diff options
author | Ben Cheng <bccheng@google.com> | 2012-10-01 10:30:31 -0700 |
---|---|---|
committer | Ben Cheng <bccheng@google.com> | 2012-10-01 10:30:31 -0700 |
commit | 82bcbebce43f0227f506d75a5b764b6847041bae (patch) | |
tree | fe9f8597b48a430c4daeb5123e3e8eb28e6f9da9 /gcc-4.7/gcc/ada/a-cbmutr.adb | |
parent | 3c052de3bb16ac53b6b6ed659ec7557eb84c7590 (diff) | |
download | toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.gz toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.tar.bz2 toolchain_gcc-82bcbebce43f0227f506d75a5b764b6847041bae.zip |
Initial check-in of gcc 4.7.2.
Change-Id: I4a2f5a921c21741a0e18bda986d77e5f1bef0365
Diffstat (limited to 'gcc-4.7/gcc/ada/a-cbmutr.adb')
-rw-r--r-- | gcc-4.7/gcc/ada/a-cbmutr.adb | 3388 |
1 files changed, 3388 insertions, 0 deletions
diff --git a/gcc-4.7/gcc/ada/a-cbmutr.adb b/gcc-4.7/gcc/ada/a-cbmutr.adb new file mode 100644 index 000000000..e40c7bfc8 --- /dev/null +++ b/gcc-4.7/gcc/ada/a-cbmutr.adb @@ -0,0 +1,3388 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT LIBRARY COMPONENTS -- +-- -- +-- ADA.CONTAINERS.BOUNDED_MULTIWAY_TREES -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 2011, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +-- -- +-- This unit was originally developed by Matthew J Heaney. -- +------------------------------------------------------------------------------ + +with Ada.Finalization; use Ada.Finalization; + +with System; use type System.Address; + +package body Ada.Containers.Bounded_Multiway_Trees is + + -------------------- + -- Root_Iterator -- + -------------------- + + type Root_Iterator is abstract new Limited_Controlled and + Tree_Iterator_Interfaces.Forward_Iterator with + record + Container : Tree_Access; + Subtree : Count_Type; + end record; + + overriding procedure Finalize (Object : in out Root_Iterator); + + ----------------------- + -- Subtree_Iterator -- + ----------------------- + + type Subtree_Iterator is new Root_Iterator with null record; + + overriding function First (Object : Subtree_Iterator) return Cursor; + + overriding function Next + (Object : Subtree_Iterator; + Position : Cursor) return Cursor; + + --------------------- + -- Child_Iterator -- + --------------------- + + type Child_Iterator is new Root_Iterator and + Tree_Iterator_Interfaces.Reversible_Iterator with null record; + + overriding function First (Object : Child_Iterator) return Cursor; + + overriding function Next + (Object : Child_Iterator; + Position : Cursor) return Cursor; + + overriding function Last (Object : Child_Iterator) return Cursor; + + overriding function Previous + (Object : Child_Iterator; + Position : Cursor) return Cursor; + + ----------------------- + -- Local Subprograms -- + ----------------------- + + procedure Initialize_Node (Container : in out Tree; Index : Count_Type); + procedure Initialize_Root (Container : in out Tree); + + procedure Allocate_Node + (Container : in out Tree; + Initialize_Element : not null access procedure (Index : Count_Type); + New_Node : out Count_Type); + + procedure Allocate_Node + (Container : in out Tree; + New_Item : Element_Type; + New_Node : out Count_Type); + + procedure Allocate_Node + (Container : in out Tree; + New_Node : out Count_Type); + + procedure Allocate_Node + (Container : in out Tree; + Stream : not null access Root_Stream_Type'Class; + New_Node : out Count_Type); + + procedure Deallocate_Node + (Container : in out Tree; + X : Count_Type); + + procedure Deallocate_Children + (Container : in out Tree; + Subtree : Count_Type; + Count : in out Count_Type); + + procedure Deallocate_Subtree + (Container : in out Tree; + Subtree : Count_Type; + Count : in out Count_Type); + + function Equal_Children + (Left_Tree : Tree; + Left_Subtree : Count_Type; + Right_Tree : Tree; + Right_Subtree : Count_Type) return Boolean; + + function Equal_Subtree + (Left_Tree : Tree; + Left_Subtree : Count_Type; + Right_Tree : Tree; + Right_Subtree : Count_Type) return Boolean; + + procedure Iterate_Children + (Container : Tree; + Subtree : Count_Type; + Process : not null access procedure (Position : Cursor)); + + procedure Iterate_Subtree + (Container : Tree; + Subtree : Count_Type; + Process : not null access procedure (Position : Cursor)); + + procedure Copy_Children + (Source : Tree; + Source_Parent : Count_Type; + Target : in out Tree; + Target_Parent : Count_Type; + Count : in out Count_Type); + + procedure Copy_Subtree + (Source : Tree; + Source_Subtree : Count_Type; + Target : in out Tree; + Target_Parent : Count_Type; + Target_Subtree : out Count_Type; + Count : in out Count_Type); + + function Find_In_Children + (Container : Tree; + Subtree : Count_Type; + Item : Element_Type) return Count_Type; + + function Find_In_Subtree + (Container : Tree; + Subtree : Count_Type; + Item : Element_Type) return Count_Type; + + function Child_Count + (Container : Tree; + Parent : Count_Type) return Count_Type; + + function Subtree_Node_Count + (Container : Tree; + Subtree : Count_Type) return Count_Type; + + function Is_Reachable + (Container : Tree; + From, To : Count_Type) return Boolean; + + function Root_Node (Container : Tree) return Count_Type; + + procedure Remove_Subtree + (Container : in out Tree; + Subtree : Count_Type); + + procedure Insert_Subtree_Node + (Container : in out Tree; + Subtree : Count_Type'Base; + Parent : Count_Type; + Before : Count_Type'Base); + + procedure Insert_Subtree_List + (Container : in out Tree; + First : Count_Type'Base; + Last : Count_Type'Base; + Parent : Count_Type; + Before : Count_Type'Base); + + procedure Splice_Children + (Container : in out Tree; + Target_Parent : Count_Type; + Before : Count_Type'Base; + Source_Parent : Count_Type); + + procedure Splice_Children + (Target : in out Tree; + Target_Parent : Count_Type; + Before : Count_Type'Base; + Source : in out Tree; + Source_Parent : Count_Type); + + procedure Splice_Subtree + (Target : in out Tree; + Parent : Count_Type; + Before : Count_Type'Base; + Source : in out Tree; + Position : in out Count_Type); -- source on input, target on output + + --------- + -- "=" -- + --------- + + function "=" (Left, Right : Tree) return Boolean is + begin + if Left'Address = Right'Address then + return True; + end if; + + if Left.Count /= Right.Count then + return False; + end if; + + if Left.Count = 0 then + return True; + end if; + + return Equal_Children + (Left_Tree => Left, + Left_Subtree => Root_Node (Left), + Right_Tree => Right, + Right_Subtree => Root_Node (Right)); + end "="; + + ------------------- + -- Allocate_Node -- + ------------------- + + procedure Allocate_Node + (Container : in out Tree; + Initialize_Element : not null access procedure (Index : Count_Type); + New_Node : out Count_Type) + is + begin + if Container.Free >= 0 then + New_Node := Container.Free; + pragma Assert (New_Node in Container.Elements'Range); + + -- We always perform the assignment first, before we change container + -- state, in order to defend against exceptions duration assignment. + + Initialize_Element (New_Node); + + Container.Free := Container.Nodes (New_Node).Next; + + else + -- A negative free store value means that the links of the nodes in + -- the free store have not been initialized. In this case, the nodes + -- are physically contiguous in the array, starting at the index that + -- is the absolute value of the Container.Free, and continuing until + -- the end of the array (Nodes'Last). + + New_Node := abs Container.Free; + pragma Assert (New_Node in Container.Elements'Range); + + -- As above, we perform this assignment first, before modifying any + -- container state. + + Initialize_Element (New_Node); + + Container.Free := Container.Free - 1; + + if abs Container.Free > Container.Capacity then + Container.Free := 0; + end if; + end if; + + Initialize_Node (Container, New_Node); + end Allocate_Node; + + procedure Allocate_Node + (Container : in out Tree; + New_Item : Element_Type; + New_Node : out Count_Type) + is + procedure Initialize_Element (Index : Count_Type); + + procedure Initialize_Element (Index : Count_Type) is + begin + Container.Elements (Index) := New_Item; + end Initialize_Element; + + begin + Allocate_Node (Container, Initialize_Element'Access, New_Node); + end Allocate_Node; + + procedure Allocate_Node + (Container : in out Tree; + Stream : not null access Root_Stream_Type'Class; + New_Node : out Count_Type) + is + procedure Initialize_Element (Index : Count_Type); + + procedure Initialize_Element (Index : Count_Type) is + begin + Element_Type'Read (Stream, Container.Elements (Index)); + end Initialize_Element; + + begin + Allocate_Node (Container, Initialize_Element'Access, New_Node); + end Allocate_Node; + + procedure Allocate_Node + (Container : in out Tree; + New_Node : out Count_Type) + is + procedure Initialize_Element (Index : Count_Type) is null; + begin + Allocate_Node (Container, Initialize_Element'Access, New_Node); + end Allocate_Node; + + ------------------- + -- Ancestor_Find -- + ------------------- + + function Ancestor_Find + (Position : Cursor; + Item : Element_Type) return Cursor + is + R, N : Count_Type; + + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + -- Commented-out pending ruling by ARG. ??? + + -- if Position.Container /= Container'Unrestricted_Access then + -- raise Program_Error with "Position cursor not in container"; + -- end if; + + -- AI-0136 says to raise PE if Position equals the root node. This does + -- not seem correct, as this value is just the limiting condition of the + -- search. For now we omit this check, pending a ruling from the ARG. + -- ??? + -- + -- if Is_Root (Position) then + -- raise Program_Error with "Position cursor designates root"; + -- end if; + + R := Root_Node (Position.Container.all); + N := Position.Node; + while N /= R loop + if Position.Container.Elements (N) = Item then + return