames Right_Tree.Nodes;
+
+ Left_Children : Children_Type renames L_NN (Left_Subtree).Children;
+ Right_Children : Children_Type renames R_NN (Right_Subtree).Children;
+
+ L, R : Count_Type'Base;
+
+ begin
+ if Child_Count (Left_Tree, Left_Subtree)
+ /= Child_Count (Right_Tree, Right_Subtree)
+ then
+ return False;
+ end if;
+
+ L := Left_Children.First;
+ R := Right_Children.First;
+ while L > 0 loop
+ if not Equal_Subtree (Left_Tree, L, Right_Tree, R) then
+ return False;
+ end if;
+
+ L := L_NN (L).Next;
+ R := R_NN (R).Next;
+ end loop;
+
+ return True;
+ end Equal_Children;
+
+ -------------------
+ -- Equal_Subtree --
+ -------------------
+
+ function Equal_Subtree
+ (Left_Position : Cursor;
+ Right_Position : Cursor) return Boolean
+ is
+ begin
+ if Left_Position = No_Element then
+ raise Constraint_Error with "Left cursor has no element";
+ end if;
+
+ if Right_Position = No_Element then
+ raise Constraint_Error with "Right cursor has no element";
+ end if;
+
+ if Left_Position = Right_Position then
+ return True;
+ end if;
+
+ if Is_Root (Left_Position) then
+ if not Is_Root (Right_Position) then
+ return False;
+ end if;
+
+ if Left_Position.Container.Count = 0 then
+ return Right_Position.Container.Count = 0;
+ end if;
+
+ if Right_Position.Container.Count = 0 then
+ return False;
+ end if;
+
+ return Equal_Children
+ (Left_Tree => Left_Position.Container.all,
+ Left_Subtree => Left_Position.Node,
+ Right_Tree => Right_Position.Container.all,
+ Right_Subtree => Right_Position.Node);
+ end if;
+
+ if Is_Root (Right_Position) then
+ return False;
+ end if;
+
+ return Equal_Subtree
+ (Left_Tree => Left_Position.Container.all,
+ Left_Subtree => Left_Position.Node,
+ Right_Tree => Right_Position.Container.all,
+ Right_Subtree => Right_Position.Node);
+ end Equal_Subtree;
+
+ function Equal_Subtree
+ (Left_Tree : Tree;
+ Left_Subtree : Count_Type;
+ Right_Tree : Tree;
+ Right_Subtree : Count_Type) return Boolean
+ is
+ begin
+ if Left_Tree.Elements (Left_Subtree) /=
+ Right_Tree.Elements (Right_Subtree)
+ then
+ return False;
+ end if;
+
+ return Equal_Children
+ (Left_Tree => Left_Tree,
+ Left_Subtree => Left_Subtree,
+ Right_Tree => Right_Tree,
+ Right_Subtree => Right_Subtree);
+ end Equal_Subtree;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize (Object : in out Root_Iterator) is
+ B : Natural renames Object.Container.Busy;
+ begin
+ B := B - 1;
+ end Finalize;
+
+ ----------
+ -- Find --
+ ----------
+
+ function Find
+ (Container : Tree;
+ Item : Element_Type) return Cursor
+ is
+ Node : Count_Type;
+
+ begin
+ if Container.Count = 0 then
+ return No_Element;
+ end if;
+
+ Node := Find_In_Children (Container, Root_Node (Container), Item);
+
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return Cursor'(Container'Unrestricted_Access, Node);
+ end Find;
+
+ -----------
+ -- First --
+ -----------
+
+ overriding function First (Object : Subtree_Iterator) return Cursor is
+ begin
+ if Object.Subtree = Root_Node (Object.Container.all) then
+ return First_Child (Root (Object.Container.all));
+ else
+ return Cursor'(Object.Container, Object.Subtree);
+ end if;
+ end First;
+
+ overriding function First (Object : Child_Iterator) return Cursor is
+ begin
+ return First_Child (Cursor'(Object.Container, Object.Subtree));
+ end First;
+
+ -----------------
+ -- First_Child --
+ -----------------
+
+ function First_Child (Parent : Cursor) return Cursor is
+ Node : Count_Type'Base;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ return No_Element;
+ end if;
+
+ Node := Parent.Container.Nodes (Parent.Node).Children.First;
+
+ if Node <= 0 then
+ return No_Element;
+ end if;
+
+ return Cursor'(Parent.Container, Node);
+ end First_Child;
+
+ -------------------------
+ -- First_Child_Element --
+ -------------------------
+
+ function First_Child_Element (Parent : Cursor) return Element_Type is
+ begin
+ return Element (First_Child (Parent));
+ end First_Child_Element;
+
+ ----------------------
+ -- Find_In_Children --
+ ----------------------
+
+ function Find_In_Children
+ (Container : Tree;
+ Subtree : Count_Type;
+ Item : Element_Type) return Count_Type
+ is
+ N : Count_Type'Base;
+ Result : Count_Type;
+
+ begin
+ N := Container.Nodes (Subtree).Children.First;
+ while N > 0 loop
+ Result := Find_In_Subtree (Container, N, Item);
+
+ if Result > 0 then
+ return Result;
+ end if;
+
+ N := Container.Nodes (N).Next;
+ end loop;
+
+ return 0;
+ end Find_In_Children;
+
+ ---------------------
+ -- Find_In_Subtree --
+ ---------------------
+
+ function Find_In_Subtree
+ (Position : Cursor;
+ Item : Element_Type) return Cursor
+ is
+ Result : Count_Type;
+
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ -- Commented-out pending ruling by ARG. ???
