aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/tree-predcom.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.4.3/gcc/tree-predcom.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.4.3/gcc/tree-predcom.c')
-rw-r--r--gcc-4.4.3/gcc/tree-predcom.c2672
1 files changed, 0 insertions, 2672 deletions
diff --git a/gcc-4.4.3/gcc/tree-predcom.c b/gcc-4.4.3/gcc/tree-predcom.c
deleted file mode 100644
index 3d31423f7..000000000
--- a/gcc-4.4.3/gcc/tree-predcom.c
+++ /dev/null
@@ -1,2672 +0,0 @@
-/* Predictive commoning.
- Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* This file implements the predictive commoning optimization. Predictive
- commoning can be viewed as CSE around a loop, and with some improvements,
- as generalized strength reduction-- i.e., reusing values computed in
- earlier iterations of a loop in the later ones. So far, the pass only
- handles the most useful case, that is, reusing values of memory references.
- If you think this is all just a special case of PRE, you are sort of right;
- however, concentrating on loops is simpler, and makes it possible to
- incorporate data dependence analysis to detect the opportunities, perform
- loop unrolling to avoid copies together with renaming immediately,
- and if needed, we could also take register pressure into account.
-
- Let us demonstrate what is done on an example:
-
- for (i = 0; i < 100; i++)
- {
- a[i+2] = a[i] + a[i+1];
- b[10] = b[10] + i;
- c[i] = c[99 - i];
- d[i] = d[i + 1];
- }
-
- 1) We find data references in the loop, and split them to mutually
- independent groups (i.e., we find components of a data dependence
- graph). We ignore read-read dependences whose distance is not constant.
- (TODO -- we could also ignore antidependences). In this example, we
- find the following groups:
-
- a[i]{read}, a[i+1]{read}, a[i+2]{write}
- b[10]{read}, b[10]{write}
- c[99 - i]{read}, c[i]{write}
- d[i + 1]{read}, d[i]{write}
-
- 2) Inside each of the group, we verify several conditions:
- a) all the references must differ in indices only, and the indices
- must all have the same step
- b) the references must dominate loop latch (and thus, they must be
- ordered by dominance relation).
- c) the distance of the indices must be a small multiple of the step
- We are then able to compute the difference of the references (# of
- iterations before they point to the same place as the first of them).
- Also, in case there are writes in the loop, we split the groups into
- chains whose head is the write whose values are used by the reads in
- the same chain. The chains are then processed independently,
- making the further transformations simpler. Also, the shorter chains
- need the same number of registers, but may require lower unrolling
- factor in order to get rid of the copies on the loop latch.
-
- In our example, we get the following chains (the chain for c is invalid).
-
- a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
- b[10]{read,+0}, b[10]{write,+0}
- d[i + 1]{read,+0}, d[i]{write,+1}
-
- 3) For each read, we determine the read or write whose value it reuses,
- together with the distance of this reuse. I.e. we take the last
- reference before it with distance 0, or the last of the references
- with the smallest positive distance to the read. Then, we remove
- the references that are not used in any of these chains, discard the
- empty groups, and propagate all the links so that they point to the
- single root reference of the chain (adjusting their distance
- appropriately). Some extra care needs to be taken for references with
- step 0. In our example (the numbers indicate the distance of the
- reuse),
-
- a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
- b[10] --> (*) 1, b[10] (*)
-
- 4) The chains are combined together if possible. If the corresponding
- elements of two chains are always combined together with the same
- operator, we remember just the result of this combination, instead
- of remembering the values separately. We may need to perform
- reassociation to enable combining, for example
-
- e[i] + f[i+1] + e[i+1] + f[i]
-
- can be reassociated as
-
- (e[i] + f[i]) + (e[i+1] + f[i+1])
-
- and we can combine the chains for e and f into one chain.
-
- 5) For each root reference (end of the chain) R, let N be maximum distance
- of a reference reusing its value. Variables R0 upto RN are created,
- together with phi nodes that transfer values from R1 .. RN to
- R0 .. R(N-1).
- Initial values are loaded to R0..R(N-1) (in case not all references
- must necessarily be accessed and they may trap, we may fail here;
- TODO sometimes, the loads could be guarded by a check for the number
- of iterations). Values loaded/stored in roots are also copied to
- RN. Other reads are replaced with the appropriate variable Ri.
- Everything is put to SSA form.
-
- As a small improvement, if R0 is dead after the root (i.e., all uses of
- the value with the maximum distance dominate the root), we can avoid
- creating RN and use R0 instead of it.
-
- In our example, we get (only the parts concerning a and b are shown):
- for (i = 0; i < 100; i++)
- {
- f = phi (a[0], s);
- s = phi (a[1], f);
- x = phi (b[10], x);
-
- f = f + s;
- a[i+2] = f;
- x = x + i;
- b[10] = x;
- }
-
- 6) Factor F for unrolling is determined as the smallest common multiple of
- (N + 1) for each root reference (N for references for that we avoided
- creating RN). If F and the loop is small enough, loop is unrolled F
- times. The stores to RN (R0) in the copies of the loop body are
- periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
- be coalesced and the copies can be eliminated.
-
- TODO -- copy propagation and other optimizations may change the live
- ranges of the temporary registers and prevent them from being coalesced;
- this may increase the register pressure.
-
- In our case, F = 2 and the (main loop of the) result is
-
- for (i = 0; i < ...; i += 2)
- {
- f = phi (a[0], f);
- s = phi (a[1], s);
- x = phi (b[10], x);
-
- f = f + s;
- a[i+2] = f;
- x = x + i;
- b[10] = x;
-
- s = s + f;
- a[i+3] = s;
- x = x + i;
- b[10] = x;
- }
-
- TODO -- stores killing other stores can be taken into account, e.g.,
- for (i = 0; i < n; i++)
- {
- a[i] = 1;
- a[i+2] = 2;
- }
-
- can be replaced with
-
- t0 = a[0];
- t1 = a[1];
- for (i = 0; i < n; i++)
- {
- a[i] = 1;
- t2 = 2;
- t0 = t1;
- t1 = t2;
- }
- a[n] = t0;
- a[n+1] = t1;
-
- The interesting part is that this would generalize store motion; still, since
- sm is performed elsewhere, it does not seem that important.
-
- Predictive commoning can be generalized for arbitrary computations (not
- just memory loads), and also nontrivial transfer functions (e.g., replacing
- i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "cfgloop.h"
-#include "tree-flow.h"
-#include "ggc.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "tree-chrec.h"
-#include "params.h"
-#include "diagnostic.h"
-#include "tree-pass.h"
-#include "tree-affine.h"
-#include "tree-inline.h"
-
-/* The maximum number of iterations between the considered memory
- references. */
-
-#define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
-
-/* Data references (or phi nodes that carry data reference values across
- loop iterations). */
-
-typedef struct dref
-{
- /* The reference itself. */
- struct data_reference *ref;
-
- /* The statement in that the reference appears. */
- gimple stmt;
-
- /* In case that STMT is a phi node, this field is set to the SSA name
- defined by it in replace_phis_by_defined_names (in order to avoid
- pointing to phi node that got reallocated in the meantime). */
- tree name_defined_by_phi;
-
- /* Distance of the reference from the root of the chain (in number of
- iterations of the loop). */
- unsigned distance;
-
- /* Number of iterations offset from the first reference in the component. */
- double_int offset;
-
- /* Number of the reference in a component, in dominance ordering. */
- unsigned pos;
-
- /* True if the memory reference is always accessed when the loop is
- entered. */
- unsigned always_accessed : 1;
-} *dref;
-
-DEF_VEC_P (dref);
-DEF_VEC_ALLOC_P (dref, heap);
-
-/* Type of the chain of the references. */
-
-enum chain_type
-{
- /* The addresses of the references in the chain are constant. */
- CT_INVARIANT,
-
- /* There are only loads in the chain. */
- CT_LOAD,
-
- /* Root of the chain is store, the rest are loads. */
- CT_STORE_LOAD,
-
- /* A combination of two chains. */
- CT_COMBINATION
-};
-
-/* Chains of data references. */
-
-typedef struct chain
-{
- /* Type of the chain. */
- enum chain_type type;
-
- /* For combination chains, the operator and the two chains that are
- combined, and the type of the result. */
- enum tree_code op;
- tree rslt_type;
- struct chain *ch1, *ch2;
-
- /* The references in the chain. */
- VEC(dref,heap) *refs;
-
- /* The maximum distance of the reference in the chain from the root. */
- unsigned length;
-
- /* The variables used to copy the value throughout iterations. */
- VEC(tree,heap) *vars;