Cursor'(Position.Container, N); + end if; + + N := Position.Container.Nodes (N).Parent; + end loop; + + return No_Element; + end Ancestor_Find; + + ------------------ + -- Append_Child -- + ------------------ + + procedure Append_Child + (Container : in out Tree; + Parent : Cursor; + New_Item : Element_Type; + Count : Count_Type := 1) + is + Nodes : Tree_Node_Array renames Container.Nodes; + First, Last : Count_Type; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Container'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Count = 0 then + return; + end if; + + if Container.Count > Container.Capacity - Count then + raise Constraint_Error + with "requested count exceeds available storage"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Container.Count = 0 then + Initialize_Root (Container); + end if; + + Allocate_Node (Container, New_Item, First); + Nodes (First).Parent := Parent.Node; + + Last := First; + for J in Count_Type'(2) .. Count loop + Allocate_Node (Container, New_Item, Nodes (Last).Next); + Nodes (Nodes (Last).Next).Parent := Parent.Node; + Nodes (Nodes (Last).Next).Prev := Last; + + Last := Nodes (Last).Next; + end loop; + + Insert_Subtree_List + (Container => Container, + First => First, + Last => Last, + Parent => Parent.Node, + Before => No_Node); -- means "insert at end of list" + + Container.Count := Container.Count + Count; + end Append_Child; + + ------------ + -- Assign -- + ------------ + + procedure Assign (Target : in out Tree; Source : Tree) is + Target_Count : Count_Type; + + begin + if Target'Address = Source'Address then + return; + end if; + + if Target.Capacity < Source.Count then + raise Capacity_Error -- ??? + with "Target capacity is less than Source count"; + end if; + + Target.Clear; -- Checks busy bit + + if Source.Count = 0 then + return; + end if; + + Initialize_Root (Target); + + -- Copy_Children returns the number of nodes that it allocates, but it + -- does this by incrementing the count value passed in, so we must + -- initialize the count before calling Copy_Children. + + Target_Count := 0; + + Copy_Children + (Source => Source, + Source_Parent => Root_Node (Source), + Target => Target, + Target_Parent => Root_Node (Target), + Count => Target_Count); + + pragma Assert (Target_Count = Source.Count); + Target.Count := Source.Count; + end Assign; + + ----------------- + -- Child_Count -- + ----------------- + + function Child_Count (Parent : Cursor) return Count_Type is + begin + if Parent = No_Element then + return 0; + + elsif Parent.Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + return 0; + + else + return Child_Count (Parent.Container.all, Parent.Node); + end if; + end Child_Count; + + function Child_Count + (Container : Tree; + Parent : Count_Type) return Count_Type + is + NN : Tree_Node_Array renames Container.Nodes; + CC : Children_Type renames NN (Parent).Children; + + Result : Count_Type; + Node : Count_Type'Base; + + begin + Result := 0; + Node := CC.First; + while Node > 0 loop + Result := Result + 1; + Node := NN (Node).Next; + end loop; + + return Result; + end Child_Count; + + ----------------- + -- Child_Depth -- + ----------------- + + function Child_Depth (Parent, Child : Cursor) return Count_Type is + Result : Count_Type; + N : Count_Type'Base; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Child = No_Element then + raise Constraint_Error with "Child cursor has no element"; + end if; + + if Parent.Container /= Child.Container then + raise Program_Error with "Parent and Child in different containers"; + end if; + + if Parent.Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + pragma Assert (Child = Parent); + return 0; + end if; + + Result := 0; + N := Child.Node; + while N /= Parent.Node loop + Result := Result + 1; + N := Parent.Container.Nodes (N).Parent; + + if N < 0 then + raise Program_Error with "Parent is not ancestor of Child"; + end if; + end loop; + + return Result; + end Child_Depth; + + ----------- + -- Clear -- + ----------- + + procedure Clear (Container : in out Tree) is + Container_Count : constant Count_Type := Container.Count; + Count : Count_Type; + + begin + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Container_Count = 0 then + return; + end if; + + Container.Count := 0; + + -- Deallocate_Children returns the number of nodes that it deallocates, + -- but it does this by incrementing the count value that is passed in, + -- so we must first initialize the count return value before calling it. + + Count := 0; + + Deallocate_Children + (Container => Container, + Subtree => Root_Node (Container), + Count => Count); + + pragma Assert (Count = Container_Count); + end Clear; + + ------------------------ + -- Constant_Reference -- + ------------------------ + + function Constant_Reference + (Container : aliased Tree; + Position : Cursor) return Constant_Reference_Type + is + begin + if Position.Container = null then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with + "Position cursor designates wrong container"; + end if; + + if Position.Node = Root_Node (Container) then + raise Program_Error with "Position cursor designates root"; + end if; + + -- Implement Vet for multiway tree??? + -- pragma Assert (Vet (Position), + -- "Position cursor in Constant_Reference is bad"); + + return (Element => Container.Elements (Position.Node)'Access); + end Constant_Reference; + + -------------- + -- Contains -- + -------------- + + function Contains + (Container : Tree; + Item : Element_Type) return Boolean + is + begin + return Find (Container, Item) /= No_Element; + end Contains; + + ---------- + -- Copy -- + ---------- + + function Copy + (Source : Tree; + Capacity : Count_Type := 0) return Tree + is + C : Count_Type; + + begin + if Capacity = 0 then + C := Source.Count; + elsif Capacity >= Source.Count then + C := Capacity; + else + raise Capacity_Error with "Capacity value too small"; + end if; + + return Target : Tree (Capacity => C) do + Initialize_Root (Target); + + if Source.Count = 0 then + return; + end if; + + Copy_Children + (Source => Source, + Source_Parent => Root_Node (Source), + Target => Target, + Target_Parent => Root_Node (Target), + Count => Target.Count); + + pragma Assert (Target.Count = Source.Count); + end return; + end Copy; + + ------------------- + -- Copy_Children -- + ------------------- + + procedure Copy_Children + (Source : Tree; + Source_Parent : Count_Type; + Target : in out Tree; + Target_Parent : Count_Type; + Count : in out Count_Type) + is + S_Nodes : Tree_Node_Array renames Source.Nodes; + S_Node : Tree_Node_Type renames S_Nodes (Source_Parent); + + T_Nodes : Tree_Node_Array renames Target.Nodes; + T_Node : Tree_Node_Type renames T_Nodes (Target_Parent); + + pragma Assert (T_Node.Children.First <= 0); + pragma Assert (T_Node.Children.Last <= 0); + + T_CC : Children_Type; + C : Count_Type'Base; + + begin + -- We special-case the first allocation, in order to establish the + -- representation invariants for type Children_Type. + + C := S_Node.Children.First; + + if C <= 0 then -- source parent has no children + return; + end if; + + Copy_Subtree + (Source => Source, + Source_Subtree => C, + Target => Target, + Target_Parent => Target_Parent, + Target_Subtree => T_CC.First, + Count => Count); + + T_CC.Last := T_CC.First; + + -- The representation invariants for the Children_Type list have been + -- established, so we can now copy the remaining children of Source. + + C := S_Nodes (C).Next; + while C > 0 loop + Copy_Subtree + (Source => Source, + Source_Subtree => C, + Target => Target, + Target_Parent => Target_Parent, + Target_Subtree => T_Nodes (T_CC.Last).Next, + Count => Count); + + T_Nodes (T_Nodes (T_CC.Last).Next).Prev := T_CC.Last; + T_CC.Last := T_Nodes (T_CC.Last).Next; + + C := S_Nodes (C).Next; + end loop; + + -- We add the newly-allocated children to their parent list only after + -- the allocation has succeeded, in order to preserve invariants of the + -- parent. + + T_Node.Children := T_CC; + end Copy_Children; + + ------------------ + -- Copy_Subtree -- + ------------------ + + procedure Copy_Subtree + (Target : in out Tree; + Parent : Cursor; + Before : Cursor; + Source : Cursor) + is + Target_Subtree : Count_Type; + Target_Count : Count_Type; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Target'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Before /= No_Element then + if Before.Container /= Target'Unrestricted_Access then + raise Program_Error with "Before cursor not in container"; + end if; + + if Before.Container.Nodes (Before.Node).Parent /= Parent.Node then + raise Constraint_Error with "Before cursor not child of Parent"; + end if; + end if; + + if Source = No_Element then + return; + end if; + + if Is_Root (Source) then + raise Constraint_Error with "Source cursor designates root"; + end if; + + if Target.Count = 0 then + Initialize_Root (Target); + end if; + + -- Copy_Subtree returns a count of the number of nodes that it + -- allocates, but it works by incrementing the value that is passed + -- in. We must therefore initialize the count value before calling + -- Copy_Subtree. + + Target_Count := 0; + + Copy_Subtree + (Source => Source.Container.all, + Source_Subtree => Source.Node, + Target => Target, + Target_Parent => Parent.Node, + Target_Subtree => Target_Subtree, + Count => Target_Count); + + Insert_Subtree_Node + (Container => Target, + Subtree => Target_Subtree, + Parent => Parent.Node, + Before => Before.Node); + + Target.Count := Target.Count + Target_Count; + end Copy_Subtree; + + procedure Copy_Subtree + (Source : Tree; + Source_Subtree : Count_Type; + Target : in out Tree; + Target_Parent : Count_Type; + Target_Subtree : out Count_Type; + Count : in out Count_Type) + is + T_Nodes : Tree_Node_Array renames Target.Nodes; + + begin + -- First we allocate the root of the target subtree. + + Allocate_Node + (Container => Target, + New_Item => Source.Elements (Source_Subtree), + New_Node => Target_Subtree); + + T_Nodes (Target_Subtree).Parent := Target_Parent; + Count := Count + 1; + + -- We now have a new subtree (for the Target tree), containing only a + -- copy of the corresponding element in the Source subtree. Next we copy + -- the children of the Source subtree as children of the new Target + -- subtree. + + Copy_Children + (Source => Source, + Source_Parent => Source_Subtree, + Target => Target, + Target_Parent => Target_Subtree, + Count => Count); + end Copy_Subtree; + + ------------------------- + -- Deallocate_Children -- + ------------------------- + + procedure Deallocate_Children + (Container : in out Tree; + Subtree : Count_Type; + Count : in out Count_Type) + is + Nodes : Tree_Node_Array renames Container.Nodes; + Node : Tree_Node_Type renames Nodes (Subtree); -- parent + CC : Children_Type renames Node.Children; + C : Count_Type'Base; + + begin + while CC.First > 0 loop + C := CC.First; + CC.First := Nodes (C).Next; + + Deallocate_Subtree (Container, C, Count); + end loop; + + CC.Last := 0; + end Deallocate_Children; + + --------------------- + -- Deallocate_Node -- + --------------------- + + procedure Deallocate_Node + (Container : in out Tree; + X : Count_Type) + is + NN : Tree_Node_Array renames Container.Nodes; + pragma Assert (X > 0); + pragma Assert (X <= NN'Last); + + N : Tree_Node_Type renames NN (X); + pragma Assert (N.Parent /= X); -- node is active + + begin + -- The tree container actually contains two lists: one for the "active" + -- nodes that contain elements that have been inserted onto the tree, + -- and another for the "inactive" nodes of the free store, from which + -- nodes are allocated when a new child is inserted in the tree. + + -- We desire that merely declaring a tree object should have only + -- minimal cost; specially, we want to avoid having to initialize the + -- free store (to fill in the links), especially if the capacity of the + -- tree object is large. + + -- The head of the free list is indicated by Container.Free. If its + -- value is non-negative, then the free store has been initialized in + -- the "normal" way: Container.Free points to the head of the list of + -- free (inactive) nodes, and the value 0 means the free list is + -- empty. Each node on the free list has been initialized to point to + -- the next free node (via its Next component), and the value 0 means + -- that this is the last node of the free list. + + -- If Container.Free is negative, then the links on the free store have + -- not been initialized. In this case the link values are implied: the + -- free store comprises the components of the node array started with + -- the absolute value of Container.Free, and continuing until the end of + -- the array (Nodes'Last). + + -- We prefer to lazy-init the free store (in fact, we would prefer to + -- not initialize it at all, because such initialization is an O(n) + -- operation). The time when we need to actually initialize the nodes in + -- the free store is when the node that becomes inactive is not at the + -- end of the active list. The free store would then be discontigous and + -- so its nodes would need to be linked in the traditional way. + + -- It might be possible to perform an optimization here. Suppose that + -- the free store can be represented as having two parts: one comprising + -- the non-contiguous inactive nodes linked together in the normal way, + -- and the other comprising the contiguous inactive nodes (that are not + -- linked together, at the end of the nodes array). This would allow us + -- to never have to initialize the free store, except in a lazy way as + -- nodes become inactive. ??? + + -- When an element is deleted from the list container, its node becomes + -- inactive, and so we set its Parent and Prev components to an + -- impossible value (the index of the node itself), to indicate that it + -- is now inactive. This provides a useful way to detect a dangling + -- cursor reference. + + N.Parent := X; -- Node is deallocated (not on active list) + N.Prev := X; + + if Container.Free >= 0 then + -- The free store has previously been initialized. All we need to do + -- here is link the newly-free'd node onto the free list. + + N.Next := Container.Free; + Container.Free := X; + + elsif X + 1 = abs Container.Free then + -- The free store has not been initialized, and the node becoming + -- inactive immediately precedes the start of the free store. All + -- we need to do is move the start of the free store back by one. + + N.Next := X; -- Not strictly necessary, but marginally safer + Container.Free := Container.Free + 1; + + else + -- The free store has not been initialized, and the node becoming + -- inactive does not immediately precede the free store. Here we + -- first initialize the free store (meaning the links are given + -- values in the traditional way), and then link the newly-free'd + -- node onto the head of the free store. + + -- See the comments above for an optimization opportunity. If the + -- next link for a node on the free store is negative, then this + -- means the remaining nodes on the free store are physically + -- contiguous, starting at the absolute value of that index value. + -- ??? + + Container.Free := abs Container.Free; + + if Container.Free > Container.Capacity then + Container.Free := 0; + + else + for J in Container.Free .. Container.Capacity - 1 loop + NN (J).Next := J + 1; + end loop; + + NN (Container.Capacity).Next := 0; + end if; + + NN (X).Next := Container.Free; + Container.Free := X; + end if; + end Deallocate_Node; + + ------------------------ + -- Deallocate_Subtree -- + ------------------------ + + procedure Deallocate_Subtree + (Container : in out Tree; + Subtree : Count_Type; + Count : in out Count_Type) + is + begin + Deallocate_Children (Container, Subtree, Count); + Deallocate_Node (Container, Subtree); + Count := Count + 1; + end Deallocate_Subtree; + + --------------------- + -- Delete_Children -- + --------------------- + + procedure Delete_Children + (Container : in out Tree; + Parent : Cursor) + is + Count : Count_Type; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Container'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + return; + end if; + + -- Deallocate_Children returns a count of the number of nodes that it + -- deallocates, but it works by incrementing the value that is passed + -- in. We must therefore initialize the count value before calling + -- Deallocate_Children. + + Count := 0; + + Deallocate_Children (Container, Parent.Node, Count); + pragma Assert (Count <= Container.Count); + + Container.Count := Container.Count - Count; + end Delete_Children; + + ----------------- + -- Delete_Leaf -- + ----------------- + + procedure Delete_Leaf + (Container : in out Tree; + Position : in out Cursor) + is + X : Count_Type; + + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with "Position cursor not in container"; + end if; + + if Is_Root (Position) then + raise Program_Error with "Position cursor designates root"; + end if; + + if not Is_Leaf (Position) then + raise Constraint_Error with "Position cursor does not designate leaf"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + X := Position.Node; + Position := No_Element; + + Remove_Subtree (Container, X); + Container.Count := Container.Count - 1; + + Deallocate_Node (Container, X); + end Delete_Leaf; + + -------------------- + -- Delete_Subtree -- + -------------------- + + procedure Delete_Subtree + (Container : in out Tree; + Position : in out Cursor) + is + X : Count_Type; + Count : Count_Type; + + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with "Position cursor not in container"; + end if; + + if Is_Root (Position) then + raise Program_Error with "Position cursor designates root"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + X := Position.Node; + Position := No_Element; + + Remove_Subtree (Container, X); + + -- Deallocate_Subtree returns a count of the number of nodes that it + -- deallocates, but it works by incrementing the value that is passed + -- in. We must therefore initialize the count value before calling + -- Deallocate_Subtree. + + Count := 0; + + Deallocate_Subtree (Container, X, Count); + pragma Assert (Count <= Container.Count); + + Container.Count := Container.Count - Count; + end Delete_Subtree; + + ----------- + -- Depth -- + ----------- + + function Depth (Position : Cursor) return Count_Type is + Result : Count_Type; + N : Count_Type'Base; + + begin + if Position = No_Element then + return 0; + end if; + + if Is_Root (Position) then + return 1; + end if; + + Result := 0; + N := Position.Node; + while N >= 0 loop + N := Position.Container.Nodes (N).Parent; + Result := Result + 1; + end loop; + + return Result; + end Depth; + + ------------- + -- Element -- + ------------- + + function Element (Position : Cursor) return Element_Type is + begin + if Position.Container = null then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Node = Root_Node (Position.Container.all) then + raise Program_Error with "Position cursor designates root"; + end if; + + return Position.Container.Elements (Position.Node); + end Element; + + -------------------- + -- Equal_Children -- + -------------------- + + function Equal_Children + (Left_Tree : Tree; + Left_Subtree : Count_Type; + Right_Tree : Tree; + Right_Subtree : Count_Type) return Boolean + is + L_NN : Tree_Node_Array renames Left_Tree.Nodes; + R_NN : Tree_Node_Array renames Right_Tree.Nodes; + + Left_Children : Children_Type renames L_NN (Left_Subtree).Children; + Right_Children : Children_Type renames R_NN (Right_Subtree).Children; + + L, R : Count_Type'Base; + + begin + if Child_Count (Left_Tree, Left_Subtree) + /= Child_Count (Right_Tree, Right_Subtree) + then + return False; + end if; + + L := Left_Children.First; + R := Right_Children.First; + while L > 0 loop + if not Equal_Subtree (Left_Tree, L, Right_Tree, R) then + return False; + end if; + + L := L_NN (L).Next; + R := R_NN (R).Next; + end loop; + + return True; + end Equal_Children; + + ------------------- + -- Equal_Subtree -- + ------------------- + + function Equal_Subtree + (Left_Position : Cursor; + Right_Position : Cursor) return Boolean + is + begin + if Left_Position = No_Element then + raise Constraint_Error with "Left cursor has no element"; + end if; + + if Right_Position = No_Element then + raise Constraint_Error with "Right cursor has no element"; + end if; + + if Left_Position = Right_Position then + return True; + end if; + + if Is_Root (Left_Position) then + if not Is_Root (Right_Position) then + return False; + end if; + + if Left_Position.Container.Count = 0 then + return Right_Position.Container.Count = 0; + end if; + + if Right_Position.Container.Count = 0 then + return False; + end if; + + return Equal_Children + (Left_Tree => Left_Position.Container.all, + Left_Subtree => Left_Position.Node, + Right_Tree => Right_Position.Container.all, + Right_Subtree => Right_Position.Node); + end if; + + if Is_Root (Right_Position) then + return False; + end if; + + return Equal_Subtree + (Left_Tree => Left_Position.Container.all, + Left_Subtree => Left_Position.Node, + Right_Tree => Right_Position.Container.all, + Right_Subtree => Right_Position.Node); + end Equal_Subtree; + + function Equal_Subtree + (Left_Tree : Tree; + Left_Subtree : Count_Type; + Right_Tree : Tree; + Right_Subtree : Count_Type) return Boolean + is + begin + if Left_Tree.Elements (Left_Subtree) /= + Right_Tree.Elements (Right_Subtree) + then + return False; + end if; + + return Equal_Children + (Left_Tree => Left_Tree, + Left_Subtree => Left_Subtree, + Right_Tree => Right_Tree, + Right_Subtree => Right_Subtree); + end Equal_Subtree; + + -------------- + -- Finalize -- + -------------- + + procedure Finalize (Object : in out Root_Iterator) is + B : Natural renames Object.Container.Busy; + begin + B := B - 1; + end Finalize; + + ---------- + -- Find -- + ---------- + + function Find + (Container : Tree; + Item : Element_Type) return Cursor + is + Node : Count_Type; + + begin + if Container.Count = 0 then + return No_Element; + end if; + + Node := Find_In_Children (Container, Root_Node (Container), Item); + + if Node = 0 then + return No_Element; + end if; + + return Cursor'(Container'Unrestricted_Access, Node); + end Find; + + ----------- + -- First -- + ----------- + + overriding function First (Object : Subtree_Iterator) return Cursor is + begin + if Object.Subtree = Root_Node (Object.Container.all) then + return First_Child (Root (Object.Container.all)); + else + return Cursor'(Object.Container, Object.Subtree); + end if; + end First; + + overriding function First (Object : Child_Iterator) return Cursor is + begin + return First_Child (Cursor'(Object.Container, Object.Subtree)); + end First; + + ----------------- + -- First_Child -- + ----------------- + + function First_Child (Parent : Cursor) return Cursor is + Node : Count_Type'Base; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + return No_Element; + end if; + + Node := Parent.Container.Nodes (Parent.Node).Children.First; + + if Node <= 0 then + return No_Element; + end if; + + return Cursor'(Parent.Container, Node); + end First_Child; + + ------------------------- + -- First_Child_Element -- + ------------------------- + + function First_Child_Element (Parent : Cursor) return Element_Type is + begin + return Element (First_Child (Parent)); + end First_Child_Element; + + ---------------------- + -- Find_In_Children -- + ---------------------- + + function Find_In_Children + (Container : Tree; + Subtree : Count_Type; + Item : Element_Type) return Count_Type + is + N : Count_Type'Base; + Result : Count_Type; + + begin + N := Container.Nodes (Subtree).Children.First; + while N > 0 loop + Result := Find_In_Subtree (Container, N, Item); + + if Result > 0 then + return Result; + end if; + + N := Container.Nodes (N).Next; + end loop; + + return 0; + end Find_In_Children; + + --------------------- + -- Find_In_Subtree -- + --------------------- + + function Find_In_Subtree + (Position : Cursor; + Item : Element_Type) return Cursor + is + Result : Count_Type; + + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + -- Commented-out pending ruling by ARG. ??? + + -- if Position.Container /= Container'Unrestricted_Access then + -- raise Program_Error with "Position cursor not in container"; + -- end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return No_Element; + end if; + + if Is_Root (Position) then + Result := Find_In_Children + (Container => Position.Container.all, + Subtree => Position.Node, + Item => Item); + + else + Result := Find_In_Subtree + (Container => Position.Container.all, + Subtree => Position.Node, + Item => Item); + end if; + + if Result = 0 then + return No_Element; + end if; + + return Cursor'(Position.Container, Result); + end Find_In_Subtree; + + function Find_In_Subtree + (Container : Tree; + Subtree : Count_Type; + Item : Element_Type) return Count_Type + is + begin + if Container.Elements (Subtree) = Item then + return Subtree; + end if; + + return Find_In_Children (Container, Subtree, Item); + end Find_In_Subtree; + + ----------------- + -- Has_Element -- + ----------------- + + function Has_Element (Position : Cursor) return Boolean is + begin + if Position = No_Element then + return False; + end if; + + return Position.Node /= Root_Node (Position.Container.all); + end Has_Element; + + --------------------- + -- Initialize_Node -- + --------------------- + + procedure Initialize_Node + (Container : in out Tree; + Index : Count_Type) + is + begin + Container.Nodes (Index) := + (Parent => No_Node, + Prev => 0, + Next => 0, + Children => (others => 0)); + end Initialize_Node; + + --------------------- + -- Initialize_Root -- + --------------------- + + procedure Initialize_Root (Container : in out Tree) is + begin + Initialize_Node (Container, Root_Node (Container)); + end Initialize_Root; + + ------------------ + -- Insert_Child -- + ------------------ + + procedure Insert_Child + (Container : in out Tree; + Parent : Cursor; + Before : Cursor; + New_Item : Element_Type; + Count : Count_Type := 1) + is + Position : Cursor; + pragma Unreferenced (Position); + + begin + Insert_Child (Container, Parent, Before, New_Item, Position, Count); + end Insert_Child; + + procedure Insert_Child + (Container : in out Tree; + Parent : Cursor; + Before : Cursor; + New_Item : Element_Type; + Position : out Cursor; + Count : Count_Type := 1) + is + Nodes : Tree_Node_Array renames Container.Nodes; + Last : Count_Type; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Container'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Before /= No_Element then + if Before.Container /= Container'Unrestricted_Access then + raise Program_Error with "Before cursor not in container"; + end if; + + if Before.Container.Nodes (Before.Node).Parent /= Parent.Node then + raise Constraint_Error with "Parent cursor not parent of Before"; + end if; + end if; + + if Count = 0 then + Position := No_Element; -- Need ruling from ARG ??? + return; + end if; + + if Container.Count > Container.Capacity - Count then + raise Constraint_Error + with "requested count exceeds available storage"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Container.Count = 0 then + Initialize_Root (Container); + end if; + + Allocate_Node (Container, New_Item, Position.Node); + Nodes (Position.Node).Parent := Parent.Node; + + Last := Position.Node; + for J in Count_Type'(2) .. Count loop + Allocate_Node (Container, New_Item, Nodes (Last).Next); + Nodes (Nodes (Last).Next).Parent := Parent.Node; + Nodes (Nodes (Last).Next).Prev := Last; + + Last := Nodes (Last).Next; + end loop; + + Insert_Subtree_List + (Container => Container, + First => Position.Node, + Last => Last, + Parent => Parent.Node, + Before => Before.Node); + + Container.Count := Container.Count + Count; + + Position.Container := Parent.Container; + end Insert_Child; + + procedure Insert_Child + (Container : in out Tree; + Parent : Cursor; + Before : Cursor; + Position : out Cursor; + Count : Count_Type := 1) + is + Nodes : Tree_Node_Array renames Container.Nodes; + Last : Count_Type; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Container'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Before /= No_Element then + if Before.Container /= Container'Unrestricted_Access then + raise Program_Error with "Before cursor not in container"; + end if; + + if Before.Container.Nodes (Before.Node).Parent /= Parent.Node then + raise Constraint_Error with "Parent cursor not parent of Before"; + end if; + end if; + + if Count = 0 then + Position := No_Element; -- Need ruling from ARG ??? + return; + end if; + + if Container.Count > Container.Capacity - Count then + raise Constraint_Error + with "requested count exceeds available storage"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Container.Count = 0 then + Initialize_Root (Container); + end if; + + Allocate_Node (Container, Position.Node); + Nodes (Position.Node).Parent := Parent.Node; + + Last := Position.Node; + for J in Count_Type'(2) .. Count loop + Allocate_Node (Container, Nodes (Last).Next); + Nodes (Nodes (Last).Next).Parent := Parent.Node; + Nodes (Nodes (Last).Next).Prev := Last; + + Last := Nodes (Last).Next; + end loop; + + Insert_Subtree_List + (Container => Container, + First => Position.Node, + Last => Last, + Parent => Parent.Node, + Before => Before.Node); + + Container.Count := Container.Count + Count; + + Position.Container := Parent.Container; + end Insert_Child; + + ------------------------- + -- Insert_Subtree_List -- + ------------------------- + + procedure Insert_Subtree_List + (Container : in out Tree; + First : Count_Type'Base; + Last : Count_Type'Base; + Parent : Count_Type; + Before : Count_Type'Base) + is + NN : Tree_Node_Array renames Container.Nodes; + N : Tree_Node_Type renames NN (Parent); + CC : Children_Type renames N.Children; + + begin + -- This is a simple utility operation to insert a list of nodes + -- (First..Last) as children of Parent. The Before node specifies where + -- the new children should be inserted relative to existing children. + + if First <= 0 then + pragma Assert (Last <= 0); + return; + end if; + + pragma Assert (Last > 0); + pragma Assert (Before <= 0 or else NN (Before).Parent = Parent); + + if CC.First <= 0 then -- no existing children + CC.First := First; + NN (CC.First).Prev := 0; + CC.Last := Last; + NN (CC.Last).Next := 0; + + elsif Before <= 0 then -- means "insert after existing nodes" + NN (CC.Last).Next := First; + NN (First).Prev := CC.Last; + CC.Last := Last; + NN (CC.Last).Next := 0; + + elsif Before = CC.First then + NN (Last).Next := CC.First; + NN (CC.First).Prev := Last; + CC.First := First; + NN (CC.First).Prev := 0; + + else + NN (NN (Before).Prev).Next := First; + NN (First).Prev := NN (Before).Prev; + NN (Last).Next := Before; + NN (Before).Prev := Last; + end if; + end Insert_Subtree_List; + + ------------------------- + -- Insert_Subtree_Node -- + ------------------------- + + procedure Insert_Subtree_Node + (Container : in out Tree; + Subtree : Count_Type'Base; + Parent : Count_Type; + Before : Count_Type'Base) + is + begin + -- This is a simple wrapper operation to insert a single child into the + -- Parent's children list. + + Insert_Subtree_List + (Container => Container, + First => Subtree, + Last => Subtree, + Parent => Parent, + Before => Before); + end Insert_Subtree_Node; + + -------------- + -- Is_Empty -- + -------------- + + function Is_Empty (Container : Tree) return Boolean is + begin + return Container.Count = 0; + end Is_Empty; + + ------------- + -- Is_Leaf -- + ------------- + + function Is_Leaf (Position : Cursor) return Boolean is + begin + if Position = No_Element then + return False; + end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return True; + end if; + + return Position.Container.Nodes (Position.Node).Children.First <= 0; + end Is_Leaf; + + ------------------ + -- Is_Reachable -- + ------------------ + + function Is_Reachable + (Container : Tree; + From, To : Count_Type) return Boolean + is + Idx : Count_Type; + + begin + Idx := From; + while Idx >= 0 loop + if Idx = To then + return True; + end if; + + Idx := Container.Nodes (Idx).Parent; + end loop; + + return False; + end Is_Reachable; + + ------------- + -- Is_Root -- + ------------- + + function Is_Root (Position : Cursor) return Boolean is + begin + return + (if Position.Container = null then False + else Position.Node = Root_Node (Position.Container.all)); + end Is_Root; + + ------------- + -- Iterate -- + ------------- + + procedure Iterate + (Container : Tree; + Process : not null access procedure (Position : Cursor)) + is + B : Natural renames Container'Unrestricted_Access.all.Busy; + + begin + if Container.Count = 0 then + return; + end if; + + B := B + 1; + + Iterate_Children + (Container => Container, + Subtree => Root_Node (Container), + Process => Process); + + B := B - 1; + + exception + when others => + B := B - 1; + raise; + end Iterate; + + function Iterate (Container : Tree) + return Tree_Iterator_Interfaces.Forward_Iterator'Class + is + begin + return Iterate_Subtree (Root (Container)); + end Iterate; + + ---------------------- + -- Iterate_Children -- + ---------------------- + + procedure Iterate_Children + (Parent : Cursor; + Process : not null access procedure (Position : Cursor)) + is + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + return; + end if; + + declare + B : Natural renames Parent.Container.Busy; + C : Count_Type; + NN : Tree_Node_Array renames Parent.Container.Nodes; + + begin + B := B + 1; + + C := NN (Parent.Node).Children.First; + while C > 0 loop + Process (Cursor'(Parent.Container, Node => C)); + C := NN (C).Next; + end loop; + + B := B - 1; + + exception + when others => + B := B - 1; + raise; + end; + end Iterate_Children; + + procedure Iterate_Children + (Container : Tree; + Subtree : Count_Type; + Process : not null access procedure (Position : Cursor)) + is + NN : Tree_Node_Array renames Container.Nodes; + N : Tree_Node_Type renames NN (Subtree); + C : Count_Type; + + begin + -- This is a helper function to recursively iterate over all the nodes + -- in a subtree, in depth-first fashion. This particular helper just + -- visits the children of this subtree, not the root of the subtree + -- itself. This is useful when starting from the ultimate root of the + -- entire tree (see Iterate), as that root does not have an element. + + C := N.Children.First; + while C > 0 loop + Iterate_Subtree (Container, C, Process); + C := NN (C).Next; + end loop; + end Iterate_Children; + + function Iterate_Children + (Container : Tree; + Parent : Cursor) + return Tree_Iterator_Interfaces.Reversible_Iterator'Class + is + C : constant Tree_Access := Container'Unrestricted_Access; + B : Natural renames C.Busy; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= C then + raise Program_Error with "Parent cursor not in container"; + end if; + + return It : constant Child_Iterator := + Child_Iterator'(Limited_Controlled with + Container => C, + Subtree => Parent.Node) + do + B := B + 1; + end return; + end Iterate_Children; + + --------------------- + -- Iterate_Subtree -- + --------------------- + + function Iterate_Subtree + (Position : Cursor) + return Tree_Iterator_Interfaces.Forward_Iterator'Class + is + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + -- Implement Vet for multiway trees??? + -- pragma Assert (Vet (Position), "bad subtree cursor"); + + declare + B : Natural renames Position.Container.Busy; + begin + return It : constant Subtree_Iterator := + (Limited_Controlled with + Container => Position.Container, + Subtree => Position.Node) + do + B := B + 1; + end return; + end; + end Iterate_Subtree; + + procedure Iterate_Subtree + (Position : Cursor; + Process : not null access procedure (Position : Cursor)) + is + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return; + end if; + + declare + T : Tree renames Position.Container.all; + B : Natural renames T.Busy; + + begin + B := B + 1; + + if Is_Root (Position) then + Iterate_Children (T, Position.Node, Process); + else + Iterate_Subtree (T, Position.Node, Process); + end if; + + B := B - 1; + + exception + when others => + B := B - 1; + raise; + end; + end Iterate_Subtree; + + procedure Iterate_Subtree + (Container : Tree; + Subtree : Count_Type; + Process : not null access procedure (Position : Cursor)) + is + begin + -- This is a helper function to recursively iterate over all the nodes + -- in a subtree, in depth-first fashion. It first visits the root of the + -- subtree, then visits its children. + + Process (Cursor'(Container'Unrestricted_Access, Subtree)); + Iterate_Children (Container, Subtree, Process); + end Iterate_Subtree; + + ---------- + -- Last -- + ---------- + + overriding function Last (Object : Child_Iterator) return Cursor is + begin + return Last_Child (Cursor'(Object.Container, Object.Subtree)); + end Last; + + ---------------- + -- Last_Child -- + ---------------- + + function Last_Child (Parent : Cursor) return Cursor is + Node : Count_Type'Base; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + return No_Element; + end if; + + Node := Parent.Container.Nodes (Parent.Node).Children.Last; + + if Node <= 0 then + return No_Element; + end if; + + return Cursor'(Parent.Container, Node); + end Last_Child; + + ------------------------ + -- Last_Child_Element -- + ------------------------ + + function Last_Child_Element (Parent : Cursor) return Element_Type is + begin + return Element (Last_Child (Parent)); + end Last_Child_Element; + + ---------- + -- Move -- + ---------- + + procedure Move (Target : in out Tree; Source : in out Tree) is + begin + if Target'Address = Source'Address then + return; + end if; + + if Source.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors of Source (tree is busy)"; + end if; + + Target.Assign (Source); + Source.Clear; + end Move; + + ---------- + -- Next -- + ---------- + + overriding function Next + (Object : Subtree_Iterator; + Position : Cursor) return Cursor + is + begin + if Position.Container = null then + return No_Element; + end if; + + if Position.Container /= Object.Container then + raise Program_Error with + "Position cursor of Next designates wrong tree"; + end if; + + pragma Assert (Object.Container.Count > 0); + pragma Assert (Position.Node /= Root_Node (Object.Container.all)); + + declare + Nodes : Tree_Node_Array renames Object.Container.Nodes; + Node : Count_Type; + + begin + Node := Position.Node; + + if Nodes (Node).Children.First > 0 then + return Cursor'(Object.Container, Nodes (Node).Children.First); + end if; + + while Node /= Object.Subtree loop + if Nodes (Node).Next > 0 then + return Cursor'(Object.Container, Nodes (Node).Next); + end if; + + Node := Nodes (Node).Parent; + end loop; + + return No_Element; + end; + end Next; + + overriding function Next + (Object : Child_Iterator; + Position : Cursor) return Cursor + is + begin + if Position.Container = null then + return No_Element; + end if; + + if Position.Container /= Object.Container then + raise Program_Error with + "Position cursor of Next designates wrong tree"; + end if; + + pragma Assert (Object.Container.Count > 0); + pragma Assert (Position.Node /= Root_Node (Object.Container.all)); + + return Next_Sibling (Position); + end Next; + + ------------------ + -- Next_Sibling -- + ------------------ + + function Next_Sibling (Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return