+
+ -- if Position.Container /= Container'Unrestricted_Access then
+ -- raise Program_Error with "Position cursor not in container";
+ -- end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return No_Element;
+ end if;
+
+ if Is_Root (Position) then
+ Result := Find_In_Children
+ (Container => Position.Container.all,
+ Subtree => Position.Node,
+ Item => Item);
+
+ else
+ Result := Find_In_Subtree
+ (Container => Position.Container.all,
+ Subtree => Position.Node,
+ Item => Item);
+ end if;
+
+ if Result = 0 then
+ return No_Element;
+ end if;
+
+ return Cursor'(Position.Container, Result);
+ end Find_In_Subtree;
+
+ function Find_In_Subtree
+ (Container : Tree;
+ Subtree : Count_Type;
+ Item : Element_Type) return Count_Type
+ is
+ begin
+ if Container.Elements (Subtree) = Item then
+ return Subtree;
+ end if;
+
+ return Find_In_Children (Container, Subtree, Item);
+ end Find_In_Subtree;
+
+ -----------------
+ -- Has_Element --
+ -----------------
+
+ function Has_Element (Position : Cursor) return Boolean is
+ begin
+ if Position = No_Element then
+ return False;
+ end if;
+
+ return Position.Node /= Root_Node (Position.Container.all);
+ end Has_Element;
+
+ ---------------------
+ -- Initialize_Node --
+ ---------------------
+
+ procedure Initialize_Node
+ (Container : in out Tree;
+ Index : Count_Type)
+ is
+ begin
+ Container.Nodes (Index) :=
+ (Parent => No_Node,
+ Prev => 0,
+ Next => 0,
+ Children => (others => 0));
+ end Initialize_Node;
+
+ ---------------------
+ -- Initialize_Root --
+ ---------------------
+
+ procedure Initialize_Root (Container : in out Tree) is
+ begin
+ Initialize_Node (Container, Root_Node (Container));
+ end Initialize_Root;
+
+ ------------------
+ -- Insert_Child --
+ ------------------
+
+ procedure Insert_Child
+ (Container : in out Tree;
+ Parent : Cursor;
+ Before : Cursor;
+ New_Item : Element_Type;
+ Count : Count_Type := 1)
+ is
+ Position : Cursor;
+ pragma Unreferenced (Position);
+
+ begin
+ Insert_Child (Container, Parent, Before, New_Item, Position, Count);
+ end Insert_Child;
+
+ procedure Insert_Child
+ (Container : in out Tree;
+ Parent : Cursor;
+ Before : Cursor;
+ New_Item : Element_Type;
+ Position : out Cursor;
+ Count : Count_Type := 1)
+ is
+ Nodes : Tree_Node_Array renames Container.Nodes;
+ Last : Count_Type;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Before cursor not in container";
+ end if;
+
+ if Before.Container.Nodes (Before.Node).Parent /= Parent.Node then
+ raise Constraint_Error with "Parent cursor not parent of Before";
+ end if;
+ end if;
+
+ if Count = 0 then
+ Position := No_Element; -- Need ruling from ARG ???
+ return;
+ end if;
+
+ if Container.Count > Container.Capacity - Count then
+ raise Constraint_Error
+ with "requested count exceeds available storage";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Container.Count = 0 then
+ Initialize_Root (Container);
+ end if;
+
+ Allocate_Node (Container, New_Item, Position.Node);
+ Nodes (Position.Node).Parent := Parent.Node;
+
+ Last := Position.Node;
+ for J in Count_Type'(2) .. Count loop
+ Allocate_Node (Container, New_Item, Nodes (Last).Next);
+ Nodes (Nodes (Last).Next).Parent := Parent.Node;
+ Nodes (Nodes (Last).Next).Prev := Last;
+
+ Last := Nodes (Last).Next;
+ end loop;
+
+ Insert_Subtree_List
+ (Container => Container,
+ First => Position.Node,
+ Last => Last,
+ Parent => Parent.Node,
+ Before => Before.Node);
+
+ Container.Count := Container.Count + Count;
+
+ Position.Container := Parent.Container;
+ end Insert_Child;
+
+ procedure Insert_Child
+ (Container : in out Tree;
+ Parent : Cursor;
+ Before : Cursor;
+ Position : out Cursor;
+ Count : Count_Type := 1)
+ is
+ Nodes : Tree_Node_Array renames Container.Nodes;
+ Last : Count_Type;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Before cursor not in container";
+ end if;
+
+ if Before.Container.Nodes (Before.Node).Parent /= Parent.Node then
+ raise Constraint_Error with "Parent cursor not parent of Before";
+ end if;
+ end if;
+
+ if Count = 0 then
+ Position := No_Element; -- Need ruling from ARG ???
+ return;
+ end if;
+
+ if Container.Count > Container.Capacity - Count then
+ raise Constraint_Error
+ with "requested count exceeds available storage";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Container.Count = 0 then
+ Initialize_Root (Container);
+ end if;
+
+ Allocate_Node (Container, Position.Node);
+ Nodes (Position.Node).Parent := Parent.Node;
+
+ Last := Position.Node;
+ for J in Count_Type'(2) .. Count loop
+ Allocate_Node (Container, Nodes (Last).Next);
+ Nodes (Nodes (Last).Next).Parent := Parent.Node;
+ Nodes (Nodes (Last).Next).Prev := Last;
+
+ Last := Nodes (Last).Next;
+ end loop;
+
+ Insert_Subtree_List
+ (Container => Container,
+ First => Position.Node,
+ Last => Last,
+ Parent => Parent.Node,
+ Before => Before.Node);
+
+ Container.Count := Container.Count + Count;
+
+ Position.Container := Parent.Container;
+ end Insert_Child;
+
+ -------------------------
+ -- Insert_Subtree_List --
+ -------------------------
+
+ procedure Insert_Subtree_List
+ (Container : in out Tree;
+ First : Count_Type'Base;
+ Last : Count_Type'Base;
+ Parent : Count_Type;
+ Before : Count_Type'Base)
+ is
+ NN : Tree_Node_Array renames Container.Nodes;
+ N : Tree_Node_Type renames NN (Parent);
+ CC : Children_Type renames N.Children;
+
+ begin
+ -- This is a simple utility operation to insert a list of nodes
+ -- (First..Last) as children of Parent. The Before node specifies where
+ -- the new children should be inserted relative to existing children.
+
+ if First <= 0 then
+ pragma Assert (Last <= 0);
+ return;
+ end if;
+
+ pragma Assert (Last > 0);
+ pragma Assert (Before <= 0 or else NN (Before).Parent = Parent);
+
+ if CC.First <= 0 then -- no existing children
+ CC.First := First;
+ NN (CC.First).Prev := 0;
+ CC.Last := Last;
+ NN (CC.Last).Next := 0;
+
+ elsif Before <= 0 then -- means "insert after existing nodes"
+ NN (CC.Last).Next := First;
+ NN (First).Prev := CC.Last;
+ CC.Last := Last;
+ NN (CC.Last).Next := 0;
+
+ elsif Before = CC.First then
+ NN (Last).Next := CC.First;
+ NN (CC.First).Prev := Last;
+ CC.First := First;
+ NN (CC.First).Prev := 0;
+
+ else
+ NN (NN (Before).Prev).Next := First;
+ NN (First).Prev := NN (Before).Prev;
+ NN (Last).Next := Before;
+ NN (Before).Prev := Last;
+ end if;
+ end Insert_Subtree_List;
+
+ -------------------------
+ -- Insert_Subtree_Node --
+ -------------------------
+
+ procedure Insert_Subtree_Node
+ (Container : in out Tree;
+ Subtree : Count_Type'Base;
+ Parent : Count_Type;
+ Before : Count_Type'Base)
+ is
+ begin
+ -- This is a simple wrapper operation to insert a single child into the
+ -- Parent's children list.
