aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/tree-vrp.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
committerJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
commitdf62c1c110e8532b995b23540b7e3695729c0779 (patch)
treedbbd4cbdb50ac38011e058a2533ee4c3168b0205 /gcc-4.4.0/gcc/tree-vrp.c
parent8d401cf711539af5a2f78d12447341d774892618 (diff)
downloadtoolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.gz
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.bz2
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.zip
Check in gcc sources for prebuilt toolchains in Eclair.
Diffstat (limited to 'gcc-4.4.0/gcc/tree-vrp.c')
-rw-r--r--gcc-4.4.0/gcc/tree-vrp.c7334
1 files changed, 7334 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/tree-vrp.c b/gcc-4.4.0/gcc/tree-vrp.c
new file mode 100644
index 000000000..755b117e5
--- /dev/null
+++ b/gcc-4.4.0/gcc/tree-vrp.c
@@ -0,0 +1,7334 @@
+/* Support routines for Value Range Propagation (VRP).
+ Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "flags.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "tree-flow.h"
+#include "tree-pass.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "diagnostic.h"
+#include "toplev.h"
+#include "intl.h"
+#include "cfgloop.h"
+#include "tree-scalar-evolution.h"
+#include "tree-ssa-propagate.h"
+#include "tree-chrec.h"
+
+
+/* Set of SSA names found live during the RPO traversal of the function
+ for still active basic-blocks. */
+static sbitmap *live;
+
+/* Return true if the SSA name NAME is live on the edge E. */
+
+static bool
+live_on_edge (edge e, tree name)
+{
+ return (live[e->dest->index]
+ && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
+}
+
+/* Local functions. */
+static int compare_values (tree val1, tree val2);
+static int compare_values_warnv (tree val1, tree val2, bool *);
+static void vrp_meet (value_range_t *, value_range_t *);
+static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
+ tree, tree, bool, bool *,
+ bool *);
+
+/* Location information for ASSERT_EXPRs. Each instance of this
+ structure describes an ASSERT_EXPR for an SSA name. Since a single
+ SSA name may have more than one assertion associated with it, these
+ locations are kept in a linked list attached to the corresponding
+ SSA name. */
+struct assert_locus_d
+{
+ /* Basic block where the assertion would be inserted. */
+ basic_block bb;
+
+ /* Some assertions need to be inserted on an edge (e.g., assertions
+ generated by COND_EXPRs). In those cases, BB will be NULL. */
+ edge e;
+
+ /* Pointer to the statement that generated this assertion. */
+ gimple_stmt_iterator si;
+
+ /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
+ enum tree_code comp_code;
+
+ /* Value being compared against. */
+ tree val;
+
+ /* Expression to compare. */
+ tree expr;
+
+ /* Next node in the linked list. */
+ struct assert_locus_d *next;
+};
+
+typedef struct assert_locus_d *assert_locus_t;
+
+/* If bit I is present, it means that SSA name N_i has a list of
+ assertions that should be inserted in the IL. */
+static bitmap need_assert_for;
+
+/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
+ holds a list of ASSERT_LOCUS_T nodes that describe where
+ ASSERT_EXPRs for SSA name N_I should be inserted. */
+static assert_locus_t *asserts_for;
+
+/* Value range array. After propagation, VR_VALUE[I] holds the range
+ of values that SSA name N_I may take. */
+static value_range_t **vr_value;
+
+/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
+ number of executable edges we saw the last time we visited the
+ node. */
+static int *vr_phi_edge_counts;
+
+typedef struct {
+ gimple stmt;
+ tree vec;
+} switch_update;
+
+static VEC (edge, heap) *to_remove_edges;
+DEF_VEC_O(switch_update);
+DEF_VEC_ALLOC_O(switch_update, heap);
+static VEC (switch_update, heap) *to_update_switch_stmts;
+
+
+/* Return the maximum value for TYPEs base type. */
+
+static inline tree
+vrp_val_max (const_tree type)
+{
+ if (!INTEGRAL_TYPE_P (type))
+ return NULL_TREE;
+
+ /* For integer sub-types the values for the base type are relevant. */
+ if (TREE_TYPE (type))
+ type = TREE_TYPE (type);
+
+ return TYPE_MAX_VALUE (type);
+}
+
+/* Return the minimum value for TYPEs base type. */
+
+static inline tree
+vrp_val_min (const_tree type)
+{
+ if (!INTEGRAL_TYPE_P (type))
+ return NULL_TREE;
+
+ /* For integer sub-types the values for the base type are relevant. */
+ if (TREE_TYPE (type))
+ type = TREE_TYPE (type);
+
+ return TYPE_MIN_VALUE (type);
+}
+
+/* Return whether VAL is equal to the maximum value of its type. This
+ will be true for a positive overflow infinity. We can't do a
+ simple equality comparison with TYPE_MAX_VALUE because C typedefs
+ and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
+ to the integer constant with the same value in the type. */
+
+static inline bool
+vrp_val_is_max (const_tree val)
+{
+ tree type_max = vrp_val_max (TREE_TYPE (val));
+ return (val == type_max
+ || (type_max != NULL_TREE
+ && operand_equal_p (val, type_max, 0)));
+}
+
+/* Return whether VAL is equal to the minimum value of its type. This
+ will be true for a negative overflow infinity. */
+
+static inline bool
+vrp_val_is_min (const_tree val)
+{
+ tree type_min = vrp_val_min (TREE_TYPE (val));
+ return (val == type_min
+ || (type_min != NULL_TREE
+ && operand_equal_p (val, type_min, 0)));
+}
+
+
+/* Return whether TYPE should use an overflow infinity distinct from
+ TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
+ represent a signed overflow during VRP computations. An infinity
+ is distinct from a half-range, which will go from some number to
+ TYPE_{MIN,MAX}_VALUE. */
+
+static inline bool
+needs_overflow_infinity (const_tree type)
+{
+ return (INTEGRAL_TYPE_P (type)
+ && !TYPE_OVERFLOW_WRAPS (type)
+ /* Integer sub-types never overflow as they are never
+ operands of arithmetic operators. */
+ && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
+}
+
+/* Return whether TYPE can support our overflow infinity
+ representation: we use the TREE_OVERFLOW flag, which only exists
+ for constants. If TYPE doesn't support this, we don't optimize
+ cases which would require signed overflow--we drop them to
+ VARYING. */
+
+static inline bool
+supports_overflow_infinity (const_tree type)
+{
+ tree min = vrp_val_min (type), max = vrp_val_max (type);
+#ifdef ENABLE_CHECKING
+ gcc_assert (needs_overflow_infinity (type));
+#endif
+ return (min != NULL_TREE
+ && CONSTANT_CLASS_P (min)
+ && max != NULL_TREE
+ && CONSTANT_CLASS_P (max));
+}
+
+/* VAL is the maximum or minimum value of a type. Return a
+ corresponding overflow infinity. */
+
+static inline tree
+make_overflow_infinity (tree val)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
+#endif
+ val = copy_node (val);
+ TREE_OVERFLOW (val) = 1;
+ return val;
+}
+
+/* Return a negative overflow infinity for TYPE. */
+
+static inline tree
+negative_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (supports_overflow_infinity (type));
+#endif
+ return make_overflow_infinity (vrp_val_min (type));
+}
+
+/* Return a positive overflow infinity for TYPE. */
+
+static inline tree
+positive_overflow_infinity (tree type)
+{
+#ifdef ENABLE_CHECKING
+ gcc_assert (supports_overflow_infinity (type));
+#endif
+ return make_overflow_infinity (vrp_val_max (type));
+}
+
+/* Return whether VAL is a negative overflow infinity. */
+
+static inline bool
+is_negative_overflow_infinity (const_tree val)
+{
+ return (needs_overflow_infinity (TREE_TYPE (val))
+ && CONSTANT_CLASS_P (val)
+ && TREE_OVERFLOW (val)
+ && vrp_val_is_min (val));
+}
+
+/* Return whether VAL is a positive overflow infinity. */
+
+static inline bool
+is_positive_overflow_infinity (const_tree val)
+{
+ return (needs_overflow_infinity (TREE_TYPE (val))
+ && CONSTANT_CLASS_P (val)
+ && TREE_OVERFLOW (val)
+ && vrp_val_is_max (val));
+}
+
+/* Return whether VAL is a positive or negative overflow infinity. */
+
+static inline bool
+is_overflow_infinity (const_tree val)
+{
+ return (needs_overflow_infinity (TREE_TYPE (val))
+ && CONSTANT_CLASS_P (val)
+ && TREE_OVERFLOW (val)
+ && (vrp_val_is_min (val) || vrp_val_is_max (val)));
+}
+
+/* Return whether STMT has a constant rhs that is_overflow_infinity. */
+
+static inline bool
+stmt_overflow_infinity (gimple stmt)
+{
+ if (is_gimple_assign (stmt)
+ && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
+ GIMPLE_SINGLE_RHS)
+ return is_overflow_infinity (gimple_assign_rhs1 (stmt));
+ return false;
+}
+
+/* If VAL is now an overflow infinity, return VAL. Otherwise, return
+ the same value with TREE_OVERFLOW clear. This can be used to avoid
+ confusing a regular value with an overflow value. */
+
+static inline tree
+avoid_overflow_infinity (tree val)
+{
+ if (!is_overflow_infinity (val))
+ return val;
+
+ if (vrp_val_is_max (val))
+ return vrp_val_max (TREE_TYPE (val));
+ else
+ {
+#ifdef ENABLE_CHECKING
+ gcc_assert (vrp_val_is_min (val));
+#endif
+ return vrp_val_min (TREE_TYPE (val));
+ }
+}
+
+
+/* Return true if ARG is marked with the nonnull attribute in the
+ current function signature. */
+
+static bool
+nonnull_arg_p (const_tree arg)
+{
+ tree t, attrs, fntype;
+ unsigned HOST_WIDE_INT arg_num;
+
+ gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
+
+ /* The static chain decl is always non null. */
+ if (arg == cfun->static_chain_decl)
+ return true;
+
+ fntype = TREE_TYPE (current_function_decl);
+ attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
+
+ /* If "nonnull" wasn't specified, we know nothing about the argument. */
+ if (attrs == NULL_TREE)
+ return false;
+
+ /* If "nonnull" applies to all the arguments, then ARG is non-null. */
+ if (TREE_VALUE (attrs) == NULL_TREE)
+ return true;
+
+ /* Get the position number for ARG in the function signature. */
+ for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
+ t;
+ t = TREE_CHAIN (t), arg_num++)
+ {
+ if (t == arg)
+ break;
+ }
+
+ gcc_assert (t == arg);
+
+ /* Now see if ARG_NUM is mentioned in the nonnull list. */
+ for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
+ {
+ if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
+ return true;
+ }
+
+ return false;
+}
+
+
+/* Set value range VR to VR_VARYING. */
+
+static inline void
+set_value_range_to_varying (value_range_t *vr)
+{
+ vr->type = VR_VARYING;
+ vr->min = vr->max = NULL_TREE;
+ if (vr->equiv)
+ bitmap_clear (vr->equiv);
+}
+
+
+/* Set value range VR to {T, MIN, MAX, EQUIV}. */
+
+static void
+set_value_range (value_range_t *vr, enum value_range_type t, tree min,
+ tree max, bitmap equiv)
+{
+#if defined ENABLE_CHECKING
+ /* Check the validity of the range. */
+ if (t == VR_RANGE || t == VR_ANTI_RANGE)
+ {
+ int cmp;
+
+ gcc_assert (min && max);
+
+ if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
+ gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
+
+ cmp = compare_values (min, max);
+ gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
+
+ if (needs_overflow_infinity (TREE_TYPE (min)))
+ gcc_assert (!is_overflow_infinity (min)
+ || !is_overflow_infinity (max));
+ }
+
+ if (t == VR_UNDEFINED || t == VR_VARYING)
+ gcc_assert (min == NULL_TREE && max == NULL_TREE);
+
+ if (t == VR_UNDEFINED || t == VR_VARYING)
+ gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
+#endif
+
+ vr->type = t;
+ vr->min = min;
+ vr->max = max;
+
+ /* Since updating the equivalence set involves deep copying the
+ bitmaps, only do it if absolutely necessary. */
+ if (vr->equiv == NULL
+ && equiv != NULL)
+ vr->equiv = BITMAP_ALLOC (NULL);
+
+ if (equiv != vr->equiv)
+ {
+ if (equiv && !bitmap_empty_p (equiv))
+ bitmap_copy (vr->equiv, equiv);
+ else
+ bitmap_clear (vr->equiv);
+ }
+}
+
+
+/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
+ This means adjusting T, MIN and MAX representing the case of a
+ wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
+ as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
+ In corner cases where MAX+1 or MIN-1 wraps this will fall back
+ to varying.
+ This routine exists to ease canonicalization in the case where we
+ extract ranges from var + CST op limit. */
+
+static void
+set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
+ tree min, tree max, bitmap equiv)
+{
+ /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
+ if ((t != VR_RANGE
+ && t != VR_ANTI_RANGE)
+ || TREE_CODE (min) != INTEGER_CST
+ || TREE_CODE (max) != INTEGER_CST)
+ {
+ set_value_range (vr, t, min, max, equiv);
+ return;
+ }
+
+ /* Wrong order for min and max, to swap them and the VR type we need
+ to adjust them. */
+ if (tree_int_cst_lt (max, min))
+ {
+ tree one = build_int_cst (TREE_TYPE (min), 1);
+ tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
+ max = int_const_binop (MINUS_EXPR, min, one, 0);
+ min = tmp;
+
+ /* There's one corner case, if we had [C+1, C] before we now have
+ that again. But this represents an empty value range, so drop
+ to varying in this case. */
+ if (tree_int_cst_lt (max, min))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
+ }
+
+ /* Anti-ranges that can be represented as ranges should be so. */
+ if (t == VR_ANTI_RANGE)
+ {
+ bool is_min = vrp_val_is_min (min);
+ bool is_max = vrp_val_is_max (max);
+
+ if (is_min && is_max)
+ {
+ /* We cannot deal with empty ranges, drop to varying. */
+ set_value_range_to_varying (vr);
+ return;
+ }
+ else if (is_min
+ /* As a special exception preserve non-null ranges. */
+ && !(TYPE_UNSIGNED (TREE_TYPE (min))
+ && integer_zerop (max)))
+ {
+ tree one = build_int_cst (TREE_TYPE (max), 1);
+ min = int_const_binop (PLUS_EXPR, max, one, 0);
+ max = vrp_val_max (TREE_TYPE (max));
+ t = VR_RANGE;
+ }
+ else if (is_max)
+ {
+ tree one = build_int_cst (TREE_TYPE (min), 1);
+ max = int_const_binop (MINUS_EXPR, min, one, 0);
+ min = vrp_val_min (TREE_TYPE (min));
+ t = VR_RANGE;
+ }
+ }
+
+ set_value_range (vr, t, min, max, equiv);
+}
+
+/* Copy value range FROM into value range TO. */
+
+static inline void
+copy_value_range (value_range_t *to, value_range_t *from)
+{
+ set_value_range (to, from->type, from->min, from->max, from->equiv);
+}
+
+/* Set value range VR to a single value. This function is only called
+ with values we get from statements, and exists to clear the
+ TREE_OVERFLOW flag so that we don't think we have an overflow
+ infinity when we shouldn't. */
+
+static inline void
+set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
+{
+ gcc_assert (is_gimple_min_invariant (val));
+ val = avoid_overflow_infinity (val);
+ set_value_range (vr, VR_RANGE, val, val, equiv);
+}
+
+/* Set value range VR to a non-negative range of type TYPE.
+ OVERFLOW_INFINITY indicates whether to use an overflow infinity
+ rather than TYPE_MAX_VALUE; this should be true if we determine
+ that the range is nonnegative based on the assumption that signed
+ overflow does not occur. */
+
+static inline void
+set_value_range_to_nonnegative (value_range_t *vr, tree type,
+ bool overflow_infinity)
+{
+ tree zero;
+
+ if (overflow_infinity && !supports_overflow_infinity (type))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ zero = build_int_cst (type, 0);
+ set_value_range (vr, VR_RANGE, zero,
+ (overflow_infinity
+ ? positive_overflow_infinity (type)
+ : TYPE_MAX_VALUE (type)),
+ vr->equiv);
+}
+
+/* Set value range VR to a non-NULL range of type TYPE. */
+
+static inline void
+set_value_range_to_nonnull (value_range_t *vr, tree type)
+{
+ tree zero = build_int_cst (type, 0);
+ set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
+}
+
+
+/* Set value range VR to a NULL range of type TYPE. */
+
+static inline void
+set_value_range_to_null (value_range_t *vr, tree type)
+{
+ set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
+}
+
+
+/* Set value range VR to a range of a truthvalue of type TYPE. */
+
+static inline void
+set_value_range_to_truthvalue (value_range_t *vr, tree type)
+{
+ if (TYPE_PRECISION (type) == 1)
+ set_value_range_to_varying (vr);
+ else
+ set_value_range (vr, VR_RANGE,
+ build_int_cst (type, 0), build_int_cst (type, 1),
+ vr->equiv);
+}
+
+
+/* Set value range VR to VR_UNDEFINED. */
+
+static inline void
+set_value_range_to_undefined (value_range_t *vr)
+{
+ vr->type = VR_UNDEFINED;
+ vr->min = vr->max = NULL_TREE;
+ if (vr->equiv)
+ bitmap_clear (vr->equiv);
+}
+
+
+/* If abs (min) < abs (max), set VR to [-max, max], if
+ abs (min) >= abs (max), set VR to [-min, min]. */
+
+static void
+abs_extent_range (value_range_t *vr, tree min, tree max)
+{
+ int cmp;
+
+ gcc_assert (TREE_CODE (min) == INTEGER_CST);
+ gcc_assert (TREE_CODE (max) == INTEGER_CST);
+ gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
+ gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
+ min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
+ max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
+ if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ cmp = compare_values (min, max);
+ if (cmp == -1)
+ min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
+ else if (cmp == 0 || cmp == 1)
+ {
+ max = min;
+ min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
+ }
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
+}
+
+
+/* Return value range information for VAR.
+
+ If we have no values ranges recorded (ie, VRP is not running), then
+ return NULL. Otherwise create an empty range if none existed for VAR. */
+
+static value_range_t *
+get_value_range (const_tree var)
+{
+ value_range_t *vr;
+ tree sym;
+ unsigned ver = SSA_NAME_VERSION (var);
+
+ /* If we have no recorded ranges, then return NULL. */
+ if (! vr_value)
+ return NULL;
+
+ vr = vr_value[ver];
+ if (vr)
+ return vr;
+
+ /* Create a default value range. */
+ vr_value[ver] = vr = XCNEW (value_range_t);
+
+ /* Defer allocating the equivalence set. */
+ vr->equiv = NULL;
+
+ /* If VAR is a default definition, the variable can take any value
+ in VAR's type. */
+ sym = SSA_NAME_VAR (var);
+ if (SSA_NAME_IS_DEFAULT_DEF (var))
+ {
+ /* Try to use the "nonnull" attribute to create ~[0, 0]
+ anti-ranges for pointers. Note that this is only valid with
+ default definitions of PARM_DECLs. */
+ if (TREE_CODE (sym) == PARM_DECL
+ && POINTER_TYPE_P (TREE_TYPE (sym))
+ && nonnull_arg_p (sym))
+ set_value_range_to_nonnull (vr, TREE_TYPE (sym));
+ else
+ set_value_range_to_varying (vr);
+ }
+
+ return vr;
+}
+
+/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
+
+static inline bool
+vrp_operand_equal_p (const_tree val1, const_tree val2)
+{
+ if (val1 == val2)
+ return true;
+ if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
+ return false;
+ if (is_overflow_infinity (val1))
+ return is_overflow_infinity (val2);
+ return true;
+}
+
+/* Return true, if the bitmaps B1 and B2 are equal. */
+
+static inline bool
+vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
+{
+ return (b1 == b2
+ || (b1 && b2
+ && bitmap_equal_p (b1, b2)));
+}
+
+/* Update the value range and equivalence set for variable VAR to
+ NEW_VR. Return true if NEW_VR is different from VAR's previous
+ value.
