aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/tree-cfg.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.4.3/gcc/tree-cfg.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.4.3/gcc/tree-cfg.c')
-rw-r--r--gcc-4.4.3/gcc/tree-cfg.c7402
1 files changed, 0 insertions, 7402 deletions
diff --git a/gcc-4.4.3/gcc/tree-cfg.c b/gcc-4.4.3/gcc/tree-cfg.c
deleted file mode 100644
index 4c4226579..000000000
--- a/gcc-4.4.3/gcc/tree-cfg.c
+++ /dev/null
@@ -1,7402 +0,0 @@
-/* Control flow functions for trees.
- Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
- Free Software Foundation, Inc.
- Contributed by Diego Novillo <dnovillo@redhat.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "output.h"
-#include "flags.h"
-#include "function.h"
-#include "expr.h"
-#include "ggc.h"
-#include "langhooks.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "timevar.h"
-#include "tree-dump.h"
-#include "tree-pass.h"
-#include "toplev.h"
-#include "except.h"
-#include "cfgloop.h"
-#include "cfglayout.h"
-#include "tree-ssa-propagate.h"
-#include "value-prof.h"
-#include "pointer-set.h"
-#include "tree-inline.h"
-#include "vecprim.h"
-
-/* This file contains functions for building the Control Flow Graph (CFG)
- for a function tree. */
-
-/* Local declarations. */
-
-/* Initial capacity for the basic block array. */
-static const int initial_cfg_capacity = 20;
-
-/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
- which use a particular edge. The CASE_LABEL_EXPRs are chained together
- via their TREE_CHAIN field, which we clear after we're done with the
- hash table to prevent problems with duplication of GIMPLE_SWITCHes.
-
- Access to this list of CASE_LABEL_EXPRs allows us to efficiently
- update the case vector in response to edge redirections.
-
- Right now this table is set up and torn down at key points in the
- compilation process. It would be nice if we could make the table
- more persistent. The key is getting notification of changes to
- the CFG (particularly edge removal, creation and redirection). */
-
-static struct pointer_map_t *edge_to_cases;
-
-/* CFG statistics. */
-struct cfg_stats_d
-{
- long num_merged_labels;
-};
-
-static struct cfg_stats_d cfg_stats;
-
-/* Nonzero if we found a computed goto while building basic blocks. */
-static bool found_computed_goto;
-
-/* Vectors to map a discriminator-enhanced locus to a real locus and
- discriminator value. */
-static VEC(int,heap) *discriminator_location_locations = NULL;
-static VEC(int,heap) *discriminator_location_discriminators = NULL;
-location_t min_discriminator_location = UNKNOWN_LOCATION;
-
-/* Hash table to store last discriminator assigned for each locus. */
-struct locus_discrim_map
-{
- location_t locus;
- int discriminator;
-};
-static htab_t discriminator_per_locus;
-
-/* Basic blocks and flowgraphs. */
-static void make_blocks (gimple_seq);
-static void factor_computed_gotos (void);
-
-/* Edges. */
-static void make_edges (void);
-static void make_cond_expr_edges (basic_block);
-static void make_gimple_switch_edges (basic_block);
-static void make_goto_expr_edges (basic_block);
-static unsigned int locus_map_hash (const void *);
-static int locus_map_eq (const void *, const void *);
-static void assign_discriminator (location_t, basic_block);
-static edge gimple_redirect_edge_and_branch (edge, basic_block);
-static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
-static unsigned int split_critical_edges (void);
-
-/* Various helpers. */
-static inline bool stmt_starts_bb_p (gimple, gimple);
-static int gimple_verify_flow_info (void);
-static void gimple_make_forwarder_block (edge);
-static void gimple_cfg2vcg (FILE *);
-static gimple first_non_label_stmt (basic_block);
-
-/* Flowgraph optimization and cleanup. */
-static void gimple_merge_blocks (basic_block, basic_block);
-static bool gimple_can_merge_blocks_p (basic_block, basic_block);
-static void remove_bb (basic_block);
-static edge find_taken_edge_computed_goto (basic_block, tree);
-static edge find_taken_edge_cond_expr (basic_block, tree);
-static edge find_taken_edge_switch_expr (basic_block, tree);
-static tree find_case_label_for_value (gimple, tree);
-
-void
-init_empty_tree_cfg_for_function (struct function *fn)
-{
- /* Initialize the basic block array. */
- init_flow (fn);
- profile_status_for_function (fn) = PROFILE_ABSENT;
- n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
- last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
- basic_block_info_for_function (fn)
- = VEC_alloc (basic_block, gc, initial_cfg_capacity);
- VEC_safe_grow_cleared (basic_block, gc,
- basic_block_info_for_function (fn),
- initial_cfg_capacity);
-
- /* Build a mapping of labels to their associated blocks. */
- label_to_block_map_for_function (fn)
- = VEC_alloc (basic_block, gc, initial_cfg_capacity);
- VEC_safe_grow_cleared (basic_block, gc,
- label_to_block_map_for_function (fn),
- initial_cfg_capacity);
-
- SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
- ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
- SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
- EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
-
- ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
- = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
- EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
- = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
-}
-
-void
-init_empty_tree_cfg (void)
-{
- init_empty_tree_cfg_for_function (cfun);
-}
-
-/*---------------------------------------------------------------------------
- Create basic blocks
----------------------------------------------------------------------------*/
-
-/* Entry point to the CFG builder for trees. SEQ is the sequence of
- statements to be added to the flowgraph. */
-
-static void
-build_gimple_cfg (gimple_seq seq)
-{
- /* Register specific gimple functions. */
- gimple_register_cfg_hooks ();
-
- memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
-
- init_empty_tree_cfg ();
-
- found_computed_goto = 0;
- make_blocks (seq);
-
- /* Computed gotos are hell to deal with, especially if there are
- lots of them with a large number of destinations. So we factor
- them to a common computed goto location before we build the
- edge list. After we convert back to normal form, we will un-factor
- the computed gotos since factoring introduces an unwanted jump. */
- if (found_computed_goto)
- factor_computed_gotos ();
-
- /* Make sure there is always at least one block, even if it's empty. */
- if (n_basic_blocks == NUM_FIXED_BLOCKS)
- create_empty_bb (ENTRY_BLOCK_PTR);
-
- /* Adjust the size of the array. */
- if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
- VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
-
- /* To speed up statement iterator walks, we first purge dead labels. */
- cleanup_dead_labels ();
-
- /* Group case nodes to reduce the number of edges.
- We do this after cleaning up dead labels because otherwise we miss
- a lot of obvious case merging opportunities. */
- group_case_labels ();
-
- /* Create the edges of the flowgraph. */
- discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
- free);
- make_edges ();
- cleanup_dead_labels ();
- htab_delete (discriminator_per_locus);
-
- /* Debugging dumps. */
-
- /* Write the flowgraph to a VCG file. */
- {
- int local_dump_flags;
- FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
- if (vcg_file)
- {
- gimple_cfg2vcg (vcg_file);
- dump_end (TDI_vcg, vcg_file);
- }
- }
-
-#ifdef ENABLE_CHECKING
- verify_stmts ();
-#endif
-}
-
-static unsigned int
-execute_build_cfg (void)
-{
- gimple_seq body = gimple_body (current_function_decl);
-
- build_gimple_cfg (body);
- gimple_set_body (current_function_decl, NULL);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Scope blocks:\n");
- dump_scope_blocks (dump_file, dump_flags);
- }
- return 0;
-}
-
-struct gimple_opt_pass pass_build_cfg =
-{
- {
- GIMPLE_PASS,
- "cfg", /* name */
- NULL, /* gate */
- execute_build_cfg, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_CFG, /* tv_id */
- PROP_gimple_leh, /* properties_required */
- PROP_cfg, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_verify_stmts | TODO_cleanup_cfg
- | TODO_dump_func /* todo_flags_finish */
- }
-};
-
-
-/* Return true if T is a computed goto. */
-
-static bool
-computed_goto_p (gimple t)
-{
- return (gimple_code (t) == GIMPLE_GOTO
- && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
-}
-
-
-/* Search the CFG for any computed gotos. If found, factor them to a
- common computed goto site. Also record the location of that site so
- that we can un-factor the gotos after we have converted back to
- normal form. */
-
-static void
-factor_computed_gotos (void)
-{
- basic_block bb;
- tree factored_label_decl = NULL;
- tree var = NULL;
- gimple factored_computed_goto_label = NULL;
- gimple factored_computed_goto = NULL;
-
- /* We know there are one or more computed gotos in this function.
- Examine the last statement in each basic block to see if the block
- ends with a computed goto. */
-
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator gsi = gsi_last_bb (bb);
- gimple last;
-
- if (gsi_end_p (gsi))
- continue;
-
- last = gsi_stmt (gsi);
-
- /* Ignore the computed goto we create when we factor the original
- computed gotos. */
- if (last == factored_computed_goto)
- continue;
-
- /* If the last statement is a computed goto, factor it. */
- if (computed_goto_p (last))
- {
- gimple assignment;
-
- /* The first time we find a computed goto we need to create
- the factored goto block and the variable each original
- computed goto will use for their goto destination. */
- if (!factored_computed_goto)
- {
- basic_block new_bb = create_empty_bb (bb);
- gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
-
- /* Create the destination of the factored goto. Each original
- computed goto will put its desired destination into this
- variable and jump to the label we create immediately
- below. */
- var = create_tmp_var (ptr_type_node, "gotovar");
-
- /* Build a label for the new block which will contain the
- factored computed goto. */
- factored_label_decl = create_artificial_label ();
- factored_computed_goto_label
- = gimple_build_label (factored_label_decl);
- gsi_insert_after (&new_gsi, factored_computed_goto_label,
- GSI_NEW_STMT);
-
- /* Build our new computed goto. */
- factored_computed_goto = gimple_build_goto (var);
- gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
- }
-
- /* Copy the original computed goto's destination into VAR. */
- assignment = gimple_build_assign (var, gimple_goto_dest (last));
- gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
-
- /* And re-vector the computed goto to the new destination. */
- gimple_goto_set_dest (last, factored_label_decl);
- }
- }
-}
-
-
-/* Build a flowgraph for the sequence of stmts SEQ. */
-
-static void
-make_blocks (gimple_seq seq)
-{
- gimple_stmt_iterator i = gsi_start (seq);
- gimple stmt = NULL;
- bool start_new_block = true;
- bool first_stmt_of_seq = true;
- basic_block bb = ENTRY_BLOCK_PTR;
-
- while (!gsi_end_p (i))
- {
- gimple prev_stmt;
-
- prev_stmt = stmt;
- stmt = gsi_stmt (i);
-
- /* If the statement starts a new basic block or if we have determined
- in a previous pass that we need to create a new block for STMT, do
- so now. */
- if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
- {
- if (!first_stmt_of_seq)
- seq = gsi_split_seq_before (&i);
- bb = create_basic_block (seq, NULL, bb);
- start_new_block = false;
- }
-
- /* Now add STMT to BB and create the subgraphs for special statement
- codes. */
- gimple_set_bb (stmt, bb);
-
- if (computed_goto_p (stmt))
- found_computed_goto = true;
-
- /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
- next iteration. */
- if (stmt_ends_bb_p (stmt))
- start_new_block = true;
-
- gsi_next (&i);
- first_stmt_of_seq = false;
- }
-}
-
-
-/* Create and return a new empty basic block after bb AFTER. */
-
-static basic_block
-create_bb (void *h, void *e, basic_block after)
-{
- basic_block bb;
-
- gcc_assert (!e);
-
- /* Create and initialize a new basic block. Since alloc_block uses
- ggc_alloc_cleared to allocate a basic block, we do not have to
- clear the newly allocated basic block here. */
- bb = alloc_block ();
-
- bb->index = last_basic_block;
- bb->flags = BB_NEW;
- bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
- set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
-
- /* Add the new block to the linked list of blocks. */
- link_block (bb, after);
-
- /* Grow the basic block array if needed. */
- if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
- {
- size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
- VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
- }
-
- /* Add the newly created block to the array. */
- SET_BASIC_BLOCK (last_basic_block, bb);
-
- n_basic_blocks++;
- last_basic_block++;
-
- return bb;
-}
-
-
-/*---------------------------------------------------------------------------
- Edge creation
----------------------------------------------------------------------------*/
-
-/* Fold COND_EXPR_COND of each COND_EXPR. */
-
-void
-fold_cond_expr_cond (void)
-{
- basic_block bb;
-
- FOR_EACH_BB (bb)
- {
- gimple stmt = last_stmt (bb);
-
- if (stmt && gimple_code (stmt) == GIMPLE_COND)
- {
- tree cond;
- bool zerop, onep;
-
- fold_defer_overflow_warnings ();
- cond = fold_binary (gimple_cond_code (stmt), boolean_type_node,
- gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
- if (cond)
- {
- zerop = integer_zerop (cond);
- onep = integer_onep (cond);
- }
- else
- zerop = onep = false;
-
- fold_undefer_overflow_warnings (zerop || onep,
- stmt,
- WARN_STRICT_OVERFLOW_CONDITIONAL);
- if (zerop)
- gimple_cond_make_false (stmt);
- else if (onep)
- gimple_cond_make_true (stmt);
- }
- }
-}
-
-/* Join all the blocks in the flowgraph. */
-
-static void
-make_edges (void)
-{
- basic_block bb;
- struct omp_region *cur_region = NULL;
-
- /* Create an edge from entry to the first block with executable
- statements in it. */
- make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
-
- /* Traverse the basic block array placing edges. */
- FOR_EACH_BB (bb)
- {
- gimple last = last_stmt (bb);
- bool fallthru;
-
- if (last)
- {
- enum gimple_code code = gimple_code (last);
- switch (code)
- {
- case GIMPLE_GOTO:
- make_goto_expr_edges (bb);
- fallthru = false;
- break;
- case GIMPLE_RETURN:
- make_edge (bb, EXIT_BLOCK_PTR, 0);
- fallthru = false;
- break;
- case GIMPLE_COND:
- make_cond_expr_edges (bb);
- fallthru = false;
- break;
- case GIMPLE_SWITCH:
- make_gimple_switch_edges (bb);
- fallthru = false;
- break;
- case GIMPLE_RESX:
- make_eh_edges (last);
- fallthru = false;
- break;
-
- case GIMPLE_CALL:
- /* If this function receives a nonlocal goto, then we need to
- make edges from this call site to all the nonlocal goto
- handlers. */
- if (stmt_can_make_abnormal_goto (last))
- make_abnormal_goto_edges (bb, true);
-
- /* If this statement has reachable exception handlers, then
- create abnormal edges to them. */
- make_eh_edges (last);
-
- /* Some calls are known not to return. */
- fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
- break;
-
- case GIMPLE_ASSIGN:
- /* A GIMPLE_ASSIGN may throw internally and thus be considered
- control-altering. */
- if (is_ctrl_altering_stmt (last))
- {
- make_eh_edges (last);
- }
- fallthru = true;
- break;
-
- case GIMPLE_OMP_PARALLEL:
- case GIMPLE_OMP_TASK:
- case GIMPLE_OMP_FOR:
- case GIMPLE_OMP_SINGLE:
- case GIMPLE_OMP_MASTER:
- case GIMPLE_OMP_ORDERED:
- case GIMPLE_OMP_CRITICAL:
- case GIMPLE_OMP_SECTION:
- cur_region = new_omp_region (bb, code, cur_region);
- fallthru = true;
- break;
-
- case GIMPLE_OMP_SECTIONS:
- cur_region = new_omp_region (bb, code, cur_region);
- fallthru = true;
- break;
-
- case GIMPLE_OMP_SECTIONS_SWITCH:
- fallthru = false;
- break;
-
-
- case GIMPLE_OMP_ATOMIC_LOAD:
- case GIMPLE_OMP_ATOMIC_STORE:
- fallthru = true;
- break;
-
-
- case GIMPLE_OMP_RETURN:
- /* In the case of a GIMPLE_OMP_SECTION, the edge will go
- somewhere other than the next block. This will be
- created later. */
- cur_region->exit = bb;
- fallthru = cur_region->type != GIMPLE_OMP_SECTION;
- cur_region = cur_region->outer;
- break;
-
- case GIMPLE_OMP_CONTINUE:
- cur_region->cont = bb;
- switch (cur_region->type)
- {
- case GIMPLE_OMP_FOR:
- /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
- succs edges as abnormal to prevent splitting
- them. */
- single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
- /* Make the loopback edge. */
- make_edge (bb, single_succ (cur_region->entry),
- EDGE_ABNORMAL);
-
- /* Create an edge from GIMPLE_OMP_FOR to exit, which
- corresponds to the case that the body of the loop
- is not executed at all. */
- make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
- make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
- fallthru = false;
- break;
-
- case GIMPLE_OMP_SECTIONS:
- /* Wire up the edges into and out of the nested sections. */
- {
- basic_block switch_bb = single_succ (cur_region->entry);
-
- struct omp_region *i;
- for (i = cur_region->inner; i ; i = i->next)
- {
- gcc_assert (i->type == GIMPLE_OMP_SECTION);
- make_edge (switch_bb, i->entry, 0);
- make_edge (i->exit, bb, EDGE_FALLTHRU);
- }
-
- /* Make the loopback edge to the block with
- GIMPLE_OMP_SECTIONS_SWITCH. */
- make_edge (bb, switch_bb, 0);
-
- /* Make the edge from the switch to exit. */
- make_edge (switch_bb, bb->next_bb, 0);
- fallthru = false;
- }
- break;
-
- default:
- gcc_unreachable ();
- }
- break;
-
- default:
- gcc_assert (!stmt_ends_bb_p (last));
- fallthru = true;
- }
- }
- else
- fallthru = true;
-
- if (fallthru)
- {
- make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
- if (last)
- assign_discriminator (gimple_location (last), bb->next_bb);
- }
- }
-
- if (root_omp_region)
- free_omp_regions ();
-
- /* Fold COND_EXPR_COND of each COND_EXPR. */
- fold_cond_expr_cond ();
-}
-
-/* Associate the DISCRIMINATOR with LOCUS, and return a new locus.
- We associate discriminators with a locus by allocating location_t
- values beyond those assigned by libcpp. Each new value is mapped
- directly to a real location_t value, and separately to the
- discriminator. */
-
-static location_t
-location_with_discriminator (location_t locus, int discriminator)
-{
- static int next_discriminator_location = 0;
-
- if (min_discriminator_location == UNKNOWN_LOCATION)
- {
- min_discriminator_location = line_table->highest_location + 1;
- next_discriminator_location = min_discriminator_location;
- }
-
- VEC_safe_push (int, heap, discriminator_location_locations, (int) locus);
- VEC_safe_push (int, heap, discriminator_location_discriminators,
- discriminator);
- return next_discriminator_location++;
-}
-
-/* Return TRUE if LOCUS represents a location with a discriminator. */
-
-static inline bool
-has_discriminator (location_t locus)
-{
- return (min_discriminator_location != UNKNOWN_LOCATION
- && locus >= min_discriminator_location);
-}
-
-/* Return the real location_t value for LOCUS. */
-
-location_t
-map_discriminator_location (location_t locus)
-{
- if (! has_discriminator (locus))
- return locus;
- return (location_t) VEC_index (int, discriminator_location_locations,
- locus - min_discriminator_location);
-}
-
-/* Return the discriminator for LOCUS. */
-
-int
-get_discriminator_from_locus (location_t locus)
-{
- if (! has_discriminator (locus))
- return 0;
- return VEC_index (int, discriminator_location_discriminators,
- locus - min_discriminator_location);
-}
-
-/* Trivial hash function for a location_t. ITEM is a pointer to
- a hash table entry that maps a location_t to a discriminator. */
-
-static unsigned int
-locus_map_hash (const void *item)
-{
- return ((const struct locus_discrim_map *) item)->locus;
-}
-
-/* Equality function for the locus-to-discriminator map. VA and VB
- point to the two hash table entries to compare. */
-
-static int
-locus_map_eq (const void *va, const void *vb)
-{
- const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
- const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
- return a->locus == b->locus;
-}
-
-/* Find the next available discriminator value for LOCUS. The
- discriminator distinguishes among several basic blocks that
- share a common locus, allowing for more accurate sample-based
- profiling. */
-
-static int
-next_discriminator_for_locus (location_t locus)
-{
- struct locus_discrim_map item;
- struct locus_discrim_map **slot;
-
- item.locus = locus;
- item.discriminator = 0;
- slot = (struct locus_discrim_map **)
- htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
- (hashval_t) locus, INSERT);
- gcc_assert (slot);
- if (*slot == HTAB_EMPTY_ENTRY)
- {
- *slot = XNEW (struct locus_discrim_map);
- gcc_assert (*slot);
- (*slot)->locus = locus;
- (*slot)->discriminator = 0;
- }
- (*slot)->discriminator++;
- return (*slot)->discriminator;
-}
-
-/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
-
-static bool
-same_line_p (location_t locus1, location_t locus2)
-{
- expanded_location from, to;
-
- if (locus1 == locus2)
- return true;
-
- from = expand_location (locus1);
- to = expand_location (locus2);
-
- if (from.line != to.line)
- return false;
- if (from.file == to.file)
- return true;
- return (from.file != NULL
- && to.file != NULL
- && strcmp (from.file, to.file) == 0);
-}
-
-/* Assign a unique discriminator value to instructions in block BB that
- have the same LOCUS as its predecessor block. */
-
-static void
-assign_discriminator (location_t locus, basic_block bb)
-{
- gimple first_in_to_bb, last_in_to_bb;
- int discriminator = 0;
-
- if (locus == UNKNOWN_LOCATION)
- return;
-
- if (has_discriminator (locus))
- locus = map_discriminator_location (locus);
-
- /* Check the locus of the first (non-label) instruction in the block. */
- first_in_to_bb = first_non_label_stmt (bb);
- if (first_in_to_bb)
- {
- location_t first_locus = gimple_location (first_in_to_bb);
- if (! has_discriminator (first_locus)
- && same_line_p (locus, first_locus))
- discriminator = next_discriminator_for_locus (locus);
- }
-
- /* If the first instruction doesn't trigger a discriminator, check the
- last instruction of the block. This catches the case where the
- increment portion of a for loop is placed at the end of the loop
- body. */
- if (discriminator == 0)
- {
- last_in_to_bb = last_stmt (bb);
- if (last_in_to_bb)
- {
- location_t last_locus = gimple_location (last_in_to_bb);
- if (! has_discriminator (last_locus)
- && same_line_p (locus, last_locus))
- discriminator = next_discriminator_for_locus (locus);
- }
- }
-
- if (discriminator != 0)
- {
- location_t new_locus = location_with_discriminator (locus, discriminator);
- gimple_stmt_iterator gsi;
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- if (same_line_p (locus, gimple_location (stmt)))
- gimple_set_location (stmt, new_locus);
- }
- }
-}
-
-/* Create the edges for a GIMPLE_COND starting at block BB. */
-
-static void
-make_cond_expr_edges (basic_block bb)
-{
- gimple entry = last_stmt (bb);
- gimple then_stmt, else_stmt;
- basic_block then_bb, else_bb;
- tree then_label, else_label;
- edge e;
- location_t entry_locus;
-
- gcc_assert (entry);
- gcc_assert (gimple_code (entry) == GIMPLE_COND);
-
- entry_locus = gimple_location (entry);
-
- /* Entry basic blocks for each component. */
- then_label = gimple_cond_true_label (entry);
- else_label = gimple_cond_false_label (entry);
- then_bb = label_to_block (then_label);
- else_bb = label_to_block (else_label);
- then_stmt = first_stmt (then_bb);
- else_stmt = first_stmt (else_bb);
-
- e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
- assign_discriminator (entry_locus, then_bb);
- e->goto_locus = gimple_location (then_stmt);
- if (e->goto_locus)
- e->goto_block = gimple_block (then_stmt);
- e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
- if (e)
- {
- assign_discriminator (entry_locus, else_bb);
- e->goto_locus = gimple_location (else_stmt);
- if (e->goto_locus)
- e->goto_block = gimple_block (else_stmt);
- }
-
- /* We do not need the labels anymore. */
- gimple_cond_set_true_label (entry, NULL_TREE);
- gimple_cond_set_false_label (entry, NULL_TREE);
-}
-
-
-/* Called for each element in the hash table (P) as we delete the
- edge to cases hash table.