-
- /* Initializers for the variables. */
- VEC(tree,heap) *inits;
-
- /* True if there is a use of a variable with the maximal distance
- that comes after the root in the loop. */
- unsigned has_max_use_after : 1;
-
- /* True if all the memory references in the chain are always accessed. */
- unsigned all_always_accessed : 1;
-
- /* True if this chain was combined together with some other chain. */
- unsigned combined : 1;
-} *chain_p;
-
-DEF_VEC_P (chain_p);
-DEF_VEC_ALLOC_P (chain_p, heap);
-
-/* Describes the knowledge about the step of the memory references in
- the component. */
-
-enum ref_step_type
-{
- /* The step is zero. */
- RS_INVARIANT,
-
- /* The step is nonzero. */
- RS_NONZERO,
-
- /* The step may or may not be nonzero. */
- RS_ANY
-};
-
-/* Components of the data dependence graph. */
-
-struct component
-{
- /* The references in the component. */
- VEC(dref,heap) *refs;
-
- /* What we know about the step of the references in the component. */
- enum ref_step_type comp_step;
-
- /* Next component in the list. */
- struct component *next;
-};
-
-/* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
-
-static bitmap looparound_phis;
-
-/* Cache used by tree_to_aff_combination_expand. */
-
-static struct pointer_map_t *name_expansions;
-
-/* Dumps data reference REF to FILE. */
-
-extern void dump_dref (FILE *, dref);
-void
-dump_dref (FILE *file, dref ref)
-{
- if (ref->ref)
- {
- fprintf (file, " ");
- print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
- fprintf (file, " (id %u%s)\n", ref->pos,
- DR_IS_READ (ref->ref) ? "" : ", write");
-
- fprintf (file, " offset ");
- dump_double_int (file, ref->offset, false);
- fprintf (file, "\n");
-
- fprintf (file, " distance %u\n", ref->distance);
- }
- else
- {
- if (gimple_code (ref->stmt) == GIMPLE_PHI)
- fprintf (file, " looparound ref\n");
- else
- fprintf (file, " combination ref\n");
- fprintf (file, " in statement ");
- print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
- fprintf (file, "\n");
- fprintf (file, " distance %u\n", ref->distance);
- }
-
-}
-
-/* Dumps CHAIN to FILE. */
-
-extern void dump_chain (FILE *, chain_p);
-void
-dump_chain (FILE *file, chain_p chain)
-{
- dref a;
- const char *chain_type;
- unsigned i;
- tree var;
-
- switch (chain->type)
- {
- case CT_INVARIANT:
- chain_type = "Load motion";
- break;
-
- case CT_LOAD:
- chain_type = "Loads-only";
- break;
-
- case CT_STORE_LOAD:
- chain_type = "Store-loads";
- break;
-
- case CT_COMBINATION:
- chain_type = "Combination";
- break;
-
- default:
- gcc_unreachable ();
- }
-
- fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
- chain->combined ? " (combined)" : "");
- if (chain->type != CT_INVARIANT)
- fprintf (file, " max distance %u%s\n", chain->length,
- chain->has_max_use_after ? "" : ", may reuse first");
-
- if (chain->type == CT_COMBINATION)
- {
- fprintf (file, " equal to %p %s %p in type ",
- (void *) chain->ch1, op_symbol_code (chain->op),
- (void *) chain->ch2);
- print_generic_expr (file, chain->rslt_type, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- if (chain->vars)
- {
- fprintf (file, " vars");
- for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
- {
- fprintf (file, " ");
- print_generic_expr (file, var, TDF_SLIM);
- }
- fprintf (file, "\n");
- }
-
- if (chain->inits)
- {
- fprintf (file, " inits");
- for (i = 0; VEC_iterate (tree, chain->inits, i, var); i++)
- {
- fprintf (file, " ");
- print_generic_expr (file, var, TDF_SLIM);
- }
- fprintf (file, "\n");
- }
-
- fprintf (file, " references:\n");
- for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
- dump_dref (file, a);
-
- fprintf (file, "\n");
-}
-
-/* Dumps CHAINS to FILE. */
-
-extern void dump_chains (FILE *, VEC (chain_p, heap) *);
-void
-dump_chains (FILE *file, VEC (chain_p, heap) *chains)
-{
- chain_p chain;
- unsigned i;
-
- for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
- dump_chain (file, chain);
-}
-
-/* Dumps COMP to FILE. */
-
-extern void dump_component (FILE *, struct component *);
-void
-dump_component (FILE *file, struct component *comp)
-{
- dref a;
- unsigned i;
-
- fprintf (file, "Component%s:\n",
- comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
- for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
- dump_dref (file, a);
- fprintf (file, "\n");
-}
-
-/* Dumps COMPS to FILE. */
-
-extern void dump_components (FILE *, struct component *);
-void
-dump_components (FILE *file, struct component *comps)
-{
- struct component *comp;
-
- for (comp = comps; comp; comp = comp->next)
- dump_component (file, comp);
-}
-
-/* Frees a chain CHAIN. */
-
-static void
-release_chain (chain_p chain)
-{
- dref ref;
- unsigned i;
-
- if (chain == NULL)
- return;
-
- for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
- free (ref);
-
- VEC_free (dref, heap, chain->refs);
- VEC_free (tree, heap, chain->vars);
- VEC_free (tree, heap, chain->inits);
-
- free (chain);
-}
-
-/* Frees CHAINS. */
-
-static void
-release_chains (VEC (chain_p, heap) *chains)
-{
- unsigned i;
- chain_p chain;
-
- for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
- release_chain (chain);
- VEC_free (chain_p, heap, chains);
-}
-
-/* Frees a component COMP. */
-
-static void
-release_component (struct component *comp)
-{
- VEC_free (dref, heap, comp->refs);
- free (comp);
-}
-
-/* Frees list of components COMPS. */
-
-static void
-release_components (struct component *comps)
-{
- struct component *act, *next;
-
- for (act = comps; act; act = next)
- {
- next = act->next;
- release_component (act);
- }
-}
-
-/* Finds a root of tree given by FATHERS containing A, and performs path
- shortening. */
-
-static unsigned
-component_of (unsigned fathers[], unsigned a)
-{
- unsigned root, n;
-
- for (root = a; root != fathers[root]; root = fathers[root])
- continue;
-
- for (; a != root; a = n)
- {
- n = fathers[a];
- fathers[a] = root;
- }
-
- return root;
-}
-
-/* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
- components, A and B are components to merge. */
-
-static void
-merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
-{
- unsigned ca = component_of (fathers, a);
- unsigned cb = component_of (fathers, b);
-
- if (ca == cb)
- return;
-
- if (sizes[ca] < sizes[cb])
- {
- sizes[cb] += sizes[ca];
- fathers[ca] = cb;
- }
- else
- {
- sizes[ca] += sizes[cb];
- fathers[cb] = ca;
- }
-}
-
-/* Returns true if A is a reference that is suitable for predictive commoning
- in the innermost loop that contains it. REF_STEP is set according to the
- step of the reference A. */
-
-static bool
-suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
-{
- tree ref = DR_REF (a), step = DR_STEP (a);
-
- if (!step
- || !is_gimple_reg_type (TREE_TYPE (ref))
- || tree_could_throw_p (ref))
- return false;
-
- if (integer_zerop (step))
- *ref_step = RS_INVARIANT;
- else if (integer_nonzerop (step))
- *ref_step = RS_NONZERO;
- else
- *ref_step = RS_ANY;
-
- return true;
-}
-
-/* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
-
-static void
-aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
-{
- aff_tree delta;
-
- tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
- &name_expansions);
- aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
- aff_combination_add (offset, &delta);
-}
-
-/* Determines number of iterations of the innermost enclosing loop before B
- refers to exactly the same location as A and stores it to OFF. If A and
- B do not have the same step, they never meet, or anything else fails,
- returns false, otherwise returns true. Both A and B are assumed to
- satisfy suitable_reference_p. */
-
-static bool
-determine_offset (struct data_reference *a, struct data_reference *b,
- double_int *off)
-{
- aff_tree diff, baseb, step;
- tree typea, typeb;
-
- /* Check that both the references access the location in the same type. */
- typea = TREE_TYPE (DR_REF (a));
- typeb = TREE_TYPE (DR_REF (b));
- if (!useless_type_conversion_p (typeb, typea))
- return false;
-
- /* Check whether the base address and the step of both references is the
- same. */
- if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
- || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
- return false;
-
- if (integer_zerop (DR_STEP (a)))
- {
- /* If the references have loop invariant address, check that they access
- exactly the same location. */
- *off = double_int_zero;
- return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
- && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
- }
-
- /* Compare the offsets of the addresses, and check whether the difference
- is a multiple of step. */
- aff_combination_dr_offset (a, &diff);
- aff_combination_dr_offset (b, &baseb);
- aff_combination_scale (&baseb, double_int_minus_one);
- aff_combination_add (&diff, &baseb);
-
- tree_to_aff_combination_expand (DR_STEP (a), sizetype,
- &step, &name_expansions);
- return aff_combination_constant_multiple_p (&diff, &step, off);
-}
-
-/* Returns the last basic block in LOOP for that we are sure that
