aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/rtlanal.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.4.3/gcc/rtlanal.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.4.3/gcc/rtlanal.c')
-rw-r--r--gcc-4.4.3/gcc/rtlanal.c5059
1 files changed, 0 insertions, 5059 deletions
diff --git a/gcc-4.4.3/gcc/rtlanal.c b/gcc-4.4.3/gcc/rtlanal.c
deleted file mode 100644
index 4194f26f0..000000000
--- a/gcc-4.4.3/gcc/rtlanal.c
+++ /dev/null
@@ -1,5059 +0,0 @@
-/* Analyze RTL for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "toplev.h"
-#include "rtl.h"
-#include "hard-reg-set.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "target.h"
-#include "output.h"
-#include "tm_p.h"
-#include "flags.h"
-#include "real.h"
-#include "regs.h"
-#include "function.h"
-#include "df.h"
-#include "tree.h"
-
-/* Information about a subreg of a hard register. */
-struct subreg_info
-{
- /* Offset of first hard register involved in the subreg. */
- int offset;
- /* Number of hard registers involved in the subreg. */
- int nregs;
- /* Whether this subreg can be represented as a hard reg with the new
- mode. */
- bool representable_p;
-};
-
-/* Forward declarations */
-static void set_of_1 (rtx, const_rtx, void *);
-static bool covers_regno_p (const_rtx, unsigned int);
-static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
-static int rtx_referenced_p_1 (rtx *, void *);
-static int computed_jump_p_1 (const_rtx);
-static void parms_set (rtx, const_rtx, void *);
-static void subreg_get_info (unsigned int, enum machine_mode,
- unsigned int, enum machine_mode,
- struct subreg_info *);
-
-static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
- const_rtx, enum machine_mode,
- unsigned HOST_WIDE_INT);
-static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
- const_rtx, enum machine_mode,
- unsigned HOST_WIDE_INT);
-static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
- enum machine_mode,
- unsigned int);
-static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
- enum machine_mode, unsigned int);
-
-/* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
- -1 if a code has no such operand. */
-static int non_rtx_starting_operands[NUM_RTX_CODE];
-
-/* Bit flags that specify the machine subtype we are compiling for.
- Bits are tested using macros TARGET_... defined in the tm.h file
- and set by `-m...' switches. Must be defined in rtlanal.c. */
-
-int target_flags;
-
-/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
- If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
- SIGN_EXTEND then while narrowing we also have to enforce the
- representation and sign-extend the value to mode DESTINATION_REP.
-
- If the value is already sign-extended to DESTINATION_REP mode we
- can just switch to DESTINATION mode on it. For each pair of
- integral modes SOURCE and DESTINATION, when truncating from SOURCE
- to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
- contains the number of high-order bits in SOURCE that have to be
- copies of the sign-bit so that we can do this mode-switch to
- DESTINATION. */
-
-static unsigned int
-num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
-
-/* Return 1 if the value of X is unstable
- (would be different at a different point in the program).
- The frame pointer, arg pointer, etc. are considered stable
- (within one function) and so is anything marked `unchanging'. */
-
-int
-rtx_unstable_p (const_rtx x)
-{
- const RTX_CODE code = GET_CODE (x);
- int i;
- const char *fmt;
-
- switch (code)
- {
- case MEM:
- return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
-
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case SYMBOL_REF:
- case LABEL_REF:
- return 0;
-
- case REG:
- /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
- if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- /* The arg pointer varies if it is not a fixed register. */
- || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
- return 0;
-#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
- /* ??? When call-clobbered, the value is stable modulo the restore
- that must happen after a call. This currently screws up local-alloc
- into believing that the restore is not needed. */
- if (x == pic_offset_table_rtx)
- return 0;
-#endif
- return 1;
-
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- return 1;
-
- /* Fall through. */
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- {
- if (rtx_unstable_p (XEXP (x, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_unstable_p (XVECEXP (x, i, j)))
- return 1;
- }
-
- return 0;
-}
-
-/* Return 1 if X has a value that can vary even between two
- executions of the program. 0 means X can be compared reliably
- against certain constants or near-constants.
- FOR_ALIAS is nonzero if we are called from alias analysis; if it is
- zero, we are slightly more conservative.
- The frame pointer and the arg pointer are considered constant. */
-
-bool
-rtx_varies_p (const_rtx x, bool for_alias)
-{
- RTX_CODE code;
- int i;
- const char *fmt;
-
- if (!x)
- return 0;
-
- code = GET_CODE (x);
- switch (code)
- {
- case MEM:
- return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
-
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case SYMBOL_REF:
- case LABEL_REF:
- return 0;
-
- case REG:
- /* Note that we have to test for the actual rtx used for the frame
- and arg pointers and not just the register number in case we have
- eliminated the frame and/or arg pointer and are using it
- for pseudos. */
- if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- /* The arg pointer varies if it is not a fixed register. */
- || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
- return 0;
- if (x == pic_offset_table_rtx
-#ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
- /* ??? When call-clobbered, the value is stable modulo the restore
- that must happen after a call. This currently screws up
- local-alloc into believing that the restore is not needed, so we
- must return 0 only if we are called from alias analysis. */
- && for_alias
-#endif
- )
- return 0;
- return 1;
-
- case LO_SUM:
- /* The operand 0 of a LO_SUM is considered constant
- (in fact it is related specifically to operand 1)
- during alias analysis. */
- return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
- || rtx_varies_p (XEXP (x, 1), for_alias);
-
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- return 1;
-
- /* Fall through. */
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- {
- if (rtx_varies_p (XEXP (x, i), for_alias))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
- return 1;
- }
-
- return 0;
-}
-
-/* Return nonzero if the use of X as an address in a MEM can cause a trap.
- MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
- whether nonzero is returned for unaligned memory accesses on strict
- alignment machines. */
-
-static int
-rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
- enum machine_mode mode, bool unaligned_mems)
-{
- enum rtx_code code = GET_CODE (x);
-
- if (STRICT_ALIGNMENT
- && unaligned_mems
- && GET_MODE_SIZE (mode) != 0)
- {
- HOST_WIDE_INT actual_offset = offset;
-#ifdef SPARC_STACK_BOUNDARY_HACK
- /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
- the real alignment of %sp. However, when it does this, the
- alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
- if (SPARC_STACK_BOUNDARY_HACK
- && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
- actual_offset -= STACK_POINTER_OFFSET;
-#endif
-
- if (actual_offset % GET_MODE_SIZE (mode) != 0)
- return 1;
- }
-
- switch (code)
- {
- case SYMBOL_REF:
- if (SYMBOL_REF_WEAK (x))
- return 1;
- if (!CONSTANT_POOL_ADDRESS_P (x))
- {
- tree decl;
- HOST_WIDE_INT decl_size;
-
- if (offset < 0)
- return 1;
- if (size == 0)
- size = GET_MODE_SIZE (mode);
- if (size == 0)
- return offset != 0;
-
- /* If the size of the access or of the symbol is unknown,
- assume the worst. */
- decl = SYMBOL_REF_DECL (x);
-
- /* Else check that the access is in bounds. TODO: restructure
- expr_size/lhd_expr_size/int_expr_size and just use the latter. */
- if (!decl)
- decl_size = -1;
- else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
- decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
- ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
- : -1);
- else if (TREE_CODE (decl) == STRING_CST)
- decl_size = TREE_STRING_LENGTH (decl);
- else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
- decl_size = int_size_in_bytes (TREE_TYPE (decl));
- else
- decl_size = -1;
-
- return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
- }
-
- return 0;
-
- case LABEL_REF:
- return 0;
-
- case REG:
- /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
- if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- || x == stack_pointer_rtx
- /* The arg pointer varies if it is not a fixed register. */
- || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
- return 0;
- /* All of the virtual frame registers are stack references. */
- if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
- && REGNO (x) <= LAST_VIRTUAL_REGISTER)
- return 0;
- return 1;
-
- case CONST:
- return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
- mode, unaligned_mems);
-
- case PLUS:
- /* An address is assumed not to trap if:
- - it is the pic register plus a constant. */
- if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
- return 0;
-
- /* - or it is an address that can't trap plus a constant integer,
- with the proper remainder modulo the mode size if we are
- considering unaligned memory references. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
- size, mode, unaligned_mems))
- return 0;
-
- return 1;
-
- case LO_SUM:
- case PRE_MODIFY:
- return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
- mode, unaligned_mems);
-
- case PRE_DEC:
- case PRE_INC:
- case POST_DEC:
- case POST_INC:
- case POST_MODIFY:
- return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
- mode, unaligned_mems);
-
- default:
- break;
- }
-
- /* If it isn't one of the case above, it can cause a trap. */
- return 1;
-}
-
-/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
-
-int
-rtx_addr_can_trap_p (const_rtx x)
-{
- return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
-}
-
-/* Return true if X is an address that is known to not be zero. */
-
-bool
-nonzero_address_p (const_rtx x)
-{
- const enum rtx_code code = GET_CODE (x);
-
- switch (code)
- {
- case SYMBOL_REF:
- return !SYMBOL_REF_WEAK (x);
-
- case LABEL_REF:
- return true;
-
- case REG:
- /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
- if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- || x == stack_pointer_rtx
- || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
- return true;
- /* All of the virtual frame registers are stack references. */
- if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
- && REGNO (x) <= LAST_VIRTUAL_REGISTER)
- return true;
- return false;
-
- case CONST:
- return nonzero_address_p (XEXP (x, 0));
-
- case PLUS:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- return nonzero_address_p (XEXP (x, 0));
- /* Handle PIC references. */
- else if (XEXP (x, 0) == pic_offset_table_rtx
- && CONSTANT_P (XEXP (x, 1)))
- return true;
- return false;
-
- case PRE_MODIFY:
- /* Similar to the above; allow positive offsets. Further, since
- auto-inc is only allowed in memories, the register must be a
- pointer. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) > 0)
- return true;
- return nonzero_address_p (XEXP (x, 0));
-
- case PRE_INC:
- /* Similarly. Further, the offset is always positive. */
- return true;
-
- case PRE_DEC:
- case POST_DEC:
- case POST_INC:
- case POST_MODIFY:
- return nonzero_address_p (XEXP (x, 0));
-
- case LO_SUM:
- return nonzero_address_p (XEXP (x, 1));
-
- default:
- break;
- }
-
- /* If it isn't one of the case above, might be zero. */
- return false;
-}
-
-/* Return 1 if X refers to a memory location whose address
- cannot be compared reliably with constant addresses,
- or if X refers to a BLKmode memory object.
- FOR_ALIAS is nonzero if we are called from alias analysis; if it is
- zero, we are slightly more conservative. */
-
-bool
-rtx_addr_varies_p (const_rtx x, bool for_alias)
-{
- enum rtx_code code;
- int i;
- const char *fmt;
-
- if (x == 0)
- return 0;
-
- code = GET_CODE (x);
- if (code == MEM)
- return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- {
- if (rtx_addr_varies_p (XEXP (x, i), for_alias))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
- return 1;
- }
- return 0;
-}
-
-/* Return the value of the integer term in X, if one is apparent;
- otherwise return 0.
- Only obvious integer terms are detected.
- This is used in cse.c with the `related_value' field. */
-
-HOST_WIDE_INT
-get_integer_term (const_rtx x)
-{
- if (GET_CODE (x) == CONST)
- x = XEXP (x, 0);
-
- if (GET_CODE (x) == MINUS
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- return - INTVAL (XEXP (x, 1));
- if (GET_CODE (x) == PLUS
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- return INTVAL (XEXP (x, 1));
- return 0;
-}
-
-/* If X is a constant, return the value sans apparent integer term;
- otherwise return 0.
- Only obvious integer terms are detected. */
-
-rtx
-get_related_value (const_rtx x)
-{
- if (GET_CODE (x) != CONST)
- return 0;
- x = XEXP (x, 0);
- if (GET_CODE (x) == PLUS
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- return XEXP (x, 0);
- else if (GET_CODE (x) == MINUS
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- return XEXP (x, 0);
- return 0;
-}
-
-/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
- to somewhere in the same object or object_block as SYMBOL. */
-
-bool
-offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
-{
- tree decl;
-
- if (GET_CODE (symbol) != SYMBOL_REF)
- return false;
-
- if (offset == 0)
- return true;
-
- if (offset > 0)
- {
- if (CONSTANT_POOL_ADDRESS_P (symbol)
- && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
- return true;
-
- decl = SYMBOL_REF_DECL (symbol);
- if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
- return true;
- }
-
- if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
- && SYMBOL_REF_BLOCK (symbol)
- && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
- && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
- < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
- return true;
-
- return false;
-}
-
-/* Split X into a base and a constant offset, storing them in *BASE_OUT
- and *OFFSET_OUT respectively. */
-
-void
-split_const (rtx x, rtx *base_out, rtx *offset_out)
-{
- if (GET_CODE (x) == CONST)
- {
- x = XEXP (x, 0);
- if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- *base_out = XEXP (x, 0);
- *offset_out = XEXP (x, 1);
- return;
- }
- }
- *base_out = x;
- *offset_out = const0_rtx;
-}
-
-/* Return the number of places FIND appears within X. If COUNT_DEST is
- zero, we do not count occurrences inside the destination of a SET. */
-
-int
-count_occurrences (const_rtx x, const_rtx find, int count_dest)
-{
- int i, j;
- enum rtx_code code;
- const char *format_ptr;
- int count;
-
- if (x == find)
- return 1;
-
- code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case SYMBOL_REF:
- case CODE_LABEL:
- case PC:
- case CC0:
- return 0;
-
- case EXPR_LIST:
- count = count_occurrences (XEXP (x, 0), find, count_dest);
- if (XEXP (x, 1))
- count += count_occurrences (XEXP (x, 1), find, count_dest);
- return count;
-
- case MEM:
- if (MEM_P (find) && rtx_equal_p (x, find))
- return 1;
- break;
-
- case SET:
- if (SET_DEST (x) == find && ! count_dest)
- return count_occurrences (SET_SRC (x), find, count_dest);
- break;
-
- default:
- break;
- }
-
- format_ptr = GET_RTX_FORMAT (code);
- count = 0;
-
- for (i = 0; i < GET_RTX_LENGTH (code); i++)
- {
- switch (*format_ptr++)
- {
- case 'e':
- count += count_occurrences (XEXP (x, i), find, count_dest);
- break;
-
- case 'E':
- for (j = 0; j < XVECLEN (x, i); j++)
- count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
- break;
- }
- }
- return count;
-}
-
-
-/* Nonzero if register REG appears somewhere within IN.