-
- Clear all the TREE_CHAINs to prevent problems with copying of
- SWITCH_EXPRs and structure sharing rules, then free the hash table
- element. */
-
-static bool
-edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
- void *data ATTRIBUTE_UNUSED)
-{
- tree t, next;
-
- for (t = (tree) *value; t; t = next)
- {
- next = TREE_CHAIN (t);
- TREE_CHAIN (t) = NULL;
- }
-
- *value = NULL;
- return false;
-}
-
-/* Start recording information mapping edges to case labels. */
-
-void
-start_recording_case_labels (void)
-{
- gcc_assert (edge_to_cases == NULL);
- edge_to_cases = pointer_map_create ();
-}
-
-/* Return nonzero if we are recording information for case labels. */
-
-static bool
-recording_case_labels_p (void)
-{
- return (edge_to_cases != NULL);
-}
-
-/* Stop recording information mapping edges to case labels and
- remove any information we have recorded. */
-void
-end_recording_case_labels (void)
-{
- pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
- pointer_map_destroy (edge_to_cases);
- edge_to_cases = NULL;
-}
-
-/* If we are inside a {start,end}_recording_cases block, then return
- a chain of CASE_LABEL_EXPRs from T which reference E.
-
- Otherwise return NULL. */
-
-static tree
-get_cases_for_edge (edge e, gimple t)
-{
- void **slot;
- size_t i, n;
-
- /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
- chains available. Return NULL so the caller can detect this case. */
- if (!recording_case_labels_p ())
- return NULL;
-
- slot = pointer_map_contains (edge_to_cases, e);
- if (slot)
- return (tree) *slot;
-
- /* If we did not find E in the hash table, then this must be the first
- time we have been queried for information about E & T. Add all the
- elements from T to the hash table then perform the query again. */
-
- n = gimple_switch_num_labels (t);
- for (i = 0; i < n; i++)
- {
- tree elt = gimple_switch_label (t, i);
- tree lab = CASE_LABEL (elt);
- basic_block label_bb = label_to_block (lab);
- edge this_edge = find_edge (e->src, label_bb);
-
- /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
- a new chain. */
- slot = pointer_map_insert (edge_to_cases, this_edge);
- TREE_CHAIN (elt) = (tree) *slot;
- *slot = elt;
- }
-
- return (tree) *pointer_map_contains (edge_to_cases, e);
-}
-
-/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
-
-static void
-make_gimple_switch_edges (basic_block bb)
-{
- gimple entry = last_stmt (bb);
- location_t entry_locus;
- size_t i, n;
-
- entry_locus = gimple_location (entry);
-
- n = gimple_switch_num_labels (entry);
-
- for (i = 0; i < n; ++i)
- {
- tree lab = CASE_LABEL (gimple_switch_label (entry, i));
- basic_block label_bb = label_to_block (lab);
- make_edge (bb, label_bb, 0);
- assign_discriminator (entry_locus, label_bb);
- }
-}
-
-
-/* Return the basic block holding label DEST. */
-
-basic_block
-label_to_block_fn (struct function *ifun, tree dest)
-{
- int uid = LABEL_DECL_UID (dest);
-
- /* We would die hard when faced by an undefined label. Emit a label to
- the very first basic block. This will hopefully make even the dataflow
- and undefined variable warnings quite right. */
- if ((errorcount || sorrycount) && uid < 0)
- {
- gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
- gimple stmt;
-
- stmt = gimple_build_label (dest);
- gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
- uid = LABEL_DECL_UID (dest);
- }
- if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
- <= (unsigned int) uid)
- return NULL;
- return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
-}
-
-/* Create edges for an abnormal goto statement at block BB. If FOR_CALL
- is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
-
-void
-make_abnormal_goto_edges (basic_block bb, bool for_call)
-{
- basic_block target_bb;
- gimple_stmt_iterator gsi;
-
- FOR_EACH_BB (target_bb)
- for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple label_stmt = gsi_stmt (gsi);
- tree target;
-
- if (gimple_code (label_stmt) != GIMPLE_LABEL)
- break;
-
- target = gimple_label_label (label_stmt);
-
- /* Make an edge to every label block that has been marked as a
- potential target for a computed goto or a non-local goto. */
- if ((FORCED_LABEL (target) && !for_call)
- || (DECL_NONLOCAL (target) && for_call))
- {
- make_edge (bb, target_bb, EDGE_ABNORMAL);
- break;
- }
- }
-}
-
-/* Create edges for a goto statement at block BB. */
-
-static void
-make_goto_expr_edges (basic_block bb)
-{
- gimple_stmt_iterator last = gsi_last_bb (bb);
- gimple goto_t = gsi_stmt (last);
-
- /* A simple GOTO creates normal edges. */
- if (simple_goto_p (goto_t))
- {
- tree dest = gimple_goto_dest (goto_t);
- basic_block label_bb = label_to_block (dest);
- edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
- e->goto_locus = gimple_location (goto_t);
- assign_discriminator (e->goto_locus, label_bb);
- if (e->goto_locus)
- e->goto_block = gimple_block (goto_t);
- gsi_remove (&last, true);
- return;
- }
-
- /* A computed GOTO creates abnormal edges. */
- make_abnormal_goto_edges (bb, false);
-}
-
-
-/*---------------------------------------------------------------------------
- Flowgraph analysis
----------------------------------------------------------------------------*/
-
-/* Cleanup useless labels in basic blocks. This is something we wish
- to do early because it allows us to group case labels before creating
- the edges for the CFG, and it speeds up block statement iterators in
- all passes later on.
- We rerun this pass after CFG is created, to get rid of the labels that
- are no longer referenced. After then we do not run it any more, since
- (almost) no new labels should be created. */
-
-/* A map from basic block index to the leading label of that block. */
-static struct label_record
-{
- /* The label. */
- tree label;
-
- /* True if the label is referenced from somewhere. */
- bool used;
-} *label_for_bb;
-
-/* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
-static void
-update_eh_label (struct eh_region *region)
-{
- tree old_label = get_eh_region_tree_label (region);
- if (old_label)
- {
- tree new_label;
- basic_block bb = label_to_block (old_label);
-
- /* ??? After optimizing, there may be EH regions with labels
- that have already been removed from the function body, so
- there is no basic block for them. */
- if (! bb)
- return;
-
- new_label = label_for_bb[bb->index].label;
- label_for_bb[bb->index].used = true;
- set_eh_region_tree_label (region, new_label);
- }
-}
-
-
-/* Given LABEL return the first label in the same basic block. */
-
-static tree
-main_block_label (tree label)
-{
- basic_block bb = label_to_block (label);
- tree main_label = label_for_bb[bb->index].label;
-
- /* label_to_block possibly inserted undefined label into the chain. */
- if (!main_label)
- {
- label_for_bb[bb->index].label = label;
- main_label = label;
- }
-
- label_for_bb[bb->index].used = true;
- return main_label;
-}
-
-/* Cleanup redundant labels. This is a three-step process:
- 1) Find the leading label for each block.
- 2) Redirect all references to labels to the leading labels.
- 3) Cleanup all useless labels. */
-
-void
-cleanup_dead_labels (void)
-{
- basic_block bb;
- label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
-
- /* Find a suitable label for each block. We use the first user-defined
- label if there is one, or otherwise just the first label we see. */
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator i;
-
- for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
- {
- tree label;
- gimple stmt = gsi_stmt (i);
-
- if (gimple_code (stmt) != GIMPLE_LABEL)
- break;
-
- label = gimple_label_label (stmt);
-
- /* If we have not yet seen a label for the current block,
- remember this one and see if there are more labels. */
- if (!label_for_bb[bb->index].label)
- {
- label_for_bb[bb->index].label = label;
- continue;
- }
-
- /* If we did see a label for the current block already, but it
- is an artificially created label, replace it if the current
- label is a user defined label. */
- if (!DECL_ARTIFICIAL (label)
- && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
- {
- label_for_bb[bb->index].label = label;
- break;
- }
- }
- }
-
- /* Now redirect all jumps/branches to the selected label.
- First do so for each block ending in a control statement. */
- FOR_EACH_BB (bb)
- {
- gimple stmt = last_stmt (bb);
- if (!stmt)
- continue;
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- {
- tree true_label = gimple_cond_true_label (stmt);
- tree false_label = gimple_cond_false_label (stmt);
-
- if (true_label)
- gimple_cond_set_true_label (stmt, main_block_label (true_label));
- if (false_label)
- gimple_cond_set_false_label (stmt, main_block_label (false_label));
- break;
- }
-
- case GIMPLE_SWITCH:
- {
- size_t i, n = gimple_switch_num_labels (stmt);
-
- /* Replace all destination labels. */
- for (i = 0; i < n; ++i)
- {
- tree case_label = gimple_switch_label (stmt, i);
- tree label = main_block_label (CASE_LABEL (case_label));
- CASE_LABEL (case_label) = label;
- }
- break;
- }
-
- /* We have to handle gotos until they're removed, and we don't
- remove them until after we've created the CFG edges. */
- case GIMPLE_GOTO:
- if (!computed_goto_p (stmt))
- {
- tree new_dest = main_block_label (gimple_goto_dest (stmt));
- gimple_goto_set_dest (stmt, new_dest);
- break;
- }
-
- default:
- break;
- }
- }
-
- for_each_eh_region (update_eh_label);
-
- /* Finally, purge dead labels. All user-defined labels and labels that
- can be the target of non-local gotos and labels which have their
- address taken are preserved. */
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator i;
- tree label_for_this_bb = label_for_bb[bb->index].label;
-
- if (!label_for_this_bb)
- continue;
-
- /* If the main label of the block is unused, we may still remove it. */
- if (!label_for_bb[bb->index].used)
- label_for_this_bb = NULL;
-
- for (i = gsi_start_bb (bb); !gsi_end_p (i); )
- {
- tree label;
- gimple stmt = gsi_stmt (i);
-
- if (gimple_code (stmt) != GIMPLE_LABEL)
- break;
-
- label = gimple_label_label (stmt);
-
- if (label == label_for_this_bb
- || !DECL_ARTIFICIAL (label)
- || DECL_NONLOCAL (label)
- || FORCED_LABEL (label))
- gsi_next (&i);
- else
- gsi_remove (&i, true);
- }
- }
-
- free (label_for_bb);
-}
-
-/* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
- and scan the sorted vector of cases. Combine the ones jumping to the
- same label.
- Eg. three separate entries 1: 2: 3: become one entry 1..3: */
-
-void
-group_case_labels (void)
-{
- basic_block bb;
-
- FOR_EACH_BB (bb)
- {
- gimple stmt = last_stmt (bb);
- if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
- {
- int old_size = gimple_switch_num_labels (stmt);
- int i, j, new_size = old_size;
- tree default_case = NULL_TREE;
- tree default_label = NULL_TREE;
- bool has_default;
-
- /* The default label is always the first case in a switch
- statement after gimplification if it was not optimized
- away */
- if (!CASE_LOW (gimple_switch_default_label (stmt))
- && !CASE_HIGH (gimple_switch_default_label (stmt)))
- {
- default_case = gimple_switch_default_label (stmt);
- default_label = CASE_LABEL (default_case);
- has_default = true;
- }
- else
- has_default = false;
-
- /* Look for possible opportunities to merge cases. */
- if (has_default)
- i = 1;
- else
- i = 0;
- while (i < old_size)
- {
- tree base_case, base_label, base_high;
- base_case = gimple_switch_label (stmt, i);
-
- gcc_assert (base_case);
- base_label = CASE_LABEL (base_case);
-
- /* Discard cases that have the same destination as the
- default case. */
- if (base_label == default_label)
- {
- gimple_switch_set_label (stmt, i, NULL_TREE);
- i++;
- new_size--;
- continue;
- }
-
- base_high = CASE_HIGH (base_case)
- ? CASE_HIGH (base_case)
- : CASE_LOW (base_case);
- i++;
-
- /* Try to merge case labels. Break out when we reach the end
- of the label vector or when we cannot merge the next case
- label with the current one. */
- while (i < old_size)
- {
- tree merge_case = gimple_switch_label (stmt, i);
- tree merge_label = CASE_LABEL (merge_case);
- tree t = int_const_binop (PLUS_EXPR, base_high,
- integer_one_node, 1);
-
- /* Merge the cases if they jump to the same place,
- and their ranges are consecutive. */
- if (merge_label == base_label
- && tree_int_cst_equal (CASE_LOW (merge_case), t))
- {
- base_high = CASE_HIGH (merge_case) ?
- CASE_HIGH (merge_case) : CASE_LOW (merge_case);
- CASE_HIGH (base_case) = base_high;
- gimple_switch_set_label (stmt, i, NULL_TREE);
- new_size--;
- i++;
- }
- else
- break;
- }
- }
-
- /* Compress the case labels in the label vector, and adjust the
- length of the vector. */
- for (i = 0, j = 0; i < new_size; i++)
- {
- while (! gimple_switch_label (stmt, j))
- j++;
- gimple_switch_set_label (stmt, i,
- gimple_switch_label (stmt, j++));
- }
-
- gcc_assert (new_size <= old_size);
- gimple_switch_set_num_labels (stmt, new_size);
- }
- }
-}
-
-/* Checks whether we can merge block B into block A. */
-
-static bool
-gimple_can_merge_blocks_p (basic_block a, basic_block b)
-{
- gimple stmt;
- gimple_stmt_iterator gsi;
- gimple_seq phis;
-
- if (!single_succ_p (a))
- return false;
-
- if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
- return false;
-
- if (single_succ (a) != b)
- return false;
-
- if (!single_pred_p (b))
- return false;
-
- if (b == EXIT_BLOCK_PTR)
- return false;
-
- /* If A ends by a statement causing exceptions or something similar, we
- cannot merge the blocks. */
- stmt = last_stmt (a);
- if (stmt && stmt_ends_bb_p (stmt))
- return false;
-
- /* Do not allow a block with only a non-local label to be merged. */
- if (stmt
- && gimple_code (stmt) == GIMPLE_LABEL
- && DECL_NONLOCAL (gimple_label_label (stmt)))
- return false;
-
- /* It must be possible to eliminate all phi nodes in B. If ssa form
- is not up-to-date, we cannot eliminate any phis; however, if only
- some symbols as whole are marked for renaming, this is not a problem,
- as phi nodes for those symbols are irrelevant in updating anyway. */
- phis = phi_nodes (b);
- if (!gimple_seq_empty_p (phis))
- {
- gimple_stmt_iterator i;
-
- if (name_mappings_registered_p ())
- return false;
-
- for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
- {
- gimple phi = gsi_stmt (i);
-
- if (!is_gimple_reg (gimple_phi_result (phi))
- && !may_propagate_copy (gimple_phi_result (phi),
- gimple_phi_arg_def (phi, 0)))
- return false;
- }
- }
-
- /* Do not remove user labels. */
- for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- stmt = gsi_stmt (gsi);
- if (gimple_code (stmt) != GIMPLE_LABEL)
- break;
- if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
- return false;
- }
-
- /* Protect the loop latches. */
- if (current_loops
- && b->loop_father->latch == b)
- return false;
-
- return true;
-}
-
-/* Replaces all uses of NAME by VAL. */
-
-void
-replace_uses_by (tree name, tree val)
-{
- imm_use_iterator imm_iter;
- use_operand_p use;
- gimple stmt;
- edge e;
-
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
- {
- if (gimple_code (stmt) != GIMPLE_PHI)
- push_stmt_changes (&stmt);
-
- FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
- {
- replace_exp (use, val);
-
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
- if (e->flags & EDGE_ABNORMAL)
- {
- /* This can only occur for virtual operands, since
- for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
- would prevent replacement. */
- gcc_assert (!is_gimple_reg (name));
- SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
- }
- }
- }
-
- if (gimple_code (stmt) != GIMPLE_PHI)
- {
- size_t i;
-
- fold_stmt_inplace (stmt);
- if (cfgcleanup_altered_bbs)
- bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
-
- /* FIXME. This should go in pop_stmt_changes. */
- for (i = 0; i < gimple_num_ops (stmt); i++)
- {
- tree op = gimple_op (stmt, i);
- /* Operands may be empty here. For example, the labels
- of a GIMPLE_COND are nulled out following the creation
- of the corresponding CFG edges. */
- if (op && TREE_CODE (op) == ADDR_EXPR)
- recompute_tree_invariant_for_addr_expr (op);
- }
-
- maybe_clean_or_replace_eh_stmt (stmt, stmt);
-
- pop_stmt_changes (&stmt);
- }
- }
-
- gcc_assert (has_zero_uses (name));
-
- /* Also update the trees stored in loop structures. */
- if (current_loops)
- {
- struct loop *loop;
- loop_iterator li;
-
- FOR_EACH_LOOP (li, loop, 0)
- {
- substitute_in_loop_info (loop, name, val);
- }
- }
-}
-
-/* Merge block B into block A. */
-
-static void
-gimple_merge_blocks (basic_block a, basic_block b)
-{
- gimple_stmt_iterator last, gsi, psi;
- gimple_seq phis = phi_nodes (b);
-
- if (dump_file)
- fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
-
- /* Remove all single-valued PHI nodes from block B of the form
- V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
- gsi = gsi_last_bb (a);
- for (psi = gsi_start (phis); !gsi_end_p (psi); )
- {
- gimple phi = gsi_stmt (psi);
- tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
- gimple copy;
- bool may_replace_uses = !is_gimple_reg (def)
- || may_propagate_copy (def, use);
-
- /* In case we maintain loop closed ssa form, do not propagate arguments
- of loop exit phi nodes. */
- if (current_loops
- && loops_state_satisfies_p (LOOP_CLOSED_SSA)
- && is_gimple_reg (def)
- && TREE_CODE (use) == SSA_NAME
- && a->loop_father != b->loop_father)
- may_replace_uses = false;
-
- if (!may_replace_uses)
- {
- gcc_assert (is_gimple_reg (def));
-
- /* Note that just emitting the copies is fine -- there is no problem
- with ordering of phi nodes. This is because A is the single
- predecessor of B, therefore results of the phi nodes cannot
- appear as arguments of the phi nodes. */
- copy = gimple_build_assign (def, use);
- gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
- remove_phi_node (&psi, false);
- }
- else
- {
- /* If we deal with a PHI for virtual operands, we can simply
- propagate these without fussing with folding or updating
- the stmt. */
- if (!is_gimple_reg (def))
- {
- imm_use_iterator iter;
- use_operand_p use_p;
- gimple stmt;
-
- FOR_EACH_IMM_USE_STMT (stmt, iter, def)
- FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
- SET_USE (use_p, use);
- }
- else
- replace_uses_by (def, use);
-
- remove_phi_node (&psi, true);
- }
- }
-
- /* Ensure that B follows A. */
- move_block_after (b, a);
-
- gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
- gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
-
- /* Remove labels from B and set gimple_bb to A for other statements. */
- for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
- {
- if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
- {
- gimple label = gsi_stmt (gsi);
-
- gsi_remove (&gsi, false);
-
- /* Now that we can thread computed gotos, we might have
- a situation where we have a forced label in block B
- However, the label at the start of block B might still be
- used in other ways (think about the runtime checking for
- Fortran assigned gotos). So we can not just delete the
- label. Instead we move the label to the start of block A. */
- if (FORCED_LABEL (gimple_label_label (label)))
- {
- gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
- gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
- }
- }
- else
- {
- gimple_set_bb (gsi_stmt (gsi), a);
- gsi_next (&gsi);
- }
- }
-
- /* Merge the sequences. */
- last = gsi_last_bb (a);
- gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
- set_bb_seq (b, NULL);
-
- if (cfgcleanup_altered_bbs)
- bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
-}
-
-
-/* Return the one of two successors of BB that is not reachable by a
- reached by a complex edge, if there is one. Else, return BB. We use
- this in optimizations that use post-dominators for their heuristics,
- to catch the cases in C++ where function calls are involved. */
-
-basic_block
-single_noncomplex_succ (basic_block bb)
-{
- edge e0, e1;
- if (EDGE_COUNT (bb->succs) != 2)
- return bb;
-
- e0 = EDGE_SUCC (bb, 0);
- e1 = EDGE_SUCC (bb, 1);
- if (e0->flags & EDGE_COMPLEX)
- return e1->dest;
- if (e1->flags & EDGE_COMPLEX)
- return e0->dest;
-
- return bb;
-}
-
-
-/* Walk the function tree removing unnecessary statements.
-
- * Empty statement nodes are removed
-
- * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
-
- * Unnecessary COND_EXPRs are removed
-
- * Some unnecessary BIND_EXPRs are removed
-
- * GOTO_EXPRs immediately preceding destination are removed.
-
- Clearly more work could be done. The trick is doing the analysis
- and removal fast enough to be a net improvement in compile times.
-
- Note that when we remove a control structure such as a COND_EXPR
- BIND_EXPR, or TRY block, we will need to repeat this optimization pass
- to ensure we eliminate all the useless code. */
-
-struct rus_data
-{
- bool repeat;
- bool may_throw;
- bool may_branch;
- bool has_label;
- bool last_was_goto;
- gimple_stmt_iterator last_goto_gsi;
-};
-
-
-static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
-
-/* Given a statement sequence, find the first executable statement with
- location information, and warn that it is unreachable. When searching,
- descend into containers in execution order. */
-
-static bool
-remove_useless_stmts_warn_notreached (gimple_seq stmts)
-{
- gimple_stmt_iterator gsi;
-
- for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
-
- if (gimple_has_location (stmt))
- {
- location_t loc = gimple_location (stmt);
- if (LOCATION_LINE (loc) > 0)
- {
- warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
- return true;
- }
- }
-
- switch (gimple_code (stmt))
- {
- /* Unfortunately, we need the CFG now to detect unreachable
- branches in a conditional, so conditionals are not handled here. */
-
- case GIMPLE_TRY:
- if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
- return true;
- if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
- return true;
- break;
-
- case GIMPLE_CATCH:
- return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
-
- case GIMPLE_EH_FILTER:
- return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
-
- case GIMPLE_BIND:
- return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
-
- default:
- break;
- }
- }
-
- return false;
-}
-
-/* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
-
-static void
-remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
-{
- gimple stmt = gsi_stmt (*gsi);
-
- /* The folded result must still be a conditional statement. */
- fold_stmt_inplace (stmt);
-
- data->may_branch = true;
-
- /* Replace trivial conditionals with gotos. */
- if (gimple_cond_true_p (stmt))
- {
- /* Goto THEN label. */
- tree then_label = gimple_cond_true_label (stmt);
-
- gsi_replace (gsi, gimple_build_goto (then_label), false);
- data->last_goto_gsi = *gsi;
- data->last_was_goto = true;
- data->repeat = true;
- }
- else if (gimple_cond_false_p (stmt))
- {
- /* Goto ELSE label. */
- tree else_label = gimple_cond_false_label (stmt);
-
- gsi_replace (gsi, gimple_build_goto (else_label), false);
- data->last_goto_gsi = *gsi;
- data->last_was_goto = true;
- data->repeat = true;
- }
- else
- {
- tree then_label = gimple_cond_true_label (stmt);
- tree else_label = gimple_cond_false_label (stmt);
-
- if (then_label == else_label)
- {
- /* Goto common destination. */
- gsi_replace (gsi, gimple_build_goto (then_label), false);
- data->last_goto_gsi = *gsi;
- data->last_was_goto = true;
- data->repeat = true;
- }
- }
-
- gsi_next (gsi);
-
- data->last_was_goto = false;
-}
-
-/* Helper for remove_useless_stmts_1.
