aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2010-07-22 14:03:48 -0700
committerJing Yu <jingyu@google.com>2010-07-22 14:03:48 -0700
commitb094d6c4bf572654a031ecc4afe675154c886dc5 (patch)
tree89394c56b05e13a5413ee60237d65b0214fd98e2 /gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c
parentdc34721ac3bf7e3c406fba8cfe9d139393345ec5 (diff)
downloadtoolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.tar.gz
toolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.tar.bz2
toolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.zip
commit gcc-4.4.3 which is used to build gcc-4.4.3 Android toolchain in master.
The source is based on fsf gcc-4.4.3 and contains local patches which are recorded in gcc-4.4.3/README.google. Change-Id: Id8c6d6927df274ae9749196a1cc24dbd9abc9887
Diffstat (limited to 'gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c')
-rw-r--r--gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c6625
1 files changed, 6625 insertions, 0 deletions
diff --git a/gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c b/gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c
new file mode 100644
index 000000000..144dace8f
--- /dev/null
+++ b/gcc-4.4.3/gcc/tree-ssa-loop-ivopts.c
@@ -0,0 +1,6625 @@
+/* Induction variable optimizations.
+ Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
+ Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This pass tries to find the optimal set of induction variables for the loop.
+ It optimizes just the basic linear induction variables (although adding
+ support for other types should not be too hard). It includes the
+ optimizations commonly known as strength reduction, induction variable
+ coalescing and induction variable elimination. It does it in the
+ following steps:
+
+ 1) The interesting uses of induction variables are found. This includes
+
+ -- uses of induction variables in non-linear expressions
+ -- addresses of arrays
+ -- comparisons of induction variables
+
+ 2) Candidates for the induction variables are found. This includes
+
+ -- old induction variables
+ -- the variables defined by expressions derived from the "interesting
+ uses" above
+
+ 3) The optimal (w.r. to a cost function) set of variables is chosen. The
+ cost function assigns a cost to sets of induction variables and consists
+ of three parts:
+
+ -- The use costs. Each of the interesting uses chooses the best induction
+ variable in the set and adds its cost to the sum. The cost reflects
+ the time spent on modifying the induction variables value to be usable
+ for the given purpose (adding base and offset for arrays, etc.).
+ -- The variable costs. Each of the variables has a cost assigned that
+ reflects the costs associated with incrementing the value of the
+ variable. The original variables are somewhat preferred.
+ -- The set cost. Depending on the size of the set, extra cost may be
+ added to reflect register pressure.
+
+ All the costs are defined in a machine-specific way, using the target
+ hooks and machine descriptions to determine them.
+
+ 4) The trees are transformed to use the new variables, the dead code is
+ removed.
+
+ All of this is done loop by loop. Doing it globally is theoretically
+ possible, it might give a better performance and it might enable us
+ to decide costs more precisely, but getting all the interactions right
+ would be complicated. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "varray.h"
+#include "expr.h"
+#include "tree-pass.h"
+#include "ggc.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "pointer-set.h"
+#include "hashtab.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+#include "cfgloop.h"
+#include "params.h"
+#include "langhooks.h"
+#include "tree-affine.h"
+#include "target.h"
+#include "tree-inline.h"
+
+/* The infinite cost. */
+#define INFTY 10000000
+
+#define AVG_LOOP_NITER(LOOP) 5
+
+/* Returns the expected number of loop iterations for LOOP.
+ The average trip count is computed from profile data if it
+ exists. */
+
+static inline unsigned
+avg_loop_niter (struct loop *loop)
+{
+ unsigned tc;
+ if (loop->header->count || loop->latch->count)
+ tc = expected_loop_iterations (loop);
+ else
+ tc = AVG_LOOP_NITER (loop);
+ if (tc == 0)
+ tc++;
+ return tc;
+}
+
+/* Representation of the induction variable. */
+struct iv
+{
+ tree base; /* Initial value of the iv. */
+ tree base_object; /* A memory object to that the induction variable points. */
+ tree step; /* Step of the iv (constant only). */
+ tree ssa_name; /* The ssa name with the value. */
+ bool biv_p; /* Is it a biv? */
+ bool have_use_for; /* Do we already have a use for it? */
+ unsigned use_id; /* The identifier in the use if it is the case. */
+};
+
+/* Per-ssa version information (induction variable descriptions, etc.). */
+struct version_info
+{
+ tree name; /* The ssa name. */
+ struct iv *iv; /* Induction variable description. */
+ bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
+ an expression that is not an induction variable. */
+ unsigned inv_id; /* Id of an invariant. */
+ bool preserve_biv; /* For the original biv, whether to preserve it. */
+};
+
+/* Types of uses. */
+enum use_type
+{
+ USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
+ USE_ADDRESS, /* Use in an address. */
+ USE_COMPARE /* Use is a compare. */
+};
+
+/* Cost of a computation. */
+typedef struct
+{
+ unsigned cost; /* The runtime cost. */
+ unsigned complexity; /* The estimate of the complexity of the code for
+ the computation (in no concrete units --
+ complexity field should be larger for more
+ complex expressions and addressing modes). */
+} comp_cost;
+
+static const comp_cost zero_cost = {0, 0};
+static const comp_cost infinite_cost = {INFTY, INFTY};
+
+/* The candidate - cost pair. */
+struct cost_pair
+{
+ struct iv_cand *cand; /* The candidate. */
+ comp_cost cost; /* The cost. */
+ bitmap depends_on; /* The list of invariants that have to be
+ preserved. */
+ tree value; /* For final value elimination, the expression for
+ the final value of the iv. For iv elimination,
+ the new bound to compare with. */
+};
+
+/* The use position for iv. */
+enum iv_use_pos
+{
+ IU_UNKNOWN,
+ IU_OUTSIDE_LOOP_ONLY,
+ IU_INSIDE_LOOP
+};
+
+/* Use. */
+struct iv_use
+{
+ unsigned id; /* The id of the use. */
+ enum use_type type; /* Type of the use. */
+ struct iv *iv; /* The induction variable it is based on. */
+ gimple stmt; /* Statement in that it occurs. */
+ tree *op_p; /* The place where it occurs. */
+ bitmap related_cands; /* The set of "related" iv candidates, plus the common
+ important ones. */
+
+ unsigned n_map_members; /* Number of candidates in the cost_map list. */
+ struct cost_pair *cost_map;
+ /* The costs wrto the iv candidates. */
+
+ struct iv_cand *selected;
+ /* The selected candidate. */
+ enum iv_use_pos use_pos;
+ /* The use position. */
+};
+
+/* The position where the iv is computed. */
+enum iv_position
+{
+ IP_NORMAL, /* At the end, just before the exit condition. */
+ IP_END, /* At the end of the latch block. */
+ IP_ORIGINAL /* The original biv. */
+};
+
+/* The induction variable candidate. */
+struct iv_cand
+{
+ unsigned id; /* The number of the candidate. */
+ bool important; /* Whether this is an "important" candidate, i.e. such
+ that it should be considered by all uses. */
+ enum iv_position pos; /* Where it is computed. */
+ gimple incremented_at;/* For original biv, the statement where it is
+ incremented. */
+ tree var_before; /* The variable used for it before increment. */
+ tree var_after; /* The variable used for it after increment. */
+ struct iv *iv; /* The value of the candidate. NULL for
+ "pseudocandidate" used to indicate the possibility
+ to replace the final value of an iv by direct
+ computation of the value. */
+ unsigned cost; /* Cost of the candidate. */
+ bitmap depends_on; /* The list of invariants that are used in step of the
+ biv. */
+};
+
+/* The data used by the induction variable optimizations. */
+
+typedef struct iv_use *iv_use_p;
+DEF_VEC_P(iv_use_p);
+DEF_VEC_ALLOC_P(iv_use_p,heap);
+
+typedef struct iv_cand *iv_cand_p;
+DEF_VEC_P(iv_cand_p);
+DEF_VEC_ALLOC_P(iv_cand_p,heap);
+
+typedef struct version_info *version_info_p;
+DEF_VEC_P(version_info_p);
+DEF_VEC_ALLOC_P(version_info_p,heap);
+
+
+struct ivopts_data
+{
+ /* The currently optimized loop. */
+ struct loop *current_loop;
+
+ /* Numbers of iterations for all exits of the current loop. */
+ struct pointer_map_t *niters;
+
+ /* Number of registers used in it. */
+ unsigned regs_used;
+
+ /* The size of version_info array allocated. */
+ unsigned version_info_size;
+
+ /* The array of information for the ssa names. */
+ struct version_info *version_info;
+
+
+ /* Pseudo version infos for generated loop invariants. */
+ VEC(version_info_p,heap) *pseudo_version_info;
+
+ /* The bitmap of indices in version_info whose value was changed. */
+ bitmap relevant;
+
+ /* The uses of induction variables. */
+ VEC(iv_use_p,heap) *iv_uses;
+
+ /* The candidates. */
+ VEC(iv_cand_p,heap) *iv_candidates;
+
+ /* A bitmap of important candidates. */
+ bitmap important_candidates;
+
+ /* The maximum invariant id. */
+ unsigned max_inv_id;
+
+ /* The minimal invariant id for pseudo invariants. */
+ unsigned min_pseudo_inv_id;
+
+ /* Whether to consider just related and important candidates when replacing a
+ use. */
+ bool consider_all_candidates;
+
+ /* Are we optimizing for speed? */
+ bool speed;
+};
+
+/* An assignment of iv candidates to uses. */
+
+struct iv_ca
+{
+ /* The number of uses covered by the assignment. */
+ unsigned upto;
+
+ /* Number of uses that cannot be expressed by the candidates in the set. */
+ unsigned bad_uses;
+
+ /* Candidate assigned to a use, together with the related costs. */
+ struct cost_pair **cand_for_use;
+
+ /* Number of times each candidate is used. */
+ unsigned *n_cand_uses;
+
+ /* The candidates used. */
+ bitmap cands;
+
+ /* The number of candidates in the set. */
+ unsigned n_cands;
+
+ /* Total number of registers needed. */
+ unsigned n_regs;
+
+ /* Total number of pseudo invariants. */
+ unsigned n_pseudos;
+
+ /* Total cost of expressing uses. */
+ comp_cost cand_use_cost;
+
+ /* Total cost of candidates. */
+ unsigned cand_cost;
+
+ /* Number of times each invariant is used. */
+ unsigned *n_invariant_uses;
+
+ /* Total cost of the assignment. */
+ comp_cost cost;
+};
+
+/* Difference of two iv candidate assignments. */
+
+struct iv_ca_delta
+{
+ /* Changed use. */
+ struct iv_use *use;
+
+ /* An old assignment (for rollback purposes). */
+ struct cost_pair *old_cp;
+
+ /* A new assignment. */
+ struct cost_pair *new_cp;
+
+ /* Next change in the list. */
+ struct iv_ca_delta *next_change;
+};
+
+/* Bound on number of candidates below that all candidates are considered. */
+
+#define CONSIDER_ALL_CANDIDATES_BOUND \
+ ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
+
+/* If there are more iv occurrences, we just give up (it is quite unlikely that
+ optimizing such a loop would help, and it would take ages). */
+
+#define MAX_CONSIDERED_USES \
+ ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
+
+/* If there are at most this number of ivs in the set, try removing unnecessary
+ ivs from the set always. */
+
+#define ALWAYS_PRUNE_CAND_SET_BOUND \
+ ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
+
+/* The list of trees for that the decl_rtl field must be reset is stored
+ here. */
+
+static VEC(tree,heap) *decl_rtl_to_reset;
+
+static struct pointer_map_t *inverted_stmt_map;
+
+/* Number of uses recorded in DATA. */
+
+static inline unsigned
+n_iv_uses (struct ivopts_data *data)
+{
+ return VEC_length (iv_use_p, data->iv_uses);
+}
+
+/* Ith use recorded in DATA. */
+
+static inline struct iv_use *
+iv_use (struct ivopts_data *data, unsigned i)
+{
+ return VEC_index (iv_use_p, data->iv_uses, i);
+}
+
+/* Number of candidates recorded in DATA. */
+
+static inline unsigned
+n_iv_cands (struct ivopts_data *data)
+{
+ return VEC_length (iv_cand_p, data->iv_candidates);
+}
+
+/* Ith candidate recorded in DATA. */
+
+static inline struct iv_cand *
+iv_cand (struct ivopts_data *data, unsigned i)
+{
+ return VEC_index (iv_cand_p, data->iv_candidates, i);
+}
+
+/* The single loop exit if it dominates the latch, NULL otherwise. */
+
+edge
+single_dom_exit (struct loop *loop)
+{
+ edge exit = single_exit (loop);
+
+ if (!exit)
+ return NULL;
+
+ if (!just_once_each_iteration_p (loop, exit->src))
+ return NULL;
+
+ return exit;
+}
+
+/* Dumps information about the induction variable IV to FILE. */
+
+extern void dump_iv (FILE *, struct iv *);
+void
+dump_iv (FILE *file, struct iv *iv)
+{
+ if (iv->ssa_name)
+ {
+ fprintf (file, "ssa name ");
+ print_generic_expr (file, iv->ssa_name, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, " type ");
+ print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
+ fprintf (file, "\n");
+
+ if (iv->step)
+ {
+ fprintf (file, " base ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " step ");
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ else
+ {
+ fprintf (file, " invariant ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->base_object)
+ {
+ fprintf (file, " base object ");
+ print_generic_expr (file, iv->base_object, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->biv_p)
+ fprintf (file, " is a biv\n");
+}
+
+/* Dumps information about the USE to FILE. */
+
+extern void dump_use (FILE *, struct iv_use *);
+void
+dump_use (FILE *file, struct iv_use *use)
+{
+ fprintf (file, "use %d\n", use->id);
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ fprintf (file, " generic\n");
+ break;
+
+ case USE_ADDRESS:
+ fprintf (file, " address\n");
+ break;
+
+ case USE_COMPARE:
+ fprintf (file, " compare\n");
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ fprintf (file, " in statement ");
+ print_gimple_stmt (file, use->stmt, 0, 0);
+ fprintf (file, "\n");
+
+ fprintf (file, " at position ");
+ if (use->op_p)
+ print_generic_expr (file, *use->op_p, TDF_SLIM);
+ fprintf (file, "\n");
+
+ dump_iv (file, use->iv);
+
+ if (use->related_cands)
+ {
+ fprintf (file, " related candidates ");
+ dump_bitmap (file, use->related_cands);
+ }
+}
+
+/* Dumps information about the uses to FILE. */
+
+extern void dump_uses (FILE *, struct ivopts_data *);
+void
+dump_uses (FILE *file, struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ dump_use (file, use);
+ fprintf (file, "\n");
+ }
+}
+
+/* Dumps information about induction variable candidate CAND to FILE. */
+
+extern void dump_cand (FILE *, struct iv_cand *);
+void
+dump_cand (FILE *file, struct iv_cand *cand)
+{
+ struct iv *iv = cand->iv;
+
+ fprintf (file, "candidate %d%s\n",
+ cand->id, cand->important ? " (important)" : "");
+
+ if (cand->depends_on)
+ {
+ fprintf (file, " depends on ");
+ dump_bitmap (file, cand->depends_on);
+ }
+
+ if (!iv)
+ {
+ fprintf (file, " final value replacement\n");
+ return;
+ }
+
+ if (cand->var_before)
+ {
+ fprintf (file, " var_before ");
+ print_generic_expr (file, cand->var_before, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ if (cand->var_after)
+ {
+ fprintf (file, " var_after ");
+ print_generic_expr (file, cand->var_after, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ fprintf (file, " incremented before exit test\n");
+ break;
+
+ case IP_END:
+ fprintf (file, " incremented at end\n");
+ break;
+
+ case IP_ORIGINAL:
+ fprintf (file, " original biv\n");
+ break;
+ }
+
+ dump_iv (file, iv);
+}
+
+/* Returns the info for ssa version VER. */
+
+static inline struct version_info *
+ver_info (struct ivopts_data *data, unsigned ver)
+{
+ if (ver < data->min_pseudo_inv_id)
+ return data->version_info + ver;
+ else
+ return VEC_index (version_info_p, data->pseudo_version_info,
+ ver - data->min_pseudo_inv_id);
+}
+
+/* Returns the info for ssa name NAME. */
+
+static inline struct version_info *
+name_info (struct ivopts_data *data, tree name)
+{
+ return ver_info (data, SSA_NAME_VERSION (name));
+}
+
+/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
+ emitted in LOOP. */
+
+static bool
+stmt_after_ip_normal_pos (struct loop *loop, gimple stmt)
+{
+ basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
+
+ gcc_assert (bb);
+
+ if (sbb == loop->latch)
+ return true;
+
+ if (sbb != bb)
+ return false;
+
+ return stmt == last_stmt (bb);
+}
+
+/* Returns true if STMT if after the place where the original induction
+ variable CAND is incremented. */
+
+static bool
+stmt_after_ip_original_pos (struct iv_cand *cand, gimple stmt)
+{
+ basic_block cand_bb = gimple_bb (cand->incremented_at);
+ basic_block stmt_bb = gimple_bb (stmt);
+ gimple_stmt_iterator bsi;
+
+ if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
+ return false;
+
+ if (stmt_bb != cand_bb)
+ return true;
+
+ /* Scan the block from the end, since the original ivs are usually
+ incremented at the end of the loop body. */
+ for (bsi = gsi_last_bb (stmt_bb); ; gsi_prev (&bsi))
+ {
+ if (gsi_stmt (bsi) == cand->incremented_at)
+ return false;
+ if (gsi_stmt (bsi) == stmt)
+ return true;
+ }
+}
+
+/* Returns true if STMT if after the place where the induction variable
+ CAND is incremented in LOOP. */
+
+static bool
+stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple stmt)
+{
+ switch (cand->pos)
+ {
+ case IP_END:
+ return false;
+
+ case IP_NORMAL:
+ return stmt_after_ip_normal_pos (loop, stmt);
+
+ case IP_ORIGINAL:
+ return stmt_after_ip_original_pos (cand, stmt);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
+
+static bool
+abnormal_ssa_name_p (tree exp)
+{
+ if (!exp)
+ return false;
+
+ if (TREE_CODE (exp) != SSA_NAME)
+ return false;
+
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
+}
+
+/* Returns false if BASE or INDEX contains a ssa name that occurs in an
+ abnormal phi node. Callback for for_each_index. */
+
+static bool
+idx_contains_abnormal_ssa_name_p (tree base, tree *index,
+ void *data ATTRIBUTE_UNUSED)
+{
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
+ return false;
+ if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
+ return false;
+ }
+
+ return !abnormal_ssa_name_p (*index);
+}
+
+/* Returns true if EXPR contains a ssa name that occurs in an
+ abnormal phi node. */
+
+bool
+contains_abnormal_ssa_name_p (tree expr)
+{
+ enum tree_code code;
+ enum tree_code_class codeclass;
+
+ if (!expr)
+ return false;
+
+ code = TREE_CODE (expr);
+ codeclass = TREE_CODE_CLASS (code);
+
+ if (code == SSA_NAME)
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
+
+ if (code == INTEGER_CST
+ || is_gimple_min_invariant (expr))
+ return false;
+
+ if (code == ADDR_EXPR)
+ return !for_each_index (&TREE_OPERAND (expr, 0),
+ idx_contains_abnormal_ssa_name_p,
+ NULL);
+
+ switch (codeclass)
+ {
+ case tcc_binary:
+ case tcc_comparison:
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
+ return true;
+
+ /* Fallthru. */
+ case tcc_unary:
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
+ return true;
+
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return false;
+}
+
+/* Returns tree describing number of iterations determined from
+ EXIT of DATA->current_loop, or NULL if something goes wrong. */
+
+static tree
+niter_for_exit (struct ivopts_data *data, edge exit)
+{
+ struct tree_niter_desc desc;
+ tree niter;
+ void **slot;
+
+ if (!data->niters)
+ {
+ data->niters = pointer_map_create ();
+ slot = NULL;
+ }
+ else
+ slot = pointer_map_contains (data->niters, exit);
+
+ if (!slot)
+ {
+ /* Try to determine number of iterations. We must know it
+ unconditionally (i.e., without possibility of # of iterations
+ being zero). Also, we cannot safely work with ssa names that
+ appear in phi nodes on abnormal edges, so that we do not create
+ overlapping life ranges for them (PR 27283). */
+ if (number_of_iterations_exit (data->current_loop,
+ exit, &desc, true)
+ && integer_zerop (desc.may_be_zero)
+ && !contains_abnormal_ssa_name_p (desc.niter))
+ niter = desc.niter;
+ else
+ niter = NULL_TREE;
+
+ *pointer_map_insert (data->niters, exit) = niter;
+ }
+ else
+ niter = (tree) *slot;
+
+ return niter;
+}
+
+/* Returns tree describing number of iterations determined from
+ single dominating exit of DATA->current_loop, or NULL if something
+ goes wrong. */
+
+static tree
+niter_for_single_dom_exit (struct ivopts_data *data)
+{
+ edge exit = single_dom_exit (data->current_loop);
+
+ if (!exit)
+ return NULL;
+
+ return niter_for_exit (data, exit);
+}
+
+/* Initializes data structures used by the iv optimization pass, stored
+ in DATA. */
+
+static void
+tree_ssa_iv_optimize_init (struct ivopts_data *data)
+{
+ data->version_info_size = 2 * num_ssa_names;
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ data->min_pseudo_inv_id = num_ssa_names;
+ data->pseudo_version_info = NULL;
+ data->relevant = BITMAP_ALLOC (NULL);
+ data->important_candidates = BITMAP_ALLOC (NULL);
+ data->max_inv_id = 0;
+ data->niters = NULL;
+ data->iv_uses = VEC_alloc (iv_use_p, heap, 20);
+ data->iv_candidates = VEC_alloc (iv_cand_p, heap, 20);
+ decl_rtl_to_reset = VEC_alloc (tree, heap, 20);
+}
+
+/* Returns a memory object to that EXPR points. In case we are able to
+ determine that it does not point to any such object, NULL is returned. */
+
+static tree
+determine_base_object (tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ tree base, obj;
+
+ /* If this is a pointer casted to any type, we need to determine
+ the base object for the pointer; so handle conversions before
+ throwing away non-pointer expressions. */
+ if (CONVERT_EXPR_P (expr))
+ return determine_base_object (TREE_OPERAND (expr, 0));
+
+ if (!POINTER_TYPE_P (TREE_TYPE (expr)))
+ return NULL_TREE;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ return NULL_TREE;
+
+ case ADDR_EXPR:
+ obj = TREE_OPERAND (expr, 0);
+ base = get_base_address (obj);
+
+ if (!base)
+ return expr;
+
+ if (TREE_CODE (base) == INDIRECT_REF)
+ return determine_base_object (TREE_OPERAND (base, 0));
+
+ return fold_convert (ptr_type_node,
+ build_fold_addr_expr (base));
+
+ case POINTER_PLUS_EXPR:
+ return determine_base_object (TREE_OPERAND (expr, 0));
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
+ gcc_unreachable ();
+
+ default:
+ return fold_convert (ptr_type_node, expr);
+ }
+}
+
+/* Allocates an induction variable with given initial value BASE and step STEP
+ for loop LOOP. */
+
+static struct iv *
+alloc_iv (tree base, tree step)
+{
+ struct iv *iv = XCNEW (struct iv);
+ gcc_assert (step != NULL_TREE);
+
+ iv->base = base;
+ iv->base_object = determine_base_object (base);
+ iv->step = step;
+ iv->biv_p = false;
+ iv->have_use_for = false;
+ iv->use_id = 0;
+ iv->ssa_name = NULL_TREE;
+
+ return iv;
+}
+
+/* Sets STEP and BASE for induction variable IV. */
+
+static void
+set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
+{
+ struct version_info *info = name_info (data, iv);
+
+ gcc_assert (!info->iv);
+
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
+ info->iv = alloc_iv (base, step);
+ info->iv->ssa_name = iv;
+}
+
+/* Finds induction variable declaration for VAR. */
+
+static struct iv *
+get_iv (struct ivopts_data *data, tree var)
+{
+ basic_block bb;
+ tree type = TREE_TYPE (var);
+
+ if (!POINTER_TYPE_P (type)
+ && !INTEGRAL_TYPE_P (type))
+ return NULL;
+
+ if (!name_info (data, var)->iv)
+ {
+ bb = gimple_bb (SSA_NAME_DEF_STMT (var));
+
+ if (!bb
+ || !flow_bb_inside_loop_p (data->current_loop, bb))
+ set_iv (data, var, var, build_int_cst (type, 0));
+ }
+
+ return name_info (data, var)->iv;
+}
+
+/* Determines the step of a biv defined in PHI. Returns NULL if PHI does
+ not define a simple affine biv with nonzero step. */
+
+static tree
+determine_biv_step (gimple phi)
+{
+ struct loop *loop = gimple_bb (phi)->loop_father;
+ tree name = PHI_RESULT (phi);
+ affine_iv iv;
+
+ if (!is_gimple_reg (name))
+ return NULL_TREE;
+
+ if (!simple_iv (loop, loop, name, &iv, true))
+ return NULL_TREE;
+
+ return integer_zerop (iv.step) ? NULL_TREE : iv.step;
+}
+
+/* Finds basic ivs. */
+
+static bool
+find_bivs (struct ivopts_data *data)
+{
+ gimple phi;
+ tree step, type, base;
+ bool found = false;
+ struct loop *loop = data->current_loop;
+ gimple_stmt_iterator psi;
+
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
+ continue;
+
+ step = determine_biv_step (phi);
+ if (!step)
+ continue;
+
+ base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ base = expand_simple_operations (base);
+ if (contains_abnormal_ssa_name_p (base)
+ || contains_abnormal_ssa_name_p (step))
+ continue;
+
+ type = TREE_TYPE (PHI_RESULT (phi));
+ base = fold_convert (type, base);
+ if (step)
+ {
+ if (POINTER_TYPE_P (type))
+ step = fold_convert (sizetype, step);
+ else
+ step = fold_convert (type, step);
+ }
+
+ set_iv (data, PHI_RESULT (phi), base, step);
+ found = true;
+ }
+
+ return found;
+}
+
+/* Marks basic ivs. */
+
+static void
+mark_bivs (struct ivopts_data *data)
+{
+ gimple phi;
+ tree var;
+ struct iv *iv, *incr_iv;
+ struct loop *loop = data->current_loop;
+ basic_block incr_bb;
+ gimple_stmt_iterator psi;
+
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+
+ iv = get_iv (data, PHI_RESULT (phi));
+ if (!iv)
+ continue;
+
+ var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+ incr_iv = get_iv (data, var);
+ if (!incr_iv)
+ continue;
+
+ /* If the increment is in the subloop, ignore it. */
+ incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
+ if (incr_bb->loop_father != data->current_loop
+ || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
+ continue;
+
+ iv->biv_p = true;
+ incr_iv->biv_p = true;
+ }
+}
+
+/* Checks whether STMT defines a linear induction variable and stores its
+ parameters to IV. */
+
+static bool
+find_givs_in_stmt_scev (struct ivopts_data *data, gimple stmt, affine_iv *iv)
+{
+ tree lhs;
+ struct loop *loop = data->current_loop;
+
+ iv->base = NULL_TREE;
+ iv->step = NULL_TREE;
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return false;
+
+ lhs = gimple_assign_lhs (stmt);
+ if (TREE_CODE (lhs) != SSA_NAME)
+ return false;
+
+ if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
+ return false;
+ iv->base = expand_simple_operations (iv->base);
+
+ if (contains_abnormal_ssa_name_p (iv->base)
+ || contains_abnormal_ssa_name_p (iv->step))
+ return false;
+
+ return true;
+}
+
+/* Finds general ivs in statement STMT. */
+
+static void
+find_givs_in_stmt (struct ivopts_data *data, gimple stmt)
+{
+ affine_iv iv;
+
+ if (!find_givs_in_stmt_scev (data, stmt, &iv))
+ return;
+
+ set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step);
+}
+
+/* Finds general ivs in basic block BB. */
+
+static void
+find_givs_in_bb (struct ivopts_data *data, basic_block bb)
+{
+ gimple_stmt_iterator bsi;
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_givs_in_stmt (data, gsi_stmt (bsi));
+}
+
+/* Finds general ivs. */
+
+static void
+find_givs (struct ivopts_data *data)
+{
+ struct loop *loop = data->current_loop;
+ basic_block *body = get_loop_body_in_dom_order (loop);
+ unsigned i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ find_givs_in_bb (data, body[i]);
+ free (body);
+}
+
+/* For each ssa name defined in LOOP determines whether it is an induction
+ variable and if so, its initial value and step. */
+
+static bool
+find_induction_variables (struct ivopts_data *data)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!find_bivs (data))
+ return false;
+
+ find_givs (data);
+ mark_bivs (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ tree niter = niter_for_single_dom_exit (data);
+
+ if (niter)
+ {
+ fprintf (dump_file, " number of iterations ");
+ print_generic_expr (dump_file, niter, TDF_SLIM);
+ fprintf (dump_file, "\n\n");
+ };
+
+ fprintf (dump_file, "Induction variables:\n\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ if (ver_info (data, i)->iv)
+ dump_iv (dump_file, ver_info (data, i)->iv);
+ }
+ }
+
+ return true;
+}
+
+/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
+
+static struct iv_use *
+record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
+ gimple stmt, enum use_type use_type)
+{
+ struct iv_use *use = XCNEW (struct iv_use);
+
+ use->id = n_iv_uses (data);
+ use->type = use_type;
+ use->iv = iv;
+ use->stmt = stmt;
+ use->op_p = use_p;
+ use->related_cands = BITMAP_ALLOC (NULL);
+ use->use_pos = IU_UNKNOWN;
+
+ /* To avoid showing ssa name in the dumps, if it was not reset by the
+ caller. */
+ iv->ssa_name = NULL_TREE;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_use (dump_file, use);
+
+ VEC_safe_push (iv_use_p, heap, data->iv_uses, use);
+
+ return use;
+}
+
+/* Checks whether OP is a loop-level invariant and if so, records it.
+ NONLINEAR_USE is true if the invariant is used in a way we do not
+ handle specially. */
+
+static void
+record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
+{
+ basic_block bb;
+ struct version_info *info;
+
+ if (TREE_CODE (op) != SSA_NAME
+ || !is_gimple_reg (op))
+ return;
+
+ bb = gimple_bb (SSA_NAME_DEF_STMT (op));
+ if (bb
+ && flow_bb_inside_loop_p (data->current_loop, bb))
+ return;
+
+ info = name_info (data, op);
+ info->name = op;
+ info->has_nonlin_use |= nonlinear_use;
+ if (!info->inv_id)
+ info->inv_id = ++data->max_inv_id;
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
+}
+
+/* Records a pseudo invariant and returns its VERSION_INFO. */
+
+static struct version_info *
+record_pseudo_invariant (struct ivopts_data *data)
+{
+ struct version_info *info;
+
+ info = XCNEW (struct version_info);
+ info->name = NULL;
+ VEC_safe_push (version_info_p, heap, data->pseudo_version_info, info);
+ if (VEC_length (version_info_p, data->pseudo_version_info))
+ info->inv_id
+ = VEC_length (version_info_p, data->pseudo_version_info) - 1
+ + data->min_pseudo_inv_id;
+ else
+ info->inv_id = data->max_inv_id + 1;
+
+ return info;
+}
+
+/* Checks whether the use OP is interesting and if so, records it.
+ USE_POS indicates where the use comes from. */
+
+static struct iv_use *
+find_interesting_uses_op (struct ivopts_data *data, tree op, enum iv_use_pos use_pos)
+{
+ struct iv *iv;
+ struct iv *civ;
+ gimple stmt;
+ struct iv_use *use;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ return NULL;
+
+ if (iv->have_use_for)
+ {
+ use = iv_use (data, iv->use_id);
+
+ gcc_assert (use->type == USE_NONLINEAR_EXPR);
+ gcc_assert (use->use_pos != IU_UNKNOWN);
+
+ if (use->use_pos == IU_OUTSIDE_LOOP_ONLY)
+ use->use_pos = use_pos;
+ return use;
+ }
+
+ if (integer_zerop (iv->step))
+ {
+ record_invariant (data, op, true);
+ return NULL;
+ }
+ iv->have_use_for = true;
+
+ civ = XNEW (struct iv);
+ *civ = *iv;
+
+ stmt = SSA_NAME_DEF_STMT (op);
+ gcc_assert (gimple_code (stmt) == GIMPLE_PHI
+ || is_gimple_assign (stmt));
+
+ use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
+ iv->use_id = use->id;
+ use->use_pos = use_pos;
+
+ return use;
+}
+
+/* Given a condition in statement STMT, checks whether it is a compare
+ of an induction variable and an invariant. If this is the case,
+ CONTROL_VAR is set to location of the iv, BOUND to the location of
+ the invariant, IV_VAR and IV_BOUND are set to the corresponding
+ induction variable descriptions, and true is returned. If this is not
+ the case, CONTROL_VAR and BOUND are set to the arguments of the
+ condition and false is returned. */
+
+static bool
+extract_cond_operands (struct ivopts_data *data, gimple stmt,
+ tree **control_var, tree **bound,
+ struct iv **iv_var, struct iv **iv_bound)
+{
+ /* The objects returned when COND has constant operands. */
+ static struct iv const_iv;
+ static tree zero;
+ tree *op0 = &zero, *op1 = &zero, *tmp_op;
+ struct iv *iv0 = &const_iv, *iv1 = &const_iv, *tmp_iv;
+ bool ret = false;
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ op0 = gimple_cond_lhs_ptr (stmt);
+ op1 = gimple_cond_rhs_ptr (stmt);
+ }
+ else
+ {
+ op0 = gimple_assign_rhs1_ptr (stmt);
+ op1 = gimple_assign_rhs2_ptr (stmt);
+ }
+
+ zero = integer_zero_node;
+ const_iv.step = integer_zero_node;
+
+ if (TREE_CODE (*op0) == SSA_NAME)
+ iv0 = get_iv (data, *op0);
+ if (TREE_CODE (*op1) == SSA_NAME)
+ iv1 = get_iv (data, *op1);
+
+ /* Exactly one of the compared values must be an iv, and the other one must
+ be an invariant. */
+ if (!iv0 || !iv1)
+ goto end;
+
+ if (integer_zerop (iv0->step))
+ {
+ /* Control variable may be on the other side. */
+ tmp_op = op0; op0 = op1; op1 = tmp_op;
+ tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
+ }
+ ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
+
+end:
+ if (control_var)
+ *control_var = op0;;
+ if (iv_var)
+ *iv_var = iv0;;
+ if (bound)
+ *bound = op1;
+ if (iv_bound)
+ *iv_bound = iv1;
+
+ return ret;
+}
+
+/* Checks whether the condition in STMT is interesting and if so,
+ records it. */
+
+static void
+find_interesting_uses_cond (struct ivopts_data *data, gimple stmt)
+{
+ tree *var_p, *bound_p;
+ struct iv *var_iv, *civ;
+ struct iv_use *use;
+
+ if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
+ {
+ find_interesting_uses_op (data, *var_p, IU_INSIDE_LOOP);
+ find_interesting_uses_op (data, *bound_p, IU_INSIDE_LOOP);
+ return;
+ }
+
+ civ = XNEW (struct iv);
+ *civ = *var_iv;
+ use = record_use (data, NULL, civ, stmt, USE_COMPARE);
+ use->use_pos = IU_INSIDE_LOOP;
+}
+
+/* Returns true if expression EXPR is obviously invariant in LOOP,
+ i.e. if all its operands are defined outside of the LOOP. LOOP
+ should not be the function body. */
+
+bool
+expr_invariant_in_loop_p (struct loop *loop, tree expr)
+{
+ basic_block def_bb;
+ unsigned i, len;
+
+ gcc_assert (loop_depth (loop) > 0);
+
+ if (is_gimple_min_invariant (expr))
+ return true;
+
+ if (TREE_CODE (expr) == SSA_NAME)
+ {
+ def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
+ if (def_bb
+ && flow_bb_inside_loop_p (loop, def_bb))
+ return false;
+
+ return true;
+ }
+
+ if (!EXPR_P (expr))
+ return false;
+
+ len = TREE_OPERAND_LENGTH (expr);
+ for (i = 0; i < len; i++)
+ if (!expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
+ return false;
+
+ return true;
+}
+
+/* Returns true if statement STMT is obviously invariant in LOOP,
+ i.e. if all its operands on the RHS are defined outside of the LOOP.
+ LOOP should not be the function body. */
+
+bool
+stmt_invariant_in_loop_p (struct loop *loop, gimple stmt)
+{
+ unsigned i;
+ tree lhs;
+
+ gcc_assert (loop_depth (loop) > 0);
+
+ lhs = gimple_get_lhs (stmt);
+ for (i = 0; i < gimple_num_ops (stmt); i++)
+ {
+ tree op = gimple_op (stmt, i);
+ if (op != lhs && !expr_invariant_in_loop_p (loop, op))
+ return false;
+ }
+
+ return true;
+}
+
+/* Cumulates the steps of indices into DATA and replaces their values with the
+ initial ones. Returns false when the value of the index cannot be determined.
+ Callback for for_each_index. */
+
+struct ifs_ivopts_data
+{
+ struct ivopts_data *ivopts_data;
+ gimple stmt;
+ tree step;
+};
+
+static bool
+idx_find_step (tree base, tree *idx, void *data)
+{
+ struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
+ struct iv *iv;
+ tree step, iv_base, iv_step, lbound, off;
+ struct loop *loop = dta->ivopts_data->current_loop;
+
+ if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
+ || TREE_CODE (base) == ALIGN_INDIRECT_REF)
+ return false;
+
+ /* If base is a component ref, require that the offset of the reference
+ be invariant. */
+ if (TREE_CODE (base) == COMPONENT_REF)
+ {
+ off = component_ref_field_offset (base);
+ return expr_invariant_in_loop_p (loop, off);
+ }
+
+ /* If base is array, first check whether we will be able to move the
+ reference out of the loop (in order to take its address in strength
+ reduction). In order for this to work we need both lower bound
+ and step to be loop invariants. */
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ /* Moreover, for a range, the size needs to be invariant as well. */
+ if (TREE_CODE (base) == ARRAY_RANGE_REF
+ && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
+ return false;
+
+ step = array_ref_element_size (base);
+ lbound = array_ref_low_bound (base);
+
+ if (!expr_invariant_in_loop_p (loop, step)
+ || !expr_invariant_in_loop_p (loop, lbound))
+ return false;
+ }
+
+ if (TREE_CODE (*idx) != SSA_NAME)
+ return true;
+
+ iv = get_iv (dta->ivopts_data, *idx);
+ if (!iv)
+ return false;
+
+ /* XXX We produce for a base of *D42 with iv->base being &x[0]
+ *&x[0], which is not folded and does not trigger the
+ ARRAY_REF path below. */
+ *idx = iv->base;
+
+ if (integer_zerop (iv->step))
+ return true;
+
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ step = array_ref_element_size (base);
+
+ /* We only handle addresses whose step is an integer constant. */
+ if (TREE_CODE (step) != INTEGER_CST)
+ return false;
+ }
+ else
+ /* The step for pointer arithmetics already is 1 byte. */
+ step = build_int_cst (sizetype, 1);
+
+ iv_base = iv->base;
+ iv_step = iv->step;
+ if (!convert_affine_scev (dta->ivopts_data->current_loop,
+ sizetype, &iv_base, &iv_step, dta->stmt,
+ false))
+ {
+ /* The index might wrap. */
+ return false;
+ }
+
+ step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
+ dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
+
+ return true;
+}
+
+/* Records use in index IDX. Callback for for_each_index. Ivopts data
+ object is passed to it in DATA. */
+
+static bool
+idx_record_use (tree base, tree *idx,
+ void *vdata)
+{
+ struct ivopts_data *data = (struct ivopts_data *) vdata;
+ find_interesting_uses_op (data, *idx, IU_INSIDE_LOOP);
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ find_interesting_uses_op (data, array_ref_element_size (base),
+ IU_INSIDE_LOOP);
+ find_interesting_uses_op (data, array_ref_low_bound (base),
+ IU_INSIDE_LOOP);
+ }
+ return true;
+}
+
+/* If we can prove that TOP = cst * BOT for some constant cst,
+ store cst to MUL and return true. Otherwise return false.