- Also works if REG is not a register; in this case it checks
- for a subexpression of IN that is Lisp "equal" to REG. */
-
-int
-reg_mentioned_p (const_rtx reg, const_rtx in)
-{
- const char *fmt;
- int i;
- enum rtx_code code;
-
- if (in == 0)
- return 0;
-
- if (reg == in)
- return 1;
-
- if (GET_CODE (in) == LABEL_REF)
- return reg == XEXP (in, 0);
-
- code = GET_CODE (in);
-
- switch (code)
- {
- /* Compare registers by number. */
- case REG:
- return REG_P (reg) && REGNO (in) == REGNO (reg);
-
- /* These codes have no constituent expressions
- and are unique. */
- case SCRATCH:
- case CC0:
- case PC:
- return 0;
-
- case CONST_INT:
- case CONST_VECTOR:
- case CONST_DOUBLE:
- case CONST_FIXED:
- /* These are kept unique for a given value. */
- return 0;
-
- default:
- break;
- }
-
- if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
- return 1;
-
- fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (in, i) - 1; j >= 0; j--)
- if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
- return 1;
- }
- else if (fmt[i] == 'e'
- && reg_mentioned_p (reg, XEXP (in, i)))
- return 1;
- }
- return 0;
-}
-
-/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
- no CODE_LABEL insn. */
-
-int
-no_labels_between_p (const_rtx beg, const_rtx end)
-{
- rtx p;
- if (beg == end)
- return 0;
- for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
- if (LABEL_P (p))
- return 0;
- return 1;
-}
-
-/* Nonzero if register REG is used in an insn between
- FROM_INSN and TO_INSN (exclusive of those two). */
-
-int
-reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
-{
- rtx insn;
-
- if (from_insn == to_insn)
- return 0;
-
- for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn)
- && (reg_overlap_mentioned_p (reg, PATTERN (insn))
- || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
- return 1;
- return 0;
-}
-
-/* Nonzero if the old value of X, a register, is referenced in BODY. If X
- is entirely replaced by a new value and the only use is as a SET_DEST,
- we do not consider it a reference. */
-
-int
-reg_referenced_p (const_rtx x, const_rtx body)
-{
- int i;
-
- switch (GET_CODE (body))
- {
- case SET:
- if (reg_overlap_mentioned_p (x, SET_SRC (body)))
- return 1;
-
- /* If the destination is anything other than CC0, PC, a REG or a SUBREG
- of a REG that occupies all of the REG, the insn references X if
- it is mentioned in the destination. */
- if (GET_CODE (SET_DEST (body)) != CC0
- && GET_CODE (SET_DEST (body)) != PC
- && !REG_P (SET_DEST (body))
- && ! (GET_CODE (SET_DEST (body)) == SUBREG
- && REG_P (SUBREG_REG (SET_DEST (body)))
- && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
- && reg_overlap_mentioned_p (x, SET_DEST (body)))
- return 1;
- return 0;
-
- case ASM_OPERANDS:
- for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
- if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
- return 1;
- return 0;
-
- case CALL:
- case USE:
- case IF_THEN_ELSE:
- return reg_overlap_mentioned_p (x, body);
-
- case TRAP_IF:
- return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
-
- case PREFETCH:
- return reg_overlap_mentioned_p (x, XEXP (body, 0));
-
- case UNSPEC:
- case UNSPEC_VOLATILE:
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
- return 1;
- return 0;
-
- case PARALLEL:
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- if (reg_referenced_p (x, XVECEXP (body, 0, i)))
- return 1;
- return 0;
-
- case CLOBBER:
- if (MEM_P (XEXP (body, 0)))
- if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
- return 1;
- return 0;
-
- case COND_EXEC:
- if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
- return 1;
- return reg_referenced_p (x, COND_EXEC_CODE (body));
-
- default:
- return 0;
- }
-}
-
-/* Nonzero if register REG is set or clobbered in an insn between
- FROM_INSN and TO_INSN (exclusive of those two). */
-
-int
-reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
-{
- const_rtx insn;
-
- if (from_insn == to_insn)
- return 0;
-
- for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
- if (INSN_P (insn) && reg_set_p (reg, insn))
- return 1;
- return 0;
-}
-
-/* Internals of reg_set_between_p. */
-int
-reg_set_p (const_rtx reg, const_rtx insn)
-{
- /* We can be passed an insn or part of one. If we are passed an insn,
- check if a side-effect of the insn clobbers REG. */
- if (INSN_P (insn)
- && (FIND_REG_INC_NOTE (insn, reg)
- || (CALL_P (insn)
- && ((REG_P (reg)
- && REGNO (reg) < FIRST_PSEUDO_REGISTER
- && overlaps_hard_reg_set_p (regs_invalidated_by_call,
- GET_MODE (reg), REGNO (reg)))
- || MEM_P (reg)
- || find_reg_fusage (insn, CLOBBER, reg)))))
- return 1;
-
- return set_of (reg, insn) != NULL_RTX;
-}
-
-/* Similar to reg_set_between_p, but check all registers in X. Return 0
- only if none of them are modified between START and END. Return 1 if
- X contains a MEM; this routine does use memory aliasing. */
-
-int
-modified_between_p (const_rtx x, const_rtx start, const_rtx end)
-{
- const enum rtx_code code = GET_CODE (x);
- const char *fmt;
- int i, j;
- rtx insn;
-
- if (start == end)
- return 0;
-
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- return 0;
-
- case PC:
- case CC0:
- return 1;
-
- case MEM:
- if (modified_between_p (XEXP (x, 0), start, end))
- return 1;
- if (MEM_READONLY_P (x))
- return 0;
- for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
- if (memory_modified_in_insn_p (x, insn))
- return 1;
- return 0;
- break;
-
- case REG:
- return reg_set_between_p (x, start, end);
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
- return 1;
-
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (modified_between_p (XVECEXP (x, i, j), start, end))
- return 1;
- }
-
- return 0;
-}
-
-/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
- of them are modified in INSN. Return 1 if X contains a MEM; this routine
- does use memory aliasing. */
-
-int
-modified_in_p (const_rtx x, const_rtx insn)
-{
- const enum rtx_code code = GET_CODE (x);
- const char *fmt;
- int i, j;
-
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case CONST:
- case SYMBOL_REF:
- case LABEL_REF:
- return 0;
-
- case PC:
- case CC0:
- return 1;
-
- case MEM:
- if (modified_in_p (XEXP (x, 0), insn))
- return 1;
- if (MEM_READONLY_P (x))
- return 0;
- if (memory_modified_in_insn_p (x, insn))
- return 1;
- return 0;
- break;
-
- case REG:
- return reg_set_p (x, insn);
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
- return 1;
-
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (modified_in_p (XVECEXP (x, i, j), insn))
- return 1;
- }
-
- return 0;
-}
-
-/* Helper function for set_of. */
-struct set_of_data
- {
- const_rtx found;
- const_rtx pat;
- };
-
-static void
-set_of_1 (rtx x, const_rtx pat, void *data1)
-{
- struct set_of_data *const data = (struct set_of_data *) (data1);
- if (rtx_equal_p (x, data->pat)
- || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
- data->found = pat;
-}
-
-/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
- (either directly or via STRICT_LOW_PART and similar modifiers). */
-const_rtx
-set_of (const_rtx pat, const_rtx insn)
-{
- struct set_of_data data;
- data.found = NULL_RTX;
- data.pat = pat;
- note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
- return data.found;
-}
-
-/* Given an INSN, return a SET expression if this insn has only a single SET.
- It may also have CLOBBERs, USEs, or SET whose output
- will not be used, which we ignore. */
-
-rtx
-single_set_2 (const_rtx insn, const_rtx pat)
-{
- rtx set = NULL;
- int set_verified = 1;
- int i;
-
- if (GET_CODE (pat) == PARALLEL)
- {
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx sub = XVECEXP (pat, 0, i);
- switch (GET_CODE (sub))
- {
- case USE:
- case CLOBBER:
- break;
-
- case SET:
- /* We can consider insns having multiple sets, where all
- but one are dead as single set insns. In common case
- only single set is present in the pattern so we want
- to avoid checking for REG_UNUSED notes unless necessary.
-
- When we reach set first time, we just expect this is
- the single set we are looking for and only when more
- sets are found in the insn, we check them. */
- if (!set_verified)
- {
- if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
- && !side_effects_p (set))
- set = NULL;
- else
- set_verified = 1;
- }
- if (!set)
- set = sub, set_verified = 0;
- else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
- || side_effects_p (sub))
- return NULL_RTX;
- break;
-
- default:
- return NULL_RTX;
- }
- }
- }
- return set;
-}
-
-/* Given an INSN, return nonzero if it has more than one SET, else return
- zero. */
-
-int
-multiple_sets (const_rtx insn)
-{
- int found;
- int i;
-
- /* INSN must be an insn. */
- if (! INSN_P (insn))
- return 0;
-
- /* Only a PARALLEL can have multiple SETs. */
- if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
- {
- /* If we have already found a SET, then return now. */
- if (found)
- return 1;
- else
- found = 1;
- }
- }
-
- /* Either zero or one SET. */
- return 0;
-}
-
-/* Return nonzero if the destination of SET equals the source
- and there are no side effects. */
-
-int
-set_noop_p (const_rtx set)
-{
- rtx src = SET_SRC (set);
- rtx dst = SET_DEST (set);
-
- if (dst == pc_rtx && src == pc_rtx)
- return 1;
-
- if (MEM_P (dst) && MEM_P (src))
- return rtx_equal_p (dst, src) && !side_effects_p (dst);
-
- if (GET_CODE (dst) == ZERO_EXTRACT)
- return rtx_equal_p (XEXP (dst, 0), src)
- && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
- && !side_effects_p (src);
-
- if (GET_CODE (dst) == STRICT_LOW_PART)
- dst = XEXP (dst, 0);
-
- if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
- {
- if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
- return 0;
- src = SUBREG_REG (src);
- dst = SUBREG_REG (dst);
- }
-
- return (REG_P (src) && REG_P (dst)
- && REGNO (src) == REGNO (dst));
-}
-
-/* Return nonzero if an insn consists only of SETs, each of which only sets a
- value to itself. */
-
-int
-noop_move_p (const_rtx insn)
-{
- rtx pat = PATTERN (insn);
-
- if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
- return 1;
-
- /* Insns carrying these notes are useful later on. */
- if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
- return 0;
-
- if (GET_CODE (pat) == SET && set_noop_p (pat))
- return 1;
-
- if (GET_CODE (pat) == PARALLEL)
- {
- int i;
- /* If nothing but SETs of registers to themselves,
- this insn can also be deleted. */
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx tem = XVECEXP (pat, 0, i);
-
- if (GET_CODE (tem) == USE
- || GET_CODE (tem) == CLOBBER)
- continue;
-
- if (GET_CODE (tem) != SET || ! set_noop_p (tem))
- return 0;
- }
-
- return 1;
- }
- return 0;
-}
-
-
-/* Return the last thing that X was assigned from before *PINSN. If VALID_TO
- is not NULL_RTX then verify that the object is not modified up to VALID_TO.
- If the object was modified, if we hit a partial assignment to X, or hit a
- CODE_LABEL first, return X. If we found an assignment, update *PINSN to
- point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
- be the src. */
-
-rtx
-find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
-{
- rtx p;
-
- for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
- p = PREV_INSN (p))
- if (INSN_P (p))
- {
- rtx set = single_set (p);
- rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
-
- if (set && rtx_equal_p (x, SET_DEST (set)))
- {
- rtx src = SET_SRC (set);
-
- if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
- src = XEXP (note, 0);
-
- if ((valid_to == NULL_RTX
- || ! modified_between_p (src, PREV_INSN (p), valid_to))
- /* Reject hard registers because we don't usually want
- to use them; we'd rather use a pseudo. */
- && (! (REG_P (src)
- && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
- {
- *pinsn = p;
- return src;
- }
- }
-
- /* If set in non-simple way, we don't have a value. */
- if (reg_set_p (x, p))
- break;
- }
-
- return x;
-}
-
-/* Return nonzero if register in range [REGNO, ENDREGNO)
- appears either explicitly or implicitly in X
- other than being stored into.
-
- References contained within the substructure at LOC do not count.
- LOC may be zero, meaning don't ignore anything. */
-
-int
-refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
- rtx *loc)
-{
- int i;
- unsigned int x_regno;
- RTX_CODE code;
- const char *fmt;
-
- repeat:
- /* The contents of a REG_NONNEG note is always zero, so we must come here
- upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
- if (x == 0)
- return 0;
-
- code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- x_regno = REGNO (x);
-
- /* If we modifying the stack, frame, or argument pointer, it will
- clobber a virtual register. In fact, we could be more precise,
- but it isn't worth it. */
- if ((x_regno == STACK_POINTER_REGNUM
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || x_regno == ARG_POINTER_REGNUM
-#endif
- || x_regno == FRAME_POINTER_REGNUM)
- && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
- return 1;
-
- return endregno > x_regno && regno < END_REGNO (x);
-
- case SUBREG:
- /* If this is a SUBREG of a hard reg, we can see exactly which
- registers are being modified. Otherwise, handle normally. */
- if (REG_P (SUBREG_REG (x))
- && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
- {
- unsigned int inner_regno = subreg_regno (x);
- unsigned int inner_endregno
- = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
- ? subreg_nregs (x) : 1);
-
- return endregno > inner_regno && regno < inner_endregno;
- }
- break;
-
- case CLOBBER:
- case SET:
- if (&SET_DEST (x) != loc
- /* Note setting a SUBREG counts as referring to the REG it is in for
- a pseudo but not for hard registers since we can
- treat each word individually. */
- && ((GET_CODE (SET_DEST (x)) == SUBREG
- && loc != &SUBREG_REG (SET_DEST (x))
- && REG_P (SUBREG_REG (SET_DEST (x)))
- && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
- && refers_to_regno_p (regno, endregno,
- SUBREG_REG (SET_DEST (x)), loc))
- || (!REG_P (SET_DEST (x))
- && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
- return 1;
-
- if (code == CLOBBER || loc == &SET_SRC (x))
- return 0;
- x = SET_SRC (x);
- goto repeat;
-
- default:
- break;
- }
-
- /* X does not match, so try its subexpressions. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && loc != &XEXP (x, i))
- {
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto repeat;
- }
- else
- if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (loc != &XVECEXP (x, i, j)
- && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
- return 1;
- }
- }
- return 0;
-}
-
-/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
- we check if any register number in X conflicts with the relevant register
- numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
- contains a MEM (we don't bother checking for memory addresses that can't
- conflict because we expect this to be a rare case. */
-
-int
-reg_overlap_mentioned_p (const_rtx x, const_rtx in)
-{
- unsigned int regno, endregno;
-
- /* If either argument is a constant, then modifying X can not
- affect IN. Here we look at IN, we can profitably combine
- CONSTANT_P (x) with the switch statement below. */
- if (CONSTANT_P (in))
- return 0;
-
- recurse:
- switch (GET_CODE (x))
- {
- case STRICT_LOW_PART:
- case ZERO_EXTRACT:
- case SIGN_EXTRACT:
- /* Overly conservative. */
- x = XEXP (x, 0);
- goto recurse;
-
- case SUBREG:
- regno = REGNO (SUBREG_REG (x));
- if (regno < FIRST_PSEUDO_REGISTER)
- regno = subreg_regno (x);
- endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? subreg_nregs (x) : 1);
- goto do_reg;
-
- case REG:
- regno = REGNO (x);
- endregno = END_REGNO (x);
- do_reg:
- return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
-
- case MEM:
- {
- const char *fmt;
- int i;
-
- if (MEM_P (in))
- return 1;
-
- fmt = GET_RTX_FORMAT (GET_CODE (in));
- for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- {
- if (reg_overlap_mentioned_p (x, XEXP (in, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (in, i) - 1; j >= 0; --j)
- if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
- return 1;
- }
-
- return 0;
- }
-
- case SCRATCH:
- case PC:
- case CC0:
- return reg_mentioned_p (x, in);
-
- case PARALLEL:
- {
- int i;
-
- /* If any register in here refers to it we return true. */
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- if (XEXP (XVECEXP (x, 0, i), 0) != 0
- && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
- return 1;
- return 0;
- }
-
- default:
- gcc_assert (CONSTANT_P (x));
- return 0;
- }
-}
-
-/* Call FUN on each register or MEM that is stored into or clobbered by X.