No_Element; + end if; + + declare + T : Tree renames Position.Container.all; + NN : Tree_Node_Array renames T.Nodes; + N : Tree_Node_Type renames NN (Position.Node); + + begin + if N.Next <= 0 then + return No_Element; + end if; + + return Cursor'(Position.Container, N.Next); + end; + end Next_Sibling; + + procedure Next_Sibling (Position : in out Cursor) is + begin + Position := Next_Sibling (Position); + end Next_Sibling; + + ---------------- + -- Node_Count -- + ---------------- + + function Node_Count (Container : Tree) return Count_Type is + begin + -- Container.Count is the number of nodes we have actually allocated. We + -- cache the value specifically so this Node_Count operation can execute + -- in O(1) time, which makes it behave similarly to how the Length + -- selector function behaves for other containers. + -- + -- The cached node count value only describes the nodes we have + -- allocated; the root node itself is not included in that count. The + -- Node_Count operation returns a value that includes the root node + -- (because the RM says so), so we must add 1 to our cached value. + + return 1 + Container.Count; + end Node_Count; + + ------------ + -- Parent -- + ------------ + + function Parent (Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return No_Element; + end if; + + declare + T : Tree renames Position.Container.all; + NN : Tree_Node_Array renames T.Nodes; + N : Tree_Node_Type renames NN (Position.Node); + + begin + if N.Parent < 0 then + pragma Assert (Position.Node = Root_Node (T)); + return No_Element; + end if; + + return Cursor'(Position.Container, N.Parent); + end; + end Parent; + + ------------------- + -- Prepend_Child -- + ------------------- + + procedure Prepend_Child + (Container : in out Tree; + Parent : Cursor; + New_Item : Element_Type; + Count : Count_Type := 1) + is + Nodes : Tree_Node_Array renames Container.Nodes; + First, Last : Count_Type; + + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Container'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Count = 0 then + return; + end if; + + if Container.Count > Container.Capacity - Count then + raise Constraint_Error + with "requested count exceeds available storage"; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Container.Count = 0 then + Initialize_Root (Container); + end if; + + Allocate_Node (Container, New_Item, First); + Nodes (First).Parent := Parent.Node; + + Last := First; + for J in Count_Type'(2) .. Count loop + Allocate_Node (Container, New_Item, Nodes (Last).Next); + Nodes (Nodes (Last).Next).Parent := Parent.Node; + Nodes (Nodes (Last).Next).Prev := Last; + + Last := Nodes (Last).Next; + end loop; + + Insert_Subtree_List + (Container => Container, + First => First, + Last => Last, + Parent => Parent.Node, + Before => Nodes (Parent.Node).Children.First); + + Container.Count := Container.Count + Count; + end Prepend_Child; + + -------------- + -- Previous -- + -------------- + + overriding function Previous + (Object : Child_Iterator; + Position : Cursor) return Cursor + is + begin + if Position.Container = null then + return No_Element; + end if; + + if Position.Container /= Object.Container then + raise Program_Error with + "Position cursor of Previous designates wrong tree"; + end if; + + return Previous_Sibling (Position); + end Previous; + + ---------------------- + -- Previous_Sibling -- + ---------------------- + + function Previous_Sibling (Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return No_Element; + end if; + + declare + T : Tree renames Position.Container.all; + NN : Tree_Node_Array renames T.Nodes; + N : Tree_Node_Type renames NN (Position.Node); + + begin + if N.Prev <= 0 then + return No_Element; + end if; + + return Cursor'(Position.Container, N.Prev); + end; + end Previous_Sibling; + + procedure Previous_Sibling (Position : in out Cursor) is + begin + Position := Previous_Sibling (Position); + end Previous_Sibling; + + ------------------- + -- Query_Element -- + ------------------- + + procedure Query_Element + (Position : Cursor; + Process : not null access procedure (Element : Element_Type)) + is + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Is_Root (Position) then + raise Program_Error with "Position cursor designates root"; + end if; + + declare + T : Tree renames Position.Container.all'Unrestricted_Access.all; + B : Natural renames T.Busy; + L : Natural renames T.Lock; + + begin + B := B + 1; + L := L + 1; + + Process (Element => T.Elements (Position.Node)); + + L := L - 1; + B := B - 1; + + exception + when others => + L := L - 1; + B := B - 1; + raise; + end; + end Query_Element; + + ---------- + -- Read -- + ---------- + + procedure Read + (Stream : not null access Root_Stream_Type'Class; + Container : out Tree) + is + procedure Read_Children (Subtree : Count_Type); + + function Read_Subtree + (Parent : Count_Type) return Count_Type; + + NN : Tree_Node_Array renames Container.Nodes; + + Total_Count : Count_Type'Base; + -- Value read from the stream that says how many elements follow + + Read_Count : Count_Type'Base; + -- Actual number of elements read from the stream + + ------------------- + -- Read_Children -- + ------------------- + + procedure Read_Children (Subtree : Count_Type) is + Count : Count_Type'Base; + -- number of child subtrees + + CC : Children_Type; + + begin + Count_Type'Read (Stream, Count); + + if Count < 0 then + raise Program_Error with "attempt to read from corrupt stream"; + end if; + + if Count = 0 then + return; + end if; + + CC.First := Read_Subtree (Parent => Subtree); + CC.Last := CC.First; + + for J in Count_Type'(2) .. Count loop + NN (CC.Last).Next := Read_Subtree (Parent => Subtree); + NN (NN (CC.Last).Next).Prev := CC.Last; + CC.Last := NN (CC.Last).Next; + end loop; + + -- Now that the allocation and reads have completed successfully, it + -- is safe to link the children to their parent. + + NN (Subtree).Children := CC; + end Read_Children; + + ------------------ + -- Read_Subtree -- + ------------------ + + function Read_Subtree + (Parent : Count_Type) return Count_Type + is + Subtree : Count_Type; + + begin + Allocate_Node (Container, Stream, Subtree); + Container.Nodes (Subtree).Parent := Parent; + + Read_Count := Read_Count + 1; + + Read_Children (Subtree); + + return Subtree; + end Read_Subtree; + + -- Start of processing for Read + + begin + Container.Clear; -- checks busy bit + + Count_Type'Read (Stream, Total_Count); + + if Total_Count < 0 then + raise Program_Error with "attempt to read from corrupt stream"; + end if; + + if Total_Count = 0 then + return; + end if; + + if Total_Count > Container.Capacity then + raise Capacity_Error -- ??? + with "node count in stream exceeds container capacity"; + end if; + + Initialize_Root (Container); + + Read_Count := 0; + + Read_Children (Root_Node (Container)); + + if Read_Count /= Total_Count then + raise Program_Error with "attempt to read from corrupt stream"; + end if; + + Container.Count := Total_Count; + end Read; + + procedure Read + (Stream : not null access Root_Stream_Type'Class; + Position : out Cursor) + is + begin + raise Program_Error with "attempt to read tree cursor from stream"; + end Read; + + procedure Read + (Stream : not null access Root_Stream_Type'Class; + Item : out Reference_Type) + is + begin + raise Program_Error with "attempt to stream reference"; + end Read; + + procedure Read + (Stream : not null access Root_Stream_Type'Class; + Item : out Constant_Reference_Type) + is + begin + raise Program_Error with "attempt to stream reference"; + end Read; + + --------------- + -- Reference -- + --------------- + + function Reference + (Container : aliased in out Tree; + Position : Cursor) return Reference_Type + is + begin + if Position.Container = null then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with + "Position cursor designates wrong container"; + end if; + + if Position.Node = Root_Node (Container) then + raise Program_Error with "Position cursor designates root"; + end if; + + -- Implement Vet for multiway tree??? + -- pragma Assert (Vet (Position), + -- "Position cursor in Constant_Reference is bad"); + + return (Element => Container.Elements (Position.Node)'Access); + end Reference; + + -------------------- + -- Remove_Subtree -- + -------------------- + + procedure Remove_Subtree + (Container : in out Tree; + Subtree : Count_Type) + is + NN : Tree_Node_Array renames Container.Nodes; + N : Tree_Node_Type renames NN (Subtree); + CC : Children_Type renames NN (N.Parent).Children; + + begin + -- This is a utility operation to remove a subtree node from its + -- parent's list of children. + + if CC.First = Subtree then + pragma Assert (N.Prev <= 0); + + if CC.Last = Subtree then + pragma Assert (N.Next <= 0); + CC.First := 0; + CC.Last := 0; + + else + CC.First := N.Next; + NN (CC.First).Prev := 0; + end if; + + elsif CC.Last = Subtree then + pragma Assert (N.Next <= 0); + CC.Last := N.Prev; + NN (CC.Last).Next := 0; + + else + NN (N.Prev).Next := N.Next; + NN (N.Next).Prev := N.Prev; + end if; + end Remove_Subtree; + + ---------------------- + -- Replace_Element -- + ---------------------- + + procedure Replace_Element + (Container : in out Tree; + Position : Cursor; + New_Item : Element_Type) + is + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with "Position cursor not in container"; + end if; + + if Is_Root (Position) then + raise Program_Error with "Position cursor designates root"; + end if; + + if Container.Lock > 0 then + raise Program_Error + with "attempt to tamper with elements (tree is locked)"; + end if; + + Container.Elements (Position.Node) := New_Item; + end Replace_Element; + + ------------------------------ + -- Reverse_Iterate_Children -- + ------------------------------ + + procedure Reverse_Iterate_Children + (Parent : Cursor; + Process : not null access