- it is executed whenever the loop is entered. */
-
-static basic_block
-last_always_executed_block (struct loop *loop)
-{
- unsigned i;
- VEC (edge, heap) *exits = get_loop_exit_edges (loop);
- edge ex;
- basic_block last = loop->latch;
-
- for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
- last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
- VEC_free (edge, heap, exits);
-
- return last;
-}
-
-/* Splits dependence graph on DATAREFS described by DEPENDS to components. */
-
-static struct component *
-split_data_refs_to_components (struct loop *loop,
- VEC (data_reference_p, heap) *datarefs,
- VEC (ddr_p, heap) *depends)
-{
- unsigned i, n = VEC_length (data_reference_p, datarefs);
- unsigned ca, ia, ib, bad;
- unsigned *comp_father = XNEWVEC (unsigned, n + 1);
- unsigned *comp_size = XNEWVEC (unsigned, n + 1);
- struct component **comps;
- struct data_reference *dr, *dra, *drb;
- struct data_dependence_relation *ddr;
- struct component *comp_list = NULL, *comp;
- dref dataref;
- basic_block last_always_executed = last_always_executed_block (loop);
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- if (!DR_REF (dr))
- {
- /* A fake reference for call or asm_expr that may clobber memory;
- just fail. */
- goto end;
- }
- dr->aux = (void *) (size_t) i;
- comp_father[i] = i;
- comp_size[i] = 1;
- }
-
- /* A component reserved for the "bad" data references. */
- comp_father[n] = n;
- comp_size[n] = 1;
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- enum ref_step_type dummy;
-
- if (!suitable_reference_p (dr, &dummy))
- {
- ia = (unsigned) (size_t) dr->aux;
- merge_comps (comp_father, comp_size, n, ia);
- }
- }
-
- for (i = 0; VEC_iterate (ddr_p, depends, i, ddr); i++)
- {
- double_int dummy_off;
-
- if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
- continue;
-
- dra = DDR_A (ddr);
- drb = DDR_B (ddr);
- ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
- ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
- if (ia == ib)
- continue;
-
- bad = component_of (comp_father, n);
-
- /* If both A and B are reads, we may ignore unsuitable dependences. */
- if (DR_IS_READ (dra) && DR_IS_READ (drb)
- && (ia == bad || ib == bad
- || !determine_offset (dra, drb, &dummy_off)))
- continue;
-
- merge_comps (comp_father, comp_size, ia, ib);
- }
-
- comps = XCNEWVEC (struct component *, n);
- bad = component_of (comp_father, n);
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- ia = (unsigned) (size_t) dr->aux;
- ca = component_of (comp_father, ia);
- if (ca == bad)
- continue;
-
- comp = comps[ca];
- if (!comp)
- {
- comp = XCNEW (struct component);
- comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
- comps[ca] = comp;
- }
-
- dataref = XCNEW (struct dref);
- dataref->ref = dr;
- dataref->stmt = DR_STMT (dr);
- dataref->offset = double_int_zero;
- dataref->distance = 0;
-
- dataref->always_accessed
- = dominated_by_p (CDI_DOMINATORS, last_always_executed,
- gimple_bb (dataref->stmt));
- dataref->pos = VEC_length (dref, comp->refs);
- VEC_quick_push (dref, comp->refs, dataref);
- }
-
- for (i = 0; i < n; i++)
- {
- comp = comps[i];
- if (comp)
- {
- comp->next = comp_list;
- comp_list = comp;
- }
- }
- free (comps);
-
-end:
- free (comp_father);
- free (comp_size);
- return comp_list;
-}
-
-/* Returns true if the component COMP satisfies the conditions
- described in 2) at the beginning of this file. LOOP is the current
- loop. */
-
-static bool
-suitable_component_p (struct loop *loop, struct component *comp)
-{
- unsigned i;
- dref a, first;
- basic_block ba, bp = loop->header;
- bool ok, has_write = false;
-
- for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
- {
- ba = gimple_bb (a->stmt);
-
- if (!just_once_each_iteration_p (loop, ba))
- return false;
-
- gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
- bp = ba;
-
- if (!DR_IS_READ (a->ref))
- has_write = true;
- }
-
- first = VEC_index (dref, comp->refs, 0);
- ok = suitable_reference_p (first->ref, &comp->comp_step);
- gcc_assert (ok);
- first->offset = double_int_zero;
-
- for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
- {
- if (!determine_offset (first->ref, a->ref, &a->offset))
- return false;
-
-#ifdef ENABLE_CHECKING
- {
- enum ref_step_type a_step;
- ok = suitable_reference_p (a->ref, &a_step);
- gcc_assert (ok && a_step == comp->comp_step);
- }
-#endif
- }
-
- /* If there is a write inside the component, we must know whether the
- step is nonzero or not -- we would not otherwise be able to recognize
- whether the value accessed by reads comes from the OFFSET-th iteration
- or the previous one. */
- if (has_write && comp->comp_step == RS_ANY)
- return false;
-
- return true;
-}
-
-/* Check the conditions on references inside each of components COMPS,
- and remove the unsuitable components from the list. The new list
- of components is returned. The conditions are described in 2) at
- the beginning of this file. LOOP is the current loop. */
-
-static struct component *
-filter_suitable_components (struct loop *loop, struct component *comps)
-{
- struct component **comp, *act;
-
- for (comp = &comps; *comp; )
- {
- act = *comp;
- if (suitable_component_p (loop, act))
- comp = &act->next;
- else
- {
- dref ref;
- unsigned i;
-
- *comp = act->next;
- for (i = 0; VEC_iterate (dref, act->refs, i, ref); i++)
- free (ref);
- release_component (act);
- }
- }
-
- return comps;
-}
-
-/* Compares two drefs A and B by their offset and position. Callback for
- qsort. */
-
-static int
-order_drefs (const void *a, const void *b)
-{
- const dref *const da = (const dref *) a;
- const dref *const db = (const dref *) b;
- int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
-
- if (offcmp != 0)
- return offcmp;
-
- return (*da)->pos - (*db)->pos;
-}
-
-/* Returns root of the CHAIN. */
-
-static inline dref
-get_chain_root (chain_p chain)
-{
- return VEC_index (dref, chain->refs, 0);
-}
-
-/* Adds REF to the chain CHAIN. */
-
-static void
-add_ref_to_chain (chain_p chain, dref ref)
-{
- dref root = get_chain_root (chain);
- double_int dist;
-
- gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
- dist = double_int_add (ref->offset, double_int_neg (root->offset));
- if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
- {
- free (ref);
- return;
- }
- gcc_assert (double_int_fits_in_uhwi_p (dist));
-
- VEC_safe_push (dref, heap, chain->refs, ref);
-
- ref->distance = double_int_to_uhwi (dist);
-
- if (ref->distance >= chain->length)
- {
- chain->length = ref->distance;
- chain->has_max_use_after = false;
- }
-
- if (ref->distance == chain->length
- && ref->pos > root->pos)
- chain->has_max_use_after = true;
-
- chain->all_always_accessed &= ref->always_accessed;
-}
-
-/* Returns the chain for invariant component COMP. */
-
-static chain_p
-make_invariant_chain (struct component *comp)
-{
- chain_p chain = XCNEW (struct chain);
- unsigned i;
- dref ref;
-
- chain->type = CT_INVARIANT;
-
- chain->all_always_accessed = true;
-
- for (i = 0; VEC_iterate (dref, comp->refs, i, ref); i++)
- {
- VEC_safe_push (dref, heap, chain->refs, ref);
- chain->all_always_accessed &= ref->always_accessed;
- }
-
- return chain;
-}
-
-/* Make a new chain rooted at REF. */
-
-static chain_p
-make_rooted_chain (dref ref)
-{
- chain_p chain = XCNEW (struct chain);
-
- chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
-
- VEC_safe_push (dref, heap, chain->refs, ref);
- chain->all_always_accessed = ref->always_accessed;
-
- ref->distance = 0;
-
- return chain;
-}
-
-/* Returns true if CHAIN is not trivial. */
-
-static bool
-nontrivial_chain_p (chain_p chain)
-{
- return chain != NULL && VEC_length (dref, chain->refs) > 1;
-}
-
-/* Returns the ssa name that contains the value of REF, or NULL_TREE if there
- is no such name. */
-
-static tree
-name_for_ref (dref ref)
-{
- tree name;
-
- if (is_gimple_assign (ref->stmt))
- {
- if (!ref->ref || DR_IS_READ (ref->ref))
- name = gimple_assign_lhs (ref->stmt);
- else
- name = gimple_assign_rhs1 (ref->stmt);
- }
- else
- name = PHI_RESULT (ref->stmt);
-
- return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
-}
-
-/* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
- iterations of the innermost enclosing loop). */
-
-static bool
-valid_initializer_p (struct data_reference *ref,
- unsigned distance, struct data_reference *root)
-{
- aff_tree diff, base, step;
- double_int off;
-
- /* Both REF and ROOT must be accessing the same object. */
- if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
- return false;
-
- /* The initializer is defined outside of loop, hence its address must be
- invariant inside the loop. */
- gcc_assert (integer_zerop (DR_STEP (ref)));
-
- /* If the address of the reference is invariant, initializer must access
- exactly the same location. */
- if (integer_zerop (DR_STEP (root)))
- return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
- && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
-
- /* Verify that this index of REF is equal to the root's index at
- -DISTANCE-th iteration. */