- (X would be the pattern of an insn). DATA is an arbitrary pointer,
- ignored by note_stores, but passed to FUN.
-
- FUN receives three arguments:
- 1. the REG, MEM, CC0 or PC being stored in or clobbered,
- 2. the SET or CLOBBER rtx that does the store,
- 3. the pointer DATA provided to note_stores.
-
- If the item being stored in or clobbered is a SUBREG of a hard register,
- the SUBREG will be passed. */
-
-void
-note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
-{
- int i;
-
- if (GET_CODE (x) == COND_EXEC)
- x = COND_EXEC_CODE (x);
-
- if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
- {
- rtx dest = SET_DEST (x);
-
- while ((GET_CODE (dest) == SUBREG
- && (!REG_P (SUBREG_REG (dest))
- || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
-
- /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
- each of whose first operand is a register. */
- if (GET_CODE (dest) == PARALLEL)
- {
- for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
- if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
- (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
- }
- else
- (*fun) (dest, x, data);
- }
-
- else if (GET_CODE (x) == PARALLEL)
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- note_stores (XVECEXP (x, 0, i), fun, data);
-}
-
-/* Like notes_stores, but call FUN for each expression that is being
- referenced in PBODY, a pointer to the PATTERN of an insn. We only call
- FUN for each expression, not any interior subexpressions. FUN receives a
- pointer to the expression and the DATA passed to this function.
-
- Note that this is not quite the same test as that done in reg_referenced_p
- since that considers something as being referenced if it is being
- partially set, while we do not. */
-
-void
-note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
-{
- rtx body = *pbody;
- int i;
-
- switch (GET_CODE (body))
- {
- case COND_EXEC:
- (*fun) (&COND_EXEC_TEST (body), data);
- note_uses (&COND_EXEC_CODE (body), fun, data);
- return;
-
- case PARALLEL:
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- note_uses (&XVECEXP (body, 0, i), fun, data);
- return;
-
- case SEQUENCE:
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
- return;
-
- case USE:
- (*fun) (&XEXP (body, 0), data);
- return;
-
- case ASM_OPERANDS:
- for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
- (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
- return;
-
- case TRAP_IF:
- (*fun) (&TRAP_CONDITION (body), data);
- return;
-
- case PREFETCH:
- (*fun) (&XEXP (body, 0), data);
- return;
-
- case UNSPEC:
- case UNSPEC_VOLATILE:
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- (*fun) (&XVECEXP (body, 0, i), data);
- return;
-
- case CLOBBER:
- if (MEM_P (XEXP (body, 0)))
- (*fun) (&XEXP (XEXP (body, 0), 0), data);
- return;
-
- case SET:
- {
- rtx dest = SET_DEST (body);
-
- /* For sets we replace everything in source plus registers in memory
- expression in store and operands of a ZERO_EXTRACT. */
- (*fun) (&SET_SRC (body), data);
-
- if (GET_CODE (dest) == ZERO_EXTRACT)
- {
- (*fun) (&XEXP (dest, 1), data);
- (*fun) (&XEXP (dest, 2), data);
- }
-
- while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
-
- if (MEM_P (dest))
- (*fun) (&XEXP (dest, 0), data);
- }
- return;
-
- default:
- /* All the other possibilities never store. */
- (*fun) (pbody, data);
- return;
- }
-}
-
-/* Return nonzero if X's old contents don't survive after INSN.
- This will be true if X is (cc0) or if X is a register and
- X dies in INSN or because INSN entirely sets X.
-
- "Entirely set" means set directly and not through a SUBREG, or
- ZERO_EXTRACT, so no trace of the old contents remains.
- Likewise, REG_INC does not count.
-
- REG may be a hard or pseudo reg. Renumbering is not taken into account,
- but for this use that makes no difference, since regs don't overlap
- during their lifetimes. Therefore, this function may be used
- at any time after deaths have been computed.
-
- If REG is a hard reg that occupies multiple machine registers, this
- function will only return 1 if each of those registers will be replaced
- by INSN. */
-
-int
-dead_or_set_p (const_rtx insn, const_rtx x)
-{
- unsigned int regno, end_regno;
- unsigned int i;
-
- /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
- if (GET_CODE (x) == CC0)
- return 1;
-
- gcc_assert (REG_P (x));
-
- regno = REGNO (x);
- end_regno = END_REGNO (x);
- for (i = regno; i < end_regno; i++)
- if (! dead_or_set_regno_p (insn, i))
- return 0;
-
- return 1;
-}
-
-/* Return TRUE iff DEST is a register or subreg of a register and
- doesn't change the number of words of the inner register, and any
- part of the register is TEST_REGNO. */
-
-static bool
-covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
-{
- unsigned int regno, endregno;
-
- if (GET_CODE (dest) == SUBREG
- && (((GET_MODE_SIZE (GET_MODE (dest))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
- dest = SUBREG_REG (dest);
-
- if (!REG_P (dest))
- return false;
-
- regno = REGNO (dest);
- endregno = END_REGNO (dest);
- return (test_regno >= regno && test_regno < endregno);
-}
-
-/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
- any member matches the covers_regno_no_parallel_p criteria. */
-
-static bool
-covers_regno_p (const_rtx dest, unsigned int test_regno)
-{
- if (GET_CODE (dest) == PARALLEL)
- {
- /* Some targets place small structures in registers for return
- values of functions, and those registers are wrapped in
- PARALLELs that we may see as the destination of a SET. */
- int i;
-
- for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
- {
- rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
- if (inner != NULL_RTX
- && covers_regno_no_parallel_p (inner, test_regno))
- return true;
- }
-
- return false;
- }
- else
- return covers_regno_no_parallel_p (dest, test_regno);
-}
-
-/* Utility function for dead_or_set_p to check an individual register. */
-
-int
-dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
-{
- const_rtx pattern;
-
- /* See if there is a death note for something that includes TEST_REGNO. */
- if (find_regno_note (insn, REG_DEAD, test_regno))
- return 1;
-
- if (CALL_P (insn)
- && find_regno_fusage (insn, CLOBBER, test_regno))
- return 1;
-
- pattern = PATTERN (insn);
-
- if (GET_CODE (pattern) == COND_EXEC)
- pattern = COND_EXEC_CODE (pattern);
-
- if (GET_CODE (pattern) == SET)
- return covers_regno_p (SET_DEST (pattern), test_regno);
- else if (GET_CODE (pattern) == PARALLEL)
- {
- int i;
-
- for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
- {
- rtx body = XVECEXP (pattern, 0, i);
-
- if (GET_CODE (body) == COND_EXEC)
- body = COND_EXEC_CODE (body);
-
- if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
- && covers_regno_p (SET_DEST (body), test_regno))
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Return the reg-note of kind KIND in insn INSN, if there is one.
- If DATUM is nonzero, look for one whose datum is DATUM. */
-
-rtx
-find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
-{
- rtx link;
-
- gcc_assert (insn);
-
- /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
- if (! INSN_P (insn))
- return 0;
- if (datum == 0)
- {
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == kind)
- return link;
- return 0;
- }
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
- return link;
- return 0;
-}
-
-/* Return the reg-note of kind KIND in insn INSN which applies to register
- number REGNO, if any. Return 0 if there is no such reg-note. Note that
- the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
- it might be the case that the note overlaps REGNO. */
-
-rtx
-find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
-{
- rtx link;
-
- /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
- if (! INSN_P (insn))
- return 0;
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == kind
- /* Verify that it is a register, so that scratch and MEM won't cause a
- problem here. */
- && REG_P (XEXP (link, 0))
- && REGNO (XEXP (link, 0)) <= regno
- && END_REGNO (XEXP (link, 0)) > regno)
- return link;
- return 0;
-}
-
-/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
- has such a note. */
-
-rtx
-find_reg_equal_equiv_note (const_rtx insn)
-{
- rtx link;
-
- if (!INSN_P (insn))
- return 0;
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_EQUAL
- || REG_NOTE_KIND (link) == REG_EQUIV)
- {
- /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
- insns that have multiple sets. Checking single_set to
- make sure of this is not the proper check, as explained
- in the comment in set_unique_reg_note.
-
- This should be changed into an assert. */
- if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
- return 0;
- return link;
- }
- return NULL;
-}
-
-/* Check whether INSN is a single_set whose source is known to be
- equivalent to a constant. Return that constant if so, otherwise
- return null. */
-
-rtx
-find_constant_src (const_rtx insn)
-{
- rtx note, set, x;
-
- set = single_set (insn);
- if (set)
- {
- x = avoid_constant_pool_reference (SET_SRC (set));
- if (CONSTANT_P (x))
- return x;
- }
-
- note = find_reg_equal_equiv_note (insn);
- if (note && CONSTANT_P (XEXP (note, 0)))
- return XEXP (note, 0);
-
- return NULL_RTX;
-}
-
-/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
- in the CALL_INSN_FUNCTION_USAGE information of INSN. */
-
-int
-find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
-{
- /* If it's not a CALL_INSN, it can't possibly have a
- CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
- if (!CALL_P (insn))
- return 0;
-
- gcc_assert (datum);
-
- if (!REG_P (datum))
- {
- rtx link;
-
- for (link = CALL_INSN_FUNCTION_USAGE (insn);
- link;
- link = XEXP (link, 1))
- if (GET_CODE (XEXP (link, 0)) == code
- && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
- return 1;
- }
- else
- {
- unsigned int regno = REGNO (datum);
-
- /* CALL_INSN_FUNCTION_USAGE information cannot contain references
- to pseudo registers, so don't bother checking. */
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- unsigned int end_regno = END_HARD_REGNO (datum);
- unsigned int i;
-
- for (i = regno; i < end_regno; i++)
- if (find_regno_fusage (insn, code, i))
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
- in the CALL_INSN_FUNCTION_USAGE information of INSN. */
-
-int
-find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
-{
- rtx link;
-
- /* CALL_INSN_FUNCTION_USAGE information cannot contain references
- to pseudo registers, so don't bother checking. */
-
- if (regno >= FIRST_PSEUDO_REGISTER
- || !CALL_P (insn) )
- return 0;
-
- for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
- {
- rtx op, reg;
-
- if (GET_CODE (op = XEXP (link, 0)) == code
- && REG_P (reg = XEXP (op, 0))
- && REGNO (reg) <= regno
- && END_HARD_REGNO (reg) > regno)
- return 1;
- }
-
- return 0;
-}
-
-
-/* Allocate a register note with kind KIND and datum DATUM. LIST is
- stored as the pointer to the next register note. */
-
-rtx
-alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
-{
- rtx note;
-
- switch (kind)
- {
- case REG_CC_SETTER:
- case REG_CC_USER:
- case REG_LABEL_TARGET:
- case REG_LABEL_OPERAND:
- /* These types of register notes use an INSN_LIST rather than an
- EXPR_LIST, so that copying is done right and dumps look
- better. */
- note = alloc_INSN_LIST (datum, list);
- PUT_REG_NOTE_KIND (note, kind);
- break;
-
- default:
- note = alloc_EXPR_LIST (kind, datum, list);
- break;
- }
-
- return note;
-}
-
-/* Add register note with kind KIND and datum DATUM to INSN. */
-
-void
-add_reg_note (rtx insn, enum reg_note kind, rtx datum)
-{
- REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
-}
-
-/* Remove register note NOTE from the REG_NOTES of INSN. */
-
-void
-remove_note (rtx insn, const_rtx note)
-{
- rtx link;
-
- if (note == NULL_RTX)
- return;
-
- if (REG_NOTES (insn) == note)
- REG_NOTES (insn) = XEXP (note, 1);
- else
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (XEXP (link, 1) == note)
- {
- XEXP (link, 1) = XEXP (note, 1);
- break;
- }
-
- switch (REG_NOTE_KIND (note))
- {
- case REG_EQUAL:
- case REG_EQUIV:
- df_notes_rescan (insn);
- break;
- default:
- break;
- }
-}
-
-/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
-
-void
-remove_reg_equal_equiv_notes (rtx insn)
-{
- rtx *loc;
-
- loc = &REG_NOTES (insn);
- while (*loc)
- {
- enum reg_note kind = REG_NOTE_KIND (*loc);
- if (kind == REG_EQUAL || kind == REG_EQUIV)
- *loc = XEXP (*loc, 1);
- else
- loc = &XEXP (*loc, 1);
- }
-}
-
-/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
- return 1 if it is found. A simple equality test is used to determine if
- NODE matches. */
-
-int
-in_expr_list_p (const_rtx listp, const_rtx node)
-{
- const_rtx x;
-
- for (x = listp; x; x = XEXP (x, 1))
- if (node == XEXP (x, 0))
- return 1;
-
- return 0;
-}
-
-/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
- remove that entry from the list if it is found.
