aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/cfganal.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.4.3/gcc/cfganal.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.4.3/gcc/cfganal.c')
-rw-r--r--gcc-4.4.3/gcc/cfganal.c1358
1 files changed, 0 insertions, 1358 deletions
diff --git a/gcc-4.4.3/gcc/cfganal.c b/gcc-4.4.3/gcc/cfganal.c
deleted file mode 100644
index 75cb49d29..000000000
--- a/gcc-4.4.3/gcc/cfganal.c
+++ /dev/null
@@ -1,1358 +0,0 @@
-/* Control flow graph analysis code for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
- 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
- Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* This file contains various simple utilities to analyze the CFG. */
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "obstack.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "toplev.h"
-#include "tm_p.h"
-#include "vec.h"
-#include "vecprim.h"
-#include "timevar.h"
-
-/* Store the data structures necessary for depth-first search. */
-struct depth_first_search_dsS {
- /* stack for backtracking during the algorithm */
- basic_block *stack;
-
- /* number of edges in the stack. That is, positions 0, ..., sp-1
- have edges. */
- unsigned int sp;
-
- /* record of basic blocks already seen by depth-first search */
- sbitmap visited_blocks;
-};
-typedef struct depth_first_search_dsS *depth_first_search_ds;
-
-static void flow_dfs_compute_reverse_init (depth_first_search_ds);
-static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
- basic_block);
-static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
- basic_block);
-static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
-static bool flow_active_insn_p (const_rtx);
-
-/* Like active_insn_p, except keep the return value clobber around
- even after reload. */
-
-static bool
-flow_active_insn_p (const_rtx insn)
-{
- if (active_insn_p (insn))
- return true;
-
- /* A clobber of the function return value exists for buggy
- programs that fail to return a value. Its effect is to
- keep the return value from being live across the entire
- function. If we allow it to be skipped, we introduce the
- possibility for register lifetime confusion. */
- if (GET_CODE (PATTERN (insn)) == CLOBBER
- && REG_P (XEXP (PATTERN (insn), 0))
- && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
- return true;
-
- return false;
-}
-
-/* Return true if the block has no effect and only forwards control flow to
- its single destination. */
-
-bool
-forwarder_block_p (const_basic_block bb)
-{
- rtx insn;
-
- if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
- || !single_succ_p (bb))
- return false;
-
- for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
- if (INSN_P (insn) && flow_active_insn_p (insn))
- return false;
-
- return (!INSN_P (insn)
- || (JUMP_P (insn) && simplejump_p (insn))
- || !flow_active_insn_p (insn));
-}
-
-/* Return nonzero if we can reach target from src by falling through. */
-
-bool
-can_fallthru (basic_block src, basic_block target)
-{
- rtx insn = BB_END (src);
- rtx insn2;
- edge e;
- edge_iterator ei;
-
- if (target == EXIT_BLOCK_PTR)
- return true;
- if (src->next_bb != target)
- return 0;
- FOR_EACH_EDGE (e, ei, src->succs)
- if (e->dest == EXIT_BLOCK_PTR
- && e->flags & EDGE_FALLTHRU)
- return 0;
-
- insn2 = BB_HEAD (target);
- if (insn2 && !active_insn_p (insn2))
- insn2 = next_active_insn (insn2);
-
- /* ??? Later we may add code to move jump tables offline. */
- return next_active_insn (insn) == insn2;
-}
-
-/* Return nonzero if we could reach target from src by falling through,
- if the target was made adjacent. If we already have a fall-through
- edge to the exit block, we can't do that. */
-bool
-could_fall_through (basic_block src, basic_block target)
-{
- edge e;
- edge_iterator ei;
-
- if (target == EXIT_BLOCK_PTR)
- return true;
- FOR_EACH_EDGE (e, ei, src->succs)
- if (e->dest == EXIT_BLOCK_PTR
- && e->flags & EDGE_FALLTHRU)
- return 0;
- return true;
-}
-
-/* Mark the back edges in DFS traversal.
- Return nonzero if a loop (natural or otherwise) is present.