- aff_combination_dr_offset (root, &diff);
- aff_combination_dr_offset (ref, &base);
- aff_combination_scale (&base, double_int_minus_one);
- aff_combination_add (&diff, &base);
-
- tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
- &name_expansions);
- if (!aff_combination_constant_multiple_p (&diff, &step, &off))
- return false;
-
- if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
- return false;
-
- return true;
-}
-
-/* Finds looparound phi node of LOOP that copies the value of REF, and if its
- initial value is correct (equal to initial value of REF shifted by one
- iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
- is the root of the current chain. */
-
-static gimple
-find_looparound_phi (struct loop *loop, dref ref, dref root)
-{
- tree name, init, init_ref;
- gimple phi = NULL, init_stmt;
- edge latch = loop_latch_edge (loop);
- struct data_reference init_dr;
- gimple_stmt_iterator psi;
-
- if (is_gimple_assign (ref->stmt))
- {
- if (DR_IS_READ (ref->ref))
- name = gimple_assign_lhs (ref->stmt);
- else
- name = gimple_assign_rhs1 (ref->stmt);
- }
- else
- name = PHI_RESULT (ref->stmt);
- if (!name)
- return NULL;
-
- for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
- {
- phi = gsi_stmt (psi);
- if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
- break;
- }
-
- if (gsi_end_p (psi))
- return NULL;
-
- init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
- if (TREE_CODE (init) != SSA_NAME)
- return NULL;
- init_stmt = SSA_NAME_DEF_STMT (init);
- if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
- return NULL;
- gcc_assert (gimple_assign_lhs (init_stmt) == init);
-
- init_ref = gimple_assign_rhs1 (init_stmt);
- if (!REFERENCE_CLASS_P (init_ref)
- && !DECL_P (init_ref))
- return NULL;
-
- /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
- loop enclosing PHI). */
- memset (&init_dr, 0, sizeof (struct data_reference));
- DR_REF (&init_dr) = init_ref;
- DR_STMT (&init_dr) = phi;
- if (!dr_analyze_innermost (&init_dr))
- return NULL;
-
- if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
- return NULL;
-
- return phi;
-}
-
-/* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
-
-static void
-insert_looparound_copy (chain_p chain, dref ref, gimple phi)
-{
- dref nw = XCNEW (struct dref), aref;
- unsigned i;
-
- nw->stmt = phi;
- nw->distance = ref->distance + 1;
- nw->always_accessed = 1;
-
- for (i = 0; VEC_iterate (dref, chain->refs, i, aref); i++)
- if (aref->distance >= nw->distance)
- break;
- VEC_safe_insert (dref, heap, chain->refs, i, nw);
-
- if (nw->distance > chain->length)
- {
- chain->length = nw->distance;
- chain->has_max_use_after = false;
- }
-}
-
-/* For references in CHAIN that are copied around the LOOP (created previously
- by PRE, or by user), add the results of such copies to the chain. This
- enables us to remove the copies by unrolling, and may need less registers
- (also, it may allow us to combine chains together). */
-
-static void
-add_looparound_copies (struct loop *loop, chain_p chain)
-{
- unsigned i;
- dref ref, root = get_chain_root (chain);
- gimple phi;
-
- for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
- {
- phi = find_looparound_phi (loop, ref, root);
- if (!phi)
- continue;
-
- bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
- insert_looparound_copy (chain, ref, phi);
- }
-}
-
-/* Find roots of the values and determine distances in the component COMP.
- The references are redistributed into CHAINS. LOOP is the current
- loop. */
-
-static void
-determine_roots_comp (struct loop *loop,
- struct component *comp,
- VEC (chain_p, heap) **chains)
-{
- unsigned i;
- dref a;
- chain_p chain = NULL;
-
- /* Invariants are handled specially. */
- if (comp->comp_step == RS_INVARIANT)
- {
- chain = make_invariant_chain (comp);
- VEC_safe_push (chain_p, heap, *chains, chain);
- return;
- }
-
- qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
- sizeof (dref), order_drefs);
-
- for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
- {
- if (!chain || !DR_IS_READ (a->ref))
- {
- if (nontrivial_chain_p (chain))
- VEC_safe_push (chain_p, heap, *chains, chain);
- else
- release_chain (chain);
- chain = make_rooted_chain (a);
- continue;
- }
-
- add_ref_to_chain (chain, a);
- }
-
- if (nontrivial_chain_p (chain))
- {
- add_looparound_copies (loop, chain);
- VEC_safe_push (chain_p, heap, *chains, chain);
- }
- else
- release_chain (chain);
-}
-
-/* Find roots of the values and determine distances in components COMPS, and
- separates the references to CHAINS. LOOP is the current loop. */
-
-static void
-determine_roots (struct loop *loop,
- struct component *comps, VEC (chain_p, heap) **chains)
-{
- struct component *comp;
-
- for (comp = comps; comp; comp = comp->next)
- determine_roots_comp (loop, comp, chains);
-}
-
-/* Replace the reference in statement STMT with temporary variable
- NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
- the reference in the statement. IN_LHS is true if the reference
- is in the lhs of STMT, false if it is in rhs. */
-
-static void
-replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
-{
- tree val;
- gimple new_stmt;
- gimple_stmt_iterator bsi, psi;
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- gcc_assert (!in_lhs && !set);
-
- val = PHI_RESULT (stmt);
- bsi = gsi_after_labels (gimple_bb (stmt));
- psi = gsi_for_stmt (stmt);
- remove_phi_node (&psi, false);
-
- /* Turn the phi node into GIMPLE_ASSIGN. */
- new_stmt = gimple_build_assign (val, new_tree);
- gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
- return;
- }
-
- /* Since the reference is of gimple_reg type, it should only
- appear as lhs or rhs of modify statement. */
- gcc_assert (is_gimple_assign (stmt));
-
- bsi = gsi_for_stmt (stmt);
-
- /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
- if (!set)
- {
- gcc_assert (!in_lhs);
- gimple_assign_set_rhs_from_tree (&bsi, new_tree);
- stmt = gsi_stmt (bsi);
- update_stmt (stmt);
- return;
- }
-
- if (in_lhs)
- {
- /* We have statement
-
- OLD = VAL
-
- If OLD is a memory reference, then VAL is gimple_val, and we transform
- this to
-
- OLD = VAL
- NEW = VAL
-
- Otherwise, we are replacing a combination chain,
- VAL is the expression that performs the combination, and OLD is an
- SSA name. In this case, we transform the assignment to
-
- OLD = VAL
- NEW = OLD
-
- */
-
- val = gimple_assign_lhs (stmt);
- if (TREE_CODE (val) != SSA_NAME)
- {
- gcc_assert (gimple_assign_copy_p (stmt));
- val = gimple_assign_rhs1 (stmt);
- }
- }
- else
- {
- /* VAL = OLD
-
- is transformed to
-
- VAL = OLD
- NEW = VAL */
-
- val = gimple_assign_lhs (stmt);
- }
-
- new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
- gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
-}
-
-/* Returns the reference to the address of REF in the ITER-th iteration of
- LOOP, or NULL if we fail to determine it (ITER may be negative). We
- try to preserve the original shape of the reference (not rewrite it
- as an indirect ref to the address), to make tree_could_trap_p in
- prepare_initializers_chain return false more often. */
-
-static tree
-ref_at_iteration (struct loop *loop, tree ref, int iter)
-{
- tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
- affine_iv iv;
- bool ok;
-
- if (handled_component_p (ref))
- {
- op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
- if (!op0)
- return NULL_TREE;
- }
- else if (!INDIRECT_REF_P (ref))
- return unshare_expr (ref);
-
- if (TREE_CODE (ref) == INDIRECT_REF)
- {
- ret = build1 (INDIRECT_REF, TREE_TYPE (ref), NULL_TREE);
- idx = TREE_OPERAND (ref, 0);
- idx_p = &TREE_OPERAND (ret, 0);
- }
- else if (TREE_CODE (ref) == COMPONENT_REF)
- {
- /* Check that the offset is loop invariant. */
- if (TREE_OPERAND (ref, 2)
- && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
- return NULL_TREE;
-
- return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
- unshare_expr (TREE_OPERAND (ref, 1)),
- unshare_expr (TREE_OPERAND (ref, 2)));
- }
- else if (TREE_CODE (ref) == ARRAY_REF)
- {
- /* Check that the lower bound and the step are loop invariant. */
- if (TREE_OPERAND (ref, 2)
- && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
- return NULL_TREE;
- if (TREE_OPERAND (ref, 3)
- && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
- return NULL_TREE;
-
- ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
- unshare_expr (TREE_OPERAND (ref, 2)),
- unshare_expr (TREE_OPERAND (ref, 3)));
- idx = TREE_OPERAND (ref, 1);
- idx_p = &TREE_OPERAND (ret, 1);
- }
- else
- return NULL_TREE;
-
- ok = simple_iv (loop, loop, idx, &iv, true);
- if (!ok)
- return NULL_TREE;
- iv.base = expand_simple_operations (iv.base);
- if (integer_zerop (iv.step))
- *idx_p = unshare_expr (iv.base);
- else
- {
- type = TREE_TYPE (iv.base);
- if (POINTER_TYPE_P (type))
- {
- val = fold_build2 (MULT_EXPR, sizetype, iv.step,
- size_int (iter));
- val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
- }
- else
- {
- val = fold_build2 (MULT_EXPR, type, iv.step,
- build_int_cst_type (type, iter));