-
- A simple equality test is used to determine if NODE matches. */
-
-void
-remove_node_from_expr_list (const_rtx node, rtx *listp)
-{
- rtx temp = *listp;
- rtx prev = NULL_RTX;
-
- while (temp)
- {
- if (node == XEXP (temp, 0))
- {
- /* Splice the node out of the list. */
- if (prev)
- XEXP (prev, 1) = XEXP (temp, 1);
- else
- *listp = XEXP (temp, 1);
-
- return;
- }
-
- prev = temp;
- temp = XEXP (temp, 1);
- }
-}
-
-/* Nonzero if X contains any volatile instructions. These are instructions
- which may cause unpredictable machine state instructions, and thus no
- instructions should be moved or combined across them. This includes
- only volatile asms and UNSPEC_VOLATILE instructions. */
-
-int
-volatile_insn_p (const_rtx x)
-{
- const RTX_CODE code = GET_CODE (x);
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case CC0:
- case PC:
- case REG:
- case SCRATCH:
- case CLOBBER:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- case CALL:
- case MEM:
- return 0;
-
- case UNSPEC_VOLATILE:
- /* case TRAP_IF: This isn't clear yet. */
- return 1;
-
- case ASM_INPUT:
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- return 1;
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- {
- const char *const fmt = GET_RTX_FORMAT (code);
- int i;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (volatile_insn_p (XEXP (x, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (volatile_insn_p (XVECEXP (x, i, j)))
- return 1;
- }
- }
- }
- return 0;
-}
-
-/* Nonzero if X contains any volatile memory references
- UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
-
-int
-volatile_refs_p (const_rtx x)
-{
- const RTX_CODE code = GET_CODE (x);
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case CC0:
- case PC:
- case REG:
- case SCRATCH:
- case CLOBBER:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return 0;
-
- case UNSPEC_VOLATILE:
- return 1;
-
- case MEM:
- case ASM_INPUT:
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- return 1;
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- {
- const char *const fmt = GET_RTX_FORMAT (code);
- int i;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (volatile_refs_p (XEXP (x, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (volatile_refs_p (XVECEXP (x, i, j)))
- return 1;
- }
- }
- }
- return 0;
-}
-
-/* Similar to above, except that it also rejects register pre- and post-
- incrementing. */
-
-int
-side_effects_p (const_rtx x)
-{
- const RTX_CODE code = GET_CODE (x);
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case CC0:
- case PC:
- case REG:
- case SCRATCH:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return 0;
-
- case CLOBBER:
- /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
- when some combination can't be done. If we see one, don't think
- that we can simplify the expression. */
- return (GET_MODE (x) != VOIDmode);
-
- case PRE_INC:
- case PRE_DEC:
- case POST_INC:
- case POST_DEC:
- case PRE_MODIFY:
- case POST_MODIFY:
- case CALL:
- case UNSPEC_VOLATILE:
- /* case TRAP_IF: This isn't clear yet. */
- return 1;
-
- case MEM:
- case ASM_INPUT:
- case ASM_OPERANDS:
- if (MEM_VOLATILE_P (x))
- return 1;
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- {
- const char *fmt = GET_RTX_FORMAT (code);
- int i;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (side_effects_p (XEXP (x, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (side_effects_p (XVECEXP (x, i, j)))
- return 1;
- }
- }
- }
- return 0;
-}
-
-/* Return nonzero if evaluating rtx X might cause a trap.
- FLAGS controls how to consider MEMs. A nonzero means the context
- of the access may have changed from the original, such that the
- address may have become invalid. */
-
-int
-may_trap_p_1 (const_rtx x, unsigned flags)
-{
- int i;
- enum rtx_code code;
- const char *fmt;
-
- /* We make no distinction currently, but this function is part of
- the internal target-hooks ABI so we keep the parameter as
- "unsigned flags". */
- bool code_changed = flags != 0;
-
- if (x == 0)
- return 0;
- code = GET_CODE (x);
- switch (code)
- {
- /* Handle these cases quickly. */
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case SYMBOL_REF:
- case LABEL_REF:
- case CONST:
- case PC:
- case CC0:
- case REG:
- case SCRATCH:
- return 0;
-
- case UNSPEC:
- case UNSPEC_VOLATILE:
- return targetm.unspec_may_trap_p (x, flags);
-
- case ASM_INPUT:
- case TRAP_IF:
- return 1;
-
- case ASM_OPERANDS:
- return MEM_VOLATILE_P (x);
-
- /* Memory ref can trap unless it's a static var or a stack slot. */
- case MEM:
- if (/* MEM_NOTRAP_P only relates to the actual position of the memory
- reference; moving it out of context such as when moving code
- when optimizing, might cause its address to become invalid. */
- code_changed
- || !MEM_NOTRAP_P (x))
- {
- HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
- return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
- GET_MODE (x), code_changed);
- }
-
- return 0;
-
- /* Division by a non-constant might trap. */
- case DIV:
- case MOD:
- case UDIV:
- case UMOD:
- if (HONOR_SNANS (GET_MODE (x)))
- return 1;
- if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
- return flag_trapping_math;
- if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
- return 1;
- break;
-
- case EXPR_LIST:
- /* An EXPR_LIST is used to represent a function call. This
- certainly may trap. */
- return 1;
-
- case GE:
- case GT:
- case LE:
- case LT:
- case LTGT:
- case COMPARE:
- /* Some floating point comparisons may trap. */
- if (!flag_trapping_math)
- break;
- /* ??? There is no machine independent way to check for tests that trap
- when COMPARE is used, though many targets do make this distinction.
- For instance, sparc uses CCFPE for compares which generate exceptions
- and CCFP for compares which do not generate exceptions. */
- if (HONOR_NANS (GET_MODE (x)))
- return 1;
- /* But often the compare has some CC mode, so check operand
- modes as well. */
- if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
- || HONOR_NANS (GET_MODE (XEXP (x, 1))))
- return 1;
- break;
-
- case EQ:
- case NE:
- if (HONOR_SNANS (GET_MODE (x)))
- return 1;
- /* Often comparison is CC mode, so check operand modes. */
- if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
- || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
- return 1;
- break;
-
- case FIX:
- /* Conversion of floating point might trap. */
- if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
- return 1;
- break;
-
- case NEG:
- case ABS:
- case SUBREG:
- /* These operations don't trap even with floating point. */
- break;
-
- default:
- /* Any floating arithmetic may trap. */
- if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
- && flag_trapping_math)
- return 1;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (may_trap_p_1 (XEXP (x, i), flags))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- if (may_trap_p_1 (XVECEXP (x, i, j), flags))
- return 1;
- }
- }
- return 0;
-}
-
-/* Return nonzero if evaluating rtx X might cause a trap. */
-
-int
-may_trap_p (const_rtx x)
-{
- return may_trap_p_1 (x, 0);
-}
-
-/* Same as above, but additionally return nonzero if evaluating rtx X might
- cause a fault. We define a fault for the purpose of this function as a
- erroneous execution condition that cannot be encountered during the normal
- execution of a valid program; the typical example is an unaligned memory
- access on a strict alignment machine. The compiler guarantees that it
- doesn't generate code that will fault from a valid program, but this
- guarantee doesn't mean anything for individual instructions. Consider
- the following example:
-
- struct S { int d; union { char *cp; int *ip; }; };
-
- int foo(struct S *s)
- {
- if (s->d == 1)
- return *s->ip;
- else
- return *s->cp;
- }
-
- on a strict alignment machine. In a valid program, foo will never be
- invoked on a structure for which d is equal to 1 and the underlying
- unique field of the union not aligned on a 4-byte boundary, but the
- expression *s->ip might cause a fault if considered individually.
-
- At the RTL level, potentially problematic expressions will almost always
- verify may_trap_p; for example, the above dereference can be emitted as
- (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
- However, suppose that foo is inlined in a caller that causes s->cp to
- point to a local character variable and guarantees that s->d is not set
- to 1; foo may have been effectively translated into pseudo-RTL as:
-
- if ((reg:SI) == 1)
- (set (reg:SI) (mem:SI (%fp - 7)))
- else
- (set (reg:QI) (mem:QI (%fp - 7)))
-
- Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
- memory reference to a stack slot, but it will certainly cause a fault
- on a strict alignment machine. */
-
-int
-may_trap_or_fault_p (const_rtx x)
-{
- return may_trap_p_1 (x, 1);
-}
-
-/* Return nonzero if X contains a comparison that is not either EQ or NE,
- i.e., an inequality. */
-
-int
-inequality_comparisons_p (const_rtx x)
-{
- const char *fmt;
- int len, i;
- const enum rtx_code code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- case SCRATCH:
- case PC:
- case CC0:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case CONST:
- case LABEL_REF:
- case SYMBOL_REF:
- return 0;
-
- case LT:
- case LTU:
- case GT:
- case GTU:
- case LE:
- case LEU:
- case GE:
- case GEU:
- return 1;
-
- default:
- break;
- }
-
- len = GET_RTX_LENGTH (code);
- fmt = GET_RTX_FORMAT (code);
-
- for (i = 0; i < len; i++)
- {
- if (fmt[i] == 'e')
- {
- if (inequality_comparisons_p (XEXP (x, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (inequality_comparisons_p (XVECEXP (x, i, j)))
- return 1;
- }
- }
-
- return 0;
-}
-
-/* Replace any occurrence of FROM in X with TO. The function does
- not enter into CONST_DOUBLE for the replace.
-
- Note that copying is not done so X must not be shared unless all copies
- are to be modified. */
-
-rtx
-replace_rtx (rtx x, rtx from, rtx to)
-{
- int i, j;
- const char *fmt;
-
- /* The following prevents loops occurrence when we change MEM in
- CONST_DOUBLE onto the same CONST_DOUBLE. */
- if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
- return x;
-
- if (x == from)
- return to;
-
- /* Allow this function to make replacements in EXPR_LISTs. */
- if (x == 0)
- return 0;
-
- if (GET_CODE (x) == SUBREG)
- {
- rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
-
- if (GET_CODE (new_rtx) == CONST_INT)
- {
- x = simplify_subreg (GET_MODE (x), new_rtx,
- GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x));
- gcc_assert (x);
- }
- else
- SUBREG_REG (x) = new_rtx;
-
- return x;
- }
- else if (GET_CODE (x) == ZERO_EXTEND)
- {
- rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
-
- if (GET_CODE (new_rtx) == CONST_INT)
- {
- x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
- new_rtx, GET_MODE (XEXP (x, 0)));
- gcc_assert (x);
- }
- else
- XEXP (x, 0) = new_rtx;
-
- return x;
- }
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
- }
-
- return x;
-}
-
-/* Replace occurrences of the old label in *X with the new one.
- DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
-
-int
-replace_label (rtx *x, void *data)
-{
- rtx l = *x;
- rtx old_label = ((replace_label_data *) data)->r1;
- rtx new_label = ((replace_label_data *) data)->r2;
- bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
-
- if (l == NULL_RTX)
- return 0;
-
- if (GET_CODE (l) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (l))
- {
- rtx c = get_pool_constant (l);
- if (rtx_referenced_p (old_label, c))
- {
- rtx new_c, new_l;
- replace_label_data *d = (replace_label_data *) data;
-
- /* Create a copy of constant C; replace the label inside
- but do not update LABEL_NUSES because uses in constant pool
- are not counted. */
- new_c = copy_rtx (c);
- d->update_label_nuses = false;
- for_each_rtx (&new_c, replace_label, data);
- d->update_label_nuses = update_label_nuses;
-
- /* Add the new constant NEW_C to constant pool and replace
- the old reference to constant by new reference. */
- new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
- *x = replace_rtx (l, l, new_l);
- }
- return 0;
- }
-
- /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
- field. This is not handled by for_each_rtx because it doesn't
- handle unprinted ('0') fields. */
- if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
- JUMP_LABEL (l) = new_label;
-
- if ((GET_CODE (l) == LABEL_REF
- || GET_CODE (l) == INSN_LIST)
- && XEXP (l, 0) == old_label)
- {
- XEXP (l, 0) = new_label;
- if (update_label_nuses)
- {
- ++LABEL_NUSES (new_label);
- --LABEL_NUSES (old_label);
- }
- return 0;
- }
-
- return 0;
-}
-
-/* When *BODY is equal to X or X is directly referenced by *BODY
- return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
- too, otherwise FOR_EACH_RTX continues traversing *BODY. */
-
-static int
-rtx_referenced_p_1 (rtx *body, void *x)
-{
- rtx y = (rtx) x;
-
- if (*body == NULL_RTX)
- return y == NULL_RTX;
-
- /* Return true if a label_ref *BODY refers to label Y. */
- if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
- return XEXP (*body, 0) == y;
-
- /* If *BODY is a reference to pool constant traverse the constant. */
- if (GET_CODE (*body) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (*body))
- return rtx_referenced_p (y, get_pool_constant (*body));
-
- /* By default, compare the RTL expressions. */
- return rtx_equal_p (*body, y);
-}
-
-/* Return true if X is referenced in BODY. */
-
-int
-rtx_referenced_p (rtx x, rtx body)
-{
- return for_each_rtx (&body, rtx_referenced_p_1, x);
-}
-
-/* If INSN is a tablejump return true and store the label (before jump table) to
- *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
-
-bool
-tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
-{
- rtx label, table;
-
- if (JUMP_P (insn)
- && (label = JUMP_LABEL (insn)) != NULL_RTX
- && (table = next_active_insn (label)) != NULL_RTX
- && JUMP_P (table)
- && (GET_CODE (PATTERN (table)) == ADDR_VEC
- || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
- {
- if (labelp)
- *labelp = label;
- if (tablep)
- *tablep = table;
- return true;
- }
- return false;
-}
-
-/* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
- constant that is not in the constant pool and not in the condition
- of an IF_THEN_ELSE. */
-
-static int
-computed_jump_p_1 (const_rtx x)
-{
- const enum rtx_code code = GET_CODE (x);
- int i, j;
- const char *fmt;
-
- switch (code)
- {
- case LABEL_REF:
- case PC:
- return 0;
-
- case CONST:
- case CONST_INT:
- case CONST_DOUBLE:
- case CONST_FIXED:
- case CONST_VECTOR:
- case SYMBOL_REF:
- case REG:
- return 1;
-
- case MEM:
- return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
-
- case IF_THEN_ELSE:
- return (computed_jump_p_1 (XEXP (x, 1))
- || computed_jump_p_1 (XEXP (x, 2)));
-
- default:
- break;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e'
- && computed_jump_p_1 (XEXP (x, i)))
- return 1;
-
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- if (computed_jump_p_1 (XVECEXP (x, i, j)))
- return 1;
- }
-
- return 0;
-}
-
-/* Return nonzero if INSN is an indirect jump (aka computed jump).