- Handle the try-finally case for GIMPLE_TRY statements. */
-
-static void
-remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
-{
- bool save_may_branch, save_may_throw;
- bool this_may_branch, this_may_throw;
-
- gimple_seq eval_seq, cleanup_seq;
- gimple_stmt_iterator eval_gsi, cleanup_gsi;
-
- gimple stmt = gsi_stmt (*gsi);
-
- /* Collect may_branch and may_throw information for the body only. */
- save_may_branch = data->may_branch;
- save_may_throw = data->may_throw;
- data->may_branch = false;
- data->may_throw = false;
- data->last_was_goto = false;
-
- eval_seq = gimple_try_eval (stmt);
- eval_gsi = gsi_start (eval_seq);
- remove_useless_stmts_1 (&eval_gsi, data);
-
- this_may_branch = data->may_branch;
- this_may_throw = data->may_throw;
- data->may_branch |= save_may_branch;
- data->may_throw |= save_may_throw;
- data->last_was_goto = false;
-
- cleanup_seq = gimple_try_cleanup (stmt);
- cleanup_gsi = gsi_start (cleanup_seq);
- remove_useless_stmts_1 (&cleanup_gsi, data);
-
- /* If the body is empty, then we can emit the FINALLY block without
- the enclosing TRY_FINALLY_EXPR. */
- if (gimple_seq_empty_p (eval_seq))
- {
- gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
- gsi_remove (gsi, false);
- data->repeat = true;
- }
-
- /* If the handler is empty, then we can emit the TRY block without
- the enclosing TRY_FINALLY_EXPR. */
- else if (gimple_seq_empty_p (cleanup_seq))
- {
- gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
- gsi_remove (gsi, false);
- data->repeat = true;
- }
-
- /* If the body neither throws, nor branches, then we can safely
- string the TRY and FINALLY blocks together. */
- else if (!this_may_branch && !this_may_throw)
- {
- gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
- gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
- gsi_remove (gsi, false);
- data->repeat = true;
- }
- else
- gsi_next (gsi);
-}
-
-/* Helper for remove_useless_stmts_1.
- Handle the try-catch case for GIMPLE_TRY statements. */
-
-static void
-remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
-{
- bool save_may_throw, this_may_throw;
-
- gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
- gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
-
- gimple stmt = gsi_stmt (*gsi);
-
- /* Collect may_throw information for the body only. */
- save_may_throw = data->may_throw;
- data->may_throw = false;
- data->last_was_goto = false;
-
- eval_seq = gimple_try_eval (stmt);
- eval_gsi = gsi_start (eval_seq);
- remove_useless_stmts_1 (&eval_gsi, data);
-
- this_may_throw = data->may_throw;
- data->may_throw = save_may_throw;
-
- cleanup_seq = gimple_try_cleanup (stmt);
-
- /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
- if (!this_may_throw)
- {
- if (warn_notreached)
- {
- remove_useless_stmts_warn_notreached (cleanup_seq);
- }
- gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
- gsi_remove (gsi, false);
- data->repeat = true;
- return;
- }
-
- /* Process the catch clause specially. We may be able to tell that
- no exceptions propagate past this point. */
-
- this_may_throw = true;
- cleanup_gsi = gsi_start (cleanup_seq);
- stmt = gsi_stmt (cleanup_gsi);
- data->last_was_goto = false;
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_CATCH:
- /* If the first element is a catch, they all must be. */
- while (!gsi_end_p (cleanup_gsi))
- {
- stmt = gsi_stmt (cleanup_gsi);
- /* If we catch all exceptions, then the body does not
- propagate exceptions past this point. */
- if (gimple_catch_types (stmt) == NULL)
- this_may_throw = false;
- data->last_was_goto = false;
- handler_seq = gimple_catch_handler (stmt);
- handler_gsi = gsi_start (handler_seq);
- remove_useless_stmts_1 (&handler_gsi, data);
- gsi_next (&cleanup_gsi);
- }
- gsi_next (gsi);
- break;
-
- case GIMPLE_EH_FILTER:
- /* If the first element is an eh_filter, it should stand alone. */
- if (gimple_eh_filter_must_not_throw (stmt))
- this_may_throw = false;
- else if (gimple_eh_filter_types (stmt) == NULL)
- this_may_throw = false;
- failure_seq = gimple_eh_filter_failure (stmt);
- failure_gsi = gsi_start (failure_seq);
- remove_useless_stmts_1 (&failure_gsi, data);
- gsi_next (gsi);
- break;
-
- default:
- /* Otherwise this is a list of cleanup statements. */
- remove_useless_stmts_1 (&cleanup_gsi, data);
-
- /* If the cleanup is empty, then we can emit the TRY block without
- the enclosing TRY_CATCH_EXPR. */
- if (gimple_seq_empty_p (cleanup_seq))
- {
- gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
- gsi_remove(gsi, false);
- data->repeat = true;
- }
- else
- gsi_next (gsi);
- break;
- }
-
- data->may_throw |= this_may_throw;
-}
-
-/* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
-
-static void
-remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
-{
- tree block;
- gimple_seq body_seq, fn_body_seq;
- gimple_stmt_iterator body_gsi;
-
- gimple stmt = gsi_stmt (*gsi);
-
- /* First remove anything underneath the BIND_EXPR. */
-
- body_seq = gimple_bind_body (stmt);
- body_gsi = gsi_start (body_seq);
- remove_useless_stmts_1 (&body_gsi, data);
-
- /* If the GIMPLE_BIND has no variables, then we can pull everything
- up one level and remove the GIMPLE_BIND, unless this is the toplevel
- GIMPLE_BIND for the current function or an inlined function.
-
- When this situation occurs we will want to apply this
- optimization again. */
- block = gimple_bind_block (stmt);
- fn_body_seq = gimple_body (current_function_decl);
- if (gimple_bind_vars (stmt) == NULL_TREE
- && (gimple_seq_empty_p (fn_body_seq)
- || stmt != gimple_seq_first_stmt (fn_body_seq))
- && (! block
- || ! BLOCK_ABSTRACT_ORIGIN (block)
- || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
- != FUNCTION_DECL)))
- {
- tree var = NULL_TREE;
- /* Even if there are no gimple_bind_vars, there might be other
- decls in BLOCK_VARS rendering the GIMPLE_BIND not useless. */
- if (block && !BLOCK_NUM_NONLOCALIZED_VARS (block))
- for (var = BLOCK_VARS (block); var; var = TREE_CHAIN (var))
- if (TREE_CODE (var) == IMPORTED_DECL)
- break;
- if (var || (block && BLOCK_NUM_NONLOCALIZED_VARS (block)))
- gsi_next (gsi);
- else
- {
- gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
- gsi_remove (gsi, false);
- data->repeat = true;
- }
- }
- else
- gsi_next (gsi);
-}
-
-/* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
-
-static void
-remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
-{
- gimple stmt = gsi_stmt (*gsi);
-
- tree dest = gimple_goto_dest (stmt);
-
- data->may_branch = true;
- data->last_was_goto = false;
-
- /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
- if (TREE_CODE (dest) == LABEL_DECL)
- {
- data->last_goto_gsi = *gsi;
- data->last_was_goto = true;
- }
-
- gsi_next(gsi);
-}
-
-/* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
-
-static void
-remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
-{
- gimple stmt = gsi_stmt (*gsi);
-
- tree label = gimple_label_label (stmt);
-
- data->has_label = true;
-
- /* We do want to jump across non-local label receiver code. */
- if (DECL_NONLOCAL (label))
- data->last_was_goto = false;
-
- else if (data->last_was_goto
- && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
- {
- /* Replace the preceding GIMPLE_GOTO statement with
- a GIMPLE_NOP, which will be subsequently removed.
- In this way, we avoid invalidating other iterators
- active on the statement sequence. */
- gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
- data->last_was_goto = false;
- data->repeat = true;
- }
-
- /* ??? Add something here to delete unused labels. */
-
- gsi_next (gsi);
-}
-
-
-/* T is CALL_EXPR. Set current_function_calls_* flags. */
-
-void
-notice_special_calls (gimple call)
-{
- int flags = gimple_call_flags (call);
-
- if (flags & ECF_MAY_BE_ALLOCA)
- cfun->calls_alloca = true;
- if (flags & ECF_RETURNS_TWICE)
- cfun->calls_setjmp = true;
-}
-
-
-/* Clear flags set by notice_special_calls. Used by dead code removal
- to update the flags. */
-
-void
-clear_special_calls (void)
-{
- cfun->calls_alloca = false;
- cfun->calls_setjmp = false;
-}
-
-/* Remove useless statements from a statement sequence, and perform
- some preliminary simplifications. */
-
-static void
-remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
-{
- while (!gsi_end_p (*gsi))
- {
- gimple stmt = gsi_stmt (*gsi);
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- remove_useless_stmts_cond (gsi, data);
- break;
-
- case GIMPLE_GOTO:
- remove_useless_stmts_goto (gsi, data);
- break;
-
- case GIMPLE_LABEL:
- remove_useless_stmts_label (gsi, data);
- break;
-
- case GIMPLE_ASSIGN:
- fold_stmt (gsi);
- stmt = gsi_stmt (*gsi);
- data->last_was_goto = false;
- if (stmt_could_throw_p (stmt))
- data->may_throw = true;
- gsi_next (gsi);
- break;
-
- case GIMPLE_ASM:
- fold_stmt (gsi);
- data->last_was_goto = false;
- gsi_next (gsi);
- break;
-
- case GIMPLE_CALL:
- fold_stmt (gsi);
- stmt = gsi_stmt (*gsi);
- data->last_was_goto = false;
- if (is_gimple_call (stmt))
- notice_special_calls (stmt);
-
- /* We used to call update_gimple_call_flags here,
- which copied side-effects and nothrows status
- from the function decl to the call. In the new
- tuplified GIMPLE, the accessors for this information
- always consult the function decl, so this copying
- is no longer necessary. */
- if (stmt_could_throw_p (stmt))
- data->may_throw = true;
- gsi_next (gsi);
- break;
-
- case GIMPLE_RETURN:
- fold_stmt (gsi);
- data->last_was_goto = false;
- data->may_branch = true;
- gsi_next (gsi);
- break;
-
- case GIMPLE_BIND:
- remove_useless_stmts_bind (gsi, data);
- break;
-
- case GIMPLE_TRY:
- if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
- remove_useless_stmts_tc (gsi, data);
- else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
- remove_useless_stmts_tf (gsi, data);
- else
- gcc_unreachable ();
- break;
-
- case GIMPLE_CATCH:
- gcc_unreachable ();
- break;
-
- case GIMPLE_NOP:
- gsi_remove (gsi, false);
- break;
-
- case GIMPLE_OMP_FOR:
- {
- gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
- gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
-
- remove_useless_stmts_1 (&pre_body_gsi, data);
- data->last_was_goto = false;
- }
- /* FALLTHROUGH */
- case GIMPLE_OMP_CRITICAL:
- case GIMPLE_OMP_CONTINUE:
- case GIMPLE_OMP_MASTER:
- case GIMPLE_OMP_ORDERED:
- case GIMPLE_OMP_SECTION:
- case GIMPLE_OMP_SECTIONS:
- case GIMPLE_OMP_SINGLE:
- {
- gimple_seq body_seq = gimple_omp_body (stmt);
- gimple_stmt_iterator body_gsi = gsi_start (body_seq);
-
- remove_useless_stmts_1 (&body_gsi, data);
- data->last_was_goto = false;
- gsi_next (gsi);
- }
- break;
-
- case GIMPLE_OMP_PARALLEL:
- case GIMPLE_OMP_TASK:
- {
- /* Make sure the outermost GIMPLE_BIND isn't removed
- as useless. */
- gimple_seq body_seq = gimple_omp_body (stmt);
- gimple bind = gimple_seq_first_stmt (body_seq);
- gimple_seq bind_seq = gimple_bind_body (bind);
- gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
-
- remove_useless_stmts_1 (&bind_gsi, data);
- data->last_was_goto = false;
- gsi_next (gsi);
- }
- break;
-
- case GIMPLE_CHANGE_DYNAMIC_TYPE:
- /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
- expansion is confused about them and we only remove them
- during alias computation otherwise. */
- if (!optimize)
- {
- data->last_was_goto = false;
- gsi_remove (gsi, false);
- break;
- }
- /* Fallthru. */
-
- default:
- data->last_was_goto = false;
- gsi_next (gsi);
- break;
- }
- }
-}
-
-/* Walk the function tree, removing useless statements and performing
- some preliminary simplifications. */
-
-static unsigned int
-remove_useless_stmts (void)
-{
- struct rus_data data;
-
- clear_special_calls ();
-
- do
- {
- gimple_stmt_iterator gsi;
-
- gsi = gsi_start (gimple_body (current_function_decl));
- memset (&data, 0, sizeof (data));
- remove_useless_stmts_1 (&gsi, &data);
- }
- while (data.repeat);
- return 0;
-}
-
-
-struct gimple_opt_pass pass_remove_useless_stmts =
-{
- {
- GIMPLE_PASS,
- "useless", /* name */
- NULL, /* gate */
- remove_useless_stmts, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- 0, /* tv_id */
- PROP_gimple_any, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_dump_func /* todo_flags_finish */
- }
-};
-
-/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
-
-static void
-remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
-{
- /* Since this block is no longer reachable, we can just delete all
- of its PHI nodes. */
- remove_phi_nodes (bb);
-
- /* Remove edges to BB's successors. */
- while (EDGE_COUNT (bb->succs) > 0)
- remove_edge (EDGE_SUCC (bb, 0));
-}
-
-
-/* Remove statements of basic block BB. */
-
-static void
-remove_bb (basic_block bb)
-{
- gimple_stmt_iterator i;
- source_location loc = UNKNOWN_LOCATION;
-
- if (dump_file)
- {
- fprintf (dump_file, "Removing basic block %d\n", bb->index);
- if (dump_flags & TDF_DETAILS)
- {
- dump_bb (bb, dump_file, 0);
- fprintf (dump_file, "\n");
- }
- }
-
- if (current_loops)
- {
- struct loop *loop = bb->loop_father;
-
- /* If a loop gets removed, clean up the information associated
- with it. */
- if (loop->latch == bb
- || loop->header == bb)
- free_numbers_of_iterations_estimates_loop (loop);
- }
-
- /* Remove all the instructions in the block. */
- if (bb_seq (bb) != NULL)
- {
- for (i = gsi_start_bb (bb); !gsi_end_p (i);)
- {
- gimple stmt = gsi_stmt (i);
- if (gimple_code (stmt) == GIMPLE_LABEL
- && (FORCED_LABEL (gimple_label_label (stmt))
- || DECL_NONLOCAL (gimple_label_label (stmt))))
- {
- basic_block new_bb;
- gimple_stmt_iterator new_gsi;
-
- /* A non-reachable non-local label may still be referenced.
- But it no longer needs to carry the extra semantics of
- non-locality. */
- if (DECL_NONLOCAL (gimple_label_label (stmt)))
- {
- DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
- FORCED_LABEL (gimple_label_label (stmt)) = 1;
- }
-
- new_bb = bb->prev_bb;
- new_gsi = gsi_start_bb (new_bb);
- gsi_remove (&i, false);
- gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
- }
- else
- {
- /* Release SSA definitions if we are in SSA. Note that we
- may be called when not in SSA. For example,
- final_cleanup calls this function via
- cleanup_tree_cfg. */
- if (gimple_in_ssa_p (cfun))
- release_defs (stmt);
-
- gsi_remove (&i, true);
- }
-
- /* Don't warn for removed gotos. Gotos are often removed due to
- jump threading, thus resulting in bogus warnings. Not great,
- since this way we lose warnings for gotos in the original
- program that are indeed unreachable. */
- if (gimple_code (stmt) != GIMPLE_GOTO
- && gimple_has_location (stmt)
- && !loc)
- loc = gimple_location (stmt);
- }
- }
-
- /* If requested, give a warning that the first statement in the
- block is unreachable. We walk statements backwards in the
- loop above, so the last statement we process is the first statement
- in the block. */
- if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
- warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
-
- remove_phi_nodes_and_edges_for_unreachable_block (bb);
- bb->il.gimple = NULL;
-}
-
-
-/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
- predicate VAL, return the edge that will be taken out of the block.
- If VAL does not match a unique edge, NULL is returned. */
-
-edge
-find_taken_edge (basic_block bb, tree val)
-{
- gimple stmt;
-
- stmt = last_stmt (bb);
-
- gcc_assert (stmt);
- gcc_assert (is_ctrl_stmt (stmt));
-
- if (val == NULL)
- return NULL;
-
- if (!is_gimple_min_invariant (val))
- return NULL;
-
- if (gimple_code (stmt) == GIMPLE_COND)
- return find_taken_edge_cond_expr (bb, val);
-
- if (gimple_code (stmt) == GIMPLE_SWITCH)
- return find_taken_edge_switch_expr (bb, val);
-
- if (computed_goto_p (stmt))
- {
- /* Only optimize if the argument is a label, if the argument is
- not a label then we can not construct a proper CFG.
-
- It may be the case that we only need to allow the LABEL_REF to
- appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
- appear inside a LABEL_EXPR just to be safe. */
- if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
- && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
- return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
- return NULL;
- }
-
- gcc_unreachable ();
-}
-
-/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
- statement, determine which of the outgoing edges will be taken out of the
- block. Return NULL if either edge may be taken. */
-
-static edge
-find_taken_edge_computed_goto (basic_block bb, tree val)
-{
- basic_block dest;
- edge e = NULL;
-
- dest = label_to_block (val);
- if (dest)
- {
- e = find_edge (bb, dest);
- gcc_assert (e != NULL);
- }
-
- return e;
-}
-
-/* Given a constant value VAL and the entry block BB to a COND_EXPR
- statement, determine which of the two edges will be taken out of the
- block. Return NULL if either edge may be taken. */
-
-static edge
-find_taken_edge_cond_expr (basic_block bb, tree val)
-{
- edge true_edge, false_edge;
-
- extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
-
- gcc_assert (TREE_CODE (val) == INTEGER_CST);
- return (integer_zerop (val) ? false_edge : true_edge);
-}
-
-/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
- statement, determine which edge will be taken out of the block. Return
- NULL if any edge may be taken. */
-
-static edge
-find_taken_edge_switch_expr (basic_block bb, tree val)
-{
- basic_block dest_bb;
- edge e;
- gimple switch_stmt;
- tree taken_case;
-
- switch_stmt = last_stmt (bb);
- taken_case = find_case_label_for_value (switch_stmt, val);
- dest_bb = label_to_block (CASE_LABEL (taken_case));
-
- e = find_edge (bb, dest_bb);
- gcc_assert (e);
- return e;
-}
-
-
-/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
- We can make optimal use here of the fact that the case labels are
- sorted: We can do a binary search for a case matching VAL. */
-
-static tree
-find_case_label_for_value (gimple switch_stmt, tree val)
-{
- size_t low, high, n = gimple_switch_num_labels (switch_stmt);
- tree default_case = gimple_switch_default_label (switch_stmt);
-
- for (low = 0, high = n; high - low > 1; )
- {
- size_t i = (high + low) / 2;
- tree t = gimple_switch_label (switch_stmt, i);
- int cmp;
-
- /* Cache the result of comparing CASE_LOW and val. */
- cmp = tree_int_cst_compare (CASE_LOW (t), val);
-
- if (cmp > 0)
- high = i;
- else
- low = i;
-
- if (CASE_HIGH (t) == NULL)
- {
- /* A singe-valued case label. */
- if (cmp == 0)
- return t;
- }
- else
- {
- /* A case range. We can only handle integer ranges. */
- if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
- return t;
- }
- }
-
- return default_case;
-}
-
-
-/* Dump a basic block on stderr. */
-
-void
-gimple_debug_bb (basic_block bb)
-{
- gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
-}
-
-
-/* Dump basic block with index N on stderr. */
-
-basic_block
-gimple_debug_bb_n (int n)
-{
- gimple_debug_bb (BASIC_BLOCK (n));
- return BASIC_BLOCK (n);
-}
-
-
-/* Dump the CFG on stderr.
-
- FLAGS are the same used by the tree dumping functions
- (see TDF_* in tree-pass.h). */
-
-void
-gimple_debug_cfg (int flags)
-{
- gimple_dump_cfg (stderr, flags);
-}
-
-
-/* Dump the program showing basic block boundaries on the given FILE.
-
- FLAGS are the same used by the tree dumping functions (see TDF_* in
- tree.h). */
-
-void
-gimple_dump_cfg (FILE *file, int flags)
-{
- if (flags & TDF_DETAILS)
- {
- const char *funcname
- = lang_hooks.decl_printable_name (current_function_decl, 2);
-
- fputc ('\n', file);
- fprintf (file, ";; Function %s\n\n", funcname);
- fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
- n_basic_blocks, n_edges, last_basic_block);
-
- brief_dump_cfg (file);
- fprintf (file, "\n");
- }
-
- if (flags & TDF_STATS)
- dump_cfg_stats (file);
-
- dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
-}
-
-
-/* Dump CFG statistics on FILE. */
-
-void
-dump_cfg_stats (FILE *file)
-{
- static long max_num_merged_labels = 0;
- unsigned long size, total = 0;
- long num_edges;
- basic_block bb;
- const char * const fmt_str = "%-30s%-13s%12s\n";
- const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
- const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
- const char * const fmt_str_3 = "%-43s%11lu%c\n";
- const char *funcname
- = lang_hooks.decl_printable_name (current_function_decl, 2);
-
-
- fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
-
- fprintf (file, "---------------------------------------------------------\n");
- fprintf (file, fmt_str, "", " Number of ", "Memory");
- fprintf (file, fmt_str, "", " instances ", "used ");
- fprintf (file, "---------------------------------------------------------\n");
-
- size = n_basic_blocks * sizeof (struct basic_block_def);
- total += size;
- fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
- SCALE (size), LABEL (size));
-
- num_edges = 0;
- FOR_EACH_BB (bb)
- num_edges += EDGE_COUNT (bb->succs);
- size = num_edges * sizeof (struct edge_def);
- total += size;
- fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
-
- fprintf (file, "---------------------------------------------------------\n");
- fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
- LABEL (total));
- fprintf (file, "---------------------------------------------------------\n");
- fprintf (file, "\n");
-
- if (cfg_stats.num_merged_labels > max_num_merged_labels)
- max_num_merged_labels = cfg_stats.num_merged_labels;
-
- fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
- cfg_stats.num_merged_labels, max_num_merged_labels);
-
- fprintf (file, "\n");
-}
-
-
-/* Dump CFG statistics on stderr. Keep extern so that it's always
- linked in the final executable. */
-
-void
-debug_cfg_stats (void)
-{
- dump_cfg_stats (stderr);
-}
-
-
-/* Dump the flowgraph to a .vcg FILE. */
-
-static void
-gimple_cfg2vcg (FILE *file)
-{
- edge e;
- edge_iterator ei;
- basic_block bb;
- const char *funcname
- = lang_hooks.decl_printable_name (current_function_decl, 2);
-
- /* Write the file header. */
- fprintf (file, "graph: { title: \"%s\"\n", funcname);
- fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
- fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
-
- /* Write blocks and edges. */
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
- {
- fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
- e->dest->index);
-
- if (e->flags & EDGE_FAKE)
- fprintf (file, " linestyle: dotted priority: 10");
- else
- fprintf (file, " linestyle: solid priority: 100");
-
- fprintf (file, " }\n");
- }
- fputc ('\n', file);
-
- FOR_EACH_BB (bb)
- {
- enum gimple_code head_code, end_code;
- const char *head_name, *end_name;
- int head_line = 0;
- int end_line = 0;
- gimple first = first_stmt (bb);
- gimple last = last_stmt (bb);
-
- if (first)
- {
- head_code = gimple_code (first);
- head_name = gimple_code_name[head_code];
- head_line = get_lineno (first);
- }
- else
- head_name = "no-statement";
-
- if (last)
- {
- end_code = gimple_code (last);
- end_name = gimple_code_name[end_code];
- end_line = get_lineno (last);
- }
- else
- end_name = "no-statement";
-
- fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
- bb->index, bb->index, head_name, head_line, end_name,
- end_line);
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (e->dest == EXIT_BLOCK_PTR)
- fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
- else
- fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
-
- if (e->flags & EDGE_FAKE)
- fprintf (file, " priority: 10 linestyle: dotted");
- else
- fprintf (file, " priority: 100 linestyle: solid");
-
- fprintf (file, " }\n");
- }
-
- if (bb->next_bb != EXIT_BLOCK_PTR)
- fputc ('\n', file);
- }
-
- fputs ("}\n\n", file);
-}
-
-
-
-/*---------------------------------------------------------------------------
- Miscellaneous helpers
----------------------------------------------------------------------------*/
-
-/* Return true if T represents a stmt that always transfers control. */
-
-bool
-is_ctrl_stmt (gimple t)
-{
- return gimple_code (t) == GIMPLE_COND
- || gimple_code (t) == GIMPLE_SWITCH
- || gimple_code (t) == GIMPLE_GOTO
- || gimple_code (t) == GIMPLE_RETURN
- || gimple_code (t) == GIMPLE_RESX;
-}
-
-
-/* Return true if T is a statement that may alter the flow of control
- (e.g., a call to a non-returning function). */
-
-bool
-is_ctrl_altering_stmt (gimple t)
-{
- gcc_assert (t);
-
- if (is_gimple_call (t))
- {
- int flags = gimple_call_flags (t);
-
- /* A non-pure/const call alters flow control if the current
- function has nonlocal labels. */
- if (!(flags & (ECF_CONST | ECF_PURE))
- && cfun->has_nonlocal_label)
- return true;
-
- /* A call also alters control flow if it does not return. */
- if (gimple_call_flags (t) & ECF_NORETURN)
- return true;
- }
-
- /* OpenMP directives alter control flow. */
- if (is_gimple_omp (t))
- return true;
-
- /* If a statement can throw, it alters control flow. */
- return stmt_can_throw_internal (t);
-}
-
-
-/* Return true if T is a simple local goto. */
-
-bool
-simple_goto_p (gimple t)
-{
- return (gimple_code (t) == GIMPLE_GOTO
- && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
-}
-
-
-/* Return true if T can make an abnormal transfer of control flow.