- val = fold_build2 (PLUS_EXPR, type, iv.base, val);
- }
- *idx_p = unshare_expr (val);
- }
-
- return ret;
-}
-
-/* Get the initialization expression for the INDEX-th temporary variable
- of CHAIN. */
-
-static tree
-get_init_expr (chain_p chain, unsigned index)
-{
- if (chain->type == CT_COMBINATION)
- {
- tree e1 = get_init_expr (chain->ch1, index);
- tree e2 = get_init_expr (chain->ch2, index);
-
- return fold_build2 (chain->op, chain->rslt_type, e1, e2);
- }
- else
- return VEC_index (tree, chain->inits, index);
-}
-
-/* Marks all virtual operands of statement STMT for renaming. */
-
-void
-mark_virtual_ops_for_renaming (gimple stmt)
-{
- ssa_op_iter iter;
- tree var;
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- var = PHI_RESULT (stmt);
- if (is_gimple_reg (var))
- return;
-
- if (TREE_CODE (var) == SSA_NAME)
- var = SSA_NAME_VAR (var);
- mark_sym_for_renaming (var);
- return;
- }
-
- update_stmt (stmt);
-
- FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_VIRTUALS)
- {
- if (TREE_CODE (var) == SSA_NAME)
- var = SSA_NAME_VAR (var);
- mark_sym_for_renaming (var);
- }
-}
-
-/* Calls mark_virtual_ops_for_renaming for all members of LIST. */
-
-static void
-mark_virtual_ops_for_renaming_list (gimple_seq list)
-{
- gimple_stmt_iterator gsi;
-
- for (gsi = gsi_start (list); !gsi_end_p (gsi); gsi_next (&gsi))
- mark_virtual_ops_for_renaming (gsi_stmt (gsi));
-}
-
-/* Returns a new temporary variable used for the I-th variable carrying
- value of REF. The variable's uid is marked in TMP_VARS. */
-
-static tree
-predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
-{
- tree type = TREE_TYPE (ref);
- tree var = create_tmp_var (type, get_lsm_tmp_name (ref, i));
-
- /* We never access the components of the temporary variable in predictive
- commoning. */
- if (TREE_CODE (type) == COMPLEX_TYPE
- || TREE_CODE (type) == VECTOR_TYPE)
- DECL_GIMPLE_REG_P (var) = 1;
-
- add_referenced_var (var);
- bitmap_set_bit (tmp_vars, DECL_UID (var));
- return var;
-}
-
-/* Creates the variables for CHAIN, as well as phi nodes for them and
- initialization on entry to LOOP. Uids of the newly created
- temporary variables are marked in TMP_VARS. */
-
-static void
-initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
-{
- unsigned i;
- unsigned n = chain->length;
- dref root = get_chain_root (chain);
- bool reuse_first = !chain->has_max_use_after;
- tree ref, init, var, next;
- gimple phi;
- gimple_seq stmts;
- edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
-
- /* If N == 0, then all the references are within the single iteration. And
- since this is an nonempty chain, reuse_first cannot be true. */
- gcc_assert (n > 0 || !reuse_first);
-
- chain->vars = VEC_alloc (tree, heap, n + 1);
-
- if (chain->type == CT_COMBINATION)
- ref = gimple_assign_lhs (root->stmt);
- else
- ref = DR_REF (root->ref);
-
- for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
- {
- var = predcom_tmp_var (ref, i, tmp_vars);
- VEC_quick_push (tree, chain->vars, var);
- }
- if (reuse_first)
- VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
-
- for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
- VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
-
- for (i = 0; i < n; i++)
- {
- var = VEC_index (tree, chain->vars, i);
- next = VEC_index (tree, chain->vars, i + 1);
- init = get_init_expr (chain, i);
-
- init = force_gimple_operand (init, &stmts, true, NULL_TREE);
- if (stmts)
- {
- mark_virtual_ops_for_renaming_list (stmts);
- gsi_insert_seq_on_edge_immediate (entry, stmts);
- }
-
- phi = create_phi_node (var, loop->header);
- SSA_NAME_DEF_STMT (var) = phi;
- add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
- add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
- }
-}
-
-/* Create the variables and initialization statement for root of chain
- CHAIN. Uids of the newly created temporary variables are marked
- in TMP_VARS. */
-
-static void
-initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
-{
- dref root = get_chain_root (chain);
- bool in_lhs = (chain->type == CT_STORE_LOAD
- || chain->type == CT_COMBINATION);
-
- initialize_root_vars (loop, chain, tmp_vars);
- replace_ref_with (root->stmt,
- VEC_index (tree, chain->vars, chain->length),
- true, in_lhs);
-}
-
-/* Initializes a variable for load motion for ROOT and prepares phi nodes and
- initialization on entry to LOOP if necessary. The ssa name for the variable
- is stored in VARS. If WRITTEN is true, also a phi node to copy its value
- around the loop is created. Uid of the newly created temporary variable
- is marked in TMP_VARS. INITS is the list containing the (single)
- initializer. */
-
-static void
-initialize_root_vars_lm (struct loop *loop, dref root, bool written,
- VEC(tree, heap) **vars, VEC(tree, heap) *inits,
- bitmap tmp_vars)
-{
- unsigned i;
- tree ref = DR_REF (root->ref), init, var, next;
- gimple_seq stmts;
- gimple phi;
- edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
-
- /* Find the initializer for the variable, and check that it cannot
- trap. */
- init = VEC_index (tree, inits, 0);
-
- *vars = VEC_alloc (tree, heap, written ? 2 : 1);
- var = predcom_tmp_var (ref, 0, tmp_vars);
- VEC_quick_push (tree, *vars, var);
- if (written)
- VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
-
- for (i = 0; VEC_iterate (tree, *vars, i, var); i++)
- VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
-
- var = VEC_index (tree, *vars, 0);
-
- init = force_gimple_operand (init, &stmts, written, NULL_TREE);
- if (stmts)
- {
- mark_virtual_ops_for_renaming_list (stmts);
- gsi_insert_seq_on_edge_immediate (entry, stmts);
- }
-
- if (written)
- {
- next = VEC_index (tree, *vars, 1);
- phi = create_phi_node (var, loop->header);
- SSA_NAME_DEF_STMT (var) = phi;
- add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
- add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
- }
- else
- {
- gimple init_stmt = gimple_build_assign (var, init);
- mark_virtual_ops_for_renaming (init_stmt);
- gsi_insert_on_edge_immediate (entry, init_stmt);
- }
-}
-
-
-/* Execute load motion for references in chain CHAIN. Uids of the newly
- created temporary variables are marked in TMP_VARS. */
-
-static void
-execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
-{
- VEC (tree, heap) *vars;
- dref a;
- unsigned n_writes = 0, ridx, i;
- tree var;
-
- gcc_assert (chain->type == CT_INVARIANT);
- gcc_assert (!chain->combined);
- for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
- if (!DR_IS_READ (a->ref))
- n_writes++;
-
- /* If there are no reads in the loop, there is nothing to do. */
- if (n_writes == VEC_length (dref, chain->refs))
- return;
-
- initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
- &vars, chain->inits, tmp_vars);
-
- ridx = 0;
- for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
- {
- bool is_read = DR_IS_READ (a->ref);
- mark_virtual_ops_for_renaming (a->stmt);
-
- if (!DR_IS_READ (a->ref))
- {
- n_writes--;
- if (n_writes)
- {
- var = VEC_index (tree, vars, 0);
- var = make_ssa_name (SSA_NAME_VAR (var), NULL);
- VEC_replace (tree, vars, 0, var);
- }
- else
- ridx = 1;
- }
-
- replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
- !is_read, !is_read);
- }
-
- VEC_free (tree, heap, vars);
-}
-
-/* Returns the single statement in that NAME is used, excepting
- the looparound phi nodes contained in one of the chains. If there is no
- such statement, or more statements, NULL is returned. */
-
-static gimple
-single_nonlooparound_use (tree name)
-{
- use_operand_p use;
- imm_use_iterator it;
- gimple stmt, ret = NULL;
-
- FOR_EACH_IMM_USE_FAST (use, it, name)
- {
- stmt = USE_STMT (use);
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- /* Ignore uses in looparound phi nodes. Uses in other phi nodes
- could not be processed anyway, so just fail for them. */
- if (bitmap_bit_p (looparound_phis,
- SSA_NAME_VERSION (PHI_RESULT (stmt))))
- continue;
-
- return NULL;
- }
- else if (ret != NULL)
- return NULL;
- else
- ret = stmt;
- }
-
- return ret;
-}
-
-/* Remove statement STMT, as well as the chain of assignments in that it is
- used. */
-
-static void
-remove_stmt (gimple stmt)
-{
- tree name;
- gimple next;
- gimple_stmt_iterator psi;
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- name = PHI_RESULT (stmt);
- next = single_nonlooparound_use (name);
- psi = gsi_for_stmt (stmt);
- remove_phi_node (&psi, true);
-
- if (!next
- || !gimple_assign_ssa_name_copy_p (next)
- || gimple_assign_rhs1 (next) != name)
- return;
-
- stmt = next;
- }
-
- while (1)
- {
- gimple_stmt_iterator bsi;
-
- bsi = gsi_for_stmt (stmt);
-
- name = gimple_assign_lhs (stmt);
- gcc_assert (TREE_CODE (name) == SSA_NAME);
-
- next = single_nonlooparound_use (name);
-
- mark_virtual_ops_for_renaming (stmt);
- gsi_remove (&bsi, true);
- release_defs (stmt);
-
- if (!next
- || !gimple_assign_ssa_name_copy_p (next)
- || gimple_assign_rhs1 (next) != name)
- return;
-
- stmt = next;
- }
-}
-
-/* Perform the predictive commoning optimization for a chain CHAIN.