+ The returned value is always sign-extended, regardless of the
+ signedness of TOP and BOT. */
+
+static bool
+constant_multiple_of (tree top, tree bot, double_int *mul)
+{
+ tree mby;
+ enum tree_code code;
+ double_int res, p0, p1;
+ unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
+
+ STRIP_NOPS (top);
+ STRIP_NOPS (bot);
+
+ if (operand_equal_p (top, bot, 0))
+ {
+ *mul = double_int_one;
+ return true;
+ }
+
+ code = TREE_CODE (top);
+ switch (code)
+ {
+ case MULT_EXPR:
+ mby = TREE_OPERAND (top, 1);
+ if (TREE_CODE (mby) != INTEGER_CST)
+ return false;
+
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
+ return false;
+
+ *mul = double_int_sext (double_int_mul (res, tree_to_double_int (mby)),
+ precision);
+ return true;
+
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
+ || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
+ return false;
+
+ if (code == MINUS_EXPR)
+ p1 = double_int_neg (p1);
+ *mul = double_int_sext (double_int_add (p0, p1), precision);
+ return true;
+
+ case INTEGER_CST:
+ if (TREE_CODE (bot) != INTEGER_CST)
+ return false;
+
+ p0 = double_int_sext (tree_to_double_int (top), precision);
+ p1 = double_int_sext (tree_to_double_int (bot), precision);
+ if (double_int_zero_p (p1))
+ return false;
+ *mul = double_int_sext (double_int_sdivmod (p0, p1, FLOOR_DIV_EXPR, &res),
+ precision);
+ return double_int_zero_p (res);
+
+ default:
+ return false;
+ }
+}
+
+/* Returns true if memory reference REF with step STEP may be unaligned. */
+
+static bool
+may_be_unaligned_p (tree ref, tree step)
+{
+ tree base;
+ tree base_type;
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos;
+ tree toffset;
+ enum machine_mode mode;
+ int unsignedp, volatilep;
+ unsigned base_align;
+
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
+ thus they are not misaligned. */
+ if (TREE_CODE (ref) == TARGET_MEM_REF)
+ return false;
+
+ /* The test below is basically copy of what expr.c:normal_inner_ref
+ does to check whether the object must be loaded by parts when
+ STRICT_ALIGNMENT is true. */
+ base = get_inner_reference (ref, &bitsize, &bitpos, &toffset, &mode,
+ &unsignedp, &volatilep, true);
+ base_type = TREE_TYPE (base);
+ base_align = TYPE_ALIGN (base_type);
+
+ if (mode != BLKmode)
+ {
+ double_int mul;
+ tree al = build_int_cst (TREE_TYPE (step),
+ GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT);
+
+ if (base_align < GET_MODE_ALIGNMENT (mode)
+ || bitpos % GET_MODE_ALIGNMENT (mode) != 0
+ || bitpos % BITS_PER_UNIT != 0)
+ return true;
+
+ if (!constant_multiple_of (step, al, &mul))
+ return true;
+ }
+
+ return false;
+}
+
+/* Return true if EXPR may be non-addressable. */
+
+static bool
+may_be_nonaddressable_p (tree expr)
+{
+ switch (TREE_CODE (expr))
+ {
+ case TARGET_MEM_REF:
+ /* TARGET_MEM_REFs are translated directly to valid MEMs on the
+ target, thus they are always addressable. */
+ return false;
+
+ case COMPONENT_REF:
+ return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
+ || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ case VIEW_CONVERT_EXPR:
+ /* This kind of view-conversions may wrap non-addressable objects
+ and make them look addressable. After some processing the
+ non-addressability may be uncovered again, causing ADDR_EXPRs
+ of inappropriate objects to be built. */
+ if (is_gimple_reg (TREE_OPERAND (expr, 0))
+ || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
+ return true;
+
+ /* ... fall through ... */
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
+
+ CASE_CONVERT:
+ return true;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Finds addresses in *OP_P inside STMT. */
+
+static bool
+find_interesting_uses_address (struct ivopts_data *data, gimple stmt, tree *op_p)
+{
+ tree base = *op_p, step = build_int_cst (sizetype, 0);
+ struct iv *civ;
+ struct ifs_ivopts_data ifs_ivopts_data;
+ struct iv_use *use;
+
+ /* Do not play with volatile memory references. A bit too conservative,
+ perhaps, but safe. */
+ if (gimple_has_volatile_ops (stmt))
+ goto fail;
+
+ /* Ignore bitfields for now. Not really something terribly complicated
+ to handle. TODO. */
+ if (TREE_CODE (base) == BIT_FIELD_REF)
+ goto fail;
+
+ base = unshare_expr (base);
+
+ if (TREE_CODE (base) == TARGET_MEM_REF)
+ {
+ tree type = build_pointer_type (TREE_TYPE (base));
+ tree astep;
+
+ if (TMR_BASE (base)
+ && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_BASE (base));
+ if (!civ)
+ goto fail;
+
+ TMR_BASE (base) = civ->base;
+ step = civ->step;
+ }
+ if (TMR_INDEX (base)
+ && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
+ {
+ civ = get_iv (data, TMR_INDEX (base));
+ if (!civ)
+ goto fail;
+
+ TMR_INDEX (base) = civ->base;
+ astep = civ->step;
+
+ if (astep)
+ {
+ if (TMR_STEP (base))
+ astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
+
+ step = fold_build2 (PLUS_EXPR, type, step, astep);
+ }
+ }
+
+ if (integer_zerop (step))
+ goto fail;
+ base = tree_mem_ref_addr (type, base);
+ }
+ else
+ {
+ ifs_ivopts_data.ivopts_data = data;
+ ifs_ivopts_data.stmt = stmt;
+ ifs_ivopts_data.step = build_int_cst (sizetype, 0);
+ if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
+ || integer_zerop (ifs_ivopts_data.step))
+ goto fail;
+ step = ifs_ivopts_data.step;
+
+ gcc_assert (TREE_CODE (base) != ALIGN_INDIRECT_REF);
+ gcc_assert (TREE_CODE (base) != MISALIGNED_INDIRECT_REF);
+
+ /* Check that the base expression is addressable. This needs
+ to be done after substituting bases of IVs into it. */
+ if (may_be_nonaddressable_p (base))
+ goto fail;
+
+ /* Moreover, on strict alignment platforms, check that it is
+ sufficiently aligned. */
+ if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
+ goto fail;
+
+ base = build_fold_addr_expr (base);
+
+ /* Substituting bases of IVs into the base expression might
+ have caused folding opportunities. */
+ if (TREE_CODE (base) == ADDR_EXPR)
+ {
+ tree *ref = &TREE_OPERAND (base, 0);
+ while (handled_component_p (*ref))
+ ref = &TREE_OPERAND (*ref, 0);
+ if (TREE_CODE (*ref) == INDIRECT_REF)
+ *ref = fold_indirect_ref (*ref);
+ }
+ }
+
+ civ = alloc_iv (base, step);
+ use = record_use (data, op_p, civ, stmt, USE_ADDRESS);
+ use->use_pos = IU_INSIDE_LOOP;
+ return true;
+
+fail:
+ for_each_index (op_p, idx_record_use, data);
+ return false;
+}
+
+/* Finds and records invariants used in STMT. */
+
+static void
+find_invariants_stmt (struct ivopts_data *data, gimple stmt)
+{
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ tree op;
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+ record_invariant (data, op, false);
+ }
+}
+
+/* Finds interesting uses of induction variables in the statement STMT. */
+
+static void
+find_interesting_uses_stmt (struct ivopts_data *data, gimple stmt)
+{
+ struct iv *iv;
+ tree op, *lhs, *rhs;
+ ssa_op_iter iter;
+ use_operand_p use_p;
+ enum tree_code code;
+
+ find_invariants_stmt (data, stmt);
+
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ find_interesting_uses_cond (data, stmt);
+ return;
+ }
+
+ if (is_gimple_assign (stmt))
+ {
+ lhs = gimple_assign_lhs_ptr (stmt);
+ rhs = gimple_assign_rhs1_ptr (stmt);
+
+ if (TREE_CODE (*lhs) == SSA_NAME)
+ {
+ /* If the statement defines an induction variable, the uses are not
+ interesting by themselves. */
+
+ iv = get_iv (data, *lhs);
+
+ if (iv && !integer_zerop (iv->step))
+ return;
+ }
+
+ code = gimple_assign_rhs_code (stmt);
+ if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
+ && (REFERENCE_CLASS_P (*rhs)
+ || is_gimple_val (*rhs)))
+ {
+ if (REFERENCE_CLASS_P (*rhs))
+ find_interesting_uses_address (data, stmt, rhs);
+ else
+ find_interesting_uses_op (data, *rhs, IU_INSIDE_LOOP);
+
+ if (REFERENCE_CLASS_P (*lhs))
+ find_interesting_uses_address (data, stmt, lhs);
+ return;
+ }
+ else if (TREE_CODE_CLASS (code) == tcc_comparison)
+ {
+ find_interesting_uses_cond (data, stmt);
+ return;
+ }
+
+ /* TODO -- we should also handle address uses of type
+
+ memory = call (whatever);
+
+ and
+
+ call (memory). */
+ }
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && gimple_bb (stmt) == data->current_loop->header)
+ {
+ iv = get_iv (data, PHI_RESULT (stmt));
+
+ if (iv && !integer_zerop (iv->step))
+ return;
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
+ {
+ op = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (op) != SSA_NAME)
+ continue;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ continue;
+
+ find_interesting_uses_op (data, op, IU_INSIDE_LOOP);
+ }
+}
+
+/* Finds interesting uses of induction variables outside of loops
+ on loop exit edge EXIT. */
+
+static void
+find_interesting_uses_outside (struct ivopts_data *data, edge exit)
+{
+ gimple phi;
+ gimple_stmt_iterator psi;
+ tree def;
+
+ for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+ def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+ if (is_gimple_reg (def))
+ {
+ if (gimple_phi_num_args (phi) == 1)
+ find_interesting_uses_op (data, def, IU_OUTSIDE_LOOP_ONLY);
+ else
+ find_interesting_uses_op (data, def, IU_INSIDE_LOOP);
+ }
+ }
+}
+
+/* Finds uses of the induction variables that are interesting. */
+
+static void
+find_interesting_uses (struct ivopts_data *data)
+{
+ basic_block bb;
+ gimple_stmt_iterator bsi;
+ basic_block *body = get_loop_body (data->current_loop);
+ unsigned i;
+ struct version_info *info;
+ edge e;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Uses:\n\n");
+
+ for (i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ edge_iterator ei;
+ bb = body[i];
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->dest != EXIT_BLOCK_PTR
+ && !flow_bb_inside_loop_p (data->current_loop, e->dest))
+ find_interesting_uses_outside (data, e);
+
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_interesting_uses_stmt (data, gsi_stmt (bsi));
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ find_interesting_uses_stmt (data, gsi_stmt (bsi));
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ bitmap_iterator bi;
+
+ fprintf (dump_file, "\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ info = ver_info (data, i);
+ if (info->inv_id)
+ {
+ fprintf (dump_file, " ");
+ print_generic_expr (dump_file, info->name, TDF_SLIM);
+ fprintf (dump_file, " is invariant (%d)%s\n",
+ info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
+ }
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ free (body);
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
+ is true, assume we are inside an address. If TOP_COMPREF is true, assume
+ we are at the top-level of the processed address. */
+
+static tree
+strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
+ unsigned HOST_WIDE_INT *offset)
+{
+ tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
+ enum tree_code code;
+ tree type, orig_type = TREE_TYPE (expr);
+ unsigned HOST_WIDE_INT off0, off1, st;
+ tree orig_expr = expr;
+
+ STRIP_NOPS (expr);
+
+ type = TREE_TYPE (expr);
+ code = TREE_CODE (expr);
+ *offset = 0;
+
+ switch (code)
+ {
+ case INTEGER_CST:
+ if (!cst_and_fits_in_hwi (expr)
+ || integer_zerop (expr))
+ return orig_expr;
+
+ *offset = int_cst_value (expr);
+ return build_int_cst (orig_type, 0);
+
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+
+ op0 = strip_offset_1 (op0, false, false, &off0);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+
+ *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
+ if (op0 == TREE_OPERAND (expr, 0)
+ && op1 == TREE_OPERAND (expr, 1))
+ return orig_expr;
+
+ if (integer_zerop (op1))
+ expr = op0;
+ else if (integer_zerop (op0))
+ {
+ if (code == MINUS_EXPR)
+ expr = fold_build1 (NEGATE_EXPR, type, op1);
+ else
+ expr = op1;
+ }
+ else
+ expr = fold_build2 (code, type, op0, op1);
+
+ return fold_convert (orig_type, expr);
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!inside_addr)
+ return orig_expr;
+
+ step = array_ref_element_size (expr);
+ if (!cst_and_fits_in_hwi (step))
+ break;
+
+ st = int_cst_value (step);
+ op1 = TREE_OPERAND (expr, 1);
+ op1 = strip_offset_1 (op1, false, false, &off1);
+ *offset = off1 * st;
+
+ if (top_compref
+ && integer_zerop (op1))
+ {
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ *offset += off0;
+ return op0;
+ }
+ break;
+
+ case COMPONENT_REF:
+ if (!inside_addr)
+ return orig_expr;
+
+ tmp = component_ref_field_offset (expr);
+ if (top_compref
+ && cst_and_fits_in_hwi (tmp))
+ {
+ /* Strip the component reference completely. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
+ *offset = off0 + int_cst_value (tmp);
+ return op0;
+ }
+ break;
+
+ case ADDR_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, true, true, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0))
+ return orig_expr;
+
+ expr = build_fold_addr_expr (op0);
+ return fold_convert (orig_type, expr);
+
+ case INDIRECT_REF:
+ inside_addr = false;
+ break;
+
+ default:
+ return orig_expr;
+ }
+
+ /* Default handling of expressions for that we want to recurse into
+ the first operand. */
+ op0 = TREE_OPERAND (expr, 0);
+ op0 = strip_offset_1 (op0, inside_addr, false, &off0);
+ *offset += off0;
+
+ if (op0 == TREE_OPERAND (expr, 0)
+ && (!op1 || op1 == TREE_OPERAND (expr, 1)))
+ return orig_expr;
+
+ expr = copy_node (expr);
+ TREE_OPERAND (expr, 0) = op0;
+ if (op1)
+ TREE_OPERAND (expr, 1) = op1;
+
+ /* Inside address, we might strip the top level component references,
+ thus changing type of the expression. Handling of ADDR_EXPR
+ will fix that. */
+ expr = fold_convert (orig_type, expr);
+
+ return expr;
+}
+
+/* Strips constant offsets from EXPR and stores them to OFFSET. */
+
+static tree
+strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
+{
+ return strip_offset_1 (expr, false, false, offset);
+}
+
+/* Returns variant of TYPE that can be used as base for different uses.
+ We return unsigned type with the same precision, which avoids problems
+ with overflows. */
+
+static tree
+generic_type_for (tree type)
+{
+ if (POINTER_TYPE_P (type))
+ return unsigned_type_for (type);
+
+ if (TYPE_UNSIGNED (type))
+ return type;
+
+ return unsigned_type_for (type);
+}
+
+/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
+ the bitmap to that we should store it. */
+
+static struct ivopts_data *fd_ivopts_data;
+static tree
+find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
+{
+ bitmap *depends_on = (bitmap *) data;
+ struct version_info *info;
+
+ if (TREE_CODE (*expr_p) != SSA_NAME)
+ return NULL_TREE;
+ info = name_info (fd_ivopts_data, *expr_p);
+
+ if (!info->inv_id || info->has_nonlin_use)
+ return NULL_TREE;
+
+ if (!*depends_on)
+ *depends_on = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (*depends_on, info->inv_id);
+
+ return NULL_TREE;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. If both BASE and STEP are NULL, we add a pseudocandidate for the
+ replacement of the final value of the iv by a direct computation. */
+
+static struct iv_cand *
+add_candidate_1 (struct ivopts_data *data,
+ tree base, tree step, bool important, enum iv_position pos,
+ struct iv_use *use, gimple incremented_at)
+{
+ unsigned i;
+ struct iv_cand *cand = NULL;
+ tree type, orig_type;
+
+ if (base)
+ {
+ orig_type = TREE_TYPE (base);
+ type = generic_type_for (orig_type);
+ if (type != orig_type)
+ {
+ base = fold_convert (type, base);
+ step = fold_convert (type, step);
+ }
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand->pos != pos)
+ continue;
+
+ if (cand->incremented_at != incremented_at)
+ continue;
+
+ if (!cand->iv)
+ {
+ if (!base && !step)
+ break;
+
+ continue;
+ }
+
+ if (!base && !step)
+ continue;
+
+ if (operand_equal_p (base, cand->iv->base, 0)
+ && operand_equal_p (step, cand->iv->step, 0)
+ && (TYPE_PRECISION (TREE_TYPE (base))
+ == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
+ break;
+ }
+
+ if (i == n_iv_cands (data))
+ {
+ cand = XCNEW (struct iv_cand);
+ cand->id = i;
+
+ if (!base && !step)
+ cand->iv = NULL;
+ else
+ cand->iv = alloc_iv (base, step);
+
+ cand->pos = pos;
+ if (pos != IP_ORIGINAL && cand->iv)
+ {
+ cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
+ cand->var_after = cand->var_before;
+ }
+ cand->important = important;
+ cand->incremented_at = incremented_at;
+ VEC_safe_push (iv_cand_p, heap, data->iv_candidates, cand);
+
+ if (step
+ && TREE_CODE (step) != INTEGER_CST)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&step, find_depends, &cand->depends_on, NULL);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_cand (dump_file, cand);
+ }
+
+ if (important && !cand->important)
+ {
+ cand->important = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is important\n", cand->id);
+ }
+
+ if (use)
+ {
+ bitmap_set_bit (use->related_cands, i);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is related to use %d\n",
+ cand->id, use->id);
+ }
+
+ return cand;
+}
+
+/* Returns true if incrementing the induction variable at the end of the LOOP
+ is allowed.
+
+ The purpose is to avoid splitting latch edge with a biv increment, thus
+ creating a jump, possibly confusing other optimization passes and leaving
+ less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
+ is not available (so we do not have a better alternative), or if the latch
+ edge is already nonempty. */
+
+static bool
+allow_ip_end_pos_p (struct loop *loop)
+{
+ if (!ip_normal_pos (loop))
+ return true;
+
+ if (!empty_block_p (ip_end_pos (loop)))
+ return true;
+
+ return false;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. The candidate computation is scheduled on all available positions. */
+
+static void
+add_candidate (struct ivopts_data *data,
+ tree base, tree step, bool important, struct iv_use *use)
+{
+ if (ip_normal_pos (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL);
+ if (ip_end_pos (data->current_loop)
+ && allow_ip_end_pos_p (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_END, use, NULL);
+}
+
+/* Add a standard "0 + 1 * iteration" iv candidate for a
+ type with SIZE bits. */
+
+static void
+add_standard_iv_candidates_for_size (struct ivopts_data *data,
+ unsigned int size)
+{
+ tree type = lang_hooks.types.type_for_size (size, true);
+ add_candidate (data, build_int_cst (type, 0), build_int_cst (type, 1),
+ true, NULL);
+}
+
+/* Adds standard iv candidates. */
+
+static void
+add_standard_iv_candidates (struct ivopts_data *data)
+{
+ add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE);
+
+ /* The same for a double-integer type if it is still fast enough. */
+ if (BITS_PER_WORD >= INT_TYPE_SIZE * 2)
+ add_standard_iv_candidates_for_size (data, INT_TYPE_SIZE * 2);
+}
+
+
+/* Adds candidates bases on the old induction variable IV. */
+
+static void
+add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
+{
+ gimple phi;
+ tree def;
+ struct iv_cand *cand;
+
+ add_candidate (data, iv->base, iv->step, true, NULL);
+
+ /* The same, but with initial value zero. */
+ if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
+ add_candidate (data, size_int (0), iv->step, true, NULL);
+ else
+ add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
+ iv->step, true, NULL);
+
+ phi = SSA_NAME_DEF_STMT (iv->ssa_name);
+ if (gimple_code (phi) == GIMPLE_PHI)
+ {
+ /* Additionally record the possibility of leaving the original iv
+ untouched. */
+ def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
+ cand = add_candidate_1 (data,
+ iv->base, iv->step, true, IP_ORIGINAL, NULL,
+ SSA_NAME_DEF_STMT (def));
+ cand->var_before = iv->ssa_name;
+ cand->var_after = def;
+ }
+}
+
+/* Adds candidates based on the old induction variables. */
+
+static void
+add_old_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv *iv;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ iv = ver_info (data, i)->iv;
+ if (iv && iv->biv_p && !integer_zerop (iv->step))
+ add_old_iv_candidates (data, iv);
+ }
+}
+
+/* Adds candidates based on the value of the induction variable IV and USE. */
+
+static void
+add_iv_value_candidates (struct ivopts_data *data,
+ struct iv *iv, struct iv_use *use)
+{
+ unsigned HOST_WIDE_INT offset;
+ tree base;
+ tree basetype;
+
+ add_candidate (data, iv->base, iv->step, false, use);
+
+ /* The same, but with initial value zero. Make such variable important,
+ since it is generic enough so that possibly many uses may be based
+ on it. */
+ basetype = TREE_TYPE (iv->base);
+ if (POINTER_TYPE_P (basetype))
+ basetype = sizetype;
+ add_candidate (data, build_int_cst (basetype, 0),
+ iv->step, true, use);
+
+ /* Third, try removing the constant offset. Make sure to even
+ add a candidate for &a[0] vs. (T *)&a. */
+ base = strip_offset (iv->base, &offset);
+ if (offset
+ || base != iv->base)
+ add_candidate (data, base, iv->step, false, use);
+}
+
+/* Adds candidates based on the uses. */
+
+static void
+add_derived_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ if (!use)
+ continue;
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ case USE_COMPARE:
+ case USE_ADDRESS:
+ /* Just add the ivs based on the value of the iv used here. */
+ add_iv_value_candidates (data, use->iv, use);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+}
+
+/* Record important candidates and add them to related_cands bitmaps
+ if needed. */
+
+static void
+record_important_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ if (cand->important)
+ bitmap_set_bit (data->important_candidates, i);
+ }
+
+ data->consider_all_candidates = (n_iv_cands (data)
+ <= CONSIDER_ALL_CANDIDATES_BOUND);
+
+ if (data->consider_all_candidates)
+ {
+ /* We will not need "related_cands" bitmaps in this case,
+ so release them to decrease peak memory consumption. */
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ BITMAP_FREE (use->related_cands);
+ }
+ }
+ else
+ {
+ /* Add important candidates to the related_cands bitmaps. */
+ for (i = 0; i < n_iv_uses (data); i++)
+ bitmap_ior_into (iv_use (data, i)->related_cands,
+ data->important_candidates);
+ }
+}
+
+/* Finds the candidates for the induction variables. */
+
+static void
+find_iv_candidates (struct ivopts_data *data)
+{
+ /* Add commonly used ivs. */
+ add_standard_iv_candidates (data);
+
+ /* Add old induction variables. */
+ add_old_ivs_candidates (data);
+
+ /* Add induction variables derived from uses. */
+ add_derived_ivs_candidates (data);
+
+ /* Record the important candidates. */
+ record_important_candidates (data);
+}
+
+/* Allocates the data structure mapping the (use, candidate) pairs to costs.