- Inspired by Depth_First_Search_PP described in:
-
- Advanced Compiler Design and Implementation
- Steven Muchnick
- Morgan Kaufmann, 1997
-
- and heavily borrowed from pre_and_rev_post_order_compute. */
-
-bool
-mark_dfs_back_edges (void)
-{
- edge_iterator *stack;
- int *pre;
- int *post;
- int sp;
- int prenum = 1;
- int postnum = 1;
- sbitmap visited;
- bool found = false;
-
- /* Allocate the preorder and postorder number arrays. */
- pre = XCNEWVEC (int, last_basic_block);
- post = XCNEWVEC (int, last_basic_block);
-
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
- sp = 0;
-
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block);
-
- /* None of the nodes in the CFG have been visited yet. */
- sbitmap_zero (visited);
-
- /* Push the first edge on to the stack. */
- stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
-
- while (sp)
- {
- edge_iterator ei;
- basic_block src;
- basic_block dest;
-
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- src = ei_edge (ei)->src;
- dest = ei_edge (ei)->dest;
- ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
-
- /* Check if the edge destination has been visited yet. */
- if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
- {
- /* Mark that we have visited the destination. */
- SET_BIT (visited, dest->index);
-
- pre[dest->index] = prenum++;
- if (EDGE_COUNT (dest->succs) > 0)
- {
- /* Since the DEST node has been visited for the first
- time, check its successors. */
- stack[sp++] = ei_start (dest->succs);
- }
- else
- post[dest->index] = postnum++;
- }
- else
- {
- if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
- && pre[src->index] >= pre[dest->index]
- && post[dest->index] == 0)
- ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
-
- if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
- post[src->index] = postnum++;
-
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
-
- free (pre);
- free (post);
- free (stack);
- sbitmap_free (visited);
-
- return found;
-}
-
-/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
-
-void
-set_edge_can_fallthru_flag (void)
-{
- basic_block bb;
-
- FOR_EACH_BB (bb)
- {
- edge e;
- edge_iterator ei;
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- e->flags &= ~EDGE_CAN_FALLTHRU;
-
- /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
- if (e->flags & EDGE_FALLTHRU)
- e->flags |= EDGE_CAN_FALLTHRU;
- }
-
- /* If the BB ends with an invertible condjump all (2) edges are
- CAN_FALLTHRU edges. */
- if (EDGE_COUNT (bb->succs) != 2)
- continue;
- if (!any_condjump_p (BB_END (bb)))
- continue;
- if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
- continue;
- invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
- EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
- EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
- }
-}
-
-/* Find unreachable blocks. An unreachable block will have 0 in
- the reachable bit in block->flags. A nonzero value indicates the
- block is reachable. */
-
-void
-find_unreachable_blocks (void)
-{
- edge e;
- edge_iterator ei;
- basic_block *tos, *worklist, bb;
-
- tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
-
- /* Clear all the reachability flags. */
-
- FOR_EACH_BB (bb)
- bb->flags &= ~BB_REACHABLE;
-
- /* Add our starting points to the worklist. Almost always there will
- be only one. It isn't inconceivable that we might one day directly
- support Fortran alternate entry points. */
-
- FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
- {
- *tos++ = e->dest;
-
- /* Mark the block reachable. */
- e->dest->flags |= BB_REACHABLE;
- }
-
- /* Iterate: find everything reachable from what we've already seen. */
-
- while (tos != worklist)
- {
- basic_block b = *--tos;
-
- FOR_EACH_EDGE (e, ei, b->succs)
- {
- basic_block dest = e->dest;
-
- if (!(dest->flags & BB_REACHABLE))
- {
- *tos++ = dest;
- dest->flags |= BB_REACHABLE;
- }
- }
- }
-
- free (worklist);
-}
-
-/* Functions to access an edge list with a vector representation.
- Enough data is kept such that given an index number, the
- pred and succ that edge represents can be determined, or
- given a pred and a succ, its index number can be returned.