+
+ NOTE: This function assumes that NEW_VR is a temporary value range
+ object created for the sole purpose of updating VAR's range. The
+ storage used by the equivalence set from NEW_VR will be freed by
+ this function. Do not call update_value_range when NEW_VR
+ is the range object associated with another SSA name. */
+
+static inline bool
+update_value_range (const_tree var, value_range_t *new_vr)
+{
+ value_range_t *old_vr;
+ bool is_new;
+
+ /* Update the value range, if necessary. */
+ old_vr = get_value_range (var);
+ is_new = old_vr->type != new_vr->type
+ || !vrp_operand_equal_p (old_vr->min, new_vr->min)
+ || !vrp_operand_equal_p (old_vr->max, new_vr->max)
+ || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
+
+ if (is_new)
+ set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
+ new_vr->equiv);
+
+ BITMAP_FREE (new_vr->equiv);
+
+ return is_new;
+}
+
+
+/* Add VAR and VAR's equivalence set to EQUIV. This is the central
+ point where equivalence processing can be turned on/off. */
+
+static void
+add_equivalence (bitmap *equiv, const_tree var)
+{
+ unsigned ver = SSA_NAME_VERSION (var);
+ value_range_t *vr = vr_value[ver];
+
+ if (*equiv == NULL)
+ *equiv = BITMAP_ALLOC (NULL);
+ bitmap_set_bit (*equiv, ver);
+ if (vr && vr->equiv)
+ bitmap_ior_into (*equiv, vr->equiv);
+}
+
+
+/* Return true if VR is ~[0, 0]. */
+
+static inline bool
+range_is_nonnull (value_range_t *vr)
+{
+ return vr->type == VR_ANTI_RANGE
+ && integer_zerop (vr->min)
+ && integer_zerop (vr->max);
+}
+
+
+/* Return true if VR is [0, 0]. */
+
+static inline bool
+range_is_null (value_range_t *vr)
+{
+ return vr->type == VR_RANGE
+ && integer_zerop (vr->min)
+ && integer_zerop (vr->max);
+}
+
+
+/* Return true if value range VR involves at least one symbol. */
+
+static inline bool
+symbolic_range_p (value_range_t *vr)
+{
+ return (!is_gimple_min_invariant (vr->min)
+ || !is_gimple_min_invariant (vr->max));
+}
+
+/* Return true if value range VR uses an overflow infinity. */
+
+static inline bool
+overflow_infinity_range_p (value_range_t *vr)
+{
+ return (vr->type == VR_RANGE
+ && (is_overflow_infinity (vr->min)
+ || is_overflow_infinity (vr->max)));
+}
+
+/* Return false if we can not make a valid comparison based on VR;
+ this will be the case if it uses an overflow infinity and overflow
+ is not undefined (i.e., -fno-strict-overflow is in effect).
+ Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
+ uses an overflow infinity. */
+
+static bool
+usable_range_p (value_range_t *vr, bool *strict_overflow_p)
+{
+ gcc_assert (vr->type == VR_RANGE);
+ if (is_overflow_infinity (vr->min))
+ {
+ *strict_overflow_p = true;
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
+ return false;
+ }
+ if (is_overflow_infinity (vr->max))
+ {
+ *strict_overflow_p = true;
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
+ return false;
+ }
+ return true;
+}
+
+
+/* Like tree_expr_nonnegative_warnv_p, but this function uses value
+ ranges obtained so far. */
+
+static bool
+vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
+{
+ return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
+ || (TREE_CODE (expr) == SSA_NAME
+ && ssa_name_nonnegative_p (expr)));
+}
+
+/* Return true if the result of assignment STMT is know to be non-negative.
+ If the return value is based on the assumption that signed overflow is
+ undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+ *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+ enum tree_code code = gimple_assign_rhs_code (stmt);
+ switch (get_gimple_rhs_class (code))
+ {
+ case GIMPLE_UNARY_RHS:
+ return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt),
+ strict_overflow_p);
+ case GIMPLE_BINARY_RHS:
+ return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ strict_overflow_p);
+ case GIMPLE_SINGLE_RHS:
+ return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
+ strict_overflow_p);
+ case GIMPLE_INVALID_RHS:
+ gcc_unreachable ();
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if return value of call STMT is know to be non-negative.
+ If the return value is based on the assumption that signed overflow is
+ undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+ *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+ tree arg0 = gimple_call_num_args (stmt) > 0 ?
+ gimple_call_arg (stmt, 0) : NULL_TREE;
+ tree arg1 = gimple_call_num_args (stmt) > 1 ?
+ gimple_call_arg (stmt, 1) : NULL_TREE;
+
+ return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
+ gimple_call_fndecl (stmt),
+ arg0,
+ arg1,
+ strict_overflow_p);
+}
+
+/* Return true if STMT is know to to compute a non-negative value.
+ If the return value is based on the assumption that signed overflow is
+ undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+ *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
+ case GIMPLE_CALL:
+ return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if the result of assignment STMT is know to be non-zero.
+ If the return value is based on the assumption that signed overflow is
+ undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+ *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+ enum tree_code code = gimple_assign_rhs_code (stmt);
+ switch (get_gimple_rhs_class (code))
+ {
+ case GIMPLE_UNARY_RHS:
+ return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt),
+ strict_overflow_p);
+ case GIMPLE_BINARY_RHS:
+ return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt),
+ strict_overflow_p);
+ case GIMPLE_SINGLE_RHS:
+ return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
+ strict_overflow_p);
+ case GIMPLE_INVALID_RHS:
+ gcc_unreachable ();
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return true if STMT is know to to compute a non-zero value.
+ If the return value is based on the assumption that signed overflow is
+ undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
+ *STRICT_OVERFLOW_P.*/
+
+static bool
+gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
+{
+ switch (gimple_code (stmt))
+ {
+ case GIMPLE_ASSIGN:
+ return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
+ case GIMPLE_CALL:
+ return gimple_alloca_call_p (stmt);
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
+ obtained so far. */
+
+static bool
+vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
+{
+ if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
+ return true;
+
+ /* If we have an expression of the form &X->a, then the expression
+ is nonnull if X is nonnull. */
+ if (is_gimple_assign (stmt)
+ && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
+ {
+ tree expr = gimple_assign_rhs1 (stmt);
+ tree base = get_base_address (TREE_OPERAND (expr, 0));
+
+ if (base != NULL_TREE
+ && TREE_CODE (base) == INDIRECT_REF
+ && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
+ {
+ value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
+ if (range_is_nonnull (vr))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Returns true if EXPR is a valid value (as expected by compare_values) --
+ a gimple invariant, or SSA_NAME +- CST. */
+
+static bool
+valid_value_p (tree expr)
+{
+ if (TREE_CODE (expr) == SSA_NAME)
+ return true;
+
+ if (TREE_CODE (expr) == PLUS_EXPR
+ || TREE_CODE (expr) == MINUS_EXPR)
+ return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
+ && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
+
+ return is_gimple_min_invariant (expr);
+}
+
+/* Return
+ 1 if VAL < VAL2
+ 0 if !(VAL < VAL2)
+ -2 if those are incomparable. */
+static inline int
+operand_less_p (tree val, tree val2)
+{
+ /* LT is folded faster than GE and others. Inline the common case. */
+ if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
+ {
+ if (TYPE_UNSIGNED (TREE_TYPE (val)))
+ return INT_CST_LT_UNSIGNED (val, val2);
+ else
+ {
+ if (INT_CST_LT (val, val2))
+ return 1;
+ }
+ }
+ else
+ {
+ tree tcmp;
+
+ fold_defer_overflow_warnings ();
+
+ tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
+
+ fold_undefer_and_ignore_overflow_warnings ();
+
+ if (!tcmp
+ || TREE_CODE (tcmp) != INTEGER_CST)
+ return -2;
+
+ if (!integer_zerop (tcmp))
+ return 1;
+ }
+
+ /* val >= val2, not considering overflow infinity. */
+ if (is_negative_overflow_infinity (val))
+ return is_negative_overflow_infinity (val2) ? 0 : 1;
+ else if (is_positive_overflow_infinity (val2))
+ return is_positive_overflow_infinity (val) ? 0 : 1;
+
+ return 0;
+}
+
+/* Compare two values VAL1 and VAL2. Return
+
+ -2 if VAL1 and VAL2 cannot be compared at compile-time,
+ -1 if VAL1 < VAL2,
+ 0 if VAL1 == VAL2,
+ +1 if VAL1 > VAL2, and
+ +2 if VAL1 != VAL2
+
+ This is similar to tree_int_cst_compare but supports pointer values
+ and values that cannot be compared at compile time.
+
+ If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
+ true if the return value is only valid if we assume that signed
+ overflow is undefined. */
+
+static int
+compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
+{
+ if (val1 == val2)
+ return 0;
+
+ /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
+ both integers. */
+ gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
+ == POINTER_TYPE_P (TREE_TYPE (val2)));
+ /* Convert the two values into the same type. This is needed because
+ sizetype causes sign extension even for unsigned types. */
+ val2 = fold_convert (TREE_TYPE (val1), val2);
+ STRIP_USELESS_TYPE_CONVERSION (val2);
+
+ if ((TREE_CODE (val1) == SSA_NAME
+ || TREE_CODE (val1) == PLUS_EXPR
+ || TREE_CODE (val1) == MINUS_EXPR)
+ && (TREE_CODE (val2) == SSA_NAME
+ || TREE_CODE (val2) == PLUS_EXPR
+ || TREE_CODE (val2) == MINUS_EXPR))
+ {
+ tree n1, c1, n2, c2;
+ enum tree_code code1, code2;
+
+ /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
+ return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
+ same name, return -2. */
+ if (TREE_CODE (val1) == SSA_NAME)
+ {
+ code1 = SSA_NAME;
+ n1 = val1;
+ c1 = NULL_TREE;
+ }
+ else
+ {
+ code1 = TREE_CODE (val1);
+ n1 = TREE_OPERAND (val1, 0);
+ c1 = TREE_OPERAND (val1, 1);
+ if (tree_int_cst_sgn (c1) == -1)
+ {
+ if (is_negative_overflow_infinity (c1))
+ return -2;
+ c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
+ if (!c1)
+ return -2;
+ code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+ }
+ }
+
+ if (TREE_CODE (val2) == SSA_NAME)
+ {
+ code2 = SSA_NAME;
+ n2 = val2;
+ c2 = NULL_TREE;
+ }
+ else
+ {
+ code2 = TREE_CODE (val2);
+ n2 = TREE_OPERAND (val2, 0);
+ c2 = TREE_OPERAND (val2, 1);
+ if (tree_int_cst_sgn (c2) == -1)
+ {
+ if (is_negative_overflow_infinity (c2))
+ return -2;
+ c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
+ if (!c2)
+ return -2;
+ code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
+ }
+ }
+
+ /* Both values must use the same name. */
+ if (n1 != n2)
+ return -2;
+
+ if (code1 == SSA_NAME
+ && code2 == SSA_NAME)
+ /* NAME == NAME */
+ return 0;
+
+ /* If overflow is defined we cannot simplify more. */
+ if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
+ return -2;
+
+ if (strict_overflow_p != NULL
+ && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
+ && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
+ *strict_overflow_p = true;
+
+ if (code1 == SSA_NAME)
+ {
+ if (code2 == PLUS_EXPR)
+ /* NAME < NAME + CST */
+ return -1;
+ else if (code2 == MINUS_EXPR)
+ /* NAME > NAME - CST */
+ return 1;
+ }
+ else if (code1 == PLUS_EXPR)
+ {
+ if (code2 == SSA_NAME)
+ /* NAME + CST > NAME */
+ return 1;
+ else if (code2 == PLUS_EXPR)
+ /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
+ return compare_values_warnv (c1, c2, strict_overflow_p);
+ else if (code2 == MINUS_EXPR)
+ /* NAME + CST1 > NAME - CST2 */
+ return 1;
+ }
+ else if (code1 == MINUS_EXPR)
+ {
+ if (code2 == SSA_NAME)
+ /* NAME - CST < NAME */
+ return -1;
+ else if (code2 == PLUS_EXPR)
+ /* NAME - CST1 < NAME + CST2 */
+ return -1;
+ else if (code2 == MINUS_EXPR)
+ /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
+ C1 and C2 are swapped in the call to compare_values. */
+ return compare_values_warnv (c2, c1, strict_overflow_p);
+ }
+
+ gcc_unreachable ();
+ }
+
+ /* We cannot compare non-constants. */
+ if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
+ return -2;
+
+ if (!POINTER_TYPE_P (TREE_TYPE (val1)))
+ {
+ /* We cannot compare overflowed values, except for overflow
+ infinities. */
+ if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
+ {
+ if (strict_overflow_p != NULL)
+ *strict_overflow_p = true;
+ if (is_negative_overflow_infinity (val1))
+ return is_negative_overflow_infinity (val2) ? 0 : -1;
+ else if (is_negative_overflow_infinity (val2))
+ return 1;
+ else if (is_positive_overflow_infinity (val1))
+ return is_positive_overflow_infinity (val2) ? 0 : 1;
+ else if (is_positive_overflow_infinity (val2))
+ return -1;
+ return -2;
+ }
+
+ return tree_int_cst_compare (val1, val2);
+ }
+ else
+ {
+ tree t;
+
+ /* First see if VAL1 and VAL2 are not the same. */
+ if (val1 == val2 || operand_equal_p (val1, val2, 0))
+ return 0;
+
+ /* If VAL1 is a lower address than VAL2, return -1. */
+ if (operand_less_p (val1, val2) == 1)
+ return -1;
+
+ /* If VAL1 is a higher address than VAL2, return +1. */
+ if (operand_less_p (val2, val1) == 1)
+ return 1;
+
+ /* If VAL1 is different than VAL2, return +2.
+ For integer constants we either have already returned -1 or 1
+ or they are equivalent. We still might succeed in proving
+ something about non-trivial operands. */
+ if (TREE_CODE (val1) != INTEGER_CST
+ || TREE_CODE (val2) != INTEGER_CST)
+ {
+ t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
+ if (t && integer_onep (t))
+ return 2;
+ }
+
+ return -2;
+ }
+}
+
+/* Compare values like compare_values_warnv, but treat comparisons of
+ nonconstants which rely on undefined overflow as incomparable. */
+
+static int
+compare_values (tree val1, tree val2)
+{
+ bool sop;
+ int ret;
+
+ sop = false;
+ ret = compare_values_warnv (val1, val2, &sop);
+ if (sop
+ && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
+ ret = -2;
+ return ret;
+}
+
+
+/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
+ 0 if VAL is not inside VR,
+ -2 if we cannot tell either way.
+
+ FIXME, the current semantics of this functions are a bit quirky
+ when taken in the context of VRP. In here we do not care
+ about VR's type. If VR is the anti-range ~[3, 5] the call
+ value_inside_range (4, VR) will return 1.
+
+ This is counter-intuitive in a strict sense, but the callers
+ currently expect this. They are calling the function
+ merely to determine whether VR->MIN <= VAL <= VR->MAX. The
+ callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
+ themselves.
+
+ This also applies to value_ranges_intersect_p and
+ range_includes_zero_p. The semantics of VR_RANGE and
+ VR_ANTI_RANGE should be encoded here, but that also means
+ adapting the users of these functions to the new semantics.
+
+ Benchmark compile/20001226-1.c compilation time after changing this
+ function. */
+
+static inline int
+value_inside_range (tree val, value_range_t * vr)
+{
+ int cmp1, cmp2;
+
+ cmp1 = operand_less_p (val, vr->min);
+ if (cmp1 == -2)
+ return -2;
+ if (cmp1 == 1)
+ return 0;
+
+ cmp2 = operand_less_p (vr->max, val);
+ if (cmp2 == -2)
+ return -2;
+
+ return !cmp2;
+}
+
+
+/* Return true if value ranges VR0 and VR1 have a non-empty
+ intersection.
+
+ Benchmark compile/20001226-1.c compilation time after changing this
+ function.
+ */
+
+static inline bool
+value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
+{
+ /* The value ranges do not intersect if the maximum of the first range is
+ less than the minimum of the second range or vice versa.
+ When those relations are unknown, we can't do any better. */
+ if (operand_less_p (vr0->max, vr1->min) != 0)
+ return false;
+ if (operand_less_p (vr1->max, vr0->min) != 0)
+ return false;
+ return true;
+}
+
+
+/* Return true if VR includes the value zero, false otherwise. FIXME,
+ currently this will return false for an anti-range like ~[-4, 3].
+ This will be wrong when the semantics of value_inside_range are
+ modified (currently the users of this function expect these
+ semantics). */
+
+static inline bool
+range_includes_zero_p (value_range_t *vr)
+{
+ tree zero;
+
+ gcc_assert (vr->type != VR_UNDEFINED
+ && vr->type != VR_VARYING
+ && !symbolic_range_p (vr));
+
+ zero = build_int_cst (TREE_TYPE (vr->min), 0);
+ return (value_inside_range (zero, vr) == 1);
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
+ false otherwise or if no value range information is available. */
+
+bool
+ssa_name_nonnegative_p (const_tree t)
+{
+ value_range_t *vr = get_value_range (t);
+
+ if (!vr)
+ return false;
+
+ /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
+ which would return a useful value should be encoded as a VR_RANGE. */
+ if (vr->type == VR_RANGE)
+ {
+ int result = compare_values (vr->min, integer_zero_node);
+
+ return (result == 0 || result == 1);
+ }
+ return false;
+}
+
+/* Return true if T, an SSA_NAME, is known to be nonzero. Return
+ false otherwise or if no value range information is available. */
+
+bool
+ssa_name_nonzero_p (const_tree t)
+{
+ value_range_t *vr = get_value_range (t);
+
+ if (!vr)
+ return false;
+
+ /* A VR_RANGE which does not include zero is a nonzero value. */
+ if (vr->type == VR_RANGE && !symbolic_range_p (vr))
+ return ! range_includes_zero_p (vr);
+
+ /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
+ if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
+ return range_includes_zero_p (vr);
+
+ return false;
+}
+
+/* If OP has a value range with a single constant value return that,
+ otherwise return NULL_TREE. This returns OP itself if OP is a
+ constant. */
+
+static tree
+op_with_constant_singleton_value_range (tree op)
+{
+ value_range_t *vr;
+
+ if (is_gimple_min_invariant (op))
+ return op;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL_TREE;
+
+ vr = get_value_range (op);
+ if (vr->type == VR_RANGE
+ && operand_equal_p (vr->min, vr->max, 0)
+ && is_gimple_min_invariant (vr->min))
+ return vr->min;
+
+ return NULL_TREE;
+}
+
+
+/* Extract value range information from an ASSERT_EXPR EXPR and store
+ it in *VR_P. */
+
+static void
+extract_range_from_assert (value_range_t *vr_p, tree expr)
+{
+ tree var, cond, limit, min, max, type;
+ value_range_t *var_vr, *limit_vr;
+ enum tree_code cond_code;
+
+ var = ASSERT_EXPR_VAR (expr);
+ cond = ASSERT_EXPR_COND (expr);
+
+ gcc_assert (COMPARISON_CLASS_P (cond));
+
+ /* Find VAR in the ASSERT_EXPR conditional. */
+ if (var == TREE_OPERAND (cond, 0)
+ || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
+ || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
+ {
+ /* If the predicate is of the form VAR COMP LIMIT, then we just
+ take LIMIT from the RHS and use the same comparison code. */
+ cond_code = TREE_CODE (cond);
+ limit = TREE_OPERAND (cond, 1);
+ cond = TREE_OPERAND (cond, 0);
+ }
+ else
+ {
+ /* If the predicate is of the form LIMIT COMP VAR, then we need
+ to flip around the comparison code to create the proper range
+ for VAR. */
+ cond_code = swap_tree_comparison (TREE_CODE (cond));
+ limit = TREE_OPERAND (cond, 0);
+ cond = TREE_OPERAND (cond, 1);
+ }
+
+ limit = avoid_overflow_infinity (limit);
+
+ type = TREE_TYPE (limit);
+ gcc_assert (limit != var);
+
+ /* For pointer arithmetic, we only keep track of pointer equality
+ and inequality. */
+ if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
+ {
+ set_value_range_to_varying (vr_p);
+ return;
+ }
+
+ /* If LIMIT is another SSA name and LIMIT has a range of its own,
+ try to use LIMIT's range to avoid creating symbolic ranges
+ unnecessarily. */
+ limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
+
+ /* LIMIT's range is only interesting if it has any useful information. */
+ if (limit_vr
+ && (limit_vr->type == VR_UNDEFINED
+ || limit_vr->type == VR_VARYING
+ || symbolic_range_p (limit_vr)))
+ limit_vr = NULL;
+
+ /* Initially, the new range has the same set of equivalences of
+ VAR's range. This will be revised before returning the final
+ value. Since assertions may be chained via mutually exclusive
+ predicates, we will need to trim the set of equivalences before
+ we are done. */
+ gcc_assert (vr_p->equiv == NULL);
+ add_equivalence (&vr_p->equiv, var);
+
+ /* Extract a new range based on the asserted comparison for VAR and
+ LIMIT's value range. Notice that if LIMIT has an anti-range, we
+ will only use it for equality comparisons (EQ_EXPR). For any
+ other kind of assertion, we cannot derive a range from LIMIT's
+ anti-range that can be used to describe the new range. For
+ instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
+ then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
+ no single range for x_2 that could describe LE_EXPR, so we might
+ as well build the range [b_4, +INF] for it.
+ One special case we handle is extracting a range from a
+ range test encoded as (unsigned)var + CST <= limit. */
+ if (TREE_CODE (cond) == NOP_EXPR
+ || TREE_CODE (cond) == PLUS_EXPR)
+ {
+ if (TREE_CODE (cond) == PLUS_EXPR)
+ {
+ min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
+ TREE_OPERAND (cond, 1));
+ max = int_const_binop (PLUS_EXPR, limit, min, 0);
+ cond = TREE_OPERAND (cond, 0);
+ }
+ else
+ {
+ min = build_int_cst (TREE_TYPE (var), 0);
+ max = limit;
+ }
+
+ /* Make sure to not set TREE_OVERFLOW on the final type
+ conversion. We are willingly interpreting large positive
+ unsigned values as negative singed values here. */
+ min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
+ TREE_INT_CST_HIGH (min), 0, false);
+ max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
+ TREE_INT_CST_HIGH (max), 0, false);
+
+ /* We can transform a max, min range to an anti-range or
+ vice-versa. Use set_and_canonicalize_value_range which does
+ this for us. */
+ if (cond_code == LE_EXPR)
+ set_and_canonicalize_value_range (vr_p, VR_RANGE,
+ min, max, vr_p->equiv);
+ else if (cond_code == GT_EXPR)
+ set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
+ min, max, vr_p->equiv);
+ else
+ gcc_unreachable ();
+ }
+ else if (cond_code == EQ_EXPR)
+ {
+ enum value_range_type range_type;
+
+ if (limit_vr)
+ {
+ range_type = limit_vr->type;
+ min = limit_vr->min;
+ max = limit_vr->max;
+ }
+ else
+ {
+ range_type = VR_RANGE;
+ min = limit;
+ max = limit;
+ }
+
+ set_value_range (vr_p, range_type, min, max, vr_p->equiv);
+
+ /* When asserting the equality VAR == LIMIT and LIMIT is another
+ SSA name, the new range will also inherit the equivalence set
+ from LIMIT. */
+ if (TREE_CODE (limit) == SSA_NAME)
+ add_equivalence (&vr_p->equiv, limit);
+ }
+ else if (cond_code == NE_EXPR)
+ {
+ /* As described above, when LIMIT's range is an anti-range and
+ this assertion is an inequality (NE_EXPR), then we cannot
+ derive anything from the anti-range. For instance, if
+ LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
+ not imply that VAR's range is [0, 0]. So, in the case of
+ anti-ranges, we just assert the inequality using LIMIT and
+ not its anti-range.