- Transfers of control flow associated with EH are excluded. */
-
-bool
-stmt_can_make_abnormal_goto (gimple t)
-{
- if (computed_goto_p (t))
- return true;
- if (is_gimple_call (t))
- return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
- return false;
-}
-
-
-/* Return true if STMT should start a new basic block. PREV_STMT is
- the statement preceding STMT. It is used when STMT is a label or a
- case label. Labels should only start a new basic block if their
- previous statement wasn't a label. Otherwise, sequence of labels
- would generate unnecessary basic blocks that only contain a single
- label. */
-
-static inline bool
-stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
-{
- if (stmt == NULL)
- return false;
-
- /* Labels start a new basic block only if the preceding statement
- wasn't a label of the same type. This prevents the creation of
- consecutive blocks that have nothing but a single label. */
- if (gimple_code (stmt) == GIMPLE_LABEL)
- {
- /* Nonlocal and computed GOTO targets always start a new block. */
- if (DECL_NONLOCAL (gimple_label_label (stmt))
- || FORCED_LABEL (gimple_label_label (stmt)))
- return true;
-
- if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
- {
- if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
- return true;
-
- cfg_stats.num_merged_labels++;
- return false;
- }
- else
- return true;
- }
-
- return false;
-}
-
-
-/* Return true if T should end a basic block. */
-
-bool
-stmt_ends_bb_p (gimple t)
-{
- return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
-}
-
-/* Remove block annotations and other data structures. */
-
-void
-delete_tree_cfg_annotations (void)
-{
- label_to_block_map = NULL;
-}
-
-
-/* Return the first statement in basic block BB. */
-
-gimple
-first_stmt (basic_block bb)
-{
- gimple_stmt_iterator i = gsi_start_bb (bb);
- return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
-}
-
-/* Return the first non-label statement in basic block BB. */
-
-static gimple
-first_non_label_stmt (basic_block bb)
-{
- gimple_stmt_iterator i = gsi_start_bb (bb);
- while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
- gsi_next (&i);
- return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
-}
-
-/* Return the last statement in basic block BB. */
-
-gimple
-last_stmt (basic_block bb)
-{
- gimple_stmt_iterator b = gsi_last_bb (bb);
- return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
-}
-
-/* Return the last statement of an otherwise empty block. Return NULL
- if the block is totally empty, or if it contains more than one
- statement. */
-
-gimple
-last_and_only_stmt (basic_block bb)
-{
- gimple_stmt_iterator i = gsi_last_bb (bb);
- gimple last, prev;
-
- if (gsi_end_p (i))
- return NULL;
-
- last = gsi_stmt (i);
- gsi_prev (&i);
- if (gsi_end_p (i))
- return last;
-
- /* Empty statements should no longer appear in the instruction stream.
- Everything that might have appeared before should be deleted by
- remove_useless_stmts, and the optimizers should just gsi_remove
- instead of smashing with build_empty_stmt.
-
- Thus the only thing that should appear here in a block containing
- one executable statement is a label. */
- prev = gsi_stmt (i);
- if (gimple_code (prev) == GIMPLE_LABEL)
- return last;
- else
- return NULL;
-}
-
-/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
-
-static void
-reinstall_phi_args (edge new_edge, edge old_edge)
-{
- edge_var_map_vector v;
- edge_var_map *vm;
- int i;
- gimple_stmt_iterator phis;
-
- v = redirect_edge_var_map_vector (old_edge);
- if (!v)
- return;
-
- for (i = 0, phis = gsi_start_phis (new_edge->dest);
- VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
- i++, gsi_next (&phis))
- {
- gimple phi = gsi_stmt (phis);
- tree result = redirect_edge_var_map_result (vm);
- tree arg = redirect_edge_var_map_def (vm);
-
- gcc_assert (result == gimple_phi_result (phi));
-
- add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
- }
-
- redirect_edge_var_map_clear (old_edge);
-}
-
-/* Returns the basic block after which the new basic block created
- by splitting edge EDGE_IN should be placed. Tries to keep the new block
- near its "logical" location. This is of most help to humans looking
- at debugging dumps. */
-
-static basic_block
-split_edge_bb_loc (edge edge_in)
-{
- basic_block dest = edge_in->dest;
-
- if (dest->prev_bb && find_edge (dest->prev_bb, dest))
- return edge_in->src;
- else
- return dest->prev_bb;
-}
-
-/* Split a (typically critical) edge EDGE_IN. Return the new block.
- Abort on abnormal edges. */
-
-static basic_block
-gimple_split_edge (edge edge_in)
-{
- basic_block new_bb, after_bb, dest;
- edge new_edge, e;
-
- /* Abnormal edges cannot be split. */
- gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
-
- dest = edge_in->dest;
-
- after_bb = split_edge_bb_loc (edge_in);
-
- new_bb = create_empty_bb (after_bb);
- new_bb->frequency = EDGE_FREQUENCY (edge_in);
- new_bb->count = edge_in->count;
- new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
- new_edge->probability = REG_BR_PROB_BASE;
- new_edge->count = edge_in->count;
-
- e = redirect_edge_and_branch (edge_in, new_bb);
- gcc_assert (e == edge_in);
- reinstall_phi_args (new_edge, e);
-
- return new_bb;
-}
-
-/* Callback for walk_tree, check that all elements with address taken are
- properly noticed as such. The DATA is an int* that is 1 if TP was seen
- inside a PHI node. */
-
-static tree
-verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
-{
- tree t = *tp, x;
-
- if (TYPE_P (t))
- *walk_subtrees = 0;
-
- /* Check operand N for being valid GIMPLE and give error MSG if not. */
-#define CHECK_OP(N, MSG) \
- do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
- { error (MSG); return TREE_OPERAND (t, N); }} while (0)
-
- switch (TREE_CODE (t))
- {
- case SSA_NAME:
- if (SSA_NAME_IN_FREE_LIST (t))
- {
- error ("SSA name in freelist but still referenced");
- return *tp;
- }
- break;
-
- case INDIRECT_REF:
- x = TREE_OPERAND (t, 0);
- if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
- {
- error ("Indirect reference's operand is not a register or a constant.");
- return x;
- }
- break;
-
- case ASSERT_EXPR:
- x = fold (ASSERT_EXPR_COND (t));
- if (x == boolean_false_node)
- {
- error ("ASSERT_EXPR with an always-false condition");
- return *tp;
- }
- break;
-
- case MODIFY_EXPR:
- error ("MODIFY_EXPR not expected while having tuples.");
- return *tp;
-
- case ADDR_EXPR:
- {
- bool old_constant;
- bool old_side_effects;
- bool new_constant;
- bool new_side_effects;
-
- gcc_assert (is_gimple_address (t));
-
- old_constant = TREE_CONSTANT (t);
- old_side_effects = TREE_SIDE_EFFECTS (t);
-
- recompute_tree_invariant_for_addr_expr (t);
- new_side_effects = TREE_SIDE_EFFECTS (t);
- new_constant = TREE_CONSTANT (t);
-
- if (old_constant != new_constant)
- {
- error ("constant not recomputed when ADDR_EXPR changed");
- return t;
- }
- if (old_side_effects != new_side_effects)
- {
- error ("side effects not recomputed when ADDR_EXPR changed");
- return t;
- }
-
- /* Skip any references (they will be checked when we recurse down the
- tree) and ensure that any variable used as a prefix is marked
- addressable. */
- for (x = TREE_OPERAND (t, 0);
- handled_component_p (x);
- x = TREE_OPERAND (x, 0))
- ;
-
- if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
- return NULL;
- if (!TREE_ADDRESSABLE (x))
- {
- error ("address taken, but ADDRESSABLE bit not set");
- return x;
- }
-
- break;
- }
-
- case COND_EXPR:
- x = COND_EXPR_COND (t);
- if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
- {
- error ("non-integral used in condition");
- return x;
- }
- if (!is_gimple_condexpr (x))
- {
- error ("invalid conditional operand");
- return x;
- }
- break;
-
- case NON_LVALUE_EXPR:
- gcc_unreachable ();
-
- CASE_CONVERT:
- case FIX_TRUNC_EXPR:
- case FLOAT_EXPR:
- case NEGATE_EXPR:
- case ABS_EXPR:
- case BIT_NOT_EXPR:
- case TRUTH_NOT_EXPR:
- CHECK_OP (0, "invalid operand to unary operator");
- break;
-
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- case COMPONENT_REF:
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- case BIT_FIELD_REF:
- case VIEW_CONVERT_EXPR:
- /* We have a nest of references. Verify that each of the operands
- that determine where to reference is either a constant or a variable,
- verify that the base is valid, and then show we've already checked
- the subtrees. */
- while (handled_component_p (t))
- {
- if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
- CHECK_OP (2, "invalid COMPONENT_REF offset operator");
- else if (TREE_CODE (t) == ARRAY_REF
- || TREE_CODE (t) == ARRAY_RANGE_REF)
- {
- CHECK_OP (1, "invalid array index");
- if (TREE_OPERAND (t, 2))
- CHECK_OP (2, "invalid array lower bound");
- if (TREE_OPERAND (t, 3))
- CHECK_OP (3, "invalid array stride");
- }
- else if (TREE_CODE (t) == BIT_FIELD_REF)
- {
- if (!host_integerp (TREE_OPERAND (t, 1), 1)
- || !host_integerp (TREE_OPERAND (t, 2), 1))
- {
- error ("invalid position or size operand to BIT_FIELD_REF");
- return t;
- }
- else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
- && (TYPE_PRECISION (TREE_TYPE (t))
- != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
- {
- error ("integral result type precision does not match "
- "field size of BIT_FIELD_REF");
- return t;
- }
- if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
- && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
- != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
- {
- error ("mode precision of non-integral result does not "
- "match field size of BIT_FIELD_REF");
- return t;
- }
- }
-
- t = TREE_OPERAND (t, 0);
- }
-
- if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
- {
- error ("invalid reference prefix");
- return t;
- }
- *walk_subtrees = 0;
- break;
- case PLUS_EXPR:
- case MINUS_EXPR:
- /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
- POINTER_PLUS_EXPR. */
- if (POINTER_TYPE_P (TREE_TYPE (t)))
- {
- error ("invalid operand to plus/minus, type is a pointer");
- return t;
- }
- CHECK_OP (0, "invalid operand to binary operator");
- CHECK_OP (1, "invalid operand to binary operator");
- break;
-
- case POINTER_PLUS_EXPR:
- /* Check to make sure the first operand is a pointer or reference type. */
- if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
- {
- error ("invalid operand to pointer plus, first operand is not a pointer");
- return t;
- }
- /* Check to make sure the second operand is an integer with type of
- sizetype. */
- if (!useless_type_conversion_p (sizetype,
- TREE_TYPE (TREE_OPERAND (t, 1))))
- {
- error ("invalid operand to pointer plus, second operand is not an "
- "integer with type of sizetype.");
- return t;
- }
- /* FALLTHROUGH */
- case LT_EXPR:
- case LE_EXPR:
- case GT_EXPR:
- case GE_EXPR:
- case EQ_EXPR:
- case NE_EXPR:
- case UNORDERED_EXPR:
- case ORDERED_EXPR:
- case UNLT_EXPR:
- case UNLE_EXPR:
- case UNGT_EXPR:
- case UNGE_EXPR:
- case UNEQ_EXPR:
- case LTGT_EXPR:
- case MULT_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case TRUNC_MOD_EXPR:
- case CEIL_MOD_EXPR:
- case FLOOR_MOD_EXPR:
- case ROUND_MOD_EXPR:
- case RDIV_EXPR:
- case EXACT_DIV_EXPR:
- case MIN_EXPR:
- case MAX_EXPR:
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- case BIT_AND_EXPR:
- CHECK_OP (0, "invalid operand to binary operator");
- CHECK_OP (1, "invalid operand to binary operator");
- break;
-
- case CONSTRUCTOR:
- if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
- *walk_subtrees = 0;
- break;
-
- default:
- break;
- }
- return NULL;
-
-#undef CHECK_OP
-}
-
-
-/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
- Returns true if there is an error, otherwise false. */
-
-static bool
-verify_types_in_gimple_min_lval (tree expr)
-{
- tree op;
-
- if (is_gimple_id (expr))
- return false;
-
- if (!INDIRECT_REF_P (expr)
- && TREE_CODE (expr) != TARGET_MEM_REF)
- {
- error ("invalid expression for min lvalue");
- return true;
- }
-
- /* TARGET_MEM_REFs are strange beasts. */
- if (TREE_CODE (expr) == TARGET_MEM_REF)
- return false;
-
- op = TREE_OPERAND (expr, 0);
- if (!is_gimple_val (op))
- {
- error ("invalid operand in indirect reference");
- debug_generic_stmt (op);
- return true;
- }
- if (!useless_type_conversion_p (TREE_TYPE (expr),
- TREE_TYPE (TREE_TYPE (op))))
- {
- error ("type mismatch in indirect reference");
- debug_generic_stmt (TREE_TYPE (expr));
- debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
- return true;
- }
-
- return false;
-}
-
-/* Verify if EXPR is a valid GIMPLE reference expression. Returns true
- if there is an error, otherwise false. */
-
-static bool
-verify_types_in_gimple_reference (tree expr)
-{
- while (handled_component_p (expr))
- {
- tree op = TREE_OPERAND (expr, 0);
-
- if (TREE_CODE (expr) == ARRAY_REF
- || TREE_CODE (expr) == ARRAY_RANGE_REF)
- {
- if (!is_gimple_val (TREE_OPERAND (expr, 1))
- || (TREE_OPERAND (expr, 2)
- && !is_gimple_val (TREE_OPERAND (expr, 2)))
- || (TREE_OPERAND (expr, 3)
- && !is_gimple_val (TREE_OPERAND (expr, 3))))
- {
- error ("invalid operands to array reference");
- debug_generic_stmt (expr);
- return true;
- }
- }
-
- /* Verify if the reference array element types are compatible. */
- if (TREE_CODE (expr) == ARRAY_REF
- && !useless_type_conversion_p (TREE_TYPE (expr),
- TREE_TYPE (TREE_TYPE (op))))
- {
- error ("type mismatch in array reference");
- debug_generic_stmt (TREE_TYPE (expr));
- debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
- return true;
- }
- if (TREE_CODE (expr) == ARRAY_RANGE_REF
- && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
- TREE_TYPE (TREE_TYPE (op))))
- {
- error ("type mismatch in array range reference");
- debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
- debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
- return true;
- }
-
- if ((TREE_CODE (expr) == REALPART_EXPR
- || TREE_CODE (expr) == IMAGPART_EXPR)
- && !useless_type_conversion_p (TREE_TYPE (expr),
- TREE_TYPE (TREE_TYPE (op))))
- {
- error ("type mismatch in real/imagpart reference");
- debug_generic_stmt (TREE_TYPE (expr));
- debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
- return true;
- }
-
- if (TREE_CODE (expr) == COMPONENT_REF
- && !useless_type_conversion_p (TREE_TYPE (expr),
- TREE_TYPE (TREE_OPERAND (expr, 1))))
- {
- error ("type mismatch in component reference");
- debug_generic_stmt (TREE_TYPE (expr));
- debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
- return true;
- }
-
- /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
- is nothing to verify. Gross mismatches at most invoke
- undefined behavior. */
- if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
- && !handled_component_p (op))
- return false;
-
- expr = op;
- }
-
- return verify_types_in_gimple_min_lval (expr);
-}
-
-/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
- list of pointer-to types that is trivially convertible to DEST. */
-
-static bool
-one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
-{
- tree src;
-
- if (!TYPE_POINTER_TO (src_obj))
- return true;
-
- for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
- if (useless_type_conversion_p (dest, src))
- return true;
-
- return false;
-}
-
-/* Return true if TYPE1 is a fixed-point type and if conversions to and
- from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
-
-static bool
-valid_fixed_convert_types_p (tree type1, tree type2)
-{
- return (FIXED_POINT_TYPE_P (type1)
- && (INTEGRAL_TYPE_P (type2)
- || SCALAR_FLOAT_TYPE_P (type2)
- || FIXED_POINT_TYPE_P (type2)));
-}
-
-/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
- is a problem, otherwise false. */
-
-static bool
-verify_gimple_call (gimple stmt)
-{
- tree fn = gimple_call_fn (stmt);
- tree fntype;
-
- if (!POINTER_TYPE_P (TREE_TYPE (fn))
- || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
- && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
- {
- error ("non-function in gimple call");
- return true;
- }
-
- if (gimple_call_lhs (stmt)
- && !is_gimple_lvalue (gimple_call_lhs (stmt)))
- {
- error ("invalid LHS in gimple call");
- return true;
- }
-
- fntype = TREE_TYPE (TREE_TYPE (fn));
- if (gimple_call_lhs (stmt)
- && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
- TREE_TYPE (fntype))
- /* ??? At least C++ misses conversions at assignments from
- void * call results.
- ??? Java is completely off. Especially with functions
- returning java.lang.Object.
- For now simply allow arbitrary pointer type conversions. */
- && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
- && POINTER_TYPE_P (TREE_TYPE (fntype))))
- {
- error ("invalid conversion in gimple call");
- debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
- debug_generic_stmt (TREE_TYPE (fntype));
- return true;
- }
-
- /* ??? The C frontend passes unpromoted arguments in case it
- didn't see a function declaration before the call. So for now
- leave the call arguments unverified. Once we gimplify
- unit-at-a-time we have a chance to fix this. */
-
- return false;
-}
-
-/* Verifies the gimple comparison with the result type TYPE and
- the operands OP0 and OP1. */
-
-static bool
-verify_gimple_comparison (tree type, tree op0, tree op1)
-{
- tree op0_type = TREE_TYPE (op0);
- tree op1_type = TREE_TYPE (op1);
-
- if (!is_gimple_val (op0) || !is_gimple_val (op1))
- {
- error ("invalid operands in gimple comparison");
- return true;
- }
-
- /* For comparisons we do not have the operations type as the
- effective type the comparison is carried out in. Instead
- we require that either the first operand is trivially
- convertible into the second, or the other way around.
- The resulting type of a comparison may be any integral type.
- Because we special-case pointers to void we allow
- comparisons of pointers with the same mode as well. */
- if ((!useless_type_conversion_p (op0_type, op1_type)
- && !useless_type_conversion_p (op1_type, op0_type)
- && (!POINTER_TYPE_P (op0_type)
- || !POINTER_TYPE_P (op1_type)
- || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
- || !INTEGRAL_TYPE_P (type))
- {
- error ("type mismatch in comparison expression");
- debug_generic_expr (type);
- debug_generic_expr (op0_type);
- debug_generic_expr (op1_type);
- return true;
- }
-
- return false;
-}
-
-/* Verify a gimple assignment statement STMT with an unary rhs.
- Returns true if anything is wrong. */
-
-static bool
-verify_gimple_assign_unary (gimple stmt)
-{
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree lhs = gimple_assign_lhs (stmt);
- tree lhs_type = TREE_TYPE (lhs);
- tree rhs1 = gimple_assign_rhs1 (stmt);
- tree rhs1_type = TREE_TYPE (rhs1);
-
- if (!is_gimple_reg (lhs)
- && !(optimize == 0
- && TREE_CODE (lhs_type) == COMPLEX_TYPE))
- {
- error ("non-register as LHS of unary operation");
- return true;
- }
-
- if (!is_gimple_val (rhs1))
- {
- error ("invalid operand in unary operation");
- return true;
- }
-
- /* First handle conversions. */
- switch (rhs_code)
- {
- CASE_CONVERT:
- {
- /* Allow conversions between integral types and pointers only if
- there is no sign or zero extension involved.
- For targets were the precision of sizetype doesn't match that
- of pointers we need to allow arbitrary conversions from and
- to sizetype. */
- if ((POINTER_TYPE_P (lhs_type)
- && INTEGRAL_TYPE_P (rhs1_type)
- && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
- || rhs1_type == sizetype))
- || (POINTER_TYPE_P (rhs1_type)
- && INTEGRAL_TYPE_P (lhs_type)
- && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
- || lhs_type == sizetype)))
- return false;
-
- /* Allow conversion from integer to offset type and vice versa. */
- if ((TREE_CODE (lhs_type) == OFFSET_TYPE
- && TREE_CODE (rhs1_type) == INTEGER_TYPE)
- || (TREE_CODE (lhs_type) == INTEGER_TYPE
- && TREE_CODE (rhs1_type) == OFFSET_TYPE))
- return false;
-
- /* Otherwise assert we are converting between types of the
- same kind. */
- if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
- {
- error ("invalid types in nop conversion");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- return true;
- }
-
- return false;
- }
-
- case FIXED_CONVERT_EXPR:
- {
- if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
- && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
- {
- error ("invalid types in fixed-point conversion");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- return true;
- }
-
- return false;
- }
-
- case FLOAT_EXPR:
- {
- if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
- {
- error ("invalid types in conversion to floating point");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- return true;
- }
-
- return false;
- }
-
- case FIX_TRUNC_EXPR:
- {
- if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
- {
- error ("invalid types in conversion to integer");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- return true;
- }
-
- return false;
- }
-
- case TRUTH_NOT_EXPR:
- {
- }
-
- case NEGATE_EXPR:
- case ABS_EXPR:
- case BIT_NOT_EXPR:
- case PAREN_EXPR:
- case NON_LVALUE_EXPR:
- case CONJ_EXPR:
- case REDUC_MAX_EXPR:
- case REDUC_MIN_EXPR:
- case REDUC_PLUS_EXPR:
- case VEC_UNPACK_HI_EXPR:
- case VEC_UNPACK_LO_EXPR:
- case VEC_UNPACK_FLOAT_HI_EXPR:
- case VEC_UNPACK_FLOAT_LO_EXPR:
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* For the remaining codes assert there is no conversion involved. */
- if (!useless_type_conversion_p (lhs_type, rhs1_type))
- {
- error ("non-trivial conversion in unary operation");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- return true;
- }
-
- return false;
-}
-
-/* Verify a gimple assignment statement STMT with a binary rhs.