- This allows algorithms which consume a lot of memory to
- represent the normally full matrix of edge (pred,succ) with a
- single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
- wasted space in the client code due to sparse flow graphs. */
-
-/* This functions initializes the edge list. Basically the entire
- flowgraph is processed, and all edges are assigned a number,
- and the data structure is filled in. */
-
-struct edge_list *
-create_edge_list (void)
-{
- struct edge_list *elist;
- edge e;
- int num_edges;
- int block_count;
- basic_block bb;
- edge_iterator ei;
-
- block_count = n_basic_blocks; /* Include the entry and exit blocks. */
-
- num_edges = 0;
-
- /* Determine the number of edges in the flow graph by counting successor
- edges on each basic block. */
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- {
- num_edges += EDGE_COUNT (bb->succs);
- }
-
- elist = XNEW (struct edge_list);
- elist->num_blocks = block_count;
- elist->num_edges = num_edges;
- elist->index_to_edge = XNEWVEC (edge, num_edges);
-
- num_edges = 0;
-
- /* Follow successors of blocks, and register these edges. */
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- FOR_EACH_EDGE (e, ei, bb->succs)
- elist->index_to_edge[num_edges++] = e;
-
- return elist;
-}
-
-/* This function free's memory associated with an edge list. */
-
-void
-free_edge_list (struct edge_list *elist)
-{
- if (elist)
- {
- free (elist->index_to_edge);
- free (elist);
- }
-}
-
-/* This function provides debug output showing an edge list. */
-
-void
-print_edge_list (FILE *f, struct edge_list *elist)
-{
- int x;
-
- fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
- elist->num_blocks, elist->num_edges);
-
- for (x = 0; x < elist->num_edges; x++)
- {
- fprintf (f, " %-4d - edge(", x);
- if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
- fprintf (f, "entry,");
- else
- fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
-
- if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
- fprintf (f, "exit)\n");
- else
- fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
- }
-}
-
-/* This function provides an internal consistency check of an edge list,
- verifying that all edges are present, and that there are no
- extra edges. */
-
-void
-verify_edge_list (FILE *f, struct edge_list *elist)
-{
- int pred, succ, index;
- edge e;
- basic_block bb, p, s;
- edge_iterator ei;
-
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- {
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- pred = e->src->index;
- succ = e->dest->index;
- index = EDGE_INDEX (elist, e->src, e->dest);
- if (index == EDGE_INDEX_NO_EDGE)
- {
- fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
- continue;
- }
-
- if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
- fprintf (f, "*p* Pred for index %d should be %d not %d\n",
- index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
- if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
- fprintf (f, "*p* Succ for index %d should be %d not %d\n",
- index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
- }
- }
-
- /* We've verified that all the edges are in the list, now lets make sure
- there are no spurious edges in the list. */
-
- FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
- {
- int found_edge = 0;
-
- FOR_EACH_EDGE (e, ei, p->succs)
- if (e->dest == s)
- {
- found_edge = 1;
- break;
- }
-
- FOR_EACH_EDGE (e, ei, s->preds)
- if (e->src == p)
- {
- found_edge = 1;
- break;
- }
-
- if (EDGE_INDEX (elist, p, s)
- == EDGE_INDEX_NO_EDGE && found_edge != 0)
- fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
- p->index, s->index);
- if (EDGE_INDEX (elist, p, s)
- != EDGE_INDEX_NO_EDGE && found_edge == 0)
- fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
- p->index, s->index, EDGE_INDEX (elist, p, s));
- }
-}
-
-/* Given PRED and SUCC blocks, return the edge which connects the blocks.
- If no such edge exists, return NULL. */
-
-edge
-find_edge (basic_block pred, basic_block succ)
-{
- edge e;
- edge_iterator ei;
-
- if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
- {
- FOR_EACH_EDGE (e, ei, pred->succs)
- if (e->dest == succ)
- return e;
- }
- else
- {
- FOR_EACH_EDGE (e, ei, succ->preds)
- if (e->src == pred)
- return e;
- }
-
- return NULL;
-}
-
-/* This routine will determine what, if any, edge there is between
- a specified predecessor and successor. */
-
-int
-find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
-{
- int x;
-
- for (x = 0; x < NUM_EDGES (edge_list); x++)
- if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
- && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
- return x;
-
- return (EDGE_INDEX_NO_EDGE);
-}
-
-/* Dump the list of basic blocks in the bitmap NODES. */
-
-void
-flow_nodes_print (const char *str, const_sbitmap nodes, FILE *file)
-{
- unsigned int node = 0;
- sbitmap_iterator sbi;
-
- if (! nodes)
- return;
-
- fprintf (file, "%s { ", str);
- EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
- fprintf (file, "%d ", node);
- fputs ("}\n", file);
-}
-
-/* Dump the list of edges in the array EDGE_LIST. */
-
-void
-flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
-{
- int i;
-
- if (! edge_list)
- return;
-
- fprintf (file, "%s { ", str);
- for (i = 0; i < num_edges; i++)
- fprintf (file, "%d->%d ", edge_list[i]->src->index,
- edge_list[i]->dest->index);
-
- fputs ("}\n", file);
-}
-
-
-/* This routine will remove any fake predecessor edges for a basic block.