procedure (Position : Cursor)) + is + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container.Count = 0 then + pragma Assert (Is_Root (Parent)); + return; + end if; + + declare + NN : Tree_Node_Array renames Parent.Container.Nodes; + B : Natural renames Parent.Container.Busy; + C : Count_Type; + + begin + B := B + 1; + + C := NN (Parent.Node).Children.Last; + while C > 0 loop + Process (Cursor'(Parent.Container, Node => C)); + C := NN (C).Prev; + end loop; + + B := B - 1; + + exception + when others => + B := B - 1; + raise; + end; + end Reverse_Iterate_Children; + + ---------- + -- Root -- + ---------- + + function Root (Container : Tree) return Cursor is + begin + return (Container'Unrestricted_Access, Root_Node (Container)); + end Root; + + --------------- + -- Root_Node -- + --------------- + + function Root_Node (Container : Tree) return Count_Type is + pragma Unreferenced (Container); + + begin + return 0; + end Root_Node; + + --------------------- + -- Splice_Children -- + --------------------- + + procedure Splice_Children + (Target : in out Tree; + Target_Parent : Cursor; + Before : Cursor; + Source : in out Tree; + Source_Parent : Cursor) + is + begin + if Target_Parent = No_Element then + raise Constraint_Error with "Target_Parent cursor has no element"; + end if; + + if Target_Parent.Container /= Target'Unrestricted_Access then + raise Program_Error + with "Target_Parent cursor not in Target container"; + end if; + + if Before /= No_Element then + if Before.Container /= Target'Unrestricted_Access then + raise Program_Error + with "Before cursor not in Target container"; + end if; + + if Target.Nodes (Before.Node).Parent /= Target_Parent.Node then + raise Constraint_Error + with "Before cursor not child of Target_Parent"; + end if; + end if; + + if Source_Parent = No_Element then + raise Constraint_Error with "Source_Parent cursor has no element"; + end if; + + if Source_Parent.Container /= Source'Unrestricted_Access then + raise Program_Error + with "Source_Parent cursor not in Source container"; + end if; + + if Source.Count = 0 then + pragma Assert (Is_Root (Source_Parent)); + return; + end if; + + if Target'Address = Source'Address then + if Target_Parent = Source_Parent then + return; + end if; + + if Target.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (Target tree is busy)"; + end if; + + if Is_Reachable (Container => Target, + From => Target_Parent.Node, + To => Source_Parent.Node) + then + raise Constraint_Error + with "Source_Parent is ancestor of Target_Parent"; + end if; + + Splice_Children + (Container => Target, + Target_Parent => Target_Parent.Node, + Before => Before.Node, + Source_Parent => Source_Parent.Node); + + return; + end if; + + if Target.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (Target tree is busy)"; + end if; + + if Source.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (Source tree is busy)"; + end if; + + if Target.Count = 0 then + Initialize_Root (Target); + end if; + + Splice_Children + (Target => Target, + Target_Parent => Target_Parent.Node, + Before => Before.Node, + Source => Source, + Source_Parent => Source_Parent.Node); + end Splice_Children; + + procedure Splice_Children + (Container : in out Tree; + Target_Parent : Cursor; + Before : Cursor; + Source_Parent : Cursor) + is + begin + if Target_Parent = No_Element then + raise Constraint_Error with "Target_Parent cursor has no element"; + end if; + + if Target_Parent.Container /= Container'Unrestricted_Access then + raise Program_Error + with "Target_Parent cursor not in container"; + end if; + + if Before /= No_Element then + if Before.Container /= Container'Unrestricted_Access then + raise Program_Error + with "Before cursor not in container"; + end if; + + if Container.Nodes (Before.Node).Parent /= Target_Parent.Node then + raise Constraint_Error + with "Before cursor not child of Target_Parent"; + end if; + end if; + + if Source_Parent = No_Element then + raise Constraint_Error with "Source_Parent cursor has no element"; + end if; + + if Source_Parent.Container /= Container'Unrestricted_Access then + raise Program_Error + with "Source_Parent cursor not in container"; + end if; + + if Target_Parent = Source_Parent then + return; + end if; + + pragma Assert (Container.Count > 0); + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Is_Reachable (Container => Container, + From => Target_Parent.Node, + To => Source_Parent.Node) + then + raise Constraint_Error + with "Source_Parent is ancestor of Target_Parent"; + end if; + + Splice_Children + (Container => Container, + Target_Parent => Target_Parent.Node, + Before => Before.Node, + Source_Parent => Source_Parent.Node); + end Splice_Children; + + procedure Splice_Children + (Container : in out Tree; + Target_Parent : Count_Type; + Before : Count_Type'Base; + Source_Parent : Count_Type) + is + NN : Tree_Node_Array renames Container.Nodes; + CC : constant Children_Type := NN (Source_Parent).Children; + C : Count_Type'Base; + + begin + -- This is a utility operation to remove the children from Source parent + -- and insert them into Target parent. + + NN (Source_Parent).Children := Children_Type'(others => 0); + + -- Fix up the Parent pointers of each child to designate its new Target + -- parent. + + C := CC.First; + while C > 0 loop + NN (C).Parent := Target_Parent; + C := NN (C).Next; + end loop; + + Insert_Subtree_List + (Container => Container, + First => CC.First, + Last => CC.Last, + Parent => Target_Parent, + Before => Before); + end Splice_Children; + + procedure Splice_Children + (Target : in out Tree; + Target_Parent : Count_Type; + Before : Count_Type'Base; + Source : in out Tree; + Source_Parent : Count_Type) + is + S_NN : Tree_Node_Array renames Source.Nodes; + S_CC : Children_Type renames S_NN (Source_Parent).Children; + + Target_Count, Source_Count : Count_Type; + T, S : Count_Type'Base; + + begin + -- This is a utility operation to copy the children from the Source + -- parent and insert them as children of the Target parent, and then + -- delete them from the Source. (This is not a true splice operation, + -- but it is the best we can do in a bounded form.) The Before position + -- specifies where among the Target parent's exising children the new + -- children are inserted. + + -- Before we attempt the insertion, we must count the sources nodes in + -- order to determine whether the target have enough storage + -- available. Note that calculating this value is an O(n) operation. + + -- Here is an optimization opportunity: iterate of each children the + -- source explicitly, and keep a running count of the total number of + -- nodes. Compare the running total to the capacity of the target each + -- pass through the loop. This is more efficient than summing the counts + -- of child subtree (which is what Subtree_Node_Count does) and then + -- comparing that total sum to the target's capacity. ??? + + -- Here is another possibility. We currently treat the splice as an + -- all-or-nothing proposition: either we can insert all of children of + -- the source, or we raise exception with modifying the target. The + -- price for not causing side-effect is an O(n) determination of the + -- source count. If we are willing to tolerate side-effect, then we + -- could loop over the children of the source, counting that subtree and + -- then immediately inserting it in the target. The issue here is that + -- the test for available storage could fail during some later pass, + -- after children have already been inserted into target. ??? + + Source_Count := Subtree_Node_Count (Source, Source_Parent) - 1; + + if Source_Count = 0 then + return; + end if; + + if Target.Count > Target.Capacity - Source_Count then + raise Capacity_Error -- ??? + with "Source count exceeds available storage on Target"; + end if; + + -- Copy_Subtree returns a count of the number of nodes it inserts, but + -- it does this by incrementing the value passed in. Therefore we must + -- initialize the count before calling Copy_Subtree. + + Target_Count := 0; + + S := S_CC.First; + while S > 0 loop + Copy_Subtree + (Source => Source, + Source_Subtree => S, + Target => Target, + Target_Parent => Target_Parent, + Target_Subtree => T, + Count => Target_Count); + + Insert_Subtree_Node + (Container => Target, + Subtree => T, + Parent => Target_Parent, + Before => Before); + + S := S_NN (S).Next; + end loop; + + pragma Assert (Target_Count = Source_Count); + Target.Count := Target.Count + Target_Count; + + -- As with Copy_Subtree, operation Deallocate_Children returns a count + -- of the number of nodes it deallocates, but it works by incrementing + -- the value passed in. We must therefore initialize the count before + -- calling it. + + Source_Count := 0; + + Deallocate_Children (Source, Source_Parent, Source_Count); + pragma Assert (Source_Count = Target_Count); + + Source.Count := Source.Count - Source_Count; + end Splice_Children; + + -------------------- + -- Splice_Subtree -- + -------------------- + + procedure Splice_Subtree + (Target : in out Tree; + Parent : Cursor; + Before : Cursor; + Source : in out Tree; + Position : in out Cursor) + is + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Target'Unrestricted_Access then + raise Program_Error with "Parent cursor not in Target container"; + end if; + + if Before /= No_Element then + if Before.Container /= Target'Unrestricted_Access then + raise Program_Error with "Before cursor not in Target container"; + end if; + + if Target.Nodes (Before.Node).Parent /= Parent.Node then + raise Constraint_Error with "Before cursor not child of Parent"; + end if; + end if; + + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container /= Source'Unrestricted_Access then + raise Program_Error with "Position cursor not in Source container"; + end if; + + if Is_Root (Position) then + raise Program_Error with "Position cursor designates root"; + end if; + + if Target'Address = Source'Address then + if Target.Nodes (Position.Node).Parent = Parent.Node then + if Before = No_Element then + if Target.Nodes (Position.Node).Next <= 0 then -- last child + return; + end if; + + elsif Position.Node = Before.Node then + return; + + elsif Target.Nodes (Position.Node).Next = Before.Node then + return; + end if; + end if; + + if Target.