- Returns true if anything is wrong. */
-
-static bool
-verify_gimple_assign_binary (gimple stmt)
-{
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree lhs = gimple_assign_lhs (stmt);
- tree lhs_type = TREE_TYPE (lhs);
- tree rhs1 = gimple_assign_rhs1 (stmt);
- tree rhs1_type = TREE_TYPE (rhs1);
- tree rhs2 = gimple_assign_rhs2 (stmt);
- tree rhs2_type = TREE_TYPE (rhs2);
-
- if (!is_gimple_reg (lhs)
- && !(optimize == 0
- && TREE_CODE (lhs_type) == COMPLEX_TYPE))
- {
- error ("non-register as LHS of binary operation");
- return true;
- }
-
- if (!is_gimple_val (rhs1)
- || !is_gimple_val (rhs2))
- {
- error ("invalid operands in binary operation");
- return true;
- }
-
- /* First handle operations that involve different types. */
- switch (rhs_code)
- {
- case COMPLEX_EXPR:
- {
- if (TREE_CODE (lhs_type) != COMPLEX_TYPE
- || !(INTEGRAL_TYPE_P (rhs1_type)
- || SCALAR_FLOAT_TYPE_P (rhs1_type))
- || !(INTEGRAL_TYPE_P (rhs2_type)
- || SCALAR_FLOAT_TYPE_P (rhs2_type)))
- {
- error ("type mismatch in complex expression");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- debug_generic_expr (rhs2_type);
- return true;
- }
-
- return false;
- }
-
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- if (FIXED_POINT_TYPE_P (rhs1_type)
- && INTEGRAL_TYPE_P (rhs2_type)
- && useless_type_conversion_p (lhs_type, rhs1_type))
- return false;
- /* Fall through. */
-
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- {
- if (!INTEGRAL_TYPE_P (rhs1_type)
- || !INTEGRAL_TYPE_P (rhs2_type)
- || !useless_type_conversion_p (lhs_type, rhs1_type))
- {
- error ("type mismatch in shift expression");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- debug_generic_expr (rhs2_type);
- return true;
- }
-
- return false;
- }
-
- case VEC_LSHIFT_EXPR:
- case VEC_RSHIFT_EXPR:
- {
- if (TREE_CODE (rhs1_type) != VECTOR_TYPE
- || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
- || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type)))
- || (!INTEGRAL_TYPE_P (rhs2_type)
- && (TREE_CODE (rhs2_type) != VECTOR_TYPE
- || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
- || !useless_type_conversion_p (lhs_type, rhs1_type))
- {
- error ("type mismatch in vector shift expression");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- debug_generic_expr (rhs2_type);
- return true;
- }
-
- return false;
- }
-
- case POINTER_PLUS_EXPR:
- {
- if (!POINTER_TYPE_P (rhs1_type)
- || !useless_type_conversion_p (lhs_type, rhs1_type)
- || !useless_type_conversion_p (sizetype, rhs2_type))
- {
- error ("type mismatch in pointer plus expression");
- debug_generic_stmt (lhs_type);
- debug_generic_stmt (rhs1_type);
- debug_generic_stmt (rhs2_type);
- return true;
- }
-
- return false;
- }
-
- case TRUTH_ANDIF_EXPR:
- case TRUTH_ORIF_EXPR:
- gcc_unreachable ();
-
- case TRUTH_AND_EXPR:
- case TRUTH_OR_EXPR:
- case TRUTH_XOR_EXPR:
- {
- /* We allow any kind of integral typed argument and result. */
- if (!INTEGRAL_TYPE_P (rhs1_type)
- || !INTEGRAL_TYPE_P (rhs2_type)
- || !INTEGRAL_TYPE_P (lhs_type))
- {
- error ("type mismatch in binary truth expression");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- debug_generic_expr (rhs2_type);
- return true;
- }
-
- return false;
- }
-
- case LT_EXPR:
- case LE_EXPR:
- case GT_EXPR:
- case GE_EXPR:
- case EQ_EXPR:
- case NE_EXPR:
- case UNORDERED_EXPR:
- case ORDERED_EXPR:
- case UNLT_EXPR:
- case UNLE_EXPR:
- case UNGT_EXPR:
- case UNGE_EXPR:
- case UNEQ_EXPR:
- case LTGT_EXPR:
- /* Comparisons are also binary, but the result type is not
- connected to the operand types. */
- return verify_gimple_comparison (lhs_type, rhs1, rhs2);
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- {
- if (POINTER_TYPE_P (lhs_type)
- || POINTER_TYPE_P (rhs1_type)
- || POINTER_TYPE_P (rhs2_type))
- {
- error ("invalid (pointer) operands to plus/minus");
- return true;
- }
-
- /* Continue with generic binary expression handling. */
- break;
- }
-
- case MULT_EXPR:
- case TRUNC_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case TRUNC_MOD_EXPR:
- case CEIL_MOD_EXPR:
- case FLOOR_MOD_EXPR:
- case ROUND_MOD_EXPR:
- case RDIV_EXPR:
- case EXACT_DIV_EXPR:
- case MIN_EXPR:
- case MAX_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- case BIT_AND_EXPR:
- case WIDEN_SUM_EXPR:
- case WIDEN_MULT_EXPR:
- case VEC_WIDEN_MULT_HI_EXPR:
- case VEC_WIDEN_MULT_LO_EXPR:
- case VEC_PACK_TRUNC_EXPR:
- case VEC_PACK_SAT_EXPR:
- case VEC_PACK_FIX_TRUNC_EXPR:
- case VEC_EXTRACT_EVEN_EXPR:
- case VEC_EXTRACT_ODD_EXPR:
- case VEC_INTERLEAVE_HIGH_EXPR:
- case VEC_INTERLEAVE_LOW_EXPR:
- /* Continue with generic binary expression handling. */
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (!useless_type_conversion_p (lhs_type, rhs1_type)
- || !useless_type_conversion_p (lhs_type, rhs2_type))
- {
- error ("type mismatch in binary expression");
- debug_generic_stmt (lhs_type);
- debug_generic_stmt (rhs1_type);
- debug_generic_stmt (rhs2_type);
- return true;
- }
-
- return false;
-}
-
-/* Verify a gimple assignment statement STMT with a single rhs.
- Returns true if anything is wrong. */
-
-static bool
-verify_gimple_assign_single (gimple stmt)
-{
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree lhs = gimple_assign_lhs (stmt);
- tree lhs_type = TREE_TYPE (lhs);
- tree rhs1 = gimple_assign_rhs1 (stmt);
- tree rhs1_type = TREE_TYPE (rhs1);
- bool res = false;
-
- if (!useless_type_conversion_p (lhs_type, rhs1_type))
- {
- error ("non-trivial conversion at assignment");
- debug_generic_expr (lhs_type);
- debug_generic_expr (rhs1_type);
- return true;
- }
-
- if (handled_component_p (lhs))
- res |= verify_types_in_gimple_reference (lhs);
-
- /* Special codes we cannot handle via their class. */
- switch (rhs_code)
- {
- case ADDR_EXPR:
- {
- tree op = TREE_OPERAND (rhs1, 0);
- if (!is_gimple_addressable (op))
- {
- error ("invalid operand in unary expression");
- return true;
- }
-
- if (!one_pointer_to_useless_type_conversion_p (lhs_type, TREE_TYPE (op))
- /* FIXME: a longstanding wart, &a == &a[0]. */
- && (TREE_CODE (TREE_TYPE (op)) != ARRAY_TYPE
- || !one_pointer_to_useless_type_conversion_p (lhs_type,
- TREE_TYPE (TREE_TYPE (op)))))
- {
- error ("type mismatch in address expression");
- debug_generic_stmt (lhs_type);
- debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
- return true;
- }
-
- return verify_types_in_gimple_reference (op);
- }
-
- /* tcc_reference */
- case COMPONENT_REF:
- case BIT_FIELD_REF:
- case INDIRECT_REF:
- case ALIGN_INDIRECT_REF:
- case MISALIGNED_INDIRECT_REF:
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- case VIEW_CONVERT_EXPR:
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- case TARGET_MEM_REF:
- if (!is_gimple_reg (lhs)
- && is_gimple_reg_type (TREE_TYPE (lhs)))
- {
- error ("invalid rhs for gimple memory store");
- debug_generic_stmt (lhs);
- debug_generic_stmt (rhs1);
- return true;
- }
- return res || verify_types_in_gimple_reference (rhs1);
-
- /* tcc_constant */
- case SSA_NAME:
- case INTEGER_CST:
- case REAL_CST:
- case FIXED_CST:
- case COMPLEX_CST:
- case VECTOR_CST:
- case STRING_CST:
- return res;
-
- /* tcc_declaration */
- case CONST_DECL:
- return res;
- case VAR_DECL:
- case PARM_DECL:
- if (!is_gimple_reg (lhs)
- && !is_gimple_reg (rhs1)
- && is_gimple_reg_type (TREE_TYPE (lhs)))
- {
- error ("invalid rhs for gimple memory store");
- debug_generic_stmt (lhs);
- debug_generic_stmt (rhs1);
- return true;
- }
- return res;
-
- case COND_EXPR:
- case CONSTRUCTOR:
- case OBJ_TYPE_REF:
- case ASSERT_EXPR:
- case WITH_SIZE_EXPR:
- case EXC_PTR_EXPR:
- case FILTER_EXPR:
- case POLYNOMIAL_CHREC:
- case DOT_PROD_EXPR:
- case VEC_COND_EXPR:
- case REALIGN_LOAD_EXPR:
- /* FIXME. */
- return res;
-
- default:;
- }
-
- return res;
-}
-
-/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
- is a problem, otherwise false. */
-
-static bool
-verify_gimple_assign (gimple stmt)
-{
- switch (gimple_assign_rhs_class (stmt))
- {
- case GIMPLE_SINGLE_RHS:
- return verify_gimple_assign_single (stmt);
-
- case GIMPLE_UNARY_RHS:
- return verify_gimple_assign_unary (stmt);
-
- case GIMPLE_BINARY_RHS:
- return verify_gimple_assign_binary (stmt);
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
- is a problem, otherwise false. */
-
-static bool
-verify_gimple_return (gimple stmt)
-{
- tree op = gimple_return_retval (stmt);
- tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
-
- /* We cannot test for present return values as we do not fix up missing
- return values from the original source. */
- if (op == NULL)
- return false;
-
- if (!is_gimple_val (op)
- && TREE_CODE (op) != RESULT_DECL)
- {
- error ("invalid operand in return statement");
- debug_generic_stmt (op);
- return true;
- }
-
- if (!useless_type_conversion_p (restype, TREE_TYPE (op))
- /* ??? With C++ we can have the situation that the result
- decl is a reference type while the return type is an aggregate. */
- && !(TREE_CODE (op) == RESULT_DECL
- && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
- && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
- {
- error ("invalid conversion in return statement");
- debug_generic_stmt (restype);
- debug_generic_stmt (TREE_TYPE (op));
- return true;
- }
-
- return false;
-}
-
-
-/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
- is a problem, otherwise false. */
-
-static bool
-verify_gimple_goto (gimple stmt)
-{
- tree dest = gimple_goto_dest (stmt);
-
- /* ??? We have two canonical forms of direct goto destinations, a
- bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
- if (TREE_CODE (dest) != LABEL_DECL
- && (!is_gimple_val (dest)
- || !POINTER_TYPE_P (TREE_TYPE (dest))))
- {
- error ("goto destination is neither a label nor a pointer");
- return true;
- }
-
- return false;
-}
-
-/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
- is a problem, otherwise false. */
-
-static bool
-verify_gimple_switch (gimple stmt)
-{
- if (!is_gimple_val (gimple_switch_index (stmt)))
- {
- error ("invalid operand to switch statement");
- debug_generic_stmt (gimple_switch_index (stmt));
- return true;
- }
-
- return false;
-}
-
-
-/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
- and false otherwise. */
-
-static bool
-verify_gimple_phi (gimple stmt)
-{
- tree type = TREE_TYPE (gimple_phi_result (stmt));
- unsigned i;
-
- if (!is_gimple_variable (gimple_phi_result (stmt)))
- {
- error ("Invalid PHI result");
- return true;
- }
-
- for (i = 0; i < gimple_phi_num_args (stmt); i++)
- {
- tree arg = gimple_phi_arg_def (stmt, i);
- if ((is_gimple_reg (gimple_phi_result (stmt))
- && !is_gimple_val (arg))
- || (!is_gimple_reg (gimple_phi_result (stmt))
- && !is_gimple_addressable (arg)))
- {
- error ("Invalid PHI argument");
- debug_generic_stmt (arg);
- return true;
- }
- if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
- {
- error ("Incompatible types in PHI argument");
- debug_generic_stmt (type);
- debug_generic_stmt (TREE_TYPE (arg));
- return true;
- }
- }
-
- return false;
-}
-
-
-/* Verify the GIMPLE statement STMT. Returns true if there is an
- error, otherwise false. */
-
-static bool
-verify_types_in_gimple_stmt (gimple stmt)
-{
- if (is_gimple_omp (stmt))
- {
- /* OpenMP directives are validated by the FE and never operated
- on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
- non-gimple expressions when the main index variable has had
- its address taken. This does not affect the loop itself
- because the header of an GIMPLE_OMP_FOR is merely used to determine
- how to setup the parallel iteration. */
- return false;
- }
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- return verify_gimple_assign (stmt);
-
- case GIMPLE_LABEL:
- return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
-
- case GIMPLE_CALL:
- return verify_gimple_call (stmt);
-
- case GIMPLE_COND:
- return verify_gimple_comparison (boolean_type_node,
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt));
-
- case GIMPLE_GOTO:
- return verify_gimple_goto (stmt);
-
- case GIMPLE_SWITCH:
- return verify_gimple_switch (stmt);
-
- case GIMPLE_RETURN:
- return verify_gimple_return (stmt);
-
- case GIMPLE_ASM:
- return false;
-
- case GIMPLE_CHANGE_DYNAMIC_TYPE:
- return (!is_gimple_val (gimple_cdt_location (stmt))
- || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt))));
-
- case GIMPLE_PHI:
- return verify_gimple_phi (stmt);
-
- /* Tuples that do not have tree operands. */
- case GIMPLE_NOP:
- case GIMPLE_RESX:
- case GIMPLE_PREDICT:
- return false;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Verify the GIMPLE statements inside the sequence STMTS. */
-
-static bool
-verify_types_in_gimple_seq_2 (gimple_seq stmts)
-{
- gimple_stmt_iterator ittr;
- bool err = false;
-
- for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
- {
- gimple stmt = gsi_stmt (ittr);
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_BIND:
- err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
- break;
-
- case GIMPLE_TRY:
- err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
- err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
- break;
-
- case GIMPLE_EH_FILTER:
- err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
- break;
-
- case GIMPLE_CATCH:
- err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
- break;
-
- default:
- {
- bool err2 = verify_types_in_gimple_stmt (stmt);
- if (err2)
- debug_gimple_stmt (stmt);
- err |= err2;
- }
- }
- }
-
- return err;
-}
-
-
-/* Verify the GIMPLE statements inside the statement list STMTS. */
-
-void
-verify_types_in_gimple_seq (gimple_seq stmts)
-{
- if (verify_types_in_gimple_seq_2 (stmts))
- internal_error ("verify_gimple failed");
-}
-
-
-/* Verify STMT, return true if STMT is not in GIMPLE form.
- TODO: Implement type checking. */
-
-static bool
-verify_stmt (gimple_stmt_iterator *gsi)
-{
- tree addr;
- struct walk_stmt_info wi;
- bool last_in_block = gsi_one_before_end_p (*gsi);
- gimple stmt = gsi_stmt (*gsi);
-
- if (is_gimple_omp (stmt))
- {
- /* OpenMP directives are validated by the FE and never operated
- on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
- non-gimple expressions when the main index variable has had
- its address taken. This does not affect the loop itself
- because the header of an GIMPLE_OMP_FOR is merely used to determine
- how to setup the parallel iteration. */
- return false;
- }
-
- /* FIXME. The C frontend passes unpromoted arguments in case it
- didn't see a function declaration before the call. */
- if (is_gimple_call (stmt))
- {
- tree decl;
-
- if (!is_gimple_call_addr (gimple_call_fn (stmt)))
- {
- error ("invalid function in call statement");
- return true;
- }
-
- decl = gimple_call_fndecl (stmt);
- if (decl
- && TREE_CODE (decl) == FUNCTION_DECL
- && DECL_LOOPING_CONST_OR_PURE_P (decl)
- && (!DECL_PURE_P (decl))
- && (!TREE_READONLY (decl)))
- {
- error ("invalid pure const state for function");
- return true;
- }
- }
-
- memset (&wi, 0, sizeof (wi));
- addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
- if (addr)
- {
- debug_generic_expr (addr);
- inform (input_location, "in statement");
- debug_gimple_stmt (stmt);
- return true;
- }
-
- /* If the statement is marked as part of an EH region, then it is
- expected that the statement could throw. Verify that when we
- have optimizations that simplify statements such that we prove
- that they cannot throw, that we update other data structures
- to match. */
- if (lookup_stmt_eh_region (stmt) >= 0)
- {
- if (!stmt_could_throw_p (stmt))
- {
- error ("statement marked for throw, but doesn%'t");
- goto fail;
- }
- if (!last_in_block && stmt_can_throw_internal (stmt))
- {
- error ("statement marked for throw in middle of block");
- goto fail;
- }
- }
-
- return false;
-
- fail:
- debug_gimple_stmt (stmt);
- return true;
-}
-
-
-/* Return true when the T can be shared. */
-
-static bool
-tree_node_can_be_shared (tree t)
-{
- if (IS_TYPE_OR_DECL_P (t)
- || is_gimple_min_invariant (t)
- || TREE_CODE (t) == SSA_NAME
- || t == error_mark_node
- || TREE_CODE (t) == IDENTIFIER_NODE)
- return true;
-
- if (TREE_CODE (t) == CASE_LABEL_EXPR)
- return true;
-
- while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
- && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
- || TREE_CODE (t) == COMPONENT_REF
- || TREE_CODE (t) == REALPART_EXPR
- || TREE_CODE (t) == IMAGPART_EXPR)
- t = TREE_OPERAND (t, 0);
-
- if (DECL_P (t))
- return true;
-
- return false;
-}
-
-
-/* Called via walk_gimple_stmt. Verify tree sharing. */
-
-static tree
-verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
-{
- struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
- struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
-
- if (tree_node_can_be_shared (*tp))
- {
- *walk_subtrees = false;
- return NULL;
- }
-
- if (pointer_set_insert (visited, *tp))
- return *tp;
-
- return NULL;
-}
-
-
-static bool eh_error_found;
-static int
-verify_eh_throw_stmt_node (void **slot, void *data)
-{
- struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
- struct pointer_set_t *visited = (struct pointer_set_t *) data;
-
- if (!pointer_set_contains (visited, node->stmt))
- {
- error ("Dead STMT in EH table");
- debug_gimple_stmt (node->stmt);
- eh_error_found = true;
- }
- return 1;
-}
-
-
-/* Verify the GIMPLE statements in every basic block. */
-
-void
-verify_stmts (void)
-{
- basic_block bb;
- gimple_stmt_iterator gsi;
- bool err = false;
- struct pointer_set_t *visited, *visited_stmts;
- tree addr;
- struct walk_stmt_info wi;
-
- timevar_push (TV_TREE_STMT_VERIFY);
- visited = pointer_set_create ();
- visited_stmts = pointer_set_create ();
-
- memset (&wi, 0, sizeof (wi));
- wi.info = (void *) visited;
-
- FOR_EACH_BB (bb)
- {
- gimple phi;
- size_t i;
-
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- phi = gsi_stmt (gsi);
- pointer_set_insert (visited_stmts, phi);
- if (gimple_bb (phi) != bb)
- {
- error ("gimple_bb (phi) is set to a wrong basic block");
- err |= true;
- }
-
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- tree t = gimple_phi_arg_def (phi, i);
- tree addr;
-
- if (!t)
- {
- error ("missing PHI def");
- debug_gimple_stmt (phi);
- err |= true;
- continue;
- }
- /* Addressable variables do have SSA_NAMEs but they
- are not considered gimple values. */
- else if (TREE_CODE (t) != SSA_NAME
- && TREE_CODE (t) != FUNCTION_DECL
- && !is_gimple_min_invariant (t))
- {
- error ("PHI argument is not a GIMPLE value");
- debug_gimple_stmt (phi);
- debug_generic_expr (t);
- err |= true;
- }
-
- addr = walk_tree (&t, verify_node_sharing, visited, NULL);
- if (addr)
- {
- error ("incorrect sharing of tree nodes");
- debug_gimple_stmt (phi);
- debug_generic_expr (addr);
- err |= true;
- }
- }
- }
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
- {
- gimple stmt = gsi_stmt (gsi);
-
- if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
- || gimple_code (stmt) == GIMPLE_BIND)
- {
- error ("invalid GIMPLE statement");
- debug_gimple_stmt (stmt);
- err |= true;
- }
-
- pointer_set_insert (visited_stmts, stmt);
-
- if (gimple_bb (stmt) != bb)
- {
- error ("gimple_bb (stmt) is set to a wrong basic block");
- err |= true;
- }
-
- if (gimple_code (stmt) == GIMPLE_LABEL)
- {
- tree decl = gimple_label_label (stmt);
- int uid = LABEL_DECL_UID (decl);
-
- if (uid == -1
- || VEC_index (basic_block, label_to_block_map, uid) != bb)
- {
- error ("incorrect entry in label_to_block_map.\n");
- err |= true;
- }
- }
-
- err |= verify_stmt (&gsi);
- addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
- if (addr)
- {
- error ("incorrect sharing of tree nodes");
- debug_gimple_stmt (stmt);
- debug_generic_expr (addr);
- err |= true;
- }
- gsi_next (&gsi);
- }
- }
-
- eh_error_found = false;
- if (get_eh_throw_stmt_table (cfun))
- htab_traverse (get_eh_throw_stmt_table (cfun),
- verify_eh_throw_stmt_node,
- visited_stmts);
-
- if (err | eh_error_found)
- internal_error ("verify_stmts failed");
-
- pointer_set_destroy (visited);
- pointer_set_destroy (visited_stmts);
- verify_histograms ();
- timevar_pop (TV_TREE_STMT_VERIFY);
-}
-
-
-/* Verifies that the flow information is OK. */
-
-static int
-gimple_verify_flow_info (void)
-{
- int err = 0;
- basic_block bb;
- gimple_stmt_iterator gsi;
- gimple stmt;
- edge e;
- edge_iterator ei;
-
- if (ENTRY_BLOCK_PTR->il.gimple)
- {
- error ("ENTRY_BLOCK has IL associated with it");
- err = 1;
- }
-
- if (EXIT_BLOCK_PTR->il.gimple)
- {
- error ("EXIT_BLOCK has IL associated with it");
- err = 1;
- }
-
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- if (e->flags & EDGE_FALLTHRU)
- {
- error ("fallthru to exit from bb %d", e->src->index);
- err = 1;
- }
-
- FOR_EACH_BB (bb)
- {
- bool found_ctrl_stmt = false;
-
- stmt = NULL;
-
- /* Skip labels on the start of basic block. */
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- tree label;
- gimple prev_stmt = stmt;
-
- stmt = gsi_stmt (gsi);
-
- if (gimple_code (stmt) != GIMPLE_LABEL)
- break;
-
- label = gimple_label_label (stmt);
- if (prev_stmt && DECL_NONLOCAL (label))
- {
- error ("nonlocal label ");
- print_generic_expr (stderr, label, 0);
- fprintf (stderr, " is not first in a sequence of labels in bb %d",
- bb->index);
- err = 1;
- }
-
- if (label_to_block (label) != bb)
- {
- error ("label ");
- print_generic_expr (stderr, label, 0);
- fprintf (stderr, " to block does not match in bb %d",
- bb->index);
- err = 1;
- }
-
- if (decl_function_context (label) != current_function_decl)
- {
- error ("label ");
- print_generic_expr (stderr, label, 0);
- fprintf (stderr, " has incorrect context in bb %d",
- bb->index);
- err = 1;
- }
- }
-
- /* Verify that body of basic block BB is free of control flow. */
- for (; !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
-
- if (found_ctrl_stmt)
- {
- error ("control flow in the middle of basic block %d",
- bb->index);
- err = 1;
- }
-
- if (stmt_ends_bb_p (stmt))
- found_ctrl_stmt = true;
-
- if (gimple_code (stmt) == GIMPLE_LABEL)
- {
- error ("label ");
- print_generic_expr (stderr, gimple_label_label (stmt), 0);
- fprintf (stderr, " in the middle of basic block %d", bb->index);
- err = 1;
- }
- }
-
- gsi = gsi_last_bb (bb);
- if (gsi_end_p (gsi))
- continue;
-
- stmt = gsi_stmt (gsi);
-
- err |= verify_eh_edges (stmt);
-
- if (is_ctrl_stmt (stmt))
- {
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->flags & EDGE_FALLTHRU)
- {
- error ("fallthru edge after a control statement in bb %d",
- bb->index);
- err = 1;
- }
- }
-
- if (gimple_code (stmt) != GIMPLE_COND)
- {
- /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
- after anything else but if statement. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
- {
- error ("true/false edge after a non-GIMPLE_COND in bb %d",
- bb->index);
- err = 1;
- }
- }
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- {
- edge true_edge;
- edge false_edge;
-
- extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
-
- if (!true_edge
- || !false_edge
- || !(true_edge->flags & EDGE_TRUE_VALUE)
- || !(false_edge->flags & EDGE_FALSE_VALUE)
- || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
- || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
- || EDGE_COUNT (bb->succs) >= 3)
- {
- error ("wrong outgoing edge flags at end of bb %d",
- bb->index);
- err = 1;
- }
- }
- break;
-
- case GIMPLE_GOTO:
- if (simple_goto_p (stmt))
- {
- error ("explicit goto at end of bb %d", bb->index);
- err = 1;
- }
- else
- {
- /* FIXME. We should double check that the labels in the
- destination blocks have their address taken. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
- | EDGE_FALSE_VALUE))
- || !(e->flags & EDGE_ABNORMAL))
- {
- error ("wrong outgoing edge flags at end of bb %d",
- bb->index);
- err = 1;
- }
- }
- break;
-
- case GIMPLE_RETURN:
- if (!single_succ_p (bb)
- || (single_succ_edge (bb)->flags
- & (EDGE_FALLTHRU | EDGE_ABNORMAL
- | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
- {
- error ("wrong outgoing edge flags at end of bb %d", bb->index);
- err = 1;
- }
- if (single_succ (bb) != EXIT_BLOCK_PTR)
- {
- error ("return edge does not point to exit in bb %d",
- bb->index);
- err = 1;
- }
- break;
-
- case GIMPLE_SWITCH:
- {
- tree prev;
- edge e;
- size_t i, n;
-
- n = gimple_switch_num_labels (stmt);
-
- /* Mark all the destination basic blocks. */
- for (i = 0; i < n; ++i)
- {
- tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
- basic_block label_bb = label_to_block (lab);
- gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
- label_bb->aux = (void *)1;
- }
-
- /* Verify that the case labels are sorted. */
- prev = gimple_switch_label (stmt, 0);
- for (i = 1; i < n; ++i)
- {
- tree c = gimple_switch_label (stmt, i);
- if (!CASE_LOW (c))
- {
- error ("found default case not at the start of "
- "case vector");
- err = 1;
- continue;
- }
- if (CASE_LOW (prev)
- && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
- {
- error ("case labels not sorted: ");
- print_generic_expr (stderr, prev, 0);
- fprintf (stderr," is greater than ");
- print_generic_expr (stderr, c, 0);
- fprintf (stderr," but comes before it.\n");
- err = 1;
- }
- prev = c;
- }
- /* VRP will remove the default case if it can prove it will
- never be executed. So do not verify there always exists
- a default case here. */
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (!e->dest->aux)
- {
- error ("extra outgoing edge %d->%d",
- bb->index, e->dest->index);
- err = 1;
- }
-
- e->dest->aux = (void *)2;
- if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
- | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
- {
- error ("wrong outgoing edge flags at end of bb %d",
- bb->index);
- err = 1;
- }
- }
-
- /* Check that we have all of them. */
- for (i = 0; i < n; ++i)
- {
- tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
- basic_block label_bb = label_to_block (lab);
-
- if (label_bb->aux != (void *)2)
- {
- error ("missing edge %i->%i", bb->index, label_bb->index);
- err = 1;
- }
- }
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- e->dest->aux = (void *)0;
- }
-
- default: ;
- }
- }
-
- if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
- verify_dominators (CDI_DOMINATORS);
-
- return err;
-}
-
-
-/* Updates phi nodes after creating a forwarder block joined
- by edge FALLTHRU. */
-
-static void
-gimple_make_forwarder_block (edge fallthru)
-{
- edge e;
- edge_iterator ei;
- basic_block dummy, bb;
- tree var;
- gimple_stmt_iterator gsi;
-
- dummy = fallthru->src;
- bb = fallthru->dest;
-
- if (single_pred_p (bb))
- return;
-
- /* If we redirected a branch we must create new PHI nodes at the
- start of BB. */
- for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple phi, new_phi;
-
- phi = gsi_stmt (gsi);
- var = gimple_phi_result (phi);
- new_phi = create_phi_node (var, bb);
- SSA_NAME_DEF_STMT (var) = new_phi;
- gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
- add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
- UNKNOWN_LOCATION);
- }
-
- /* Add the arguments we have stored on edges. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- if (e == fallthru)
- continue;
-
- flush_pending_stmts (e);
- }
-}
-
-
-/* Return a non-special label in the head of basic block BLOCK.