- When the edge is removed, it is also removed from whatever successor
- list it is in. */
-
-static void
-remove_fake_predecessors (basic_block bb)
-{
- edge e;
- edge_iterator ei;
-
- for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
- {
- if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
- remove_edge (e);
- else
- ei_next (&ei);
- }
-}
-
-/* This routine will remove all fake edges from the flow graph. If
- we remove all fake successors, it will automatically remove all
- fake predecessors. */
-
-void
-remove_fake_edges (void)
-{
- basic_block bb;
-
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
- remove_fake_predecessors (bb);
-}
-
-/* This routine will remove all fake edges to the EXIT_BLOCK. */
-
-void
-remove_fake_exit_edges (void)
-{
- remove_fake_predecessors (EXIT_BLOCK_PTR);
-}
-
-
-/* This function will add a fake edge between any block which has no
- successors, and the exit block. Some data flow equations require these
- edges to exist. */
-
-void
-add_noreturn_fake_exit_edges (void)
-{
- basic_block bb;
-
- FOR_EACH_BB (bb)
- if (EDGE_COUNT (bb->succs) == 0)
- make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
-}
-
-/* This function adds a fake edge between any infinite loops to the
- exit block. Some optimizations require a path from each node to
- the exit node.
-
- See also Morgan, Figure 3.10, pp. 82-83.
-
- The current implementation is ugly, not attempting to minimize the
- number of inserted fake edges. To reduce the number of fake edges
- to insert, add fake edges from _innermost_ loops containing only
- nodes not reachable from the exit block. */
-
-void
-connect_infinite_loops_to_exit (void)
-{
- basic_block unvisited_block = EXIT_BLOCK_PTR;
- struct depth_first_search_dsS dfs_ds;
-
- /* Perform depth-first search in the reverse graph to find nodes
- reachable from the exit block. */
- flow_dfs_compute_reverse_init (&dfs_ds);
- flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
-
- /* Repeatedly add fake edges, updating the unreachable nodes. */
- while (1)
- {
- unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
- unvisited_block);
- if (!unvisited_block)
- break;
-
- make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
- flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
- }
-
- flow_dfs_compute_reverse_finish (&dfs_ds);
- return;
-}
-
-/* Compute reverse top sort order. This is computing a post order
- numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then then
- ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
- true, unreachable blocks are deleted. */
-
-int
-post_order_compute (int *post_order, bool include_entry_exit,
- bool delete_unreachable)
-{
- edge_iterator *stack;
- int sp;
- int post_order_num = 0;
- sbitmap visited;
- int count;
-
- if (include_entry_exit)
- post_order[post_order_num++] = EXIT_BLOCK;
-
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
- sp = 0;
-
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block);
-
- /* None of the nodes in the CFG have been visited yet. */
- sbitmap_zero (visited);
-
- /* Push the first edge on to the stack. */
- stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
-
- while (sp)
- {
- edge_iterator ei;
- basic_block src;
- basic_block dest;
-
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- src = ei_edge (ei)->src;
- dest = ei_edge (ei)->dest;
-
- /* Check if the edge destination has been visited yet. */
- if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
- {
- /* Mark that we have visited the destination. */
- SET_BIT (visited, dest->index);
-
- if (EDGE_COUNT (dest->succs) > 0)
- /* Since the DEST node has been visited for the first
- time, check its successors. */
- stack[sp++] = ei_start (dest->succs);
- else
- post_order[post_order_num++] = dest->index;
- }
- else
- {
- if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
- post_order[post_order_num++] = src->index;
-
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
-
- if (include_entry_exit)
- {
- post_order[post_order_num++] = ENTRY_BLOCK;
- count = post_order_num;
- }
- else
- count = post_order_num + 2;
-
- /* Delete the unreachable blocks if some were found and we are
- supposed to do it. */
- if (delete_unreachable && (count != n_basic_blocks))
- {
- basic_block b;
- basic_block next_bb;
- for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
- {
- next_bb = b->next_bb;
-
- if (!(TEST_BIT (visited, b->index)))
- delete_basic_block (b);
- }
-
- tidy_fallthru_edges ();
- }
-
- free (stack);
- sbitmap_free (visited);
- return post_order_num;
-}
-
-
-/* Helper routine for inverted_post_order_compute.