+ If consider_all_candidates is true, we use a two-dimensional array, otherwise
+ we allocate a simple list to every use. */
+
+static void
+alloc_use_cost_map (struct ivopts_data *data)
+{
+ unsigned i, size, s, j;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+ bitmap_iterator bi;
+
+ if (data->consider_all_candidates)
+ size = n_iv_cands (data);
+ else
+ {
+ s = 0;
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
+ {
+ s++;
+ }
+
+ /* Round up to the power of two, so that moduling by it is fast. */
+ for (size = 1; size < s; size <<= 1)
+ continue;
+ }
+
+ use->n_map_members = size;
+ use->cost_map = XCNEWVEC (struct cost_pair, size);
+ }
+}
+
+/* Returns description of computation cost of expression whose runtime
+ cost is RUNTIME and complexity corresponds to COMPLEXITY. */
+
+static comp_cost
+new_cost (unsigned runtime, unsigned complexity)
+{
+ comp_cost cost;
+
+ cost.cost = runtime;
+ cost.complexity = complexity;
+
+ return cost;
+}
+
+/* Adds costs COST1 and COST2. */
+
+static comp_cost
+add_costs (comp_cost cost1, comp_cost cost2)
+{
+ cost1.cost += cost2.cost;
+ cost1.complexity += cost2.complexity;
+
+ return cost1;
+}
+/* Subtracts costs COST1 and COST2. */
+
+static comp_cost
+sub_costs (comp_cost cost1, comp_cost cost2)
+{
+ cost1.cost -= cost2.cost;
+ cost1.complexity -= cost2.complexity;
+
+ return cost1;
+}
+
+/* Returns a negative number if COST1 < COST2, a positive number if
+ COST1 > COST2, and 0 if COST1 = COST2. */
+
+static int
+compare_costs (comp_cost cost1, comp_cost cost2)
+{
+ if (cost1.cost == cost2.cost)
+ return cost1.complexity - cost2.complexity;
+
+ return cost1.cost - cost2.cost;
+}
+
+/* Returns true if COST is infinite. */
+
+static bool
+infinite_cost_p (comp_cost cost)
+{
+ return cost.cost == INFTY;
+}
+
+/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
+ on invariants DEPENDS_ON and that the value used in expressing it
+ is VALUE.*/
+
+static void
+set_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ comp_cost cost, bitmap depends_on, tree value)
+{
+ unsigned i, s;
+
+ if (infinite_cost_p (cost))
+ {
+ BITMAP_FREE (depends_on);
+ return;
+ }
+
+ if (data->consider_all_candidates)
+ {
+ use->cost_map[cand->id].cand = cand;
+ use->cost_map[cand->id].cost = cost;
+ use->cost_map[cand->id].depends_on = depends_on;
+ use->cost_map[cand->id].value = value;
+ return;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (use->n_map_members - 1);
+ for (i = s; i < use->n_map_members; i++)
+ if (!use->cost_map[i].cand)
+ goto found;
+ for (i = 0; i < s; i++)
+ if (!use->cost_map[i].cand)
+ goto found;
+
+ gcc_unreachable ();
+
+found:
+ use->cost_map[i].cand = cand;
+ use->cost_map[i].cost = cost;
+ use->cost_map[i].depends_on = depends_on;
+ use->cost_map[i].value = value;
+}
+
+/* Gets cost of (USE, CANDIDATE) pair. */
+
+static struct cost_pair *
+get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
+ struct iv_cand *cand)
+{
+ unsigned i, s;
+ struct cost_pair *ret;
+
+ if (!cand)
+ return NULL;
+
+ if (data->consider_all_candidates)
+ {
+ ret = use->cost_map + cand->id;
+ if (!ret->cand)
+ return NULL;
+
+ return ret;
+ }
+
+ /* n_map_members is a power of two, so this computes modulo. */
+ s = cand->id & (use->n_map_members - 1);
+ for (i = s; i < use->n_map_members; i++)
+ if (use->cost_map[i].cand == cand)
+ return use->cost_map + i;
+
+ for (i = 0; i < s; i++)
+ if (use->cost_map[i].cand == cand)
+ return use->cost_map + i;
+
+ return NULL;
+}
+
+/* Returns estimate on cost of computing SEQ. */
+
+static unsigned
+seq_cost (rtx seq, bool speed)
+{
+ unsigned cost = 0;
+ rtx set;
+
+ for (; seq; seq = NEXT_INSN (seq))
+ {
+ set = single_set (seq);
+ if (set)
+ cost += rtx_cost (set, SET,speed);
+ else
+ cost++;
+ }
+
+ return cost;
+}
+
+/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
+static rtx
+produce_memory_decl_rtl (tree obj, int *regno)
+{
+ rtx x;
+
+ gcc_assert (obj);
+ if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
+ {
+ const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
+ x = gen_rtx_SYMBOL_REF (Pmode, name);
+ SET_SYMBOL_REF_DECL (x, obj);
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ targetm.encode_section_info (obj, x, true);
+ }
+ else
+ {
+ x = gen_raw_REG (Pmode, (*regno)++);
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ }
+
+ return x;
+}
+
+/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
+ walk_tree. DATA contains the actual fake register number. */
+
+static tree
+prepare_decl_rtl (tree *expr_p, int *ws, void *data)
+{
+ tree obj = NULL_TREE;
+ rtx x = NULL_RTX;
+ int *regno = (int *) data;
+
+ switch (TREE_CODE (*expr_p))
+ {
+ case ADDR_EXPR:
+ for (expr_p = &TREE_OPERAND (*expr_p, 0);
+ handled_component_p (*expr_p);
+ expr_p = &TREE_OPERAND (*expr_p, 0))
+ continue;
+ obj = *expr_p;
+ if (DECL_P (obj) && !DECL_RTL_SET_P (obj))
+ x = produce_memory_decl_rtl (obj, regno);
+ break;
+
+ case SSA_NAME:
+ *ws = 0;
+ obj = SSA_NAME_VAR (*expr_p);
+ if (!DECL_RTL_SET_P (obj))
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+ break;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ *ws = 0;
+ obj = *expr_p;
+
+ if (DECL_RTL_SET_P (obj))
+ break;
+
+ if (DECL_MODE (obj) == BLKmode)
+ x = produce_memory_decl_rtl (obj, regno);
+ else
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+
+ break;
+
+ default:
+ break;
+ }
+
+ if (x)
+ {
+ VEC_safe_push (tree, heap, decl_rtl_to_reset, obj);
+ SET_DECL_RTL (obj, x);
+ }
+
+ return NULL_TREE;
+}
+
+/* Determines cost of the computation of EXPR. */
+
+static unsigned
+computation_cost (tree expr, bool speed)
+{
+ rtx seq, rslt;
+ tree type = TREE_TYPE (expr);
+ unsigned cost;
+ /* Avoid using hard regs in ways which may be unsupported. */
+ int regno = LAST_VIRTUAL_REGISTER + 1;
+ enum function_frequency real_frequency = cfun->function_frequency;
+
+ cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
+ crtl->maybe_hot_insn_p = speed;
+ walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
+ start_sequence ();
+ rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
+ seq = get_insns ();
+ end_sequence ();
+ default_rtl_profile ();
+ cfun->function_frequency = real_frequency;
+
+ cost = seq_cost (seq, speed);
+ if (MEM_P (rslt))
+ cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type), speed);
+
+ return cost;
+}
+
+/* Returns variable containing the value of candidate CAND at statement AT. */
+
+static tree
+var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple stmt)
+{
+ if (stmt_after_increment (loop, cand, stmt))
+ return cand->var_after;
+ else
+ return cand->var_before;
+}
+
+/* Return the most significant (sign) bit of T. Similar to tree_int_cst_msb,
+ but the bit is determined from TYPE_PRECISION, not MODE_BITSIZE. */
+
+int
+tree_int_cst_sign_bit (const_tree t)
+{
+ unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
+ unsigned HOST_WIDE_INT w;
+
+ if (bitno < HOST_BITS_PER_WIDE_INT)
+ w = TREE_INT_CST_LOW (t);
+ else
+ {
+ w = TREE_INT_CST_HIGH (t);
+ bitno -= HOST_BITS_PER_WIDE_INT;
+ }
+
+ return (w >> bitno) & 1;
+}
+
+/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
+ same precision that is at least as wide as the precision of TYPE, stores
+ BA to A and BB to B, and returns the type of BA. Otherwise, returns the
+ type of A and B. */
+
+static tree
+determine_common_wider_type (tree *a, tree *b)
+{
+ tree wider_type = NULL;
+ tree suba, subb;
+ tree atype = TREE_TYPE (*a);
+
+ if (CONVERT_EXPR_P (*a))
+ {
+ suba = TREE_OPERAND (*a, 0);
+ wider_type = TREE_TYPE (suba);
+ if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
+ return atype;
+ }
+ else
+ return atype;
+
+ if (CONVERT_EXPR_P (*b))
+ {
+ subb = TREE_OPERAND (*b, 0);
+ if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
+ return atype;
+ }
+ else
+ return atype;
+
+ *a = suba;
+ *b = subb;
+ return wider_type;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The expression is stored in a decomposed
+ form into AFF. Returns false if USE cannot be expressed using CAND. */
+
+static bool
+get_computation_aff (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, gimple at,
+ struct affine_tree_combination *aff)
+{
+ tree ubase = use->iv->base;
+ tree ustep = use->iv->step;
+ tree cbase = cand->iv->base;
+ tree cstep = cand->iv->step, cstep_common;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ tree common_type, var;
+ tree uutype;
+ aff_tree cbase_aff, var_aff;
+ double_int rat;
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return false;
+ }
+
+ var = var_at_stmt (loop, cand, at);
+ uutype = unsigned_type_for (utype);
+
+ /* If the conversion is not noop, perform it. */
+ if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
+ {
+ cstep = fold_convert (uutype, cstep);
+ cbase = fold_convert (uutype, cbase);
+ var = fold_convert (uutype, var);
+ }
+
+ if (!constant_multiple_of (ustep, cstep, &rat))
+ return false;
+
+ /* In case both UBASE and CBASE are shortened to UUTYPE from some common
+ type, we achieve better folding by computing their difference in this
+ wider type, and cast the result to UUTYPE. We do not need to worry about
+ overflows, as all the arithmetics will in the end be performed in UUTYPE
+ anyway. */
+ common_type = determine_common_wider_type (&ubase, &cbase);
+
+ /* use = ubase - ratio * cbase + ratio * var. */
+ tree_to_aff_combination (ubase, common_type, aff);
+ tree_to_aff_combination (cbase, common_type, &cbase_aff);
+ tree_to_aff_combination (var, uutype, &var_aff);
+
+ /* We need to shift the value if we are after the increment. */
+ if (stmt_after_increment (loop, cand, at))
+ {
+ aff_tree cstep_aff;
+
+ if (common_type != uutype)
+ cstep_common = fold_convert (common_type, cstep);
+ else
+ cstep_common = cstep;
+
+ tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
+ aff_combination_add (&cbase_aff, &cstep_aff);
+ }
+
+ aff_combination_scale (&cbase_aff, double_int_neg (rat));
+ aff_combination_add (aff, &cbase_aff);
+ if (common_type != uutype)
+ aff_combination_convert (aff, uutype);
+
+ aff_combination_scale (&var_aff, rat);
+ aff_combination_add (aff, &var_aff);
+
+ return true;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. The computation is unshared. */
+
+static tree
+get_computation_at (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, gimple at)
+{
+ aff_tree aff;
+ tree type = TREE_TYPE (use->iv->base);
+
+ if (!get_computation_aff (loop, use, cand, at, &aff))
+ return NULL_TREE;
+ unshare_aff_combination (&aff);
+ return fold_convert (type, aff_combination_to_tree (&aff));
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND in LOOP. The computation is unshared. */
+
+static tree
+get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
+{
+ return get_computation_at (loop, use, cand, use->stmt);
+}
+
+/* Returns cost of addition in MODE. */
+
+static unsigned
+add_cost (enum machine_mode mode, bool speed)
+{
+ static unsigned costs[NUM_MACHINE_MODES];
+ rtx seq;
+ unsigned cost;
+
+ if (costs[mode])
+ return costs[mode];
+
+ start_sequence ();
+ force_operand (gen_rtx_fmt_ee (PLUS, mode,
+ gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
+ gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 2)),
+ NULL_RTX);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq, speed);
+ if (!cost)
+ cost = 1;
+
+ costs[mode] = cost;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Addition in %s costs %d\n",
+ GET_MODE_NAME (mode), cost);
+ return cost;
+}
+
+/* Entry in a hashtable of already known costs for multiplication. */
+struct mbc_entry
+{
+ HOST_WIDE_INT cst; /* The constant to multiply by. */
+ enum machine_mode mode; /* In mode. */
+ unsigned cost; /* The cost. */
+};
+
+/* Counts hash value for the ENTRY. */
+
+static hashval_t
+mbc_entry_hash (const void *entry)
+{
+ const struct mbc_entry *e = (const struct mbc_entry *) entry;
+
+ return 57 * (hashval_t) e->mode + (hashval_t) (e->cst % 877);
+}
+
+/* Compares the hash table entries ENTRY1 and ENTRY2. */
+
+static int
+mbc_entry_eq (const void *entry1, const void *entry2)
+{
+ const struct mbc_entry *e1 = (const struct mbc_entry *) entry1;
+ const struct mbc_entry *e2 = (const struct mbc_entry *) entry2;
+
+ return (e1->mode == e2->mode
+ && e1->cst == e2->cst);
+}
+
+/* Returns cost of multiplication by constant CST in MODE. */
+
+unsigned
+multiply_by_cost (HOST_WIDE_INT cst, enum machine_mode mode, bool speed)
+{
+ static htab_t costs;
+ struct mbc_entry **cached, act;
+ rtx seq;
+ unsigned cost;
+
+ if (!costs)
+ costs = htab_create (100, mbc_entry_hash, mbc_entry_eq, free);
+
+ act.mode = mode;
+ act.cst = cst;
+ cached = (struct mbc_entry **) htab_find_slot (costs, &act, INSERT);
+ if (*cached)
+ return (*cached)->cost;
+
+ *cached = XNEW (struct mbc_entry);
+ (*cached)->mode = mode;
+ (*cached)->cst = cst;
+
+ start_sequence ();
+ expand_mult (mode, gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1),
+ gen_int_mode (cst, mode), NULL_RTX, 0);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq, speed);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Multiplication by %d in %s costs %d\n",
+ (int) cst, GET_MODE_NAME (mode), cost);
+
+ (*cached)->cost = cost;
+
+ return cost;
+}
+
+/* Returns true if multiplying by RATIO is allowed in an address. Test the
+ validity for a memory reference accessing memory of mode MODE. */
+
+bool
+multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, enum machine_mode mode)
+{
+#define MAX_RATIO 128
+ static sbitmap valid_mult[MAX_MACHINE_MODE];
+
+ if (!valid_mult[mode])
+ {
+ rtx reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
+ rtx addr;
+ HOST_WIDE_INT i;
+
+ valid_mult[mode] = sbitmap_alloc (2 * MAX_RATIO + 1);
+ sbitmap_zero (valid_mult[mode]);
+ addr = gen_rtx_fmt_ee (MULT, Pmode, reg1, NULL_RTX);
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ {
+ XEXP (addr, 1) = gen_int_mode (i, Pmode);
+ if (memory_address_p (mode, addr))
+ SET_BIT (valid_mult[mode], i + MAX_RATIO);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " allowed multipliers:");
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ if (TEST_BIT (valid_mult[mode], i + MAX_RATIO))
+ fprintf (dump_file, " %d", (int) i);
+ fprintf (dump_file, "\n");
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
+ return false;
+
+ return TEST_BIT (valid_mult[mode], ratio + MAX_RATIO);
+}
+
+/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
+ If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
+ variable is omitted. Compute the cost for a memory reference that accesses
+ a memory location of mode MEM_MODE.
+
+ TODO -- there must be some better way. This all is quite crude. */
+
+static comp_cost
+get_address_cost (bool symbol_present, bool var_present,
+ unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
+ enum machine_mode mem_mode,
+ bool speed)
+{
+ static bool initialized[MAX_MACHINE_MODE];
+ static HOST_WIDE_INT rat[MAX_MACHINE_MODE], off[MAX_MACHINE_MODE];
+ static HOST_WIDE_INT min_offset[MAX_MACHINE_MODE], max_offset[MAX_MACHINE_MODE];
+ static unsigned costs[MAX_MACHINE_MODE][2][2][2][2];
+ unsigned cost, acost, complexity;
+ bool offset_p, ratio_p;
+ HOST_WIDE_INT s_offset;
+ unsigned HOST_WIDE_INT mask;
+ unsigned bits;
+
+ if (!initialized[mem_mode])
+ {
+ HOST_WIDE_INT i;
+ HOST_WIDE_INT start = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+ int old_cse_not_expected;
+ unsigned sym_p, var_p, off_p, rat_p, add_c;
+ rtx seq, addr, base;
+ rtx reg0, reg1;
+
+ initialized[mem_mode] = true;
+
+ reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
+
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, reg1, NULL_RTX);
+ for (i = start; i <= 1 << 20; i <<= 1)
+ {
+ XEXP (addr, 1) = gen_int_mode (i, Pmode);
+ if (!memory_address_p (mem_mode, addr))
+ break;
+ }
+ max_offset[mem_mode] = i == start ? 0 : i >> 1;
+ off[mem_mode] = max_offset[mem_mode];
+
+ for (i = start; i <= 1 << 20; i <<= 1)
+ {
+ XEXP (addr, 1) = gen_int_mode (-i, Pmode);
+ if (!memory_address_p (mem_mode, addr))
+ break;
+ }
+ min_offset[mem_mode] = i == start ? 0 : -(i >> 1);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "get_address_cost:\n");
+ fprintf (dump_file, " min offset %s %d\n",
+ GET_MODE_NAME (mem_mode),
+ (int) min_offset[mem_mode]);
+ fprintf (dump_file, " max offset %s %d\n",
+ GET_MODE_NAME (mem_mode),
+ (int) max_offset[mem_mode]);
+ }
+
+ rat[mem_mode] = 1;
+ for (i = 2; i <= MAX_RATIO; i++)
+ if (multiplier_allowed_in_address_p (i, mem_mode))
+ {
+ rat[mem_mode] = i;
+ break;
+ }
+
+ /* Compute the cost of various addressing modes. */
+ acost = 0;
+ reg0 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1);
+ reg1 = gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 2);
+
+ for (i = 0; i < 16; i++)
+ {
+ sym_p = i & 1;
+ var_p = (i >> 1) & 1;
+ off_p = (i >> 2) & 1;
+ rat_p = (i >> 3) & 1;
+
+ addr = reg0;
+ if (rat_p)
+ addr = gen_rtx_fmt_ee (MULT, Pmode, addr,
+ gen_int_mode (rat[mem_mode], Pmode));
+
+ if (var_p)
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, addr, reg1);
+
+ if (sym_p)
+ {
+ base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (""));
+ /* ??? We can run into trouble with some backends by presenting
+ it with symbols which haven't been properly passed through
+ targetm.encode_section_info. By setting the local bit, we
+ enhance the probability of things working. */
+ SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
+
+ if (off_p)
+ base = gen_rtx_fmt_e (CONST, Pmode,
+ gen_rtx_fmt_ee (PLUS, Pmode,
+ base,
+ gen_int_mode (off[mem_mode],
+ Pmode)));
+ }
+ else if (off_p)
+ base = gen_int_mode (off[mem_mode], Pmode);
+ else
+ base = NULL_RTX;
+
+ if (base)
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, addr, base);
+
+ start_sequence ();
+ /* To avoid splitting addressing modes, pretend that no cse will
+ follow. */
+ old_cse_not_expected = cse_not_expected;
+ cse_not_expected = true;
+ addr = memory_address (mem_mode, addr);
+ cse_not_expected = old_cse_not_expected;
+ seq = get_insns ();
+ end_sequence ();
+
+ acost = seq_cost (seq, speed);
+ acost += address_cost (addr, mem_mode, speed);
+
+ if (!acost)
+ acost = 1;
+ costs[mem_mode][sym_p][var_p][off_p][rat_p] = acost;
+ }
+
+ /* On some targets, it is quite expensive to load symbol to a register,
+ which makes addresses that contain symbols look much more expensive.
+ However, the symbol will have to be loaded in any case before the
+ loop (and quite likely we have it in register already), so it does not
+ make much sense to penalize them too heavily. So make some final
+ tweaks for the SYMBOL_PRESENT modes:
+
+ If VAR_PRESENT is false, and the mode obtained by changing symbol to
+ var is cheaper, use this mode with small penalty.