+
+ Insert_Subtree_List
+ (Container => Container,
+ First => Subtree,
+ Last => Subtree,
+ Parent => Parent,
+ Before => Before);
+ end Insert_Subtree_Node;
+
+ --------------
+ -- Is_Empty --
+ --------------
+
+ function Is_Empty (Container : Tree) return Boolean is
+ begin
+ return Container.Count = 0;
+ end Is_Empty;
+
+ -------------
+ -- Is_Leaf --
+ -------------
+
+ function Is_Leaf (Position : Cursor) return Boolean is
+ begin
+ if Position = No_Element then
+ return False;
+ end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return True;
+ end if;
+
+ return Position.Container.Nodes (Position.Node).Children.First <= 0;
+ end Is_Leaf;
+
+ ------------------
+ -- Is_Reachable --
+ ------------------
+
+ function Is_Reachable
+ (Container : Tree;
+ From, To : Count_Type) return Boolean
+ is
+ Idx : Count_Type;
+
+ begin
+ Idx := From;
+ while Idx >= 0 loop
+ if Idx = To then
+ return True;
+ end if;
+
+ Idx := Container.Nodes (Idx).Parent;
+ end loop;
+
+ return False;
+ end Is_Reachable;
+
+ -------------
+ -- Is_Root --
+ -------------
+
+ function Is_Root (Position : Cursor) return Boolean is
+ begin
+ return
+ (if Position.Container = null then False
+ else Position.Node = Root_Node (Position.Container.all));
+ end Is_Root;
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate
+ (Container : Tree;
+ Process : not null access procedure (Position : Cursor))
+ is
+ B : Natural renames Container'Unrestricted_Access.all.Busy;
+
+ begin
+ if Container.Count = 0 then
+ return;
+ end if;
+
+ B := B + 1;
+
+ Iterate_Children
+ (Container => Container,
+ Subtree => Root_Node (Container),
+ Process => Process);
+
+ B := B - 1;
+
+ exception
+ when others =>
+ B := B - 1;
+ raise;
+ end Iterate;
+
+ function Iterate (Container : Tree)
+ return Tree_Iterator_Interfaces.Forward_Iterator'Class
+ is
+ begin
+ return Iterate_Subtree (Root (Container));
+ end Iterate;
+
+ ----------------------
+ -- Iterate_Children --
+ ----------------------
+
+ procedure Iterate_Children
+ (Parent : Cursor;
+ Process : not null access procedure (Position : Cursor))
+ is
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ return;
+ end if;
+
+ declare
+ B : Natural renames Parent.Container.Busy;
+ C : Count_Type;
+ NN : Tree_Node_Array renames Parent.Container.Nodes;
+
+ begin
+ B := B + 1;
+
+ C := NN (Parent.Node).Children.First;
+ while C > 0 loop
+ Process (Cursor'(Parent.Container, Node => C));
+ C := NN (C).Next;
+ end loop;
+
+ B := B - 1;
+
+ exception
+ when others =>
+ B := B - 1;
+ raise;
+ end;
+ end Iterate_Children;
+
+ procedure Iterate_Children
+ (Container : Tree;
+ Subtree : Count_Type;
+ Process : not null access procedure (Position : Cursor))
+ is
+ NN : Tree_Node_Array renames Container.Nodes;
+ N : Tree_Node_Type renames NN (Subtree);
+ C : Count_Type;
+
+ begin
+ -- This is a helper function to recursively iterate over all the nodes
+ -- in a subtree, in depth-first fashion. This particular helper just
+ -- visits the children of this subtree, not the root of the subtree
+ -- itself. This is useful when starting from the ultimate root of the
+ -- entire tree (see Iterate), as that root does not have an element.
+
+ C := N.Children.First;
+ while C > 0 loop
+ Iterate_Subtree (Container, C, Process);
+ C := NN (C).Next;
+ end loop;
+ end Iterate_Children;
+
+ function Iterate_Children
+ (Container : Tree;
+ Parent : Cursor)
+ return Tree_Iterator_Interfaces.Reversible_Iterator'Class
+ is
+ C : constant Tree_Access := Container'Unrestricted_Access;
+ B : Natural renames C.Busy;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= C then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ return It : constant Child_Iterator :=
+ Child_Iterator'(Limited_Controlled with
+ Container => C,
+ Subtree => Parent.Node)
+ do
+ B := B + 1;
+ end return;
+ end Iterate_Children;
+
+ ---------------------
+ -- Iterate_Subtree --
+ ---------------------
+
+ function Iterate_Subtree
+ (Position : Cursor)
+ return Tree_Iterator_Interfaces.Forward_Iterator'Class
+ is
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ -- Implement Vet for multiway trees???
+ -- pragma Assert (Vet (Position), "bad subtree cursor");
+
+ declare
+ B : Natural renames Position.Container.Busy;
+ begin
+ return It : constant Subtree_Iterator :=
+ (Limited_Controlled with
+ Container => Position.Container,
+ Subtree => Position.Node)
+ do
+ B := B + 1;
+ end return;
+ end;
+ end Iterate_Subtree;
+
+ procedure Iterate_Subtree
+ (Position : Cursor;
+ Process : not null access procedure (Position : Cursor))
+ is
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return;
+ end if;
+
+ declare
+ T : Tree renames Position.Container.all;
+ B : Natural renames T.Busy;
+
+ begin
+ B := B + 1;
+
+ if Is_Root (Position) then
+ Iterate_Children (T, Position.Node, Process);
+ else
+ Iterate_Subtree (T, Position.Node, Process);
+ end if;
+
+ B := B - 1;
+
+ exception
+ when others =>
+ B := B - 1;
+ raise;
+ end;
+ end Iterate_Subtree;
+
+ procedure Iterate_Subtree
+ (Container : Tree;
+ Subtree : Count_Type;
+ Process : not null access procedure (Position : Cursor))
+ is
+ begin
+ -- This is a helper function to recursively iterate over all the nodes
+ -- in a subtree, in depth-first fashion. It first visits the root of the
+ -- subtree, then visits its children.