-
- Tablejumps and casesi insns are not considered indirect jumps;
- we can recognize them by a (use (label_ref)). */
-
-int
-computed_jump_p (const_rtx insn)
-{
- int i;
- if (JUMP_P (insn))
- {
- rtx pat = PATTERN (insn);
-
- /* If we have a JUMP_LABEL set, we're not a computed jump. */
- if (JUMP_LABEL (insn) != NULL)
- return 0;
-
- if (GET_CODE (pat) == PARALLEL)
- {
- int len = XVECLEN (pat, 0);
- int has_use_labelref = 0;
-
- for (i = len - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (pat, 0, i)) == USE
- && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
- == LABEL_REF))
- has_use_labelref = 1;
-
- if (! has_use_labelref)
- for (i = len - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (pat, 0, i)) == SET
- && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
- && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
- return 1;
- }
- else if (GET_CODE (pat) == SET
- && SET_DEST (pat) == pc_rtx
- && computed_jump_p_1 (SET_SRC (pat)))
- return 1;
- }
- return 0;
-}
-
-/* Optimized loop of for_each_rtx, trying to avoid useless recursive
- calls. Processes the subexpressions of EXP and passes them to F. */
-static int
-for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
-{
- int result, i, j;
- const char *format = GET_RTX_FORMAT (GET_CODE (exp));
- rtx *x;
-
- for (; format[n] != '\0'; n++)
- {
- switch (format[n])
- {
- case 'e':
- /* Call F on X. */
- x = &XEXP (exp, n);
- result = (*f) (x, data);
- if (result == -1)
- /* Do not traverse sub-expressions. */
- continue;
- else if (result != 0)
- /* Stop the traversal. */
- return result;
-
- if (*x == NULL_RTX)
- /* There are no sub-expressions. */
- continue;
-
- i = non_rtx_starting_operands[GET_CODE (*x)];
- if (i >= 0)
- {
- result = for_each_rtx_1 (*x, i, f, data);
- if (result != 0)
- return result;
- }
- break;
-
- case 'V':
- case 'E':
- if (XVEC (exp, n) == 0)
- continue;
- for (j = 0; j < XVECLEN (exp, n); ++j)
- {
- /* Call F on X. */
- x = &XVECEXP (exp, n, j);
- result = (*f) (x, data);
- if (result == -1)
- /* Do not traverse sub-expressions. */
- continue;
- else if (result != 0)
- /* Stop the traversal. */
- return result;
-
- if (*x == NULL_RTX)
- /* There are no sub-expressions. */
- continue;
-
- i = non_rtx_starting_operands[GET_CODE (*x)];
- if (i >= 0)
- {
- result = for_each_rtx_1 (*x, i, f, data);
- if (result != 0)
- return result;
- }
- }
- break;
-
- default:
- /* Nothing to do. */
- break;
- }
- }
-
- return 0;
-}
-
-/* Traverse X via depth-first search, calling F for each
- sub-expression (including X itself). F is also passed the DATA.
- If F returns -1, do not traverse sub-expressions, but continue
- traversing the rest of the tree. If F ever returns any other
- nonzero value, stop the traversal, and return the value returned
- by F. Otherwise, return 0. This function does not traverse inside
- tree structure that contains RTX_EXPRs, or into sub-expressions
- whose format code is `0' since it is not known whether or not those
- codes are actually RTL.
-
- This routine is very general, and could (should?) be used to
- implement many of the other routines in this file. */
-
-int
-for_each_rtx (rtx *x, rtx_function f, void *data)
-{
- int result;
- int i;
-
- /* Call F on X. */
- result = (*f) (x, data);
- if (result == -1)
- /* Do not traverse sub-expressions. */
- return 0;
- else if (result != 0)
- /* Stop the traversal. */
- return result;
-
- if (*x == NULL_RTX)
- /* There are no sub-expressions. */
- return 0;
-
- i = non_rtx_starting_operands[GET_CODE (*x)];
- if (i < 0)
- return 0;
-
- return for_each_rtx_1 (*x, i, f, data);
-}
-
-
-/* Searches X for any reference to REGNO, returning the rtx of the
- reference found if any. Otherwise, returns NULL_RTX. */
-
-rtx
-regno_use_in (unsigned int regno, rtx x)
-{
- const char *fmt;
- int i, j;
- rtx tem;
-
- if (REG_P (x) && REGNO (x) == regno)
- return x;
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if ((tem = regno_use_in (regno, XEXP (x, i))))
- return tem;
- }
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
- return tem;
- }
-
- return NULL_RTX;
-}
-
-/* Return a value indicating whether OP, an operand of a commutative
- operation, is preferred as the first or second operand. The higher
- the value, the stronger the preference for being the first operand.
- We use negative values to indicate a preference for the first operand
- and positive values for the second operand. */
-
-int
-commutative_operand_precedence (rtx op)
-{
- enum rtx_code code = GET_CODE (op);
-
- /* Constants always come the second operand. Prefer "nice" constants. */
- if (code == CONST_INT)
- return -8;
- if (code == CONST_DOUBLE)
- return -7;
- if (code == CONST_FIXED)
- return -7;
- op = avoid_constant_pool_reference (op);
- code = GET_CODE (op);
-
- switch (GET_RTX_CLASS (code))
- {
- case RTX_CONST_OBJ:
- if (code == CONST_INT)
- return -6;
- if (code == CONST_DOUBLE)
- return -5;
- if (code == CONST_FIXED)
- return -5;
- return -4;
-
- case RTX_EXTRA:
- /* SUBREGs of objects should come second. */
- if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
- return -3;
- return 0;
-
- case RTX_OBJ:
- /* Complex expressions should be the first, so decrease priority
- of objects. Prefer pointer objects over non pointer objects. */
- if ((REG_P (op) && REG_POINTER (op))
- || (MEM_P (op) && MEM_POINTER (op)))
- return -1;
- return -2;
-
- case RTX_COMM_ARITH:
- /* Prefer operands that are themselves commutative to be first.
- This helps to make things linear. In particular,
- (and (and (reg) (reg)) (not (reg))) is canonical. */
- return 4;
-
- case RTX_BIN_ARITH:
- /* If only one operand is a binary expression, it will be the first
- operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
- is canonical, although it will usually be further simplified. */
- return 2;
-
- case RTX_UNARY:
- /* Then prefer NEG and NOT. */
- if (code == NEG || code == NOT)
- return 1;
-
- default:
- return 0;
- }
-}
-
-/* Return 1 iff it is necessary to swap operands of commutative operation
- in order to canonicalize expression. */
-
-bool
-swap_commutative_operands_p (rtx x, rtx y)
-{
- return (commutative_operand_precedence (x)
- < commutative_operand_precedence (y));
-}
-
-/* Return 1 if X is an autoincrement side effect and the register is
- not the stack pointer. */
-int
-auto_inc_p (const_rtx x)
-{
- switch (GET_CODE (x))
- {
- case PRE_INC:
- case POST_INC:
- case PRE_DEC:
- case POST_DEC:
- case PRE_MODIFY:
- case POST_MODIFY:
- /* There are no REG_INC notes for SP. */
- if (XEXP (x, 0) != stack_pointer_rtx)
- return 1;
- default:
- break;
- }
- return 0;
-}
-
-/* Return nonzero if IN contains a piece of rtl that has the address LOC. */
-int
-loc_mentioned_in_p (rtx *loc, const_rtx in)
-{
- enum rtx_code code;
- const char *fmt;
- int i, j;
-
- if (!in)
- return 0;
-
- code = GET_CODE (in);
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
- return 1;
- }
- else if (fmt[i] == 'E')
- for (j = XVECLEN (in, i) - 1; j >= 0; j--)
- if (loc == &XVECEXP (in, i, j)
- || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
- return 1;
- }
- return 0;
-}
-
-/* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
- and SUBREG_BYTE, return the bit offset where the subreg begins
- (counting from the least significant bit of the operand). */
-
-unsigned int
-subreg_lsb_1 (enum machine_mode outer_mode,
- enum machine_mode inner_mode,
- unsigned int subreg_byte)
-{
- unsigned int bitpos;
- unsigned int byte;
- unsigned int word;
-
- /* A paradoxical subreg begins at bit position 0. */
- if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
- return 0;
-
- if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
- /* If the subreg crosses a word boundary ensure that
- it also begins and ends on a word boundary. */
- gcc_assert (!((subreg_byte % UNITS_PER_WORD
- + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
- && (subreg_byte % UNITS_PER_WORD
- || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
-
- if (WORDS_BIG_ENDIAN)
- word = (GET_MODE_SIZE (inner_mode)
- - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
- else
- word = subreg_byte / UNITS_PER_WORD;
- bitpos = word * BITS_PER_WORD;
-
- if (BYTES_BIG_ENDIAN)
- byte = (GET_MODE_SIZE (inner_mode)
- - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
- else
- byte = subreg_byte % UNITS_PER_WORD;
- bitpos += byte * BITS_PER_UNIT;
-
- return bitpos;
-}
-
-/* Given a subreg X, return the bit offset where the subreg begins
- (counting from the least significant bit of the reg). */
-
-unsigned int
-subreg_lsb (const_rtx x)
-{
- return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
- SUBREG_BYTE (x));
-}
-
-/* Fill in information about a subreg of a hard register.
- xregno - A regno of an inner hard subreg_reg (or what will become one).
- xmode - The mode of xregno.
- offset - The byte offset.
- ymode - The mode of a top level SUBREG (or what may become one).
- info - Pointer to structure to fill in. */
-static void
-subreg_get_info (unsigned int xregno, enum machine_mode xmode,
- unsigned int offset, enum machine_mode ymode,
- struct subreg_info *info)
-{
- int nregs_xmode, nregs_ymode;
- int mode_multiple, nregs_multiple;
- int offset_adj, y_offset, y_offset_adj;
- int regsize_xmode, regsize_ymode;
- bool rknown;
-
- gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
-
- rknown = false;
-
- /* If there are holes in a non-scalar mode in registers, we expect
- that it is made up of its units concatenated together. */
- if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
- {
- enum machine_mode xmode_unit;
-
- nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
- if (GET_MODE_INNER (xmode) == VOIDmode)
- xmode_unit = xmode;
- else
- xmode_unit = GET_MODE_INNER (xmode);
- gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
- gcc_assert (nregs_xmode
- == (GET_MODE_NUNITS (xmode)
- * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
- gcc_assert (hard_regno_nregs[xregno][xmode]
- == (hard_regno_nregs[xregno][xmode_unit]
- * GET_MODE_NUNITS (xmode)));
-
- /* You can only ask for a SUBREG of a value with holes in the middle
- if you don't cross the holes. (Such a SUBREG should be done by
- picking a different register class, or doing it in memory if
- necessary.) An example of a value with holes is XCmode on 32-bit
- x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
- 3 for each part, but in memory it's two 128-bit parts.
- Padding is assumed to be at the end (not necessarily the 'high part')
- of each unit. */
- if ((offset / GET_MODE_SIZE (xmode_unit) + 1
- < GET_MODE_NUNITS (xmode))
- && (offset / GET_MODE_SIZE (xmode_unit)
- != ((offset + GET_MODE_SIZE (ymode) - 1)
- / GET_MODE_SIZE (xmode_unit))))
- {
- info->representable_p = false;
- rknown = true;
- }
- }
- else
- nregs_xmode = hard_regno_nregs[xregno][xmode];
-
- nregs_ymode = hard_regno_nregs[xregno][ymode];
-
- /* Paradoxical subregs are otherwise valid. */
- if (!rknown
- && offset == 0
- && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
- {
- info->representable_p = true;
- /* If this is a big endian paradoxical subreg, which uses more
- actual hard registers than the original register, we must
- return a negative offset so that we find the proper highpart
- of the register. */
- if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
- ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
- info->offset = nregs_xmode - nregs_ymode;
- else
- info->offset = 0;
- info->nregs = nregs_ymode;
- return;
- }
-
- /* If registers store different numbers of bits in the different
- modes, we cannot generally form this subreg. */
- if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
- && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
- && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
- && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
- {
- regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
- regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
- if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
- {
- info->representable_p = false;
- info->nregs
- = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
- info->offset = offset / regsize_xmode;
- return;
- }
- if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
- {
- info->representable_p = false;
- info->nregs
- = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
- info->offset = offset / regsize_xmode;
- return;
- }
- }
-
- /* Lowpart subregs are otherwise valid. */
- if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
- {
- info->representable_p = true;
- rknown = true;
-
- if (offset == 0 || nregs_xmode == nregs_ymode)
- {
- info->offset = 0;
- info->nregs = nregs_ymode;
- return;
- }
- }
-
- /* This should always pass, otherwise we don't know how to verify
- the constraint. These conditions may be relaxed but
- subreg_regno_offset would need to be redesigned. */
- gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
- gcc_assert ((nregs_xmode % nregs_ymode) == 0);
-
- /* The XMODE value can be seen as a vector of NREGS_XMODE
- values. The subreg must represent a lowpart of given field.
- Compute what field it is. */
- offset_adj = offset;
- offset_adj -= subreg_lowpart_offset (ymode,
- mode_for_size (GET_MODE_BITSIZE (xmode)
- / nregs_xmode,
- MODE_INT, 0));
-
- /* Size of ymode must not be greater than the size of xmode. */
- mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
- gcc_assert (mode_multiple != 0);
-
- y_offset = offset / GET_MODE_SIZE (ymode);
- y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
- nregs_multiple = nregs_xmode / nregs_ymode;
-
- gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
- gcc_assert ((mode_multiple % nregs_multiple) == 0);
-
- if (!rknown)
- {
- info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
- rknown = true;
- }
- info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
- info->nregs = nregs_ymode;
-}
-
-/* This function returns the regno offset of a subreg expression.
- xregno - A regno of an inner hard subreg_reg (or what will become one).
- xmode - The mode of xregno.
- offset - The byte offset.
- ymode - The mode of a top level SUBREG (or what may become one).
- RETURN - The regno offset which would be used. */
-unsigned int
-subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
- unsigned int offset, enum machine_mode ymode)
-{
- struct subreg_info info;
- subreg_get_info (xregno, xmode, offset, ymode, &info);
- return info.offset;
-}
-
-/* This function returns true when the offset is representable via
- subreg_offset in the given regno.
- xregno - A regno of an inner hard subreg_reg (or what will become one).
- xmode - The mode of xregno.
- offset - The byte offset.
- ymode - The mode of a top level SUBREG (or what may become one).
- RETURN - Whether the offset is representable. */
-bool
-subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
- unsigned int offset, enum machine_mode ymode)
-{
- struct subreg_info info;
- subreg_get_info (xregno, xmode, offset, ymode, &info);
- return info.representable_p;
-}
-
-/* Return the number of a YMODE register to which
-
- (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
-
- can be simplified. Return -1 if the subreg can't be simplified.
-
- XREGNO is a hard register number. */
-
-int
-simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
- unsigned int offset, enum machine_mode ymode)
-{
- struct subreg_info info;
- unsigned int yregno;
-
-#ifdef CANNOT_CHANGE_MODE_CLASS
- /* Give the backend a chance to disallow the mode change. */
- if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
- && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
- && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
- return -1;
-#endif
-
- /* We shouldn't simplify stack-related registers. */
- if ((!reload_completed || frame_pointer_needed)
- && (xregno == FRAME_POINTER_REGNUM
- || xregno == HARD_FRAME_POINTER_REGNUM))
- return -1;
-
- if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- && xregno == ARG_POINTER_REGNUM)
- return -1;
-
- if (xregno == STACK_POINTER_REGNUM)
- return -1;
-
- /* Try to get the register offset. */
- subreg_get_info (xregno, xmode, offset, ymode, &info);
- if (!info.representable_p)
- return -1;
-
- /* Make sure that the offsetted register value is in range. */
- yregno = xregno + info.offset;
- if (!HARD_REGISTER_NUM_P (yregno))
- return -1;
-
- /* See whether (reg:YMODE YREGNO) is valid.