+
+ If LIMIT_VR is a range, we can only use it to build a new
+ anti-range if LIMIT_VR is a single-valued range. For
+ instance, if LIMIT_VR is [0, 1], the predicate
+ VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
+ Rather, it means that for value 0 VAR should be ~[0, 0]
+ and for value 1, VAR should be ~[1, 1]. We cannot
+ represent these ranges.
+
+ The only situation in which we can build a valid
+ anti-range is when LIMIT_VR is a single-valued range
+ (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
+ build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
+ if (limit_vr
+ && limit_vr->type == VR_RANGE
+ && compare_values (limit_vr->min, limit_vr->max) == 0)
+ {
+ min = limit_vr->min;
+ max = limit_vr->max;
+ }
+ else
+ {
+ /* In any other case, we cannot use LIMIT's range to build a
+ valid anti-range. */
+ min = max = limit;
+ }
+
+ /* If MIN and MAX cover the whole range for their type, then
+ just use the original LIMIT. */
+ if (INTEGRAL_TYPE_P (type)
+ && vrp_val_is_min (min)
+ && vrp_val_is_max (max))
+ min = max = limit;
+
+ set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
+ }
+ else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+ {
+ min = TYPE_MIN_VALUE (type);
+
+ if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
+ max = limit;
+ else
+ {
+ /* If LIMIT_VR is of the form [N1, N2], we need to build the
+ range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
+ LT_EXPR. */
+ max = limit_vr->max;
+ }
+
+ /* If the maximum value forces us to be out of bounds, simply punt.
+ It would be pointless to try and do anything more since this
+ all should be optimized away above us. */
+ if ((cond_code == LT_EXPR
+ && compare_values (max, min) == 0)
+ || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
+ set_value_range_to_varying (vr_p);
+ else
+ {
+ /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
+ if (cond_code == LT_EXPR)
+ {
+ tree one = build_int_cst (type, 1);
+ max = fold_build2 (MINUS_EXPR, type, max, one);
+ if (EXPR_P (max))
+ TREE_NO_WARNING (max) = 1;
+ }
+
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ }
+ else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+ {
+ max = TYPE_MAX_VALUE (type);
+
+ if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
+ min = limit;
+ else
+ {
+ /* If LIMIT_VR is of the form [N1, N2], we need to build the
+ range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
+ GT_EXPR. */
+ min = limit_vr->min;
+ }
+
+ /* If the minimum value forces us to be out of bounds, simply punt.
+ It would be pointless to try and do anything more since this
+ all should be optimized away above us. */
+ if ((cond_code == GT_EXPR
+ && compare_values (min, max) == 0)
+ || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
+ set_value_range_to_varying (vr_p);
+ else
+ {
+ /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
+ if (cond_code == GT_EXPR)
+ {
+ tree one = build_int_cst (type, 1);
+ min = fold_build2 (PLUS_EXPR, type, min, one);
+ if (EXPR_P (min))
+ TREE_NO_WARNING (min) = 1;
+ }
+
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ }
+ else
+ gcc_unreachable ();
+
+ /* If VAR already had a known range, it may happen that the new
+ range we have computed and VAR's range are not compatible. For
+ instance,
+
+ if (p_5 == NULL)
+ p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
+ x_7 = p_6->fld;
+ p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
+
+ While the above comes from a faulty program, it will cause an ICE
+ later because p_8 and p_6 will have incompatible ranges and at
+ the same time will be considered equivalent. A similar situation
+ would arise from
+
+ if (i_5 > 10)
+ i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
+ if (i_5 < 5)
+ i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
+
+ Again i_6 and i_7 will have incompatible ranges. It would be
+ pointless to try and do anything with i_7's range because
+ anything dominated by 'if (i_5 < 5)' will be optimized away.
+ Note, due to the wa in which simulation proceeds, the statement
+ i_7 = ASSERT_EXPR <...> we would never be visited because the
+ conditional 'if (i_5 < 5)' always evaluates to false. However,
+ this extra check does not hurt and may protect against future
+ changes to VRP that may get into a situation similar to the
+ NULL pointer dereference example.
+
+ Note that these compatibility tests are only needed when dealing
+ with ranges or a mix of range and anti-range. If VAR_VR and VR_P
+ are both anti-ranges, they will always be compatible, because two
+ anti-ranges will always have a non-empty intersection. */
+
+ var_vr = get_value_range (var);
+
+ /* We may need to make adjustments when VR_P and VAR_VR are numeric
+ ranges or anti-ranges. */
+ if (vr_p->type == VR_VARYING
+ || vr_p->type == VR_UNDEFINED
+ || var_vr->type == VR_VARYING
+ || var_vr->type == VR_UNDEFINED
+ || symbolic_range_p (vr_p)
+ || symbolic_range_p (var_vr))
+ return;
+
+ if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
+ {
+ /* If the two ranges have a non-empty intersection, we can
+ refine the resulting range. Since the assert expression
+ creates an equivalency and at the same time it asserts a
+ predicate, we can take the intersection of the two ranges to
+ get better precision. */
+ if (value_ranges_intersect_p (var_vr, vr_p))
+ {
+ /* Use the larger of the two minimums. */
+ if (compare_values (vr_p->min, var_vr->min) == -1)
+ min = var_vr->min;
+ else
+ min = vr_p->min;
+
+ /* Use the smaller of the two maximums. */
+ if (compare_values (vr_p->max, var_vr->max) == 1)
+ max = var_vr->max;
+ else
+ max = vr_p->max;
+
+ set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
+ }
+ else
+ {
+ /* The two ranges do not intersect, set the new range to
+ VARYING, because we will not be able to do anything
+ meaningful with it. */
+ set_value_range_to_varying (vr_p);
+ }
+ }
+ else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
+ || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
+ {
+ /* A range and an anti-range will cancel each other only if
+ their ends are the same. For instance, in the example above,
+ p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
+ so VR_P should be set to VR_VARYING. */
+ if (compare_values (var_vr->min, vr_p->min) == 0
+ && compare_values (var_vr->max, vr_p->max) == 0)
+ set_value_range_to_varying (vr_p);
+ else
+ {
+ tree min, max, anti_min, anti_max, real_min, real_max;
+ int cmp;
+
+ /* We want to compute the logical AND of the two ranges;
+ there are three cases to consider.
+
+
+ 1. The VR_ANTI_RANGE range is completely within the
+ VR_RANGE and the endpoints of the ranges are
+ different. In that case the resulting range
+ should be whichever range is more precise.
+ Typically that will be the VR_RANGE.
+
+ 2. The VR_ANTI_RANGE is completely disjoint from
+ the VR_RANGE. In this case the resulting range
+ should be the VR_RANGE.
+
+ 3. There is some overlap between the VR_ANTI_RANGE
+ and the VR_RANGE.
+
+ 3a. If the high limit of the VR_ANTI_RANGE resides
+ within the VR_RANGE, then the result is a new
+ VR_RANGE starting at the high limit of the
+ VR_ANTI_RANGE + 1 and extending to the
+ high limit of the original VR_RANGE.
+
+ 3b. If the low limit of the VR_ANTI_RANGE resides
+ within the VR_RANGE, then the result is a new
+ VR_RANGE starting at the low limit of the original
+ VR_RANGE and extending to the low limit of the
+ VR_ANTI_RANGE - 1. */
+ if (vr_p->type == VR_ANTI_RANGE)
+ {
+ anti_min = vr_p->min;
+ anti_max = vr_p->max;
+ real_min = var_vr->min;
+ real_max = var_vr->max;
+ }
+ else
+ {
+ anti_min = var_vr->min;
+ anti_max = var_vr->max;
+ real_min = vr_p->min;
+ real_max = vr_p->max;
+ }
+
+
+ /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
+ not including any endpoints. */
+ if (compare_values (anti_max, real_max) == -1
+ && compare_values (anti_min, real_min) == 1)
+ {
+ /* If the range is covering the whole valid range of
+ the type keep the anti-range. */
+ if (!vrp_val_is_min (real_min)
+ || !vrp_val_is_max (real_max))
+ set_value_range (vr_p, VR_RANGE, real_min,
+ real_max, vr_p->equiv);
+ }
+ /* Case 2, VR_ANTI_RANGE completely disjoint from
+ VR_RANGE. */
+ else if (compare_values (anti_min, real_max) == 1
+ || compare_values (anti_max, real_min) == -1)
+ {
+ set_value_range (vr_p, VR_RANGE, real_min,
+ real_max, vr_p->equiv);
+ }
+ /* Case 3a, the anti-range extends into the low
+ part of the real range. Thus creating a new
+ low for the real range. */
+ else if (((cmp = compare_values (anti_max, real_min)) == 1
+ || cmp == 0)
+ && compare_values (anti_max, real_max) == -1)
+ {
+ gcc_assert (!is_positive_overflow_infinity (anti_max));
+ if (needs_overflow_infinity (TREE_TYPE (anti_max))
+ && vrp_val_is_max (anti_max))
+ {
+ if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+ {
+ set_value_range_to_varying (vr_p);
+ return;
+ }
+ min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
+ }
+ else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
+ min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
+ anti_max,
+ build_int_cst (TREE_TYPE (var_vr->min), 1));
+ else
+ min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
+ anti_max, size_int (1));
+ max = real_max;
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ /* Case 3b, the anti-range extends into the high
+ part of the real range. Thus creating a new
+ higher for the real range. */
+ else if (compare_values (anti_min, real_min) == 1
+ && ((cmp = compare_values (anti_min, real_max)) == -1
+ || cmp == 0))
+ {
+ gcc_assert (!is_negative_overflow_infinity (anti_min));
+ if (needs_overflow_infinity (TREE_TYPE (anti_min))
+ && vrp_val_is_min (anti_min))
+ {
+ if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
+ {
+ set_value_range_to_varying (vr_p);
+ return;
+ }
+ max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
+ }
+ else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
+ max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
+ anti_min,
+ build_int_cst (TREE_TYPE (var_vr->min), 1));
+ else
+ max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
+ anti_min,
+ size_int (-1));
+ min = real_min;
+ set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
+ }
+ }
+ }
+}
+
+
+/* Extract range information from SSA name VAR and store it in VR. If
+ VAR has an interesting range, use it. Otherwise, create the
+ range [VAR, VAR] and return it. This is useful in situations where
+ we may have conditionals testing values of VARYING names. For
+ instance,
+
+ x_3 = y_5;
+ if (x_3 > y_5)
+ ...
+
+ Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
+ always false. */
+
+static void
+extract_range_from_ssa_name (value_range_t *vr, tree var)
+{
+ value_range_t *var_vr = get_value_range (var);
+
+ if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
+ copy_value_range (vr, var_vr);
+ else
+ set_value_range (vr, VR_RANGE, var, var, NULL);
+
+ add_equivalence (&vr->equiv, var);
+}
+
+
+/* Wrapper around int_const_binop. If the operation overflows and we
+ are not using wrapping arithmetic, then adjust the result to be
+ -INF or +INF depending on CODE, VAL1 and VAL2. This can return
+ NULL_TREE if we need to use an overflow infinity representation but
+ the type does not support it. */
+
+static tree
+vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
+{
+ tree res;
+
+ res = int_const_binop (code, val1, val2, 0);
+
+ /* If we are not using wrapping arithmetic, operate symbolically
+ on -INF and +INF. */
+ if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
+ {
+ int checkz = compare_values (res, val1);
+ bool overflow = false;
+
+ /* Ensure that res = val1 [+*] val2 >= val1
+ or that res = val1 - val2 <= val1. */
+ if ((code == PLUS_EXPR
+ && !(checkz == 1 || checkz == 0))
+ || (code == MINUS_EXPR
+ && !(checkz == 0 || checkz == -1)))
+ {
+ overflow = true;
+ }
+ /* Checking for multiplication overflow is done by dividing the
+ output of the multiplication by the first input of the
+ multiplication. If the result of that division operation is
+ not equal to the second input of the multiplication, then the
+ multiplication overflowed. */
+ else if (code == MULT_EXPR && !integer_zerop (val1))
+ {
+ tree tmp = int_const_binop (TRUNC_DIV_EXPR,
+ res,
+ val1, 0);
+ int check = compare_values (tmp, val2);
+
+ if (check != 0)
+ overflow = true;
+ }
+
+ if (overflow)
+ {
+ res = copy_node (res);
+ TREE_OVERFLOW (res) = 1;
+ }
+
+ }
+ else if ((TREE_OVERFLOW (res)
+ && !TREE_OVERFLOW (val1)
+ && !TREE_OVERFLOW (val2))
+ || is_overflow_infinity (val1)
+ || is_overflow_infinity (val2))
+ {
+ /* If the operation overflowed but neither VAL1 nor VAL2 are
+ overflown, return -INF or +INF depending on the operation
+ and the combination of signs of the operands. */
+ int sgn1 = tree_int_cst_sgn (val1);
+ int sgn2 = tree_int_cst_sgn (val2);
+
+ if (needs_overflow_infinity (TREE_TYPE (res))
+ && !supports_overflow_infinity (TREE_TYPE (res)))
+ return NULL_TREE;
+
+ /* We have to punt on adding infinities of different signs,
+ since we can't tell what the sign of the result should be.
+ Likewise for subtracting infinities of the same sign. */
+ if (((code == PLUS_EXPR && sgn1 != sgn2)
+ || (code == MINUS_EXPR && sgn1 == sgn2))
+ && is_overflow_infinity (val1)
+ && is_overflow_infinity (val2))
+ return NULL_TREE;
+
+ /* Don't try to handle division or shifting of infinities. */
+ if ((code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR
+ || code == RSHIFT_EXPR)
+ && (is_overflow_infinity (val1)
+ || is_overflow_infinity (val2)))
+ return NULL_TREE;
+
+ /* Notice that we only need to handle the restricted set of
+ operations handled by extract_range_from_binary_expr.
+ Among them, only multiplication, addition and subtraction
+ can yield overflow without overflown operands because we
+ are working with integral types only... except in the
+ case VAL1 = -INF and VAL2 = -1 which overflows to +INF
+ for division too. */
+
+ /* For multiplication, the sign of the overflow is given
+ by the comparison of the signs of the operands. */
+ if ((code == MULT_EXPR && sgn1 == sgn2)
+ /* For addition, the operands must be of the same sign
+ to yield an overflow. Its sign is therefore that
+ of one of the operands, for example the first. For
+ infinite operands X + -INF is negative, not positive. */
+ || (code == PLUS_EXPR
+ && (sgn1 >= 0
+ ? !is_negative_overflow_infinity (val2)
+ : is_positive_overflow_infinity (val2)))
+ /* For subtraction, non-infinite operands must be of
+ different signs to yield an overflow. Its sign is
+ therefore that of the first operand or the opposite of
+ that of the second operand. A first operand of 0 counts
+ as positive here, for the corner case 0 - (-INF), which
+ overflows, but must yield +INF. For infinite operands 0
+ - INF is negative, not positive. */
+ || (code == MINUS_EXPR
+ && (sgn1 >= 0
+ ? !is_positive_overflow_infinity (val2)
+ : is_negative_overflow_infinity (val2)))
+ /* We only get in here with positive shift count, so the
+ overflow direction is the same as the sign of val1.
+ Actually rshift does not overflow at all, but we only
+ handle the case of shifting overflowed -INF and +INF. */
+ || (code == RSHIFT_EXPR
+ && sgn1 >= 0)
+ /* For division, the only case is -INF / -1 = +INF. */
+ || code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR)
+ return (needs_overflow_infinity (TREE_TYPE (res))
+ ? positive_overflow_infinity (TREE_TYPE (res))
+ : TYPE_MAX_VALUE (TREE_TYPE (res)));
+ else
+ return (needs_overflow_infinity (TREE_TYPE (res))
+ ? negative_overflow_infinity (TREE_TYPE (res))
+ : TYPE_MIN_VALUE (TREE_TYPE (res)));
+ }
+
+ return res;
+}
+
+
+/* Extract range information from a binary expression EXPR based on
+ the ranges of each of its operands and the expression code. */
+
+static void
+extract_range_from_binary_expr (value_range_t *vr,
+ enum tree_code code,
+ tree expr_type, tree op0, tree op1)
+{
+ enum value_range_type type;
+ tree min, max;
+ int cmp;
+ value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+ value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ /* Not all binary expressions can be applied to ranges in a
+ meaningful way. Handle only arithmetic operations. */
+ if (code != PLUS_EXPR
+ && code != MINUS_EXPR
+ && code != POINTER_PLUS_EXPR
+ && code != MULT_EXPR
+ && code != TRUNC_DIV_EXPR
+ && code != FLOOR_DIV_EXPR
+ && code != CEIL_DIV_EXPR
+ && code != EXACT_DIV_EXPR
+ && code != ROUND_DIV_EXPR
+ && code != RSHIFT_EXPR
+ && code != MIN_EXPR
+ && code != MAX_EXPR
+ && code != BIT_AND_EXPR
+ && code != BIT_IOR_EXPR
+ && code != TRUTH_AND_EXPR
+ && code != TRUTH_OR_EXPR)
+ {
+ /* We can still do constant propagation here. */
+ tree const_op0 = op_with_constant_singleton_value_range (op0);
+ tree const_op1 = op_with_constant_singleton_value_range (op1);
+ if (const_op0 || const_op1)
+ {
+ tree tem = fold_binary (code, expr_type,
+ const_op0 ? const_op0 : op0,
+ const_op1 ? const_op1 : op1);
+ if (tem
+ && is_gimple_min_invariant (tem)
+ && !is_overflow_infinity (tem))
+ {
+ set_value_range (vr, VR_RANGE, tem, tem, NULL);
+ return;
+ }
+ }
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Get value ranges for each operand. For constant operands, create
+ a new value range with the operand to simplify processing. */
+ if (TREE_CODE (op0) == SSA_NAME)
+ vr0 = *(get_value_range (op0));
+ else if (is_gimple_min_invariant (op0))
+ set_value_range_to_value (&vr0, op0, NULL);
+ else
+ set_value_range_to_varying (&vr0);
+
+ if (TREE_CODE (op1) == SSA_NAME)
+ vr1 = *(get_value_range (op1));
+ else if (is_gimple_min_invariant (op1))
+ set_value_range_to_value (&vr1, op1, NULL);
+ else
+ set_value_range_to_varying (&vr1);
+
+ /* If either range is UNDEFINED, so is the result. */
+ if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
+ {
+ set_value_range_to_undefined (vr);
+ return;
+ }
+
+ /* The type of the resulting value range defaults to VR0.TYPE. */
+ type = vr0.type;
+
+ /* Refuse to operate on VARYING ranges, ranges of different kinds
+ and symbolic ranges. As an exception, we allow BIT_AND_EXPR
+ because we may be able to derive a useful range even if one of
+ the operands is VR_VARYING or symbolic range. Similarly for
+ divisions. TODO, we may be able to derive anti-ranges in
+ some cases. */
+ if (code != BIT_AND_EXPR
+ && code != TRUTH_AND_EXPR
+ && code != TRUTH_OR_EXPR
+ && code != TRUNC_DIV_EXPR
+ && code != FLOOR_DIV_EXPR
+ && code != CEIL_DIV_EXPR
+ && code != EXACT_DIV_EXPR
+ && code != ROUND_DIV_EXPR
+ && (vr0.type == VR_VARYING
+ || vr1.type == VR_VARYING
+ || vr0.type != vr1.type
+ || symbolic_range_p (&vr0)
+ || symbolic_range_p (&vr1)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Now evaluate the expression to determine the new range. */
+ if (POINTER_TYPE_P (expr_type)
+ || POINTER_TYPE_P (TREE_TYPE (op0))
+ || POINTER_TYPE_P (TREE_TYPE (op1)))
+ {
+ if (code == MIN_EXPR || code == MAX_EXPR)
+ {
+ /* For MIN/MAX expressions with pointers, we only care about
+ nullness, if both are non null, then the result is nonnull.