+ If VAR_PRESENT is true, try whether the mode with
+ SYMBOL_PRESENT = false is cheaper even with cost of addition, and
+ if this is the case, use it. */
+ add_c = add_cost (Pmode, speed);
+ for (i = 0; i < 8; i++)
+ {
+ var_p = i & 1;
+ off_p = (i >> 1) & 1;
+ rat_p = (i >> 2) & 1;
+
+ acost = costs[mem_mode][0][1][off_p][rat_p] + 1;
+ if (var_p)
+ acost += add_c;
+
+ if (acost < costs[mem_mode][1][var_p][off_p][rat_p])
+ costs[mem_mode][1][var_p][off_p][rat_p] = acost;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Address costs:\n");
+
+ for (i = 0; i < 16; i++)
+ {
+ sym_p = i & 1;
+ var_p = (i >> 1) & 1;
+ off_p = (i >> 2) & 1;
+ rat_p = (i >> 3) & 1;
+
+ fprintf (dump_file, " ");
+ if (sym_p)
+ fprintf (dump_file, "sym + ");
+ if (var_p)
+ fprintf (dump_file, "var + ");
+ if (off_p)
+ fprintf (dump_file, "cst + ");
+ if (rat_p)
+ fprintf (dump_file, "rat * ");
+
+ acost = costs[mem_mode][sym_p][var_p][off_p][rat_p];
+ fprintf (dump_file, "index costs %d\n", acost);
+ }
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ bits = GET_MODE_BITSIZE (Pmode);
+ mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ offset &= mask;
+ if ((offset >> (bits - 1) & 1))
+ offset |= ~mask;
+ s_offset = offset;
+
+ cost = 0;
+ offset_p = (s_offset != 0
+ && min_offset[mem_mode] <= s_offset
+ && s_offset <= max_offset[mem_mode]);
+ ratio_p = (ratio != 1
+ && multiplier_allowed_in_address_p (ratio, mem_mode));
+
+ if (ratio != 1 && !ratio_p)
+ cost += multiply_by_cost (ratio, Pmode, speed);
+
+ if (s_offset && !offset_p && !symbol_present)
+ cost += add_cost (Pmode, speed);
+
+ acost = costs[mem_mode][symbol_present][var_present][offset_p][ratio_p];
+ complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
+ return new_cost (cost + acost, complexity);
+}
+
+/* Estimates cost of forcing expression EXPR into a variable. */
+
+static comp_cost
+force_expr_to_var_cost (tree expr, bool speed)
+{
+ static bool costs_initialized = false;
+ static unsigned integer_cost [2];
+ static unsigned symbol_cost [2];
+ static unsigned address_cost [2];
+ tree op0, op1;
+ comp_cost cost0, cost1, cost;
+ enum machine_mode mode;
+
+ if (!costs_initialized)
+ {
+ tree type = build_pointer_type (integer_type_node);
+ tree var, addr;
+ rtx x;
+ int i;
+
+ var = create_tmp_var_raw (integer_type_node, "test_var");
+ TREE_STATIC (var) = 1;
+ x = produce_memory_decl_rtl (var, NULL);
+ SET_DECL_RTL (var, x);
+
+ addr = build1 (ADDR_EXPR, type, var);
+
+
+ for (i = 0; i < 2; i++)
+ {
+ integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
+ 2000), i);
+
+ symbol_cost[i] = computation_cost (addr, i) + 1;
+
+ address_cost[i]
+ = computation_cost (build2 (POINTER_PLUS_EXPR, type,
+ addr,
+ build_int_cst (sizetype, 2000)), i) + 1;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
+ fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
+ fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
+ fprintf (dump_file, " address %d\n", (int) address_cost[i]);
+ fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ costs_initialized = true;
+ }
+
+ STRIP_NOPS (expr);
+
+ if (SSA_VAR_P (expr))
+ return zero_cost;
+
+ if (is_gimple_min_invariant (expr))
+ {
+ if (TREE_CODE (expr) == INTEGER_CST)
+ return new_cost (integer_cost [speed], 0);
+
+ if (TREE_CODE (expr) == ADDR_EXPR)
+ {
+ tree obj = TREE_OPERAND (expr, 0);
+
+ if (TREE_CODE (obj) == VAR_DECL
+ || TREE_CODE (obj) == PARM_DECL
+ || TREE_CODE (obj) == RESULT_DECL)
+ return new_cost (symbol_cost [speed], 0);
+ }
+
+ return new_cost (address_cost [speed], 0);
+ }
+
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ case MULT_EXPR:
+ op0 = TREE_OPERAND (expr, 0);
+ op1 = TREE_OPERAND (expr, 1);
+ STRIP_NOPS (op0);
+ STRIP_NOPS (op1);
+
+ if (is_gimple_val (op0))
+ cost0 = zero_cost;
+ else
+ cost0 = force_expr_to_var_cost (op0, speed);
+
+ if (is_gimple_val (op1))
+ cost1 = zero_cost;
+ else
+ cost1 = force_expr_to_var_cost (op1, speed);
+
+ break;
+
+ default:
+ /* Just an arbitrary value, FIXME. */
+ return new_cost (target_spill_cost[speed], 0);
+ }
+
+ mode = TYPE_MODE (TREE_TYPE (expr));
+ switch (TREE_CODE (expr))
+ {
+ case POINTER_PLUS_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ cost = new_cost (add_cost (mode, speed), 0);
+ break;
+
+ case MULT_EXPR:
+ if (cst_and_fits_in_hwi (op0))
+ cost = new_cost (multiply_by_cost (int_cst_value (op0), mode, speed), 0);
+ else if (cst_and_fits_in_hwi (op1))
+ cost = new_cost (multiply_by_cost (int_cst_value (op1), mode, speed), 0);
+ else
+ return new_cost (target_spill_cost [speed], 0);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ cost = add_costs (cost, cost0);
+ cost = add_costs (cost, cost1);
+
+ /* Bound the cost by target_spill_cost. The parts of complicated
+ computations often are either loop invariant or at least can
+ be shared between several iv uses, so letting this grow without
+ limits would not give reasonable results. */
+ if (cost.cost > target_spill_cost [speed])
+ cost.cost = target_spill_cost [speed];
+
+ return cost;
+}
+
+/* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static comp_cost
+force_var_cost (struct ivopts_data *data,
+ tree expr, bitmap *depends_on)
+{
+ if (depends_on)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&expr, find_depends, depends_on, NULL);
+ }
+
+ return force_expr_to_var_cost (expr, data->speed);
+}
+
+/* Estimates cost of expressing address ADDR as var + symbol + offset. The
+ value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
+ to false if the corresponding part is missing. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static comp_cost
+split_address_cost (struct ivopts_data *data,
+ tree addr, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ tree core;
+ HOST_WIDE_INT bitsize;
+ HOST_WIDE_INT bitpos;
+ tree toffset;
+ enum machine_mode mode;
+ int unsignedp, volatilep;
+
+ core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
+ &unsignedp, &volatilep, false);
+
+ if (toffset != 0
+ || bitpos % BITS_PER_UNIT != 0
+ || TREE_CODE (core) != VAR_DECL)
+ {
+ *symbol_present = false;
+ *var_present = true;
+ fd_ivopts_data = data;
+ walk_tree (&addr, find_depends, depends_on, NULL);
+ return new_cost (target_spill_cost[data->speed], 0);
+ }
+
+ *offset += bitpos / BITS_PER_UNIT;
+ if (TREE_STATIC (core)
+ || DECL_EXTERNAL (core))
+ {
+ *symbol_present = true;
+ *var_present = false;
+ return zero_cost;
+ }
+
+ *symbol_present = false;
+ *var_present = true;
+ return zero_cost;
+}
+
+/* Estimates cost of expressing difference of addresses E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static comp_cost
+ptr_difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ HOST_WIDE_INT diff = 0;
+ comp_cost cost;
+ bool speed = optimize_loop_for_speed_p (data->current_loop);
+
+ gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
+
+ if (ptr_difference_const (e1, e2, &diff))
+ {
+ *offset += diff;
+ *symbol_present = false;
+ *var_present = false;
+ return zero_cost;
+ }
+
+ if (integer_zerop (e2))
+ return split_address_cost (data, TREE_OPERAND (e1, 0),
+ symbol_present, var_present, offset, depends_on);
+
+ *symbol_present = false;
+ *var_present = true;
+
+ cost = force_var_cost (data, e1, depends_on);
+ cost = add_costs (cost, force_var_cost (data, e2, depends_on));
+ cost.cost += add_cost (Pmode, speed);
+
+ return cost;
+}
+
+/* Estimates cost of expressing difference E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static comp_cost
+difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ comp_cost cost;
+ enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
+ unsigned HOST_WIDE_INT off1, off2;
+
+ e1 = strip_offset (e1, &off1);
+ e2 = strip_offset (e2, &off2);
+ *offset += off1 - off2;
+
+ STRIP_NOPS (e1);
+ STRIP_NOPS (e2);
+
+ if (TREE_CODE (e1) == ADDR_EXPR)
+ return ptr_difference_cost (data, e1, e2, symbol_present, var_present, offset,
+ depends_on);
+ *symbol_present = false;
+
+ if (operand_equal_p (e1, e2, 0))
+ {
+ *var_present = false;
+ return zero_cost;
+ }
+ *var_present = true;
+ if (integer_zerop (e2))
+ return force_var_cost (data, e1, depends_on);
+
+ if (integer_zerop (e1))
+ {
+ cost = force_var_cost (data, e2, depends_on);
+ cost.cost += multiply_by_cost (-1, mode, data->speed);
+
+ return cost;
+ }
+
+ cost = force_var_cost (data, e1, depends_on);
+ cost = add_costs (cost, force_var_cost (data, e2, depends_on));
+ cost.cost += add_cost (mode, data->speed);
+
+ return cost;
+}
+
+/* Returns true if AFF1 and AFF2 are identical. */
+
+static bool
+compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
+{
+ unsigned i;
+
+ if (aff1->n != aff2->n)
+ return false;
+
+ for (i = 0; i < aff1->n; i++)
+ {
+ if (double_int_cmp (aff1->elts[i].coef, aff2->elts[i].coef, 0) != 0)
+ return false;
+
+ if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
+ return false;
+ }
+ return true;
+}
+
+/* Returns true if expression UBASE - RATIO * CBASE requires a new compiler
+ generated temporary. */
+
+static bool
+create_loop_invariant_temp (tree ubase, tree cbase, HOST_WIDE_INT ratio)
+{
+ aff_tree ubase_aff, cbase_aff;
+
+ STRIP_NOPS (ubase);
+ STRIP_NOPS (cbase);
+
+ if ((TREE_CODE (ubase) == INTEGER_CST)
+ && (TREE_CODE (cbase) == INTEGER_CST))
+ return false;
+
+ if (((TREE_CODE (ubase) == SSA_NAME)
+ || (TREE_CODE (ubase) == ADDR_EXPR))
+ && (TREE_CODE (cbase) == INTEGER_CST))
+ return false;
+
+ if (((TREE_CODE (cbase) == SSA_NAME)
+ || (TREE_CODE (cbase) == ADDR_EXPR))
+ && (TREE_CODE (ubase) == INTEGER_CST))
+ return false;
+
+ if (ratio == 1)
+ {
+ if(operand_equal_p (ubase, cbase, 0))
+ return false;
+ if (TREE_CODE (ubase) == ADDR_EXPR
+ && TREE_CODE (cbase) == ADDR_EXPR)
+ {
+ tree usym, csym;
+
+ usym = TREE_OPERAND (ubase, 0);
+ csym = TREE_OPERAND (cbase, 0);
+ if (TREE_CODE (usym) == ARRAY_REF)
+ {
+ tree ind = TREE_OPERAND (usym, 1);
+ if (TREE_CODE (ind) == INTEGER_CST
+ && host_integerp (ind, 0)
+ && TREE_INT_CST_LOW (ind) == 0)
+ usym = TREE_OPERAND (usym, 0);
+ }
+ if (TREE_CODE (csym) == ARRAY_REF)
+ {
+ tree ind = TREE_OPERAND (csym, 1);
+ if (TREE_CODE (ind) == INTEGER_CST
+ && host_integerp (ind, 0)
+ && TREE_INT_CST_LOW (ind) == 0)
+ csym = TREE_OPERAND (csym, 0);
+ }
+ if (usym == csym)
+ return false;
+ }
+ /* Now do more complex comparison */
+ tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
+ tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
+ if (compare_aff_trees (&ubase_aff, &cbase_aff))
+ return false;
+ }
+
+ return true;
+}
+
+
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. AT is the statement at that the value is computed. */
+
+static comp_cost
+get_computation_cost_at (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on, gimple at)
+{
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase, cstep;
+ tree utype = TREE_TYPE (ubase), ctype;
+ unsigned HOST_WIDE_INT cstepi, offset = 0;
+ HOST_WIDE_INT ratio, aratio;
+ bool var_present, symbol_present;
+ comp_cost cost;
+ unsigned n_sums;
+ double_int rat;
+ bool speed = optimize_bb_for_speed_p (gimple_bb (at));
+
+ *depends_on = NULL;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ return infinite_cost;
+
+ cbase = cand->iv->base;
+ cstep = cand->iv->step;
+ ctype = TREE_TYPE (cbase);
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return infinite_cost;
+ }
+
+ if (address_p)
+ {
+ /* Do not try to express address of an object with computation based
+ on address of a different object. This may cause problems in rtl
+ level alias analysis (that does not expect this to be happening,
+ as this is illegal in C), and would be unlikely to be useful
+ anyway. */
+ if (use->iv->base_object
+ && cand->iv->base_object
+ && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
+ return infinite_cost;
+ }
+
+ if (TYPE_PRECISION (utype) != TYPE_PRECISION (ctype))
+ {
+ /* TODO -- add direct handling of this case. */
+ goto fallback;
+ }
+
+ /* CSTEPI is removed from the offset in case statement is after the
+ increment. If the step is not constant, we use zero instead.
+ This is a bit imprecise (there is the extra addition), but
+ redundancy elimination is likely to transform the code so that
+ it uses value of the variable before increment anyway,
+ so it is not that much unrealistic. */
+ if (cst_and_fits_in_hwi (cstep))
+ cstepi = int_cst_value (cstep);
+ else
+ cstepi = 0;
+
+ if (!constant_multiple_of (ustep, cstep, &rat))
+ return infinite_cost;
+
+ if (double_int_fits_in_shwi_p (rat))
+ ratio = double_int_to_shwi (rat);
+ else
+ return infinite_cost;
+
+ /* use = ubase + ratio * (var - cbase). If either cbase is a constant
+ or ratio == 1, it is better to handle this like
+
+ ubase - ratio * cbase + ratio * var
+
+ (also holds in the case ratio == -1, TODO. */
+
+ if (cst_and_fits_in_hwi (cbase))
+ {
+ offset = - ratio * int_cst_value (cbase);
+ cost = difference_cost (data,
+ ubase, build_int_cst (utype, 0),
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+ else if (ratio == 1)
+ {
+ cost = difference_cost (data,
+ ubase, cbase,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+ else
+ {
+ cost = force_var_cost (data, cbase, depends_on);
+ cost.cost += add_cost (TYPE_MODE (ctype), data->speed);
+ cost = add_costs (cost,
+ difference_cost (data,
+ ubase, build_int_cst (utype, 0),
+ &symbol_present, &var_present,
+ &offset, depends_on));
+ }
+
+ /* Loop invariant computation */
+ cost.cost /= avg_loop_niter (data->current_loop);
+
+ if (create_loop_invariant_temp (ubase, cbase, ratio))
+ {
+ struct version_info *pv = record_pseudo_invariant (data);
+ if (!*depends_on)
+ *depends_on = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (*depends_on, pv->inv_id);
+ }
+
+ /* If we are after the increment, the value of the candidate is higher by
+ one iteration. */
+ if (stmt_after_increment (data->current_loop, cand, at))
+ offset -= ratio * cstepi;
+
+ /* Now the computation is in shape symbol + var1 + const + ratio * var2.
+ (symbol/var/const parts may be omitted). If we are looking for an address,
+ find the cost of addressing this. */
+ if (address_p)
+ return add_costs (cost, get_address_cost (symbol_present, var_present,
+ offset, ratio,
+ TYPE_MODE (TREE_TYPE (*use->op_p)), speed));
+
+ /* Otherwise estimate the costs for computing the expression. */
+ aratio = ratio > 0 ? ratio : -ratio;
+ if (!symbol_present && !var_present && !offset)
+ {
+ if (ratio != 1)
+ cost.cost += multiply_by_cost (ratio, TYPE_MODE (ctype), speed);
+
+ return cost;
+ }
+
+ if (aratio != 1)
+ cost.cost += multiply_by_cost (aratio, TYPE_MODE (ctype), speed);
+
+ n_sums = 1;
+ if (var_present
+ /* Symbol + offset should be compile-time computable. */
+ && (symbol_present || offset))
+ n_sums++;
+
+ /* Having offset does not affect runtime cost in case it is added to
+ symbol, but it increases complexity. */
+ if (offset)
+ cost.complexity++;
+
+ cost.cost += n_sums * add_cost (TYPE_MODE (ctype), speed);
+ return cost;
+
+fallback:
+ {
+ /* Just get the expression, expand it and measure the cost. */
+ tree comp = get_computation_at (data->current_loop, use, cand, at);
+
+ if (!comp)
+ return infinite_cost;
+
+ if (address_p)
+ comp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (comp)), comp);
+
+ return new_cost (computation_cost (comp, speed), 0);
+ }
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. */
+
+static comp_cost
+get_computation_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on)
+{
+ return get_computation_cost_at (data,
+ use, cand, address_p, depends_on, use->stmt);
+}
+
+/* Determines cost of basing replacement of USE on CAND in a generic
+ expression. */
+
+static bool
+determine_use_iv_cost_generic (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ comp_cost cost;
+
+ /* The simple case first -- if we need to express value of the preserved
+ original biv, the cost is 0. This also prevents us from counting the
+ cost of increment twice -- once at this use and once in the cost of
+ the candidate. */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ set_use_iv_cost (data, use, cand, zero_cost, NULL, NULL_TREE);
+ return true;
+ }
+
+ cost = get_computation_cost (data, use, cand, false, &depends_on);
+
+ if (use->use_pos == IU_OUTSIDE_LOOP_ONLY && !infinite_cost_p (cost))
+ cost.cost /= avg_loop_niter (data->current_loop);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE);
+
+ return !infinite_cost_p (cost);
+}
+
+/* Determines cost of basing replacement of USE on CAND in an address. */
+
+static bool
+determine_use_iv_cost_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ comp_cost cost = get_computation_cost (data, use, cand, true, &depends_on);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE);
+
+ return !infinite_cost_p (cost);
+}
+
+/* Computes value of candidate CAND at position AT in iteration NITER, and
+ stores it to VAL. */
+
+static void
+cand_value_at (struct loop *loop, struct iv_cand *cand, gimple at, tree niter,
+ aff_tree *val)
+{
+ aff_tree step, delta, nit;
+ struct iv *iv = cand->iv;
+ tree type = TREE_TYPE (iv->base);
+ tree steptype = type;
+ if (POINTER_TYPE_P (type))
+ steptype = sizetype;
+
+ tree_to_aff_combination (iv->step, steptype, &step);
+ tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
+ aff_combination_convert (&nit, steptype);
+ aff_combination_mult (&nit, &step, &delta);
+ if (stmt_after_increment (loop, cand, at))
+ aff_combination_add (&delta, &step);
+
+ tree_to_aff_combination (iv->base, type, val);
+ aff_combination_add (val, &delta);
+}
+
+/* Returns period of induction variable iv. */
+
+static tree
+iv_period (struct iv *iv)
+{
+ tree step = iv->step, period, type;
+ tree pow2div;
+
+ gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
+
+ /* Period of the iv is gcd (step, type range). Since type range is power
+ of two, it suffices to determine the maximum power of two that divides
+ step. */
+ pow2div = num_ending_zeros (step);
+ type = unsigned_type_for (TREE_TYPE (step));
+
+ period = build_low_bits_mask (type,
+ (TYPE_PRECISION (type)
+ - tree_low_cst (pow2div, 1)));
+
+ return period;
+}
+
+/* Returns the comparison operator used when eliminating the iv USE. */
+
+static enum tree_code
+iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
+{
+ struct loop *loop = data->current_loop;
+ basic_block ex_bb;
+ edge exit;
+
+ ex_bb = gimple_bb (use->stmt);
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+
+ return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
+}
+
+/* Check whether it is possible to express the condition in USE by comparison
+ of candidate CAND. If so, store the value compared with to BOUND. */
+
+static bool
+may_eliminate_iv (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, tree *bound)
+{
+ basic_block ex_bb;
+ edge exit;
+ tree nit, period;
+ struct loop *loop = data->current_loop;
+ aff_tree bnd;
+
+ if (TREE_CODE (cand->iv->step) != INTEGER_CST)
+ return false;
+
+ /* For now works only for exits that dominate the loop latch.
+ TODO: extend to other conditions inside loop body. */
+ ex_bb = gimple_bb (use->stmt);
+ if (use->stmt != last_stmt (ex_bb)
+ || gimple_code (use->stmt) != GIMPLE_COND
+ || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
+ return false;
+
+ exit = EDGE_SUCC (ex_bb, 0);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ exit = EDGE_SUCC (ex_bb, 1);
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ return false;
+
+ nit = niter_for_exit (data, exit);
+ if (!nit)
+ return false;
+
+ /* Determine whether we can use the variable to test the exit condition.
+ This is the case iff the period of the induction variable is greater
+ than the number of iterations for which the exit condition is true. */
+ period = iv_period (cand->iv);
+
+ /* If the number of iterations is constant, compare against it directly. */
+ if (TREE_CODE (nit) == INTEGER_CST)
+ {
+ if (!tree_int_cst_lt (nit, period))
+ return false;
+ }
+
+ /* If not, and if this is the only possible exit of the loop, see whether
+ we can get a conservative estimate on the number of iterations of the
+ entire loop and compare against that instead. */
+ else
+ {
+ double_int period_value, max_niter;
+ if (!estimated_loop_iterations (loop, true, &max_niter))
+ return false;
+ period_value = tree_to_double_int (period);
+ if (double_int_ucmp (max_niter, period_value) > 0)
+ return false;
+ }
+
+ cand_value_at (loop, cand, use->stmt, nit, &bnd);
+
+ *bound = aff_combination_to_tree (&bnd);
+ /* It is unlikely that computing the number of iterations using division
+ would be more profitable than keeping the original induction variable. */
+ if (expression_expensive_p (*bound))
+ return false;
+ return true;
+}
+
+/* Determines cost of basing replacement of USE on CAND in a condition. */
+
+static bool
+determine_use_iv_cost_condition (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree bound = NULL_TREE;
+ struct iv *cmp_iv;
+ bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
+ comp_cost elim_cost, express_cost, cost;
+ bool ok;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ {
+ set_use_iv_cost (data, use, cand, infinite_cost, NULL, NULL_TREE);
+ return false;
+ }
+
+ /* Try iv elimination. */
+ if (may_eliminate_iv (data, use, cand, &bound))
+ {
+ elim_cost = force_var_cost (data, bound, &depends_on_elim);
+ /* The bound is a loop invariant, so it will be only computed
+ once. */
+ elim_cost.cost /= avg_loop_niter (data->current_loop);
+ }
+ else
+ elim_cost = infinite_cost;
+
+ /* Try expressing the original giv. If it is compared with an invariant,
+ note that we cannot get rid of it. */
+ ok = extract_cond_operands (data, use->stmt, NULL, NULL, NULL, &cmp_iv);
+ gcc_assert (ok);
+
+ express_cost = get_computation_cost (data, use, cand, false,
+ &depends_on_express);
+ fd_ivopts_data = data;
+ walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
+
+ /* Choose the better approach, preferring the eliminated IV. */
+ if (compare_costs (elim_cost, express_cost) <= 0)
+ {
+ cost = elim_cost;
+ depends_on = depends_on_elim;
+ depends_on_elim = NULL;
+ }
+ else
+ {
+ cost = express_cost;
+ depends_on = depends_on_express;
+ depends_on_express = NULL;
+ bound = NULL_TREE;
+ }
+
+ set_use_iv_cost (data, use, cand, cost, depends_on, bound);
+
+ if (depends_on_elim)
+ BITMAP_FREE (depends_on_elim);
+ if (depends_on_express)
+ BITMAP_FREE (depends_on_express);
+
+ return !infinite_cost_p (cost);
+}
+
+/* Determines cost of basing replacement of USE on CAND. Returns false
+ if USE cannot be based on CAND. */
+
+static bool
+determine_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ return determine_use_iv_cost_generic (data, use, cand);
+
+ case USE_ADDRESS:
+ return determine_use_iv_cost_address (data, use, cand);
+
+ case USE_COMPARE:
+ return determine_use_iv_cost_condition (data, use, cand);
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Determines costs of basing the use of the iv on an iv candidate. */
+
+static void
+determine_use_iv_costs (struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_use *use;
+ struct iv_cand *cand;
+ bitmap to_clear = BITMAP_ALLOC (NULL);
+
+ alloc_use_cost_map (data);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ if (data->consider_all_candidates)
+ {
+ for (j = 0; j < n_iv_cands (data); j++)
+ {
+ cand = iv_cand (data, j);
+ determine_use_iv_cost (data, use, cand);
+ }
+ }
+ else
+ {
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
+ {
+ cand = iv_cand (data, j);
+ if (!determine_use_iv_cost (data, use, cand))
+ bitmap_set_bit (to_clear, j);
+ }
+
+ /* Remove the candidates for that the cost is infinite from
+ the list of related candidates. */
+ bitmap_and_compl_into (use->related_cands, to_clear);
+ bitmap_clear (to_clear);
+ }
+ }
+
+ BITMAP_FREE (to_clear);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Use-candidate costs:\n");
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ fprintf (dump_file, "Use %d:\n", i);
+ fprintf (dump_file, " cand\tcost\tcompl.\tdepends on\n");
+ for (j = 0; j < use->n_map_members; j++)
+ {
+ if (!use->cost_map[j].cand
+ || infinite_cost_p (use->cost_map[j].cost))
+ continue;
+
+ fprintf (dump_file, " %d\t%d\t%d\t",
+ use->cost_map[j].cand->id,
+ use->cost_map[j].cost.cost,
+ use->cost_map[j].cost.complexity);
+ if (use->cost_map[j].depends_on)
+ bitmap_print (dump_file,
+ use->cost_map[j].depends_on, "","");
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Determines cost of the candidate CAND. */
+
+static void
+determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
+{
+ comp_cost cost_base;
+ unsigned cost, cost_step;
+ tree base;
+
+ if (!cand->iv)
+ {
+ cand->cost = 0;
+ return;
+ }
+
+ /* There are two costs associated with the candidate -- its increment
+ and its initialization. The second is almost negligible for any loop
+ that rolls enough, so we take it just very little into account. */
+
+ base = cand->iv->base;
+ cost_base = force_var_cost (data, base, NULL);
+ cost_step = add_cost (TYPE_MODE (TREE_TYPE (base)), data->speed);
+
+ cost = cost_step + cost_base.cost / avg_loop_niter (data->current_loop);
+
+ /* Prefer the original ivs unless we may gain something by replacing it.