-
- ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
- This is a kludge to work around how float/complex arguments are passed
- on 32-bit SPARC and should be fixed. */
- if (!HARD_REGNO_MODE_OK (yregno, ymode)
- && HARD_REGNO_MODE_OK (xregno, xmode))
- return -1;
-
- return (int) yregno;
-}
-
-/* Return the final regno that a subreg expression refers to. */
-unsigned int
-subreg_regno (const_rtx x)
-{
- unsigned int ret;
- rtx subreg = SUBREG_REG (x);
- int regno = REGNO (subreg);
-
- ret = regno + subreg_regno_offset (regno,
- GET_MODE (subreg),
- SUBREG_BYTE (x),
- GET_MODE (x));
- return ret;
-
-}
-
-/* Return the number of registers that a subreg expression refers
- to. */
-unsigned int
-subreg_nregs (const_rtx x)
-{
- return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
-}
-
-/* Return the number of registers that a subreg REG with REGNO
- expression refers to. This is a copy of the rtlanal.c:subreg_nregs
- changed so that the regno can be passed in. */
-
-unsigned int
-subreg_nregs_with_regno (unsigned int regno, const_rtx x)
-{
- struct subreg_info info;
- rtx subreg = SUBREG_REG (x);
-
- subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
- &info);
- return info.nregs;
-}
-
-
-struct parms_set_data
-{
- int nregs;
- HARD_REG_SET regs;
-};
-
-/* Helper function for noticing stores to parameter registers. */
-static void
-parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
-{
- struct parms_set_data *const d = (struct parms_set_data *) data;
- if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
- && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
- {
- CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
- d->nregs--;
- }
-}
-
-/* Look backward for first parameter to be loaded.
- Note that loads of all parameters will not necessarily be
- found if CSE has eliminated some of them (e.g., an argument
- to the outer function is passed down as a parameter).
- Do not skip BOUNDARY. */
-rtx
-find_first_parameter_load (rtx call_insn, rtx boundary)
-{
- struct parms_set_data parm;
- rtx p, before, first_set;
-
- /* Since different machines initialize their parameter registers
- in different orders, assume nothing. Collect the set of all
- parameter registers. */
- CLEAR_HARD_REG_SET (parm.regs);
- parm.nregs = 0;
- for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
- if (GET_CODE (XEXP (p, 0)) == USE
- && REG_P (XEXP (XEXP (p, 0), 0)))
- {
- gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
-
- /* We only care about registers which can hold function
- arguments. */
- if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
- continue;
-
- SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
- parm.nregs++;
- }
- before = call_insn;
- first_set = call_insn;
-
- /* Search backward for the first set of a register in this set. */
- while (parm.nregs && before != boundary)
- {
- before = PREV_INSN (before);
-
- /* It is possible that some loads got CSEed from one call to
- another. Stop in that case. */
- if (CALL_P (before))
- break;
-
- /* Our caller needs either ensure that we will find all sets
- (in case code has not been optimized yet), or take care
- for possible labels in a way by setting boundary to preceding
- CODE_LABEL. */
- if (LABEL_P (before))
- {
- gcc_assert (before == boundary);
- break;
- }
-
- if (INSN_P (before))
- {
- int nregs_old = parm.nregs;
- note_stores (PATTERN (before), parms_set, &parm);
- /* If we found something that did not set a parameter reg,
- we're done. Do not keep going, as that might result
- in hoisting an insn before the setting of a pseudo
- that is used by the hoisted insn. */
- if (nregs_old != parm.nregs)
- first_set = before;
- else
- break;
- }
- }
- return first_set;
-}
-
-/* Return true if we should avoid inserting code between INSN and preceding
- call instruction. */
-
-bool
-keep_with_call_p (const_rtx insn)
-{
- rtx set;
-
- if (INSN_P (insn) && (set = single_set (insn)) != NULL)
- {
- if (REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
- && fixed_regs[REGNO (SET_DEST (set))]
- && general_operand (SET_SRC (set), VOIDmode))
- return true;
- if (REG_P (SET_SRC (set))
- && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
- && REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
- return true;
- /* There may be a stack pop just after the call and before the store
- of the return register. Search for the actual store when deciding
- if we can break or not. */
- if (SET_DEST (set) == stack_pointer_rtx)
- {
- /* This CONST_CAST is okay because next_nonnote_insn just
- returns its argument and we assign it to a const_rtx
- variable. */
- const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
- if (i2 && keep_with_call_p (i2))
- return true;
- }
- }
- return false;
-}
-
-/* Return true if LABEL is a target of JUMP_INSN. This applies only
- to non-complex jumps. That is, direct unconditional, conditional,
- and tablejumps, but not computed jumps or returns. It also does
- not apply to the fallthru case of a conditional jump. */
-
-bool
-label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
-{
- rtx tmp = JUMP_LABEL (jump_insn);
-
- if (label == tmp)
- return true;
-
- if (tablejump_p (jump_insn, NULL, &tmp))
- {
- rtvec vec = XVEC (PATTERN (tmp),
- GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
- int i, veclen = GET_NUM_ELEM (vec);
-
- for (i = 0; i < veclen; ++i)
- if (XEXP (RTVEC_ELT (vec, i), 0) == label)
- return true;
- }
-
- if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
- return true;
-
- return false;
-}
-
-
-/* Return an estimate of the cost of computing rtx X.
- One use is in cse, to decide which expression to keep in the hash table.
- Another is in rtl generation, to pick the cheapest way to multiply.
- Other uses like the latter are expected in the future.
-
- SPEED parameter specify whether costs optimized for speed or size should
- be returned. */
-
-int
-rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
-{
- int i, j;
- enum rtx_code code;
- const char *fmt;
- int total;
-
- if (x == 0)
- return 0;
-
- /* Compute the default costs of certain things.
- Note that targetm.rtx_costs can override the defaults. */
-
- code = GET_CODE (x);
- switch (code)
- {
- case MULT:
- total = COSTS_N_INSNS (5);
- break;
- case DIV:
- case UDIV:
- case MOD:
- case UMOD:
- total = COSTS_N_INSNS (7);
- break;
- case USE:
- /* Used in combine.c as a marker. */
- total = 0;
- break;
- default:
- total = COSTS_N_INSNS (1);
- }
-
- switch (code)
- {
- case REG:
- return 0;
-
- case SUBREG:
- total = 0;
- /* If we can't tie these modes, make this expensive. The larger
- the mode, the more expensive it is. */
- if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
- return COSTS_N_INSNS (2
- + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
- break;
-
- default:
- if (targetm.rtx_costs (x, code, outer_code, &total, speed))
- return total;
- break;
- }
-
- /* Sum the costs of the sub-rtx's, plus cost of this operation,
- which is already in total. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- total += rtx_cost (XEXP (x, i), code, speed);
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- total += rtx_cost (XVECEXP (x, i, j), code, speed);
-
- return total;
-}
-
-/* Return cost of address expression X.
- Expect that X is properly formed address reference.
-
- SPEED parameter specify whether costs optimized for speed or size should
- be returned. */
-
-int
-address_cost (rtx x, enum machine_mode mode, bool speed)
-{
- /* We may be asked for cost of various unusual addresses, such as operands
- of push instruction. It is not worthwhile to complicate writing
- of the target hook by such cases. */
-
- if (!memory_address_p (mode, x))
- return 1000;
-
- return targetm.address_cost (x, speed);
-}
-
-/* If the target doesn't override, compute the cost as with arithmetic. */
-
-int
-default_address_cost (rtx x, bool speed)
-{
- return rtx_cost (x, MEM, speed);
-}
-
-
-unsigned HOST_WIDE_INT
-nonzero_bits (const_rtx x, enum machine_mode mode)
-{
- return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
-}
-
-unsigned int
-num_sign_bit_copies (const_rtx x, enum machine_mode mode)
-{
- return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
-}
-
-/* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
- It avoids exponential behavior in nonzero_bits1 when X has
- identical subexpressions on the first or the second level. */
-
-static unsigned HOST_WIDE_INT
-cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
- enum machine_mode known_mode,
- unsigned HOST_WIDE_INT known_ret)
-{
- if (x == known_x && mode == known_mode)
- return known_ret;
-
- /* Try to find identical subexpressions. If found call
- nonzero_bits1 on X with the subexpressions as KNOWN_X and the
- precomputed value for the subexpression as KNOWN_RET. */
-
- if (ARITHMETIC_P (x))
- {
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- /* Check the first level. */
- if (x0 == x1)
- return nonzero_bits1 (x, mode, x0, mode,
- cached_nonzero_bits (x0, mode, known_x,
- known_mode, known_ret));
-
- /* Check the second level. */
- if (ARITHMETIC_P (x0)
- && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
- return nonzero_bits1 (x, mode, x1, mode,
- cached_nonzero_bits (x1, mode, known_x,
- known_mode, known_ret));
-
- if (ARITHMETIC_P (x1)
- && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
- return nonzero_bits1 (x, mode, x0, mode,
- cached_nonzero_bits (x0, mode, known_x,
- known_mode, known_ret));
- }
-
- return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
-}
-
-/* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
- We don't let nonzero_bits recur into num_sign_bit_copies, because that
- is less useful. We can't allow both, because that results in exponential
- run time recursion. There is a nullstone testcase that triggered
- this. This macro avoids accidental uses of num_sign_bit_copies. */
-#define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
-
-/* Given an expression, X, compute which bits in X can be nonzero.
- We don't care about bits outside of those defined in MODE.
-
- For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
- an arithmetic operation, we can do better. */
-
-static unsigned HOST_WIDE_INT
-nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
- enum machine_mode known_mode,
- unsigned HOST_WIDE_INT known_ret)
-{
- unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
- unsigned HOST_WIDE_INT inner_nz;
- enum rtx_code code;
- unsigned int mode_width = GET_MODE_BITSIZE (mode);
-
- /* For floating-point and vector values, assume all bits are needed. */
- if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
- || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
- return nonzero;
-
- /* If X is wider than MODE, use its mode instead. */
- if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
- {
- mode = GET_MODE (x);
- nonzero = GET_MODE_MASK (mode);
- mode_width = GET_MODE_BITSIZE (mode);
- }
-
- if (mode_width > HOST_BITS_PER_WIDE_INT)
- /* Our only callers in this case look for single bit values. So
- just return the mode mask. Those tests will then be false. */
- return nonzero;
-
-#ifndef WORD_REGISTER_OPERATIONS
- /* If MODE is wider than X, but both are a single word for both the host
- and target machines, we can compute this from which bits of the
- object might be nonzero in its own mode, taking into account the fact
- that on many CISC machines, accessing an object in a wider mode
- causes the high-order bits to become undefined. So they are
- not known to be zero. */
-
- if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
- && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
- {
- nonzero &= cached_nonzero_bits (x, GET_MODE (x),
- known_x, known_mode, known_ret);
- nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
- return nonzero;
- }
-#endif
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
-#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
- /* If pointers extend unsigned and this is a pointer in Pmode, say that
- all the bits above ptr_mode are known to be zero. */
- if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
- && REG_POINTER (x))
- nonzero &= GET_MODE_MASK (ptr_mode);
-#endif
-
- /* Include declared information about alignment of pointers. */
- /* ??? We don't properly preserve REG_POINTER changes across
- pointer-to-integer casts, so we can't trust it except for
- things that we know must be pointers. See execute/960116-1.c. */
- if ((x == stack_pointer_rtx
- || x == frame_pointer_rtx
- || x == arg_pointer_rtx)
- && REGNO_POINTER_ALIGN (REGNO (x)))
- {
- unsigned HOST_WIDE_INT alignment
- = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
-
-#ifdef PUSH_ROUNDING
- /* If PUSH_ROUNDING is defined, it is possible for the
- stack to be momentarily aligned only to that amount,
- so we pick the least alignment. */
- if (x == stack_pointer_rtx && PUSH_ARGS)
- alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
- alignment);
-#endif
-
- nonzero &= ~(alignment - 1);
- }
-
- {
- unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
- rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
- known_mode, known_ret,
- &nonzero_for_hook);
-
- if (new_rtx)
- nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
- known_mode, known_ret);
-
- return nonzero_for_hook;
- }
-
- case CONST_INT:
-#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
- /* If X is negative in MODE, sign-extend the value. */
- if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
- && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
- return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
-#endif
-
- return INTVAL (x);
-
- case MEM:
-#ifdef LOAD_EXTEND_OP
- /* In many, if not most, RISC machines, reading a byte from memory
- zeros the rest of the register. Noticing that fact saves a lot
- of extra zero-extends. */
- if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
- nonzero &= GET_MODE_MASK (GET_MODE (x));
-#endif
- break;
-
- case EQ: case NE:
- case UNEQ: case LTGT:
- case GT: case GTU: case UNGT:
- case LT: case LTU: case UNLT:
- case GE: case GEU: case UNGE:
- case LE: case LEU: case UNLE:
- case UNORDERED: case ORDERED:
- /* If this produces an integer result, we know which bits are set.