+ If both are null, then the result is null. Otherwise they
+ are varying. */
+ if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
+ set_value_range_to_nonnull (vr, expr_type);
+ else if (range_is_null (&vr0) && range_is_null (&vr1))
+ set_value_range_to_null (vr, expr_type);
+ else
+ set_value_range_to_varying (vr);
+
+ return;
+ }
+ gcc_assert (code == POINTER_PLUS_EXPR);
+ /* For pointer types, we are really only interested in asserting
+ whether the expression evaluates to non-NULL. */
+ if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
+ set_value_range_to_nonnull (vr, expr_type);
+ else if (range_is_null (&vr0) && range_is_null (&vr1))
+ set_value_range_to_null (vr, expr_type);
+ else
+ set_value_range_to_varying (vr);
+
+ return;
+ }
+
+ /* For integer ranges, apply the operation to each end of the
+ range and see what we end up with. */
+ if (code == TRUTH_AND_EXPR
+ || code == TRUTH_OR_EXPR)
+ {
+ /* If one of the operands is zero, we know that the whole
+ expression evaluates zero. */
+ if (code == TRUTH_AND_EXPR
+ && ((vr0.type == VR_RANGE
+ && integer_zerop (vr0.min)
+ && integer_zerop (vr0.max))
+ || (vr1.type == VR_RANGE
+ && integer_zerop (vr1.min)
+ && integer_zerop (vr1.max))))
+ {
+ type = VR_RANGE;
+ min = max = build_int_cst (expr_type, 0);
+ }
+ /* If one of the operands is one, we know that the whole
+ expression evaluates one. */
+ else if (code == TRUTH_OR_EXPR
+ && ((vr0.type == VR_RANGE
+ && integer_onep (vr0.min)
+ && integer_onep (vr0.max))
+ || (vr1.type == VR_RANGE
+ && integer_onep (vr1.min)
+ && integer_onep (vr1.max))))
+ {
+ type = VR_RANGE;
+ min = max = build_int_cst (expr_type, 1);
+ }
+ else if (vr0.type != VR_VARYING
+ && vr1.type != VR_VARYING
+ && vr0.type == vr1.type
+ && !symbolic_range_p (&vr0)
+ && !overflow_infinity_range_p (&vr0)
+ && !symbolic_range_p (&vr1)
+ && !overflow_infinity_range_p (&vr1))
+ {
+ /* Boolean expressions cannot be folded with int_const_binop. */
+ min = fold_binary (code, expr_type, vr0.min, vr1.min);
+ max = fold_binary (code, expr_type, vr0.max, vr1.max);
+ }
+ else
+ {
+ /* The result of a TRUTH_*_EXPR is always true or false. */
+ set_value_range_to_truthvalue (vr, expr_type);
+ return;
+ }
+ }
+ else if (code == PLUS_EXPR
+ || code == MIN_EXPR
+ || code == MAX_EXPR)
+ {
+ /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
+ VR_VARYING. It would take more effort to compute a precise
+ range for such a case. For example, if we have op0 == 1 and
+ op1 == -1 with their ranges both being ~[0,0], we would have
+ op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
+ Note that we are guaranteed to have vr0.type == vr1.type at
+ this point. */
+ if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* For operations that make the resulting range directly
+ proportional to the original ranges, apply the operation to
+ the same end of each range. */
+ min = vrp_int_const_binop (code, vr0.min, vr1.min);
+ max = vrp_int_const_binop (code, vr0.max, vr1.max);
+ }
+ else if (code == MULT_EXPR
+ || code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR
+ || code == RSHIFT_EXPR)
+ {
+ tree val[4];
+ size_t i;
+ bool sop;
+
+ /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
+ drop to VR_VARYING. It would take more effort to compute a
+ precise range for such a case. For example, if we have
+ op0 == 65536 and op1 == 65536 with their ranges both being
+ ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
+ we cannot claim that the product is in ~[0,0]. Note that we
+ are guaranteed to have vr0.type == vr1.type at this
+ point. */
+ if (code == MULT_EXPR
+ && vr0.type == VR_ANTI_RANGE
+ && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
+ then drop to VR_VARYING. Outside of this range we get undefined
+ behavior from the shift operation. We cannot even trust
+ SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
+ shifts, and the operation at the tree level may be widened. */
+ if (code == RSHIFT_EXPR)
+ {
+ if (vr1.type == VR_ANTI_RANGE
+ || !vrp_expr_computes_nonnegative (op1, &sop)
+ || (operand_less_p
+ (build_int_cst (TREE_TYPE (vr1.max),
+ TYPE_PRECISION (expr_type) - 1),
+ vr1.max) != 0))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+
+ else if ((code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR)
+ && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
+ {
+ /* For division, if op1 has VR_RANGE but op0 does not, something
+ can be deduced just from that range. Say [min, max] / [4, max]
+ gives [min / 4, max / 4] range. */
+ if (vr1.type == VR_RANGE
+ && !symbolic_range_p (&vr1)
+ && !range_includes_zero_p (&vr1))
+ {
+ vr0.type = type = VR_RANGE;
+ vr0.min = vrp_val_min (TREE_TYPE (op0));
+ vr0.max = vrp_val_max (TREE_TYPE (op1));
+ }
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+
+ /* For divisions, if op0 is VR_RANGE, we can deduce a range
+ even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
+ include 0. */
+ if ((code == TRUNC_DIV_EXPR
+ || code == FLOOR_DIV_EXPR
+ || code == CEIL_DIV_EXPR
+ || code == EXACT_DIV_EXPR
+ || code == ROUND_DIV_EXPR)
+ && vr0.type == VR_RANGE
+ && (vr1.type != VR_RANGE
+ || symbolic_range_p (&vr1)
+ || range_includes_zero_p (&vr1)))
+ {
+ tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
+ int cmp;
+
+ sop = false;
+ min = NULL_TREE;
+ max = NULL_TREE;
+ if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
+ {
+ /* For unsigned division or when divisor is known
+ to be non-negative, the range has to cover
+ all numbers from 0 to max for positive max
+ and all numbers from min to 0 for negative min. */
+ cmp = compare_values (vr0.max, zero);
+ if (cmp == -1)
+ max = zero;
+ else if (cmp == 0 || cmp == 1)
+ max = vr0.max;
+ else
+ type = VR_VARYING;
+ cmp = compare_values (vr0.min, zero);
+ if (cmp == 1)
+ min = zero;
+ else if (cmp == 0 || cmp == -1)
+ min = vr0.min;
+ else
+ type = VR_VARYING;
+ }
+ else
+ {
+ /* Otherwise the range is -max .. max or min .. -min
+ depending on which bound is bigger in absolute value,
+ as the division can change the sign. */
+ abs_extent_range (vr, vr0.min, vr0.max);
+ return;
+ }
+ if (type == VR_VARYING)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+
+ /* Multiplications and divisions are a bit tricky to handle,
+ depending on the mix of signs we have in the two ranges, we
+ need to operate on different values to get the minimum and
+ maximum values for the new range. One approach is to figure
+ out all the variations of range combinations and do the
+ operations.
+
+ However, this involves several calls to compare_values and it
+ is pretty convoluted. It's simpler to do the 4 operations
+ (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
+ MAX1) and then figure the smallest and largest values to form
+ the new range. */
+ else
+ {
+ gcc_assert ((vr0.type == VR_RANGE
+ || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
+ && vr0.type == vr1.type);
+
+ /* Compute the 4 cross operations. */
+ sop = false;
+ val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
+ if (val[0] == NULL_TREE)
+ sop = true;
+
+ if (vr1.max == vr1.min)
+ val[1] = NULL_TREE;
+ else
+ {
+ val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
+ if (val[1] == NULL_TREE)
+ sop = true;
+ }
+
+ if (vr0.max == vr0.min)
+ val[2] = NULL_TREE;
+ else
+ {
+ val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
+ if (val[2] == NULL_TREE)
+ sop = true;
+ }
+
+ if (vr0.min == vr0.max || vr1.min == vr1.max)
+ val[3] = NULL_TREE;
+ else
+ {
+ val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
+ if (val[3] == NULL_TREE)
+ sop = true;
+ }
+
+ if (sop)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Set MIN to the minimum of VAL[i] and MAX to the maximum
+ of VAL[i]. */
+ min = val[0];
+ max = val[0];
+ for (i = 1; i < 4; i++)
+ {
+ if (!is_gimple_min_invariant (min)
+ || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+ || !is_gimple_min_invariant (max)
+ || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+ break;
+
+ if (val[i])
+ {
+ if (!is_gimple_min_invariant (val[i])
+ || (TREE_OVERFLOW (val[i])
+ && !is_overflow_infinity (val[i])))
+ {
+ /* If we found an overflowed value, set MIN and MAX
+ to it so that we set the resulting range to
+ VARYING. */
+ min = max = val[i];
+ break;
+ }
+
+ if (compare_values (val[i], min) == -1)
+ min = val[i];
+
+ if (compare_values (val[i], max) == 1)
+ max = val[i];
+ }
+ }
+ }
+ }
+ else if (code == MINUS_EXPR)
+ {
+ /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
+ VR_VARYING. It would take more effort to compute a precise
+ range for such a case. For example, if we have op0 == 1 and
+ op1 == 1 with their ranges both being ~[0,0], we would have
+ op0 - op1 == 0, so we cannot claim that the difference is in
+ ~[0,0]. Note that we are guaranteed to have
+ vr0.type == vr1.type at this point. */
+ if (vr0.type == VR_ANTI_RANGE)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* For MINUS_EXPR, apply the operation to the opposite ends of
+ each range. */
+ min = vrp_int_const_binop (code, vr0.min, vr1.max);
+ max = vrp_int_const_binop (code, vr0.max, vr1.min);
+ }
+ else if (code == BIT_AND_EXPR)
+ {
+ if (vr0.type == VR_RANGE
+ && vr0.min == vr0.max
+ && TREE_CODE (vr0.max) == INTEGER_CST
+ && !TREE_OVERFLOW (vr0.max)
+ && tree_int_cst_sgn (vr0.max) >= 0)
+ {
+ min = build_int_cst (expr_type, 0);
+ max = vr0.max;
+ }
+ else if (vr1.type == VR_RANGE
+ && vr1.min == vr1.max
+ && TREE_CODE (vr1.max) == INTEGER_CST
+ && !TREE_OVERFLOW (vr1.max)
+ && tree_int_cst_sgn (vr1.max) >= 0)
+ {
+ type = VR_RANGE;
+ min = build_int_cst (expr_type, 0);
+ max = vr1.max;
+ }
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else if (code == BIT_IOR_EXPR)
+ {
+ if (vr0.type == VR_RANGE
+ && vr1.type == VR_RANGE
+ && TREE_CODE (vr0.min) == INTEGER_CST
+ && TREE_CODE (vr1.min) == INTEGER_CST
+ && TREE_CODE (vr0.max) == INTEGER_CST
+ && TREE_CODE (vr1.max) == INTEGER_CST
+ && tree_int_cst_sgn (vr0.min) >= 0
+ && tree_int_cst_sgn (vr1.min) >= 0)
+ {
+ double_int vr0_max = tree_to_double_int (vr0.max);
+ double_int vr1_max = tree_to_double_int (vr1.max);
+ double_int ior_max;
+
+ /* Set all bits to the right of the most significant one to 1.
+ For example, [0, 4] | [4, 4] = [4, 7]. */
+ ior_max.low = vr0_max.low | vr1_max.low;
+ ior_max.high = vr0_max.high | vr1_max.high;
+ if (ior_max.high != 0)
+ {
+ ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
+ ior_max.high |= ((HOST_WIDE_INT) 1
+ << floor_log2 (ior_max.high)) - 1;
+ }
+ else if (ior_max.low != 0)
+ ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
+ << floor_log2 (ior_max.low)) - 1;
+
+ /* Both of these endpoints are conservative. */
+ min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
+ max = double_int_to_tree (expr_type, ior_max);
+ }
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ gcc_unreachable ();
+
+ /* If either MIN or MAX overflowed, then set the resulting range to
+ VARYING. But we do accept an overflow infinity
+ representation. */
+ if (min == NULL_TREE
+ || !is_gimple_min_invariant (min)
+ || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
+ || max == NULL_TREE
+ || !is_gimple_min_invariant (max)
+ || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* We punt if:
+ 1) [-INF, +INF]
+ 2) [-INF, +-INF(OVF)]
+ 3) [+-INF(OVF), +INF]
+ 4) [+-INF(OVF), +-INF(OVF)]
+ We learn nothing when we have INF and INF(OVF) on both sides.
+ Note that we do accept [-INF, -INF] and [+INF, +INF] without
+ overflow. */
+ if ((vrp_val_is_min (min) || is_overflow_infinity (min))
+ && (vrp_val_is_max (max) || is_overflow_infinity (max)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ cmp = compare_values (min, max);
+ if (cmp == -2 || cmp == 1)
+ {
+ /* If the new range has its limits swapped around (MIN > MAX),
+ then the operation caused one of them to wrap around, mark
+ the new range VARYING. */
+ set_value_range_to_varying (vr);
+ }
+ else
+ set_value_range (vr, type, min, max, NULL);
+}
+
+
+/* Extract range information from a unary expression EXPR based on
+ the range of its operand and the expression code. */
+
+static void
+extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
+ tree type, tree op0)
+{
+ tree min, max;
+ int cmp;
+ value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ /* Refuse to operate on certain unary expressions for which we
+ cannot easily determine a resulting range. */
+ if (code == FIX_TRUNC_EXPR
+ || code == FLOAT_EXPR
+ || code == BIT_NOT_EXPR
+ || code == CONJ_EXPR)
+ {
+ /* We can still do constant propagation here. */
+ if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
+ {
+ tree tem = fold_unary (code, type, op0);
+ if (tem
+ && is_gimple_min_invariant (tem)
+ && !is_overflow_infinity (tem))
+ {
+ set_value_range (vr, VR_RANGE, tem, tem, NULL);
+ return;
+ }
+ }
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Get value ranges for the operand. For constant operands, create
+ a new value range with the operand to simplify processing. */
+ if (TREE_CODE (op0) == SSA_NAME)
+ vr0 = *(get_value_range (op0));
+ else if (is_gimple_min_invariant (op0))
+ set_value_range_to_value (&vr0, op0, NULL);
+ else
+ set_value_range_to_varying (&vr0);
+
+ /* If VR0 is UNDEFINED, so is the result. */
+ if (vr0.type == VR_UNDEFINED)
+ {
+ set_value_range_to_undefined (vr);
+ return;
+ }
+
+ /* Refuse to operate on symbolic ranges, or if neither operand is
+ a pointer or integral type. */
+ if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ && !POINTER_TYPE_P (TREE_TYPE (op0)))
+ || (vr0.type != VR_VARYING
+ && symbolic_range_p (&vr0)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* If the expression involves pointers, we are only interested in
+ determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
+ if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
+ {
+ bool sop;
+
+ sop = false;
+ if (range_is_nonnull (&vr0)
+ || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
+ && !sop))
+ set_value_range_to_nonnull (vr, type);
+ else if (range_is_null (&vr0))
+ set_value_range_to_null (vr, type);
+ else
+ set_value_range_to_varying (vr);
+
+ return;
+ }
+
+ /* Handle unary expressions on integer ranges. */
+ if (CONVERT_EXPR_CODE_P (code)
+ && INTEGRAL_TYPE_P (type)
+ && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
+ {
+ tree inner_type = TREE_TYPE (op0);
+ tree outer_type = type;
+
+ /* Always use base-types here. This is important for the
+ correct signedness. */
+ if (TREE_TYPE (inner_type))
+ inner_type = TREE_TYPE (inner_type);
+ if (TREE_TYPE (outer_type))
+ outer_type = TREE_TYPE (outer_type);
+
+ /* If VR0 is varying and we increase the type precision, assume
+ a full range for the following transformation. */
+ if (vr0.type == VR_VARYING
+ && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
+ {
+ vr0.type = VR_RANGE;
+ vr0.min = TYPE_MIN_VALUE (inner_type);
+ vr0.max = TYPE_MAX_VALUE (inner_type);
+ }
+
+ /* If VR0 is a constant range or anti-range and the conversion is
+ not truncating we can convert the min and max values and
+ canonicalize the resulting range. Otherwise we can do the
+ conversion if the size of the range is less than what the
+ precision of the target type can represent and the range is
+ not an anti-range. */
+ if ((vr0.type == VR_RANGE
+ || vr0.type == VR_ANTI_RANGE)
+ && TREE_CODE (vr0.min) == INTEGER_CST
+ && TREE_CODE (vr0.max) == INTEGER_CST
+ && !is_overflow_infinity (vr0.min)
+ && !is_overflow_infinity (vr0.max)
+ && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
+ || (vr0.type == VR_RANGE
+ && integer_zerop (int_const_binop (RSHIFT_EXPR,
+ int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
+ size_int (TYPE_PRECISION (outer_type)), 0)))))
+ {
+ tree new_min, new_max;
+ new_min = force_fit_type_double (outer_type,
+ TREE_INT_CST_LOW (vr0.min),
+ TREE_INT_CST_HIGH (vr0.min), 0, 0);
+ new_max = force_fit_type_double (outer_type,
+ TREE_INT_CST_LOW (vr0.max),
+ TREE_INT_CST_HIGH (vr0.max), 0, 0);
+ set_and_canonicalize_value_range (vr, vr0.type,
+ new_min, new_max, NULL);
+ return;
+ }
+
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Conversion of a VR_VARYING value to a wider type can result
+ in a usable range. So wait until after we've handled conversions
+ before dropping the result to VR_VARYING if we had a source
+ operand that is VR_VARYING. */
+ if (vr0.type == VR_VARYING)
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* Apply the operation to each end of the range and see what we end
+ up with. */
+ if (code == NEGATE_EXPR
+ && !TYPE_UNSIGNED (type))
+ {
+ /* NEGATE_EXPR flips the range around. We need to treat
+ TYPE_MIN_VALUE specially. */
+ if (is_positive_overflow_infinity (vr0.max))
+ min = negative_overflow_infinity (type);
+ else if (is_negative_overflow_infinity (vr0.max))
+ min = positive_overflow_infinity (type);
+ else if (!vrp_val_is_min (vr0.max))
+ min = fold_unary_to_constant (code, type, vr0.max);
+ else if (needs_overflow_infinity (type))
+ {
+ if (supports_overflow_infinity (type)
+ && !is_overflow_infinity (vr0.min)
+ && !vrp_val_is_min (vr0.min))
+ min = positive_overflow_infinity (type);
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ min = TYPE_MIN_VALUE (type);
+
+ if (is_positive_overflow_infinity (vr0.min))
+ max = negative_overflow_infinity (type);
+ else if (is_negative_overflow_infinity (vr0.min))
+ max = positive_overflow_infinity (type);
+ else if (!vrp_val_is_min (vr0.min))
+ max = fold_unary_to_constant (code, type, vr0.min);
+ else if (needs_overflow_infinity (type))
+ {
+ if (supports_overflow_infinity (type))
+ max = positive_overflow_infinity (type);
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ max = TYPE_MIN_VALUE (type);
+ }
+ else if (code == NEGATE_EXPR
+ && TYPE_UNSIGNED (type))
+ {
+ if (!range_includes_zero_p (&vr0))
+ {
+ max = fold_unary_to_constant (code, type, vr0.min);
+ min = fold_unary_to_constant (code, type, vr0.max);
+ }
+ else
+ {
+ if (range_is_null (&vr0))
+ set_value_range_to_null (vr, type);
+ else
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else if (code == ABS_EXPR
+ && !TYPE_UNSIGNED (type))
+ {
+ /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
+ useful range. */
+ if (!TYPE_OVERFLOW_UNDEFINED (type)
+ && ((vr0.type == VR_RANGE
+ && vrp_val_is_min (vr0.min))
+ || (vr0.type == VR_ANTI_RANGE
+ && !vrp_val_is_min (vr0.min)
+ && !range_includes_zero_p (&vr0))))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ /* ABS_EXPR may flip the range around, if the original range
+ included negative values. */
+ if (is_overflow_infinity (vr0.min))
+ min = positive_overflow_infinity (type);
+ else if (!vrp_val_is_min (vr0.min))
+ min = fold_unary_to_constant (code, type, vr0.min);
+ else if (!needs_overflow_infinity (type))
+ min = TYPE_MAX_VALUE (type);
+ else if (supports_overflow_infinity (type))
+ min = positive_overflow_infinity (type);
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ if (is_overflow_infinity (vr0.max))
+ max = positive_overflow_infinity (type);
+ else if (!vrp_val_is_min (vr0.max))
+ max = fold_unary_to_constant (code, type, vr0.max);
+ else if (!needs_overflow_infinity (type))
+ max = TYPE_MAX_VALUE (type);
+ else if (supports_overflow_infinity (type)
+ /* We shouldn't generate [+INF, +INF] as set_value_range
+ doesn't like this and ICEs. */
+ && !is_positive_overflow_infinity (min))
+ max = positive_overflow_infinity (type);
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ cmp = compare_values (min, max);
+
+ /* If a VR_ANTI_RANGEs contains zero, then we have
+ ~[-INF, min(MIN, MAX)]. */
+ if (vr0.type == VR_ANTI_RANGE)
+ {
+ if (range_includes_zero_p (&vr0))
+ {
+ /* Take the lower of the two values. */
+ if (cmp != 1)
+ max = min;
+
+ /* Create ~[-INF, min (abs(MIN), abs(MAX))]
+ or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
+ flag_wrapv is set and the original anti-range doesn't include
+ TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
+ if (TYPE_OVERFLOW_WRAPS (type))
+ {
+ tree type_min_value = TYPE_MIN_VALUE (type);
+
+ min = (vr0.min != type_min_value
+ ? int_const_binop (PLUS_EXPR, type_min_value,
+ integer_one_node, 0)
+ : type_min_value);
+ }
+ else
+ {
+ if (overflow_infinity_range_p (&vr0))
+ min = negative_overflow_infinity (type);
+ else
+ min = TYPE_MIN_VALUE (type);
+ }
+ }
+ else
+ {
+ /* All else has failed, so create the range [0, INF], even for
+ flag_wrapv since TYPE_MIN_VALUE is in the original
+ anti-range. */
+ vr0.type = VR_RANGE;
+ min = build_int_cst (type, 0);
+ if (needs_overflow_infinity (type))
+ {
+ if (supports_overflow_infinity (type))
+ max = positive_overflow_infinity (type);
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ else
+ max = TYPE_MAX_VALUE (type);
+ }
+ }
+
+ /* If the range contains zero then we know that the minimum value in the
+ range will be zero. */
+ else if (range_includes_zero_p (&vr0))
+ {
+ if (cmp == 1)
+ max = min;
+ min = build_int_cst (type, 0);
+ }
+ else
+ {
+ /* If the range was reversed, swap MIN and MAX. */
+ if (cmp == 1)
+ {
+ tree t = min;
+ min = max;
+ max = t;
+ }
+ }
+ }
+ else
+ {
+ /* Otherwise, operate on each end of the range. */
+ min = fold_unary_to_constant (code, type, vr0.min);
+ max = fold_unary_to_constant (code, type, vr0.max);
+
+ if (needs_overflow_infinity (type))
+ {
+ gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
+
+ /* If both sides have overflowed, we don't know
+ anything. */
+ if ((is_overflow_infinity (vr0.min)
+ || TREE_OVERFLOW (min))
+ && (is_overflow_infinity (vr0.max)
+ || TREE_OVERFLOW (max)))
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+
+ if (is_overflow_infinity (vr0.min))
+ min = vr0.min;
+ else if (TREE_OVERFLOW (min))
+ {
+ if (supports_overflow_infinity (type))
+ min = (tree_int_cst_sgn (min) >= 0
+ ? positive_overflow_infinity (TREE_TYPE (min))
+ : negative_overflow_infinity (TREE_TYPE (min)));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+
+ if (is_overflow_infinity (vr0.max))
+ max = vr0.max;
+ else if (TREE_OVERFLOW (max))
+ {
+ if (supports_overflow_infinity (type))
+ max = (tree_int_cst_sgn (max) >= 0
+ ? positive_overflow_infinity (TREE_TYPE (max))
+ : negative_overflow_infinity (TREE_TYPE (max)));
+ else
+ {
+ set_value_range_to_varying (vr);
+ return;
+ }
+ }
+ }
+ }
+
+ cmp = compare_values (min, max);
+ if (cmp == -2 || cmp == 1)
+ {
+ /* If the new range has its limits swapped around (MIN > MAX),
+ then the operation caused one of them to wrap around, mark
+ the new range VARYING. */
+ set_value_range_to_varying (vr);
+ }
+ else
+ set_value_range (vr, vr0.type, min, max, NULL);
+}
+
+
+/* Extract range information from a conditional expression EXPR based on
+ the ranges of each of its operands and the expression code. */
+
+static void
+extract_range_from_cond_expr (value_range_t *vr, tree expr)
+{
+ tree op0, op1;
+ value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+ value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ /* Get value ranges for each operand. For constant operands, create
+ a new value range with the operand to simplify processing. */
+ op0 = COND_EXPR_THEN (expr);
+ if (TREE_CODE (op0) == SSA_NAME)
+ vr0 = *(get_value_range (op0));
+ else if (is_gimple_min_invariant (op0))
+ set_value_range_to_value (&vr0, op0, NULL);
+ else
+ set_value_range_to_varying (&vr0);
+
+ op1 = COND_EXPR_ELSE (expr);
+ if (TREE_CODE (op1) == SSA_NAME)
+ vr1 = *(get_value_range (op1));
+ else if (is_gimple_min_invariant (op1))
+ set_value_range_to_value (&vr1, op1, NULL);
+ else
+ set_value_range_to_varying (&vr1);
+
+ /* The resulting value range is the union of the operand ranges */
+ vrp_meet (&vr0, &vr1);
+ copy_value_range (vr, &vr0);
+}
+
+
+/* Extract range information from a comparison expression EXPR based
+ on the range of its operand and the expression code. */
+
+static void
+extract_range_from_comparison (value_range_t *vr, enum tree_code code,
+ tree type, tree op0, tree op1)
+{
+ bool sop = false;
+ tree val;
+
+ val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
+ NULL);
+
+ /* A disadvantage of using a special infinity as an overflow
+ representation is that we lose the ability to record overflow
+ when we don't have an infinity. So we have to ignore a result
+ which relies on overflow. */
+
+ if (val && !is_overflow_infinity (val) && !sop)
+ {
+ /* Since this expression was found on the RHS of an assignment,
+ its type may be different from _Bool. Convert VAL to EXPR's
+ type. */
+ val = fold_convert (type, val);
+ if (is_gimple_min_invariant (val))
+ set_value_range_to_value (vr, val, vr->equiv);
+ else
+ set_value_range (vr, VR_RANGE, val, val, vr->equiv);
+ }
+ else
+ /* The result of a comparison is always true or false. */
+ set_value_range_to_truthvalue (vr, type);
+}
+
+/* Try to derive a nonnegative or nonzero range out of STMT relying
+ primarily on generic routines in fold in conjunction with range data.