+ The reason is to make debugging simpler; so this is not relevant for
+ artificial ivs created by other optimization passes. */
+ if (cand->pos != IP_ORIGINAL
+ || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
+ cost++;
+
+ /* Prefer not to insert statements into latch unless there are some
+ already (so that we do not create unnecessary jumps). */
+ if (cand->pos == IP_END
+ && empty_block_p (ip_end_pos (data->current_loop)))
+ cost++;
+
+ cand->cost = cost;
+}
+
+/* Determines costs of computation of the candidates. */
+
+static void
+determine_iv_costs (struct ivopts_data *data)
+{
+ unsigned i;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Candidate costs:\n");
+ fprintf (dump_file, " cand\tcost\n");
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ determine_iv_cost (data, cand);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " %d\t%d\n", i, cand->cost);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n");
+}
+
+/* Calculates cost for having SIZE induction variables. */
+
+static unsigned
+ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
+{
+ /* We add size to the cost, so that we prefer eliminating ivs
+ if possible. */
+ return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed);
+}
+
+/* For each size of the induction variable set determine the penalty. */
+
+static void
+determine_set_costs (struct ivopts_data *data)
+{
+ unsigned j, n;
+ gimple phi;
+ gimple_stmt_iterator psi;
+ tree op;
+ struct loop *loop = data->current_loop;
+ bitmap_iterator bi;
+
+ /* We use the following model (definitely improvable, especially the
+ cost function -- TODO):
+
+ We estimate the number of registers available (using MD data), name it A.
+
+ We estimate the number of registers used by the loop, name it U. This
+ number is obtained as the number of loop phi nodes (not counting virtual
+ registers and bivs) + the number of variables from outside of the loop.
+
+ We set a reserve R (free regs that are used for temporary computations,
+ etc.). For now the reserve is a constant 3.
+
+ Let I be the number of induction variables.
+
+ -- if U + I + R <= A, the cost is I * SMALL_COST (just not to encourage
+ make a lot of ivs without a reason).
+ -- if A - R < U + I <= A, the cost is I * PRES_COST
+ -- if U + I > A, the cost is I * PRES_COST and
+ number of uses * SPILL_COST * (U + I - A) / (U + I) is added. */
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Global costs:\n");
+ fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
+ fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
+ fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
+ }
+
+ n = 0;
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+ op = PHI_RESULT (phi);
+
+ if (!is_gimple_reg (op))
+ continue;
+
+ if (get_iv (data, op))
+ continue;
+
+ n++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info = ver_info (data, j);
+
+ if (info->inv_id && info->has_nonlin_use)
+ n++;
+ }
+
+ data->regs_used = n;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " regs_used %d\n", n);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " cost for size:\n");
+ fprintf (dump_file, " ivs\tcost\n");
+ for (j = 0; j <= 2 * target_avail_regs; j++)
+ fprintf (dump_file, " %d\t%d\n", j,
+ ivopts_global_cost_for_size (data, j));
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Returns true if A is a cheaper cost pair than B. */
+
+static bool
+cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
+{
+ int cmp;
+
+ if (!a)
+ return false;
+
+ if (!b)
+ return true;
+
+ cmp = compare_costs (a->cost, b->cost);
+ if (cmp < 0)
+ return true;
+
+ if (cmp > 0)
+ return false;
+
+ /* In case the costs are the same, prefer the cheaper candidate. */
+ if (a->cand->cost < b->cand->cost)
+ return true;
+
+ return false;
+}
+
+/* Computes the cost field of IVS structure. */
+
+static void
+iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
+{
+ comp_cost cost = ivs->cand_use_cost;
+ cost.cost += ivs->cand_cost;
+ cost.cost += ivopts_global_cost_for_size (data,
+ ivs->n_regs + (ivs->n_pseudos * 30) / 100);
+
+ ivs->cost = cost;
+}
+
+/* Remove invariants in set INVS to set IVS. */
+
+static void
+iv_ca_set_remove_invariants (struct ivopts_data *data,
+ struct iv_ca *ivs, bitmap invs)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+ unsigned pseudo_id_start = data->min_pseudo_inv_id;
+
+ if (!invs)
+ return;
+
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ ivs->n_invariant_uses[iid]--;
+ if (ivs->n_invariant_uses[iid] == 0)
+ {
+ if (iid < pseudo_id_start)
+ ivs->n_regs--;
+ else
+ ivs->n_pseudos--;
+ }
+ }
+}
+
+/* Set USE not to be expressed by any candidate in IVS. */
+
+static void
+iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ unsigned uid = use->id, cid;
+ struct cost_pair *cp;
+
+ cp = ivs->cand_for_use[uid];
+ if (!cp)
+ return;
+ cid = cp->cand->id;
+
+ ivs->bad_uses++;
+ ivs->cand_for_use[uid] = NULL;
+ ivs->n_cand_uses[cid]--;
+
+ if (ivs->n_cand_uses[cid] == 0)
+ {
+ bitmap_clear_bit (ivs->cands, cid);
+ /* Do not count the pseudocandidates. */
+ if (cp->cand->iv)
+ ivs->n_regs--;
+ ivs->n_cands--;
+ ivs->cand_cost -= cp->cand->cost;
+
+ iv_ca_set_remove_invariants (data, ivs, cp->cand->depends_on);
+ }
+
+ ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
+
+ iv_ca_set_remove_invariants (data, ivs, cp->depends_on);
+ iv_ca_recount_cost (data, ivs);
+}
+
+/* Add invariants in set INVS to set IVS. */
+
+static void
+iv_ca_set_add_invariants (struct ivopts_data *data,
+ struct iv_ca *ivs, bitmap invs)
+{
+ bitmap_iterator bi;
+ unsigned iid;
+ unsigned pseudo_id_start = data->min_pseudo_inv_id;
+
+ if (!invs)
+ return;
+
+ EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
+ {
+ ivs->n_invariant_uses[iid]++;
+ if (ivs->n_invariant_uses[iid] == 1)
+ {
+ if (iid < pseudo_id_start)
+ ivs->n_regs++;
+ else
+ ivs->n_pseudos++;
+ }
+ }
+}
+
+/* Set cost pair for USE in set IVS to CP. */
+
+static void
+iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use, struct cost_pair *cp)
+{
+ unsigned uid = use->id, cid;
+
+ if (ivs->cand_for_use[uid] == cp)
+ return;
+
+ if (ivs->cand_for_use[uid])
+ iv_ca_set_no_cp (data, ivs, use);
+
+ if (cp)
+ {
+ cid = cp->cand->id;
+
+ ivs->bad_uses--;
+ ivs->cand_for_use[uid] = cp;
+ ivs->n_cand_uses[cid]++;
+ if (ivs->n_cand_uses[cid] == 1)
+ {
+ bitmap_set_bit (ivs->cands, cid);
+ /* Do not count the pseudocandidates. */
+ if (cp->cand->iv)
+ ivs->n_regs++;
+ ivs->n_cands++;
+ ivs->cand_cost += cp->cand->cost;
+
+ iv_ca_set_add_invariants (data, ivs, cp->cand->depends_on);
+ }
+
+ ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
+ iv_ca_set_add_invariants (data, ivs, cp->depends_on);
+ iv_ca_recount_cost (data, ivs);
+ }
+}
+
+/* Extend set IVS by expressing USE by some of the candidates in it
+ if possible. */
+
+static void
+iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ struct cost_pair *best_cp = NULL, *cp;
+ bitmap_iterator bi;
+ unsigned i;
+
+ gcc_assert (ivs->upto >= use->id);
+
+ if (ivs->upto == use->id)
+ {
+ ivs->upto++;
+ ivs->bad_uses++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cp = get_use_iv_cost (data, use, iv_cand (data, i));
+
+ if (cheaper_cost_pair (cp, best_cp))
+ best_cp = cp;
+ }
+
+ iv_ca_set_cp (data, ivs, use, best_cp);
+}
+
+/* Get cost for assignment IVS. */
+
+static comp_cost
+iv_ca_cost (struct iv_ca *ivs)
+{
+ /* This was a conditional expression but it triggered a bug in
+ Sun C 5.5. */
+ if (ivs->bad_uses)
+ return infinite_cost;
+ else
+ return ivs->cost;
+}
+
+/* Returns true if all dependences of CP are among invariants in IVS. */
+
+static bool
+iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ if (!cp->depends_on)
+ return true;
+
+ EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
+ {
+ if (ivs->n_invariant_uses[i] == 0)
+ return false;
+ }
+
+ return true;
+}
+
+/* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
+ it before NEXT_CHANGE. */
+
+static struct iv_ca_delta *
+iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
+ struct cost_pair *new_cp, struct iv_ca_delta *next_change)
+{
+ struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
+
+ change->use = use;
+ change->old_cp = old_cp;
+ change->new_cp = new_cp;
+ change->next_change = next_change;
+
+ return change;
+}
+
+/* Joins two lists of changes L1 and L2. Destructive -- old lists
+ are rewritten. */
+
+static struct iv_ca_delta *
+iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
+{
+ struct iv_ca_delta *last;
+
+ if (!l2)
+ return l1;
+
+ if (!l1)
+ return l2;
+
+ for (last = l1; last->next_change; last = last->next_change)
+ continue;
+ last->next_change = l2;
+
+ return l1;
+}
+
+/* Returns candidate by that USE is expressed in IVS. */
+
+static struct cost_pair *
+iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
+{
+ return ivs->cand_for_use[use->id];
+}
+
+/* Reverse the list of changes DELTA, forming the inverse to it. */
+
+static struct iv_ca_delta *
+iv_ca_delta_reverse (struct iv_ca_delta *delta)
+{
+ struct iv_ca_delta *act, *next, *prev = NULL;
+ struct cost_pair *tmp;
+
+ for (act = delta; act; act = next)
+ {
+ next = act->next_change;
+ act->next_change = prev;
+ prev = act;
+
+ tmp = act->old_cp;
+ act->old_cp = act->new_cp;
+ act->new_cp = tmp;
+ }
+
+ return prev;
+}
+
+/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
+ reverted instead. */
+
+static void
+iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_ca_delta *delta, bool forward)
+{
+ struct cost_pair *from, *to;
+ struct iv_ca_delta *act;
+
+ if (!forward)
+ delta = iv_ca_delta_reverse (delta);
+
+ for (act = delta; act; act = act->next_change)
+ {
+ from = act->old_cp;
+ to = act->new_cp;
+ gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
+ iv_ca_set_cp (data, ivs, act->use, to);
+ }
+
+ if (!forward)
+ iv_ca_delta_reverse (delta);
+}
+
+/* Returns true if CAND is used in IVS. */
+
+static bool
+iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
+{
+ return ivs->n_cand_uses[cand->id] > 0;
+}
+
+/* Returns number of induction variable candidates in the set IVS. */
+
+static unsigned
+iv_ca_n_cands (struct iv_ca *ivs)
+{
+ return ivs->n_cands;
+}
+
+/* Free the list of changes DELTA. */
+
+static void
+iv_ca_delta_free (struct iv_ca_delta **delta)
+{
+ struct iv_ca_delta *act, *next;
+
+ for (act = *delta; act; act = next)
+ {
+ next = act->next_change;
+ free (act);
+ }
+
+ *delta = NULL;
+}
+
+/* Allocates new iv candidates assignment. */
+
+static struct iv_ca *
+iv_ca_new (struct ivopts_data *data)
+{
+ struct iv_ca *nw = XNEW (struct iv_ca);
+
+ nw->upto = 0;
+ nw->bad_uses = 0;
+ nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
+ nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
+ nw->cands = BITMAP_ALLOC (NULL);
+ nw->n_cands = 0;
+ nw->n_regs = 0;
+ nw->n_pseudos = 0;
+ nw->cand_use_cost = zero_cost;
+ nw->cand_cost = 0;
+ nw->n_invariant_uses = XCNEWVEC (unsigned,
+ data->min_pseudo_inv_id
+ + VEC_length (version_info_p,
+ data->pseudo_version_info));
+ nw->cost = zero_cost;
+
+ return nw;
+}
+
+/* Free memory occupied by the set IVS. */
+
+static void
+iv_ca_free (struct iv_ca **ivs)
+{
+ free ((*ivs)->cand_for_use);
+ free ((*ivs)->n_cand_uses);
+ BITMAP_FREE ((*ivs)->cands);
+ free ((*ivs)->n_invariant_uses);
+ free (*ivs);
+ *ivs = NULL;
+}
+
+/* Dumps IVS to FILE. */
+
+static void
+iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
+{
+ const char *pref = " invariants ";
+ unsigned i;
+ comp_cost cost = iv_ca_cost (ivs);
+
+ fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
+ fprintf (file, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
+ ivs->cand_cost, ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
+ bitmap_print (file, ivs->cands, " candidates: ","\n");
+
+ for (i = 0; i < ivs->upto; i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+ struct cost_pair *cp = iv_ca_cand_for_use (ivs, use);
+ if (cp)
+ fprintf (file, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
+ use->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
+ else
+ fprintf (file, " use:%d --> ??\n", use->id);
+ }
+
+ for (i = 1; i <= data->max_inv_id; i++)
+ if (ivs->n_invariant_uses[i])
+ {
+ fprintf (file, "%s%d", pref, i);
+ pref = ", ";
+ }
+ fprintf (file, "\n\n");
+ fprintf (file, "nregs: %d\nnpseudos: %d\n\n",
+ ivs->n_regs, ivs->n_pseudos);
+}
+
+/* Try changing candidate in IVS to CAND for each use. Return cost of the
+ new set, and store differences in DELTA. Number of induction variables
+ in the new set is stored to N_IVS. if MIN_NCANDS is true, try to change
+ all candidates in IVS to CAND if possible. */
+
+static comp_cost
+iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *cand, struct iv_ca_delta **delta,
+ unsigned *n_ivs, bool min_ncand)
+{
+ unsigned i;
+ comp_cost cost;
+ struct iv_use *use;
+ struct cost_pair *old_cp, *new_cp;
+
+ *delta = NULL;
+ for (i = 0; i < ivs->upto; i++)
+ {
+ use = iv_use (data, i);
+ old_cp = iv_ca_cand_for_use (ivs, use);
+
+ if (old_cp
+ && old_cp->cand == cand)
+ continue;
+
+ new_cp = get_use_iv_cost (data, use, cand);
+ if (!new_cp)
+ continue;
+
+ if (!iv_ca_has_deps (ivs, new_cp))
+ continue;
+
+ if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
+ continue;
+
+ *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ if (n_ivs)
+ *n_ivs = iv_ca_n_cands (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try narrowing set IVS by removing CAND. Return the cost of
+ the new set and store the differences in DELTA. */
+
+static comp_cost
+iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *cand, struct iv_ca_delta **delta)
+{
+ unsigned i, ci;
+ struct iv_use *use;
+ struct cost_pair *old_cp, *new_cp, *cp;
+ bitmap_iterator bi;
+ struct iv_cand *cnd;
+ comp_cost cost;
+
+ *delta = NULL;
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ old_cp = iv_ca_cand_for_use (ivs, use);
+ if (old_cp->cand != cand)
+ continue;
+
+ new_cp = NULL;
+
+ if (data->consider_all_candidates)
+ {
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id)
+ continue;
+
+ cnd = iv_cand (data, ci);
+
+ cp = get_use_iv_cost (data, use, cnd);
+ if (!cp)
+ continue;
+ if (!iv_ca_has_deps (ivs, cp))
+ continue;
+
+ if (!cheaper_cost_pair (cp, new_cp))
+ continue;
+
+ new_cp = cp;
+ }
+ }
+ else
+ {
+ EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
+ {
+ if (ci == cand->id)
+ continue;
+
+ cnd = iv_cand (data, ci);
+
+ cp = get_use_iv_cost (data, use, cnd);
+ if (!cp)
+ continue;
+ if (!iv_ca_has_deps (ivs, cp))
+ continue;
+
+ if (!cheaper_cost_pair (cp, new_cp))
+ continue;
+
+ new_cp = cp;
+ }
+ }
+
+ if (!new_cp)
+ {
+ iv_ca_delta_free (delta);
+ return infinite_cost;
+ }
+
+ *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
+ }
+
+ iv_ca_delta_commit (data, ivs, *delta, true);
+ cost = iv_ca_cost (ivs);
+ iv_ca_delta_commit (data, ivs, *delta, false);
+
+ return cost;
+}
+
+/* Try optimizing the set of candidates IVS by removing candidates different
+ from to EXCEPT_CAND from it. Return cost of the new set, and store
+ differences in DELTA. */
+
+static comp_cost
+iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_cand *except_cand, struct iv_ca_delta **delta)
+{
+ bitmap_iterator bi;
+ struct iv_ca_delta *act_delta, *best_delta;
+ unsigned i;
+ comp_cost best_cost, acost;
+ struct iv_cand *cand;
+
+ best_delta = NULL;
+ best_cost = iv_ca_cost (ivs);
+
+ EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand == except_cand)
+ continue;
+
+ acost = iv_ca_narrow (data, ivs, cand, &act_delta);
+
+ if (compare_costs (acost, best_cost) < 0)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ *delta = NULL;
+ return best_cost;
+ }
+
+ /* Recurse to possibly remove other unnecessary ivs. */
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ best_cost = iv_ca_prune (data, ivs, except_cand, delta);
+ iv_ca_delta_commit (data, ivs, best_delta, false);
+ *delta = iv_ca_delta_join (best_delta, *delta);
+ return best_cost;
+}
+
+/* Tries to extend the sets IVS in the best possible way in order
+ to express the USE. */
+
+static bool
+try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
+ struct iv_use *use)
+{
+ comp_cost best_cost, act_cost;
+ unsigned i;
+ bitmap_iterator bi;
+ struct iv_cand *cand;
+ struct iv_ca_delta *best_delta = NULL, *act_delta;
+ struct cost_pair *cp;
+
+ iv_ca_add_use (data, ivs, use);
+ best_cost = iv_ca_cost (ivs);
+
+ cp = iv_ca_cand_for_use (ivs, use);
+ if (cp)
+ {
+ best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
+ iv_ca_set_no_cp (data, ivs, use);
+ }
+
+ /* First try important candidates not based on any memory object. Only if
+ this fails, try the specific ones. Rationale -- in loops with many
+ variables the best choice often is to use just one generic biv. If we
+ added here many ivs specific to the uses, the optimization algorithm later
+ would be likely to get stuck in a local minimum, thus causing us to create
+ too many ivs. The approach from few ivs to more seems more likely to be
+ successful -- starting from few ivs, replacing an expensive use by a
+ specific iv should always be a win. */
+ EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand->iv->base_object != NULL_TREE)
+ continue;
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ cp = get_use_iv_cost (data, use, cand);
+ if (!cp)
+ continue;
+
+ iv_ca_set_cp (data, ivs, use, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
+ true);
+ iv_ca_set_no_cp (data, ivs, use);
+ act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
+
+ if (compare_costs (act_cost, best_cost) < 0)
+ {
+ best_cost = act_cost;
+
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (infinite_cost_p (best_cost))
+ {
+ for (i = 0; i < use->n_map_members; i++)
+ {
+ cp = use->cost_map + i;
+ cand = cp->cand;
+ if (!cand)
+ continue;
+
+ /* Already tried this. */
+ if (cand->important && cand->iv->base_object == NULL_TREE)
+ continue;
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ act_delta = NULL;
+ iv_ca_set_cp (data, ivs, use, cp);
+ act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
+ iv_ca_set_no_cp (data, ivs, use);
+ act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
+ cp, act_delta);
+
+ if (compare_costs (act_cost, best_cost) < 0)
+ {
+ best_cost = act_cost;
+
+ if (best_delta)
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ iv_ca_delta_free (&best_delta);
+
+ return !infinite_cost_p (best_cost);
+}
+
+/* Finds an initial assignment of candidates to uses. */
+
+static struct iv_ca *
+get_initial_solution (struct ivopts_data *data)
+{
+ struct iv_ca *ivs = iv_ca_new (data);
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ if (!try_add_cand_for (data, ivs, iv_use (data, i)))
+ {
+ iv_ca_free (&ivs);
+ return NULL;
+ }
+
+ return ivs;
+}
+
+/* Tries to improve set of induction variables IVS. */
+
+static bool
+try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
+{
+ unsigned i, n_ivs;
+ comp_cost acost, best_cost = iv_ca_cost (ivs);
+ struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
+ struct iv_cand *cand;
+
+ /* Try extending the set of induction variables by one. */
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (iv_ca_cand_used_p (ivs, cand))
+ continue;
+
+ acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
+ if (!act_delta)
+ continue;
+
+ /* If we successfully added the candidate and the set is small enough,
+ try optimizing it by removing other candidates. */
+ if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
+ {
+ iv_ca_delta_commit (data, ivs, act_delta, true);
+ acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
+ iv_ca_delta_commit (data, ivs, act_delta, false);
+ act_delta = iv_ca_delta_join (act_delta, tmp_delta);
+ }
+
+ if (compare_costs (acost, best_cost) < 0)
+ {
+ best_cost = acost;
+ iv_ca_delta_free (&best_delta);
+ best_delta = act_delta;
+ }
+ else
+ iv_ca_delta_free (&act_delta);
+ }
+
+ if (!best_delta)
+ {
+ /* Try removing the candidates from the set instead. */
+ best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
+
+ /* Nothing more we can do. */
+ if (!best_delta)
+ return false;
+ }
+
+ iv_ca_delta_commit (data, ivs, best_delta, true);
+ gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
+ iv_ca_delta_free (&best_delta);
+ return true;
+}
+
+/* Attempts to find the optimal set of induction variables. We do simple
+ greedy heuristic -- we try to replace at most one candidate in the selected
+ solution and remove the unused ivs while this improves the cost. */
+
+static struct iv_ca *
+find_optimal_iv_set (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_ca *set;
+ struct iv_use *use;
+
+ /* Get the initial solution. */
+ set = get_initial_solution (data);
+ if (!set)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
+ return NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Initial set of candidates:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+
+ while (try_improve_iv_set (data, set))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Improved to:\n");
+ iv_ca_dump (data, dump_file, set);
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ comp_cost cost = iv_ca_cost (set);
+ fprintf (dump_file, "Final cost %d (complexity %d)\n\n", cost.cost, cost.complexity);
+ }
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ use->selected = iv_ca_cand_for_use (set, use)->cand;
+ }
+
+ return set;
+}
+
+/* Returns a statement that undoes the operation in INCREMENT
+ on value OLD_VAL. */
+
+static gimple
+get_inverted_increment_1 (gimple increment, tree old_val)
+{
+ tree new_assign_def;
+ gimple inverted_increment;
+ enum tree_code incr_op;
+ tree step;
+
+ new_assign_def = make_ssa_name (SSA_NAME_VAR (old_val), NULL);
+ step = unshare_expr (gimple_assign_rhs2 (increment));
+ incr_op = gimple_assign_rhs_code (increment);
+ if (incr_op == PLUS_EXPR)
+ incr_op = MINUS_EXPR;
+ else
+ {
+ gcc_assert (incr_op == MINUS_EXPR);
+ incr_op = PLUS_EXPR;
+ }
+ inverted_increment
+ = gimple_build_assign_with_ops (incr_op, new_assign_def,
+ old_val, step);
+
+ return inverted_increment;
+}
+
+/* Returns a statement that undos the operation in INCREMENT
+ on the result of phi NEW_PHI. */
+
+static gimple
+get_inverted_increment (gimple reaching_increment, gimple new_phi)
+{
+ basic_block bb;
+ gimple_stmt_iterator gsi;
+ gimple inverted_increment;
+ tree phi_result;
+ void **slot;
+
+ gcc_assert (gimple_assign_lhs (reaching_increment)
+ == PHI_ARG_DEF (new_phi, 0));
+
+ if (!inverted_stmt_map)
+ inverted_stmt_map = pointer_map_create ();
+
+ slot = pointer_map_insert (inverted_stmt_map, new_phi);
+ if (*slot)
+ return (gimple) *slot;
+
+ phi_result = PHI_RESULT (new_phi);
+ bb = gimple_bb (new_phi);
+ gsi = gsi_after_labels (bb);
+
+ inverted_increment = get_inverted_increment_1 (reaching_increment,
+ phi_result);
+ gsi_insert_before (&gsi, inverted_increment, GSI_NEW_STMT);
+ *slot = (void *) inverted_increment;
+ return inverted_increment;
+}
+
+/* Performs a peephole optimization to reorder the iv update statement with
+ a mem ref to enable instruction combining in later phases. The mem ref uses
+ the iv value before the update, so the reordering transformation requires
+ adjustment of the offset. CAND is the selected IV_CAND.
