aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/exp_fixd.adb
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2010-07-22 14:03:48 -0700
committerJing Yu <jingyu@google.com>2010-07-22 14:03:48 -0700
commitb094d6c4bf572654a031ecc4afe675154c886dc5 (patch)
tree89394c56b05e13a5413ee60237d65b0214fd98e2 /gcc-4.4.3/gcc/ada/exp_fixd.adb
parentdc34721ac3bf7e3c406fba8cfe9d139393345ec5 (diff)
downloadtoolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.tar.gz
toolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.tar.bz2
toolchain_gcc-b094d6c4bf572654a031ecc4afe675154c886dc5.zip
commit gcc-4.4.3 which is used to build gcc-4.4.3 Android toolchain in master.
The source is based on fsf gcc-4.4.3 and contains local patches which are recorded in gcc-4.4.3/README.google. Change-Id: Id8c6d6927df274ae9749196a1cc24dbd9abc9887
Diffstat (limited to 'gcc-4.4.3/gcc/ada/exp_fixd.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/exp_fixd.adb2377
1 files changed, 2377 insertions, 0 deletions
diff --git a/gcc-4.4.3/gcc/ada/exp_fixd.adb b/gcc-4.4.3/gcc/ada/exp_fixd.adb
new file mode 100644
index 000000000..b2e05c3c4
--- /dev/null
+++ b/gcc-4.4.3/gcc/ada/exp_fixd.adb
@@ -0,0 +1,2377 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ F I X D --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Exp_Util; use Exp_Util;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Exp_Fixd is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ -- General note; in this unit, a number of routines are driven by the
+ -- types (Etype) of their operands. Since we are dealing with unanalyzed
+ -- expressions as they are constructed, the Etypes would not normally be
+ -- set, but the construction routines that we use in this unit do in fact
+ -- set the Etype values correctly. In addition, setting the Etype ensures
+ -- that the analyzer does not try to redetermine the type when the node
+ -- is analyzed (which would be wrong, since in the case where we set the
+ -- Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
+ -- still dealing with a normal fixed-point operation and mess it up).
+
+ function Build_Conversion
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Expr : Node_Id;
+ Rchk : Boolean := False) return Node_Id;
+ -- Build an expression that converts the expression Expr to type Typ,
+ -- taking the source location from Sloc (N). If the conversions involve
+ -- fixed-point types, then the Conversion_OK flag will be set so that the
+ -- resulting conversions do not get re-expanded. On return the resulting
+ -- node has its Etype set. If Rchk is set, then Do_Range_Check is set
+ -- in the resulting conversion node.
+
+ function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
+ -- Builds an N_Op_Divide node from the given left and right operand
+ -- expressions, using the source location from Sloc (N). The operands are
+ -- either both Universal_Real, in which case Build_Divide differs from
+ -- Make_Op_Divide only in that the Etype of the resulting node is set (to
+ -- Universal_Real), or they can be integer types. In this case the integer
+ -- types need not be the same, and Build_Divide converts the operand with
+ -- the smaller sized type to match the type of the other operand and sets
+ -- this as the result type. The Rounded_Result flag of the result in this
+ -- case is set from the Rounded_Result flag of node N. On return, the
+ -- resulting node is analyzed, and has its Etype set.
+
+ function Build_Double_Divide
+ (N : Node_Id;
+ X, Y, Z : Node_Id) return Node_Id;
+ -- Returns a node corresponding to the value X/(Y*Z) using the source
+ -- location from Sloc (N). The division is rounded if the Rounded_Result
+ -- flag of N is set. The integer types of X, Y, Z may be different. On
+ -- return the resulting node is analyzed, and has its Etype set.
+
+ procedure Build_Double_Divide_Code
+ (N : Node_Id;
+ X, Y, Z : Node_Id;
+ Qnn, Rnn : out Entity_Id;
+ Code : out List_Id);
+ -- Generates a sequence of code for determining the quotient and remainder
+ -- of the division X/(Y*Z), using the source location from Sloc (N).
+ -- Entities of appropriate types are allocated for the quotient and
+ -- remainder and returned in Qnn and Rnn. The result is rounded if the
+ -- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
+ -- appropriately set on return.
+
+ function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
+ -- Builds an N_Op_Multiply node from the given left and right operand
+ -- expressions, using the source location from Sloc (N). The operands are
+ -- either both Universal_Real, in which case Build_Multiply differs from
+ -- Make_Op_Multiply only in that the Etype of the resulting node is set (to
+ -- Universal_Real), or they can be integer types. In this case the integer
+ -- types need not be the same, and Build_Multiply chooses a type long
+ -- enough to hold the product (i.e. twice the size of the longer of the two
+ -- operand types), and both operands are converted to this type. The Etype
+ -- of the result is also set to this value. However, the result can never
+ -- overflow Integer_64, so this is the largest type that is ever generated.
+ -- On return, the resulting node is analyzed and has its Etype set.
+
+ function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
+ -- Builds an N_Op_Rem node from the given left and right operand
+ -- expressions, using the source location from Sloc (N). The operands are
+ -- both integer types, which need not be the same. Build_Rem converts the
+ -- operand with the smaller sized type to match the type of the other
+ -- operand and sets this as the result type. The result is never rounded
+ -- (rem operations cannot be rounded in any case!) On return, the resulting
+ -- node is analyzed and has its Etype set.
+
+ function Build_Scaled_Divide
+ (N : Node_Id;
+ X, Y, Z : Node_Id) return Node_Id;
+ -- Returns a node corresponding to the value X*Y/Z using the source
+ -- location from Sloc (N). The division is rounded if the Rounded_Result
+ -- flag of N is set. The integer types of X, Y, Z may be different. On
+ -- return the resulting node is analyzed and has is Etype set.
+
+ procedure Build_Scaled_Divide_Code
+ (N : Node_Id;
+ X, Y, Z : Node_Id;
+ Qnn, Rnn : out Entity_Id;
+ Code : out List_Id);
+ -- Generates a sequence of code for determining the quotient and remainder
+ -- of the division X*Y/Z, using the source location from Sloc (N). Entities
+ -- of appropriate types are allocated for the quotient and remainder and
+ -- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
+ -- The division is rounded if the Rounded_Result flag of N is set. The
+ -- Etype fields of Qnn and Rnn are appropriately set on return.
+
+ procedure Do_Divide_Fixed_Fixed (N : Node_Id);
+ -- Handles expansion of divide for case of two fixed-point operands
+ -- (neither of them universal), with an integer or fixed-point result.
+ -- N is the N_Op_Divide node to be expanded.
+
+ procedure Do_Divide_Fixed_Universal (N : Node_Id);
+ -- Handles expansion of divide for case of a fixed-point operand divided
+ -- by a universal real operand, with an integer or fixed-point result. N
+ -- is the N_Op_Divide node to be expanded.
+
+ procedure Do_Divide_Universal_Fixed (N : Node_Id);
+ -- Handles expansion of divide for case of a universal real operand
+ -- divided by a fixed-point operand, with an integer or fixed-point
+ -- result. N is the N_Op_Divide node to be expanded.
+
+ procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
+ -- Handles expansion of multiply for case of two fixed-point operands
+ -- (neither of them universal), with an integer or fixed-point result.
+ -- N is the N_Op_Multiply node to be expanded.
+
+ procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
+ -- Handles expansion of multiply for case of a fixed-point operand
+ -- multiplied by a universal real operand, with an integer or fixed-
+ -- point result. N is the N_Op_Multiply node to be expanded, and
+ -- Left, Right are the operands (which may have been switched).
+
+ procedure Expand_Convert_Fixed_Static (N : Node_Id);
+ -- This routine is called where the node N is a conversion of a literal
+ -- or other static expression of a fixed-point type to some other type.
+ -- In such cases, we simply rewrite the operand as a real literal and
+ -- reanalyze. This avoids problems which would otherwise result from
+ -- attempting to build and fold expressions involving constants.
+
+ function Fpt_Value (N : Node_Id) return Node_Id;
+ -- Given an operand of fixed-point operation, return an expression that
+ -- represents the corresponding Universal_Real value. The expression
+ -- can be of integer type, floating-point type, or fixed-point type.
+ -- The expression returned is neither analyzed and resolved. The Etype
+ -- of the result is properly set (to Universal_Real).
+
+ function Integer_Literal
+ (N : Node_Id;
+ V : Uint;
+ Negative : Boolean := False) return Node_Id;
+ -- Given a non-negative universal integer value, build a typed integer
+ -- literal node, using the smallest applicable standard integer type. If
+ -- and only if Negative is true a negative literal is built. If V exceeds
+ -- 2**63-1, the largest value allowed for perfect result set scaling
+ -- factors (see RM G.2.3(22)), then Empty is returned. The node N provides
+ -- the Sloc value for the constructed literal. The Etype of the resulting
+ -- literal is correctly set, and it is marked as analyzed.
+
+ function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
+ -- Build a real literal node from the given value, the Etype of the
+ -- returned node is set to Universal_Real, since all floating-point
+ -- arithmetic operations that we construct use Universal_Real
+
+ function Rounded_Result_Set (N : Node_Id) return Boolean;
+ -- Returns True if N is a node that contains the Rounded_Result flag
+ -- and if the flag is true or the target type is an integer type.