+ Store the result in *VR */
+
+static void
+extract_range_basic (value_range_t *vr, gimple stmt)
+{
+ bool sop = false;
+ tree type = gimple_expr_type (stmt);
+
+ if (INTEGRAL_TYPE_P (type)
+ && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
+ set_value_range_to_nonnegative (vr, type,
+ sop || stmt_overflow_infinity (stmt));
+ else if (vrp_stmt_computes_nonzero (stmt, &sop)
+ && !sop)
+ set_value_range_to_nonnull (vr, type);
+ else
+ set_value_range_to_varying (vr);
+}
+
+
+/* Try to compute a useful range out of assignment STMT and store it
+ in *VR. */
+
+static void
+extract_range_from_assignment (value_range_t *vr, gimple stmt)
+{
+ enum tree_code code = gimple_assign_rhs_code (stmt);
+
+ if (code == ASSERT_EXPR)
+ extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
+ else if (code == SSA_NAME)
+ extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
+ else if (TREE_CODE_CLASS (code) == tcc_binary
+ || code == TRUTH_AND_EXPR
+ || code == TRUTH_OR_EXPR
+ || code == TRUTH_XOR_EXPR)
+ extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt));
+ else if (TREE_CODE_CLASS (code) == tcc_unary)
+ extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt));
+ else if (code == COND_EXPR)
+ extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
+ else if (TREE_CODE_CLASS (code) == tcc_comparison)
+ extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
+ gimple_expr_type (stmt),
+ gimple_assign_rhs1 (stmt),
+ gimple_assign_rhs2 (stmt));
+ else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
+ && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
+ set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
+ else
+ set_value_range_to_varying (vr);
+
+ if (vr->type == VR_VARYING)
+ extract_range_basic (vr, stmt);
+}
+
+/* Given a range VR, a LOOP and a variable VAR, determine whether it
+ would be profitable to adjust VR using scalar evolution information
+ for VAR. If so, update VR with the new limits. */
+
+static void
+adjust_range_with_scev (value_range_t *vr, struct loop *loop,
+ gimple stmt, tree var)
+{
+ tree init, step, chrec, tmin, tmax, min, max, type;
+ enum ev_direction dir;
+
+ /* TODO. Don't adjust anti-ranges. An anti-range may provide
+ better opportunities than a regular range, but I'm not sure. */
+ if (vr->type == VR_ANTI_RANGE)
+ return;
+
+ chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
+
+ /* Like in PR19590, scev can return a constant function. */
+ if (is_gimple_min_invariant (chrec))
+ {
+ set_value_range_to_value (vr, chrec, vr->equiv);
+ return;
+ }
+
+ if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ return;
+
+ init = initial_condition_in_loop_num (chrec, loop->num);
+ step = evolution_part_in_loop_num (chrec, loop->num);
+
+ /* If STEP is symbolic, we can't know whether INIT will be the
+ minimum or maximum value in the range. Also, unless INIT is
+ a simple expression, compare_values and possibly other functions
+ in tree-vrp won't be able to handle it. */
+ if (step == NULL_TREE
+ || !is_gimple_min_invariant (step)
+ || !valid_value_p (init))
+ return;
+
+ dir = scev_direction (chrec);
+ if (/* Do not adjust ranges if we do not know whether the iv increases
+ or decreases, ... */
+ dir == EV_DIR_UNKNOWN
+ /* ... or if it may wrap. */
+ || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
+ true))
+ return;
+
+ /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
+ negative_overflow_infinity and positive_overflow_infinity,
+ because we have concluded that the loop probably does not
+ wrap. */
+
+ type = TREE_TYPE (var);
+ if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
+ tmin = lower_bound_in_type (type, type);
+ else
+ tmin = TYPE_MIN_VALUE (type);
+ if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
+ tmax = upper_bound_in_type (type, type);
+ else
+ tmax = TYPE_MAX_VALUE (type);
+
+ if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
+ {
+ min = tmin;
+ max = tmax;
+
+ /* For VARYING or UNDEFINED ranges, just about anything we get
+ from scalar evolutions should be better. */
+
+ if (dir == EV_DIR_DECREASES)
+ max = init;
+ else
+ min = init;
+
+ /* If we would create an invalid range, then just assume we
+ know absolutely nothing. This may be over-conservative,
+ but it's clearly safe, and should happen only in unreachable
+ parts of code, or for invalid programs. */
+ if (compare_values (min, max) == 1)
+ return;
+
+ set_value_range (vr, VR_RANGE, min, max, vr->equiv);
+ }
+ else if (vr->type == VR_RANGE)
+ {
+ min = vr->min;
+ max = vr->max;
+
+ if (dir == EV_DIR_DECREASES)
+ {
+ /* INIT is the maximum value. If INIT is lower than VR->MAX
+ but no smaller than VR->MIN, set VR->MAX to INIT. */
+ if (compare_values (init, max) == -1)
+ {
+ max = init;
+
+ /* If we just created an invalid range with the minimum
+ greater than the maximum, we fail conservatively.
+ This should happen only in unreachable
+ parts of code, or for invalid programs. */
+ if (compare_values (min, max) == 1)
+ return;
+ }
+
+ /* According to the loop information, the variable does not
+ overflow. If we think it does, probably because of an
+ overflow due to arithmetic on a different INF value,
+ reset now. */
+ if (is_negative_overflow_infinity (min))
+ min = tmin;
+ }
+ else
+ {
+ /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
+ if (compare_values (init, min) == 1)
+ {
+ min = init;
+
+ /* Again, avoid creating invalid range by failing. */
+ if (compare_values (min, max) == 1)
+ return;
+ }
+
+ if (is_positive_overflow_infinity (max))
+ max = tmax;
+ }
+
+ set_value_range (vr, VR_RANGE, min, max, vr->equiv);
+ }
+}
+
+/* Return true if VAR may overflow at STMT. This checks any available
+ loop information to see if we can determine that VAR does not
+ overflow. */
+
+static bool
+vrp_var_may_overflow (tree var, gimple stmt)
+{
+ struct loop *l;
+ tree chrec, init, step;
+
+ if (current_loops == NULL)
+ return true;
+
+ l = loop_containing_stmt (stmt);
+ if (l == NULL)
+ return true;
+
+ chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
+ if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
+ return true;
+
+ init = initial_condition_in_loop_num (chrec, l->num);
+ step = evolution_part_in_loop_num (chrec, l->num);
+
+ if (step == NULL_TREE
+ || !is_gimple_min_invariant (step)
+ || !valid_value_p (init))
+ return true;
+
+ /* If we get here, we know something useful about VAR based on the
+ loop information. If it wraps, it may overflow. */
+
+ if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
+ true))
+ return true;
+
+ if (dump_file && (dump_flags & TDF_DETAILS) != 0)
+ {
+ print_generic_expr (dump_file, var, 0);
+ fprintf (dump_file, ": loop information indicates does not overflow\n");
+ }
+
+ return false;
+}
+
+
+/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
+
+ - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
+ all the values in the ranges.
+
+ - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
+
+ - Return NULL_TREE if it is not always possible to determine the
+ value of the comparison.
+
+ Also set *STRICT_OVERFLOW_P to indicate whether a range with an
+ overflow infinity was used in the test. */
+
+
+static tree
+compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
+ bool *strict_overflow_p)
+{
+ /* VARYING or UNDEFINED ranges cannot be compared. */
+ if (vr0->type == VR_VARYING
+ || vr0->type == VR_UNDEFINED
+ || vr1->type == VR_VARYING
+ || vr1->type == VR_UNDEFINED)
+ return NULL_TREE;
+
+ /* Anti-ranges need to be handled separately. */
+ if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
+ {
+ /* If both are anti-ranges, then we cannot compute any
+ comparison. */
+ if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
+ return NULL_TREE;
+
+ /* These comparisons are never statically computable. */
+ if (comp == GT_EXPR
+ || comp == GE_EXPR
+ || comp == LT_EXPR
+ || comp == LE_EXPR)
+ return NULL_TREE;
+
+ /* Equality can be computed only between a range and an
+ anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
+ if (vr0->type == VR_RANGE)
+ {
+ /* To simplify processing, make VR0 the anti-range. */
+ value_range_t *tmp = vr0;
+ vr0 = vr1;
+ vr1 = tmp;
+ }
+
+ gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
+
+ if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
+ && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
+ return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
+
+ return NULL_TREE;
+ }
+
+ if (!usable_range_p (vr0, strict_overflow_p)
+ || !usable_range_p (vr1, strict_overflow_p))
+ return NULL_TREE;
+
+ /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
+ operands around and change the comparison code. */
+ if (comp == GT_EXPR || comp == GE_EXPR)
+ {
+ value_range_t *tmp;
+ comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
+ tmp = vr0;
+ vr0 = vr1;
+ vr1 = tmp;
+ }
+
+ if (comp == EQ_EXPR)
+ {
+ /* Equality may only be computed if both ranges represent
+ exactly one value. */
+ if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
+ && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
+ {
+ int cmp_min = compare_values_warnv (vr0->min, vr1->min,
+ strict_overflow_p);
+ int cmp_max = compare_values_warnv (vr0->max, vr1->max,
+ strict_overflow_p);
+ if (cmp_min == 0 && cmp_max == 0)
+ return boolean_true_node;
+ else if (cmp_min != -2 && cmp_max != -2)
+ return boolean_false_node;
+ }
+ /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
+ else if (compare_values_warnv (vr0->min, vr1->max,
+ strict_overflow_p) == 1
+ || compare_values_warnv (vr1->min, vr0->max,
+ strict_overflow_p) == 1)
+ return boolean_false_node;
+
+ return NULL_TREE;
+ }
+ else if (comp == NE_EXPR)
+ {
+ int cmp1, cmp2;
+
+ /* If VR0 is completely to the left or completely to the right
+ of VR1, they are always different. Notice that we need to
+ make sure that both comparisons yield similar results to
+ avoid comparing values that cannot be compared at
+ compile-time. */
+ cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+ cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
+ if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
+ return boolean_true_node;
+
+ /* If VR0 and VR1 represent a single value and are identical,
+ return false. */
+ else if (compare_values_warnv (vr0->min, vr0->max,
+ strict_overflow_p) == 0
+ && compare_values_warnv (vr1->min, vr1->max,
+ strict_overflow_p) == 0
+ && compare_values_warnv (vr0->min, vr1->min,
+ strict_overflow_p) == 0
+ && compare_values_warnv (vr0->max, vr1->max,
+ strict_overflow_p) == 0)
+ return boolean_false_node;
+
+ /* Otherwise, they may or may not be different. */
+ else
+ return NULL_TREE;
+ }
+ else if (comp == LT_EXPR || comp == LE_EXPR)
+ {
+ int tst;
+
+ /* If VR0 is to the left of VR1, return true. */
+ tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
+ if ((comp == LT_EXPR && tst == -1)
+ || (comp == LE_EXPR && (tst == -1 || tst == 0)))
+ {
+ if (overflow_infinity_range_p (vr0)
+ || overflow_infinity_range_p (vr1))
+ *strict_overflow_p = true;
+ return boolean_true_node;
+ }
+
+ /* If VR0 is to the right of VR1, return false. */
+ tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
+ if ((comp == LT_EXPR && (tst == 0 || tst == 1))
+ || (comp == LE_EXPR && tst == 1))
+ {
+ if (overflow_infinity_range_p (vr0)
+ || overflow_infinity_range_p (vr1))
+ *strict_overflow_p = true;
+ return boolean_false_node;
+ }
+
+ /* Otherwise, we don't know. */
+ return NULL_TREE;
+ }
+
+ gcc_unreachable ();
+}
+
+
+/* Given a value range VR, a value VAL and a comparison code COMP, return
+ BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
+ values in VR. Return BOOLEAN_FALSE_NODE if the comparison
+ always returns false. Return NULL_TREE if it is not always
+ possible to determine the value of the comparison. Also set
+ *STRICT_OVERFLOW_P to indicate whether a range with an overflow
+ infinity was used in the test. */
+
+static tree
+compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
+ bool *strict_overflow_p)
+{
+ if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
+ return NULL_TREE;
+
+ /* Anti-ranges need to be handled separately. */
+ if (vr->type == VR_ANTI_RANGE)
+ {
+ /* For anti-ranges, the only predicates that we can compute at
+ compile time are equality and inequality. */
+ if (comp == GT_EXPR
+ || comp == GE_EXPR
+ || comp == LT_EXPR
+ || comp == LE_EXPR)
+ return NULL_TREE;
+
+ /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
+ if (value_inside_range (val, vr) == 1)
+ return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
+
+ return NULL_TREE;
+ }
+
+ if (!usable_range_p (vr, strict_overflow_p))
+ return NULL_TREE;
+
+ if (comp == EQ_EXPR)
+ {
+ /* EQ_EXPR may only be computed if VR represents exactly
+ one value. */
+ if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
+ {
+ int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
+ if (cmp == 0)
+ return boolean_true_node;
+ else if (cmp == -1 || cmp == 1 || cmp == 2)
+ return boolean_false_node;
+ }
+ else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
+ || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
+ return boolean_false_node;
+
+ return NULL_TREE;
+ }
+ else if (comp == NE_EXPR)
+ {
+ /* If VAL is not inside VR, then they are always different. */
+ if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
+ || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
+ return boolean_true_node;
+
+ /* If VR represents exactly one value equal to VAL, then return
+ false. */
+ if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
+ && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
+ return boolean_false_node;
+
+ /* Otherwise, they may or may not be different. */
+ return NULL_TREE;
+ }
+ else if (comp == LT_EXPR || comp == LE_EXPR)
+ {
+ int tst;
+
+ /* If VR is to the left of VAL, return true. */
+ tst = compare_values_warnv (vr->max, val, strict_overflow_p);
+ if ((comp == LT_EXPR && tst == -1)
+ || (comp == LE_EXPR && (tst == -1 || tst == 0)))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_true_node;
+ }
+
+ /* If VR is to the right of VAL, return false. */
+ tst = compare_values_warnv (vr->min, val, strict_overflow_p);
+ if ((comp == LT_EXPR && (tst == 0 || tst == 1))
+ || (comp == LE_EXPR && tst == 1))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_false_node;
+ }
+
+ /* Otherwise, we don't know. */
+ return NULL_TREE;
+ }
+ else if (comp == GT_EXPR || comp == GE_EXPR)
+ {
+ int tst;
+
+ /* If VR is to the right of VAL, return true. */
+ tst = compare_values_warnv (vr->min, val, strict_overflow_p);
+ if ((comp == GT_EXPR && tst == 1)
+ || (comp == GE_EXPR && (tst == 0 || tst == 1)))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_true_node;
+ }
+
+ /* If VR is to the left of VAL, return false. */
+ tst = compare_values_warnv (vr->max, val, strict_overflow_p);
+ if ((comp == GT_EXPR && (tst == -1 || tst == 0))
+ || (comp == GE_EXPR && tst == -1))
+ {
+ if (overflow_infinity_range_p (vr))
+ *strict_overflow_p = true;
+ return boolean_false_node;
+ }
+
+ /* Otherwise, we don't know. */
+ return NULL_TREE;
+ }
+
+ gcc_unreachable ();
+}
+
+
+/* Debugging dumps. */
+
+void dump_value_range (FILE *, value_range_t *);
+void debug_value_range (value_range_t *);
+void dump_all_value_ranges (FILE *);
+void debug_all_value_ranges (void);
+void dump_vr_equiv (FILE *, bitmap);
+void debug_vr_equiv (bitmap);
+
+
+/* Dump value range VR to FILE. */
+
+void
+dump_value_range (FILE *file, value_range_t *vr)
+{
+ if (vr == NULL)
+ fprintf (file, "[]");
+ else if (vr->type == VR_UNDEFINED)
+ fprintf (file, "UNDEFINED");
+ else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
+ {
+ tree type = TREE_TYPE (vr->min);
+
+ fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
+
+ if (is_negative_overflow_infinity (vr->min))
+ fprintf (file, "-INF(OVF)");
+ else if (INTEGRAL_TYPE_P (type)
+ && !TYPE_UNSIGNED (type)
+ && vrp_val_is_min (vr->min))
+ fprintf (file, "-INF");
+ else
+ print_generic_expr (file, vr->min, 0);
+
+ fprintf (file, ", ");
+
+ if (is_positive_overflow_infinity (vr->max))
+ fprintf (file, "+INF(OVF)");
+ else if (INTEGRAL_TYPE_P (type)
+ && vrp_val_is_max (vr->max))
+ fprintf (file, "+INF");
+ else
+ print_generic_expr (file, vr->max, 0);
+
+ fprintf (file, "]");
+
+ if (vr->equiv)
+ {
+ bitmap_iterator bi;
+ unsigned i, c = 0;
+
+ fprintf (file, " EQUIVALENCES: { ");
+
+ EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
+ {
+ print_generic_expr (file, ssa_name (i), 0);
+ fprintf (file, " ");
+ c++;
+ }
+
+ fprintf (file, "} (%u elements)", c);
+ }
+ }
+ else if (vr->type == VR_VARYING)
+ fprintf (file, "VARYING");
+ else
+ fprintf (file, "INVALID RANGE");
+}
+
+
+/* Dump value range VR to stderr. */
+
+void
+debug_value_range (value_range_t *vr)
+{
+ dump_value_range (stderr, vr);
+ fprintf (stderr, "\n");
+}
+
+
+/* Dump value ranges of all SSA_NAMEs to FILE. */
+
+void
+dump_all_value_ranges (FILE *file)
+{
+ size_t i;
+
+ for (i = 0; i < num_ssa_names; i++)
+ {
+ if (vr_value[i])
+ {
+ print_generic_expr (file, ssa_name (i), 0);
+ fprintf (file, ": ");
+ dump_value_range (file, vr_value[i]);
+ fprintf (file, "\n");
+ }
+ }
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump all value ranges to stderr. */
+
+void
+debug_all_value_ranges (void)
+{
+ dump_all_value_ranges (stderr);
+}
+
+
+/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
+ create a new SSA name N and return the assertion assignment
+ 'V = ASSERT_EXPR <V, V OP W>'. */
+
+static gimple
+build_assert_expr_for (tree cond, tree v)
+{
+ tree n;
+ gimple assertion;
+
+ gcc_assert (TREE_CODE (v) == SSA_NAME);
+ n = duplicate_ssa_name (v, NULL);
+
+ if (COMPARISON_CLASS_P (cond))
+ {
+ tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
+ assertion = gimple_build_assign (n, a);
+ }
+ else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
+ {
+ /* Given !V, build the assignment N = false. */
+ tree op0 = TREE_OPERAND (cond, 0);
+ gcc_assert (op0 == v);
+ assertion = gimple_build_assign (n, boolean_false_node);
+ }
+ else if (TREE_CODE (cond) == SSA_NAME)
+ {
+ /* Given V, build the assignment N = true. */
+ gcc_assert (v == cond);
+ assertion = gimple_build_assign (n, boolean_true_node);
+ }
+ else
+ gcc_unreachable ();
+
+ SSA_NAME_DEF_STMT (n) = assertion;
+
+ /* The new ASSERT_EXPR, creates a new SSA name that replaces the
+ operand of the ASSERT_EXPR. Register the new name and the old one
+ in the replacement table so that we can fix the SSA web after
+ adding all the ASSERT_EXPRs. */
+ register_new_name_mapping (n, v);
+
+ return assertion;
+}
+
+
+/* Return false if EXPR is a predicate expression involving floating
+ point values. */
+
+static inline bool
+fp_predicate (gimple stmt)
+{
+ GIMPLE_CHECK (stmt, GIMPLE_COND);
+
+ return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