+
+ Example:
+
+ t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
+ iv2 = iv1 + 1;
+
+ if (t < val) (1)
+ goto L;
+ goto Head;
+
+
+ directly propagating t over to (1) will introduce overlapping live range
+ thus increase register pressure. This peephole transform it into:
+
+
+ iv2 = iv1 + 1;
+ t = MEM_REF (base, iv2, 8, 8);
+ if (t < val)
+ goto L;
+ goto Head;
+*/
+
+static void
+adjust_iv_update_pos (struct ivopts_data *data ATTRIBUTE_UNUSED, struct iv_cand *cand)
+{
+ tree var_after, step, stride, index, offset_adjust, offset, mem_ref_op;
+ gimple iv_update, stmt, cond, mem_ref, index_to_base, use_stmt;
+ basic_block bb;
+ gimple_stmt_iterator gsi, gsi_iv;
+ use_operand_p use_p;
+ enum tree_code incr_op;
+ imm_use_iterator iter;
+ bool found = false;
+
+ var_after = cand->var_after;
+ iv_update = SSA_NAME_DEF_STMT (var_after);
+
+ /* Do not handle complicated iv update case. */
+ incr_op = gimple_assign_rhs_code (iv_update);
+ if (incr_op != PLUS_EXPR && incr_op != MINUS_EXPR)
+ return;
+
+ step = gimple_assign_rhs2 (iv_update);
+ if (!CONSTANT_CLASS_P (step))
+ return;
+
+ bb = gimple_bb (iv_update);
+ gsi = gsi_last_bb (bb);
+ stmt = gsi_stmt (gsi);
+
+ /* Only handle conditional statement for now. */
+ if (gimple_code (stmt) != GIMPLE_COND)
+ return;
+
+ cond = stmt;
+
+ gsi_prev (&gsi);
+ stmt = gsi_stmt (gsi);
+ if (stmt != iv_update)
+ return;
+
+ gsi_prev (&gsi);
+ if (gsi_end_p (gsi))
+ return;
+
+ stmt = gsi_stmt (gsi);
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return;
+
+ if (gimple_assign_rhs_code (stmt) != TARGET_MEM_REF)
+ return;
+
+ mem_ref = stmt;
+ mem_ref_op = gimple_assign_rhs1 (mem_ref);
+
+ if (TREE_CODE (gimple_assign_lhs (mem_ref)) != SSA_NAME)
+ return;
+
+ if (!single_imm_use (gimple_assign_lhs (mem_ref), &use_p, &use_stmt))
+ return;
+
+ if (use_stmt != cond)
+ return;
+
+ /* Found code motion candidate -- the statement with mem_ref. */
+
+ index = TMR_INDEX (mem_ref_op);
+ index_to_base = NULL;
+ if (index)
+ {
+ if (index != cand->var_before)
+ return;
+ }
+ else
+ {
+ /* Index used as base. */
+ tree base = TMR_BASE (mem_ref_op);
+
+ if (TREE_CODE (base) != SSA_NAME)
+ return;
+
+ if (!has_single_use (base))
+ return;
+
+ index_to_base = SSA_NAME_DEF_STMT (base);
+ if (gimple_code (index_to_base) != GIMPLE_ASSIGN)
+ return;
+ if (gimple_assign_rhs_code (index_to_base) != NOP_EXPR)
+ return;
+ if (gimple_assign_rhs1 (index_to_base) != cand->var_before)
+ return;
+ }
+
+ stride = TMR_STEP (mem_ref_op);
+ offset = TMR_OFFSET (mem_ref_op);
+ if (stride && index)
+ offset_adjust = int_const_binop (MULT_EXPR, stride, step, 0);
+ else
+ offset_adjust = step;
+
+ if (offset_adjust == NULL)
+ return;
+
+ offset = int_const_binop ((incr_op == PLUS_EXPR
+ ? MINUS_EXPR : PLUS_EXPR),
+ (offset ? offset : integer_zero_node),
+ offset_adjust, 0);
+
+ if (offset == NULL)
+ return;
+
+ if (index_to_base)
+ gsi = gsi_for_stmt (index_to_base);
+ else
+ gsi = gsi_for_stmt (mem_ref);
+ gsi_iv = gsi_for_stmt (iv_update);
+ gsi_move_before (&gsi_iv, &gsi);
+
+ /* Now fix up the mem_ref. */
+ FOR_EACH_IMM_USE_FAST (use_p, iter, cand->var_before)
+ {
+ if (USE_STMT (use_p) == mem_ref || USE_STMT (use_p) == index_to_base)
+ {
+ set_ssa_use_from_ptr (use_p, var_after);
+ if (index_to_base)
+ *gimple_assign_rhs1_ptr (index_to_base) = var_after;
+ else
+ TMR_INDEX (mem_ref_op) = var_after;
+
+ found = true;
+ break;
+ }
+ }
+ gcc_assert (found);
+ TMR_OFFSET (mem_ref_op) = offset;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Reordering \n");
+ print_gimple_stmt (dump_file, iv_update, 0, 0);
+ print_gimple_stmt (dump_file, mem_ref, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Performs reordering peep hole optimization for all selected ivs in SET. */
+
+static void
+adjust_update_pos_for_ivs (struct ivopts_data *data, struct iv_ca *set)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+ adjust_iv_update_pos (data, cand);
+ }
+}
+
+/* Creates a new induction variable corresponding to CAND. */
+
+static void
+create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
+{
+ gimple_stmt_iterator incr_pos;
+ tree base;
+ bool after = false;
+
+ if (!cand->iv)
+ return;
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
+ break;
+
+ case IP_END:
+ incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
+ after = true;
+ break;
+
+ case IP_ORIGINAL:
+ /* Mark that the iv is preserved. */
+ name_info (data, cand->var_before)->preserve_biv = true;
+ name_info (data, cand->var_after)->preserve_biv = true;
+
+ /* Rewrite the increment so that it uses var_before directly. */
+ find_interesting_uses_op (data, cand->var_after,
+ IU_INSIDE_LOOP)->selected = cand;
+
+ return;
+ }
+
+ gimple_add_tmp_var (cand->var_before);
+ add_referenced_var (cand->var_before);
+
+ base = unshare_expr (cand->iv->base);
+
+ create_iv (base, unshare_expr (cand->iv->step),
+ cand->var_before, data->current_loop,
+ &incr_pos, after, &cand->var_before, &cand->var_after);
+}
+
+/* Creates new induction variables described in SET. */
+
+static void
+create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+ create_new_iv (data, cand);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nSelected IV set: \n");
+ EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
+ {
+ cand = iv_cand (data, i);
+ dump_cand (dump_file, cand);
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Callback function in the tree walk to fix up old live out
+ names to loop exit phi's result. */
+
+static tree
+fixup_use (tree *op,
+ int *unused ATTRIBUTE_UNUSED,
+ void *data)
+{
+ struct pointer_map_t *nm_to_def_map
+ = (struct pointer_map_t *) data;
+
+ if (TREE_CODE (*op) == SSA_NAME && is_gimple_reg (*op))
+ {
+ void **slot;
+ slot = pointer_map_contains (nm_to_def_map, *op);
+ if (slot)
+ {
+ enum gimple_code gc;
+ gimple def = (gimple) (*slot);
+ gc = gimple_code (def);
+ if (gc == GIMPLE_PHI)
+ *op = PHI_RESULT (def);
+ else
+ *op = gimple_assign_lhs (def);
+ }
+ }
+
+ return 0;
+}
+
+/* Callback function in the tree walk to collect used ssa names
+ in the tree. */
+
+static tree
+collect_ssa_names (tree *op,
+ int *unused ATTRIBUTE_UNUSED,
+ void *data)
+{
+ VEC(tree, heap) ** used_names = (VEC(tree, heap) **) data;
+ if (TREE_CODE (*op) == SSA_NAME && is_gimple_reg (*op))
+ VEC_safe_push (tree, heap, *used_names, *op);
+
+ return 0;
+}
+
+
+/* The function fixes up live out ssa names used in tree *VAL to
+ the matching loop exit phi's results. */
+
+static void
+fixup_iv_out_val (tree *val, struct pointer_map_t *nm_to_phi_map)
+{
+ walk_tree (val, fixup_use, nm_to_phi_map, NULL);
+}
+
+/* Returns the iv update statement if USE's cand variable is
+ the version before the update; otherwise returns NULL. */
+
+static gimple
+cause_overlapping_lr (struct ivopts_data *data,
+ tree nm_used, struct iv_use *use,
+ basic_block use_bb)
+{
+ tree selected_iv_nm;
+ edge e;
+ gimple increment;
+ enum tree_code incr_op;
+
+ selected_iv_nm = var_at_stmt (data->current_loop,
+ use->selected,
+ use->stmt);
+
+ if (nm_used != selected_iv_nm)
+ return NULL;
+
+ if (selected_iv_nm == use->selected->var_after)
+ return NULL;
+
+ /* Check if def of var_after reaches use_bb. */
+ gcc_assert (single_pred_p (use_bb));
+ e = single_pred_edge (use_bb);
+
+ increment = SSA_NAME_DEF_STMT (use->selected->var_after);
+
+ if (e->src != gimple_bb (increment))
+ return NULL;
+
+ /* Only handle simple increments */
+ if (gimple_code (increment) != GIMPLE_ASSIGN)
+ return NULL;
+
+ incr_op = gimple_assign_rhs_code (increment);
+ if (incr_op != PLUS_EXPR && incr_op != MINUS_EXPR)
+ return NULL;
+
+ if (!CONSTANT_CLASS_P (gimple_assign_rhs2 (increment)))
+ return NULL;
+
+ return increment;
+}
+
+/* Returns the loop closing phi for LIVE_OUT_IV in basic block TGT_BB.
+ IV_UPDATE_STMT is the update statement for LIVE_OUT_IV, and
+ *FOR_UPDATED_VAL is set to true if the argument of the phi is defined
+ by IV_UPDATE_STMT. */
+
+static gimple
+find_closing_phi (basic_block tgt_bb, tree live_out_iv,
+ gimple iv_update_stmt, bool *for_updated_val)
+{
+ gimple_stmt_iterator psi;
+ gimple phi = NULL;
+
+ *for_updated_val = false;
+
+ /* Now try to find the existing matching phi. */
+ for (psi = gsi_start_phis (tgt_bb); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ gimple p;
+ p = gsi_stmt (psi);
+
+ if (SSA_NAME_VAR (PHI_ARG_DEF (p, 0))
+ == SSA_NAME_VAR (live_out_iv))
+ {
+ phi = p;
+ break;
+ }
+ }
+
+ if (!phi)
+ return NULL;
+
+ if (PHI_ARG_DEF (phi, 0) == live_out_iv)
+ {
+ *for_updated_val = false;
+ /* Found exact match. */
+ return phi;
+ }
+ else if (iv_update_stmt &&
+ PHI_ARG_DEF (phi, 0) == gimple_assign_lhs (iv_update_stmt))
+ {
+ *for_updated_val = true;
+ return phi;
+ }
+
+ return NULL;
+}
+
+
+/* The function ensures closed SSA form for moving use statement from USE
+ across the loop exit. LIVE_OUT_NM is the original ssa name that is live out,
+ TGT_BB is the destination bb of the code motion, and NM_TO_DEF_MAP maps
+ the original name to the result of the closing phi.
+
+ Scenario 1:
+ ----------------
+ Loop:
+
+ Loop_exit:
+
+ closed_iv_val = PHI (live_out_iv)
+
+ Uses of (live_out_iv) get replaced with closed_iv_val
+
+
+
+ Scenario 2:
+ ----------------
+ Loop:
+
+ updated_iv_val = live_out_iv + 1
+ Loop_exit:
+
+ closed_iv_val = PHI (updated_iv_val)
+ updated_iv_val2 = closed_iv_val - 1
+
+ Uses of live_out_iv get replaced with updated_iv_val2
+*/
+
+static gimple
+ensure_closed_ssa_form_for (struct ivopts_data *data,
+ tree live_out_nm, basic_block tgt_bb,
+ struct iv_use *use,
+ struct pointer_map_t *nm_to_def_map)
+{
+ gimple closing_phi = NULL;
+ bool closing_phi_for_updated_val = false;
+
+ gimple def_stmt, new_def_stmt = NULL;
+ basic_block def_bb;
+ gimple iv_update_stmt;
+ void **slot;
+
+ def_stmt = SSA_NAME_DEF_STMT (live_out_nm);
+ def_bb = gimple_bb (def_stmt);
+
+ if (!def_bb
+ || flow_bb_inside_loop_p (def_bb->loop_father, tgt_bb))
+ return NULL;;
+
+ iv_update_stmt
+ = cause_overlapping_lr (data, live_out_nm, use, tgt_bb);
+
+ gcc_assert (!iv_update_stmt ||
+ gimple_code (iv_update_stmt) == GIMPLE_ASSIGN);
+
+ closing_phi = find_closing_phi (tgt_bb, live_out_nm,
+ iv_update_stmt, &closing_phi_for_updated_val);
+
+
+ /* No closing phi is found. */
+ if (!closing_phi)
+ {
+ edge e;
+ edge_iterator ei;
+
+ closing_phi = create_phi_node (live_out_nm, tgt_bb);
+ create_new_def_for (gimple_phi_result (closing_phi), closing_phi,
+ gimple_phi_result_ptr (closing_phi));
+ gcc_assert (single_pred_p (tgt_bb));
+ if (!iv_update_stmt)
+ {
+ FOR_EACH_EDGE (e, ei, tgt_bb->preds)
+ add_phi_arg (closing_phi, live_out_nm, e, UNKNOWN_LOCATION);
+ new_def_stmt = closing_phi;
+ }
+ else
+ {
+ FOR_EACH_EDGE (e, ei, tgt_bb->preds)
+ add_phi_arg (closing_phi, gimple_assign_lhs (iv_update_stmt),
+ e, UNKNOWN_LOCATION);
+ /* Now make the value adjustment. */
+ new_def_stmt = get_inverted_increment (iv_update_stmt, closing_phi);
+ }
+ }
+ else if (!closing_phi_for_updated_val)
+ /* Scenario 1 above. */
+ new_def_stmt = closing_phi;
+ else
+ {
+ /* Scenario 2 above. */
+ gcc_assert (iv_update_stmt);
+ new_def_stmt = get_inverted_increment (iv_update_stmt, closing_phi);
+ }
+
+ /* Now map it. */
+ slot = pointer_map_insert (nm_to_def_map, live_out_nm);
+ *slot = (void *) new_def_stmt;
+
+ return (new_def_stmt != closing_phi ? new_def_stmt : NULL);
+}
+
+/* The function ensures closed ssa form for all names used in
+ REPLACED_IV_OUT_VAL. TGT_BB is the target bb where the new
+ computation is going to be, USE is the nonlinear use to be
+ rewritten (at loop exits), and *FIXED_UP_VAL holds the live out
+ value after name fixup. It returns the inverted iv update
+ statement if it is created. */
+
+static gimple
+ensure_closed_ssa_form (struct ivopts_data *data,
+ basic_block tgt_bb,
+ struct iv_use *use,
+ tree replaced_iv_out_val,
+ tree *fixed_up_val)
+{
+ unsigned i;
+ tree nm;
+ VEC(tree, heap) *used_ssa_names = NULL;
+ struct pointer_map_t *nm_to_def_map = NULL;
+ gimple inverted_incr = NULL;
+
+ nm_to_def_map = pointer_map_create ();
+ *fixed_up_val = unshare_expr (replaced_iv_out_val);
+ walk_tree_without_duplicates (fixed_up_val,
+ collect_ssa_names, &used_ssa_names);
+
+ for (i = 0;
+ VEC_iterate (tree, used_ssa_names, i, nm); i++)
+ {
+ gimple inv_incr;
+ if ((inv_incr
+ = ensure_closed_ssa_form_for (data, nm, tgt_bb,
+ use, nm_to_def_map)))
+ {
+ gcc_assert (!inverted_incr);
+ inverted_incr = inv_incr;
+ }
+ }
+
+ /* Now fix up the references in val. */
+ fixup_iv_out_val (fixed_up_val, nm_to_def_map);
+ pointer_map_destroy (nm_to_def_map);
+ return inverted_incr;
+}
+
+/* The function returns true if it is possible to sink final value
+ computation for REPLACED_IV_OUT_NAME at loop exits. */
+
+static bool
+can_compute_final_value_at_exits_p (struct ivopts_data *data,
+ tree replaced_iv_out_name)
+{
+ imm_use_iterator iter;
+ use_operand_p use_p;
+ gimple use_stmt;
+
+ /* Walk through all nonlinear uses in all loop exit blocks
+ to see if the sinking transformation is doable. */
+
+ FOR_EACH_IMM_USE_FAST (use_p, iter, replaced_iv_out_name)
+ {
+ basic_block exit_bb;
+ edge e;
+ edge_iterator ei;
+ bool found_exit_edge = false;
+
+ use_stmt = USE_STMT (use_p);
+ exit_bb = gimple_bb (use_stmt);
+
+ /* The use_stmt is another iv update
+ statement that also defines a liveout value and
+ has been removed. */
+ if (!exit_bb)
+ continue;
+
+ if (flow_bb_inside_loop_p (data->current_loop, exit_bb))
+ continue;
+
+ if (single_pred_p (exit_bb))
+ continue;
+
+ FOR_EACH_EDGE (e, ei, exit_bb->preds)
+ {
+ if (!flow_bb_inside_loop_p (data->current_loop,
+ e->src))
+ continue;
+ /* Can not split the edge. */
+ if (e->flags & EDGE_ABNORMAL)
+ return false;
+
+ /* Do not handle the case where the exit bb has
+ multiple incoming exit edges from the same loop. */
+ if (found_exit_edge)
+ return false;
+
+ found_exit_edge = true;
+ }
+ if (!found_exit_edge)
+ return false;
+ }
+ return true;
+}
+
+/* The function splits the loop exit edge targeting EXIT_BB if EXIT_BB
+ and returns the newly split bb. REPLACED_IV_OUT_NAME is the original
+ ssa name that is live out, and the new use statement (new phi) will
+ be stored in *USE_STMT. */
+
+static basic_block
+split_exit_edge (struct ivopts_data* data, basic_block exit_bb,
+ tree replaced_iv_out_name, gimple *use_stmt)
+{
+ edge e;
+ edge_iterator ei;
+ FOR_EACH_EDGE (e, ei, exit_bb->preds)
+ {
+ edge exit_edge;
+ gimple_stmt_iterator psi;
+ gimple new_use_phi = NULL;
+
+ if (!flow_bb_inside_loop_p (data->current_loop, e->src))
+ continue;
+
+ gcc_assert (!(e->flags & EDGE_ABNORMAL));
+ exit_bb = split_loop_exit_edge (e);
+ exit_edge = single_pred_edge (exit_bb);
+
+ /* Now update the use stmt. */
+ for (psi = gsi_start_phis (exit_bb);
+ !gsi_end_p (psi); gsi_next (&psi))
+ {
+ tree phi_arg;
+ gimple new_phi = gsi_stmt (psi);
+
+ phi_arg
+ = PHI_ARG_DEF_FROM_EDGE (new_phi, exit_edge);
+ if (phi_arg == replaced_iv_out_name)
+ {
+ new_use_phi = new_phi;
+ break;
+ }
+ }
+ gcc_assert (new_use_phi);
+ *use_stmt = new_use_phi;
+
+ /* There is only one exit edge to split. */
+ break;
+ }
+
+ return exit_bb;
+}
+
+/* For a non linear use USE that is used outside the loop DATA->current_loop
+ only, try to evaluate the live out value at the exits of the loop.