+
+ procedure Set_Result (N : Node_Id; Expr : Node_Id; Rchk : Boolean := False);
+ -- N is the node for the current conversion, division or multiplication
+ -- operation, and Expr is an expression representing the result. Expr may
+ -- be of floating-point or integer type. If the operation result is fixed-
+ -- point, then the value of Expr is in units of small of the result type
+ -- (i.e. small's have already been dealt with). The result of the call is
+ -- to replace N by an appropriate conversion to the result type, dealing
+ -- with rounding for the decimal types case. The node is then analyzed and
+ -- resolved using the result type. If Rchk is True, then Do_Range_Check is
+ -- set in the resulting conversion.
+
+ ----------------------
+ -- Build_Conversion --
+ ----------------------
+
+ function Build_Conversion
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Expr : Node_Id;
+ Rchk : Boolean := False) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Result : Node_Id;
+ Rcheck : Boolean := Rchk;
+
+ begin
+ -- A special case, if the expression is an integer literal and the
+ -- target type is an integer type, then just retype the integer
+ -- literal to the desired target type. Don't do this if we need
+ -- a range check.
+
+ if Nkind (Expr) = N_Integer_Literal
+ and then Is_Integer_Type (Typ)
+ and then not Rchk
+ then
+ Result := Expr;
+
+ -- Cases where we end up with a conversion. Note that we do not use the
+ -- Convert_To abstraction here, since we may be decorating the resulting
+ -- conversion with Rounded_Result and/or Conversion_OK, so we want the
+ -- conversion node present, even if it appears to be redundant.
+
+ else
+ -- Remove inner conversion if both inner and outer conversions are
+ -- to integer types, since the inner one serves no purpose (except
+ -- perhaps to set rounding, so we preserve the Rounded_Result flag)
+ -- and also we preserve the range check flag on the inner operand
+
+ if Is_Integer_Type (Typ)
+ and then Is_Integer_Type (Etype (Expr))
+ and then Nkind (Expr) = N_Type_Conversion
+ then
+ Result :=
+ Make_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Expression => Expression (Expr));
+ Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
+ Rcheck := Rcheck or Do_Range_Check (Expr);
+
+ -- For all other cases, a simple type conversion will work
+
+ else
+ Result :=
+ Make_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Expression => Expr);
+ end if;
+
+ -- Set Conversion_OK if either result or expression type is a
+ -- fixed-point type, since from a semantic point of view, we are
+ -- treating fixed-point values as integers at this stage.
+
+ if Is_Fixed_Point_Type (Typ)
+ or else Is_Fixed_Point_Type (Etype (Expression (Result)))
+ then
+ Set_Conversion_OK (Result);
+ end if;
+
+ -- Set Do_Range_Check if either it was requested by the caller,
+ -- or if an eliminated inner conversion had a range check.
+
+ if Rcheck then
+ Enable_Range_Check (Result);
+ else
+ Set_Do_Range_Check (Result, False);
+ end if;
+ end if;
+
+ Set_Etype (Result, Typ);
+ return Result;
+ end Build_Conversion;
+
+ ------------------
+ -- Build_Divide --
+ ------------------
+
+ function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ Left_Type : constant Entity_Id := Base_Type (Etype (L));
+ Right_Type : constant Entity_Id := Base_Type (Etype (R));
+ Result_Type : Entity_Id;
+ Rnode : Node_Id;
+
+ begin
+ -- Deal with floating-point case first
+
+ if Is_Floating_Point_Type (Left_Type) then
+ pragma Assert (Left_Type = Universal_Real);
+ pragma Assert (Right_Type = Universal_Real);
+
+ Rnode := Make_Op_Divide (Loc, L, R);
+ Result_Type := Universal_Real;
+
+ -- Integer and fixed-point cases
+
+ else
+ -- An optimization. If the right operand is the literal 1, then we
+ -- can just return the left hand operand. Putting the optimization
+ -- here allows us to omit the check at the call site.
+
+ if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
+ return L;
+ end if;
+
+ -- If left and right types are the same, no conversion needed
+
+ if Left_Type = Right_Type then
+ Result_Type := Left_Type;
+ Rnode :=
+ Make_Op_Divide (Loc,
+ Left_Opnd => L,
+ Right_Opnd => R);
+
+ -- Use left type if it is the larger of the two
+
+ elsif Esize (Left_Type) >= Esize (Right_Type) then
+ Result_Type := Left_Type;
+ Rnode :=
+ Make_Op_Divide (Loc,
+ Left_Opnd => L,
+ Right_Opnd => Build_Conversion (N, Left_Type, R));
+
+ -- Otherwise right type is larger of the two, us it
+
+ else
+ Result_Type := Right_Type;
+ Rnode :=
+ Make_Op_Divide (Loc,
+ Left_Opnd => Build_Conversion (N, Right_Type, L),
+ Right_Opnd => R);
+ end if;
+ end if;
+
+ -- We now have a divide node built with Result_Type set. First
+ -- set Etype of result, as required for all Build_xxx routines
+
+ Set_Etype (Rnode, Base_Type (Result_Type));
+
+ -- Set Treat_Fixed_As_Integer if operation on fixed-point type
+ -- since this is a literal arithmetic operation, to be performed
+ -- by Gigi without any consideration of small values.
+
+ if Is_Fixed_Point_Type (Result_Type) then
+ Set_Treat_Fixed_As_Integer (Rnode);
+ end if;
+
+ -- The result is rounded if the target of the operation is decimal
+ -- and Rounded_Result is set, or if the target of the operation
+ -- is an integer type.
+
+ if Is_Integer_Type (Etype (N))
+ or else Rounded_Result_Set (N)
+ then
+ Set_Rounded_Result (Rnode);
+ end if;
+
+ return Rnode;
+ end Build_Divide;
+
+ -------------------------
+ -- Build_Double_Divide --
+ -------------------------
+
+ function Build_Double_Divide
+ (N : Node_Id;
+ X, Y, Z : Node_Id) return Node_Id
+ is
+ Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
+ Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
+ Expr : Node_Id;
+
+ begin
+ -- If denominator fits in 64 bits, we can build the operations directly
+ -- without causing any intermediate overflow, so that's what we do!
+
+ if Int'Max (Y_Size, Z_Size) <= 32 then
+ return
+ Build_Divide (N, X, Build_Multiply (N, Y, Z));
+
+ -- Otherwise we use the runtime routine
+
+ -- [Qnn : Interfaces.Integer_64,
+ -- Rnn : Interfaces.Integer_64;
+ -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);
+ -- Qnn]
+
+ else
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Qnn : Entity_Id;
+ Rnn : Entity_Id;
+ Code : List_Id;
+
+ pragma Warnings (Off, Rnn);
+
+ begin
+ Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
+ Insert_Actions (N, Code);
+ Expr := New_Occurrence_Of (Qnn, Loc);
+
+ -- Set type of result in case used elsewhere (see note at start)
+
+ Set_Etype (Expr, Etype (Qnn));
+
+ -- Set result as analyzed (see note at start on build routines)
+
+ return Expr;
+ end;
+ end if;
+ end Build_Double_Divide;
+
+ ------------------------------
+ -- Build_Double_Divide_Code --
+ ------------------------------
+
+ -- If the denominator can be computed in 64-bits, we build
+
+ -- [Nnn : constant typ := typ (X);
+ -- Dnn : constant typ := typ (Y) * typ (Z)
+ -- Qnn : constant typ := Nnn / Dnn;
+ -- Rnn : constant typ := Nnn / Dnn;
+
+ -- If the numerator cannot be computed in 64 bits, we build
+
+ -- [Qnn : typ;
+ -- Rnn : typ;
+ -- Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
+
+ procedure Build_Double_Divide_Code
+ (N : Node_Id;
+ X, Y, Z : Node_Id;
+ Qnn, Rnn : out Entity_Id;
+ Code : out List_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
+ Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
+ Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
+
+ QR_Siz : Int;
+ QR_Typ : Entity_Id;
+
+ Nnn : Entity_Id;
+ Dnn : Entity_Id;
+
+ Quo : Node_Id;
+ Rnd : Entity_Id;
+
+ begin
+ -- Find type that will allow computation of numerator
+
+ QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
+
+ if QR_Siz <= 16 then
+ QR_Typ := Standard_Integer_16;
+ elsif QR_Siz <= 32 then
+ QR_Typ := Standard_Integer_32;
+ elsif QR_Siz <= 64 then
+ QR_Typ := Standard_Integer_64;
+
+ -- For more than 64, bits, we use the 64-bit integer defined in
+ -- Interfaces, so that it can be handled by the runtime routine
+
+ else
+ QR_Typ := RTE (RE_Integer_64);
+ end if;
+
+ -- Define quotient and remainder, and set their Etypes, so
+ -- that they can be picked up by Build_xxx routines.
+
+ Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+ Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ Set_Etype (Qnn, QR_Typ);
+ Set_Etype (Rnn, QR_Typ);
+
+ -- Case that we can compute the denominator in 64 bits
+
+ if QR_Siz <= 64 then
+
+ -- Create temporaries for numerator and denominator and set Etypes,
+ -- so that New_Occurrence_Of picks them up for Build_xxx calls.