+}
+
+
+/* If the range of values taken by OP can be inferred after STMT executes,
+ return the comparison code (COMP_CODE_P) and value (VAL_P) that
+ describes the inferred range. Return true if a range could be
+ inferred. */
+
+static bool
+infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
+{
+ *val_p = NULL_TREE;
+ *comp_code_p = ERROR_MARK;
+
+ /* Do not attempt to infer anything in names that flow through
+ abnormal edges. */
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
+ return false;
+
+ /* Similarly, don't infer anything from statements that may throw
+ exceptions. */
+ if (stmt_could_throw_p (stmt))
+ return false;
+
+ /* If STMT is the last statement of a basic block with no
+ successors, there is no point inferring anything about any of its
+ operands. We would not be able to find a proper insertion point
+ for the assertion, anyway. */
+ if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
+ return false;
+
+ /* We can only assume that a pointer dereference will yield
+ non-NULL if -fdelete-null-pointer-checks is enabled. */
+ if (flag_delete_null_pointer_checks
+ && POINTER_TYPE_P (TREE_TYPE (op))
+ && gimple_code (stmt) != GIMPLE_ASM)
+ {
+ unsigned num_uses, num_loads, num_stores;
+
+ count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
+ if (num_loads + num_stores > 0)
+ {
+ *val_p = build_int_cst (TREE_TYPE (op), 0);
+ *comp_code_p = NE_EXPR;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+void dump_asserts_for (FILE *, tree);
+void debug_asserts_for (tree);
+void dump_all_asserts (FILE *);
+void debug_all_asserts (void);
+
+/* Dump all the registered assertions for NAME to FILE. */
+
+void
+dump_asserts_for (FILE *file, tree name)
+{
+ assert_locus_t loc;
+
+ fprintf (file, "Assertions to be inserted for ");
+ print_generic_expr (file, name, 0);
+ fprintf (file, "\n");
+
+ loc = asserts_for[SSA_NAME_VERSION (name)];
+ while (loc)
+ {
+ fprintf (file, "\t");
+ print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
+ fprintf (file, "\n\tBB #%d", loc->bb->index);
+ if (loc->e)
+ {
+ fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
+ loc->e->dest->index);
+ dump_edge_info (file, loc->e, 0);
+ }
+ fprintf (file, "\n\tPREDICATE: ");
+ print_generic_expr (file, name, 0);
+ fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
+ print_generic_expr (file, loc->val, 0);
+ fprintf (file, "\n\n");
+ loc = loc->next;
+ }
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump all the registered assertions for NAME to stderr. */
+
+void
+debug_asserts_for (tree name)
+{
+ dump_asserts_for (stderr, name);
+}
+
+
+/* Dump all the registered assertions for all the names to FILE. */
+
+void
+dump_all_asserts (FILE *file)
+{
+ unsigned i;
+ bitmap_iterator bi;
+
+ fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
+ EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
+ dump_asserts_for (file, ssa_name (i));
+ fprintf (file, "\n");
+}
+
+
+/* Dump all the registered assertions for all the names to stderr. */
+
+void
+debug_all_asserts (void)
+{
+ dump_all_asserts (stderr);
+}
+
+
+/* If NAME doesn't have an ASSERT_EXPR registered for asserting
+ 'EXPR COMP_CODE VAL' at a location that dominates block BB or
+ E->DEST, then register this location as a possible insertion point
+ for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
+
+ BB, E and SI provide the exact insertion point for the new
+ ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
+ on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
+ BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
+ must not be NULL. */
+
+static void
+register_new_assert_for (tree name, tree expr,
+ enum tree_code comp_code,
+ tree val,
+ basic_block bb,
+ edge e,
+ gimple_stmt_iterator si)
+{
+ assert_locus_t n, loc, last_loc;
+ bool found;
+ basic_block dest_bb;
+
+#if defined ENABLE_CHECKING
+ gcc_assert (bb == NULL || e == NULL);
+
+ if (e == NULL)
+ gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
+ && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
+#endif
+
+ /* Never build an assert comparing against an integer constant with
+ TREE_OVERFLOW set. This confuses our undefined overflow warning
+ machinery. */
+ if (TREE_CODE (val) == INTEGER_CST
+ && TREE_OVERFLOW (val))
+ val = build_int_cst_wide (TREE_TYPE (val),
+ TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
+
+ /* The new assertion A will be inserted at BB or E. We need to
+ determine if the new location is dominated by a previously
+ registered location for A. If we are doing an edge insertion,
+ assume that A will be inserted at E->DEST. Note that this is not
+ necessarily true.
+
+ If E is a critical edge, it will be split. But even if E is
+ split, the new block will dominate the same set of blocks that
+ E->DEST dominates.
+
+ The reverse, however, is not true, blocks dominated by E->DEST
+ will not be dominated by the new block created to split E. So,
+ if the insertion location is on a critical edge, we will not use
+ the new location to move another assertion previously registered
+ at a block dominated by E->DEST. */
+ dest_bb = (bb) ? bb : e->dest;
+
+ /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
+ VAL at a block dominating DEST_BB, then we don't need to insert a new
+ one. Similarly, if the same assertion already exists at a block
+ dominated by DEST_BB and the new location is not on a critical
+ edge, then update the existing location for the assertion (i.e.,
+ move the assertion up in the dominance tree).
+
+ Note, this is implemented as a simple linked list because there
+ should not be more than a handful of assertions registered per
+ name. If this becomes a performance problem, a table hashed by
+ COMP_CODE and VAL could be implemented. */
+ loc = asserts_for[SSA_NAME_VERSION (name)];
+ last_loc = loc;
+ found = false;
+ while (loc)
+ {
+ if (loc->comp_code == comp_code
+ && (loc->val == val
+ || operand_equal_p (loc->val, val, 0))
+ && (loc->expr == expr
+ || operand_equal_p (loc->expr, expr, 0)))
+ {
+ /* If the assertion NAME COMP_CODE VAL has already been
+ registered at a basic block that dominates DEST_BB, then
+ we don't need to insert the same assertion again. Note
+ that we don't check strict dominance here to avoid
+ replicating the same assertion inside the same basic
+ block more than once (e.g., when a pointer is
+ dereferenced several times inside a block).
+
+ An exception to this rule are edge insertions. If the
+ new assertion is to be inserted on edge E, then it will
+ dominate all the other insertions that we may want to
+ insert in DEST_BB. So, if we are doing an edge
+ insertion, don't do this dominance check. */
+ if (e == NULL
+ && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
+ return;
+
+ /* Otherwise, if E is not a critical edge and DEST_BB
+ dominates the existing location for the assertion, move
+ the assertion up in the dominance tree by updating its
+ location information. */
+ if ((e == NULL || !EDGE_CRITICAL_P (e))
+ && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
+ {
+ loc->bb = dest_bb;
+ loc->e = e;
+ loc->si = si;
+ return;
+ }
+ }
+
+ /* Update the last node of the list and move to the next one. */
+ last_loc = loc;
+ loc = loc->next;
+ }
+
+ /* If we didn't find an assertion already registered for
+ NAME COMP_CODE VAL, add a new one at the end of the list of
+ assertions associated with NAME. */
+ n = XNEW (struct assert_locus_d);
+ n->bb = dest_bb;
+ n->e = e;
+ n->si = si;
+ n->comp_code = comp_code;
+ n->val = val;
+ n->expr = expr;
+ n->next = NULL;
+
+ if (last_loc)
+ last_loc->next = n;
+ else
+ asserts_for[SSA_NAME_VERSION (name)] = n;
+
+ bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
+}
+
+/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
+ Extract a suitable test code and value and store them into *CODE_P and
+ *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
+
+ If no extraction was possible, return FALSE, otherwise return TRUE.
+
+ If INVERT is true, then we invert the result stored into *CODE_P. */
+
+static bool
+extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
+ tree cond_op0, tree cond_op1,
+ bool invert, enum tree_code *code_p,
+ tree *val_p)
+{
+ enum tree_code comp_code;
+ tree val;
+
+ /* Otherwise, we have a comparison of the form NAME COMP VAL
+ or VAL COMP NAME. */
+ if (name == cond_op1)
+ {
+ /* If the predicate is of the form VAL COMP NAME, flip
+ COMP around because we need to register NAME as the
+ first operand in the predicate. */
+ comp_code = swap_tree_comparison (cond_code);
+ val = cond_op0;
+ }
+ else
+ {
+ /* The comparison is of the form NAME COMP VAL, so the
+ comparison code remains unchanged. */
+ comp_code = cond_code;
+ val = cond_op1;
+ }
+
+ /* Invert the comparison code as necessary. */
+ if (invert)
+ comp_code = invert_tree_comparison (comp_code, 0);
+
+ /* VRP does not handle float types. */
+ if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
+ return false;
+
+ /* Do not register always-false predicates.
+ FIXME: this works around a limitation in fold() when dealing with
+ enumerations. Given 'enum { N1, N2 } x;', fold will not
+ fold 'if (x > N2)' to 'if (0)'. */
+ if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
+ && INTEGRAL_TYPE_P (TREE_TYPE (val)))
+ {
+ tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
+ tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
+
+ if (comp_code == GT_EXPR
+ && (!max
+ || compare_values (val, max) == 0))
+ return false;
+
+ if (comp_code == LT_EXPR
+ && (!min
+ || compare_values (val, min) == 0))
+ return false;
+ }
+ *code_p = comp_code;
+ *val_p = val;
+ return true;
+}
+
+/* Try to register an edge assertion for SSA name NAME on edge E for
+ the condition COND contributing to the conditional jump pointed to by BSI.
+ Invert the condition COND if INVERT is true.
+ Return true if an assertion for NAME could be registered. */
+
+static bool
+register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
+ enum tree_code cond_code,
+ tree cond_op0, tree cond_op1, bool invert)
+{
+ tree val;
+ enum tree_code comp_code;
+ bool retval = false;
+
+ if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
+ cond_op0,
+ cond_op1,
+ invert, &comp_code, &val))
+ return false;
+
+ /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
+ reachable from E. */
+ if (live_on_edge (e, name)
+ && !has_single_use (name))
+ {
+ register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
+ retval = true;
+ }
+
+ /* In the case of NAME <= CST and NAME being defined as
+ NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
+ and NAME2 <= CST - CST2. We can do the same for NAME > CST.
+ This catches range and anti-range tests. */
+ if ((comp_code == LE_EXPR
+ || comp_code == GT_EXPR)
+ && TREE_CODE (val) == INTEGER_CST
+ && TYPE_UNSIGNED (TREE_TYPE (val)))
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (name);
+ tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
+
+ /* Extract CST2 from the (optional) addition. */
+ if (is_gimple_assign (def_stmt)
+ && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
+ {
+ name2 = gimple_assign_rhs1 (def_stmt);
+ cst2 = gimple_assign_rhs2 (def_stmt);
+ if (TREE_CODE (name2) == SSA_NAME
+ && TREE_CODE (cst2) == INTEGER_CST)
+ def_stmt = SSA_NAME_DEF_STMT (name2);
+ }
+
+ /* Extract NAME2 from the (optional) sign-changing cast. */
+ if (gimple_assign_cast_p (def_stmt))
+ {
+ if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
+ && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
+ && (TYPE_PRECISION (gimple_expr_type (def_stmt))
+ == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
+ name3 = gimple_assign_rhs1 (def_stmt);
+ }
+
+ /* If name3 is used later, create an ASSERT_EXPR for it. */
+ if (name3 != NULL_TREE
+ && TREE_CODE (name3) == SSA_NAME
+ && (cst2 == NULL_TREE
+ || TREE_CODE (cst2) == INTEGER_CST)
+ && INTEGRAL_TYPE_P (TREE_TYPE (name3))
+ && live_on_edge (e, name3)
+ && !has_single_use (name3))
+ {
+ tree tmp;
+
+ /* Build an expression for the range test. */
+ tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
+ if (cst2 != NULL_TREE)
+ tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Adding assert for ");
+ print_generic_expr (dump_file, name3, 0);
+ fprintf (dump_file, " from ");
+ print_generic_expr (dump_file, tmp, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
+
+ retval = true;
+ }
+
+ /* If name2 is used later, create an ASSERT_EXPR for it. */
+ if (name2 != NULL_TREE
+ && TREE_CODE (name2) == SSA_NAME
+ && TREE_CODE (cst2) == INTEGER_CST
+ && INTEGRAL_TYPE_P (TREE_TYPE (name2))
+ && live_on_edge (e, name2)
+ && !has_single_use (name2))
+ {
+ tree tmp;
+
+ /* Build an expression for the range test. */
+ tmp = name2;
+ if (TREE_TYPE (name) != TREE_TYPE (name2))
+ tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
+ if (cst2 != NULL_TREE)
+ tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "Adding assert for ");
+ print_generic_expr (dump_file, name2, 0);
+ fprintf (dump_file, " from ");
+ print_generic_expr (dump_file, tmp, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
+
+ retval = true;
+ }
+ }
+
+ return retval;
+}
+
+/* OP is an operand of a truth value expression which is known to have
+ a particular value. Register any asserts for OP and for any
+ operands in OP's defining statement.
+
+ If CODE is EQ_EXPR, then we want to register OP is zero (false),
+ if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
+
+static bool
+register_edge_assert_for_1 (tree op, enum tree_code code,
+ edge e, gimple_stmt_iterator bsi)
+{
+ bool retval = false;
+ gimple op_def;
+ tree val;
+ enum tree_code rhs_code;
+
+ /* We only care about SSA_NAMEs. */
+ if (TREE_CODE (op) != SSA_NAME)
+ return false;
+
+ /* We know that OP will have a zero or nonzero value. If OP is used
+ more than once go ahead and register an assert for OP.
+
+ The FOUND_IN_SUBGRAPH support is not helpful in this situation as
+ it will always be set for OP (because OP is used in a COND_EXPR in
+ the subgraph). */
+ if (!has_single_use (op))
+ {
+ val = build_int_cst (TREE_TYPE (op), 0);
+ register_new_assert_for (op, op, code, val, NULL, e, bsi);
+ retval = true;
+ }
+
+ /* Now look at how OP is set. If it's set from a comparison,
+ a truth operation or some bit operations, then we may be able
+ to register information about the operands of that assignment. */
+ op_def = SSA_NAME_DEF_STMT (op);
+ if (gimple_code (op_def) != GIMPLE_ASSIGN)
+ return retval;
+
+ rhs_code = gimple_assign_rhs_code (op_def);
+
+ if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
+ {
+ bool invert = (code == EQ_EXPR ? true : false);
+ tree op0 = gimple_assign_rhs1 (op_def);
+ tree op1 = gimple_assign_rhs2 (op_def);
+
+ if (TREE_CODE (op0) == SSA_NAME)
+ retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
+ invert);
+ if (TREE_CODE (op1) == SSA_NAME)
+ retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
+ invert);
+ }
+ else if ((code == NE_EXPR
+ && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
+ || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
+ || (code == EQ_EXPR
+ && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
+ || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
+ {
+ /* Recurse on each operand. */
+ retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+ code, e, bsi);
+ retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
+ code, e, bsi);
+ }
+ else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
+ {
+ /* Recurse, flipping CODE. */
+ code = invert_tree_comparison (code, false);
+ retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+ code, e, bsi);
+ }
+ else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
+ {
+ /* Recurse through the copy. */
+ retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+ code, e, bsi);
+ }
+ else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
+ {
+ /* Recurse through the type conversion. */
+ retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
+ code, e, bsi);
+ }
+
+ return retval;
+}
+
+/* Try to register an edge assertion for SSA name NAME on edge E for
+ the condition COND contributing to the conditional jump pointed to by SI.
+ Return true if an assertion for NAME could be registered. */
+
+static bool
+register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
+ enum tree_code cond_code, tree cond_op0,
+ tree cond_op1)
+{
+ tree val;
+ enum tree_code comp_code;
+ bool retval = false;
+ bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
+
+ /* Do not attempt to infer anything in names that flow through
+ abnormal edges. */
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
+ return false;
+
+ if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
+ cond_op0, cond_op1,
+ is_else_edge,
+ &comp_code, &val))
+ return false;
+
+ /* Register ASSERT_EXPRs for name. */
+ retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
+ cond_op1, is_else_edge);
+
+
+ /* If COND is effectively an equality test of an SSA_NAME against
+ the value zero or one, then we may be able to assert values
+ for SSA_NAMEs which flow into COND. */
+
+ /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
+ statement of NAME we can assert both operands of the TRUTH_AND_EXPR
+ have nonzero value. */
+ if (((comp_code == EQ_EXPR && integer_onep (val))
+ || (comp_code == NE_EXPR && integer_zerop (val))))
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (name);
+
+ if (is_gimple_assign (def_stmt)
+ && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
+ || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
+ {
+ tree op0 = gimple_assign_rhs1 (def_stmt);
+ tree op1 = gimple_assign_rhs2 (def_stmt);
+ retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
+ retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
+ }
+ }
+
+ /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
+ statement of NAME we can assert both operands of the TRUTH_OR_EXPR
+ have zero value. */
+ if (((comp_code == EQ_EXPR && integer_zerop (val))
+ || (comp_code == NE_EXPR && integer_onep (val))))
+ {
+ gimple def_stmt = SSA_NAME_DEF_STMT (name);
+
+ if (is_gimple_assign (def_stmt)
+ && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
+ /* For BIT_IOR_EXPR only if NAME == 0 both operands have
+ necessarily zero value. */
+ || (comp_code == EQ_EXPR
+ && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
+ {
+ tree op0 = gimple_assign_rhs1 (def_stmt);
+ tree op1 = gimple_assign_rhs2 (def_stmt);
+ retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
+ retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
+ }
+ }
+
+ return retval;
+}
+
+
+/* Determine whether the outgoing edges of BB should receive an
+ ASSERT_EXPR for each of the operands of BB's LAST statement.
+ The last statement of BB must be a COND_EXPR.