- BB has to belong to a region of CFG
- unreachable by inverted traversal from the exit.
- i.e. there's no control flow path from ENTRY to EXIT
- that contains this BB.
- This can happen in two cases - if there's an infinite loop
- or if there's a block that has no successor
- (call to a function with no return).
- Some RTL passes deal with this condition by
- calling connect_infinite_loops_to_exit () and/or
- add_noreturn_fake_exit_edges ().
- However, those methods involve modifying the CFG itself
- which may not be desirable.
- Hence, we deal with the infinite loop/no return cases
- by identifying a unique basic block that can reach all blocks
- in such a region by inverted traversal.
- This function returns a basic block that guarantees
- that all blocks in the region are reachable
- by starting an inverted traversal from the returned block. */
-
-static basic_block
-dfs_find_deadend (basic_block bb)
-{
- sbitmap visited = sbitmap_alloc (last_basic_block);
- sbitmap_zero (visited);
-
- for (;;)
- {
- SET_BIT (visited, bb->index);
- if (EDGE_COUNT (bb->succs) == 0
- || TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
- {
- sbitmap_free (visited);
- return bb;
- }
-
- bb = EDGE_SUCC (bb, 0)->dest;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Compute the reverse top sort order of the inverted CFG
- i.e. starting from the exit block and following the edges backward
- (from successors to predecessors).
- This ordering can be used for forward dataflow problems among others.
-
- This function assumes that all blocks in the CFG are reachable
- from the ENTRY (but not necessarily from EXIT).
-
- If there's an infinite loop,
- a simple inverted traversal starting from the blocks
- with no successors can't visit all blocks.
- To solve this problem, we first do inverted traversal
- starting from the blocks with no successor.
- And if there's any block left that's not visited by the regular
- inverted traversal from EXIT,
- those blocks are in such problematic region.
- Among those, we find one block that has
- any visited predecessor (which is an entry into such a region),
- and start looking for a "dead end" from that block
- and do another inverted traversal from that block. */
-
-int
-inverted_post_order_compute (int *post_order)
-{
- basic_block bb;
- edge_iterator *stack;
- int sp;
- int post_order_num = 0;
- sbitmap visited;
-
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
- sp = 0;
-
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block);
-
- /* None of the nodes in the CFG have been visited yet. */
- sbitmap_zero (visited);
-
- /* Put all blocks that have no successor into the initial work list. */
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
- if (EDGE_COUNT (bb->succs) == 0)
- {
- /* Push the initial edge on to the stack. */
- if (EDGE_COUNT (bb->preds) > 0)
- {
- stack[sp++] = ei_start (bb->preds);
- SET_BIT (visited, bb->index);
- }
- }
-
- do
- {
- bool has_unvisited_bb = false;
-
- /* The inverted traversal loop. */
- while (sp)
- {
- edge_iterator ei;
- basic_block pred;
-
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- bb = ei_edge (ei)->dest;
- pred = ei_edge (ei)->src;
-
- /* Check if the predecessor has been visited yet. */
- if (! TEST_BIT (visited, pred->index))
- {
- /* Mark that we have visited the destination. */
- SET_BIT (visited, pred->index);
-
- if (EDGE_COUNT (pred->preds) > 0)
- /* Since the predecessor node has been visited for the first
- time, check its predecessors. */
- stack[sp++] = ei_start (pred->preds);
- else
- post_order[post_order_num++] = pred->index;
- }
- else
- {
- if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
- post_order[post_order_num++] = bb->index;
-
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
-
- /* Detect any infinite loop and activate the kludge.
- Note that this doesn't check EXIT_BLOCK itself
- since EXIT_BLOCK is always added after the outer do-while loop. */
- FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
- if (!TEST_BIT (visited, bb->index))
- {
- has_unvisited_bb = true;
-
- if (EDGE_COUNT (bb->preds) > 0)
- {
- edge_iterator ei;
- edge e;
- basic_block visited_pred = NULL;
-
- /* Find an already visited predecessor. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- if (TEST_BIT (visited, e->src->index))
- visited_pred = e->src;
- }
-
- if (visited_pred)
- {
- basic_block be = dfs_find_deadend (bb);
- gcc_assert (be != NULL);
- SET_BIT (visited, be->index);
- stack[sp++] = ei_start (be->preds);
- break;
- }
- }
- }
-
- if (has_unvisited_bb && sp == 0)
- {
- /* No blocks are reachable from EXIT at all.