+
+ Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
+ Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
+
+ Set_Etype (Nnn, QR_Typ);
+ Set_Etype (Dnn, QR_Typ);
+
+ Code := New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Nnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression => Build_Conversion (N, QR_Typ, X)),
+
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Dnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression =>
+ Build_Multiply (N,
+ Build_Conversion (N, QR_Typ, Y),
+ Build_Conversion (N, QR_Typ, Z))));
+
+ Quo :=
+ Build_Divide (N,
+ New_Occurrence_Of (Nnn, Loc),
+ New_Occurrence_Of (Dnn, Loc));
+
+ Set_Rounded_Result (Quo, Rounded_Result_Set (N));
+
+ Append_To (Code,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Qnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression => Quo));
+
+ Append_To (Code,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Rnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression =>
+ Build_Rem (N,
+ New_Occurrence_Of (Nnn, Loc),
+ New_Occurrence_Of (Dnn, Loc))));
+
+ -- Case where denominator does not fit in 64 bits, so we have to
+ -- call the runtime routine to compute the quotient and remainder
+
+ else
+ Rnd := Boolean_Literals (Rounded_Result_Set (N));
+
+ Code := New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Qnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
+
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Rnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
+
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
+ Parameter_Associations => New_List (
+ Build_Conversion (N, QR_Typ, X),
+ Build_Conversion (N, QR_Typ, Y),
+ Build_Conversion (N, QR_Typ, Z),
+ New_Occurrence_Of (Qnn, Loc),
+ New_Occurrence_Of (Rnn, Loc),
+ New_Occurrence_Of (Rnd, Loc))));
+ end if;
+ end Build_Double_Divide_Code;
+
+ --------------------
+ -- Build_Multiply --
+ --------------------
+
+ function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ Left_Type : constant Entity_Id := Etype (L);
+ Right_Type : constant Entity_Id := Etype (R);
+ Left_Size : Int;
+ Right_Size : Int;
+ Rsize : Int;
+ Result_Type : Entity_Id;
+ Rnode : Node_Id;
+
+ begin
+ -- Deal with floating-point case first
+
+ if Is_Floating_Point_Type (Left_Type) then
+ pragma Assert (Left_Type = Universal_Real);
+ pragma Assert (Right_Type = Universal_Real);
+
+ Result_Type := Universal_Real;
+ Rnode := Make_Op_Multiply (Loc, L, R);
+
+ -- Integer and fixed-point cases
+
+ else
+ -- An optimization. If the right operand is the literal 1, then we
+ -- can just return the left hand operand. Putting the optimization
+ -- here allows us to omit the check at the call site. Similarly, if
+ -- the left operand is the integer 1 we can return the right operand.
+
+ if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
+ return L;
+ elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
+ return R;
+ end if;
+
+ -- Otherwise we need to figure out the correct result type size
+ -- First figure out the effective sizes of the operands. Normally
+ -- the effective size of an operand is the RM_Size of the operand.
+ -- But a special case arises with operands whose size is known at
+ -- compile time. In this case, we can use the actual value of the
+ -- operand to get its size if it would fit signed in 8 or 16 bits.
+
+ Left_Size := UI_To_Int (RM_Size (Left_Type));
+
+ if Compile_Time_Known_Value (L) then
+ declare
+ Val : constant Uint := Expr_Value (L);
+ begin
+ if Val < Int'(2 ** 7) then
+ Left_Size := 8;
+ elsif Val < Int'(2 ** 15) then
+ Left_Size := 16;
+ end if;
+ end;
+ end if;
+
+ Right_Size := UI_To_Int (RM_Size (Right_Type));
+
+ if Compile_Time_Known_Value (R) then
+ declare
+ Val : constant Uint := Expr_Value (R);
+ begin
+ if Val <= Int'(2 ** 7) then
+ Right_Size := 8;
+ elsif Val <= Int'(2 ** 15) then
+ Right_Size := 16;
+ end if;
+ end;
+ end if;
+
+ -- Now the result size must be at least twice the longer of
+ -- the two sizes, to accommodate all possible results.
+
+ Rsize := 2 * Int'Max (Left_Size, Right_Size);
+
+ if Rsize <= 8 then
+ Result_Type := Standard_Integer_8;
+
+ elsif Rsize <= 16 then
+ Result_Type := Standard_Integer_16;
+
+ elsif Rsize <= 32 then
+ Result_Type := Standard_Integer_32;
+
+ else
+ Result_Type := Standard_Integer_64;
+ end if;
+
+ Rnode :=
+ Make_Op_Multiply (Loc,
+ Left_Opnd => Build_Conversion (N, Result_Type, L),
+ Right_Opnd => Build_Conversion (N, Result_Type, R));
+ end if;
+
+ -- We now have a multiply node built with Result_Type set. First
+ -- set Etype of result, as required for all Build_xxx routines
+
+ Set_Etype (Rnode, Base_Type (Result_Type));
+
+ -- Set Treat_Fixed_As_Integer if operation on fixed-point type
+ -- since this is a literal arithmetic operation, to be performed
+ -- by Gigi without any consideration of small values.
+
+ if Is_Fixed_Point_Type (Result_Type) then
+ Set_Treat_Fixed_As_Integer (Rnode);
+ end if;
+
+ return Rnode;
+ end Build_Multiply;
+
+ ---------------
+ -- Build_Rem --
+ ---------------
+
+ function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ Left_Type : constant Entity_Id := Etype (L);
+ Right_Type : constant Entity_Id := Etype (R);
+ Result_Type : Entity_Id;
+ Rnode : Node_Id;
+
+ begin
+ if Left_Type = Right_Type then
+ Result_Type := Left_Type;
+ Rnode :=
+ Make_Op_Rem (Loc,
+ Left_Opnd => L,
+ Right_Opnd => R);
+
+ -- If left size is larger, we do the remainder operation using the
+ -- size of the left type (i.e. the larger of the two integer types).
+
+ elsif Esize (Left_Type) >= Esize (Right_Type) then
+ Result_Type := Left_Type;
+ Rnode :=
+ Make_Op_Rem (Loc,
+ Left_Opnd => L,
+ Right_Opnd => Build_Conversion (N, Left_Type, R));
+
+ -- Similarly, if the right size is larger, we do the remainder
+ -- operation using the right type.
+
+ else
+ Result_Type := Right_Type;
+ Rnode :=
+ Make_Op_Rem (Loc,
+ Left_Opnd => Build_Conversion (N, Right_Type, L),
+ Right_Opnd => R);
+ end if;
+
+ -- We now have an N_Op_Rem node built with Result_Type set. First
+ -- set Etype of result, as required for all Build_xxx routines
+
+ Set_Etype (Rnode, Base_Type (Result_Type));
+
+ -- Set Treat_Fixed_As_Integer if operation on fixed-point type
+ -- since this is a literal arithmetic operation, to be performed
+ -- by Gigi without any consideration of small values.
+
+ if Is_Fixed_Point_Type (Result_Type) then
+ Set_Treat_Fixed_As_Integer (Rnode);
+ end if;
+
+ -- One more check. We did the rem operation using the larger of the
+ -- two types, which is reasonable. However, in the case where the
+ -- two types have unequal sizes, it is impossible for the result of
+ -- a remainder operation to be larger than the smaller of the two
+ -- types, so we can put a conversion round the result to keep the
+ -- evolving operation size as small as possible.
+
+ if Esize (Left_Type) >= Esize (Right_Type) then
+ Rnode := Build_Conversion (N, Right_Type, Rnode);
+ elsif Esize (Right_Type) >= Esize (Left_Type) then
+ Rnode := Build_Conversion (N, Left_Type, Rnode);
+ end if;
+
+ return Rnode;
+ end Build_Rem;
+
+ -------------------------
+ -- Build_Scaled_Divide --
+ -------------------------
+
+ function Build_Scaled_Divide
+ (N : Node_Id;
+ X, Y, Z : Node_Id) return Node_Id
+ is
+ X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
+ Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
+ Expr : Node_Id;
+
+ begin
+ -- If numerator fits in 64 bits, we can build the operations directly
+ -- without causing any intermediate overflow, so that's what we do!