+
+ If any of the sub-graphs rooted at BB have an interesting use of
+ the predicate operands, an assert location node is added to the
+ list of assertions for the corresponding operands. */
+
+static bool
+find_conditional_asserts (basic_block bb, gimple last)
+{
+ bool need_assert;
+ gimple_stmt_iterator bsi;
+ tree op;
+ edge_iterator ei;
+ edge e;
+ ssa_op_iter iter;
+
+ need_assert = false;
+ bsi = gsi_for_stmt (last);
+
+ /* Look for uses of the operands in each of the sub-graphs
+ rooted at BB. We need to check each of the outgoing edges
+ separately, so that we know what kind of ASSERT_EXPR to
+ insert. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (e->dest == bb)
+ continue;
+
+ /* Register the necessary assertions for each operand in the
+ conditional predicate. */
+ FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
+ {
+ need_assert |= register_edge_assert_for (op, e, bsi,
+ gimple_cond_code (last),
+ gimple_cond_lhs (last),
+ gimple_cond_rhs (last));
+ }
+ }
+
+ return need_assert;
+}
+
+/* Compare two case labels sorting first by the destination label uid
+ and then by the case value. */
+
+static int
+compare_case_labels (const void *p1, const void *p2)
+{
+ const_tree const case1 = *(const_tree const*)p1;
+ const_tree const case2 = *(const_tree const*)p2;
+ unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
+ unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
+
+ if (uid1 < uid2)
+ return -1;
+ else if (uid1 == uid2)
+ {
+ /* Make sure the default label is first in a group. */
+ if (!CASE_LOW (case1))
+ return -1;
+ else if (!CASE_LOW (case2))
+ return 1;
+ else
+ return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
+ }
+ else
+ return 1;
+}
+
+/* Determine whether the outgoing edges of BB should receive an
+ ASSERT_EXPR for each of the operands of BB's LAST statement.
+ The last statement of BB must be a SWITCH_EXPR.
+
+ If any of the sub-graphs rooted at BB have an interesting use of
+ the predicate operands, an assert location node is added to the
+ list of assertions for the corresponding operands. */
+
+static bool
+find_switch_asserts (basic_block bb, gimple last)
+{
+ bool need_assert;
+ gimple_stmt_iterator bsi;
+ tree op;
+ edge e;
+ tree vec2;
+ size_t n = gimple_switch_num_labels(last);
+#if GCC_VERSION >= 4000
+ unsigned int idx;
+#else
+ /* Work around GCC 3.4 bug (PR 37086). */
+ volatile unsigned int idx;
+#endif
+
+ need_assert = false;
+ bsi = gsi_for_stmt (last);
+ op = gimple_switch_index (last);
+ if (TREE_CODE (op) != SSA_NAME)
+ return false;
+
+ /* Build a vector of case labels sorted by destination label. */
+ vec2 = make_tree_vec (n);
+ for (idx = 0; idx < n; ++idx)
+ TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
+ qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
+
+ for (idx = 0; idx < n; ++idx)
+ {
+ tree min, max;
+ tree cl = TREE_VEC_ELT (vec2, idx);
+
+ min = CASE_LOW (cl);
+ max = CASE_HIGH (cl);
+
+ /* If there are multiple case labels with the same destination
+ we need to combine them to a single value range for the edge. */
+ if (idx + 1 < n
+ && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
+ {
+ /* Skip labels until the last of the group. */
+ do {
+ ++idx;
+ } while (idx < n
+ && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
+ --idx;
+
+ /* Pick up the maximum of the case label range. */
+ if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
+ max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
+ else
+ max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
+ }
+
+ /* Nothing to do if the range includes the default label until we
+ can register anti-ranges. */
+ if (min == NULL_TREE)
+ continue;
+
+ /* Find the edge to register the assert expr on. */
+ e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
+
+ /* Register the necessary assertions for the operand in the
+ SWITCH_EXPR. */
+ need_assert |= register_edge_assert_for (op, e, bsi,
+ max ? GE_EXPR : EQ_EXPR,
+ op,
+ fold_convert (TREE_TYPE (op),
+ min));
+ if (max)
+ {
+ need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
+ op,
+ fold_convert (TREE_TYPE (op),
+ max));
+ }
+ }
+
+ return need_assert;
+}
+
+
+/* Traverse all the statements in block BB looking for statements that
+ may generate useful assertions for the SSA names in their operand.
+ If a statement produces a useful assertion A for name N_i, then the
+ list of assertions already generated for N_i is scanned to
+ determine if A is actually needed.
+
+ If N_i already had the assertion A at a location dominating the
+ current location, then nothing needs to be done. Otherwise, the
+ new location for A is recorded instead.
+
+ 1- For every statement S in BB, all the variables used by S are
+ added to bitmap FOUND_IN_SUBGRAPH.
+
+ 2- If statement S uses an operand N in a way that exposes a known
+ value range for N, then if N was not already generated by an
+ ASSERT_EXPR, create a new assert location for N. For instance,
+ if N is a pointer and the statement dereferences it, we can
+ assume that N is not NULL.
+
+ 3- COND_EXPRs are a special case of #2. We can derive range
+ information from the predicate but need to insert different
+ ASSERT_EXPRs for each of the sub-graphs rooted at the
+ conditional block. If the last statement of BB is a conditional
+ expression of the form 'X op Y', then
+
+ a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
+
+ b) If the conditional is the only entry point to the sub-graph
+ corresponding to the THEN_CLAUSE, recurse into it. On
+ return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
+ an ASSERT_EXPR is added for the corresponding variable.
+
+ c) Repeat step (b) on the ELSE_CLAUSE.
+
+ d) Mark X and Y in FOUND_IN_SUBGRAPH.
+
+ For instance,
+
+ if (a == 9)
+ b = a;
+ else
+ b = c + 1;
+
+ In this case, an assertion on the THEN clause is useful to
+ determine that 'a' is always 9 on that edge. However, an assertion
+ on the ELSE clause would be unnecessary.
+
+ 4- If BB does not end in a conditional expression, then we recurse
+ into BB's dominator children.
+
+ At the end of the recursive traversal, every SSA name will have a
+ list of locations where ASSERT_EXPRs should be added. When a new
+ location for name N is found, it is registered by calling
+ register_new_assert_for. That function keeps track of all the
+ registered assertions to prevent adding unnecessary assertions.
+ For instance, if a pointer P_4 is dereferenced more than once in a
+ dominator tree, only the location dominating all the dereference of
+ P_4 will receive an ASSERT_EXPR.
+
+ If this function returns true, then it means that there are names
+ for which we need to generate ASSERT_EXPRs. Those assertions are
+ inserted by process_assert_insertions. */
+
+static bool
+find_assert_locations_1 (basic_block bb, sbitmap live)
+{
+ gimple_stmt_iterator si;
+ gimple last;
+ gimple phi;
+ bool need_assert;
+
+ need_assert = false;
+ last = last_stmt (bb);
+
+ /* If BB's last statement is a conditional statement involving integer
+ operands, determine if we need to add ASSERT_EXPRs. */
+ if (last
+ && gimple_code (last) == GIMPLE_COND
+ && !fp_predicate (last)
+ && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
+ need_assert |= find_conditional_asserts (bb, last);
+
+ /* If BB's last statement is a switch statement involving integer
+ operands, determine if we need to add ASSERT_EXPRs. */
+ if (last
+ && gimple_code (last) == GIMPLE_SWITCH
+ && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
+ need_assert |= find_switch_asserts (bb, last);
+
+ /* Traverse all the statements in BB marking used names and looking
+ for statements that may infer assertions for their used operands. */
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt;
+ tree op;
+ ssa_op_iter i;
+
+ stmt = gsi_stmt (si);
+
+ /* See if we can derive an assertion for any of STMT's operands. */
+ FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
+ {
+ tree value;
+ enum tree_code comp_code;
+
+ /* Mark OP in our live bitmap. */
+ SET_BIT (live, SSA_NAME_VERSION (op));
+
+ /* If OP is used in such a way that we can infer a value
+ range for it, and we don't find a previous assertion for
+ it, create a new assertion location node for OP. */
+ if (infer_value_range (stmt, op, &comp_code, &value))
+ {
+ /* If we are able to infer a nonzero value range for OP,
+ then walk backwards through the use-def chain to see if OP
+ was set via a typecast.
+
+ If so, then we can also infer a nonzero value range
+ for the operand of the NOP_EXPR. */
+ if (comp_code == NE_EXPR && integer_zerop (value))
+ {
+ tree t = op;
+ gimple def_stmt = SSA_NAME_DEF_STMT (t);
+
+ while (is_gimple_assign (def_stmt)
+ && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
+ && TREE_CODE
+ (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
+ && POINTER_TYPE_P
+ (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
+ {
+ t = gimple_assign_rhs1 (def_stmt);
+ def_stmt = SSA_NAME_DEF_STMT (t);
+
+ /* Note we want to register the assert for the
+ operand of the NOP_EXPR after SI, not after the
+ conversion. */
+ if (! has_single_use (t))
+ {
+ register_new_assert_for (t, t, comp_code, value,
+ bb, NULL, si);
+ need_assert = true;
+ }
+ }
+ }
+
+ /* If OP is used only once, namely in this STMT, don't
+ bother creating an ASSERT_EXPR for it. Such an
+ ASSERT_EXPR would do nothing but increase compile time. */
+ if (!has_single_use (op))
+ {
+ register_new_assert_for (op, op, comp_code, value,
+ bb, NULL, si);
+ need_assert = true;
+ }
+ }
+ }
+ }
+
+ /* Traverse all PHI nodes in BB marking used operands. */
+ for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
+ {
+ use_operand_p arg_p;
+ ssa_op_iter i;
+ phi = gsi_stmt (si);
+
+ FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
+ {
+ tree arg = USE_FROM_PTR (arg_p);
+ if (TREE_CODE (arg) == SSA_NAME)
+ SET_BIT (live, SSA_NAME_VERSION (arg));
+ }
+ }
+
+ return need_assert;
+}
+
+/* Do an RPO walk over the function computing SSA name liveness
+ on-the-fly and deciding on assert expressions to insert.
+ Returns true if there are assert expressions to be inserted. */
+
+static bool
+find_assert_locations (void)
+{
+ int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
+ int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
+ int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
+ int rpo_cnt, i;
+ bool need_asserts;
+
+ live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
+ rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
+ for (i = 0; i < rpo_cnt; ++i)
+ bb_rpo[rpo[i]] = i;
+
+ need_asserts = false;
+ for (i = rpo_cnt-1; i >= 0; --i)
+ {
+ basic_block bb = BASIC_BLOCK (rpo[i]);
+ edge e;
+ edge_iterator ei;
+
+ if (!live[rpo[i]])
+ {
+ live[rpo[i]] = sbitmap_alloc (num_ssa_names);
+ sbitmap_zero (live[rpo[i]]);
+ }
+
+ /* Process BB and update the live information with uses in
+ this block. */
+ need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
+
+ /* Merge liveness into the predecessor blocks and free it. */
+ if (!sbitmap_empty_p (live[rpo[i]]))
+ {
+ int pred_rpo = i;
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ int pred = e->src->index;
+ if (e->flags & EDGE_DFS_BACK)
+ continue;
+
+ if (!live[pred])
+ {
+ live[pred] = sbitmap_alloc (num_ssa_names);
+ sbitmap_zero (live[pred]);
+ }
+ sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
+
+ if (bb_rpo[pred] < pred_rpo)
+ pred_rpo = bb_rpo[pred];
+ }
+
+ /* Record the RPO number of the last visited block that needs
+ live information from this block. */
+ last_rpo[rpo[i]] = pred_rpo;
+ }
+ else
+ {
+ sbitmap_free (live[rpo[i]]);
+ live[rpo[i]] = NULL;
+ }
+
+ /* We can free all successors live bitmaps if all their
+ predecessors have been visited already. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (last_rpo[e->dest->index] == i
+ && live[e->dest->index])
+ {
+ sbitmap_free (live[e->dest->index]);
+ live[e->dest->index] = NULL;
+ }
+ }
+
+ XDELETEVEC (rpo);
+ XDELETEVEC (bb_rpo);
+ XDELETEVEC (last_rpo);
+ for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
+ if (live[i])
+ sbitmap_free (live[i]);
+ XDELETEVEC (live);
+
+ return need_asserts;
+}
+
+/* Create an ASSERT_EXPR for NAME and insert it in the location
+ indicated by LOC. Return true if we made any edge insertions. */
+
+static bool
+process_assert_insertions_for (tree name, assert_locus_t loc)
+{
+ /* Build the comparison expression NAME_i COMP_CODE VAL. */
+ gimple stmt;
+ tree cond;
+ gimple assert_stmt;
+ edge_iterator ei;
+ edge e;
+
+ cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
+ assert_stmt = build_assert_expr_for (cond, name);
+ if (loc->e)
+ {
+ /* We have been asked to insert the assertion on an edge. This
+ is used only by COND_EXPR and SWITCH_EXPR assertions. */
+#if defined ENABLE_CHECKING
+ gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
+ || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
+#endif
+
+ gsi_insert_on_edge (loc->e, assert_stmt);
+ return true;
+ }
+
+ /* Otherwise, we can insert right after LOC->SI iff the
+ statement must not be the last statement in the block. */
+ stmt = gsi_stmt (loc->si);
+ if (!stmt_ends_bb_p (stmt))
+ {
+ gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
+ return false;
+ }
+
+ /* If STMT must be the last statement in BB, we can only insert new
+ assertions on the non-abnormal edge out of BB. Note that since
+ STMT is not control flow, there may only be one non-abnormal edge
+ out of BB. */
+ FOR_EACH_EDGE (e, ei, loc->bb->succs)
+ if (!(e->flags & EDGE_ABNORMAL))
+ {
+ gsi_insert_on_edge (e, assert_stmt);
+ return true;
+ }
+
+ gcc_unreachable ();
+}
+
+
+/* Process all the insertions registered for every name N_i registered
+ in NEED_ASSERT_FOR. The list of assertions to be inserted are
+ found in ASSERTS_FOR[i]. */
+
+static void
+process_assert_insertions (void)
+{
+ unsigned i;
+ bitmap_iterator bi;
+ bool update_edges_p = false;
+ int num_asserts = 0;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_all_asserts (dump_file);
+
+ EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
+ {
+ assert_locus_t loc = asserts_for[i];
+ gcc_assert (loc);
+
+ while (loc)
+ {
+ assert_locus_t next = loc->next;
+ update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
+ free (loc);
+ loc = next;
+ num_asserts++;
+ }
+ }
+
+ if (update_edges_p)
+ gsi_commit_edge_inserts ();
+
+ statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
+ num_asserts);
+}
+
+
+/* Traverse the flowgraph looking for conditional jumps to insert range
+ expressions. These range expressions are meant to provide information
+ to optimizations that need to reason in terms of value ranges. They
+ will not be expanded into RTL. For instance, given:
+
+ x = ...
+ y = ...
+ if (x < y)
+ y = x - 2;
+ else
+ x = y + 3;
+
+ this pass will transform the code into:
+
+ x = ...
+ y = ...
+ if (x < y)
+ {
+ x = ASSERT_EXPR <x, x < y>
+ y = x - 2
+ }
+ else
+ {
+ y = ASSERT_EXPR <y, x <= y>
+ x = y + 3
+ }
+
+ The idea is that once copy and constant propagation have run, other
+ optimizations will be able to determine what ranges of values can 'x'
+ take in different paths of the code, simply by checking the reaching
+ definition of 'x'. */
+
+static void
+insert_range_assertions (void)
+{
+ need_assert_for = BITMAP_ALLOC (NULL);
+ asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
+
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ if (find_assert_locations ())
+ {
+ process_assert_insertions ();
+ update_ssa (TODO_update_ssa_no_phi);
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
+ dump_function_to_file (current_function_decl, dump_file, dump_flags);
+ }
+
+ free (asserts_for);
+ BITMAP_FREE (need_assert_for);
+}
+
+/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
+ and "struct" hacks. If VRP can determine that the
+ array subscript is a constant, check if it is outside valid
+ range. If the array subscript is a RANGE, warn if it is
+ non-overlapping with valid range.
+ IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
+
+static void
+check_array_ref (tree ref, const location_t *location, bool ignore_off_by_one)
+{
+ value_range_t* vr = NULL;
+ tree low_sub, up_sub;
+ tree low_bound, up_bound = array_ref_up_bound (ref);
+
+ low_sub = up_sub = TREE_OPERAND (ref, 1);
+
+ if (!up_bound || TREE_NO_WARNING (ref)
+ || TREE_CODE (up_bound) != INTEGER_CST
+ /* Can not check flexible arrays. */
+ || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
+ && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
+ && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
+ /* Accesses after the end of arrays of size 0 (gcc
+ extension) and 1 are likely intentional ("struct
+ hack"). */
+ || compare_tree_int (up_bound, 1) <= 0)
+ return;
+
+ low_bound = array_ref_low_bound (ref);
+
+ if (TREE_CODE (low_sub) == SSA_NAME)
+ {
+ vr = get_value_range (low_sub);
+ if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
+ {
+ low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
+ up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
+ }
+ }
+
+ if (vr && vr->type == VR_ANTI_RANGE)
+ {
+ if (TREE_CODE (up_sub) == INTEGER_CST
+ && tree_int_cst_lt (up_bound, up_sub)
+ && TREE_CODE (low_sub) == INTEGER_CST
+ && tree_int_cst_lt (low_sub, low_bound))
+ {
+ warning (OPT_Warray_bounds,
+ "%Harray subscript is outside array bounds", location);
+ TREE_NO_WARNING (ref) = 1;
+ }
+ }
+ else if (TREE_CODE (up_sub) == INTEGER_CST
+ && tree_int_cst_lt (up_bound, up_sub)
+ && !tree_int_cst_equal (up_bound, up_sub)
+ && (!ignore_off_by_one
+ || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
+ up_bound,
+ integer_one_node,
+ 0),
+ up_sub)))
+ {
+ warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
+ location);
+ TREE_NO_WARNING (ref) = 1;
+ }
+ else if (TREE_CODE (low_sub) == INTEGER_CST
+ && tree_int_cst_lt (low_sub, low_bound))
+ {
+ warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
+ location);
+ TREE_NO_WARNING (ref) = 1;
+ }
+}
+
+/* Searches if the expr T, located at LOCATION computes
+ address of an ARRAY_REF, and call check_array_ref on it. */
+
+static void
+search_for_addr_array (tree t, const location_t *location)
+{
+ while (TREE_CODE (t) == SSA_NAME)
+ {
+ gimple g = SSA_NAME_DEF_STMT (t);
+
+ if (gimple_code (g) != GIMPLE_ASSIGN)
+ return;
+
+ if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
+ != GIMPLE_SINGLE_RHS)
+ return;
+
+ t = gimple_assign_rhs1 (g);
+ }
+
+
+ /* We are only interested in addresses of ARRAY_REF's. */
+ if (TREE_CODE (t) != ADDR_EXPR)
+ return;
+
+ /* Check each ARRAY_REFs in the reference chain. */
+ do
+ {
+ if (TREE_CODE (t) == ARRAY_REF)
+ check_array_ref (t, location, true /*ignore_off_by_one*/);
+
+ t = TREE_OPERAND (t, 0);
+ }
+ while (handled_component_p (t));
+}
+
+/* walk_tree() callback that checks if *TP is
+ an ARRAY_REF inside an ADDR_EXPR (in which an array
+ subscript one outside the valid range is allowed). Call
+ check_array_ref for each ARRAY_REF found. The location is
+ passed in DATA. */
+
+static tree
+check_array_bounds (tree *tp, int *walk_subtree, void *data)
+{
+ tree t = *tp;
+ struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
+ const location_t *location = (const location_t *) wi->info;
+
+ *walk_subtree = TRUE;
+
+ if (TREE_CODE (t) == ARRAY_REF)
+ check_array_ref (t, location, false /*ignore_off_by_one*/);
+
+ if (TREE_CODE (t) == INDIRECT_REF
+ || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
+ search_for_addr_array (TREE_OPERAND (t, 0), location);
+
+ if (TREE_CODE (t) == ADDR_EXPR)
+ *walk_subtree = FALSE;
+
+ return NULL_TREE;
+}
+
+/* Walk over all statements of all reachable BBs and call check_array_bounds
+ on them. */
+
+static void
+check_all_array_refs (void)
+{
+ basic_block bb;
+ gimple_stmt_iterator si;
+
+ FOR_EACH_BB (bb)
+ {
+ /* Skip bb's that are clearly unreachable. */
+ if (single_pred_p (bb))
+ {
+ basic_block pred_bb = EDGE_PRED (bb, 0)->src;
+ gimple ls = NULL;
+
+ if (!gsi_end_p (gsi_last_bb (pred_bb)))
+ ls = gsi_stmt (gsi_last_bb (pred_bb));
+
+ if (ls && gimple_code (ls) == GIMPLE_COND
+ && ((gimple_cond_false_p (ls)
+ && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
+ || (gimple_cond_true_p (ls)
+ && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
+ continue;
+ }
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+ const location_t *location = gimple_location_ptr (stmt);
+ struct walk_stmt_info wi;
+ if (!gimple_has_location (stmt))
+ continue;
+
+ if (is_gimple_call (stmt))
+ {
+ size_t i;
+ size_t n = gimple_call_num_args (stmt);
+ for (i = 0; i < n; i++)
+ {
+ tree arg = gimple_call_arg (stmt, i);
+ search_for_addr_array (arg, location);
+ }
+ }
+ else
+ {
+ memset (&wi, 0, sizeof (wi));
+ wi.info = CONST_CAST (void *, (const void *) location);
+
+ walk_gimple_op (gsi_stmt (si),
+ check_array_bounds,
+ &wi);
+ }
+ }
+ }
+}
+
+/* Convert range assertion expressions into the implied copies and
+ copy propagate away the copies. Doing the trivial copy propagation
+ here avoids the need to run the full copy propagation pass after
+ VRP.