+
+ Process (Cursor'(Container'Unrestricted_Access, Subtree));
+ Iterate_Children (Container, Subtree, Process);
+ end Iterate_Subtree;
+
+ ----------
+ -- Last --
+ ----------
+
+ overriding function Last (Object : Child_Iterator) return Cursor is
+ begin
+ return Last_Child (Cursor'(Object.Container, Object.Subtree));
+ end Last;
+
+ ----------------
+ -- Last_Child --
+ ----------------
+
+ function Last_Child (Parent : Cursor) return Cursor is
+ Node : Count_Type'Base;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ return No_Element;
+ end if;
+
+ Node := Parent.Container.Nodes (Parent.Node).Children.Last;
+
+ if Node <= 0 then
+ return No_Element;
+ end if;
+
+ return Cursor'(Parent.Container, Node);
+ end Last_Child;
+
+ ------------------------
+ -- Last_Child_Element --
+ ------------------------
+
+ function Last_Child_Element (Parent : Cursor) return Element_Type is
+ begin
+ return Element (Last_Child (Parent));
+ end Last_Child_Element;
+
+ ----------
+ -- Move --
+ ----------
+
+ procedure Move (Target : in out Tree; Source : in out Tree) is
+ begin
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Source.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors of Source (tree is busy)";
+ end if;
+
+ Target.Assign (Source);
+ Source.Clear;
+ end Move;
+
+ ----------
+ -- Next --
+ ----------
+
+ overriding function Next
+ (Object : Subtree_Iterator;
+ Position : Cursor) return Cursor
+ is
+ begin
+ if Position.Container = null then
+ return No_Element;
+ end if;
+
+ if Position.Container /= Object.Container then
+ raise Program_Error with
+ "Position cursor of Next designates wrong tree";
+ end if;
+
+ pragma Assert (Object.Container.Count > 0);
+ pragma Assert (Position.Node /= Root_Node (Object.Container.all));
+
+ declare
+ Nodes : Tree_Node_Array renames Object.Container.Nodes;
+ Node : Count_Type;
+
+ begin
+ Node := Position.Node;
+
+ if Nodes (Node).Children.First > 0 then
+ return Cursor'(Object.Container, Nodes (Node).Children.First);
+ end if;
+
+ while Node /= Object.Subtree loop
+ if Nodes (Node).Next > 0 then
+ return Cursor'(Object.Container, Nodes (Node).Next);
+ end if;
+
+ Node := Nodes (Node).Parent;
+ end loop;
+
+ return No_Element;
+ end;
+ end Next;
+
+ overriding function Next
+ (Object : Child_Iterator;
+ Position : Cursor) return Cursor
+ is
+ begin
+ if Position.Container = null then
+ return No_Element;
+ end if;
+
+ if Position.Container /= Object.Container then
+ raise Program_Error with
+ "Position cursor of Next designates wrong tree";
+ end if;
+
+ pragma Assert (Object.Container.Count > 0);
+ pragma Assert (Position.Node /= Root_Node (Object.Container.all));
+
+ return Next_Sibling (Position);
+ end Next;
+
+ ------------------
+ -- Next_Sibling --
+ ------------------
+
+ function Next_Sibling (Position : Cursor) return Cursor is
+ begin
+ if Position = No_Element then
+ return No_Element;
+ end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return No_Element;
+ end if;
+
+ declare
+ T : Tree renames Position.Container.all;
+ NN : Tree_Node_Array renames T.Nodes;
+ N : Tree_Node_Type renames NN (Position.Node);
+
+ begin
+ if N.Next <= 0 then
+ return No_Element;
+ end if;
+
+ return Cursor'(Position.Container, N.Next);
+ end;
+ end Next_Sibling;
+
+ procedure Next_Sibling (Position : in out Cursor) is
+ begin
+ Position := Next_Sibling (Position);
+ end Next_Sibling;
+
+ ----------------
+ -- Node_Count --
+ ----------------
+
+ function Node_Count (Container : Tree) return Count_Type is
+ begin
+ -- Container.Count is the number of nodes we have actually allocated. We
+ -- cache the value specifically so this Node_Count operation can execute
+ -- in O(1) time, which makes it behave similarly to how the Length
+ -- selector function behaves for other containers.
+ --
+ -- The cached node count value only describes the nodes we have
+ -- allocated; the root node itself is not included in that count. The
+ -- Node_Count operation returns a value that includes the root node
+ -- (because the RM says so), so we must add 1 to our cached value.
+
+ return 1 + Container.Count;
+ end Node_Count;
+
+ ------------
+ -- Parent --
+ ------------
+
+ function Parent (Position : Cursor) return Cursor is
+ begin
+ if Position = No_Element then
+ return No_Element;
+ end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return No_Element;
+ end if;
+
+ declare
+ T : Tree renames Position.Container.all;
+ NN : Tree_Node_Array renames T.Nodes;
+ N : Tree_Node_Type renames NN (Position.Node);
+
+ begin
+ if N.Parent < 0 then
+ pragma Assert (Position.Node = Root_Node (T));
+ return No_Element;
+ end if;
+
+ return Cursor'(Position.Container, N.Parent);
+ end;
+ end Parent;
+
+ -------------------
+ -- Prepend_Child --
+ -------------------
+
+ procedure Prepend_Child
+ (Container : in out Tree;
+ Parent : Cursor;
+ New_Item : Element_Type;
+ Count : Count_Type := 1)
+ is
+ Nodes : Tree_Node_Array renames Container.Nodes;
+ First, Last : Count_Type;
+
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Count = 0 then
+ return;
+ end if;
+
+ if Container.Count > Container.Capacity - Count then
+ raise Constraint_Error
+ with "requested count exceeds available storage";
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Container.Count = 0 then
+ Initialize_Root (Container);
+ end if;
+
+ Allocate_Node (Container, New_Item, First);
+ Nodes (First).Parent := Parent.Node;
+
+ Last := First;
+ for J in Count_Type'(2) .. Count loop
+ Allocate_Node (Container, New_Item, Nodes (Last).Next);
+ Nodes (Nodes (Last).Next).Parent := Parent.Node;
+ Nodes (Nodes (Last).Next).Prev := Last;
+
+ Last := Nodes (Last).Next;
+ end loop;
+
+ Insert_Subtree_List
+ (Container => Container,
+ First => First,
+ Last => Last,
+ Parent => Parent.Node,
+ Before => Nodes (Parent.Node).Children.First);