+
+ if Int'Max (X_Size, Y_Size) <= 32 then
+ return
+ Build_Divide (N, Build_Multiply (N, X, Y), Z);
+
+ -- Otherwise we use the runtime routine
+
+ -- [Qnn : Integer_64,
+ -- Rnn : Integer_64;
+ -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
+ -- Qnn]
+
+ else
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Qnn : Entity_Id;
+ Rnn : Entity_Id;
+ Code : List_Id;
+
+ pragma Warnings (Off, Rnn);
+
+ begin
+ Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
+ Insert_Actions (N, Code);
+ Expr := New_Occurrence_Of (Qnn, Loc);
+
+ -- Set type of result in case used elsewhere (see note at start)
+
+ Set_Etype (Expr, Etype (Qnn));
+ return Expr;
+ end;
+ end if;
+ end Build_Scaled_Divide;
+
+ ------------------------------
+ -- Build_Scaled_Divide_Code --
+ ------------------------------
+
+ -- If the numerator can be computed in 64-bits, we build
+
+ -- [Nnn : constant typ := typ (X) * typ (Y);
+ -- Dnn : constant typ := typ (Z)
+ -- Qnn : constant typ := Nnn / Dnn;
+ -- Rnn : constant typ := Nnn / Dnn;
+
+ -- If the numerator cannot be computed in 64 bits, we build
+
+ -- [Qnn : Interfaces.Integer_64;
+ -- Rnn : Interfaces.Integer_64;
+ -- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
+
+ procedure Build_Scaled_Divide_Code
+ (N : Node_Id;
+ X, Y, Z : Node_Id;
+ Qnn, Rnn : out Entity_Id;
+ Code : out List_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
+ Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
+ Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
+
+ QR_Siz : Int;
+ QR_Typ : Entity_Id;
+
+ Nnn : Entity_Id;
+ Dnn : Entity_Id;
+
+ Quo : Node_Id;
+ Rnd : Entity_Id;
+
+ begin
+ -- Find type that will allow computation of numerator
+
+ QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
+
+ if QR_Siz <= 16 then
+ QR_Typ := Standard_Integer_16;
+ elsif QR_Siz <= 32 then
+ QR_Typ := Standard_Integer_32;
+ elsif QR_Siz <= 64 then
+ QR_Typ := Standard_Integer_64;
+
+ -- For more than 64, bits, we use the 64-bit integer defined in
+ -- Interfaces, so that it can be handled by the runtime routine
+
+ else
+ QR_Typ := RTE (RE_Integer_64);
+ end if;
+
+ -- Define quotient and remainder, and set their Etypes, so
+ -- that they can be picked up by Build_xxx routines.
+
+ Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
+ Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
+
+ Set_Etype (Qnn, QR_Typ);
+ Set_Etype (Rnn, QR_Typ);
+
+ -- Case that we can compute the numerator in 64 bits
+
+ if QR_Siz <= 64 then
+ Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
+ Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
+
+ -- Set Etypes, so that they can be picked up by New_Occurrence_Of
+
+ Set_Etype (Nnn, QR_Typ);
+ Set_Etype (Dnn, QR_Typ);
+
+ Code := New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Nnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression =>
+ Build_Multiply (N,
+ Build_Conversion (N, QR_Typ, X),
+ Build_Conversion (N, QR_Typ, Y))),
+
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Dnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression => Build_Conversion (N, QR_Typ, Z)));
+
+ Quo :=
+ Build_Divide (N,
+ New_Occurrence_Of (Nnn, Loc),
+ New_Occurrence_Of (Dnn, Loc));
+
+ Append_To (Code,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Qnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression => Quo));
+
+ Append_To (Code,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Rnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
+ Constant_Present => True,
+ Expression =>
+ Build_Rem (N,
+ New_Occurrence_Of (Nnn, Loc),
+ New_Occurrence_Of (Dnn, Loc))));
+
+ -- Case where numerator does not fit in 64 bits, so we have to
+ -- call the runtime routine to compute the quotient and remainder
+
+ else
+ Rnd := Boolean_Literals (Rounded_Result_Set (N));
+
+ Code := New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Qnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
+
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Rnn,
+ Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
+
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
+ Parameter_Associations => New_List (
+ Build_Conversion (N, QR_Typ, X),
+ Build_Conversion (N, QR_Typ, Y),
+ Build_Conversion (N, QR_Typ, Z),
+ New_Occurrence_Of (Qnn, Loc),
+ New_Occurrence_Of (Rnn, Loc),
+ New_Occurrence_Of (Rnd, Loc))));
+ end if;
+
+ -- Set type of result, for use in caller
+
+ Set_Etype (Qnn, QR_Typ);
+ end Build_Scaled_Divide_Code;
+
+ ---------------------------
+ -- Do_Divide_Fixed_Fixed --
+ ---------------------------
+
+ -- We have:
+
+ -- (Result_Value * Result_Small) =
+ -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
+
+ -- Result_Value = (Left_Value / Right_Value) *
+ -- (Left_Small / (Right_Small * Result_Small));
+
+ -- we can do the operation in integer arithmetic if this fraction is an
+ -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
+ -- Otherwise the result is in the close result set and our approach is to
+ -- use floating-point to compute this close result.
+
+ procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ Left_Type : constant Entity_Id := Etype (Left);
+ Right_Type : constant Entity_Id := Etype (Right);
+ Result_Type : constant Entity_Id := Etype (N);
+ Right_Small : constant Ureal := Small_Value (Right_Type);
+ Left_Small : constant Ureal := Small_Value (Left_Type);
+
+ Result_Small : Ureal;
+ Frac : Ureal;
+ Frac_Num : Uint;
+ Frac_Den : Uint;
+ Lit_Int : Node_Id;
+
+ begin
+ -- Rounding is required if the result is integral
+
+ if Is_Integer_Type (Result_Type) then
+ Set_Rounded_Result (N);
+ end if;
+
+ -- Get result small. If the result is an integer, treat it as though
+ -- it had a small of 1.0, all other processing is identical.
+
+ if Is_Integer_Type (Result_Type) then
+ Result_Small := Ureal_1;
+ else
+ Result_Small := Small_Value (Result_Type);
+ end if;
+
+ -- Get small ratio
+
+ Frac := Left_Small / (Right_Small * Result_Small);
+ Frac_Num := Norm_Num (Frac);
+ Frac_Den := Norm_Den (Frac);
+
+ -- If the fraction is an integer, then we get the result by multiplying
+ -- the left operand by the integer, and then dividing by the right
+ -- operand (the order is important, if we did the divide first, we
+ -- would lose precision).
+
+ if Frac_Den = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
+
+ if Present (Lit_Int) then
+ Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
+ return;
+ end if;
+
+ -- If the fraction is the reciprocal of an integer, then we get the
+ -- result by first multiplying the divisor by the integer, and then
+ -- doing the division with the adjusted divisor.
+
+ -- Note: this is much better than doing two divisions: multiplications
+ -- are much faster than divisions (and certainly faster than rounded
+ -- divisions), and we don't get inaccuracies from double rounding.
+
+ elsif Frac_Num = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
+
+ if Present (Lit_Int) then
+ Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
+ return;
+ end if;
+ end if;
+
+ -- If we fall through, we use floating-point to compute the result
+
+ Set_Result (N,
+ Build_Multiply (N,
+ Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
+ Real_Literal (N, Frac)));
+ end Do_Divide_Fixed_Fixed;
+
+ -------------------------------
+ -- Do_Divide_Fixed_Universal --
+ -------------------------------
+
+ -- We have:
+
+ -- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
+ -- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
+
+ -- The result is required to be in the perfect result set if the literal
+ -- can be factored so that the resulting small ratio is an integer or the
+ -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
+ -- analysis of these RM requirements:
+
+ -- We must factor the literal, finding an integer K:
+
+ -- Lit_Value = K * Right_Small
+ -- Right_Small = Lit_Value / K
+
+ -- such that the small ratio:
+
+ -- Left_Small
+ -- ------------------------------
+ -- (Lit_Value / K) * Result_Small
+
+ -- Left_Small
+ -- = ------------------------ * K
+ -- Lit_Value * Result_Small
+
+ -- is an integer or the reciprocal of an integer, and for
+ -- implementation efficiency we need the smallest such K.
+
+ -- First we reduce the left fraction to lowest terms
+
+ -- If numerator = 1, then for K = 1, the small ratio is the reciprocal
+ -- of an integer, and this is clearly the minimum K case, so set K = 1,
+ -- Right_Small = Lit_Value.
+
+ -- If numerator > 1, then set K to the denominator of the fraction so
+ -- that the resulting small ratio is an integer (the numerator value).
+
+ procedure Do_Divide_Fixed_Universal (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ Left_Type : constant Entity_Id := Etype (Left);
+ Result_Type : constant Entity_Id := Etype (N);
+ Left_Small : constant Ureal := Small_Value (Left_Type);
+ Lit_Value : constant Ureal := Realval (Right);
+
+ Result_Small : Ureal;
+ Frac : Ureal;
+ Frac_Num : Uint;
+ Frac_Den : Uint;
+ Lit_K : Node_Id;
+ Lit_Int : Node_Id;
+
+ begin
+ -- Get result small. If the result is an integer, treat it as though
+ -- it had a small of 1.0, all other processing is identical.
+
+ if Is_Integer_Type (Result_Type) then
+ Result_Small := Ureal_1;
+ else
+ Result_Small := Small_Value (Result_Type);
+ end if;
+
+ -- Determine if literal can be rewritten successfully
+
+ Frac := Left_Small / (Lit_Value * Result_Small);
+ Frac_Num := Norm_Num (Frac);
+ Frac_Den := Norm_Den (Frac);
+
+ -- Case where fraction is the reciprocal of an integer (K = 1, integer
+ -- = denominator). If this integer is not too large, this is the case
+ -- where the result can be obtained by dividing by this integer value.
+
+ if Frac_Num = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
+
+ if Present (Lit_Int) then
+ Set_Result (N, Build_Divide (N, Left, Lit_Int));
+ return;
+ end if;
+
+ -- Case where we choose K to make fraction an integer (K = denominator
+ -- of fraction, integer = numerator of fraction). If both K and the
+ -- numerator are small enough, this is the case where the result can
+ -- be obtained by first multiplying by the integer value and then
+ -- dividing by K (the order is important, if we divided first, we
+ -- would lose precision).