- Find a dead-end from the ENTRY, and restart the iteration. */
- basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
- gcc_assert (be != NULL);
- SET_BIT (visited, be->index);
- stack[sp++] = ei_start (be->preds);
- }
-
- /* The only case the below while fires is
- when there's an infinite loop. */
- }
- while (sp);
-
- /* EXIT_BLOCK is always included. */
- post_order[post_order_num++] = EXIT_BLOCK;
-
- free (stack);
- sbitmap_free (visited);
- return post_order_num;
-}
-
-/* Compute the depth first search order and store in the array
- PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
- REV_POST_ORDER is nonzero, return the reverse completion number for each
- node. Returns the number of nodes visited. A depth first search
- tries to get as far away from the starting point as quickly as
- possible.
-
- pre_order is a really a preorder numbering of the graph.
- rev_post_order is really a reverse postorder numbering of the graph.
- */
-
-int
-pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
- bool include_entry_exit)
-{
- edge_iterator *stack;
- int sp;
- int pre_order_num = 0;
- int rev_post_order_num = n_basic_blocks - 1;
- sbitmap visited;
-
- /* Allocate stack for back-tracking up CFG. */
- stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
- sp = 0;
-
- if (include_entry_exit)
- {
- if (pre_order)
- pre_order[pre_order_num] = ENTRY_BLOCK;
- pre_order_num++;
- if (rev_post_order)
- rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
- }
- else
- rev_post_order_num -= NUM_FIXED_BLOCKS;
-
- /* Allocate bitmap to track nodes that have been visited. */
- visited = sbitmap_alloc (last_basic_block);
-
- /* None of the nodes in the CFG have been visited yet. */
- sbitmap_zero (visited);
-
- /* Push the first edge on to the stack. */
- stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
-
- while (sp)
- {
- edge_iterator ei;
- basic_block src;
- basic_block dest;
-
- /* Look at the edge on the top of the stack. */
- ei = stack[sp - 1];
- src = ei_edge (ei)->src;
- dest = ei_edge (ei)->dest;
-
- /* Check if the edge destination has been visited yet. */
- if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
- {
- /* Mark that we have visited the destination. */
- SET_BIT (visited, dest->index);
-
- if (pre_order)
- pre_order[pre_order_num] = dest->index;
-
- pre_order_num++;
-
- if (EDGE_COUNT (dest->succs) > 0)
- /* Since the DEST node has been visited for the first
- time, check its successors. */
- stack[sp++] = ei_start (dest->succs);
- else if (rev_post_order)
- /* There are no successors for the DEST node so assign
- its reverse completion number. */
- rev_post_order[rev_post_order_num--] = dest->index;
- }
- else
- {
- if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
- && rev_post_order)
- /* There are no more successors for the SRC node
- so assign its reverse completion number. */
- rev_post_order[rev_post_order_num--] = src->index;
-
- if (!ei_one_before_end_p (ei))
- ei_next (&stack[sp - 1]);
- else
- sp--;
- }
- }
-
- free (stack);
- sbitmap_free (visited);
-
- if (include_entry_exit)
- {
- if (pre_order)
- pre_order[pre_order_num] = EXIT_BLOCK;
- pre_order_num++;
- if (rev_post_order)
- rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
- /* The number of nodes visited should be the number of blocks. */
- gcc_assert (pre_order_num == n_basic_blocks);
- }
- else
- /* The number of nodes visited should be the number of blocks minus
- the entry and exit blocks which are not visited here. */
- gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
-
- return pre_order_num;
-}
-
-/* Compute the depth first search order on the _reverse_ graph and
- store in the array DFS_ORDER, marking the nodes visited in VISITED.
- Returns the number of nodes visited.
-
- The computation is split into three pieces:
-
- flow_dfs_compute_reverse_init () creates the necessary data
- structures.
-
- flow_dfs_compute_reverse_add_bb () adds a basic block to the data
- structures. The block will start the search.
-
- flow_dfs_compute_reverse_execute () continues (or starts) the
- search using the block on the top of the stack, stopping when the
- stack is empty.
-
- flow_dfs_compute_reverse_finish () destroys the necessary data
- structures.