+
+ Container.Count := Container.Count + Count;
+ end Prepend_Child;
+
+ --------------
+ -- Previous --
+ --------------
+
+ overriding function Previous
+ (Object : Child_Iterator;
+ Position : Cursor) return Cursor
+ is
+ begin
+ if Position.Container = null then
+ return No_Element;
+ end if;
+
+ if Position.Container /= Object.Container then
+ raise Program_Error with
+ "Position cursor of Previous designates wrong tree";
+ end if;
+
+ return Previous_Sibling (Position);
+ end Previous;
+
+ ----------------------
+ -- Previous_Sibling --
+ ----------------------
+
+ function Previous_Sibling (Position : Cursor) return Cursor is
+ begin
+ if Position = No_Element then
+ return No_Element;
+ end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return No_Element;
+ end if;
+
+ declare
+ T : Tree renames Position.Container.all;
+ NN : Tree_Node_Array renames T.Nodes;
+ N : Tree_Node_Type renames NN (Position.Node);
+
+ begin
+ if N.Prev <= 0 then
+ return No_Element;
+ end if;
+
+ return Cursor'(Position.Container, N.Prev);
+ end;
+ end Previous_Sibling;
+
+ procedure Previous_Sibling (Position : in out Cursor) is
+ begin
+ Position := Previous_Sibling (Position);
+ end Previous_Sibling;
+
+ -------------------
+ -- Query_Element --
+ -------------------
+
+ procedure Query_Element
+ (Position : Cursor;
+ Process : not null access procedure (Element : Element_Type))
+ is
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Is_Root (Position) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ declare
+ T : Tree renames Position.Container.all'Unrestricted_Access.all;
+ B : Natural renames T.Busy;
+ L : Natural renames T.Lock;
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Process (Element => T.Elements (Position.Node));
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+ raise;
+ end;
+ end Query_Element;
+
+ ----------
+ -- Read --
+ ----------
+
+ procedure Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Container : out Tree)
+ is
+ procedure Read_Children (Subtree : Count_Type);
+
+ function Read_Subtree
+ (Parent : Count_Type) return Count_Type;
+
+ NN : Tree_Node_Array renames Container.Nodes;
+
+ Total_Count : Count_Type'Base;
+ -- Value read from the stream that says how many elements follow
+
+ Read_Count : Count_Type'Base;
+ -- Actual number of elements read from the stream
+
+ -------------------
+ -- Read_Children --
+ -------------------
+
+ procedure Read_Children (Subtree : Count_Type) is
+ Count : Count_Type'Base;
+ -- number of child subtrees
+
+ CC : Children_Type;
+
+ begin
+ Count_Type'Read (Stream, Count);
+
+ if Count < 0 then
+ raise Program_Error with "attempt to read from corrupt stream";
+ end if;
+
+ if Count = 0 then
+ return;
+ end if;
+
+ CC.First := Read_Subtree (Parent => Subtree);
+ CC.Last := CC.First;
+
+ for J in Count_Type'(2) .. Count loop
+ NN (CC.Last).Next := Read_Subtree (Parent => Subtree);
+ NN (NN (CC.Last).Next).Prev := CC.Last;
+ CC.Last := NN (CC.Last).Next;
+ end loop;
+
+ -- Now that the allocation and reads have completed successfully, it
+ -- is safe to link the children to their parent.
+
+ NN (Subtree).Children := CC;
+ end Read_Children;
+
+ ------------------
+ -- Read_Subtree --
+ ------------------
+
+ function Read_Subtree
+ (Parent : Count_Type) return Count_Type
+ is
+ Subtree : Count_Type;
+
+ begin
+ Allocate_Node (Container, Stream, Subtree);
+ Container.Nodes (Subtree).Parent := Parent;
+
+ Read_Count := Read_Count + 1;
+
+ Read_Children (Subtree);
+
+ return Subtree;
+ end Read_Subtree;
+
+ -- Start of processing for Read
+
+ begin
+ Container.Clear; -- checks busy bit
+
+ Count_Type'Read (Stream, Total_Count);
+
+ if Total_Count < 0 then
+ raise Program_Error with "attempt to read from corrupt stream";
+ end if;
+
+ if Total_Count = 0 then
+ return;
+ end if;
+
+ if Total_Count > Container.Capacity then
+ raise Capacity_Error -- ???
+ with "node count in stream exceeds container capacity";
+ end if;
+
+ Initialize_Root (Container);
+
+ Read_Count := 0;
+
+ Read_Children (Root_Node (Container));
+
+ if Read_Count /= Total_Count then
+ raise Program_Error with "attempt to read from corrupt stream";
+ end if;
+
+ Container.Count := Total_Count;
+ end Read;
+
+ procedure Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Position : out Cursor)
+ is
+ begin
+ raise Program_Error with "attempt to read tree cursor from stream";
+ end Read;
+
+ procedure Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Item : out Reference_Type)
+ is
+ begin
+ raise Program_Error with "attempt to stream reference";
+ end Read;
+
+ procedure Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Item : out Constant_Reference_Type)
+ is
+ begin
+ raise Program_Error with "attempt to stream reference";
+ end Read;
+
+ ---------------
+ -- Reference --
+ ---------------
+
+ function Reference
+ (Container : aliased in out Tree;
+ Position : Cursor) return Reference_Type
+ is
+ begin
+ if Position.Container = null then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with
+ "Position cursor designates wrong container";
+ end if;
+
+ if Position.Node = Root_Node (Container) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ -- Implement Vet for multiway tree???
+ -- pragma Assert (Vet (Position),
+ -- "Position cursor in Constant_Reference is bad");
+
+ return (Element => Container.Elements (Position.Node)'Access);
+ end Reference;
+
+ --------------------
+ -- Remove_Subtree --
+ --------------------
+
+ procedure Remove_Subtree
+ (Container : in out Tree;
+ Subtree : Count_Type)
+ is
+ NN : Tree_Node_Array renames Container.Nodes;
+ N : Tree_Node_Type renames NN (Subtree);
+ CC : Children_Type renames NN (N.Parent).Children;
+
+ begin
+ -- This is a utility operation to remove a subtree node from its
+ -- parent's list of children.