+
+ else
+ Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
+ Lit_K := Integer_Literal (N, Frac_Den, False);
+
+ if Present (Lit_Int) and then Present (Lit_K) then
+ Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
+ return;
+ end if;
+ end if;
+
+ -- Fall through if the literal cannot be successfully rewritten, or if
+ -- the small ratio is out of range of integer arithmetic. In the former
+ -- case it is fine to use floating-point to get the close result set,
+ -- and in the latter case, it means that the result is zero or raises
+ -- constraint error, and we can do that accurately in floating-point.
+
+ -- If we end up using floating-point, then we take the right integer
+ -- to be one, and its small to be the value of the original right real
+ -- literal. That way, we need only one floating-point multiplication.
+
+ Set_Result (N,
+ Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
+ end Do_Divide_Fixed_Universal;
+
+ -------------------------------
+ -- Do_Divide_Universal_Fixed --
+ -------------------------------
+
+ -- We have:
+
+ -- (Result_Value * Result_Small) =
+ -- Lit_Value / (Right_Value * Right_Small)
+ -- Result_Value =
+ -- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
+
+ -- The result is required to be in the perfect result set if the literal
+ -- can be factored so that the resulting small ratio is an integer or the
+ -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
+ -- analysis of these RM requirements:
+
+ -- We must factor the literal, finding an integer K:
+
+ -- Lit_Value = K * Left_Small
+ -- Left_Small = Lit_Value / K
+
+ -- such that the small ratio:
+
+ -- (Lit_Value / K)
+ -- --------------------------
+ -- Right_Small * Result_Small
+
+ -- Lit_Value 1
+ -- = -------------------------- * -
+ -- Right_Small * Result_Small K
+
+ -- is an integer or the reciprocal of an integer, and for
+ -- implementation efficiency we need the smallest such K.
+
+ -- First we reduce the left fraction to lowest terms
+
+ -- If denominator = 1, then for K = 1, the small ratio is an integer
+ -- (the numerator) and this is clearly the minimum K case, so set K = 1,
+ -- and Left_Small = Lit_Value.
+
+ -- If denominator > 1, then set K to the numerator of the fraction so
+ -- that the resulting small ratio is the reciprocal of an integer (the
+ -- numerator value).
+
+ procedure Do_Divide_Universal_Fixed (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ Right_Type : constant Entity_Id := Etype (Right);
+ Result_Type : constant Entity_Id := Etype (N);
+ Right_Small : constant Ureal := Small_Value (Right_Type);
+ Lit_Value : constant Ureal := Realval (Left);
+
+ Result_Small : Ureal;
+ Frac : Ureal;
+ Frac_Num : Uint;
+ Frac_Den : Uint;
+ Lit_K : Node_Id;
+ Lit_Int : Node_Id;
+
+ begin
+ -- Get result small. If the result is an integer, treat it as though
+ -- it had a small of 1.0, all other processing is identical.
+
+ if Is_Integer_Type (Result_Type) then
+ Result_Small := Ureal_1;
+ else
+ Result_Small := Small_Value (Result_Type);
+ end if;
+
+ -- Determine if literal can be rewritten successfully
+
+ Frac := Lit_Value / (Right_Small * Result_Small);
+ Frac_Num := Norm_Num (Frac);
+ Frac_Den := Norm_Den (Frac);
+
+ -- Case where fraction is an integer (K = 1, integer = numerator). If
+ -- this integer is not too large, this is the case where the result
+ -- can be obtained by dividing this integer by the right operand.
+
+ if Frac_Den = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
+
+ if Present (Lit_Int) then
+ Set_Result (N, Build_Divide (N, Lit_Int, Right));
+ return;
+ end if;
+
+ -- Case where we choose K to make the fraction the reciprocal of an
+ -- integer (K = numerator of fraction, integer = numerator of fraction).
+ -- If both K and the integer are small enough, this is the case where
+ -- the result can be obtained by multiplying the right operand by K
+ -- and then dividing by the integer value. The order of the operations
+ -- is important (if we divided first, we would lose precision).
+
+ else
+ Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
+ Lit_K := Integer_Literal (N, Frac_Num, False);
+
+ if Present (Lit_Int) and then Present (Lit_K) then
+ Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
+ return;
+ end if;
+ end if;
+
+ -- Fall through if the literal cannot be successfully rewritten, or if
+ -- the small ratio is out of range of integer arithmetic. In the former
+ -- case it is fine to use floating-point to get the close result set,
+ -- and in the latter case, it means that the result is zero or raises
+ -- constraint error, and we can do that accurately in floating-point.
+
+ -- If we end up using floating-point, then we take the right integer
+ -- to be one, and its small to be the value of the original right real
+ -- literal. That way, we need only one floating-point division.
+
+ Set_Result (N,
+ Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
+ end Do_Divide_Universal_Fixed;
+
+ -----------------------------
+ -- Do_Multiply_Fixed_Fixed --
+ -----------------------------
+
+ -- We have:
+
+ -- (Result_Value * Result_Small) =
+ -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
+
+ -- Result_Value = (Left_Value * Right_Value) *
+ -- (Left_Small * Right_Small) / Result_Small;
+
+ -- we can do the operation in integer arithmetic if this fraction is an
+ -- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
+ -- Otherwise the result is in the close result set and our approach is to
+ -- use floating-point to compute this close result.
+
+ procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ Left_Type : constant Entity_Id := Etype (Left);
+ Right_Type : constant Entity_Id := Etype (Right);
+ Result_Type : constant Entity_Id := Etype (N);
+ Right_Small : constant Ureal := Small_Value (Right_Type);
+ Left_Small : constant Ureal := Small_Value (Left_Type);
+
+ Result_Small : Ureal;
+ Frac : Ureal;
+ Frac_Num : Uint;
+ Frac_Den : Uint;
+ Lit_Int : Node_Id;
+
+ begin
+ -- Get result small. If the result is an integer, treat it as though
+ -- it had a small of 1.0, all other processing is identical.
+
+ if Is_Integer_Type (Result_Type) then
+ Result_Small := Ureal_1;
+ else
+ Result_Small := Small_Value (Result_Type);
+ end if;
+
+ -- Get small ratio
+
+ Frac := (Left_Small * Right_Small) / Result_Small;
+ Frac_Num := Norm_Num (Frac);
+ Frac_Den := Norm_Den (Frac);
+
+ -- If the fraction is an integer, then we get the result by multiplying
+ -- the operands, and then multiplying the result by the integer value.
+
+ if Frac_Den = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
+
+ if Present (Lit_Int) then
+ Set_Result (N,
+ Build_Multiply (N, Build_Multiply (N, Left, Right),
+ Lit_Int));
+ return;
+ end if;
+
+ -- If the fraction is the reciprocal of an integer, then we get the
+ -- result by multiplying the operands, and then dividing the result by
+ -- the integer value. The order of the operations is important, if we
+ -- divided first, we would lose precision.
+
+ elsif Frac_Num = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
+
+ if Present (Lit_Int) then
+ Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
+ return;
+ end if;
+ end if;
+
+ -- If we fall through, we use floating-point to compute the result
+
+ Set_Result (N,
+ Build_Multiply (N,
+ Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
+ Real_Literal (N, Frac)));
+ end Do_Multiply_Fixed_Fixed;
+
+ ---------------------------------
+ -- Do_Multiply_Fixed_Universal --
+ ---------------------------------
+
+ -- We have:
+
+ -- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
+ -- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
+
+ -- The result is required to be in the perfect result set if the literal
+ -- can be factored so that the resulting small ratio is an integer or the
+ -- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
+ -- analysis of these RM requirements:
+
+ -- We must factor the literal, finding an integer K:
+
+ -- Lit_Value = K * Right_Small
+ -- Right_Small = Lit_Value / K
+
+ -- such that the small ratio:
+
+ -- Left_Small * (Lit_Value / K)
+ -- ----------------------------
+ -- Result_Small
+
+ -- Left_Small * Lit_Value 1
+ -- = ---------------------- * -
+ -- Result_Small K
+
+ -- is an integer or the reciprocal of an integer, and for
+ -- implementation efficiency we need the smallest such K.
+
+ -- First we reduce the left fraction to lowest terms
+
+ -- If denominator = 1, then for K = 1, the small ratio is an integer, and
+ -- this is clearly the minimum K case, so set
+
+ -- K = 1, Right_Small = Lit_Value
+
+ -- If denominator > 1, then set K to the numerator of the fraction, so
+ -- that the resulting small ratio is the reciprocal of the integer (the
+ -- denominator value).
+
+ procedure Do_Multiply_Fixed_Universal
+ (N : Node_Id;
+ Left, Right : Node_Id)
+ is
+ Left_Type : constant Entity_Id := Etype (Left);
+ Result_Type : constant Entity_Id := Etype (N);
+ Left_Small : constant Ureal := Small_Value (Left_Type);
+ Lit_Value : constant Ureal := Realval (Right);
+
+ Result_Small : Ureal;
+ Frac : Ureal;
+ Frac_Num : Uint;
+ Frac_Den : Uint;
+ Lit_K : Node_Id;
+ Lit_Int : Node_Id;
+
+ begin
+ -- Get result small. If the result is an integer, treat it as though
+ -- it had a small of 1.0, all other processing is identical.