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (Target tree is busy)"; + end if; + + if Is_Reachable (Container => Target, + From => Parent.Node, + To => Position.Node) + then + raise Constraint_Error with "Position is ancestor of Parent"; + end if; + + Remove_Subtree (Target, Position.Node); + + Target.Nodes (Position.Node).Parent := Parent.Node; + Insert_Subtree_Node (Target, Position.Node, Parent.Node, Before.Node); + + return; + end if; + + if Target.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (Target tree is busy)"; + end if; + + if Source.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (Source tree is busy)"; + end if; + + if Target.Count = 0 then + Initialize_Root (Target); + end if; + + Splice_Subtree + (Target => Target, + Parent => Parent.Node, + Before => Before.Node, + Source => Source, + Position => Position.Node); -- modified during call + + Position.Container := Target'Unrestricted_Access; + end Splice_Subtree; + + procedure Splice_Subtree + (Container : in out Tree; + Parent : Cursor; + Before : Cursor; + Position : Cursor) + is + begin + if Parent = No_Element then + raise Constraint_Error with "Parent cursor has no element"; + end if; + + if Parent.Container /= Container'Unrestricted_Access then + raise Program_Error with "Parent cursor not in container"; + end if; + + if Before /= No_Element then + if Before.Container /= Container'Unrestricted_Access then + raise Program_Error with "Before cursor not in container"; + end if; + + if Container.Nodes (Before.Node).Parent /= Parent.Node then + raise Constraint_Error with "Before cursor not child of Parent"; + end if; + end if; + + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with "Position cursor not in container"; + end if; + + if Is_Root (Position) then + + -- Should this be PE instead? Need ARG confirmation. ??? + + raise Constraint_Error with "Position cursor designates root"; + end if; + + if Container.Nodes (Position.Node).Parent = Parent.Node then + if Before = No_Element then + if Container.Nodes (Position.Node).Next <= 0 then -- last child + return; + end if; + + elsif Position.Node = Before.Node then + return; + + elsif Container.Nodes (Position.Node).Next = Before.Node then + return; + end if; + end if; + + if Container.Busy > 0 then + raise Program_Error + with "attempt to tamper with cursors (tree is busy)"; + end if; + + if Is_Reachable (Container => Container, + From => Parent.Node, + To => Position.Node) + then + raise Constraint_Error with "Position is ancestor of Parent"; + end if; + + Remove_Subtree (Container, Position.Node); + Container.Nodes (Position.Node).Parent := Parent.Node; + Insert_Subtree_Node (Container, Position.Node, Parent.Node, Before.Node); + end Splice_Subtree; + + procedure Splice_Subtree + (Target : in out Tree; + Parent : Count_Type; + Before : Count_Type'Base; + Source : in out Tree; + Position : in out Count_Type) -- Source on input, Target on output + is + Source_Count : Count_Type := Subtree_Node_Count (Source, Position); + pragma Assert (Source_Count >= 1); + + Target_Subtree : Count_Type; + Target_Count : Count_Type; + + begin + -- This is a utility operation to do the heavy lifting associated with + -- splicing a subtree from one tree to another. Note that "splicing" + -- is a bit of a misnomer here in the case of a bounded tree, because + -- the elements must be copied from the source to the target. + + if Target.Count > Target.Capacity - Source_Count then + raise Capacity_Error -- ??? + with "Source count exceeds available storage on Target"; + end if; + + -- Copy_Subtree returns a count of the number of nodes it inserts, but + -- it does this by incrementing the value passed in. Therefore we must + -- initialize the count before calling Copy_Subtree. + + Target_Count := 0; + + Copy_Subtree + (Source => Source, + Source_Subtree => Position, + Target => Target, + Target_Parent => Parent, + Target_Subtree => Target_Subtree, + Count => Target_Count); + + pragma Assert (Target_Count = Source_Count); + + -- Now link the newly-allocated subtree into the target. + + Insert_Subtree_Node + (Container => Target, + Subtree => Target_Subtree, + Parent => Parent, + Before => Before); + + Target.Count := Target.Count + Target_Count; + + -- The manipulation of the Target container is complete. Now we remove + -- the subtree from the Source container. + + Remove_Subtree (Source, Position); -- unlink the subtree + + -- As with Copy_Subtree, operation Deallocate_Subtree returns a count of + -- the number of nodes it deallocates, but it works by incrementing the + -- value passed in. We must therefore initialize the count before + -- calling it. + + Source_Count := 0; + + Deallocate_Subtree (Source, Position, Source_Count); + pragma Assert (Source_Count = Target_Count); + + Source.Count := Source.Count - Source_Count; + + Position := Target_Subtree; + end Splice_Subtree; + + ------------------------ + -- Subtree_Node_Count -- + ------------------------ + + function Subtree_Node_Count (Position : Cursor) return Count_Type is + begin + if Position = No_Element then + return 0; + end if; + + if Position.Container.Count = 0 then + pragma Assert (Is_Root (Position)); + return 1; + end if; + + return Subtree_Node_Count (Position.Container.all, Position.Node); + end Subtree_Node_Count; + + function Subtree_Node_Count + (Container : Tree; + Subtree : Count_Type) return Count_Type + is + Result : Count_Type; + Node : Count_Type'Base; + + begin + Result := 1; + Node := Container.Nodes (Subtree).Children.First; + while Node > 0 loop + Result := Result + Subtree_Node_Count (Container, Node); + Node := Container.Nodes (Node).Next; + end loop; + return Result; + end Subtree_Node_Count; + + ---------- + -- Swap -- + ---------- + + procedure Swap + (Container : in out Tree; + I, J : Cursor) + is + begin + if I = No_Element then + raise Constraint_Error with "I cursor has no element"; + end if; + + if I.Container /= Container'Unrestricted_Access then + raise Program_Error with "I cursor not in container"; + end if; + + if Is_Root (I) then + raise Program_Error with "I cursor designates root"; + end if; + + if I = J then -- make this test sooner??? + return; + end if; + + if J = No_Element then + raise Constraint_Error with "J cursor has no element"; + end if; + + if J.Container /= Container'Unrestricted_Access then + raise Program_Error with "J cursor not in container"; + end if; + + if Is_Root (J) then + raise Program_Error with "J cursor designates root"; + end if; + + if Container.Lock > 0 then + raise Program_Error + with "attempt to tamper with elements (tree is locked)"; + end if; + + declare + EE : Element_Array renames Container.Elements; + EI : constant Element_Type := EE (I.Node); + + begin + EE (I.Node) := EE (J.Node); + EE (J.Node) := EI; + end; + end Swap; + + -------------------- + -- Update_Element -- + -------------------- + + procedure Update_Element + (Container : in out Tree; + Position : Cursor; + Process : not null access procedure (Element : in out Element_Type)) + is + begin + if Position = No_Element then + raise Constraint_Error with "Position cursor has no element"; + end if; + + if Position.Container /= Container'Unrestricted_Access then + raise Program_Error with "Position cursor not in container"; + end if; + + if Is_Root (Position) then + raise Program_Error with "Position cursor designates root"; + end if; + + declare + T : Tree renames Position.Container.all'Unrestricted_Access.all; + B : Natural renames T.Busy; + L : Natural renames T.Lock; + + begin + B := B + 1; + L := L + 1; + + Process (Element => T.Elements (Position.Node)); + + L := L - 1; + B := B - 1; + + exception + when others => + L := L - 1; + B := B - 1; + raise; + end; + end Update_Element; + + ----------- + -- Write -- + ----------- + + procedure Write + (Stream : not null access Root_Stream_Type'Class; + Container : Tree) + is + procedure Write_Children (Subtree : Count_Type); + procedure Write_Subtree (Subtree : Count_Type); + + -------------------- + -- Write_Children -- + -------------------- + + procedure Write_Children (Subtree : Count_Type) is + CC : Children_Type renames Container.Nodes (Subtree).Children; + C : Count_Type'Base; + + begin + Count_Type'Write (Stream, Child_Count (Container, Subtree)); + + C := CC.First; + while C > 0 loop + Write_Subtree (C); + C := Container.Nodes (C).Next; + end loop; + end Write_Children; + + ------------------- + -- Write_Subtree -- + ------------------- + + procedure Write_Subtree (Subtree : Count_Type) is + begin + Element_Type'Write (Stream, Container.Elements (Subtree)); + Write_Children (Subtree); + end Write_Subtree; + + -- Start of processing for Write + + begin + Count_Type'Write (Stream, Container.Count); + + if Container.Count = 0 then + return; + end if; + + Write_Children (Root_Node (Container)); + end Write; + + procedure Write + (Stream : not null access Root_Stream_Type'Class; + Position : Cursor) + is + begin + raise Program_Error with "attempt to write tree cursor to stream"; + end Write; + + procedure Write + (Stream : not null access Root_Stream_Type'Class; + Item : Reference_Type) + is + begin + raise Program_Error with "attempt to stream reference"; + end Write; + + procedure Write + (Stream : not null access Root_Stream_Type'Class; + Item : Constant_Reference_Type) + is + begin + raise Program_Error with "attempt to stream reference"; + end Write; + +end Ada.Containers.Bounded_Multiway_Trees; |