- Code here used to clear bits outside the mode of X, but that is
- now done above. */
- /* Mind that MODE is the mode the caller wants to look at this
- operation in, and not the actual operation mode. We can wind
- up with (subreg:DI (gt:V4HI x y)), and we don't have anything
- that describes the results of a vector compare. */
- if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- nonzero = STORE_FLAG_VALUE;
- break;
-
- case NEG:
-#if 0
- /* Disabled to avoid exponential mutual recursion between nonzero_bits
- and num_sign_bit_copies. */
- if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
- == GET_MODE_BITSIZE (GET_MODE (x)))
- nonzero = 1;
-#endif
-
- if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
- nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
- break;
-
- case ABS:
-#if 0
- /* Disabled to avoid exponential mutual recursion between nonzero_bits
- and num_sign_bit_copies. */
- if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
- == GET_MODE_BITSIZE (GET_MODE (x)))
- nonzero = 1;
-#endif
- break;
-
- case TRUNCATE:
- nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret)
- & GET_MODE_MASK (mode));
- break;
-
- case ZERO_EXTEND:
- nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- if (GET_MODE (XEXP (x, 0)) != VOIDmode)
- nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
- break;
-
- case SIGN_EXTEND:
- /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
- Otherwise, show all the bits in the outer mode but not the inner
- may be nonzero. */
- inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- if (GET_MODE (XEXP (x, 0)) != VOIDmode)
- {
- inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
- if (inner_nz
- & (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
- inner_nz |= (GET_MODE_MASK (mode)
- & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
- }
-
- nonzero &= inner_nz;
- break;
-
- case AND:
- nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret)
- & cached_nonzero_bits (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
- break;
-
- case XOR: case IOR:
- case UMIN: case UMAX: case SMIN: case SMAX:
- {
- unsigned HOST_WIDE_INT nonzero0 =
- cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
-
- /* Don't call nonzero_bits for the second time if it cannot change
- anything. */
- if ((nonzero & nonzero0) != nonzero)
- nonzero &= nonzero0
- | cached_nonzero_bits (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
- }
- break;
-
- case PLUS: case MINUS:
- case MULT:
- case DIV: case UDIV:
- case MOD: case UMOD:
- /* We can apply the rules of arithmetic to compute the number of
- high- and low-order zero bits of these operations. We start by
- computing the width (position of the highest-order nonzero bit)
- and the number of low-order zero bits for each value. */
- {
- unsigned HOST_WIDE_INT nz0 =
- cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- unsigned HOST_WIDE_INT nz1 =
- cached_nonzero_bits (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
- int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
- int width0 = floor_log2 (nz0) + 1;
- int width1 = floor_log2 (nz1) + 1;
- int low0 = floor_log2 (nz0 & -nz0);
- int low1 = floor_log2 (nz1 & -nz1);
- HOST_WIDE_INT op0_maybe_minusp
- = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
- HOST_WIDE_INT op1_maybe_minusp
- = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
- unsigned int result_width = mode_width;
- int result_low = 0;
-
- switch (code)
- {
- case PLUS:
- result_width = MAX (width0, width1) + 1;
- result_low = MIN (low0, low1);
- break;
- case MINUS:
- result_low = MIN (low0, low1);
- break;
- case MULT:
- result_width = width0 + width1;
- result_low = low0 + low1;
- break;
- case DIV:
- if (width1 == 0)
- break;
- if (! op0_maybe_minusp && ! op1_maybe_minusp)
- result_width = width0;
- break;
- case UDIV:
- if (width1 == 0)
- break;
- result_width = width0;
- break;
- case MOD:
- if (width1 == 0)
- break;
- if (! op0_maybe_minusp && ! op1_maybe_minusp)
- result_width = MIN (width0, width1);
- result_low = MIN (low0, low1);
- break;
- case UMOD:
- if (width1 == 0)
- break;
- result_width = MIN (width0, width1);
- result_low = MIN (low0, low1);
- break;
- default:
- gcc_unreachable ();
- }
-
- if (result_width < mode_width)
- nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
-
- if (result_low > 0)
- nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
-
-#ifdef POINTERS_EXTEND_UNSIGNED
- /* If pointers extend unsigned and this is an addition or subtraction
- to a pointer in Pmode, all the bits above ptr_mode are known to be
- zero. */
- if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
- && (code == PLUS || code == MINUS)
- && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
- nonzero &= GET_MODE_MASK (ptr_mode);
-#endif
- }
- break;
-
- case ZERO_EXTRACT:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
- nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
- break;
-
- case SUBREG:
- /* If this is a SUBREG formed for a promoted variable that has
- been zero-extended, we know that at least the high-order bits
- are zero, though others might be too. */
-
- if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
- nonzero = GET_MODE_MASK (GET_MODE (x))
- & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
- known_x, known_mode, known_ret);
-
- /* If the inner mode is a single word for both the host and target
- machines, we can compute this from which bits of the inner
- object might be nonzero. */
- if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
- && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- <= HOST_BITS_PER_WIDE_INT))
- {
- nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
- known_x, known_mode, known_ret);
-
-#if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
- /* If this is a typical RISC machine, we only have to worry
- about the way loads are extended. */
- if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
- ? (((nonzero
- & (((unsigned HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
- != 0))
- : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
- || !MEM_P (SUBREG_REG (x)))
-#endif
- {
- /* On many CISC machines, accessing an object in a wider mode
- causes the high-order bits to become undefined. So they are
- not known to be zero. */
- if (GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- nonzero |= (GET_MODE_MASK (GET_MODE (x))
- & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
- }
- }
- break;
-
- case ASHIFTRT:
- case LSHIFTRT:
- case ASHIFT:
- case ROTATE:
- /* The nonzero bits are in two classes: any bits within MODE
- that aren't in GET_MODE (x) are always significant. The rest of the
- nonzero bits are those that are significant in the operand of
- the shift when shifted the appropriate number of bits. This
- shows that high-order bits are cleared by the right shift and
- low-order bits by left shifts. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
- && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
- {
- enum machine_mode inner_mode = GET_MODE (x);
- unsigned int width = GET_MODE_BITSIZE (inner_mode);
- int count = INTVAL (XEXP (x, 1));
- unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
- unsigned HOST_WIDE_INT op_nonzero =
- cached_nonzero_bits (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
- unsigned HOST_WIDE_INT outer = 0;
-
- if (mode_width > width)
- outer = (op_nonzero & nonzero & ~mode_mask);
-
- if (code == LSHIFTRT)
- inner >>= count;
- else if (code == ASHIFTRT)
- {
- inner >>= count;
-
- /* If the sign bit may have been nonzero before the shift, we
- need to mark all the places it could have been copied to
- by the shift as possibly nonzero. */
- if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
- inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
- }
- else if (code == ASHIFT)
- inner <<= count;
- else
- inner = ((inner << (count % width)
- | (inner >> (width - (count % width)))) & mode_mask);
-
- nonzero &= (outer | inner);
- }
- break;
-
- case FFS:
- case POPCOUNT:
- /* This is at most the number of bits in the mode. */
- nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
- break;
-
- case CLZ:
- /* If CLZ has a known value at zero, then the nonzero bits are
- that value, plus the number of bits in the mode minus one. */
- if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
- nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
- else
- nonzero = -1;
- break;
-
- case CTZ:
- /* If CTZ has a known value at zero, then the nonzero bits are
- that value, plus the number of bits in the mode minus one. */
- if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
- nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
- else
- nonzero = -1;
- break;
-
- case PARITY:
- nonzero = 1;
- break;
-
- case IF_THEN_ELSE:
- {
- unsigned HOST_WIDE_INT nonzero_true =
- cached_nonzero_bits (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
-
- /* Don't call nonzero_bits for the second time if it cannot change
- anything. */
- if ((nonzero & nonzero_true) != nonzero)
- nonzero &= nonzero_true
- | cached_nonzero_bits (XEXP (x, 2), mode,
- known_x, known_mode, known_ret);
- }
- break;
-
- default:
- break;
- }
-
- return nonzero;
-}
-
-/* See the macro definition above. */
-#undef cached_num_sign_bit_copies
-
-
-/* The function cached_num_sign_bit_copies is a wrapper around
- num_sign_bit_copies1. It avoids exponential behavior in
- num_sign_bit_copies1 when X has identical subexpressions on the
- first or the second level. */
-
-static unsigned int
-cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
- enum machine_mode known_mode,
- unsigned int known_ret)
-{
- if (x == known_x && mode == known_mode)
- return known_ret;
-
- /* Try to find identical subexpressions. If found call
- num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
- the precomputed value for the subexpression as KNOWN_RET. */
-
- if (ARITHMETIC_P (x))
- {
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- /* Check the first level. */
- if (x0 == x1)
- return
- num_sign_bit_copies1 (x, mode, x0, mode,
- cached_num_sign_bit_copies (x0, mode, known_x,
- known_mode,
- known_ret));
-
- /* Check the second level. */
- if (ARITHMETIC_P (x0)
- && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
- return
- num_sign_bit_copies1 (x, mode, x1, mode,
- cached_num_sign_bit_copies (x1, mode, known_x,
- known_mode,
- known_ret));
-
- if (ARITHMETIC_P (x1)
- && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
- return
- num_sign_bit_copies1 (x, mode, x0, mode,
- cached_num_sign_bit_copies (x0, mode, known_x,
- known_mode,
- known_ret));
- }
-
- return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
-}
-
-/* Return the number of bits at the high-order end of X that are known to
- be equal to the sign bit. X will be used in mode MODE; if MODE is
- VOIDmode, X will be used in its own mode. The returned value will always
- be between 1 and the number of bits in MODE. */
-
-static unsigned int
-num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
- enum machine_mode known_mode,
- unsigned int known_ret)
-{
- enum rtx_code code = GET_CODE (x);
- unsigned int bitwidth = GET_MODE_BITSIZE (mode);
- int num0, num1, result;
- unsigned HOST_WIDE_INT nonzero;
-
- /* If we weren't given a mode, use the mode of X. If the mode is still
- VOIDmode, we don't know anything. Likewise if one of the modes is
- floating-point. */
-
- if (mode == VOIDmode)
- mode = GET_MODE (x);
-
- if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
- || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
- return 1;
-
- /* For a smaller object, just ignore the high bits. */
- if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
- {
- num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
- known_x, known_mode, known_ret);
- return MAX (1,
- num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
- }
-
- if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
- {
-#ifndef WORD_REGISTER_OPERATIONS
- /* If this machine does not do all register operations on the entire
- register and MODE is wider than the mode of X, we can say nothing
- at all about the high-order bits. */
- return 1;
-#else
- /* Likewise on machines that do, if the mode of the object is smaller
- than a word and loads of that size don't sign extend, we can say
- nothing about the high order bits. */
- if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
-#ifdef LOAD_EXTEND_OP
- && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
-#endif
- )
- return 1;
-#endif
- }
-
- switch (code)
- {
- case REG:
-
-#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
- /* If pointers extend signed and this is a pointer in Pmode, say that
- all the bits above ptr_mode are known to be sign bit copies. */
- if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
- && REG_POINTER (x))
- return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
-#endif
-
- {
- unsigned int copies_for_hook = 1, copies = 1;
- rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
- known_mode, known_ret,
- &copies_for_hook);
-
- if (new_rtx)
- copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
- known_mode, known_ret);
-
- if (copies > 1 || copies_for_hook > 1)
- return MAX (copies, copies_for_hook);
-
- /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
- }
- break;
-
- case MEM:
-#ifdef LOAD_EXTEND_OP
- /* Some RISC machines sign-extend all loads of smaller than a word. */
- if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
- return MAX (1, ((int) bitwidth
- - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
-#endif
- break;
-
- case CONST_INT:
- /* If the constant is negative, take its 1's complement and remask.
- Then see how many zero bits we have. */
- nonzero = INTVAL (x) & GET_MODE_MASK (mode);
- if (bitwidth <= HOST_BITS_PER_WIDE_INT
- && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- nonzero = (~nonzero) & GET_MODE_MASK (mode);
-
- return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
-
- case SUBREG:
- /* If this is a SUBREG for a promoted object that is sign-extended
- and we are looking at it in a wider mode, we know that at least the
- high-order bits are known to be sign bit copies. */
-
- if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
- {
- num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
- known_x, known_mode, known_ret);
- return MAX ((int) bitwidth
- - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
- num0);
- }
-
- /* For a smaller object, just ignore the high bits. */
- if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
- {
- num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
- known_x, known_mode, known_ret);
- return MAX (1, (num0
- - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- - bitwidth)));
- }
-
-#ifdef WORD_REGISTER_OPERATIONS
-#ifdef LOAD_EXTEND_OP
- /* For paradoxical SUBREGs on machines where all register operations
- affect the entire register, just look inside. Note that we are
- passing MODE to the recursive call, so the number of sign bit copies
- will remain relative to that mode, not the inner mode. */
-
- /* This works only if loads sign extend. Otherwise, if we get a
- reload for the inner part, it may be loaded from the stack, and
- then we lose all sign bit copies that existed before the store
- to the stack. */
-
- if ((GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
- && MEM_P (SUBREG_REG (x)))
- return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
- known_x, known_mode, known_ret);
-#endif
-#endif
- break;
-
- case SIGN_EXTRACT:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
- break;
-
- case SIGN_EXTEND:
- return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
- known_x, known_mode, known_ret));
-
- case TRUNCATE:
- /* For a smaller object, just ignore the high bits. */
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
- known_x, known_mode, known_ret);
- return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- - bitwidth)));
-
- case NOT:
- return cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
-
- case ROTATE: case ROTATERT:
- /* If we are rotating left by a number of bits less than the number
- of sign bit copies, we can just subtract that amount from the
- number. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < (int) bitwidth)
- {
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
- : (int) bitwidth - INTVAL (XEXP (x, 1))));
- }
- break;
-
- case NEG:
- /* In general, this subtracts one sign bit copy. But if the value
- is known to be positive, the number of sign bit copies is the
- same as that of the input. Finally, if the input has just one bit
- that might be nonzero, all the bits are copies of the sign bit. */
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- if (bitwidth > HOST_BITS_PER_WIDE_INT)
- return num0 > 1 ? num0 - 1 : 1;
-
- nonzero = nonzero_bits (XEXP (x, 0), mode);
- if (nonzero == 1)
- return bitwidth;
-
- if (num0 > 1
- && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
- num0--;
-
- return num0;
-
- case IOR: case AND: case XOR:
- case SMIN: case SMAX: case UMIN: case UMAX:
- /* Logical operations will preserve the number of sign-bit copies.
- MIN and MAX operations always return one of the operands. */
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
-
- /* If num1 is clearing some of the top bits then regardless of
- the other term, we are guaranteed to have at least that many
- high-order zero bits. */
- if (code == AND
- && num1 > 1
- && bitwidth <= HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
- return num1;
-
- /* Similarly for IOR when setting high-order bits. */
- if (code == IOR
- && num1 > 1
- && bitwidth <= HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
- return num1;
-
- return MIN (num0, num1);
-
- case PLUS: case MINUS:
- /* For addition and subtraction, we can have a 1-bit carry. However,
- if we are subtracting 1 from a positive number, there will not
- be such a carry. Furthermore, if the positive number is known to
- be 0 or 1, we know the result is either -1 or 0. */
-
- if (code == PLUS && XEXP (x, 1) == constm1_rtx
- && bitwidth <= HOST_BITS_PER_WIDE_INT)
- {
- nonzero = nonzero_bits (XEXP (x, 0), mode);
- if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
- return (nonzero == 1 || nonzero == 0 ? bitwidth
- : bitwidth - floor_log2 (nonzero) - 1);
- }
-
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
- result = MAX (1, MIN (num0, num1) - 1);
-
-#ifdef POINTERS_EXTEND_UNSIGNED
- /* If pointers extend signed and this is an addition or subtraction
- to a pointer in Pmode, all the bits above ptr_mode are known to be
- sign bit copies. */
- if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
- && (code == PLUS || code == MINUS)
- && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
- result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
- - GET_MODE_BITSIZE (ptr_mode) + 1),
- result);
-#endif
- return result;
-
- case MULT:
- /* The number of bits of the product is the sum of the number of
- bits of both terms. However, unless one of the terms if known
- to be positive, we must allow for an additional bit since negating
- a negative number can remove one sign bit copy. */
-
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
-
- result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
- if (result > 0
- && (bitwidth > HOST_BITS_PER_WIDE_INT
- || (((nonzero_bits (XEXP (x, 0), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- && ((nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
- result--;
-
- return MAX (1, result);
-
- case UDIV:
- /* The result must be <= the first operand. If the first operand
- has the high bit set, we know nothing about the number of sign
- bit copies. */
- if (bitwidth > HOST_BITS_PER_WIDE_INT)
- return 1;
- else if ((nonzero_bits (XEXP (x, 0), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- return 1;
- else
- return cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
-
- case UMOD:
- /* The result must be <= the second operand. If the second operand
- has (or just might have) the high bit set, we know nothing about
- the number of sign bit copies. */
- if (bitwidth > HOST_BITS_PER_WIDE_INT)
- return 1;
- else if ((nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- return 1;
- else
- return cached_num_sign_bit_copies (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
-
- case DIV:
- /* Similar to unsigned division, except that we have to worry about
- the case where the divisor is negative, in which case we have
- to add 1. */
- result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- if (result > 1
- && (bitwidth > HOST_BITS_PER_WIDE_INT
- || (nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
- result--;
-
- return result;
-
- case MOD:
- result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
- if (result > 1
- && (bitwidth > HOST_BITS_PER_WIDE_INT
- || (nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
- result--;
-
- return result;
-
- case ASHIFTRT:
- /* Shifts by a constant add to the number of bits equal to the
- sign bit. */
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) > 0
- && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
- num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
-
- return num0;
-
- case ASHIFT:
- /* Left shifts destroy copies. */
- if (GET_CODE (XEXP (x, 1)) != CONST_INT
- || INTVAL (XEXP (x, 1)) < 0
- || INTVAL (XEXP (x, 1)) >= (int) bitwidth
- || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
- return 1;
-
- num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
- known_x, known_mode, known_ret);
- return MAX (1, num0 - INTVAL (XEXP (x, 1)));
-
- case IF_THEN_ELSE:
- num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
- known_x, known_mode, known_ret);
- num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
- known_x, known_mode, known_ret);
- return MIN (num0, num1);
-
- case EQ: case NE: case GE: case GT: case LE: case LT:
- case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
- case GEU: case GTU: case LEU: case LTU:
- case UNORDERED: case ORDERED:
- /* If the constant is negative, take its 1's complement and remask.