- Uids of the newly created temporary variables are marked in TMP_VARS.*/
-
-static void
-execute_pred_commoning_chain (struct loop *loop, chain_p chain,
- bitmap tmp_vars)
-{
- unsigned i;
- dref a, root;
- tree var;
-
- if (chain->combined)
- {
- /* For combined chains, just remove the statements that are used to
- compute the values of the expression (except for the root one). */
- for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
- remove_stmt (a->stmt);
- }
- else
- {
- /* For non-combined chains, set up the variables that hold its value,
- and replace the uses of the original references by these
- variables. */
- root = get_chain_root (chain);
- mark_virtual_ops_for_renaming (root->stmt);
-
- initialize_root (loop, chain, tmp_vars);
- for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
- {
- mark_virtual_ops_for_renaming (a->stmt);
- var = VEC_index (tree, chain->vars, chain->length - a->distance);
- replace_ref_with (a->stmt, var, false, false);
- }
- }
-}
-
-/* Determines the unroll factor necessary to remove as many temporary variable
- copies as possible. CHAINS is the list of chains that will be
- optimized. */
-
-static unsigned
-determine_unroll_factor (VEC (chain_p, heap) *chains)
-{
- chain_p chain;
- unsigned factor = 1, af, nfactor, i;
- unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
-
- for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
- {
- if (chain->type == CT_INVARIANT || chain->combined)
- continue;
-
- /* The best unroll factor for this chain is equal to the number of
- temporary variables that we create for it. */
- af = chain->length;
- if (chain->has_max_use_after)
- af++;
-
- nfactor = factor * af / gcd (factor, af);
- if (nfactor <= max)
- factor = nfactor;
- }
-
- return factor;
-}
-
-/* Perform the predictive commoning optimization for CHAINS.
- Uids of the newly created temporary variables are marked in TMP_VARS. */
-
-static void
-execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
- bitmap tmp_vars)
-{
- chain_p chain;
- unsigned i;
-
- for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
- {
- if (chain->type == CT_INVARIANT)
- execute_load_motion (loop, chain, tmp_vars);
- else
- execute_pred_commoning_chain (loop, chain, tmp_vars);
- }
-
- update_ssa (TODO_update_ssa_only_virtuals);
-}
-
-/* For each reference in CHAINS, if its defining statement is
- phi node, record the ssa name that is defined by it. */
-
-static void
-replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
-{
- chain_p chain;
- dref a;
- unsigned i, j;
-
- for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
- for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
- {
- if (gimple_code (a->stmt) == GIMPLE_PHI)
- {
- a->name_defined_by_phi = PHI_RESULT (a->stmt);
- a->stmt = NULL;
- }
- }
-}
-
-/* For each reference in CHAINS, if name_defined_by_phi is not
- NULL, use it to set the stmt field. */
-
-static void
-replace_names_by_phis (VEC (chain_p, heap) *chains)
-{
- chain_p chain;
- dref a;
- unsigned i, j;
-
- for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
- for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
- if (a->stmt == NULL)
- {
- a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
- gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
- a->name_defined_by_phi = NULL_TREE;
- }
-}
-
-/* Wrapper over execute_pred_commoning, to pass it as a callback
- to tree_transform_and_unroll_loop. */
-
-struct epcc_data
-{
- VEC (chain_p, heap) *chains;
- bitmap tmp_vars;
-};
-
-static void
-execute_pred_commoning_cbck (struct loop *loop, void *data)
-{
- struct epcc_data *const dta = (struct epcc_data *) data;
-
- /* Restore phi nodes that were replaced by ssa names before
- tree_transform_and_unroll_loop (see detailed description in
- tree_predictive_commoning_loop). */
- replace_names_by_phis (dta->chains);
- execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
-}
-
-/* Returns true if we can and should unroll LOOP FACTOR times. Number
- of iterations of the loop is returned in NITER. */
-
-static bool
-should_unroll_loop_p (struct loop *loop, unsigned factor,
- struct tree_niter_desc *niter)
-{
- edge exit;
-
- if (factor == 1)
- return false;
-
- /* Check whether unrolling is possible. We only want to unroll loops
- for that we are able to determine number of iterations. We also
- want to split the extra iterations of the loop from its end,
- therefore we require that the loop has precisely one
- exit. */
-
- exit = single_dom_exit (loop);
- if (!exit)
- return false;
-
- if (!number_of_iterations_exit (loop, exit, niter, false))
- return false;
-
- /* And of course, we must be able to duplicate the loop. */
- if (!can_duplicate_loop_p (loop))
- return false;
-
- /* The final loop should be small enough. */
- if (tree_num_loop_insns (loop, &eni_size_weights) * factor
- > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
- return false;
-
- return true;
-}
-
-/* Base NAME and all the names in the chain of phi nodes that use it
- on variable VAR. The phi nodes are recognized by being in the copies of
- the header of the LOOP. */
-
-static void
-base_names_in_chain_on (struct loop *loop, tree name, tree var)
-{
- gimple stmt, phi;
- imm_use_iterator iter;
- edge e;
-
- SSA_NAME_VAR (name) = var;
-
- while (1)
- {
- phi = NULL;
- FOR_EACH_IMM_USE_STMT (stmt, iter, name)
- {
- if (gimple_code (stmt) == GIMPLE_PHI
- && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
- {
- phi = stmt;
- BREAK_FROM_IMM_USE_STMT (iter);
- }
- }
- if (!phi)
- return;
-
- if (gimple_bb (phi) == loop->header)
- e = loop_latch_edge (loop);
- else
- e = single_pred_edge (gimple_bb (stmt));
-
- name = PHI_RESULT (phi);
- SSA_NAME_VAR (name) = var;
- }
-}
-
-/* Given an unrolled LOOP after predictive commoning, remove the
- register copies arising from phi nodes by changing the base
- variables of SSA names. TMP_VARS is the set of the temporary variables
- for those we want to perform this. */
-
-static void
-eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
-{
- edge e;
- gimple phi, stmt;
- tree name, use, var;
- gimple_stmt_iterator psi;
-
- e = loop_latch_edge (loop);
- for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
- {
- phi = gsi_stmt (psi);
- name = PHI_RESULT (phi);
- var = SSA_NAME_VAR (name);
- if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
- continue;
- use = PHI_ARG_DEF_FROM_EDGE (phi, e);
- gcc_assert (TREE_CODE (use) == SSA_NAME);
-
- /* Base all the ssa names in the ud and du chain of NAME on VAR. */
- stmt = SSA_NAME_DEF_STMT (use);
- while (gimple_code (stmt) == GIMPLE_PHI
- /* In case we could not unroll the loop enough to eliminate
- all copies, we may reach the loop header before the defining
- statement (in that case, some register copies will be present
- in loop latch in the final code, corresponding to the newly
- created looparound phi nodes). */
- && gimple_bb (stmt) != loop->header)
- {
- gcc_assert (single_pred_p (gimple_bb (stmt)));
- use = PHI_ARG_DEF (stmt, 0);
- stmt = SSA_NAME_DEF_STMT (use);
- }
-
- base_names_in_chain_on (loop, use, var);
- }
-}
-
-/* Returns true if CHAIN is suitable to be combined. */
-
-static bool
-chain_can_be_combined_p (chain_p chain)
-{
- return (!chain->combined
- && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
-}
-
-/* Returns the modify statement that uses NAME. Skips over assignment
- statements, NAME is replaced with the actual name used in the returned
- statement. */
-
-static gimple
-find_use_stmt (tree *name)
-{
- gimple stmt;
- tree rhs, lhs;
-
- /* Skip over assignments. */
- while (1)
- {
- stmt = single_nonlooparound_use (*name);
- if (!stmt)
- return NULL;
-
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- return NULL;
-
- lhs = gimple_assign_lhs (stmt);
- if (TREE_CODE (lhs) != SSA_NAME)