+
+ if CC.First = Subtree then
+ pragma Assert (N.Prev <= 0);
+
+ if CC.Last = Subtree then
+ pragma Assert (N.Next <= 0);
+ CC.First := 0;
+ CC.Last := 0;
+
+ else
+ CC.First := N.Next;
+ NN (CC.First).Prev := 0;
+ end if;
+
+ elsif CC.Last = Subtree then
+ pragma Assert (N.Next <= 0);
+ CC.Last := N.Prev;
+ NN (CC.Last).Next := 0;
+
+ else
+ NN (N.Prev).Next := N.Next;
+ NN (N.Next).Prev := N.Prev;
+ end if;
+ end Remove_Subtree;
+
+ ----------------------
+ -- Replace_Element --
+ ----------------------
+
+ procedure Replace_Element
+ (Container : in out Tree;
+ Position : Cursor;
+ New_Item : Element_Type)
+ is
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Position cursor not in container";
+ end if;
+
+ if Is_Root (Position) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ if Container.Lock > 0 then
+ raise Program_Error
+ with "attempt to tamper with elements (tree is locked)";
+ end if;
+
+ Container.Elements (Position.Node) := New_Item;
+ end Replace_Element;
+
+ ------------------------------
+ -- Reverse_Iterate_Children --
+ ------------------------------
+
+ procedure Reverse_Iterate_Children
+ (Parent : Cursor;
+ Process : not null access procedure (Position : Cursor))
+ is
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container.Count = 0 then
+ pragma Assert (Is_Root (Parent));
+ return;
+ end if;
+
+ declare
+ NN : Tree_Node_Array renames Parent.Container.Nodes;
+ B : Natural renames Parent.Container.Busy;
+ C : Count_Type;
+
+ begin
+ B := B + 1;
+
+ C := NN (Parent.Node).Children.Last;
+ while C > 0 loop
+ Process (Cursor'(Parent.Container, Node => C));
+ C := NN (C).Prev;
+ end loop;
+
+ B := B - 1;
+
+ exception
+ when others =>
+ B := B - 1;
+ raise;
+ end;
+ end Reverse_Iterate_Children;
+
+ ----------
+ -- Root --
+ ----------
+
+ function Root (Container : Tree) return Cursor is
+ begin
+ return (Container'Unrestricted_Access, Root_Node (Container));
+ end Root;
+
+ ---------------
+ -- Root_Node --
+ ---------------
+
+ function Root_Node (Container : Tree) return Count_Type is
+ pragma Unreferenced (Container);
+
+ begin
+ return 0;
+ end Root_Node;
+
+ ---------------------
+ -- Splice_Children --
+ ---------------------
+
+ procedure Splice_Children
+ (Target : in out Tree;
+ Target_Parent : Cursor;
+ Before : Cursor;
+ Source : in out Tree;
+ Source_Parent : Cursor)
+ is
+ begin
+ if Target_Parent = No_Element then
+ raise Constraint_Error with "Target_Parent cursor has no element";
+ end if;
+
+ if Target_Parent.Container /= Target'Unrestricted_Access then
+ raise Program_Error
+ with "Target_Parent cursor not in Target container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Target'Unrestricted_Access then
+ raise Program_Error
+ with "Before cursor not in Target container";
+ end if;
+
+ if Target.Nodes (Before.Node).Parent /= Target_Parent.Node then
+ raise Constraint_Error
+ with "Before cursor not child of Target_Parent";
+ end if;
+ end if;
+
+ if Source_Parent = No_Element then
+ raise Constraint_Error with "Source_Parent cursor has no element";
+ end if;
+
+ if Source_Parent.Container /= Source'Unrestricted_Access then
+ raise Program_Error
+ with "Source_Parent cursor not in Source container";
+ end if;
+
+ if Source.Count = 0 then
+ pragma Assert (Is_Root (Source_Parent));
+ return;
+ end if;
+
+ if Target'Address = Source'Address then
+ if Target_Parent = Source_Parent then
+ return;
+ end if;
+
+ if Target.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (Target tree is busy)";
+ end if;
+
+ if Is_Reachable (Container => Target,
+ From => Target_Parent.Node,
+ To => Source_Parent.Node)
+ then
+ raise Constraint_Error
+ with "Source_Parent is ancestor of Target_Parent";
+ end if;
+
+ Splice_Children
+ (Container => Target,
+ Target_Parent => Target_Parent.Node,
+ Before => Before.Node,
+ Source_Parent => Source_Parent.Node);
+
+ return;
+ end if;
+
+ if Target.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (Target tree is busy)";
+ end if;
+
+ if Source.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (Source tree is busy)";
+ end if;
+
+ if Target.Count = 0 then
+ Initialize_Root (Target);
+ end if;
+
+ Splice_Children
+ (Target => Target,
+ Target_Parent => Target_Parent.Node,
+ Before => Before.Node,
+ Source => Source,
+ Source_Parent => Source_Parent.Node);
+ end Splice_Children;
+
+ procedure Splice_Children
+ (Container : in out Tree;
+ Target_Parent : Cursor;
+ Before : Cursor;
+ Source_Parent : Cursor)
+ is
+ begin
+ if Target_Parent = No_Element then
+ raise Constraint_Error with "Target_Parent cursor has no element";
+ end if;
+
+ if Target_Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error
+ with "Target_Parent cursor not in container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Container'Unrestricted_Access then
+ raise Program_Error
+ with "Before cursor not in container";
+ end if;
+
+ if Container.Nodes (Before.Node).Parent /= Target_Parent.Node then
+ raise Constraint_Error
+ with "Before cursor not child of Target_Parent";
+ end if;
+ end if;
+
+ if Source_Parent = No_Element then
+ raise Constraint_Error with "Source_Parent cursor has no element";
+ end if;
+
+ if Source_Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error
+ with "Source_Parent cursor not in container";
+ end if;
+
+ if Target_Parent = Source_Parent then
+ return;
+ end if;
+
+ pragma Assert (Container.Count > 0);
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Is_Reachable (Container => Container,
+ From => Target_Parent.Node,
+ To => Source_Parent.Node)
+ then
+ raise Constraint_Error
+ with "Source_Parent is ancestor of Target_Parent";
+ end if;
+
+ Splice_Children
+ (Container => Container,
+ Target_Parent => Target_Parent.Node,
+ Before => Before.Node,
+ Source_Parent => Source_Parent.Node);
+ end Splice_Children;
+
+ procedure Splice_Children
+ (Container : in out Tree;
+ Target_Parent : Count_Type;
+ Before : Count_Type'Base;
+ Source_Parent : Count_Type)
+ is
+ NN : Tree_Node_Array renames Container.Nodes;
+ CC : constant Children_Type := NN (Source_Parent).Children;
+ C : Count_Type'Base;
+
+ begin
+ -- This is a utility operation to remove the children from Source parent
+ -- and insert them into Target parent.
+
+ NN (Source_Parent).Children := Children_Type'(others => 0);
+
+ -- Fix up the Parent pointers of each child to designate its new Target
+ -- parent.
+
+ C := CC.First;
+ while C > 0 loop
+ NN (C).Parent := Target_Parent;
+ C := NN (C).Next;
+ end loop;
+
+ Insert_Subtree_List
+ (Container => Container,
+ First => CC.First,
+ Last => CC.Last,
+ Parent => Target_Parent,
+ Before => Before);
+ end Splice_Children;
+
+ procedure Splice_Children
+ (Target : in out Tree;
+ Target_Parent : Count_Type;
+ Before : Count_Type'Base;
+ Source : in out Tree;
+ Source_Parent : Count_Type)
+ is
+ S_NN : Tree_Node_Array renames Source.Nodes;
+ S_CC : Children_Type renames S_NN (Source_Parent).Children;
+
+ Target_Count, Source_Count : Count_Type;
+ T, S : Count_Type'Base;
+
+ begin
+ -- This is a utility operation to copy the children from the Source
+ -- parent and insert them as children of the Target parent, and then
+ -- delete them from the Source. (This is not a true splice operation,
+ -- but it is the best we can do in a bounded form.) The Before position
+ -- specifies where among the Target parent's exising children the new
+ -- children are inserted.
+
+ -- Before we attempt the insertion, we must count the sources nodes in
+ -- order to determine whether the target have enough storage
+ -- available. Note that calculating this value is an O(n) operation.