+
+ if Is_Integer_Type (Result_Type) then
+ Result_Small := Ureal_1;
+ else
+ Result_Small := Small_Value (Result_Type);
+ end if;
+
+ -- Determine if literal can be rewritten successfully
+
+ Frac := (Left_Small * Lit_Value) / Result_Small;
+ Frac_Num := Norm_Num (Frac);
+ Frac_Den := Norm_Den (Frac);
+
+ -- Case where fraction is an integer (K = 1, integer = numerator). If
+ -- this integer is not too large, this is the case where the result can
+ -- be obtained by multiplying by this integer value.
+
+ if Frac_Den = 1 then
+ Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
+
+ if Present (Lit_Int) then
+ Set_Result (N, Build_Multiply (N, Left, Lit_Int));
+ return;
+ end if;
+
+ -- Case where we choose K to make fraction the reciprocal of an integer
+ -- (K = numerator of fraction, integer = denominator of fraction). If
+ -- both K and the denominator are small enough, this is the case where
+ -- the result can be obtained by first multiplying by K, and then
+ -- dividing by the integer value.
+
+ else
+ Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
+ Lit_K := Integer_Literal (N, Frac_Num);
+
+ if Present (Lit_Int) and then Present (Lit_K) then
+ Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
+ return;
+ end if;
+ end if;
+
+ -- Fall through if the literal cannot be successfully rewritten, or if
+ -- the small ratio is out of range of integer arithmetic. In the former
+ -- case it is fine to use floating-point to get the close result set,
+ -- and in the latter case, it means that the result is zero or raises
+ -- constraint error, and we can do that accurately in floating-point.
+
+ -- If we end up using floating-point, then we take the right integer
+ -- to be one, and its small to be the value of the original right real
+ -- literal. That way, we need only one floating-point multiplication.
+
+ Set_Result (N,
+ Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
+ end Do_Multiply_Fixed_Universal;
+
+ ---------------------------------
+ -- Expand_Convert_Fixed_Static --
+ ---------------------------------
+
+ procedure Expand_Convert_Fixed_Static (N : Node_Id) is
+ begin
+ Rewrite (N,
+ Convert_To (Etype (N),
+ Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
+ Analyze_And_Resolve (N);
+ end Expand_Convert_Fixed_Static;
+
+ -----------------------------------
+ -- Expand_Convert_Fixed_To_Fixed --
+ -----------------------------------
+
+ -- We have:
+
+ -- Result_Value * Result_Small = Source_Value * Source_Small
+ -- Result_Value = Source_Value * (Source_Small / Result_Small)
+
+ -- If the small ratio (Source_Small / Result_Small) is a sufficiently small
+ -- integer, then the perfect result set is obtained by a single integer
+ -- multiplication.
+
+ -- If the small ratio is the reciprocal of a sufficiently small integer,
+ -- then the perfect result set is obtained by a single integer division.
+
+ -- In other cases, we obtain the close result set by calculating the
+ -- result in floating-point.
+
+ procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
+ Rng_Check : constant Boolean := Do_Range_Check (N);
+ Expr : constant Node_Id := Expression (N);
+ Result_Type : constant Entity_Id := Etype (N);
+ Source_Type : constant Entity_Id := Etype (Expr);
+ Small_Ratio : Ureal;
+ Ratio_Num : Uint;
+ Ratio_Den : Uint;
+ Lit : Node_Id;
+
+ begin
+ if Is_OK_Static_Expression (Expr) then
+ Expand_Convert_Fixed_Static (N);
+ return;
+ end if;
+
+ Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
+ Ratio_Num := Norm_Num (Small_Ratio);
+ Ratio_Den := Norm_Den (Small_Ratio);
+
+ if Ratio_Den = 1 then
+ if Ratio_Num = 1 then
+ Set_Result (N, Expr);
+ return;
+
+ else
+ Lit := Integer_Literal (N, Ratio_Num);
+
+ if Present (Lit) then
+ Set_Result (N, Build_Multiply (N, Expr, Lit));
+ return;
+ end if;
+ end if;
+
+ elsif Ratio_Num = 1 then
+ Lit := Integer_Literal (N, Ratio_Den);
+
+ if Present (Lit) then
+ Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
+ return;
+ end if;
+ end if;
+
+ -- Fall through to use floating-point for the close result set case
+ -- either as a result of the small ratio not being an integer or the
+ -- reciprocal of an integer, or if the integer is out of range.
+
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Expr),
+ Real_Literal (N, Small_Ratio)),
+ Rng_Check);
+ end Expand_Convert_Fixed_To_Fixed;
+
+ -----------------------------------
+ -- Expand_Convert_Fixed_To_Float --
+ -----------------------------------
+
+ -- If the small of the fixed type is 1.0, then we simply convert the
+ -- integer value directly to the target floating-point type, otherwise
+ -- we first have to multiply by the small, in Universal_Real, and then
+ -- convert the result to the target floating-point type.
+
+ procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
+ Rng_Check : constant Boolean := Do_Range_Check (N);
+ Expr : constant Node_Id := Expression (N);
+ Source_Type : constant Entity_Id := Etype (Expr);
+ Small : constant Ureal := Small_Value (Source_Type);
+
+ begin
+ if Is_OK_Static_Expression (Expr) then
+ Expand_Convert_Fixed_Static (N);
+ return;
+ end if;
+
+ if Small = Ureal_1 then
+ Set_Result (N, Expr);
+
+ else
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Expr),
+ Real_Literal (N, Small)),
+ Rng_Check);
+ end if;
+ end Expand_Convert_Fixed_To_Float;
+
+ -------------------------------------
+ -- Expand_Convert_Fixed_To_Integer --
+ -------------------------------------
+
+ -- We have:
+
+ -- Result_Value = Source_Value * Source_Small
+
+ -- If the small value is a sufficiently small integer, then the perfect
+ -- result set is obtained by a single integer multiplication.
+
+ -- If the small value is the reciprocal of a sufficiently small integer,
+ -- then the perfect result set is obtained by a single integer division.
+
+ -- In other cases, we obtain the close result set by calculating the
+ -- result in floating-point.
+
+ procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
+ Rng_Check : constant Boolean := Do_Range_Check (N);
+ Expr : constant Node_Id := Expression (N);
+ Source_Type : constant Entity_Id := Etype (Expr);
+ Small : constant Ureal := Small_Value (Source_Type);
+ Small_Num : constant Uint := Norm_Num (Small);
+ Small_Den : constant Uint := Norm_Den (Small);
+ Lit : Node_Id;
+
+ begin
+ if Is_OK_Static_Expression (Expr) then
+ Expand_Convert_Fixed_Static (N);
+ return;
+ end if;
+
+ if Small_Den = 1 then
+ Lit := Integer_Literal (N, Small_Num);
+
+ if Present (Lit) then
+ Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
+ return;
+ end if;
+
+ elsif Small_Num = 1 then
+ Lit := Integer_Literal (N, Small_Den);
+
+ if Present (Lit) then
+ Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
+ return;
+ end if;
+ end if;
+
+ -- Fall through to use floating-point for the close result set case
+ -- either as a result of the small value not being an integer or the
+ -- reciprocal of an integer, or if the integer is out of range.
+
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Expr),
+ Real_Literal (N, Small)),
+ Rng_Check);
+ end Expand_Convert_Fixed_To_Integer;
+
+ -----------------------------------
+ -- Expand_Convert_Float_To_Fixed --
+ -----------------------------------
+
+ -- We have
+
+ -- Result_Value * Result_Small = Operand_Value
+
+ -- so compute:
+
+ -- Result_Value = Operand_Value * (1.0 / Result_Small)
+
+ -- We do the small scaling in floating-point, and we do a multiplication
+ -- rather than a division, since it is accurate enough for the perfect
+ -- result cases, and faster.
+
+ procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
+ Rng_Check : constant Boolean := Do_Range_Check (N);
+ Expr : constant Node_Id := Expression (N);
+ Result_Type : constant Entity_Id := Etype (N);
+ Small : constant Ureal := Small_Value (Result_Type);
+
+ begin
+ -- Optimize small = 1, where we can avoid the multiply completely
+
+ if Small = Ureal_1 then
+ Set_Result (N, Expr, Rng_Check);
+
+ -- Normal case where multiply is required
+
+ else
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Expr),
+ Real_Literal (N, Ureal_1 / Small)),
+ Rng_Check);
+ end if;
+ end Expand_Convert_Float_To_Fixed;
+
+ -------------------------------------
+ -- Expand_Convert_Integer_To_Fixed --
+ -------------------------------------
+
+ -- We have
+
+ -- Result_Value * Result_Small = Operand_Value
+ -- Result_Value = Operand_Value / Result_Small
+
+ -- If the small value is a sufficiently small integer, then the perfect
+ -- result set is obtained by a single integer division.
+
+ -- If the small value is the reciprocal of a sufficiently small integer,
+ -- the perfect result set is obtained by a single integer multiplication.