- Create one if it doesn't exist. */
-
-tree
-gimple_block_label (basic_block bb)
-{
- gimple_stmt_iterator i, s = gsi_start_bb (bb);
- bool first = true;
- tree label;
- gimple stmt;
-
- for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
- {
- stmt = gsi_stmt (i);
- if (gimple_code (stmt) != GIMPLE_LABEL)
- break;
- label = gimple_label_label (stmt);
- if (!DECL_NONLOCAL (label))
- {
- if (!first)
- gsi_move_before (&i, &s);
- return label;
- }
- }
-
- label = create_artificial_label ();
- stmt = gimple_build_label (label);
- gsi_insert_before (&s, stmt, GSI_NEW_STMT);
- return label;
-}
-
-
-/* Attempt to perform edge redirection by replacing a possibly complex
- jump instruction by a goto or by removing the jump completely.
- This can apply only if all edges now point to the same block. The
- parameters and return values are equivalent to
- redirect_edge_and_branch. */
-
-static edge
-gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
-{
- basic_block src = e->src;
- gimple_stmt_iterator i;
- gimple stmt;
-
- /* We can replace or remove a complex jump only when we have exactly
- two edges. */
- if (EDGE_COUNT (src->succs) != 2
- /* Verify that all targets will be TARGET. Specifically, the
- edge that is not E must also go to TARGET. */
- || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
- return NULL;
-
- i = gsi_last_bb (src);
- if (gsi_end_p (i))
- return NULL;
-
- stmt = gsi_stmt (i);
-
- if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
- {
- gsi_remove (&i, true);
- e = ssa_redirect_edge (e, target);
- e->flags = EDGE_FALLTHRU;
- return e;
- }
-
- return NULL;
-}
-
-
-/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
- edge representing the redirected branch. */
-
-static edge
-gimple_redirect_edge_and_branch (edge e, basic_block dest)
-{
- basic_block bb = e->src;
- gimple_stmt_iterator gsi;
- edge ret;
- gimple stmt;
-
- if (e->flags & EDGE_ABNORMAL)
- return NULL;
-
- if (e->src != ENTRY_BLOCK_PTR
- && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
- return ret;
-
- if (e->dest == dest)
- return NULL;
-
- gsi = gsi_last_bb (bb);
- stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
-
- switch (stmt ? gimple_code (stmt) : ERROR_MARK)
- {
- case GIMPLE_COND:
- /* For COND_EXPR, we only need to redirect the edge. */
- break;
-
- case GIMPLE_GOTO:
- /* No non-abnormal edges should lead from a non-simple goto, and
- simple ones should be represented implicitly. */
- gcc_unreachable ();
-
- case GIMPLE_SWITCH:
- {
- tree label = gimple_block_label (dest);
- tree cases = get_cases_for_edge (e, stmt);
-
- /* If we have a list of cases associated with E, then use it
- as it's a lot faster than walking the entire case vector. */
- if (cases)
- {
- edge e2 = find_edge (e->src, dest);
- tree last, first;
-
- first = cases;
- while (cases)
- {
- last = cases;
- CASE_LABEL (cases) = label;
- cases = TREE_CHAIN (cases);
- }
-
- /* If there was already an edge in the CFG, then we need
- to move all the cases associated with E to E2. */
- if (e2)
- {
- tree cases2 = get_cases_for_edge (e2, stmt);
-
- TREE_CHAIN (last) = TREE_CHAIN (cases2);
- TREE_CHAIN (cases2) = first;
- }
- }
- else
- {
- size_t i, n = gimple_switch_num_labels (stmt);
-
- for (i = 0; i < n; i++)
- {
- tree elt = gimple_switch_label (stmt, i);
- if (label_to_block (CASE_LABEL (elt)) == e->dest)
- CASE_LABEL (elt) = label;
- }
- }
-
- break;
- }
-
- case GIMPLE_RETURN:
- gsi_remove (&gsi, true);
- e->flags |= EDGE_FALLTHRU;
- break;
-
- case GIMPLE_OMP_RETURN:
- case GIMPLE_OMP_CONTINUE:
- case GIMPLE_OMP_SECTIONS_SWITCH:
- case GIMPLE_OMP_FOR:
- /* The edges from OMP constructs can be simply redirected. */
- break;
-
- default:
- /* Otherwise it must be a fallthru edge, and we don't need to
- do anything besides redirecting it. */
- gcc_assert (e->flags & EDGE_FALLTHRU);
- break;
- }
-
- /* Update/insert PHI nodes as necessary. */
-
- /* Now update the edges in the CFG. */
- e = ssa_redirect_edge (e, dest);
-
- return e;
-}
-
-/* Returns true if it is possible to remove edge E by redirecting
- it to the destination of the other edge from E->src. */
-
-static bool
-gimple_can_remove_branch_p (const_edge e)
-{
- if (e->flags & EDGE_ABNORMAL)
- return false;
-
- return true;
-}
-
-/* Simple wrapper, as we can always redirect fallthru edges. */
-
-static basic_block
-gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
-{
- e = gimple_redirect_edge_and_branch (e, dest);
- gcc_assert (e);
-
- return NULL;
-}
-
-
-/* Splits basic block BB after statement STMT (but at least after the
- labels). If STMT is NULL, BB is split just after the labels. */
-
-static basic_block
-gimple_split_block (basic_block bb, void *stmt)
-{
- gimple_stmt_iterator gsi;
- gimple_stmt_iterator gsi_tgt;
- gimple act;
- gimple_seq list;
- basic_block new_bb;
- edge e;
- edge_iterator ei;
-
- new_bb = create_empty_bb (bb);
-
- /* Redirect the outgoing edges. */
- new_bb->succs = bb->succs;
- bb->succs = NULL;
- FOR_EACH_EDGE (e, ei, new_bb->succs)
- e->src = new_bb;
-
- if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
- stmt = NULL;
-
- /* Move everything from GSI to the new basic block. */
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- act = gsi_stmt (gsi);
- if (gimple_code (act) == GIMPLE_LABEL)
- continue;
-
- if (!stmt)
- break;
-
- if (stmt == act)
- {
- gsi_next (&gsi);
- break;
- }
- }
-
- if (gsi_end_p (gsi))
- return new_bb;
-
- /* Split the statement list - avoid re-creating new containers as this
- brings ugly quadratic memory consumption in the inliner.
- (We are still quadratic since we need to update stmt BB pointers,
- sadly.) */
- list = gsi_split_seq_before (&gsi);
- set_bb_seq (new_bb, list);
- for (gsi_tgt = gsi_start (list);
- !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
- gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
-
- return new_bb;
-}
-
-
-/* Moves basic block BB after block AFTER. */
-
-static bool
-gimple_move_block_after (basic_block bb, basic_block after)
-{
- if (bb->prev_bb == after)
- return true;
-
- unlink_block (bb);
- link_block (bb, after);
-
- return true;
-}
-
-
-/* Return true if basic_block can be duplicated. */
-
-static bool
-gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
-{
- gimple_seq_node last = gimple_seq_last (bb_seq (bb));
- /* We cannot duplicate GIMPLE_RESXs due to expander limitations. */
- if (last && gimple_code (last->stmt) == GIMPLE_RESX)
- return false;
- return true;
-}
-
-/* Create a duplicate of the basic block BB. NOTE: This does not
- preserve SSA form. */
-
-static basic_block
-gimple_duplicate_bb (basic_block bb)
-{
- basic_block new_bb;
- gimple_stmt_iterator gsi, gsi_tgt;
- gimple_seq phis = phi_nodes (bb);
- gimple phi, stmt, copy;
-
- new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
-
- /* Copy the PHI nodes. We ignore PHI node arguments here because
- the incoming edges have not been setup yet. */
- for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- phi = gsi_stmt (gsi);
- copy = create_phi_node (gimple_phi_result (phi), new_bb);
- create_new_def_for (gimple_phi_result (copy), copy,
- gimple_phi_result_ptr (copy));
- }
-
- gsi_tgt = gsi_start_bb (new_bb);
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- def_operand_p def_p;
- ssa_op_iter op_iter;
- int region;
-
- stmt = gsi_stmt (gsi);
- if (gimple_code (stmt) == GIMPLE_LABEL)
- continue;
-
- /* Create a new copy of STMT and duplicate STMT's virtual
- operands. */
- copy = gimple_copy (stmt);
- gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
- copy_virtual_operands (copy, stmt);
- region = lookup_stmt_eh_region (stmt);
- if (region >= 0)
- add_stmt_to_eh_region (copy, region);
- gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
-
- /* Create new names for all the definitions created by COPY and
- add replacement mappings for each new name. */
- FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
- create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
- }
-
- return new_bb;
-}
-
-/* Adds phi node arguments for edge E_COPY after basic block duplication. */
-
-static void
-add_phi_args_after_copy_edge (edge e_copy)
-{
- basic_block bb, bb_copy = e_copy->src, dest;
- edge e;
- edge_iterator ei;
- gimple phi, phi_copy;
- tree def;
- gimple_stmt_iterator psi, psi_copy;
-
- if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
- return;
-
- bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
-
- if (e_copy->dest->flags & BB_DUPLICATED)
- dest = get_bb_original (e_copy->dest);
- else
- dest = e_copy->dest;
-
- e = find_edge (bb, dest);
- if (!e)
- {
- /* During loop unrolling the target of the latch edge is copied.
- In this case we are not looking for edge to dest, but to
- duplicated block whose original was dest. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if ((e->dest->flags & BB_DUPLICATED)
- && get_bb_original (e->dest) == dest)
- break;
- }
-
- gcc_assert (e != NULL);
- }
-
- for (psi = gsi_start_phis (e->dest),
- psi_copy = gsi_start_phis (e_copy->dest);
- !gsi_end_p (psi);
- gsi_next (&psi), gsi_next (&psi_copy))
- {
- phi = gsi_stmt (psi);
- phi_copy = gsi_stmt (psi_copy);
- def = PHI_ARG_DEF_FROM_EDGE (phi, e);
- add_phi_arg (phi_copy, def, e_copy,
- gimple_phi_arg_location_from_edge (phi, e));
- }
-}
-
-
-/* Basic block BB_COPY was created by code duplication. Add phi node
- arguments for edges going out of BB_COPY. The blocks that were
- duplicated have BB_DUPLICATED set. */
-
-void
-add_phi_args_after_copy_bb (basic_block bb_copy)
-{
- edge e_copy;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
- {
- add_phi_args_after_copy_edge (e_copy);
- }
-}
-
-/* Blocks in REGION_COPY array of length N_REGION were created by
- duplication of basic blocks. Add phi node arguments for edges
- going from these blocks. If E_COPY is not NULL, also add
- phi node arguments for its destination.*/
-
-void
-add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
- edge e_copy)
-{
- unsigned i;
-
- for (i = 0; i < n_region; i++)
- region_copy[i]->flags |= BB_DUPLICATED;
-
- for (i = 0; i < n_region; i++)
- add_phi_args_after_copy_bb (region_copy[i]);
- if (e_copy)
- add_phi_args_after_copy_edge (e_copy);
-
- for (i = 0; i < n_region; i++)
- region_copy[i]->flags &= ~BB_DUPLICATED;
-}
-
-/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
- important exit edge EXIT. By important we mean that no SSA name defined
- inside region is live over the other exit edges of the region. All entry
- edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
- to the duplicate of the region. SSA form, dominance and loop information
- is updated. The new basic blocks are stored to REGION_COPY in the same
- order as they had in REGION, provided that REGION_COPY is not NULL.
- The function returns false if it is unable to copy the region,
- true otherwise. */
-
-bool
-gimple_duplicate_sese_region (edge entry, edge exit,
- basic_block *region, unsigned n_region,
- basic_block *region_copy)
-{
- unsigned i;
- bool free_region_copy = false, copying_header = false;
- struct loop *loop = entry->dest->loop_father;
- edge exit_copy;
- VEC (basic_block, heap) *doms;
- edge redirected;
- int total_freq = 0, entry_freq = 0;
- gcov_type total_count = 0, entry_count = 0;
-
- if (!can_copy_bbs_p (region, n_region))
- return false;
-
- /* Some sanity checking. Note that we do not check for all possible
- missuses of the functions. I.e. if you ask to copy something weird,
- it will work, but the state of structures probably will not be
- correct. */
- for (i = 0; i < n_region; i++)
- {
- /* We do not handle subloops, i.e. all the blocks must belong to the
- same loop. */
- if (region[i]->loop_father != loop)
- return false;
-
- if (region[i] != entry->dest
- && region[i] == loop->header)
- return false;
- }
-
- set_loop_copy (loop, loop);
-
- /* In case the function is used for loop header copying (which is the primary
- use), ensure that EXIT and its copy will be new latch and entry edges. */
- if (loop->header == entry->dest)
- {
- copying_header = true;
- set_loop_copy (loop, loop_outer (loop));
-
- if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
- return false;
-
- for (i = 0; i < n_region; i++)
- if (region[i] != exit->src
- && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
- return false;
- }
-
- if (!region_copy)
- {
- region_copy = XNEWVEC (basic_block, n_region);
- free_region_copy = true;
- }
-
- gcc_assert (!need_ssa_update_p ());
-
- /* Record blocks outside the region that are dominated by something
- inside. */
- doms = NULL;
- initialize_original_copy_tables ();
-
- doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
-
- if (entry->dest->count)
- {
- total_count = entry->dest->count;
- entry_count = entry->count;
- /* Fix up corner cases, to avoid division by zero or creation of negative
- frequencies. */
- if (entry_count > total_count)
- entry_count = total_count;
- }
- else
- {
- total_freq = entry->dest->frequency;
- entry_freq = EDGE_FREQUENCY (entry);
- /* Fix up corner cases, to avoid division by zero or creation of negative
- frequencies. */
- if (total_freq == 0)
- total_freq = 1;
- else if (entry_freq > total_freq)
- entry_freq = total_freq;
- }
-
- copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
- split_edge_bb_loc (entry));
- if (total_count)
- {
- scale_bbs_frequencies_gcov_type (region, n_region,
- total_count - entry_count,
- total_count);
- scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
- total_count);
- }
- else
- {
- scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
- total_freq);
- scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
- }
-
- if (copying_header)
- {
- loop->header = exit->dest;
- loop->latch = exit->src;
- }
-
- /* Redirect the entry and add the phi node arguments. */
- redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
- gcc_assert (redirected != NULL);
- flush_pending_stmts (entry);
-
- /* Concerning updating of dominators: We must recount dominators
- for entry block and its copy. Anything that is outside of the
- region, but was dominated by something inside needs recounting as
- well. */
- set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
- VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
- iterate_fix_dominators (CDI_DOMINATORS, doms, false);
- VEC_free (basic_block, heap, doms);
-
- /* Add the other PHI node arguments. */
- add_phi_args_after_copy (region_copy, n_region, NULL);
-
- /* Update the SSA web. */
- update_ssa (TODO_update_ssa);
-
- if (free_region_copy)
- free (region_copy);
-
- free_original_copy_tables ();
- return true;
-}
-
-/* Duplicates REGION consisting of N_REGION blocks. The new blocks
- are stored to REGION_COPY in the same order in that they appear
- in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
- the region, EXIT an exit from it. The condition guarding EXIT
- is moved to ENTRY. Returns true if duplication succeeds, false
- otherwise.