- Then see how many zero bits we have. */
- nonzero = STORE_FLAG_VALUE;
- if (bitwidth <= HOST_BITS_PER_WIDE_INT
- && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- nonzero = (~nonzero) & GET_MODE_MASK (mode);
-
- return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
-
- default:
- break;
- }
-
- /* If we haven't been able to figure it out by one of the above rules,
- see if some of the high-order bits are known to be zero. If so,
- count those bits and return one less than that amount. If we can't
- safely compute the mask for this mode, always return BITWIDTH. */
-
- bitwidth = GET_MODE_BITSIZE (mode);
- if (bitwidth > HOST_BITS_PER_WIDE_INT)
- return 1;
-
- nonzero = nonzero_bits (x, mode);
- return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
- ? 1 : bitwidth - floor_log2 (nonzero) - 1;
-}
-
-/* Calculate the rtx_cost of a single instruction. A return value of
- zero indicates an instruction pattern without a known cost. */
-
-int
-insn_rtx_cost (rtx pat, bool speed)
-{
- int i, cost;
- rtx set;
-
- /* Extract the single set rtx from the instruction pattern.
- We can't use single_set since we only have the pattern. */
- if (GET_CODE (pat) == SET)
- set = pat;
- else if (GET_CODE (pat) == PARALLEL)
- {
- set = NULL_RTX;
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx x = XVECEXP (pat, 0, i);
- if (GET_CODE (x) == SET)
- {
- if (set)
- return 0;
- set = x;
- }
- }
- if (!set)
- return 0;
- }
- else
- return 0;
-
- cost = rtx_cost (SET_SRC (set), SET, speed);
- return cost > 0 ? cost : COSTS_N_INSNS (1);
-}
-
-/* Given an insn INSN and condition COND, return the condition in a
- canonical form to simplify testing by callers. Specifically:
-
- (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
- (2) Both operands will be machine operands; (cc0) will have been replaced.
- (3) If an operand is a constant, it will be the second operand.
- (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
- for GE, GEU, and LEU.
-
- If the condition cannot be understood, or is an inequality floating-point
- comparison which needs to be reversed, 0 will be returned.
-
- If REVERSE is nonzero, then reverse the condition prior to canonizing it.
-
- If EARLIEST is nonzero, it is a pointer to a place where the earliest
- insn used in locating the condition was found. If a replacement test
- of the condition is desired, it should be placed in front of that
- insn and we will be sure that the inputs are still valid.
-
- If WANT_REG is nonzero, we wish the condition to be relative to that
- register, if possible. Therefore, do not canonicalize the condition
- further. If ALLOW_CC_MODE is nonzero, allow the condition returned
- to be a compare to a CC mode register.
-
- If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
- and at INSN. */
-
-rtx
-canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
- rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
-{
- enum rtx_code code;
- rtx prev = insn;
- const_rtx set;
- rtx tem;
- rtx op0, op1;
- int reverse_code = 0;
- enum machine_mode mode;
- basic_block bb = BLOCK_FOR_INSN (insn);
-
- code = GET_CODE (cond);
- mode = GET_MODE (cond);
- op0 = XEXP (cond, 0);
- op1 = XEXP (cond, 1);
-
- if (reverse)
- code = reversed_comparison_code (cond, insn);
- if (code == UNKNOWN)
- return 0;
-
- if (earliest)
- *earliest = insn;
-
- /* If we are comparing a register with zero, see if the register is set
- in the previous insn to a COMPARE or a comparison operation. Perform
- the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
- in cse.c */
-
- while ((GET_RTX_CLASS (code) == RTX_COMPARE
- || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
- && op1 == CONST0_RTX (GET_MODE (op0))
- && op0 != want_reg)
- {
- /* Set nonzero when we find something of interest. */
- rtx x = 0;
-
-#ifdef HAVE_cc0
- /* If comparison with cc0, import actual comparison from compare
- insn. */
- if (op0 == cc0_rtx)
- {
- if ((prev = prev_nonnote_insn (prev)) == 0
- || !NONJUMP_INSN_P (prev)
- || (set = single_set (prev)) == 0
- || SET_DEST (set) != cc0_rtx)
- return 0;
-
- op0 = SET_SRC (set);
- op1 = CONST0_RTX (GET_MODE (op0));
- if (earliest)
- *earliest = prev;
- }
-#endif
-
- /* If this is a COMPARE, pick up the two things being compared. */
- if (GET_CODE (op0) == COMPARE)
- {
- op1 = XEXP (op0, 1);
- op0 = XEXP (op0, 0);
- continue;
- }
- else if (!REG_P (op0))
- break;
-
- /* Go back to the previous insn. Stop if it is not an INSN. We also
- stop if it isn't a single set or if it has a REG_INC note because
- we don't want to bother dealing with it. */
-
- if ((prev = prev_nonnote_insn (prev)) == 0
- || !NONJUMP_INSN_P (prev)
- || FIND_REG_INC_NOTE (prev, NULL_RTX)
- /* In cfglayout mode, there do not have to be labels at the
- beginning of a block, or jumps at the end, so the previous
- conditions would not stop us when we reach bb boundary. */
- || BLOCK_FOR_INSN (prev) != bb)
- break;
-
- set = set_of (op0, prev);
-
- if (set
- && (GET_CODE (set) != SET
- || !rtx_equal_p (SET_DEST (set), op0)))
- break;
-
- /* If this is setting OP0, get what it sets it to if it looks
- relevant. */
- if (set)
- {
- enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
-#ifdef FLOAT_STORE_FLAG_VALUE
- REAL_VALUE_TYPE fsfv;
-#endif
-
- /* ??? We may not combine comparisons done in a CCmode with
- comparisons not done in a CCmode. This is to aid targets
- like Alpha that have an IEEE compliant EQ instruction, and
- a non-IEEE compliant BEQ instruction. The use of CCmode is
- actually artificial, simply to prevent the combination, but
- should not affect other platforms.
-
- However, we must allow VOIDmode comparisons to match either
- CCmode or non-CCmode comparison, because some ports have
- modeless comparisons inside branch patterns.
-
- ??? This mode check should perhaps look more like the mode check
- in simplify_comparison in combine. */
-
- if ((GET_CODE (SET_SRC (set)) == COMPARE
- || (((code == NE
- || (code == LT
- && GET_MODE_CLASS (inner_mode) == MODE_INT
- && (GET_MODE_BITSIZE (inner_mode)
- <= HOST_BITS_PER_WIDE_INT)
- && (STORE_FLAG_VALUE
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (inner_mode) - 1))))
-#ifdef FLOAT_STORE_FLAG_VALUE
- || (code == LT
- && SCALAR_FLOAT_MODE_P (inner_mode)
- && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
- REAL_VALUE_NEGATIVE (fsfv)))
-#endif
- ))
- && COMPARISON_P (SET_SRC (set))))
- && (((GET_MODE_CLASS (mode) == MODE_CC)
- == (GET_MODE_CLASS (inner_mode) == MODE_CC))
- || mode == VOIDmode || inner_mode == VOIDmode))
- x = SET_SRC (set);
- else if (((code == EQ
- || (code == GE
- && (GET_MODE_BITSIZE (inner_mode)
- <= HOST_BITS_PER_WIDE_INT)
- && GET_MODE_CLASS (inner_mode) == MODE_INT
- && (STORE_FLAG_VALUE
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (inner_mode) - 1))))
-#ifdef FLOAT_STORE_FLAG_VALUE
- || (code == GE
- && SCALAR_FLOAT_MODE_P (inner_mode)
- && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
- REAL_VALUE_NEGATIVE (fsfv)))
-#endif
- ))
- && COMPARISON_P (SET_SRC (set))
- && (((GET_MODE_CLASS (mode) == MODE_CC)
- == (GET_MODE_CLASS (inner_mode) == MODE_CC))
- || mode == VOIDmode || inner_mode == VOIDmode))
-
- {
- reverse_code = 1;
- x = SET_SRC (set);
- }
- else
- break;
- }
-
- else if (reg_set_p (op0, prev))
- /* If this sets OP0, but not directly, we have to give up. */
- break;
-
- if (x)
- {
- /* If the caller is expecting the condition to be valid at INSN,
- make sure X doesn't change before INSN. */
- if (valid_at_insn_p)
- if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
- break;
- if (COMPARISON_P (x))
- code = GET_CODE (x);
- if (reverse_code)
- {
- code = reversed_comparison_code (x, prev);
- if (code == UNKNOWN)
- return 0;
- reverse_code = 0;
- }
-
- op0 = XEXP (x, 0), op1 = XEXP (x, 1);
- if (earliest)
- *earliest = prev;
- }
- }
-
- /* If constant is first, put it last. */
- if (CONSTANT_P (op0))
- code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
-
- /* If OP0 is the result of a comparison, we weren't able to find what
- was really being compared, so fail. */
- if (!allow_cc_mode
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
- return 0;
-
- /* Canonicalize any ordered comparison with integers involving equality
- if we can do computations in the relevant mode and we do not
- overflow. */
-
- if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
- && GET_CODE (op1) == CONST_INT
- && GET_MODE (op0) != VOIDmode
- && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
- {
- HOST_WIDE_INT const_val = INTVAL (op1);
- unsigned HOST_WIDE_INT uconst_val = const_val;
- unsigned HOST_WIDE_INT max_val
- = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
-
- switch (code)
- {
- case LE:
- if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
- code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
- break;
-
- /* When cross-compiling, const_val might be sign-extended from
- BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
- case GE:
- if ((HOST_WIDE_INT) (const_val & max_val)
- != (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
- code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
- break;
-
- case LEU:
- if (uconst_val < max_val)
- code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
- break;
-
- case GEU:
- if (uconst_val != 0)
- code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
- break;
-
- default:
- break;
- }
- }
-
- /* Never return CC0; return zero instead. */
- if (CC0_P (op0))
- return 0;
-
- return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
-}
-
-/* Given a jump insn JUMP, return the condition that will cause it to branch
- to its JUMP_LABEL. If the condition cannot be understood, or is an
- inequality floating-point comparison which needs to be reversed, 0 will
- be returned.
-
- If EARLIEST is nonzero, it is a pointer to a place where the earliest
- insn used in locating the condition was found. If a replacement test
- of the condition is desired, it should be placed in front of that
- insn and we will be sure that the inputs are still valid. If EARLIEST
- is null, the returned condition will be valid at INSN.
-
- If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
- compare CC mode register.
-
- VALID_AT_INSN_P is the same as for canonicalize_condition. */
-
-rtx
-get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
-{
- rtx cond;
- int reverse;
- rtx set;
-
- /* If this is not a standard conditional jump, we can't parse it. */
- if (!JUMP_P (jump)
- || ! any_condjump_p (jump))
- return 0;
- set = pc_set (jump);
-
- cond = XEXP (SET_SRC (set), 0);
-
- /* If this branches to JUMP_LABEL when the condition is false, reverse
- the condition. */
- reverse
- = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
- && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
-
- return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
- allow_cc_mode, valid_at_insn_p);
-}
-
-/* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
- TARGET_MODE_REP_EXTENDED.
-
- Note that we assume that the property of
- TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
- narrower than mode B. I.e., if A is a mode narrower than B then in
- order to be able to operate on it in mode B, mode A needs to
- satisfy the requirements set by the representation of mode B. */
-
-static void
-init_num_sign_bit_copies_in_rep (void)
-{
- enum machine_mode mode, in_mode;
-
- for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
- in_mode = GET_MODE_WIDER_MODE (mode))
- for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
- mode = GET_MODE_WIDER_MODE (mode))
- {
- enum machine_mode i;
-
- /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
- extends to the next widest mode. */
- gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
- || GET_MODE_WIDER_MODE (mode) == in_mode);
-
- /* We are in in_mode. Count how many bits outside of mode
- have to be copies of the sign-bit. */
- for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
- {
- enum machine_mode wider = GET_MODE_WIDER_MODE (i);
-
- if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
- /* We can only check sign-bit copies starting from the
- top-bit. In order to be able to check the bits we
- have already seen we pretend that subsequent bits
- have to be sign-bit copies too. */
- || num_sign_bit_copies_in_rep [in_mode][mode])
- num_sign_bit_copies_in_rep [in_mode][mode]
- += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
- }
- }
-}
-
-/* Suppose that truncation from the machine mode of X to MODE is not a
- no-op. See if there is anything special about X so that we can
- assume it already contains a truncated value of MODE. */
-
-bool
-truncated_to_mode (enum machine_mode mode, const_rtx x)
-{
- /* This register has already been used in MODE without explicit
- truncation. */
- if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
- return true;
-
- /* See if we already satisfy the requirements of MODE. If yes we
- can just switch to MODE. */
- if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
- && (num_sign_bit_copies (x, GET_MODE (x))
- >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
- return true;
-
- return false;
-}
-
-/* Initialize non_rtx_starting_operands, which is used to speed up
- for_each_rtx. */
-void
-init_rtlanal (void)
-{
- int i;
- for (i = 0; i < NUM_RTX_CODE; i++)
- {
- const char *format = GET_RTX_FORMAT (i);
- const char *first = strpbrk (format, "eEV");
- non_rtx_starting_operands[i] = first ? first - format : -1;
- }
-
- init_num_sign_bit_copies_in_rep ();
-}
-
-/* Check whether this is a constant pool constant. */
-bool
-constant_pool_constant_p (rtx x)
-{
- x = avoid_constant_pool_reference (x);
- return GET_CODE (x) == CONST_DOUBLE;
-}