+
+ -- In other cases, we obtain the close result set by calculating the
+ -- result in floating-point using a multiplication by the reciprocal
+ -- of the Result_Small.
+
+ procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
+ Rng_Check : constant Boolean := Do_Range_Check (N);
+ Expr : constant Node_Id := Expression (N);
+ Result_Type : constant Entity_Id := Etype (N);
+ Small : constant Ureal := Small_Value (Result_Type);
+ Small_Num : constant Uint := Norm_Num (Small);
+ Small_Den : constant Uint := Norm_Den (Small);
+ Lit : Node_Id;
+
+ begin
+ if Small_Den = 1 then
+ Lit := Integer_Literal (N, Small_Num);
+
+ if Present (Lit) then
+ Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
+ return;
+ end if;
+
+ elsif Small_Num = 1 then
+ Lit := Integer_Literal (N, Small_Den);
+
+ if Present (Lit) then
+ Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
+ return;
+ end if;
+ end if;
+
+ -- Fall through to use floating-point for the close result set case
+ -- either as a result of the small value not being an integer or the
+ -- reciprocal of an integer, or if the integer is out of range.
+
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Expr),
+ Real_Literal (N, Ureal_1 / Small)),
+ Rng_Check);
+ end Expand_Convert_Integer_To_Fixed;
+
+ --------------------------------
+ -- Expand_Decimal_Divide_Call --
+ --------------------------------
+
+ -- We have four operands
+
+ -- Dividend
+ -- Divisor
+ -- Quotient
+ -- Remainder
+
+ -- All of which are decimal types, and which thus have associated
+ -- decimal scales.
+
+ -- Computing the quotient is a similar problem to that faced by the
+ -- normal fixed-point division, except that it is simpler, because
+ -- we always have compatible smalls.
+
+ -- Quotient = (Dividend / Divisor) * 10**q
+
+ -- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
+ -- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
+
+ -- For q >= 0, we compute
+
+ -- Numerator := Dividend * 10 ** q
+ -- Denominator := Divisor
+ -- Quotient := Numerator / Denominator
+
+ -- For q < 0, we compute
+
+ -- Numerator := Dividend
+ -- Denominator := Divisor * 10 ** q
+ -- Quotient := Numerator / Denominator
+
+ -- Both these divisions are done in truncated mode, and the remainder
+ -- from these divisions is used to compute the result Remainder. This
+ -- remainder has the effective scale of the numerator of the division,
+
+ -- For q >= 0, the remainder scale is Dividend'Scale + q
+ -- For q < 0, the remainder scale is Dividend'Scale
+
+ -- The result Remainder is then computed by a normal truncating decimal
+ -- conversion from this scale to the scale of the remainder, i.e. by a
+ -- division or multiplication by the appropriate power of 10.
+
+ procedure Expand_Decimal_Divide_Call (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Dividend : Node_Id := First_Actual (N);
+ Divisor : Node_Id := Next_Actual (Dividend);
+ Quotient : Node_Id := Next_Actual (Divisor);
+ Remainder : Node_Id := Next_Actual (Quotient);
+
+ Dividend_Type : constant Entity_Id := Etype (Dividend);
+ Divisor_Type : constant Entity_Id := Etype (Divisor);
+ Quotient_Type : constant Entity_Id := Etype (Quotient);
+ Remainder_Type : constant Entity_Id := Etype (Remainder);
+
+ Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
+ Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
+ Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
+ Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
+
+ Q : Uint;
+ Numerator_Scale : Uint;
+ Stmts : List_Id;
+ Qnn : Entity_Id;
+ Rnn : Entity_Id;
+ Computed_Remainder : Node_Id;
+ Adjusted_Remainder : Node_Id;
+ Scale_Adjust : Uint;
+
+ begin
+ -- Relocate the operands, since they are now list elements, and we
+ -- need to reference them separately as operands in the expanded code.
+
+ Dividend := Relocate_Node (Dividend);
+ Divisor := Relocate_Node (Divisor);
+ Quotient := Relocate_Node (Quotient);
+ Remainder := Relocate_Node (Remainder);
+
+ -- Now compute Q, the adjustment scale
+
+ Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
+
+ -- If Q is non-negative then we need a scaled divide
+
+ if Q >= 0 then
+ Build_Scaled_Divide_Code
+ (N,
+ Dividend,
+ Integer_Literal (N, Uint_10 ** Q),
+ Divisor,
+ Qnn, Rnn, Stmts);
+
+ Numerator_Scale := Dividend_Scale + Q;
+
+ -- If Q is negative, then we need a double divide
+
+ else
+ Build_Double_Divide_Code
+ (N,
+ Dividend,
+ Divisor,
+ Integer_Literal (N, Uint_10 ** (-Q)),
+ Qnn, Rnn, Stmts);
+
+ Numerator_Scale := Dividend_Scale;
+ end if;
+
+ -- Add statement to set quotient value
+
+ -- Quotient := quotient-type!(Qnn);
+
+ Append_To (Stmts,
+ Make_Assignment_Statement (Loc,
+ Name => Quotient,
+ Expression =>
+ Unchecked_Convert_To (Quotient_Type,
+ Build_Conversion (N, Quotient_Type,
+ New_Occurrence_Of (Qnn, Loc)))));
+
+ -- Now we need to deal with computing and setting the remainder. The
+ -- scale of the remainder is in Numerator_Scale, and the desired
+ -- scale is the scale of the given Remainder argument. There are
+ -- three cases:
+
+ -- Numerator_Scale > Remainder_Scale
+
+ -- in this case, there are extra digits in the computed remainder
+ -- which must be eliminated by an extra division:
+
+ -- computed-remainder := Numerator rem Denominator
+ -- scale_adjust = Numerator_Scale - Remainder_Scale
+ -- adjusted-remainder := computed-remainder / 10 ** scale_adjust
+
+ -- Numerator_Scale = Remainder_Scale
+
+ -- in this case, the we have the remainder we need
+
+ -- computed-remainder := Numerator rem Denominator
+ -- adjusted-remainder := computed-remainder
+
+ -- Numerator_Scale < Remainder_Scale
+
+ -- in this case, we have insufficient digits in the computed
+ -- remainder, which must be eliminated by an extra multiply
+
+ -- computed-remainder := Numerator rem Denominator
+ -- scale_adjust = Remainder_Scale - Numerator_Scale
+ -- adjusted-remainder := computed-remainder * 10 ** scale_adjust
+
+ -- Finally we assign the adjusted-remainder to the result Remainder
+ -- with conversions to get the proper fixed-point type representation.
+
+ Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
+
+ if Numerator_Scale > Remainder_Scale then
+ Scale_Adjust := Numerator_Scale - Remainder_Scale;
+ Adjusted_Remainder :=
+ Build_Divide
+ (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
+
+ elsif Numerator_Scale = Remainder_Scale then
+ Adjusted_Remainder := Computed_Remainder;
+
+ else -- Numerator_Scale < Remainder_Scale
+ Scale_Adjust := Remainder_Scale - Numerator_Scale;
+ Adjusted_Remainder :=
+ Build_Multiply
+ (N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
+ end if;
+
+ -- Assignment of remainder result
+
+ Append_To (Stmts,
+ Make_Assignment_Statement (Loc,
+ Name => Remainder,
+ Expression =>
+ Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
+
+ -- Final step is to rewrite the call with a block containing the
+ -- above sequence of constructed statements for the divide operation.
+
+ Rewrite (N,
+ Make_Block_Statement (Loc,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stmts)));
+
+ Analyze (N);
+ end Expand_Decimal_Divide_Call;
+
+ -----------------------------------------------
+ -- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
+ -----------------------------------------------
+
+ procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ begin
+ -- Suppress expansion of a fixed-by-fixed division if the
+ -- operation is supported directly by the target.
+
+ if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
+ return;
+ end if;
+
+ if Etype (Left) = Universal_Real then
+ Do_Divide_Universal_Fixed (N);
+
+ elsif Etype (Right) = Universal_Real then
+ Do_Divide_Fixed_Universal (N);
+
+ else
+ Do_Divide_Fixed_Fixed (N);
+ end if;
+ end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
+
+ -----------------------------------------------
+ -- Expand_Divide_Fixed_By_Fixed_Giving_Float --
+ -----------------------------------------------
+
+ -- The division is done in Universal_Real, and the result is multiplied
+ -- by the small ratio, which is Small (Right) / Small (Left). Special
+ -- treatment is required for universal operands, which represent their
+ -- own value and do not require conversion.
+
+ procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ Left_Type : constant Entity_Id := Etype (Left);
+ Right_Type : constant Entity_Id := Etype (Right);
+
+ begin
+ -- Case of left operand is universal real, the result we want is:
+
+ -- Left_Value / (Right_Value * Right_Small)
+
+ -- so we compute this as:
+
+ -- (Left_Value / Right_Small) / Right_Value
+
+ if Left_Type = Universal_Real then
+ Set_Result (N,
+ Build_Divide (N,
+ Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
+ Fpt_Value (Right)));
+
+ -- Case of right operand is universal real, the result we want is
+
+ -- (Left_Value * Left_Small) / Right_Value
+
+ -- so we compute this as:
+
+ -- Left_Value * (Left_Small / Right_Value)
+
+ -- Note we invert to a multiplication since usually floating-point
+ -- multiplication is much faster than floating-point division.