+ REPLACED_IV_OUT_NAME is the original ssa name that is live out, and
+ REPLACED_IV_OUT_VAL is the expression (in terms of the selected iv cand)
+ to evaluate the live out value. The function tries to sink the computation
+ of replaced_iv_out_val into loop exits, and returns true if successful. */
+
+static bool
+compute_final_value_at_exits (struct ivopts_data *data,
+ struct iv_use *use,
+ tree replaced_iv_out_name,
+ tree replaced_iv_out_val)
+{
+ imm_use_iterator iter;
+ gimple use_stmt;
+ struct iv* replaced_iv;
+
+ if (!can_compute_final_value_at_exits_p (data, replaced_iv_out_name))
+ return false;
+
+ FOR_EACH_IMM_USE_STMT (use_stmt, iter, replaced_iv_out_name)
+ {
+ basic_block exit_bb;
+ gimple new_assign;
+ gimple_stmt_iterator gsi, bsi;
+ tree phi_rslt, new_assign_rhs;
+ tree fixed_up_val;
+ gimple inverted_increment;
+
+ exit_bb = gimple_bb (use_stmt);
+
+ /* The use_stmt is another iv update
+ statement that also defines a liveout value and
+ has been removed. */
+ if (!exit_bb)
+ continue;
+
+ if (flow_bb_inside_loop_p (data->current_loop, exit_bb))
+ continue;
+
+ if (!single_pred_p (exit_bb))
+ exit_bb = split_exit_edge (data, exit_bb,
+ replaced_iv_out_name, &use_stmt);
+
+ gcc_assert (single_pred_p (exit_bb));
+
+ inverted_increment
+ = ensure_closed_ssa_form (data, exit_bb, use,
+ replaced_iv_out_val,
+ &fixed_up_val);
+
+ gcc_assert (gimple_code (use_stmt) == GIMPLE_PHI);
+ gsi = gsi_for_stmt (use_stmt);
+ phi_rslt = PHI_RESULT (use_stmt);
+ bsi = (inverted_increment
+ ? gsi_for_stmt (inverted_increment)
+ : gsi_after_labels (exit_bb));
+
+ /* Now convert the original loop exit phi (for closed SSA form)
+ into an assignment statement. */
+ remove_phi_node (&gsi, false);
+ new_assign_rhs = force_gimple_operand_gsi (&bsi, fixed_up_val,
+ false, NULL_TREE,
+ (inverted_increment == NULL),
+ (inverted_increment == NULL
+ ? GSI_SAME_STMT
+ : GSI_CONTINUE_LINKING));
+ new_assign = gimple_build_assign (phi_rslt, new_assign_rhs);
+ if (inverted_increment)
+ gsi_insert_after (&bsi, new_assign, GSI_SAME_STMT);
+ else
+ gsi_insert_before (&bsi, new_assign, GSI_SAME_STMT);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Sinking computation into exit bb %d\n",
+ exit_bb->index);
+ print_gimple_stmt (dump_file, new_assign, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ /* Now the original stmt that defines the liveout value can be removed */
+
+ replaced_iv = get_iv (data, replaced_iv_out_name);
+ gcc_assert (replaced_iv);
+ replaced_iv->have_use_for = false;
+
+ return true;
+}
+
+/* Returns the phi-node in BB with result RESULT. */
+
+static gimple
+get_phi_with_result (basic_block bb, tree result)
+{
+ gimple_stmt_iterator i = gsi_start_phis (bb);
+
+ for (; !gsi_end_p (i); gsi_next (&i))
+ if (gimple_phi_result (gsi_stmt (i)) == result)
+ return gsi_stmt (i);
+
+ gcc_unreachable ();
+ return NULL;
+}
+
+
+/* Removes statement STMT (real or a phi node). If INCLUDING_DEFINED_NAME
+ is true, remove also the ssa name defined by the statement. */
+
+static void
+remove_statement (gimple stmt, bool including_defined_name)
+{
+ if (gimple_code (stmt) == GIMPLE_PHI)
+ {
+ gimple bb_phi = get_phi_with_result (gimple_bb (stmt),
+ gimple_phi_result (stmt));
+ gimple_stmt_iterator bsi = gsi_for_stmt (bb_phi);
+ remove_phi_node (&bsi, including_defined_name);
+ }
+ else
+ {
+ gimple_stmt_iterator bsi = gsi_for_stmt (stmt);
+ gsi_remove (&bsi, true);
+ release_defs (stmt);
+ }
+}
+
+/* Rewrites USE (definition of iv used in a nonlinear expression)
+ using candidate CAND. */
+
+static void
+rewrite_use_nonlinear_expr (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp;
+ tree op, tgt;
+ gimple ass;
+ gimple_stmt_iterator bsi;
+
+ /* An important special case -- if we are asked to express value of
+ the original iv by itself, just exit; there is no need to
+ introduce a new computation (that might also need casting the
+ variable to unsigned and back). */
+ if (cand->pos == IP_ORIGINAL
+ && cand->incremented_at == use->stmt)
+ {
+ tree step, ctype, utype;
+ enum tree_code incr_code = PLUS_EXPR, old_code;
+
+ gcc_assert (is_gimple_assign (use->stmt));
+ gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
+
+ step = cand->iv->step;
+ ctype = TREE_TYPE (step);
+ utype = TREE_TYPE (cand->var_after);
+ if (TREE_CODE (step) == NEGATE_EXPR)
+ {
+ incr_code = MINUS_EXPR;
+ step = TREE_OPERAND (step, 0);
+ }
+
+ /* Check whether we may leave the computation unchanged.
+ This is the case only if it does not rely on other
+ computations in the loop -- otherwise, the computation
+ we rely upon may be removed in remove_unused_ivs,
+ thus leading to ICE. */
+ old_code = gimple_assign_rhs_code (use->stmt);
+ if (old_code == PLUS_EXPR
+ || old_code == MINUS_EXPR
+ || old_code == POINTER_PLUS_EXPR)
+ {
+ if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
+ op = gimple_assign_rhs2 (use->stmt);
+ else if (old_code != MINUS_EXPR
+ && gimple_assign_rhs2 (use->stmt) == cand->var_before)
+ op = gimple_assign_rhs1 (use->stmt);
+ else
+ op = NULL_TREE;
+ }
+ else
+ op = NULL_TREE;
+
+ if (op
+ && (TREE_CODE (op) == INTEGER_CST
+ || operand_equal_p (op, step, 0)))
+ return;
+
+ /* Otherwise, add the necessary computations to express
+ the iv. */
+ op = fold_convert (ctype, cand->var_before);
+ comp = fold_convert (utype,
+ build2 (incr_code, ctype, op,
+ unshare_expr (step)));
+ }
+ else
+ {
+ comp = get_computation (data->current_loop, use, cand);
+ gcc_assert (comp != NULL_TREE);
+ }
+
+ switch (gimple_code (use->stmt))
+ {
+ case GIMPLE_PHI:
+ tgt = PHI_RESULT (use->stmt);
+
+ /* If we should keep the biv, do not replace it. */
+ if (name_info (data, tgt)->preserve_biv)
+ return;
+
+ bsi = gsi_after_labels (gimple_bb (use->stmt));
+ break;
+
+ case GIMPLE_ASSIGN:
+ tgt = gimple_assign_lhs (use->stmt);
+ bsi = gsi_for_stmt (use->stmt);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (use->use_pos == IU_OUTSIDE_LOOP_ONLY)
+ {
+ if (compute_final_value_at_exits (data, use, tgt, comp))
+ return;
+ }
+ op = force_gimple_operand_gsi (&bsi, comp, false, SSA_NAME_VAR (tgt),
+ true, GSI_SAME_STMT);
+
+ if (gimple_code (use->stmt) == GIMPLE_PHI)
+ {
+ ass = gimple_build_assign (tgt, op);
+ gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
+ remove_statement (use->stmt, false);
+ }
+ else
+ {
+ gimple_assign_set_rhs_from_tree (&bsi, op);
+ use->stmt = gsi_stmt (bsi);
+ }
+}
+
+/* Replaces ssa name in index IDX by its basic variable. Callback for
+ for_each_index. */
+
+static bool
+idx_remove_ssa_names (tree base, tree *idx,
+ void *data ATTRIBUTE_UNUSED)
+{
+ tree *op;
+
+ if (TREE_CODE (*idx) == SSA_NAME)
+ *idx = SSA_NAME_VAR (*idx);
+
+ if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
+ {
+ op = &TREE_OPERAND (base, 2);
+ if (*op
+ && TREE_CODE (*op) == SSA_NAME)
+ *op = SSA_NAME_VAR (*op);
+ op = &TREE_OPERAND (base, 3);
+ if (*op
+ && TREE_CODE (*op) == SSA_NAME)
+ *op = SSA_NAME_VAR (*op);
+ }
+
+ return true;
+}
+
+/* Unshares REF and replaces ssa names inside it by their basic variables. */
+
+static tree
+unshare_and_remove_ssa_names (tree ref)
+{
+ ref = unshare_expr (ref);
+ for_each_index (&ref, idx_remove_ssa_names, NULL);
+
+ return ref;
+}
+
+/* Extract the alias analysis info for the memory reference REF. There are
+ several ways how this information may be stored and what precisely is
+ its semantics depending on the type of the reference, but there always is
+ somewhere hidden one _DECL node that is used to determine the set of
+ virtual operands for the reference. The code below deciphers this jungle
+ and extracts this single useful piece of information. */
+
+static tree
+get_ref_tag (tree ref, tree orig)
+{
+ tree var = get_base_address (ref);
+ tree aref = NULL_TREE, tag, sv;
+ HOST_WIDE_INT offset, size, maxsize;
+
+ for (sv = orig; handled_component_p (sv); sv = TREE_OPERAND (sv, 0))
+ {
+ aref = get_ref_base_and_extent (sv, &offset, &size, &maxsize);
+ if (ref)
+ break;
+ }
+
+ if (!var)
+ return NULL_TREE;
+
+ if (TREE_CODE (var) == INDIRECT_REF)
+ {
+ /* If the base is a dereference of a pointer, first check its name memory
+ tag. If it does not have one, use its symbol memory tag. */
+ var = TREE_OPERAND (var, 0);
+ if (TREE_CODE (var) != SSA_NAME)
+ return NULL_TREE;
+
+ if (SSA_NAME_PTR_INFO (var))
+ {
+ tag = SSA_NAME_PTR_INFO (var)->name_mem_tag;
+ if (tag)
+ return tag;
+ }
+
+ var = SSA_NAME_VAR (var);
+ tag = symbol_mem_tag (var);
+ gcc_assert (tag != NULL_TREE);
+ return tag;
+ }
+ else
+ {
+ if (!DECL_P (var))
+ return NULL_TREE;
+
+ tag = symbol_mem_tag (var);
+ if (tag)
+ return tag;
+
+ return var;
+ }
+}
+
+/* Copies the reference information from OLD_REF to NEW_REF. */
+
+static void
+copy_ref_info (tree new_ref, tree old_ref)
+{
+ if (TREE_CODE (old_ref) == TARGET_MEM_REF)
+ copy_mem_ref_info (new_ref, old_ref);
+ else
+ {
+ TMR_ORIGINAL (new_ref) = unshare_and_remove_ssa_names (old_ref);
+ TMR_TAG (new_ref) = get_ref_tag (old_ref, TMR_ORIGINAL (new_ref));
+ }
+}
+
+/* Rewrites USE (address that is an iv) using candidate CAND. */
+
+static void
+rewrite_use_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ aff_tree aff;
+ gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
+ tree ref, iv;
+ bool ok;
+
+ ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
+ gcc_assert (ok);
+ unshare_aff_combination (&aff);
+
+ iv = var_at_stmt (data->current_loop, cand, use->stmt);
+ ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
+ iv, (cand->iv->base_object != NULL), data->speed);
+ copy_ref_info (ref, *use->op_p);
+ *use->op_p = ref;
+}
+
+/* Rewrites USE (the condition such that one of the arguments is an iv) using
+ candidate CAND. */
+
+static void
+rewrite_use_compare (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp, *var_p, op, bound;
+ gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
+ enum tree_code compare;
+ struct cost_pair *cp = get_use_iv_cost (data, use, cand);
+ bool ok;
+
+ bound = cp->value;
+ if (bound)
+ {
+ tree var = var_at_stmt (data->current_loop, cand, use->stmt);
+ tree var_type = TREE_TYPE (var);
+ gimple_seq stmts;
+
+ compare = iv_elimination_compare (data, use);
+ bound = unshare_expr (fold_convert (var_type, bound));
+ op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
+ if (stmts)
+ gsi_insert_seq_on_edge_immediate (
+ loop_preheader_edge (data->current_loop),
+ stmts);
+
+ gimple_cond_set_lhs (use->stmt, var);
+ gimple_cond_set_code (use->stmt, compare);
+ gimple_cond_set_rhs (use->stmt, op);
+ return;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. */
+ comp = get_computation (data->current_loop, use, cand);
+ gcc_assert (comp != NULL_TREE);
+
+ ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
+ gcc_assert (ok);
+
+ *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
+ true, GSI_SAME_STMT);
+}
+
+/* Rewrites USE using candidate CAND. */
+
+static void
+rewrite_use (struct ivopts_data *data, struct iv_use *use, struct iv_cand *cand)
+{
+ push_stmt_changes (&use->stmt);
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ rewrite_use_nonlinear_expr (data, use, cand);
+ break;
+
+ case USE_ADDRESS:
+ rewrite_use_address (data, use, cand);
+ break;
+
+ case USE_COMPARE:
+ rewrite_use_compare (data, use, cand);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ pop_stmt_changes (&use->stmt);
+}
+
+/* Rewrite the uses using the selected induction variables. */
+
+static void
+rewrite_uses (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ cand = use->selected;
+ gcc_assert (cand);
+
+ rewrite_use (data, use, cand);
+ }
+}
+
+/* Removes the ivs that are not used after rewriting. */
+
+static void
+remove_unused_ivs (struct ivopts_data *data)
+{
+ unsigned j;
+ bitmap_iterator bi;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, j);
+ if (info->iv
+ && !integer_zerop (info->iv->step)
+ && !info->inv_id
+ && !info->iv->have_use_for
+ && !info->preserve_biv)
+ remove_statement (SSA_NAME_DEF_STMT (info->iv->ssa_name), true);
+ }
+}
+
+/* Frees data allocated by the optimization of a single loop. */
+
+static void
+free_loop_data (struct ivopts_data *data)
+{
+ unsigned i, j;
+ bitmap_iterator bi;
+ tree obj;
+ struct version_info *vi;
+
+ if (data->niters)
+ {
+ pointer_map_destroy (data->niters);
+ data->niters = NULL;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
+ {
+ struct version_info *info;
+
+ info = ver_info (data, i);
+ if (info->iv)
+ free (info->iv);
+ info->iv = NULL;
+ info->has_nonlin_use = false;
+ info->preserve_biv = false;
+ info->inv_id = 0;
+ }
+ bitmap_clear (data->relevant);
+ bitmap_clear (data->important_candidates);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ free (use->iv);
+ BITMAP_FREE (use->related_cands);
+ for (j = 0; j < use->n_map_members; j++)
+ if (use->cost_map[j].depends_on)
+ BITMAP_FREE (use->cost_map[j].depends_on);
+ free (use->cost_map);
+ free (use);
+ }
+ VEC_truncate (iv_use_p, data->iv_uses, 0);
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ if (cand->iv)
+ free (cand->iv);
+ if (cand->depends_on)
+ BITMAP_FREE (cand->depends_on);
+ free (cand);
+ }
+ VEC_truncate (iv_cand_p, data->iv_candidates, 0);
+
+ if (data->version_info_size < num_ssa_names)
+ {
+ data->version_info_size = 2 * num_ssa_names;
+ free (data->version_info);
+ data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
+ }
+
+ data->max_inv_id = 0;
+
+ for (i = 0; VEC_iterate (version_info_p,
+ data->pseudo_version_info, i, vi); i++)
+ free (vi);
+ VEC_truncate (version_info_p, data->pseudo_version_info, 0);
+ data->min_pseudo_inv_id = num_ssa_names;
+
+
+ for (i = 0; VEC_iterate (tree, decl_rtl_to_reset, i, obj); i++)
+ SET_DECL_RTL (obj, NULL_RTX);
+
+ VEC_truncate (tree, decl_rtl_to_reset, 0);
+}
+
+/* Finalizes data structures used by the iv optimization pass. LOOPS is the
+ loop tree. */
+
+static void
+tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
+{
+ free_loop_data (data);
+ free (data->version_info);
+ BITMAP_FREE (data->relevant);
+ BITMAP_FREE (data->important_candidates);
+
+ VEC_free (tree, heap, decl_rtl_to_reset);
+ VEC_free (iv_use_p, heap, data->iv_uses);
+ VEC_free (iv_cand_p, heap, data->iv_candidates);
+ if (inverted_stmt_map)
+ {
+ pointer_map_destroy (inverted_stmt_map);
+ inverted_stmt_map = NULL;
+ }
+}
+
+/* Optimizes the LOOP. Returns true if anything changed. */
+
+static bool
+tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
+{
+ bool changed = false;
+ struct iv_ca *iv_ca;
+ edge exit;
+
+ gcc_assert (!data->niters);
+ data->current_loop = loop;
+ data->speed = optimize_loop_for_speed_p (loop);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Processing loop %d\n", loop->num);
+
+ exit = single_dom_exit (loop);
+ if (exit)
+ {
+ fprintf (dump_file, " single exit %d -> %d, exit condition ",
+ exit->src->index, exit->dest->index);
+ print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ /* For each ssa name determines whether it behaves as an induction variable
+ in some loop. */
+ if (!find_induction_variables (data))
+ goto finish;
+
+ /* Finds interesting uses (item 1). */
+ find_interesting_uses (data);
+ if (n_iv_uses (data) > MAX_CONSIDERED_USES)
+ goto finish;
+
+ /* Finds candidates for the induction variables (item 2). */
+ find_iv_candidates (data);
+
+ /* Calculates the costs (item 3, part 1). */
+ determine_use_iv_costs (data);
+ determine_iv_costs (data);
+ determine_set_costs (data);
+
+ /* Find the optimal set of induction variables (item 3, part 2). */
+ iv_ca = find_optimal_iv_set (data);
+ if (!iv_ca)
+ goto finish;
+ changed = true;
+
+ /* Create the new induction variables (item 4, part 1). */
+ create_new_ivs (data, iv_ca);
+
+ /* Rewrite the uses (item 4, part 2). */
+ rewrite_uses (data);
+
+ /* Remove the ivs that are unused after rewriting. */
+ remove_unused_ivs (data);
+
+ adjust_update_pos_for_ivs (data, iv_ca);
+
+ iv_ca_free (&iv_ca);
+
+ /* We have changed the structure of induction variables; it might happen
+ that definitions in the scev database refer to some of them that were
+ eliminated. */
+ scev_reset ();
+
+finish:
+ free_loop_data (data);
+
+ return changed;
+}
+
+/* Main entry point. Optimizes induction variables in loops. */
+
+void
+tree_ssa_iv_optimize (void)
+{
+ struct loop *loop;
+ struct ivopts_data data;
+ loop_iterator li;
+
+ tree_ssa_iv_optimize_init (&data);
+
+ /* Optimize the loops starting with the innermost ones. */
+ FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ flow_loop_dump (loop, dump_file, NULL, 1);
+
+ tree_ssa_iv_optimize_loop (&data, loop);
+ }
+
+ tree_ssa_iv_optimize_finalize (&data);
+
+}