-
- Thus, the user will probably call ..._init(), call ..._add_bb() to
- add a beginning basic block to the stack, call ..._execute(),
- possibly add another bb to the stack and again call ..._execute(),
- ..., and finally call _finish(). */
-
-/* Initialize the data structures used for depth-first search on the
- reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
- added to the basic block stack. DATA is the current depth-first
- search context. If INITIALIZE_STACK is nonzero, there is an
- element on the stack. */
-
-static void
-flow_dfs_compute_reverse_init (depth_first_search_ds data)
-{
- /* Allocate stack for back-tracking up CFG. */
- data->stack = XNEWVEC (basic_block, n_basic_blocks);
- data->sp = 0;
-
- /* Allocate bitmap to track nodes that have been visited. */
- data->visited_blocks = sbitmap_alloc (last_basic_block);
-
- /* None of the nodes in the CFG have been visited yet. */
- sbitmap_zero (data->visited_blocks);
-
- return;
-}
-
-/* Add the specified basic block to the top of the dfs data
- structures. When the search continues, it will start at the
- block. */
-
-static void
-flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
-{
- data->stack[data->sp++] = bb;
- SET_BIT (data->visited_blocks, bb->index);
-}
-
-/* Continue the depth-first search through the reverse graph starting with the
- block at the stack's top and ending when the stack is empty. Visited nodes
- are marked. Returns an unvisited basic block, or NULL if there is none
- available. */
-
-static basic_block
-flow_dfs_compute_reverse_execute (depth_first_search_ds data,
- basic_block last_unvisited)
-{
- basic_block bb;
- edge e;
- edge_iterator ei;
-
- while (data->sp > 0)
- {
- bb = data->stack[--data->sp];
-
- /* Perform depth-first search on adjacent vertices. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (!TEST_BIT (data->visited_blocks, e->src->index))
- flow_dfs_compute_reverse_add_bb (data, e->src);
- }
-
- /* Determine if there are unvisited basic blocks. */
- FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
- if (!TEST_BIT (data->visited_blocks, bb->index))
- return bb;
-
- return NULL;
-}
-
-/* Destroy the data structures needed for depth-first search on the
- reverse graph. */
-
-static void
-flow_dfs_compute_reverse_finish (depth_first_search_ds data)
-{
- free (data->stack);
- sbitmap_free (data->visited_blocks);
-}
-
-/* Performs dfs search from BB over vertices satisfying PREDICATE;
- if REVERSE, go against direction of edges. Returns number of blocks
- found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
-int
-dfs_enumerate_from (basic_block bb, int reverse,
- bool (*predicate) (const_basic_block, const void *),
- basic_block *rslt, int rslt_max, const void *data)
-{
- basic_block *st, lbb;
- int sp = 0, tv = 0;
- unsigned size;
-
- /* A bitmap to keep track of visited blocks. Allocating it each time
- this function is called is not possible, since dfs_enumerate_from
- is often used on small (almost) disjoint parts of cfg (bodies of
- loops), and allocating a large sbitmap would lead to quadratic
- behavior. */
- static sbitmap visited;
- static unsigned v_size;
-
-#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
-#define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
-#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
-
- /* Resize the VISITED sbitmap if necessary. */
- size = last_basic_block;
- if (size < 10)
- size = 10;
-
- if (!visited)
- {
-
- visited = sbitmap_alloc (size);
- sbitmap_zero (visited);
- v_size = size;
- }
- else if (v_size < size)
- {
- /* Ensure that we increase the size of the sbitmap exponentially. */
- if (2 * v_size > size)
- size = 2 * v_size;
-
- visited = sbitmap_resize (visited, size, 0);
- v_size = size;
- }
-
- st = XCNEWVEC (basic_block, rslt_max);
- rslt[tv++] = st[sp++] = bb;
- MARK_VISITED (bb);
- while (sp)
- {
- edge e;
- edge_iterator ei;
- lbb = st[--sp];
- if (reverse)
- {
- FOR_EACH_EDGE (e, ei, lbb->preds)
- if (!VISITED_P (e->src) && predicate (e->src, data))
- {
- gcc_assert (tv != rslt_max);
- rslt[tv++] = st[sp++] = e->src;
- MARK_VISITED (e->src);
- }
- }
- else
- {
- FOR_EACH_EDGE (e, ei, lbb->succs)
- if (!VISITED_P (e->dest) && predicate (e->dest, data))
- {
- gcc_assert (tv != rslt_max);
- rslt[tv++] = st[sp++] = e->dest;
- MARK_VISITED (e->dest);
- }
- }
- }
- free (st);
- for (sp = 0; sp < tv; sp++)
- UNMARK_VISITED (rslt[sp]);
- return tv;
-#undef MARK_VISITED
-#undef UNMARK_VISITED
-#undef VISITED_P
-}
-
-
-/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
-
- This algorithm can be found in Timothy Harvey's PhD thesis, at
- http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
- dominance algorithms.