+
+ elsif Right_Type = Universal_Real then
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Left),
+ Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
+
+ -- Both operands are fixed, so the value we want is
+
+ -- (Left_Value * Left_Small) / (Right_Value * Right_Small)
+
+ -- which we compute as:
+
+ -- (Left_Value / Right_Value) * (Left_Small / Right_Small)
+
+ else
+ Set_Result (N,
+ Build_Multiply (N,
+ Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
+ Real_Literal (N,
+ Small_Value (Left_Type) / Small_Value (Right_Type))));
+ end if;
+ end Expand_Divide_Fixed_By_Fixed_Giving_Float;
+
+ -------------------------------------------------
+ -- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
+ -------------------------------------------------
+
+ procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ begin
+ if Etype (Left) = Universal_Real then
+ Do_Divide_Universal_Fixed (N);
+ elsif Etype (Right) = Universal_Real then
+ Do_Divide_Fixed_Universal (N);
+ else
+ Do_Divide_Fixed_Fixed (N);
+ end if;
+ end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
+
+ -------------------------------------------------
+ -- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
+ -------------------------------------------------
+
+ -- Since the operand and result fixed-point type is the same, this is
+ -- a straight divide by the right operand, the small can be ignored.
+
+ procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ begin
+ Set_Result (N, Build_Divide (N, Left, Right));
+ end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
+
+ -------------------------------------------------
+ -- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
+ -------------------------------------------------
+
+ procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
+ -- The operand may be a non-static universal value, such an
+ -- exponentiation with a non-static exponent. In that case, treat
+ -- as a fixed * fixed multiplication, and convert the argument to
+ -- the target fixed type.
+
+ ----------------------------------
+ -- Rewrite_Non_Static_Universal --
+ ----------------------------------
+
+ procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ begin
+ Rewrite (Opnd,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
+ Expression => Expression (Opnd)));
+ Analyze_And_Resolve (Opnd, Etype (N));
+ end Rewrite_Non_Static_Universal;
+
+ -- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
+
+ begin
+ -- Suppress expansion of a fixed-by-fixed multiplication if the
+ -- operation is supported directly by the target.
+
+ if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
+ return;
+ end if;
+
+ if Etype (Left) = Universal_Real then
+ if Nkind (Left) = N_Real_Literal then
+ Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
+
+ elsif Nkind (Left) = N_Type_Conversion then
+ Rewrite_Non_Static_Universal (Left);
+ Do_Multiply_Fixed_Fixed (N);
+ end if;
+
+ elsif Etype (Right) = Universal_Real then
+ if Nkind (Right) = N_Real_Literal then
+ Do_Multiply_Fixed_Universal (N, Left, Right);
+
+ elsif Nkind (Right) = N_Type_Conversion then
+ Rewrite_Non_Static_Universal (Right);
+ Do_Multiply_Fixed_Fixed (N);
+ end if;
+
+ else
+ Do_Multiply_Fixed_Fixed (N);
+ end if;
+ end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
+
+ -------------------------------------------------
+ -- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
+ -------------------------------------------------
+
+ -- The multiply is done in Universal_Real, and the result is multiplied
+ -- by the adjustment for the smalls which is Small (Right) * Small (Left).
+ -- Special treatment is required for universal operands.
+
+ procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ Left_Type : constant Entity_Id := Etype (Left);
+ Right_Type : constant Entity_Id := Etype (Right);
+
+ begin
+ -- Case of left operand is universal real, the result we want is
+
+ -- Left_Value * (Right_Value * Right_Small)
+
+ -- so we compute this as:
+
+ -- (Left_Value * Right_Small) * Right_Value;
+
+ if Left_Type = Universal_Real then
+ Set_Result (N,
+ Build_Multiply (N,
+ Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
+ Fpt_Value (Right)));
+
+ -- Case of right operand is universal real, the result we want is
+
+ -- (Left_Value * Left_Small) * Right_Value
+
+ -- so we compute this as:
+
+ -- Left_Value * (Left_Small * Right_Value)
+
+ elsif Right_Type = Universal_Real then
+ Set_Result (N,
+ Build_Multiply (N,
+ Fpt_Value (Left),
+ Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
+
+ -- Both operands are fixed, so the value we want is
+
+ -- (Left_Value * Left_Small) * (Right_Value * Right_Small)
+
+ -- which we compute as:
+
+ -- (Left_Value * Right_Value) * (Right_Small * Left_Small)
+
+ else
+ Set_Result (N,
+ Build_Multiply (N,
+ Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
+ Real_Literal (N,
+ Small_Value (Right_Type) * Small_Value (Left_Type))));
+ end if;
+ end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
+
+ ---------------------------------------------------
+ -- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
+ ---------------------------------------------------
+
+ procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+ begin
+ if Etype (Left) = Universal_Real then
+ Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
+ elsif Etype (Right) = Universal_Real then
+ Do_Multiply_Fixed_Universal (N, Left, Right);
+ else
+ Do_Multiply_Fixed_Fixed (N);
+ end if;
+ end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
+
+ ---------------------------------------------------
+ -- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
+ ---------------------------------------------------
+
+ -- Since the operand and result fixed-point type is the same, this is
+ -- a straight multiply by the right operand, the small can be ignored.
+
+ procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
+ begin
+ Set_Result (N,
+ Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
+ end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
+
+ ---------------------------------------------------
+ -- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
+ ---------------------------------------------------
+
+ -- Since the operand and result fixed-point type is the same, this is
+ -- a straight multiply by the right operand, the small can be ignored.
+
+ procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
+ begin
+ Set_Result (N,
+ Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
+ end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
+
+ ---------------
+ -- Fpt_Value --
+ ---------------
+
+ function Fpt_Value (N : Node_Id) return Node_Id is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ if Is_Integer_Type (Typ)
+ or else Is_Floating_Point_Type (Typ)
+ then
+ return Build_Conversion (N, Universal_Real, N);
+
+ -- Fixed-point case, must get integer value first
+
+ else
+ return Build_Conversion (N, Universal_Real, N);
+ end if;
+ end Fpt_Value;
+
+ ---------------------
+ -- Integer_Literal --
+ ---------------------
+
+ function Integer_Literal
+ (N : Node_Id;
+ V : Uint;
+ Negative : Boolean := False) return Node_Id
+ is
+ T : Entity_Id;
+ L : Node_Id;
+
+ begin
+ if V < Uint_2 ** 7 then
+ T := Standard_Integer_8;
+
+ elsif V < Uint_2 ** 15 then
+ T := Standard_Integer_16;
+
+ elsif V < Uint_2 ** 31 then
+ T := Standard_Integer_32;
+
+ elsif V < Uint_2 ** 63 then
+ T := Standard_Integer_64;
+
+ else
+ return Empty;
+ end if;
+
+ if Negative then
+ L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
+ else
+ L := Make_Integer_Literal (Sloc (N), V);
+ end if;
+
+ -- Set type of result in case used elsewhere (see note at start)
+
+ Set_Etype (L, T);
+ Set_Is_Static_Expression (L);
+
+ -- We really need to set Analyzed here because we may be creating a
+ -- very strange beast, namely an integer literal typed as fixed-point
+ -- and the analyzer won't like that. Probably we should allow the
+ -- Treat_Fixed_As_Integer flag to appear on integer literal nodes
+ -- and teach the analyzer how to handle them ???
+
+ Set_Analyzed (L);
+ return L;
+ end Integer_Literal;
+
+ ------------------
+ -- Real_Literal --
+ ------------------
+
+ function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
+ L : Node_Id;
+
+ begin
+ L := Make_Real_Literal (Sloc (N), V);
+
+ -- Set type of result in case used elsewhere (see note at start)
+
+ Set_Etype (L, Universal_Real);
+ return L;
+ end Real_Literal;
+
+ ------------------------
+ -- Rounded_Result_Set --
+ ------------------------
+
+ function Rounded_Result_Set (N : Node_Id) return Boolean is
+ K : constant Node_Kind := Nkind (N);
+ begin
+ if (K = N_Type_Conversion or else
+ K = N_Op_Divide or else
+ K = N_Op_Multiply)
+ and then
+ (Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
+ then
+ return True;
+ else
+ return False;
+ end if;
+ end Rounded_Result_Set;
+
+ ----------------
+ -- Set_Result --
+ ----------------
+
+ procedure Set_Result
+ (N : Node_Id;
+ Expr : Node_Id;
+ Rchk : Boolean := False)
+ is
+ Cnode : Node_Id;
+
+ Expr_Type : constant Entity_Id := Etype (Expr);
+ Result_Type : constant Entity_Id := Etype (N);
+
+ begin
+ -- No conversion required if types match and no range check
+
+ if Result_Type = Expr_Type and then not Rchk then
+ Cnode := Expr;
+
+ -- Else perform required conversion
+
+ else
+ Cnode := Build_Conversion (N, Result_Type, Expr, Rchk);
+ end if;
+
+ Rewrite (N, Cnode);
+ Analyze_And_Resolve (N, Result_Type);
+ end Set_Result;
+
+end Exp_Fixd;