-
- For example,
-
- some_code;
- if (cond)
- A;
- else
- B;
-
- is transformed to
-
- if (cond)
- {
- some_code;
- A;
- }
- else
- {
- some_code;
- B;
- }
-*/
-
-bool
-gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
- basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
- basic_block *region_copy ATTRIBUTE_UNUSED)
-{
- unsigned i;
- bool free_region_copy = false;
- struct loop *loop = exit->dest->loop_father;
- struct loop *orig_loop = entry->dest->loop_father;
- basic_block switch_bb, entry_bb, nentry_bb;
- VEC (basic_block, heap) *doms;
- int total_freq = 0, exit_freq = 0;
- gcov_type total_count = 0, exit_count = 0;
- edge exits[2], nexits[2], e;
- gimple_stmt_iterator gsi;
- gimple cond_stmt;
- edge sorig, snew;
-
- gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
- exits[0] = exit;
- exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
-
- if (!can_copy_bbs_p (region, n_region))
- return false;
-
- /* Some sanity checking. Note that we do not check for all possible
- missuses of the functions. I.e. if you ask to copy something weird
- (e.g., in the example, if there is a jump from inside to the middle
- of some_code, or come_code defines some of the values used in cond)
- it will work, but the resulting code will not be correct. */
- for (i = 0; i < n_region; i++)
- {
- /* We do not handle subloops, i.e. all the blocks must belong to the
- same loop. */
- if (region[i]->loop_father != orig_loop)
- return false;
-
- if (region[i] == orig_loop->latch)
- return false;
- }
-
- initialize_original_copy_tables ();
- set_loop_copy (orig_loop, loop);
-
- if (!region_copy)
- {
- region_copy = XNEWVEC (basic_block, n_region);
- free_region_copy = true;
- }
-
- gcc_assert (!need_ssa_update_p ());
-
- /* Record blocks outside the region that are dominated by something
- inside. */
- doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
-
- if (exit->src->count)
- {
- total_count = exit->src->count;
- exit_count = exit->count;
- /* Fix up corner cases, to avoid division by zero or creation of negative
- frequencies. */
- if (exit_count > total_count)
- exit_count = total_count;
- }
- else
- {
- total_freq = exit->src->frequency;
- exit_freq = EDGE_FREQUENCY (exit);
- /* Fix up corner cases, to avoid division by zero or creation of negative
- frequencies. */
- if (total_freq == 0)
- total_freq = 1;
- if (exit_freq > total_freq)
- exit_freq = total_freq;
- }
-
- copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
- split_edge_bb_loc (exit));
- if (total_count)
- {
- scale_bbs_frequencies_gcov_type (region, n_region,
- total_count - exit_count,
- total_count);
- scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
- total_count);
- }
- else
- {
- scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
- total_freq);
- scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
- }
-
- /* Create the switch block, and put the exit condition to it. */
- entry_bb = entry->dest;
- nentry_bb = get_bb_copy (entry_bb);
- if (!last_stmt (entry->src)
- || !stmt_ends_bb_p (last_stmt (entry->src)))
- switch_bb = entry->src;
- else
- switch_bb = split_edge (entry);
- set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
-
- gsi = gsi_last_bb (switch_bb);
- cond_stmt = last_stmt (exit->src);
- gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
- cond_stmt = gimple_copy (cond_stmt);
- gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
- gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
- gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
-
- sorig = single_succ_edge (switch_bb);
- sorig->flags = exits[1]->flags;
- snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
-
- /* Register the new edge from SWITCH_BB in loop exit lists. */
- rescan_loop_exit (snew, true, false);
-
- /* Add the PHI node arguments. */
- add_phi_args_after_copy (region_copy, n_region, snew);
-
- /* Get rid of now superfluous conditions and associated edges (and phi node
- arguments). */
- e = redirect_edge_and_branch (exits[0], exits[1]->dest);
- PENDING_STMT (e) = NULL;
- e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
- PENDING_STMT (e) = NULL;
-
- /* Anything that is outside of the region, but was dominated by something
- inside needs to update dominance info. */
- iterate_fix_dominators (CDI_DOMINATORS, doms, false);
- VEC_free (basic_block, heap, doms);
-
- /* Update the SSA web. */
- update_ssa (TODO_update_ssa);
-
- if (free_region_copy)
- free (region_copy);
-
- free_original_copy_tables ();
- return true;
-}
-
-/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
- adding blocks when the dominator traversal reaches EXIT. This
- function silently assumes that ENTRY strictly dominates EXIT. */
-
-void
-gather_blocks_in_sese_region (basic_block entry, basic_block exit,
- VEC(basic_block,heap) **bbs_p)
-{
- basic_block son;
-
- for (son = first_dom_son (CDI_DOMINATORS, entry);
- son;
- son = next_dom_son (CDI_DOMINATORS, son))
- {
- VEC_safe_push (basic_block, heap, *bbs_p, son);
- if (son != exit)
- gather_blocks_in_sese_region (son, exit, bbs_p);
- }
-}
-
-/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
- The duplicates are recorded in VARS_MAP. */
-
-static void
-replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
- tree to_context)
-{
- tree t = *tp, new_t;
- struct function *f = DECL_STRUCT_FUNCTION (to_context);
- void **loc;
-
- if (DECL_CONTEXT (t) == to_context)
- return;
-
- loc = pointer_map_contains (vars_map, t);
-
- if (!loc)
- {
- loc = pointer_map_insert (vars_map, t);
-
- if (SSA_VAR_P (t))
- {
- new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
- f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
- }
- else
- {
- gcc_assert (TREE_CODE (t) == CONST_DECL);
- new_t = copy_node (t);
- }
- DECL_CONTEXT (new_t) = to_context;
-
- *loc = new_t;
- }
- else
- new_t = (tree) *loc;
-
- *tp = new_t;
-}
-
-
-/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
- VARS_MAP maps old ssa names and var_decls to the new ones. */
-
-static tree
-replace_ssa_name (tree name, struct pointer_map_t *vars_map,
- tree to_context)
-{
- void **loc;
- tree new_name, decl = SSA_NAME_VAR (name);
-
- gcc_assert (is_gimple_reg (name));
-
- loc = pointer_map_contains (vars_map, name);
-
- if (!loc)
- {
- replace_by_duplicate_decl (&decl, vars_map, to_context);
-
- push_cfun (DECL_STRUCT_FUNCTION (to_context));
- if (gimple_in_ssa_p (cfun))
- add_referenced_var (decl);
-
- new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
- if (SSA_NAME_IS_DEFAULT_DEF (name))
- set_default_def (decl, new_name);
- pop_cfun ();
-
- loc = pointer_map_insert (vars_map, name);
- *loc = new_name;
- }
- else
- new_name = (tree) *loc;
-
- return new_name;
-}
-
-struct move_stmt_d
-{
- tree orig_block;
- tree new_block;
- tree from_context;
- tree to_context;
- struct pointer_map_t *vars_map;
- htab_t new_label_map;
- bool remap_decls_p;
-};
-
-/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
- contained in *TP if it has been ORIG_BLOCK previously and change the
- DECL_CONTEXT of every local variable referenced in *TP. */
-
-static tree
-move_stmt_op (tree *tp, int *walk_subtrees, void *data)
-{
- struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
- struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
- tree t = *tp;
-
- if (EXPR_P (t))
- /* We should never have TREE_BLOCK set on non-statements. */
- gcc_assert (!TREE_BLOCK (t));
-
- else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
- {
- if (TREE_CODE (t) == SSA_NAME)
- *tp = replace_ssa_name (t, p->vars_map, p->to_context);
- else if (TREE_CODE (t) == LABEL_DECL)
- {
- if (p->new_label_map)
- {
- struct tree_map in, *out;
- in.base.from = t;
- out = (struct tree_map *)
- htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
- if (out)
- *tp = t = out->to;
- }
-
- DECL_CONTEXT (t) = p->to_context;
- }
- else if (p->remap_decls_p)
- {
- /* Replace T with its duplicate. T should no longer appear in the
- parent function, so this looks wasteful; however, it may appear
- in referenced_vars, and more importantly, as virtual operands of
- statements, and in alias lists of other variables. It would be
- quite difficult to expunge it from all those places. ??? It might
- suffice to do this for addressable variables. */
- if ((TREE_CODE (t) == VAR_DECL
- && !is_global_var (t))
- || TREE_CODE (t) == CONST_DECL)
- replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
-
- if (SSA_VAR_P (t)
- && gimple_in_ssa_p (cfun))
- {
- push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
- add_referenced_var (*tp);
- pop_cfun ();
- }
- }
- *walk_subtrees = 0;
- }
- else if (TYPE_P (t))
- *walk_subtrees = 0;
-
- return NULL_TREE;
-}
-
-/* Like move_stmt_op, but for gimple statements.
-
- Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
- contained in the current statement in *GSI_P and change the
- DECL_CONTEXT of every local variable referenced in the current
- statement. */
-
-static tree
-move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
- struct walk_stmt_info *wi)
-{
- struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
- gimple stmt = gsi_stmt (*gsi_p);
- tree block = gimple_block (stmt);
-
- if (p->orig_block == NULL_TREE
- || block == p->orig_block
- || block == NULL_TREE)
- gimple_set_block (stmt, p->new_block);
-#ifdef ENABLE_CHECKING
- else if (block != p->new_block)
- {
- while (block && block != p->orig_block)
- block = BLOCK_SUPERCONTEXT (block);
- gcc_assert (block);
- }
-#endif
-
- if (is_gimple_omp (stmt)
- && gimple_code (stmt) != GIMPLE_OMP_RETURN
- && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
- {
- /* Do not remap variables inside OMP directives. Variables
- referenced in clauses and directive header belong to the
- parent function and should not be moved into the child
- function. */
- bool save_remap_decls_p = p->remap_decls_p;
- p->remap_decls_p = false;
- *handled_ops_p = true;
-
- walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
-
- p->remap_decls_p = save_remap_decls_p;
- }
-
- return NULL_TREE;
-}
-
-/* Marks virtual operands of all statements in basic blocks BBS for
- renaming. */
-
-void
-mark_virtual_ops_in_bb (basic_block bb)
-{
- gimple_stmt_iterator gsi;
-
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- mark_virtual_ops_for_renaming (gsi_stmt (gsi));
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- mark_virtual_ops_for_renaming (gsi_stmt (gsi));
-}
-
-/* Marks virtual operands of all statements in basic blocks BBS for
- renaming. */
-
-static void
-mark_virtual_ops_in_region (VEC (basic_block,heap) *bbs)
-{
- basic_block bb;
- unsigned i;
-
- for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
- mark_virtual_ops_in_bb (bb);
-}
-
-/* Move basic block BB from function CFUN to function DEST_FN. The
- block is moved out of the original linked list and placed after
- block AFTER in the new list. Also, the block is removed from the
- original array of blocks and placed in DEST_FN's array of blocks.
- If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
- updated to reflect the moved edges.
-
- The local variables are remapped to new instances, VARS_MAP is used
- to record the mapping. */
-
-static void
-move_block_to_fn (struct function *dest_cfun, basic_block bb,
- basic_block after, bool update_edge_count_p,
- struct move_stmt_d *d, int eh_offset)
-{
- struct control_flow_graph *cfg;
- edge_iterator ei;
- edge e;
- gimple_stmt_iterator si;
- unsigned old_len, new_len;
-
- /* Remove BB from dominance structures. */
- delete_from_dominance_info (CDI_DOMINATORS, bb);
- if (current_loops)
- remove_bb_from_loops (bb);
-
- /* Link BB to the new linked list. */
- move_block_after (bb, after);
-
- /* Update the edge count in the corresponding flowgraphs. */
- if (update_edge_count_p)
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- cfun->cfg->x_n_edges--;
- dest_cfun->cfg->x_n_edges++;
- }
-
- /* Remove BB from the original basic block array. */
- VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
- cfun->cfg->x_n_basic_blocks--;
-
- /* Grow DEST_CFUN's basic block array if needed. */
- cfg = dest_cfun->cfg;
- cfg->x_n_basic_blocks++;
- if (bb->index >= cfg->x_last_basic_block)
- cfg->x_last_basic_block = bb->index + 1;
-
- old_len = VEC_length (basic_block, cfg->x_basic_block_info);
- if ((unsigned) cfg->x_last_basic_block >= old_len)
- {
- new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
- VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
- new_len);
- }
-
- VEC_replace (basic_block, cfg->x_basic_block_info,
- bb->index, bb);
-
- /* Remap the variables in phi nodes. */
- for (si = gsi_start_phis (bb); !gsi_end_p (si); )
- {
- gimple phi = gsi_stmt (si);
- use_operand_p use;
- tree op = PHI_RESULT (phi);
- ssa_op_iter oi;
-
- if (!is_gimple_reg (op))
- {
- /* Remove the phi nodes for virtual operands (alias analysis will be
- run for the new function, anyway). */
- remove_phi_node (&si, true);
- continue;
- }
-
- SET_PHI_RESULT (phi,
- replace_ssa_name (op, d->vars_map, dest_cfun->decl));
- FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
- {
- op = USE_FROM_PTR (use);
- if (TREE_CODE (op) == SSA_NAME)
- SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
- }
-
- gsi_next (&si);
- }
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- int region;
- struct walk_stmt_info wi;
-
- memset (&wi, 0, sizeof (wi));
- wi.info = d;
- walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
-
- if (gimple_code (stmt) == GIMPLE_LABEL)
- {
- tree label = gimple_label_label (stmt);
- int uid = LABEL_DECL_UID (label);
-
- gcc_assert (uid > -1);
-
- old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
- if (old_len <= (unsigned) uid)
- {
- new_len = 3 * uid / 2;
- VEC_safe_grow_cleared (basic_block, gc,
- cfg->x_label_to_block_map, new_len);
- }
-
- VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
- VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
-
- gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
-
- if (uid >= dest_cfun->cfg->last_label_uid)
- dest_cfun->cfg->last_label_uid = uid + 1;
- }
- else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
- gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
-
- region = lookup_stmt_eh_region (stmt);
- if (region >= 0)
- {
- add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
- remove_stmt_from_eh_region (stmt);
- gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
- gimple_remove_stmt_histograms (cfun, stmt);
- }
-
- /* We cannot leave any operands allocated from the operand caches of
- the current function. */
- free_stmt_operands (stmt);
- push_cfun (dest_cfun);
- update_stmt (stmt);
- pop_cfun ();
- }
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->goto_locus)
- {
- tree block = e->goto_block;
- if (d->orig_block == NULL_TREE
- || block == d->orig_block)
- e->goto_block = d->new_block;
-#ifdef ENABLE_CHECKING
- else if (block != d->new_block)
- {
- while (block && block != d->orig_block)
- block = BLOCK_SUPERCONTEXT (block);
- gcc_assert (block);
- }
-#endif
- }
-}
-
-/* Examine the statements in BB (which is in SRC_CFUN); find and return
- the outermost EH region. Use REGION as the incoming base EH region. */
-
-static int
-find_outermost_region_in_block (struct function *src_cfun,
- basic_block bb, int region)
-{
- gimple_stmt_iterator si;
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- int stmt_region;
-
- if (gimple_code (stmt) == GIMPLE_RESX)
- stmt_region = gimple_resx_region (stmt);
- else
- stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
- if (stmt_region > 0)
- {
- if (region < 0)
- region = stmt_region;
- else if (stmt_region != region)
- {
- region = eh_region_outermost (src_cfun, stmt_region, region);
- gcc_assert (region != -1);
- }
- }
- }
-
- return region;
-}
-
-static tree
-new_label_mapper (tree decl, void *data)
-{
- htab_t hash = (htab_t) data;
- struct tree_map *m;
- void **slot;
-
- gcc_assert (TREE_CODE (decl) == LABEL_DECL);
-
- m = XNEW (struct tree_map);
- m->hash = DECL_UID (decl);
- m->base.from = decl;
- m->to = create_artificial_label ();
- LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
- if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
- cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
-
- slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
- gcc_assert (*slot == NULL);
-
- *slot = m;
-
- return m->to;
-}
-
-/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
- subblocks. */
-
-static void
-replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
- tree to_context)
-{
- tree *tp, t;
-
- for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
- {
- t = *tp;
- if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
- continue;
- replace_by_duplicate_decl (&t, vars_map, to_context);
- if (t != *tp)
- {
- if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
- {
- SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
- DECL_HAS_VALUE_EXPR_P (t) = 1;
- }
- TREE_CHAIN (t) = TREE_CHAIN (*tp);
- *tp = t;
- }
- }
-
- for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
- replace_block_vars_by_duplicates (block, vars_map, to_context);
-}
-
-/* Move a single-entry, single-exit region delimited by ENTRY_BB and
- EXIT_BB to function DEST_CFUN. The whole region is replaced by a
- single basic block in the original CFG and the new basic block is
- returned. DEST_CFUN must not have a CFG yet.
-
- Note that the region need not be a pure SESE region. Blocks inside
- the region may contain calls to abort/exit. The only restriction
- is that ENTRY_BB should be the only entry point and it must
- dominate EXIT_BB.
-
- Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
- functions outermost BLOCK, move all subblocks of ORIG_BLOCK
- to the new function.
-
- All local variables referenced in the region are assumed to be in
- the corresponding BLOCK_VARS and unexpanded variable lists
- associated with DEST_CFUN. */
-
-basic_block
-move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
- basic_block exit_bb, tree orig_block)
-{
- VEC(basic_block,heap) *bbs, *dom_bbs;
- basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
- basic_block after, bb, *entry_pred, *exit_succ, abb;
- struct function *saved_cfun = cfun;
- int *entry_flag, *exit_flag, eh_offset;
- unsigned *entry_prob, *exit_prob;
- unsigned i, num_entry_edges, num_exit_edges;
- edge e;
- edge_iterator ei;
- htab_t new_label_map;
- struct pointer_map_t *vars_map;
- struct loop *loop = entry_bb->loop_father;
- struct move_stmt_d d;
-
- /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
- region. */
- gcc_assert (entry_bb != exit_bb
- && (!exit_bb
- || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
-
- /* Collect all the blocks in the region. Manually add ENTRY_BB
- because it won't be added by dfs_enumerate_from. */
- bbs = NULL;
- VEC_safe_push (basic_block, heap, bbs, entry_bb);
- gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
-
- /* The blocks that used to be dominated by something in BBS will now be
- dominated by the new block. */
- dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
- VEC_address (basic_block, bbs),
- VEC_length (basic_block, bbs));
-
- /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
- the predecessor edges to ENTRY_BB and the successor edges to
- EXIT_BB so that we can re-attach them to the new basic block that
- will replace the region. */
- num_entry_edges = EDGE_COUNT (entry_bb->preds);
- entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
- entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
- entry_prob = XNEWVEC (unsigned, num_entry_edges);
- i = 0;
- for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
- {
- entry_prob[i] = e->probability;
- entry_flag[i] = e->flags;
- entry_pred[i++] = e->src;
- remove_edge (e);
- }
-
- if (exit_bb)
- {
- num_exit_edges = EDGE_COUNT (exit_bb->succs);
- exit_succ = (basic_block *) xcalloc (num_exit_edges,
- sizeof (basic_block));
- exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
- exit_prob = XNEWVEC (unsigned, num_exit_edges);
- i = 0;
- for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
- {
- exit_prob[i] = e->probability;
- exit_flag[i] = e->flags;
- exit_succ[i++] = e->dest;
- remove_edge (e);
- }
- }
- else
- {
- num_exit_edges = 0;
- exit_succ = NULL;
- exit_flag = NULL;
- exit_prob = NULL;
- }
-
- /* Switch context to the child function to initialize DEST_FN's CFG. */
- gcc_assert (dest_cfun->cfg == NULL);
- push_cfun (dest_cfun);
-
- init_empty_tree_cfg ();
-
- /* Initialize EH information for the new function. */
- eh_offset = 0;
- new_label_map = NULL;
- if (saved_cfun->eh)
- {
- int region = -1;
-
- for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
- region = find_outermost_region_in_block (saved_cfun, bb, region);
-
- init_eh_for_function ();
- if (region != -1)
- {
- new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
- eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
- new_label_map, region, 0);
- }
- }
-
- pop_cfun ();
-
- /* The ssa form for virtual operands in the source function will have to
- be repaired. We do not care for the real operands -- the sese region
- must be closed with respect to those. */
- mark_virtual_ops_in_region (bbs);
-
- /* Move blocks from BBS into DEST_CFUN. */
- gcc_assert (VEC_length (basic_block, bbs) >= 2);
- after = dest_cfun->cfg->x_entry_block_ptr;
- vars_map = pointer_map_create ();
-
- memset (&d, 0, sizeof (d));
- d.vars_map = vars_map;
- d.from_context = cfun->decl;
- d.to_context = dest_cfun->decl;
- d.new_label_map = new_label_map;
- d.remap_decls_p = true;
- d.orig_block = orig_block;
- d.new_block = DECL_INITIAL (dest_cfun->decl);
-
- for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
- {
- /* No need to update edge counts on the last block. It has
- already been updated earlier when we detached the region from
- the original CFG. */
- move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
- after = bb;
- }
-
- /* Rewire BLOCK_SUBBLOCKS of orig_block. */
- if (orig_block)
- {
- tree block;
- gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
- == NULL_TREE);
- BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
- = BLOCK_SUBBLOCKS (orig_block);
- for (block = BLOCK_SUBBLOCKS (orig_block);
- block; block = BLOCK_CHAIN (block))
- BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
- BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
- }
-
- replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
- vars_map, dest_cfun->decl);
-
- if (new_label_map)
- htab_delete (new_label_map);
- pointer_map_destroy (vars_map);
-
- /* Rewire the entry and exit blocks. The successor to the entry
- block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
- the child function. Similarly, the predecessor of DEST_FN's
- EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
- need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
- various CFG manipulation function get to the right CFG.