- return NULL;
-
- if (gimple_assign_copy_p (stmt))
- {
- rhs = gimple_assign_rhs1 (stmt);
- if (rhs != *name)
- return NULL;
-
- *name = lhs;
- }
- else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
- == GIMPLE_BINARY_RHS)
- return stmt;
- else
- return NULL;
- }
-}
-
-/* Returns true if we may perform reassociation for operation CODE in TYPE. */
-
-static bool
-may_reassociate_p (tree type, enum tree_code code)
-{
- if (FLOAT_TYPE_P (type)
- && !flag_unsafe_math_optimizations)
- return false;
-
- return (commutative_tree_code (code)
- && associative_tree_code (code));
-}
-
-/* If the operation used in STMT is associative and commutative, go through the
- tree of the same operations and returns its root. Distance to the root
- is stored in DISTANCE. */
-
-static gimple
-find_associative_operation_root (gimple stmt, unsigned *distance)
-{
- tree lhs;
- gimple next;
- enum tree_code code = gimple_assign_rhs_code (stmt);
- tree type = TREE_TYPE (gimple_assign_lhs (stmt));
- unsigned dist = 0;
-
- if (!may_reassociate_p (type, code))
- return NULL;
-
- while (1)
- {
- lhs = gimple_assign_lhs (stmt);
- gcc_assert (TREE_CODE (lhs) == SSA_NAME);
-
- next = find_use_stmt (&lhs);
- if (!next
- || gimple_assign_rhs_code (next) != code)
- break;
-
- stmt = next;
- dist++;
- }
-
- if (distance)
- *distance = dist;
- return stmt;
-}
-
-/* Returns the common statement in that NAME1 and NAME2 have a use. If there
- is no such statement, returns NULL_TREE. In case the operation used on
- NAME1 and NAME2 is associative and commutative, returns the root of the
- tree formed by this operation instead of the statement that uses NAME1 or
- NAME2. */
-
-static gimple
-find_common_use_stmt (tree *name1, tree *name2)
-{
- gimple stmt1, stmt2;
-
- stmt1 = find_use_stmt (name1);
- if (!stmt1)
- return NULL;
-
- stmt2 = find_use_stmt (name2);
- if (!stmt2)
- return NULL;
-
- if (stmt1 == stmt2)
- return stmt1;
-
- stmt1 = find_associative_operation_root (stmt1, NULL);
- if (!stmt1)
- return NULL;
- stmt2 = find_associative_operation_root (stmt2, NULL);
- if (!stmt2)
- return NULL;
-
- return (stmt1 == stmt2 ? stmt1 : NULL);
-}
-
-/* Checks whether R1 and R2 are combined together using CODE, with the result
- in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
- if it is true. If CODE is ERROR_MARK, set these values instead. */
-
-static bool
-combinable_refs_p (dref r1, dref r2,
- enum tree_code *code, bool *swap, tree *rslt_type)
-{
- enum tree_code acode;
- bool aswap;
- tree atype;
- tree name1, name2;
- gimple stmt;
-
- name1 = name_for_ref (r1);
- name2 = name_for_ref (r2);
- gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
-
- stmt = find_common_use_stmt (&name1, &name2);
-
- if (!stmt)
- return false;
-
- acode = gimple_assign_rhs_code (stmt);
- aswap = (!commutative_tree_code (acode)
- && gimple_assign_rhs1 (stmt) != name1);
- atype = TREE_TYPE (gimple_assign_lhs (stmt));
-
- if (*code == ERROR_MARK)
- {
- *code = acode;
- *swap = aswap;
- *rslt_type = atype;
- return true;
- }
-
- return (*code == acode
- && *swap == aswap
- && *rslt_type == atype);
-}
-
-/* Remove OP from the operation on rhs of STMT, and replace STMT with
- an assignment of the remaining operand. */
-
-static void
-remove_name_from_operation (gimple stmt, tree op)
-{
- tree other_op;
- gimple_stmt_iterator si;
-
- gcc_assert (is_gimple_assign (stmt));
-
- if (gimple_assign_rhs1 (stmt) == op)
- other_op = gimple_assign_rhs2 (stmt);
- else
- other_op = gimple_assign_rhs1 (stmt);
-
- si = gsi_for_stmt (stmt);
- gimple_assign_set_rhs_from_tree (&si, other_op);
-
- /* We should not have reallocated STMT. */
- gcc_assert (gsi_stmt (si) == stmt);
-
- update_stmt (stmt);
-}
-
-/* Reassociates the expression in that NAME1 and NAME2 are used so that they
- are combined in a single statement, and returns this statement. */
-
-static gimple
-reassociate_to_the_same_stmt (tree name1, tree name2)
-{
- gimple stmt1, stmt2, root1, root2, s1, s2;
- gimple new_stmt, tmp_stmt;
- tree new_name, tmp_name, var, r1, r2;
- unsigned dist1, dist2;
- enum tree_code code;
- tree type = TREE_TYPE (name1);
- gimple_stmt_iterator bsi;
-
- stmt1 = find_use_stmt (&name1);
- stmt2 = find_use_stmt (&name2);
- root1 = find_associative_operation_root (stmt1, &dist1);
- root2 = find_associative_operation_root (stmt2, &dist2);
- code = gimple_assign_rhs_code (stmt1);
-
- gcc_assert (root1 && root2 && root1 == root2
- && code == gimple_assign_rhs_code (stmt2));
-
- /* Find the root of the nearest expression in that both NAME1 and NAME2
- are used. */
- r1 = name1;
- s1 = stmt1;
- r2 = name2;
- s2 = stmt2;
-
- while (dist1 > dist2)
- {
- s1 = find_use_stmt (&r1);
- r1 = gimple_assign_lhs (s1);
- dist1--;
- }
- while (dist2 > dist1)
- {
- s2 = find_use_stmt (&r2);
- r2 = gimple_assign_lhs (s2);
- dist2--;
- }
-
- while (s1 != s2)
- {
- s1 = find_use_stmt (&r1);
- r1 = gimple_assign_lhs (s1);
- s2 = find_use_stmt (&r2);
- r2 = gimple_assign_lhs (s2);
- }
-
- /* Remove NAME1 and NAME2 from the statements in that they are used
- currently. */
- remove_name_from_operation (stmt1, name1);
- remove_name_from_operation (stmt2, name2);
-
- /* Insert the new statement combining NAME1 and NAME2 before S1, and
- combine it with the rhs of S1. */
- var = create_tmp_var (type, "predreastmp");
- add_referenced_var (var);
- new_name = make_ssa_name (var, NULL);
- new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
-
- var = create_tmp_var (type, "predreastmp");
- add_referenced_var (var);
- tmp_name = make_ssa_name (var, NULL);
-
- /* Rhs of S1 may now be either a binary expression with operation
- CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
- so that name1 or name2 was removed from it). */
- tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
- tmp_name,
- gimple_assign_rhs1 (s1),
- gimple_assign_rhs2 (s1));
-
- bsi = gsi_for_stmt (s1);
- gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
- s1 = gsi_stmt (bsi);
- update_stmt (s1);
-
- gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
- gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
-
- return new_stmt;
-}
-
-/* Returns the statement that combines references R1 and R2. In case R1
- and R2 are not used in the same statement, but they are used with an
- associative and commutative operation in the same expression, reassociate
- the expression so that they are used in the same statement. */
-
-static gimple
-stmt_combining_refs (dref r1, dref r2)
-{
- gimple stmt1, stmt2;
- tree name1 = name_for_ref (r1);
- tree name2 = name_for_ref (r2);
-
- stmt1 = find_use_stmt (&name1);
- stmt2 = find_use_stmt (&name2);
- if (stmt1 == stmt2)
- return stmt1;
-
- return reassociate_to_the_same_stmt (name1, name2);
-}
-
-/* Tries to combine chains CH1 and CH2 together. If this succeeds, the
- description of the new chain is returned, otherwise we return NULL. */
-
-static chain_p
-combine_chains (chain_p ch1, chain_p ch2)
-{
- dref r1, r2, nw;
- enum tree_code op = ERROR_MARK;
- bool swap = false;
- chain_p new_chain;
- unsigned i;
- gimple root_stmt;
- tree rslt_type = NULL_TREE;
-
- if (ch1 == ch2)
- return false;
- if (ch1->length != ch2->length)
- return NULL;
-
- if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
- return NULL;
-
- for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
- && VEC_iterate (dref, ch2->refs, i, r2)); i++)
- {
- if (r1->distance != r2->distance)
- return NULL;
-
- if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
- return NULL;
- }
-
- if (swap)
- {
- chain_p tmp = ch1;
- ch1 = ch2;
- ch2 = tmp;
- }
-
- new_chain = XCNEW (struct chain);
- new_chain->type = CT_COMBINATION;
- new_chain->op = op;
- new_chain->ch1 = ch1;
- new_chain->ch2 = ch2;
- new_chain->rslt_type = rslt_type;
- new_chain->length = ch1->length;
-