+
+ -- Here is an optimization opportunity: iterate of each children the
+ -- source explicitly, and keep a running count of the total number of
+ -- nodes. Compare the running total to the capacity of the target each
+ -- pass through the loop. This is more efficient than summing the counts
+ -- of child subtree (which is what Subtree_Node_Count does) and then
+ -- comparing that total sum to the target's capacity. ???
+
+ -- Here is another possibility. We currently treat the splice as an
+ -- all-or-nothing proposition: either we can insert all of children of
+ -- the source, or we raise exception with modifying the target. The
+ -- price for not causing side-effect is an O(n) determination of the
+ -- source count. If we are willing to tolerate side-effect, then we
+ -- could loop over the children of the source, counting that subtree and
+ -- then immediately inserting it in the target. The issue here is that
+ -- the test for available storage could fail during some later pass,
+ -- after children have already been inserted into target. ???
+
+ Source_Count := Subtree_Node_Count (Source, Source_Parent) - 1;
+
+ if Source_Count = 0 then
+ return;
+ end if;
+
+ if Target.Count > Target.Capacity - Source_Count then
+ raise Capacity_Error -- ???
+ with "Source count exceeds available storage on Target";
+ end if;
+
+ -- Copy_Subtree returns a count of the number of nodes it inserts, but
+ -- it does this by incrementing the value passed in. Therefore we must
+ -- initialize the count before calling Copy_Subtree.
+
+ Target_Count := 0;
+
+ S := S_CC.First;
+ while S > 0 loop
+ Copy_Subtree
+ (Source => Source,
+ Source_Subtree => S,
+ Target => Target,
+ Target_Parent => Target_Parent,
+ Target_Subtree => T,
+ Count => Target_Count);
+
+ Insert_Subtree_Node
+ (Container => Target,
+ Subtree => T,
+ Parent => Target_Parent,
+ Before => Before);
+
+ S := S_NN (S).Next;
+ end loop;
+
+ pragma Assert (Target_Count = Source_Count);
+ Target.Count := Target.Count + Target_Count;
+
+ -- As with Copy_Subtree, operation Deallocate_Children returns a count
+ -- of the number of nodes it deallocates, but it works by incrementing
+ -- the value passed in. We must therefore initialize the count before
+ -- calling it.
+
+ Source_Count := 0;
+
+ Deallocate_Children (Source, Source_Parent, Source_Count);
+ pragma Assert (Source_Count = Target_Count);
+
+ Source.Count := Source.Count - Source_Count;
+ end Splice_Children;
+
+ --------------------
+ -- Splice_Subtree --
+ --------------------
+
+ procedure Splice_Subtree
+ (Target : in out Tree;
+ Parent : Cursor;
+ Before : Cursor;
+ Source : in out Tree;
+ Position : in out Cursor)
+ is
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Target'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in Target container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Target'Unrestricted_Access then
+ raise Program_Error with "Before cursor not in Target container";
+ end if;
+
+ if Target.Nodes (Before.Node).Parent /= Parent.Node then
+ raise Constraint_Error with "Before cursor not child of Parent";
+ end if;
+ end if;
+
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Source'Unrestricted_Access then
+ raise Program_Error with "Position cursor not in Source container";
+ end if;
+
+ if Is_Root (Position) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ if Target'Address = Source'Address then
+ if Target.Nodes (Position.Node).Parent = Parent.Node then
+ if Before = No_Element then
+ if Target.Nodes (Position.Node).Next <= 0 then -- last child
+ return;
+ end if;
+
+ elsif Position.Node = Before.Node then
+ return;
+
+ elsif Target.Nodes (Position.Node).Next = Before.Node then
+ return;
+ end if;
+ end if;
+
+ if Target.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (Target tree is busy)";
+ end if;
+
+ if Is_Reachable (Container => Target,
+ From => Parent.Node,
+ To => Position.Node)
+ then
+ raise Constraint_Error with "Position is ancestor of Parent";
+ end if;
+
+ Remove_Subtree (Target, Position.Node);
+
+ Target.Nodes (Position.Node).Parent := Parent.Node;
+ Insert_Subtree_Node (Target, Position.Node, Parent.Node, Before.Node);
+
+ return;
+ end if;
+
+ if Target.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (Target tree is busy)";
+ end if;
+
+ if Source.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (Source tree is busy)";
+ end if;
+
+ if Target.Count = 0 then
+ Initialize_Root (Target);
+ end if;
+
+ Splice_Subtree
+ (Target => Target,
+ Parent => Parent.Node,
+ Before => Before.Node,
+ Source => Source,
+ Position => Position.Node); -- modified during call
+
+ Position.Container := Target'Unrestricted_Access;
+ end Splice_Subtree;
+
+ procedure Splice_Subtree
+ (Container : in out Tree;
+ Parent : Cursor;
+ Before : Cursor;
+ Position : Cursor)
+ is
+ begin
+ if Parent = No_Element then
+ raise Constraint_Error with "Parent cursor has no element";
+ end if;
+
+ if Parent.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Parent cursor not in container";
+ end if;
+
+ if Before /= No_Element then
+ if Before.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Before cursor not in container";
+ end if;
+
+ if Container.Nodes (Before.Node).Parent /= Parent.Node then
+ raise Constraint_Error with "Before cursor not child of Parent";
+ end if;
+ end if;
+
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Position cursor not in container";
+ end if;
+
+ if Is_Root (Position) then
+
+ -- Should this be PE instead? Need ARG confirmation. ???
+
+ raise Constraint_Error with "Position cursor designates root";
+ end if;
+
+ if Container.Nodes (Position.Node).Parent = Parent.Node then
+ if Before = No_Element then
+ if Container.Nodes (Position.Node).Next <= 0 then -- last child
+ return;
+ end if;
+
+ elsif Position.Node = Before.Node then
+ return;
+
+ elsif Container.Nodes (Position.Node).Next = Before.Node then
+ return;
+ end if;
+ end if;
+
+ if Container.Busy > 0 then
+ raise Program_Error
+ with "attempt to tamper with cursors (tree is busy)";
+ end if;
+
+ if Is_Reachable (Container => Container,
+ From => Parent.Node,
+ To => Position.Node)
+ then
+ raise Constraint_Error with "Position is ancestor of Parent";
+ end if;
+
+ Remove_Subtree (Container, Position.Node);
+ Container.Nodes (Position.Node).Parent := Parent.Node;
+ Insert_Subtree_Node (Container, Position.Node, Parent.Node, Before.Node);
+ end Splice_Subtree;
+
+ procedure Splice_Subtree
+ (Target : in out Tree;
+ Parent : Count_Type;
+ Before : Count_Type'Base;
+ Source : in out Tree;
+ Position : in out Count_Type) -- Source on input, Target on output
+ is
+ Source_Count : Count_Type := Subtree_Node_Count (Source, Position);
+ pragma Assert (Source_Count >= 1);
+
+ Target_Subtree : Count_Type;
+ Target_Count : Count_Type;
+
+ begin
+ -- This is a utility operation to do the heavy lifting associated with
+ -- splicing a subtree from one tree to another. Note that "splicing"
+ -- is a bit of a misnomer here in the case of a bounded tree, because
+ -- the elements must be copied from the source to the target.