-
- First, we identify each join point, j (any node with more than one
- incoming edge is a join point).
-
- We then examine each predecessor, p, of j and walk up the dominator tree
- starting at p.
-
- We stop the walk when we reach j's immediate dominator - j is in the
- dominance frontier of each of the nodes in the walk, except for j's
- immediate dominator. Intuitively, all of the rest of j's dominators are
- shared by j's predecessors as well.
- Since they dominate j, they will not have j in their dominance frontiers.
-
- The number of nodes touched by this algorithm is equal to the size
- of the dominance frontiers, no more, no less.
-*/
-
-
-static void
-compute_dominance_frontiers_1 (bitmap *frontiers)
-{
- edge p;
- edge_iterator ei;
- basic_block b;
- FOR_EACH_BB (b)
- {
- if (EDGE_COUNT (b->preds) >= 2)
- {
- FOR_EACH_EDGE (p, ei, b->preds)
- {
- basic_block runner = p->src;
- basic_block domsb;
- if (runner == ENTRY_BLOCK_PTR)
- continue;
-
- domsb = get_immediate_dominator (CDI_DOMINATORS, b);
- while (runner != domsb)
- {
- if (bitmap_bit_p (frontiers[runner->index], b->index))
- break;
- bitmap_set_bit (frontiers[runner->index],
- b->index);
- runner = get_immediate_dominator (CDI_DOMINATORS,
- runner);
- }
- }
- }
- }
-}
-
-
-void
-compute_dominance_frontiers (bitmap *frontiers)
-{
- timevar_push (TV_DOM_FRONTIERS);
-
- compute_dominance_frontiers_1 (frontiers);
-
- timevar_pop (TV_DOM_FRONTIERS);
-}
-
-/* Given a set of blocks with variable definitions (DEF_BLOCKS),
- return a bitmap with all the blocks in the iterated dominance
- frontier of the blocks in DEF_BLOCKS. DFS contains dominance
- frontier information as returned by compute_dominance_frontiers.
-
- The resulting set of blocks are the potential sites where PHI nodes
- are needed. The caller is responsible for freeing the memory
- allocated for the return value. */
-
-bitmap
-compute_idf (bitmap def_blocks, bitmap *dfs)
-{
- bitmap_iterator bi;
- unsigned bb_index, i;
- VEC(int,heap) *work_stack;
- bitmap phi_insertion_points;
-
- work_stack = VEC_alloc (int, heap, n_basic_blocks);
- phi_insertion_points = BITMAP_ALLOC (NULL);
-
- /* Seed the work list with all the blocks in DEF_BLOCKS. We use
- VEC_quick_push here for speed. This is safe because we know that
- the number of definition blocks is no greater than the number of
- basic blocks, which is the initial capacity of WORK_STACK. */
- EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
- VEC_quick_push (int, work_stack, bb_index);
-
- /* Pop a block off the worklist, add every block that appears in
- the original block's DF that we have not already processed to
- the worklist. Iterate until the worklist is empty. Blocks
- which are added to the worklist are potential sites for
- PHI nodes. */
- while (VEC_length (int, work_stack) > 0)
- {
- bb_index = VEC_pop (int, work_stack);
-
- /* Since the registration of NEW -> OLD name mappings is done
- separately from the call to update_ssa, when updating the SSA
- form, the basic blocks where new and/or old names are defined
- may have disappeared by CFG cleanup calls. In this case,
- we may pull a non-existing block from the work stack. */
- gcc_assert (bb_index < (unsigned) last_basic_block);
-
- EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
- 0, i, bi)
- {
- /* Use a safe push because if there is a definition of VAR
- in every basic block, then WORK_STACK may eventually have
- more than N_BASIC_BLOCK entries. */
- VEC_safe_push (int, heap, work_stack, i);
- bitmap_set_bit (phi_insertion_points, i);
- }
- }
-
- VEC_free (int, heap, work_stack);
-
- return phi_insertion_points;
-}
-
-