-
- FIXME, this is silly. The CFG ought to become a parameter to
- these helpers. */
- push_cfun (dest_cfun);
- make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
- if (exit_bb)
- make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
- pop_cfun ();
-
- /* Back in the original function, the SESE region has disappeared,
- create a new basic block in its place. */
- bb = create_empty_bb (entry_pred[0]);
- if (current_loops)
- add_bb_to_loop (bb, loop);
- for (i = 0; i < num_entry_edges; i++)
- {
- e = make_edge (entry_pred[i], bb, entry_flag[i]);
- e->probability = entry_prob[i];
- }
-
- for (i = 0; i < num_exit_edges; i++)
- {
- e = make_edge (bb, exit_succ[i], exit_flag[i]);
- e->probability = exit_prob[i];
- }
-
- set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
- for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
- set_immediate_dominator (CDI_DOMINATORS, abb, bb);
- VEC_free (basic_block, heap, dom_bbs);
-
- if (exit_bb)
- {
- free (exit_prob);
- free (exit_flag);
- free (exit_succ);
- }
- free (entry_prob);
- free (entry_flag);
- free (entry_pred);
- VEC_free (basic_block, heap, bbs);
-
- return bb;
-}
-
-
-/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
- */
-
-void
-dump_function_to_file (tree fn, FILE *file, int flags)
-{
- tree arg, vars, var;
- struct function *dsf;
- bool ignore_topmost_bind = false, any_var = false;
- basic_block bb;
- tree chain;
-
- fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
-
- arg = DECL_ARGUMENTS (fn);
- while (arg)
- {
- print_generic_expr (file, TREE_TYPE (arg), dump_flags);
- fprintf (file, " ");
- print_generic_expr (file, arg, dump_flags);
- if (flags & TDF_VERBOSE)
- print_node (file, "", arg, 4);
- if (TREE_CHAIN (arg))
- fprintf (file, ", ");
- arg = TREE_CHAIN (arg);
- }
- fprintf (file, ")\n");
-
- if (flags & TDF_VERBOSE)
- print_node (file, "", fn, 2);
-
- dsf = DECL_STRUCT_FUNCTION (fn);
- if (dsf && (flags & TDF_DETAILS))
- dump_eh_tree (file, dsf);
-
- if (flags & TDF_RAW && !gimple_has_body_p (fn))
- {
- dump_node (fn, TDF_SLIM | flags, file);
- return;
- }
-
- /* Switch CFUN to point to FN. */
- push_cfun (DECL_STRUCT_FUNCTION (fn));
-
- /* When GIMPLE is lowered, the variables are no longer available in
- BIND_EXPRs, so display them separately. */
- if (cfun && cfun->decl == fn && cfun->local_decls)
- {
- ignore_topmost_bind = true;
-
- fprintf (file, "{\n");
- for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
- {
- var = TREE_VALUE (vars);
-
- print_generic_decl (file, var, flags);
- if (flags & TDF_VERBOSE)
- print_node (file, "", var, 4);
- fprintf (file, "\n");
-
- any_var = true;
- }
- }
-
- if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
- {
- /* If the CFG has been built, emit a CFG-based dump. */
- check_bb_profile (ENTRY_BLOCK_PTR, file);
- if (!ignore_topmost_bind)
- fprintf (file, "{\n");
-
- if (any_var && n_basic_blocks)
- fprintf (file, "\n");
-
- FOR_EACH_BB (bb)
- gimple_dump_bb (bb, file, 2, flags);
-
- fprintf (file, "}\n");
- check_bb_profile (EXIT_BLOCK_PTR, file);
- }
- else if (DECL_SAVED_TREE (fn) == NULL)
- {
- /* The function is now in GIMPLE form but the CFG has not been
- built yet. Emit the single sequence of GIMPLE statements
- that make up its body. */
- gimple_seq body = gimple_body (fn);
-
- if (gimple_seq_first_stmt (body)
- && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
- && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
- print_gimple_seq (file, body, 0, flags);
- else
- {
- if (!ignore_topmost_bind)
- fprintf (file, "{\n");
-
- if (any_var)
- fprintf (file, "\n");
-
- print_gimple_seq (file, body, 2, flags);
- fprintf (file, "}\n");
- }
- }
- else
- {
- int indent;
-
- /* Make a tree based dump. */
- chain = DECL_SAVED_TREE (fn);
-
- if (chain && TREE_CODE (chain) == BIND_EXPR)
- {
- if (ignore_topmost_bind)
- {
- chain = BIND_EXPR_BODY (chain);
- indent = 2;
- }
- else
- indent = 0;
- }
- else
- {
- if (!ignore_topmost_bind)
- fprintf (file, "{\n");
- indent = 2;
- }
-
- if (any_var)
- fprintf (file, "\n");
-
- print_generic_stmt_indented (file, chain, flags, indent);
- if (ignore_topmost_bind)
- fprintf (file, "}\n");
- }
-
- fprintf (file, "\n\n");
-
- /* Restore CFUN. */
- pop_cfun ();
-}
-
-
-/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
-
-void
-debug_function (tree fn, int flags)
-{
- dump_function_to_file (fn, stderr, flags);
-}
-
-
-/* Print on FILE the indexes for the predecessors of basic_block BB. */
-
-static void
-print_pred_bbs (FILE *file, basic_block bb)
-{
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->preds)
- fprintf (file, "bb_%d ", e->src->index);
-}
-
-
-/* Print on FILE the indexes for the successors of basic_block BB. */
-
-static void
-print_succ_bbs (FILE *file, basic_block bb)
-{
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- fprintf (file, "bb_%d ", e->dest->index);
-}
-
-/* Print to FILE the basic block BB following the VERBOSITY level. */
-
-void
-print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
-{
- char *s_indent = (char *) alloca ((size_t) indent + 1);
- memset ((void *) s_indent, ' ', (size_t) indent);
- s_indent[indent] = '\0';
-
- /* Print basic_block's header. */
- if (verbosity >= 2)
- {
- fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
- print_pred_bbs (file, bb);
- fprintf (file, "}, succs = {");
- print_succ_bbs (file, bb);
- fprintf (file, "})\n");
- }
-
- /* Print basic_block's body. */
- if (verbosity >= 3)
- {
- fprintf (file, "%s {\n", s_indent);
- gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
- fprintf (file, "%s }\n", s_indent);
- }
-}
-
-static void print_loop_and_siblings (FILE *, struct loop *, int, int);
-
-/* Pretty print LOOP on FILE, indented INDENT spaces. Following
- VERBOSITY level this outputs the contents of the loop, or just its
- structure. */
-
-static void
-print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
-{
- char *s_indent;
- basic_block bb;
-
- if (loop == NULL)
- return;
-
- s_indent = (char *) alloca ((size_t) indent + 1);
- memset ((void *) s_indent, ' ', (size_t) indent);
- s_indent[indent] = '\0';
-
- /* Print loop's header. */
- fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
- loop->num, loop->header->index, loop->latch->index);
- fprintf (file, ", niter = ");
- print_generic_expr (file, loop->nb_iterations, 0);
-
- if (loop->any_upper_bound)
- {
- fprintf (file, ", upper_bound = ");
- dump_double_int (file, loop->nb_iterations_upper_bound, true);
- }
-
- if (loop->any_estimate)
- {
- fprintf (file, ", estimate = ");
- dump_double_int (file, loop->nb_iterations_estimate, true);
- }
- fprintf (file, ")\n");
-
- /* Print loop's body. */
- if (verbosity >= 1)
- {
- fprintf (file, "%s{\n", s_indent);
- FOR_EACH_BB (bb)
- if (bb->loop_father == loop)
- print_loops_bb (file, bb, indent, verbosity);
-
- print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
- fprintf (file, "%s}\n", s_indent);
- }
-}
-
-/* Print the LOOP and its sibling loops on FILE, indented INDENT
- spaces. Following VERBOSITY level this outputs the contents of the
- loop, or just its structure. */
-
-static void
-print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
-{
- if (loop == NULL)
- return;
-
- print_loop (file, loop, indent, verbosity);
- print_loop_and_siblings (file, loop->next, indent, verbosity);
-}
-
-/* Follow a CFG edge from the entry point of the program, and on entry
- of a loop, pretty print the loop structure on FILE. */
-
-void
-print_loops (FILE *file, int verbosity)
-{
- basic_block bb;
-
- bb = ENTRY_BLOCK_PTR;
- if (bb && bb->loop_father)
- print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
-}
-
-
-/* Debugging loops structure at tree level, at some VERBOSITY level. */
-
-void
-debug_loops (int verbosity)
-{
- print_loops (stderr, verbosity);
-}
-
-/* Print on stderr the code of LOOP, at some VERBOSITY level. */
-
-void
-debug_loop (struct loop *loop, int verbosity)
-{
- print_loop (stderr, loop, 0, verbosity);
-}
-
-/* Print on stderr the code of loop number NUM, at some VERBOSITY
- level. */
-
-void
-debug_loop_num (unsigned num, int verbosity)
-{
- debug_loop (get_loop (num), verbosity);
-}
-
-/* Return true if BB ends with a call, possibly followed by some
- instructions that must stay with the call. Return false,
- otherwise. */
-
-static bool
-gimple_block_ends_with_call_p (basic_block bb)
-{
- gimple_stmt_iterator gsi = gsi_last_bb (bb);
- return is_gimple_call (gsi_stmt (gsi));
-}
-
-
-/* Return true if BB ends with a conditional branch. Return false,
- otherwise. */
-
-static bool
-gimple_block_ends_with_condjump_p (const_basic_block bb)
-{
- gimple stmt = last_stmt (CONST_CAST_BB (bb));
- return (stmt && gimple_code (stmt) == GIMPLE_COND);
-}
-
-
-/* Return true if we need to add fake edge to exit at statement T.
- Helper function for gimple_flow_call_edges_add. */
-
-static bool
-need_fake_edge_p (gimple t)
-{
- tree fndecl = NULL_TREE;
- int call_flags = 0;
-
- /* NORETURN and LONGJMP calls already have an edge to exit.
- CONST and PURE calls do not need one.
- We don't currently check for CONST and PURE here, although
- it would be a good idea, because those attributes are
- figured out from the RTL in mark_constant_function, and
- the counter incrementation code from -fprofile-arcs
- leads to different results from -fbranch-probabilities. */
- if (is_gimple_call (t))
- {
- fndecl = gimple_call_fndecl (t);
- call_flags = gimple_call_flags (t);
- }
-
- if (is_gimple_call (t)
- && fndecl
- && DECL_BUILT_IN (fndecl)
- && (call_flags & ECF_NOTHROW)
- && !(call_flags & ECF_RETURNS_TWICE)
- /* fork() doesn't really return twice, but the effect of
- wrapping it in __gcov_fork() which calls __gcov_flush()
- and clears the counters before forking has the same
- effect as returning twice. Force a fake edge. */
- && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
- && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
- return false;
-
- if (is_gimple_call (t)
- && !(call_flags & ECF_NORETURN))
- return true;
-
- if (gimple_code (t) == GIMPLE_ASM
- && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
- return true;
-
- return false;
-}
-
-
-/* Add fake edges to the function exit for any non constant and non
- noreturn calls, volatile inline assembly in the bitmap of blocks
- specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
- the number of blocks that were split.
-
- The goal is to expose cases in which entering a basic block does
- not imply that all subsequent instructions must be executed. */
-
-static int
-gimple_flow_call_edges_add (sbitmap blocks)
-{
- int i;
- int blocks_split = 0;
- int last_bb = last_basic_block;
- bool check_last_block = false;
-
- if (n_basic_blocks == NUM_FIXED_BLOCKS)
- return 0;
-
- if (! blocks)
- check_last_block = true;
- else
- check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
-
- /* In the last basic block, before epilogue generation, there will be
- a fallthru edge to EXIT. Special care is required if the last insn
- of the last basic block is a call because make_edge folds duplicate
- edges, which would result in the fallthru edge also being marked
- fake, which would result in the fallthru edge being removed by
- remove_fake_edges, which would result in an invalid CFG.
-
- Moreover, we can't elide the outgoing fake edge, since the block
- profiler needs to take this into account in order to solve the minimal
- spanning tree in the case that the call doesn't return.
-
- Handle this by adding a dummy instruction in a new last basic block. */
- if (check_last_block)
- {
- basic_block bb = EXIT_BLOCK_PTR->prev_bb;
- gimple_stmt_iterator gsi = gsi_last_bb (bb);
- gimple t = NULL;
-
- if (!gsi_end_p (gsi))
- t = gsi_stmt (gsi);
-
- if (t && need_fake_edge_p (t))
- {
- edge e;
-
- e = find_edge (bb, EXIT_BLOCK_PTR);
- if (e)
- {
- gsi_insert_on_edge (e, gimple_build_nop ());
- gsi_commit_edge_inserts ();
- }
- }
- }
-
- /* Now add fake edges to the function exit for any non constant
- calls since there is no way that we can determine if they will
- return or not... */
- for (i = 0; i < last_bb; i++)
- {
- basic_block bb = BASIC_BLOCK (i);
- gimple_stmt_iterator gsi;
- gimple stmt, last_stmt;
-
- if (!bb)
- continue;
-
- if (blocks && !TEST_BIT (blocks, i))
- continue;
-
- gsi = gsi_last_bb (bb);
- if (!gsi_end_p (gsi))
- {
- last_stmt = gsi_stmt (gsi);
- do
- {
- stmt = gsi_stmt (gsi);
- if (need_fake_edge_p (stmt))
- {
- edge e;
-
- /* The handling above of the final block before the
- epilogue should be enough to verify that there is
- no edge to the exit block in CFG already.
- Calling make_edge in such case would cause us to
- mark that edge as fake and remove it later. */
-#ifdef ENABLE_CHECKING
- if (stmt == last_stmt)
- {
- e = find_edge (bb, EXIT_BLOCK_PTR);
- gcc_assert (e == NULL);
- }
-#endif
-
- /* Note that the following may create a new basic block
- and renumber the existing basic blocks. */
- if (stmt != last_stmt)
- {
- e = split_block (bb, stmt);
- if (e)
- blocks_split++;
- }
- make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
- }
- gsi_prev (&gsi);
- }
- while (!gsi_end_p (gsi));
- }
- }
-
- if (blocks_split)
- verify_flow_info ();
-
- return blocks_split;
-}
-
-/* Purge dead abnormal call edges from basic block BB. */
-
-bool
-gimple_purge_dead_abnormal_call_edges (basic_block bb)
-{
- bool changed = gimple_purge_dead_eh_edges (bb);
-
- if (cfun->has_nonlocal_label)
- {
- gimple stmt = last_stmt (bb);
- edge_iterator ei;
- edge e;
-
- if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
- for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
- {
- if (e->flags & EDGE_ABNORMAL)
- {
- remove_edge (e);
- changed = true;
- }
- else
- ei_next (&ei);
- }
-
- /* See gimple_purge_dead_eh_edges below. */
- if (changed)
- free_dominance_info (CDI_DOMINATORS);
- }
-
- return changed;
-}
-
-/* Stores all basic blocks dominated by BB to DOM_BBS. */
-
-static void
-get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
-{
- basic_block son;
-
- VEC_safe_push (basic_block, heap, *dom_bbs, bb);
- for (son = first_dom_son (CDI_DOMINATORS, bb);
- son;
- son = next_dom_son (CDI_DOMINATORS, son))
- get_all_dominated_blocks (son, dom_bbs);
-}
-
-/* Removes edge E and all the blocks dominated by it, and updates dominance
- information. The IL in E->src needs to be updated separately.
- If dominance info is not available, only the edge E is removed.*/
-
-void
-remove_edge_and_dominated_blocks (edge e)
-{
- VEC (basic_block, heap) *bbs_to_remove = NULL;
- VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
- bitmap df, df_idom;
- edge f;
- edge_iterator ei;
- bool none_removed = false;
- unsigned i;
- basic_block bb, dbb;
- bitmap_iterator bi;
-
- if (!dom_info_available_p (CDI_DOMINATORS))
- {
- remove_edge (e);
- return;
- }
-
- /* No updating is needed for edges to exit. */
- if (e->dest == EXIT_BLOCK_PTR)
- {
- if (cfgcleanup_altered_bbs)
- bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
- remove_edge (e);
- return;
- }
-
- /* First, we find the basic blocks to remove. If E->dest has a predecessor
- that is not dominated by E->dest, then this set is empty. Otherwise,
- all the basic blocks dominated by E->dest are removed.
-
- Also, to DF_IDOM we store the immediate dominators of the blocks in
- the dominance frontier of E (i.e., of the successors of the
- removed blocks, if there are any, and of E->dest otherwise). */
- FOR_EACH_EDGE (f, ei, e->dest->preds)
- {
- if (f == e)
- continue;
-
- if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
- {
- none_removed = true;
- break;
- }
- }
-
- df = BITMAP_ALLOC (NULL);
- df_idom = BITMAP_ALLOC (NULL);
-
- if (none_removed)
- bitmap_set_bit (df_idom,
- get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
- else
- {
- get_all_dominated_blocks (e->dest, &bbs_to_remove);
- for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
- {
- FOR_EACH_EDGE (f, ei, bb->succs)
- {
- if (f->dest != EXIT_BLOCK_PTR)
- bitmap_set_bit (df, f->dest->index);
- }
- }
- for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
- bitmap_clear_bit (df, bb->index);
-
- EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
- {
- bb = BASIC_BLOCK (i);
- bitmap_set_bit (df_idom,
- get_immediate_dominator (CDI_DOMINATORS, bb)->index);
- }
- }
-
- if (cfgcleanup_altered_bbs)
- {
- /* Record the set of the altered basic blocks. */
- bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
- bitmap_ior_into (cfgcleanup_altered_bbs, df);
- }
-
- /* Remove E and the cancelled blocks. */
- if (none_removed)
- remove_edge (e);
- else
- {
- for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
- delete_basic_block (bb);
- }
-
- /* Update the dominance information. The immediate dominator may change only
- for blocks whose immediate dominator belongs to DF_IDOM:
-
- Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
- removal. Let Z the arbitrary block such that idom(Z) = Y and
- Z dominates X after the removal. Before removal, there exists a path P
- from Y to X that avoids Z. Let F be the last edge on P that is
- removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
- dominates W, and because of P, Z does not dominate W), and W belongs to
- the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
- EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
- {
- bb = BASIC_BLOCK (i);
- for (dbb = first_dom_son (CDI_DOMINATORS, bb);
- dbb;
- dbb = next_dom_son (CDI_DOMINATORS, dbb))
- VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
- }
-
- iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
-
- BITMAP_FREE (df);
- BITMAP_FREE (df_idom);
- VEC_free (basic_block, heap, bbs_to_remove);
- VEC_free (basic_block, heap, bbs_to_fix_dom);
-}
-
-/* Purge dead EH edges from basic block BB. */
-
-bool
-gimple_purge_dead_eh_edges (basic_block bb)
-{
- bool changed = false;
- edge e;
- edge_iterator ei;
- gimple stmt = last_stmt (bb);
-
- if (stmt && stmt_can_throw_internal (stmt))
- return false;
-
- for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
- {
- if (e->flags & EDGE_EH)
- {
- remove_edge_and_dominated_blocks (e);
- changed = true;
- }
- else
- ei_next (&ei);
- }
-
- return changed;
-}
-
-bool
-gimple_purge_all_dead_eh_edges (const_bitmap blocks)
-{
- bool changed = false;
- unsigned i;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
- {
- basic_block bb = BASIC_BLOCK (i);
-
- /* Earlier gimple_purge_dead_eh_edges could have removed
- this basic block already. */
- gcc_assert (bb || changed);
- if (bb != NULL)
- changed |= gimple_purge_dead_eh_edges (bb);
- }
-
- return changed;
-}
-
-/* This function is called whenever a new edge is created or
- redirected. */
-
-static void
-gimple_execute_on_growing_pred (edge e)
-{
- basic_block bb = e->dest;
-
- if (phi_nodes (bb))
- reserve_phi_args_for_new_edge (bb);
-}
-
-/* This function is called immediately before edge E is removed from
- the edge vector E->dest->preds. */
-
-static void
-gimple_execute_on_shrinking_pred (edge e)
-{
- if (phi_nodes (e->dest))
- remove_phi_args (e);
-}
-
-/*---------------------------------------------------------------------------
- Helper functions for Loop versioning
- ---------------------------------------------------------------------------*/
-
-/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
- of 'first'. Both of them are dominated by 'new_head' basic block. When
- 'new_head' was created by 'second's incoming edge it received phi arguments
- on the edge by split_edge(). Later, additional edge 'e' was created to
- connect 'new_head' and 'first'. Now this routine adds phi args on this
- additional edge 'e' that new_head to second edge received as part of edge
- splitting. */
-
-static void
-gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
- basic_block new_head, edge e)
-{
- gimple phi1, phi2;
- gimple_stmt_iterator psi1, psi2;
- tree def;
- edge e2 = find_edge (new_head, second);
-
- /* Because NEW_HEAD has been created by splitting SECOND's incoming
- edge, we should always have an edge from NEW_HEAD to SECOND. */
- gcc_assert (e2 != NULL);
-
- /* Browse all 'second' basic block phi nodes and add phi args to
- edge 'e' for 'first' head. PHI args are always in correct order. */
-
- for (psi2 = gsi_start_phis (second),
- psi1 = gsi_start_phis (first);
- !gsi_end_p (psi2) && !gsi_end_p (psi1);
- gsi_next (&psi2), gsi_next (&psi1))
- {
- phi1 = gsi_stmt (psi1);
- phi2 = gsi_stmt (psi2);
- def = PHI_ARG_DEF (phi2, e2->dest_idx);
- add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
- }
-}
-
-
-/* Adds a if else statement to COND_BB with condition COND_EXPR.
- SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
- the destination of the ELSE part. */
-
-static void
-gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
- basic_block second_head ATTRIBUTE_UNUSED,
- basic_block cond_bb, void *cond_e)
-{
- gimple_stmt_iterator gsi;
- gimple new_cond_expr;
- tree cond_expr = (tree) cond_e;
- edge e0;
-
- /* Build new conditional expr */
- new_cond_expr = gimple_build_cond_from_tree (cond_expr,
- NULL_TREE, NULL_TREE);
-
- /* Add new cond in cond_bb. */
- gsi = gsi_last_bb (cond_bb);
- gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
-
- /* Adjust edges appropriately to connect new head with first head
- as well as second head. */
- e0 = single_succ_edge (cond_bb);
- e0->flags &= ~EDGE_FALLTHRU;
- e0->flags |= EDGE_FALSE_VALUE;
-}
-
-struct cfg_hooks gimple_cfg_hooks = {
- "gimple",
- gimple_verify_flow_info,
- gimple_dump_bb, /* dump_bb */
- create_bb, /* create_basic_block */
- gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
- gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
- gimple_can_remove_branch_p, /* can_remove_branch_p */
- remove_bb, /* delete_basic_block */
- gimple_split_block, /* split_block */
- gimple_move_block_after, /* move_block_after */
- gimple_can_merge_blocks_p, /* can_merge_blocks_p */
- gimple_merge_blocks, /* merge_blocks */
- gimple_predict_edge, /* predict_edge */
- gimple_predicted_by_p, /* predicted_by_p */
- gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
- gimple_duplicate_bb, /* duplicate_block */
- gimple_split_edge, /* split_edge */
- gimple_make_forwarder_block, /* make_forward_block */
- NULL, /* tidy_fallthru_edge */
- gimple_block_ends_with_call_p,/* block_ends_with_call_p */
- gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
- gimple_flow_call_edges_add, /* flow_call_edges_add */
- gimple_execute_on_growing_pred, /* execute_on_growing_pred */
- gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
- gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
- gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
- gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
- extract_true_false_edges_from_block, /* extract_cond_bb_edges */
- flush_pending_stmts /* flush_pending_stmts */
-};
-
-
-/* Split all critical edges. */
-
-static unsigned int
-split_critical_edges (void)
-{
- basic_block bb;
- edge e;
- edge_iterator ei;
-
- /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
- expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
- mappings around the calls to split_edge. */
- start_recording_case_labels ();
- FOR_ALL_BB (bb)
- {
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
- {
- split_edge (e);
- }
- }
- end_recording_case_labels ();
- return 0;
-}
-
-struct gimple_opt_pass pass_split_crit_edges =
-{
- {
- GIMPLE_PASS,
- "crited", /* name */
- NULL, /* gate */
- split_critical_edges, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_SPLIT_EDGES, /* tv_id */
- PROP_cfg, /* properties required */
- PROP_no_crit_edges, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_dump_func /* todo_flags_finish */
- }
-};
-
-
-/* Build a ternary operation and gimplify it. Emit code before GSI.
- Return the gimple_val holding the result. */
-
-tree
-gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
- tree type, tree a, tree b, tree c)
-{
- tree ret;
-
- ret = fold_build3 (code, type, a, b, c);
- STRIP_NOPS (ret);
-
- return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
- GSI_SAME_STMT);
-}
-
-/* Build a binary operation and gimplify it. Emit code before GSI.
- Return the gimple_val holding the result. */
-
-tree
-gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
- tree type, tree a, tree b)
-{
- tree ret;
-
- ret = fold_build2 (code, type, a, b);
- STRIP_NOPS (ret);
-
- return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
- GSI_SAME_STMT);
-}
-
-/* Build a unary operation and gimplify it. Emit code before GSI.
- Return the gimple_val holding the result. */
-
-tree
-gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
- tree a)
-{
- tree ret;
-
- ret = fold_build1 (code, type, a);
- STRIP_NOPS (ret);
-
- return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
- GSI_SAME_STMT);
-}
-
-
-
-/* Emit return warnings. */
-
-static unsigned int
-execute_warn_function_return (void)
-{
- source_location location;
- gimple last;
- edge e;
- edge_iterator ei;
-
- /* If we have a path to EXIT, then we do return. */
- if (TREE_THIS_VOLATILE (cfun->decl)
- && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
- {
- location = UNKNOWN_LOCATION;
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- {
- last = last_stmt (e->src);
- if (gimple_code (last) == GIMPLE_RETURN
- && (location = gimple_location (last)) != UNKNOWN_LOCATION)
- break;
- }
- if (location == UNKNOWN_LOCATION)
- location = cfun->function_end_locus;
- warning (0, "%H%<noreturn%> function does return", &location);
- }
-
- /* If we see "return;" in some basic block, then we do reach the end
- without returning a value. */
- else if (warn_return_type
- && !TREE_NO_WARNING (cfun->decl)
- && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
- && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
- {
- FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
- {
- gimple last = last_stmt (e->src);
- if (gimple_code (last) == GIMPLE_RETURN
- && gimple_return_retval (last) == NULL
- && !gimple_no_warning_p (last))
- {
- location = gimple_location (last);
- if (location == UNKNOWN_LOCATION)
- location = cfun->function_end_locus;
- warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
- TREE_NO_WARNING (cfun->decl) = 1;
- break;
- }
- }
- }
- return 0;
-}
-
-
-/* Given a basic block B which ends with a conditional and has
- precisely two successors, determine which of the edges is taken if
- the conditional is true and which is taken if the conditional is
- false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
-
-void
-extract_true_false_edges_from_block (basic_block b,
- edge *true_edge,
- edge *false_edge)
-{
- edge e = EDGE_SUCC (b, 0);
-
- if (e->flags & EDGE_TRUE_VALUE)
- {
- *true_edge = e;
- *false_edge = EDGE_SUCC (b, 1);
- }
- else
- {
- *false_edge = e;
- *true_edge = EDGE_SUCC (b, 1);
- }
-}
-
-struct gimple_opt_pass pass_warn_function_return =
-{
- {
- GIMPLE_PASS,
- NULL, /* name */
- NULL, /* gate */
- execute_warn_function_return, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- 0, /* tv_id */
- PROP_cfg, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0 /* todo_flags_finish */
- }
-};
-
-/* Emit noreturn warnings. */
-
-static unsigned int
-execute_warn_function_noreturn (void)
-{
- if (warn_missing_noreturn
- && !TREE_THIS_VOLATILE (cfun->decl)
- && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
- && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
- warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
- "for attribute %<noreturn%>",
- cfun->decl);
- return 0;
-}
-
-struct gimple_opt_pass pass_warn_function_noreturn =
-{
- {
- GIMPLE_PASS,
- NULL, /* name */
- NULL, /* gate */
- execute_warn_function_noreturn, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- 0, /* tv_id */
- PROP_cfg, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0 /* todo_flags_finish */
- }
-};