- for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
- && VEC_iterate (dref, ch2->refs, i, r2)); i++)
- {
- nw = XCNEW (struct dref);
- nw->stmt = stmt_combining_refs (r1, r2);
- nw->distance = r1->distance;
-
- VEC_safe_push (dref, heap, new_chain->refs, nw);
- }
-
- new_chain->has_max_use_after = false;
- root_stmt = get_chain_root (new_chain)->stmt;
- for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
- {
- if (nw->distance == new_chain->length
- && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
- {
- new_chain->has_max_use_after = true;
- break;
- }
- }
-
- ch1->combined = true;
- ch2->combined = true;
- return new_chain;
-}
-
-/* Try to combine the CHAINS. */
-
-static void
-try_combine_chains (VEC (chain_p, heap) **chains)
-{
- unsigned i, j;
- chain_p ch1, ch2, cch;
- VEC (chain_p, heap) *worklist = NULL;
-
- for (i = 0; VEC_iterate (chain_p, *chains, i, ch1); i++)
- if (chain_can_be_combined_p (ch1))
- VEC_safe_push (chain_p, heap, worklist, ch1);
-
- while (!VEC_empty (chain_p, worklist))
- {
- ch1 = VEC_pop (chain_p, worklist);
- if (!chain_can_be_combined_p (ch1))
- continue;
-
- for (j = 0; VEC_iterate (chain_p, *chains, j, ch2); j++)
- {
- if (!chain_can_be_combined_p (ch2))
- continue;
-
- cch = combine_chains (ch1, ch2);
- if (cch)
- {
- VEC_safe_push (chain_p, heap, worklist, cch);
- VEC_safe_push (chain_p, heap, *chains, cch);
- break;
- }
- }
- }
-}
-
-/* Sets alias information based on data reference DR for REF,
- if necessary. */
-
-static void
-set_alias_info (tree ref, struct data_reference *dr)
-{
- tree var;
- tree tag = DR_SYMBOL_TAG (dr);
-
- gcc_assert (tag != NULL_TREE);
-
- ref = get_base_address (ref);
- if (!ref || !INDIRECT_REF_P (ref))
- return;
-
- var = SSA_NAME_VAR (TREE_OPERAND (ref, 0));
- if (var_ann (var)->symbol_mem_tag)
- return;
-
- if (!MTAG_P (tag))
- new_type_alias (var, tag, ref);
- else
- var_ann (var)->symbol_mem_tag = tag;
-}
-
-/* Prepare initializers for CHAIN in LOOP. Returns false if this is
- impossible because one of these initializers may trap, true otherwise. */
-
-static bool
-prepare_initializers_chain (struct loop *loop, chain_p chain)
-{
- unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
- struct data_reference *dr = get_chain_root (chain)->ref;
- tree init;
- gimple_seq stmts;
- dref laref;
- edge entry = loop_preheader_edge (loop);
-
- /* Find the initializers for the variables, and check that they cannot
- trap. */
- chain->inits = VEC_alloc (tree, heap, n);
- for (i = 0; i < n; i++)
- VEC_quick_push (tree, chain->inits, NULL_TREE);
-
- /* If we have replaced some looparound phi nodes, use their initializers
- instead of creating our own. */
- for (i = 0; VEC_iterate (dref, chain->refs, i, laref); i++)
- {
- if (gimple_code (laref->stmt) != GIMPLE_PHI)
- continue;
-
- gcc_assert (laref->distance > 0);
- VEC_replace (tree, chain->inits, n - laref->distance,
- PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
- }
-
- for (i = 0; i < n; i++)
- {
- if (VEC_index (tree, chain->inits, i) != NULL_TREE)
- continue;
-
- init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
- if (!init)
- return false;
-
- if (!chain->all_always_accessed && tree_could_trap_p (init))
- return false;
-
- init = force_gimple_operand (init, &stmts, false, NULL_TREE);
- if (stmts)
- {
- mark_virtual_ops_for_renaming_list (stmts);
- gsi_insert_seq_on_edge_immediate (entry, stmts);
- }
- set_alias_info (init, dr);
-
- VEC_replace (tree, chain->inits, i, init);
- }
-
- return true;
-}
-
-/* Prepare initializers for CHAINS in LOOP, and free chains that cannot
- be used because the initializers might trap. */
-
-static void
-prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
-{
- chain_p chain;
- unsigned i;
-
- for (i = 0; i < VEC_length (chain_p, chains); )
- {
- chain = VEC_index (chain_p, chains, i);
- if (prepare_initializers_chain (loop, chain))
- i++;
- else
- {
- release_chain (chain);
- VEC_unordered_remove (chain_p, chains, i);
- }
- }
-}
-
-/* Performs predictive commoning for LOOP. Returns true if LOOP was
- unrolled. */
-
-static bool
-tree_predictive_commoning_loop (struct loop *loop)
-{
- VEC (data_reference_p, heap) *datarefs;
- VEC (ddr_p, heap) *dependences;
- struct component *components;
- VEC (chain_p, heap) *chains = NULL;
- unsigned unroll_factor;
- struct tree_niter_desc desc;
- bool unroll = false;
- edge exit;
- bitmap tmp_vars;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Processing loop %d\n", loop->num);
-
- /* Find the data references and split them into components according to their
- dependence relations. */
- datarefs = VEC_alloc (data_reference_p, heap, 10);
- dependences = VEC_alloc (ddr_p, heap, 10);
- compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_data_dependence_relations (dump_file, dependences);
-
- components = split_data_refs_to_components (loop, datarefs, dependences);
- free_dependence_relations (dependences);
- if (!components)
- {
- free_data_refs (datarefs);
- return false;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Initial state:\n\n");
- dump_components (dump_file, components);
- }
-
- /* Find the suitable components and split them into chains. */
- components = filter_suitable_components (loop, components);
-
- tmp_vars = BITMAP_ALLOC (NULL);
- looparound_phis = BITMAP_ALLOC (NULL);
- determine_roots (loop, components, &chains);
- release_components (components);
-
- if (!chains)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Predictive commoning failed: no suitable chains\n");
- goto end;
- }
- prepare_initializers (loop, chains);
-
- /* Try to combine the chains that are always worked with together. */
- try_combine_chains (&chains);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Before commoning:\n\n");
- dump_chains (dump_file, chains);
- }
-
- /* Determine the unroll factor, and if the loop should be unrolled, ensure
- that its number of iterations is divisible by the factor. */
- unroll_factor = determine_unroll_factor (chains);
- scev_reset ();
- unroll = should_unroll_loop_p (loop, unroll_factor, &desc);
- exit = single_dom_exit (loop);
-
- /* Execute the predictive commoning transformations, and possibly unroll the
- loop. */
- if (unroll)
- {
- struct epcc_data dta;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
-
- dta.chains = chains;
- dta.tmp_vars = tmp_vars;
-
- update_ssa (TODO_update_ssa_only_virtuals);
-
- /* Cfg manipulations performed in tree_transform_and_unroll_loop before
- execute_pred_commoning_cbck is called may cause phi nodes to be
- reallocated, which is a problem since CHAINS may point to these
- statements. To fix this, we store the ssa names defined by the
- phi nodes here instead of the phi nodes themselves, and restore
- the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
- replace_phis_by_defined_names (chains);
-
- tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
- execute_pred_commoning_cbck, &dta);
- eliminate_temp_copies (loop, tmp_vars);
- }
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Executing predictive commoning without unrolling.\n");
- execute_pred_commoning (loop, chains, tmp_vars);
- }
-
-end: ;
- release_chains (chains);
- free_data_refs (datarefs);
- BITMAP_FREE (tmp_vars);
- BITMAP_FREE (looparound_phis);
-
- free_affine_expand_cache (&name_expansions);
-
- return unroll;
-}
-
-/* Runs predictive commoning. */
-
-unsigned
-tree_predictive_commoning (void)
-{
- bool unrolled = false;
- struct loop *loop;
- loop_iterator li;
- unsigned ret = 0;
-
- initialize_original_copy_tables ();
- FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
- if (optimize_loop_for_speed_p (loop))
- {
- unrolled |= tree_predictive_commoning_loop (loop);
- }
-
- if (unrolled)
- {
- scev_reset ();
- ret = TODO_cleanup_cfg;
- }
- free_original_copy_tables ();
-
- return ret;
-}