+
+ if Target.Count > Target.Capacity - Source_Count then
+ raise Capacity_Error -- ???
+ with "Source count exceeds available storage on Target";
+ end if;
+
+ -- Copy_Subtree returns a count of the number of nodes it inserts, but
+ -- it does this by incrementing the value passed in. Therefore we must
+ -- initialize the count before calling Copy_Subtree.
+
+ Target_Count := 0;
+
+ Copy_Subtree
+ (Source => Source,
+ Source_Subtree => Position,
+ Target => Target,
+ Target_Parent => Parent,
+ Target_Subtree => Target_Subtree,
+ Count => Target_Count);
+
+ pragma Assert (Target_Count = Source_Count);
+
+ -- Now link the newly-allocated subtree into the target.
+
+ Insert_Subtree_Node
+ (Container => Target,
+ Subtree => Target_Subtree,
+ Parent => Parent,
+ Before => Before);
+
+ Target.Count := Target.Count + Target_Count;
+
+ -- The manipulation of the Target container is complete. Now we remove
+ -- the subtree from the Source container.
+
+ Remove_Subtree (Source, Position); -- unlink the subtree
+
+ -- As with Copy_Subtree, operation Deallocate_Subtree returns a count of
+ -- the number of nodes it deallocates, but it works by incrementing the
+ -- value passed in. We must therefore initialize the count before
+ -- calling it.
+
+ Source_Count := 0;
+
+ Deallocate_Subtree (Source, Position, Source_Count);
+ pragma Assert (Source_Count = Target_Count);
+
+ Source.Count := Source.Count - Source_Count;
+
+ Position := Target_Subtree;
+ end Splice_Subtree;
+
+ ------------------------
+ -- Subtree_Node_Count --
+ ------------------------
+
+ function Subtree_Node_Count (Position : Cursor) return Count_Type is
+ begin
+ if Position = No_Element then
+ return 0;
+ end if;
+
+ if Position.Container.Count = 0 then
+ pragma Assert (Is_Root (Position));
+ return 1;
+ end if;
+
+ return Subtree_Node_Count (Position.Container.all, Position.Node);
+ end Subtree_Node_Count;
+
+ function Subtree_Node_Count
+ (Container : Tree;
+ Subtree : Count_Type) return Count_Type
+ is
+ Result : Count_Type;
+ Node : Count_Type'Base;
+
+ begin
+ Result := 1;
+ Node := Container.Nodes (Subtree).Children.First;
+ while Node > 0 loop
+ Result := Result + Subtree_Node_Count (Container, Node);
+ Node := Container.Nodes (Node).Next;
+ end loop;
+ return Result;
+ end Subtree_Node_Count;
+
+ ----------
+ -- Swap --
+ ----------
+
+ procedure Swap
+ (Container : in out Tree;
+ I, J : Cursor)
+ is
+ begin
+ if I = No_Element then
+ raise Constraint_Error with "I cursor has no element";
+ end if;
+
+ if I.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "I cursor not in container";
+ end if;
+
+ if Is_Root (I) then
+ raise Program_Error with "I cursor designates root";
+ end if;
+
+ if I = J then -- make this test sooner???
+ return;
+ end if;
+
+ if J = No_Element then
+ raise Constraint_Error with "J cursor has no element";
+ end if;
+
+ if J.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "J cursor not in container";
+ end if;
+
+ if Is_Root (J) then
+ raise Program_Error with "J cursor designates root";
+ end if;
+
+ if Container.Lock > 0 then
+ raise Program_Error
+ with "attempt to tamper with elements (tree is locked)";
+ end if;
+
+ declare
+ EE : Element_Array renames Container.Elements;
+ EI : constant Element_Type := EE (I.Node);
+
+ begin
+ EE (I.Node) := EE (J.Node);
+ EE (J.Node) := EI;
+ end;
+ end Swap;
+
+ --------------------
+ -- Update_Element --
+ --------------------
+
+ procedure Update_Element
+ (Container : in out Tree;
+ Position : Cursor;
+ Process : not null access procedure (Element : in out Element_Type))
+ is
+ begin
+ if Position = No_Element then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ if Position.Container /= Container'Unrestricted_Access then
+ raise Program_Error with "Position cursor not in container";
+ end if;
+
+ if Is_Root (Position) then
+ raise Program_Error with "Position cursor designates root";
+ end if;
+
+ declare
+ T : Tree renames Position.Container.all'Unrestricted_Access.all;
+ B : Natural renames T.Busy;
+ L : Natural renames T.Lock;
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ Process (Element => T.Elements (Position.Node));
+
+ L := L - 1;
+ B := B - 1;
+
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+ raise;
+ end;
+ end Update_Element;
+
+ -----------
+ -- Write --
+ -----------
+
+ procedure Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Container : Tree)
+ is
+ procedure Write_Children (Subtree : Count_Type);
+ procedure Write_Subtree (Subtree : Count_Type);
+
+ --------------------
+ -- Write_Children --
+ --------------------
+
+ procedure Write_Children (Subtree : Count_Type) is
+ CC : Children_Type renames Container.Nodes (Subtree).Children;
+ C : Count_Type'Base;
+
+ begin
+ Count_Type'Write (Stream, Child_Count (Container, Subtree));
+
+ C := CC.First;
+ while C > 0 loop
+ Write_Subtree (C);
+ C := Container.Nodes (C).Next;
+ end loop;
+ end Write_Children;
+
+ -------------------
+ -- Write_Subtree --
+ -------------------
+
+ procedure Write_Subtree (Subtree : Count_Type) is
+ begin
+ Element_Type'Write (Stream, Container.Elements (Subtree));
+ Write_Children (Subtree);
+ end Write_Subtree;
+
+ -- Start of processing for Write
+
+ begin
+ Count_Type'Write (Stream, Container.Count);
+
+ if Container.Count = 0 then
+ return;
+ end if;
+
+ Write_Children (Root_Node (Container));
+ end Write;
+
+ procedure Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Position : Cursor)
+ is
+ begin
+ raise Program_Error with "attempt to write tree cursor to stream";
+ end Write;
+
+ procedure Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Item : Reference_Type)
+ is
+ begin
+ raise Program_Error with "attempt to stream reference";
+ end Write;
+
+ procedure Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Item : Constant_Reference_Type)
+ is
+ begin
+ raise Program_Error with "attempt to stream reference";
+ end Write;
+
+end Ada.Containers.Bounded_Multiway_Trees;