+
+ FIXME, this will eventually lead to copy propagation removing the
+ names that had useful range information attached to them. For
+ instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
+ then N_i will have the range [3, +INF].
+
+ However, by converting the assertion into the implied copy
+ operation N_i = N_j, we will then copy-propagate N_j into the uses
+ of N_i and lose the range information. We may want to hold on to
+ ASSERT_EXPRs a little while longer as the ranges could be used in
+ things like jump threading.
+
+ The problem with keeping ASSERT_EXPRs around is that passes after
+ VRP need to handle them appropriately.
+
+ Another approach would be to make the range information a first
+ class property of the SSA_NAME so that it can be queried from
+ any pass. This is made somewhat more complex by the need for
+ multiple ranges to be associated with one SSA_NAME. */
+
+static void
+remove_range_assertions (void)
+{
+ basic_block bb;
+ gimple_stmt_iterator si;
+
+ /* Note that the BSI iterator bump happens at the bottom of the
+ loop and no bump is necessary if we're removing the statement
+ referenced by the current BSI. */
+ FOR_EACH_BB (bb)
+ for (si = gsi_start_bb (bb); !gsi_end_p (si);)
+ {
+ gimple stmt = gsi_stmt (si);
+ gimple use_stmt;
+
+ if (is_gimple_assign (stmt)
+ && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+ tree var;
+ tree cond = fold (ASSERT_EXPR_COND (rhs));
+ use_operand_p use_p;
+ imm_use_iterator iter;
+
+ gcc_assert (cond != boolean_false_node);
+
+ /* Propagate the RHS into every use of the LHS. */
+ var = ASSERT_EXPR_VAR (rhs);
+ FOR_EACH_IMM_USE_STMT (use_stmt, iter,
+ gimple_assign_lhs (stmt))
+ FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
+ {
+ SET_USE (use_p, var);
+ gcc_assert (TREE_CODE (var) == SSA_NAME);
+ }
+
+ /* And finally, remove the copy, it is not needed. */
+ gsi_remove (&si, true);
+ release_defs (stmt);
+ }
+ else
+ gsi_next (&si);
+ }
+}
+
+
+/* Return true if STMT is interesting for VRP. */
+
+static bool
+stmt_interesting_for_vrp (gimple stmt)
+{
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && is_gimple_reg (gimple_phi_result (stmt))
+ && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
+ || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
+ return true;
+ else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
+ {
+ tree lhs = gimple_get_lhs (stmt);
+
+ /* In general, assignments with virtual operands are not useful
+ for deriving ranges, with the obvious exception of calls to
+ builtin functions. */
+ if (lhs && TREE_CODE (lhs) == SSA_NAME
+ && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ || POINTER_TYPE_P (TREE_TYPE (lhs)))
+ && ((is_gimple_call (stmt)
+ && gimple_call_fndecl (stmt) != NULL_TREE
+ && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
+ || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
+ return true;
+ }
+ else if (gimple_code (stmt) == GIMPLE_COND
+ || gimple_code (stmt) == GIMPLE_SWITCH)
+ return true;
+
+ return false;
+}
+
+
+/* Initialize local data structures for VRP. */
+
+static void
+vrp_initialize (void)
+{
+ basic_block bb;
+
+ vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
+ vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
+
+ FOR_EACH_BB (bb)
+ {
+ gimple_stmt_iterator si;
+
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple phi = gsi_stmt (si);
+ if (!stmt_interesting_for_vrp (phi))
+ {
+ tree lhs = PHI_RESULT (phi);
+ set_value_range_to_varying (get_value_range (lhs));
+ prop_set_simulate_again (phi, false);
+ }
+ else
+ prop_set_simulate_again (phi, true);
+ }
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+
+ if (!stmt_interesting_for_vrp (stmt))
+ {
+ ssa_op_iter i;
+ tree def;
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
+ set_value_range_to_varying (get_value_range (def));
+ prop_set_simulate_again (stmt, false);
+ }
+ else
+ {
+ prop_set_simulate_again (stmt, true);
+ }
+ }
+ }
+}
+
+
+/* Visit assignment STMT. If it produces an interesting range, record
+ the SSA name in *OUTPUT_P. */
+
+static enum ssa_prop_result
+vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
+{
+ tree def, lhs;
+ ssa_op_iter iter;
+ enum gimple_code code = gimple_code (stmt);
+ lhs = gimple_get_lhs (stmt);
+
+ /* We only keep track of ranges in integral and pointer types. */
+ if (TREE_CODE (lhs) == SSA_NAME
+ && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ /* It is valid to have NULL MIN/MAX values on a type. See
+ build_range_type. */
+ && TYPE_MIN_VALUE (TREE_TYPE (lhs))
+ && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
+ || POINTER_TYPE_P (TREE_TYPE (lhs))))
+ {
+ struct loop *l;
+ value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+
+ if (code == GIMPLE_CALL)
+ extract_range_basic (&new_vr, stmt);
+ else
+ extract_range_from_assignment (&new_vr, stmt);
+
+ /* If STMT is inside a loop, we may be able to know something
+ else about the range of LHS by examining scalar evolution
+ information. */
+ if (current_loops && (l = loop_containing_stmt (stmt)))
+ adjust_range_with_scev (&new_vr, l, stmt, lhs);
+
+ if (update_value_range (lhs, &new_vr))
+ {
+ *output_p = lhs;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Found new range for ");
+ print_generic_expr (dump_file, lhs, 0);
+ fprintf (dump_file, ": ");
+ dump_value_range (dump_file, &new_vr);
+ fprintf (dump_file, "\n\n");
+ }
+
+ if (new_vr.type == VR_VARYING)
+ return SSA_PROP_VARYING;
+
+ return SSA_PROP_INTERESTING;
+ }
+
+ return SSA_PROP_NOT_INTERESTING;
+ }
+
+ /* Every other statement produces no useful ranges. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+ set_value_range_to_varying (get_value_range (def));
+
+ return SSA_PROP_VARYING;
+}
+
+/* Helper that gets the value range of the SSA_NAME with version I
+ or a symbolic range containing the SSA_NAME only if the value range
+ is varying or undefined. */
+
+static inline value_range_t
+get_vr_for_comparison (int i)
+{
+ value_range_t vr = *(vr_value[i]);
+
+ /* If name N_i does not have a valid range, use N_i as its own
+ range. This allows us to compare against names that may
+ have N_i in their ranges. */
+ if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
+ {
+ vr.type = VR_RANGE;
+ vr.min = ssa_name (i);
+ vr.max = ssa_name (i);
+ }
+
+ return vr;
+}
+
+/* Compare all the value ranges for names equivalent to VAR with VAL
+ using comparison code COMP. Return the same value returned by
+ compare_range_with_value, including the setting of
+ *STRICT_OVERFLOW_P. */
+
+static tree
+compare_name_with_value (enum tree_code comp, tree var, tree val,
+ bool *strict_overflow_p)
+{
+ bitmap_iterator bi;
+ unsigned i;
+ bitmap e;
+ tree retval, t;
+ int used_strict_overflow;
+ bool sop;
+ value_range_t equiv_vr;
+
+ /* Get the set of equivalences for VAR. */
+ e = get_value_range (var)->equiv;
+
+ /* Start at -1. Set it to 0 if we do a comparison without relying
+ on overflow, or 1 if all comparisons rely on overflow. */
+ used_strict_overflow = -1;
+
+ /* Compare vars' value range with val. */
+ equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
+ sop = false;
+ retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
+ if (retval)
+ used_strict_overflow = sop ? 1 : 0;
+
+ /* If the equiv set is empty we have done all work we need to do. */
+ if (e == NULL)
+ {
+ if (retval
+ && used_strict_overflow > 0)
+ *strict_overflow_p = true;
+ return retval;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
+ {
+ equiv_vr = get_vr_for_comparison (i);
+ sop = false;
+ t = compare_range_with_value (comp, &equiv_vr, val, &sop);
+ if (t)
+ {
+ /* If we get different answers from different members
+ of the equivalence set this check must be in a dead
+ code region. Folding it to a trap representation
+ would be correct here. For now just return don't-know. */
+ if (retval != NULL
+ && t != retval)
+ {
+ retval = NULL_TREE;
+ break;
+ }
+ retval = t;
+
+ if (!sop)
+ used_strict_overflow = 0;
+ else if (used_strict_overflow < 0)
+ used_strict_overflow = 1;
+ }
+ }
+
+ if (retval
+ && used_strict_overflow > 0)
+ *strict_overflow_p = true;
+
+ return retval;
+}
+
+
+/* Given a comparison code COMP and names N1 and N2, compare all the
+ ranges equivalent to N1 against all the ranges equivalent to N2
+ to determine the value of N1 COMP N2. Return the same value
+ returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
+ whether we relied on an overflow infinity in the comparison. */
+
+
+static tree
+compare_names (enum tree_code comp, tree n1, tree n2,
+ bool *strict_overflow_p)
+{
+ tree t, retval;
+ bitmap e1, e2;
+ bitmap_iterator bi1, bi2;
+ unsigned i1, i2;
+ int used_strict_overflow;
+ static bitmap_obstack *s_obstack = NULL;
+ static bitmap s_e1 = NULL, s_e2 = NULL;
+
+ /* Compare the ranges of every name equivalent to N1 against the
+ ranges of every name equivalent to N2. */
+ e1 = get_value_range (n1)->equiv;
+ e2 = get_value_range (n2)->equiv;
+
+ /* Use the fake bitmaps if e1 or e2 are not available. */
+ if (s_obstack == NULL)
+ {
+ s_obstack = XNEW (bitmap_obstack);
+ bitmap_obstack_initialize (s_obstack);
+ s_e1 = BITMAP_ALLOC (s_obstack);
+ s_e2 = BITMAP_ALLOC (s_obstack);
+ }
+ if (e1 == NULL)
+ e1 = s_e1;
+ if (e2 == NULL)
+ e2 = s_e2;
+
+ /* Add N1 and N2 to their own set of equivalences to avoid
+ duplicating the body of the loop just to check N1 and N2
+ ranges. */
+ bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
+
+ /* If the equivalence sets have a common intersection, then the two
+ names can be compared without checking their ranges. */
+ if (bitmap_intersect_p (e1, e2))
+ {
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+
+ return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
+ ? boolean_true_node
+ : boolean_false_node;
+ }
+
+ /* Start at -1. Set it to 0 if we do a comparison without relying
+ on overflow, or 1 if all comparisons rely on overflow. */
+ used_strict_overflow = -1;
+
+ /* Otherwise, compare all the equivalent ranges. First, add N1 and
+ N2 to their own set of equivalences to avoid duplicating the body
+ of the loop just to check N1 and N2 ranges. */
+ EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
+ {
+ value_range_t vr1 = get_vr_for_comparison (i1);
+
+ t = retval = NULL_TREE;
+ EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
+ {
+ bool sop = false;
+
+ value_range_t vr2 = get_vr_for_comparison (i2);
+
+ t = compare_ranges (comp, &vr1, &vr2, &sop);
+ if (t)
+ {
+ /* If we get different answers from different members
+ of the equivalence set this check must be in a dead
+ code region. Folding it to a trap representation
+ would be correct here. For now just return don't-know. */
+ if (retval != NULL
+ && t != retval)
+ {
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+ return NULL_TREE;
+ }
+ retval = t;
+
+ if (!sop)
+ used_strict_overflow = 0;
+ else if (used_strict_overflow < 0)
+ used_strict_overflow = 1;
+ }
+ }
+
+ if (retval)
+ {
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+ if (used_strict_overflow > 0)
+ *strict_overflow_p = true;
+ return retval;
+ }
+ }
+
+ /* None of the equivalent ranges are useful in computing this
+ comparison. */
+ bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
+ bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
+ return NULL_TREE;
+}
+
+/* Helper function for vrp_evaluate_conditional_warnv. */
+
+static tree
+vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
+ tree op0, tree op1,
+ bool * strict_overflow_p)
+{
+ value_range_t *vr0, *vr1;
+
+ vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
+ vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
+
+ if (vr0 && vr1)
+ return compare_ranges (code, vr0, vr1, strict_overflow_p);
+ else if (vr0 && vr1 == NULL)
+ return compare_range_with_value (code, vr0, op1, strict_overflow_p);
+ else if (vr0 == NULL && vr1)
+ return (compare_range_with_value
+ (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
+ return NULL;
+}
+
+/* Helper function for vrp_evaluate_conditional_warnv. */
+
+static tree
+vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
+ tree op1, bool use_equiv_p,
+ bool *strict_overflow_p, bool *only_ranges)
+{
+ tree ret;
+ if (only_ranges)
+ *only_ranges = true;
+
+ /* We only deal with integral and pointer types. */
+ if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ && !POINTER_TYPE_P (TREE_TYPE (op0)))
+ return NULL_TREE;
+
+ if (use_equiv_p)
+ {
+ if (only_ranges
+ && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
+ (code, op0, op1, strict_overflow_p)))
+ return ret;
+ *only_ranges = false;
+ if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
+ return compare_names (code, op0, op1, strict_overflow_p);
+ else if (TREE_CODE (op0) == SSA_NAME)
+ return compare_name_with_value (code, op0, op1, strict_overflow_p);
+ else if (TREE_CODE (op1) == SSA_NAME)
+ return (compare_name_with_value
+ (swap_tree_comparison (code), op1, op0, strict_overflow_p));
+ }
+ else
+ return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
+ strict_overflow_p);
+ return NULL_TREE;
+}
+
+/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
+ information. Return NULL if the conditional can not be evaluated.
+ The ranges of all the names equivalent with the operands in COND
+ will be used when trying to compute the value. If the result is
+ based on undefined signed overflow, issue a warning if
+ appropriate. */
+
+tree
+vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
+{
+ bool sop;
+ tree ret;
+ bool only_ranges;
+
+ sop = false;
+ ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
+ &only_ranges);
+
+ if (ret && sop)
+ {
+ enum warn_strict_overflow_code wc;
+ const char* warnmsg;
+
+ if (is_gimple_min_invariant (ret))
+ {
+ wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
+ warnmsg = G_("assuming signed overflow does not occur when "
+ "simplifying conditional to constant");
+ }
+ else
+ {
+ wc = WARN_STRICT_OVERFLOW_COMPARISON;
+ warnmsg = G_("assuming signed overflow does not occur when "
+ "simplifying conditional");
+ }
+
+ if (issue_strict_overflow_warning (wc))
+ {
+ location_t location;
+
+ if (!gimple_has_location (stmt))
+ location = input_location;
+ else
+ location = gimple_location (stmt);
+ warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
+ }
+ }
+
+ if (warn_type_limits
+ && ret && only_ranges
+ && TREE_CODE_CLASS (code) == tcc_comparison
+ && TREE_CODE (op0) == SSA_NAME)
+ {
+ /* If the comparison is being folded and the operand on the LHS
+ is being compared against a constant value that is outside of
+ the natural range of OP0's type, then the predicate will
+ always fold regardless of the value of OP0. If -Wtype-limits
+ was specified, emit a warning. */
+ const char *warnmsg = NULL;
+ tree type = TREE_TYPE (op0);
+ value_range_t *vr0 = get_value_range (op0);
+
+ if (vr0->type != VR_VARYING
+ && INTEGRAL_TYPE_P (type)
+ && vrp_val_is_min (vr0->min)
+ && vrp_val_is_max (vr0->max)
+ && is_gimple_min_invariant (op1))
+ {
+ if (integer_zerop (ret))
+ warnmsg = G_("comparison always false due to limited range of "
+ "data type");
+ else
+ warnmsg = G_("comparison always true due to limited range of "
+ "data type");
+ }
+
+ if (warnmsg)
+ {
+ location_t location;
+
+ if (!gimple_has_location (stmt))
+ location = input_location;
+ else
+ location = gimple_location (stmt);
+
+ warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
+ }
+ }
+
+ return ret;
+}
+
+
+/* Visit conditional statement STMT. If we can determine which edge
+ will be taken out of STMT's basic block, record it in
+ *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
+ SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
+{
+ tree val;
+ bool sop;
+
+ *taken_edge_p = NULL;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ tree use;
+ ssa_op_iter i;
+
+ fprintf (dump_file, "\nVisiting conditional with predicate: ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, "\nWith known ranges\n");
+
+ FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
+ {
+ fprintf (dump_file, "\t");
+ print_generic_expr (dump_file, use, 0);
+ fprintf (dump_file, ": ");
+ dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
+ }
+
+ fprintf (dump_file, "\n");
+ }
+
+ /* Compute the value of the predicate COND by checking the known
+ ranges of each of its operands.
+
+ Note that we cannot evaluate all the equivalent ranges here
+ because those ranges may not yet be final and with the current
+ propagation strategy, we cannot determine when the value ranges
+ of the names in the equivalence set have changed.
+
+ For instance, given the following code fragment
+
+ i_5 = PHI <8, i_13>
+ ...
+ i_14 = ASSERT_EXPR <i_5, i_5 != 0>
+ if (i_14 == 1)
+ ...
+
+ Assume that on the first visit to i_14, i_5 has the temporary
+ range [8, 8] because the second argument to the PHI function is
+ not yet executable. We derive the range ~[0, 0] for i_14 and the
+ equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
+ the first time, since i_14 is equivalent to the range [8, 8], we
+ determine that the predicate is always false.
+
+ On the next round of propagation, i_13 is determined to be
+ VARYING, which causes i_5 to drop down to VARYING. So, another
+ visit to i_14 is scheduled. In this second visit, we compute the
+ exact same range and equivalence set for i_14, namely ~[0, 0] and
+ { i_5 }. But we did not have the previous range for i_5
+ registered, so vrp_visit_assignment thinks that the range for
+ i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
+ is not visited again, which stops propagation from visiting
+ statements in the THEN clause of that if().
+
+ To properly fix this we would need to keep the previous range
+ value for the names in the equivalence set. This way we would've
+ discovered that from one visit to the other i_5 changed from
+ range [8, 8] to VR_VARYING.
+
+ However, fixing this apparent limitation may not be worth the
+ additional checking. Testing on several code bases (GCC, DLV,
+ MICO, TRAMP3D and SPEC2000) showed that doing this results in
+ 4 more predicates folded in SPEC. */
+ sop = false;
+
+ val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
+ gimple_cond_lhs (stmt),
+ gimple_cond_rhs (stmt),
+ false, &sop, NULL);
+ if (val)
+ {
+ if (!sop)
+ *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ "\nIgnoring predicate evaluation because "
+ "it assumes that signed overflow is undefined");
+ val = NULL_TREE;
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nPredicate evaluates to: ");
+ if (val == NULL_TREE)
+ fprintf (dump_file, "DON'T KNOW\n");
+ else
+ print_generic_stmt (dump_file, val, 0);
+ }
+
+ return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
+}
+
+/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
+ that includes the value VAL. The search is restricted to the range
+ [START_IDX, n - 1] where n is the size of VEC.
+
+ If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
+ returned.
+
+ If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
+ it is placed in IDX and false is returned.
+
+ If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
+ returned. */
+
+static bool
+find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
+{
+ size_t n = gimple_switch_num_labels (stmt);
+ size_t low, high;
+
+ /* Find case label for minimum of the value range or the next one.
+ At each iteration we are searching in [low, high - 1]. */
+
+ for (low = start_idx, high = n; high != low; )
+ {
+ tree t;
+ int cmp;
+ /* Note that i != high, so we never ask for n. */
+ size_t i = (high + low) / 2;
+ t = gimple_switch_label (stmt, i);
+
+ /* Cache the result of comparing CASE_LOW and val. */
+ cmp = tree_int_cst_compare (CASE_LOW (t), val);
+
+ if (cmp == 0)
+ {
+ /* Ranges cannot be empty. */
+ *idx = i;
+ return true;
+ }
+ else if (cmp > 0)
+ high = i;
+ else
+ {
+ low = i + 1;
+ if (CASE_HIGH (t) != NULL
+ && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
+ {
+ *idx = i;
+ return true;
+ }
+ }
+ }
+
+ *idx = high;
+ return false;
+}
+
+/* Searches the case label vector VEC for the range of CASE_LABELs that is used
+ for values between MIN and MAX. The first index is placed in MIN_IDX. The
+ last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
+ then MAX_IDX < MIN_IDX.
+ Returns true if the default label is not needed. */
+
+static bool
+find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
+ size_t *max_idx)
+{
+ size_t i, j;
+ bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
+ bool max_take_default = !find_case_label_index (stmt, i, max, &j);
+
+ if (i == j
+ && min_take_default
+ && max_take_default)
+ {
+ /* Only the default case label reached.
+ Return an empty range. */
+ *min_idx = 1;
+ *max_idx = 0;
+ return false;
+ }
+ else
+ {
+ bool take_default = min_take_default || max_take_default;
+ tree low, high;
+ size_t k;
+
+ if (max_take_default)
+ j--;
+
+ /* If the case label range is continuous, we do not need
+ the default case label. Verify that. */
+ high = CASE_LOW (gimple_switch_label (stmt, i));
+ if (CASE_HIGH (gimple_switch_label (stmt, i)))
+ high = CASE_HIGH (gimple_switch_label (stmt, i));
+ for (k = i + 1; k <= j; ++k)
+ {
+ low = CASE_LOW (gimple_switch_label (stmt, k));
+ if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
+ {
+ take_default = true;
+ break;
+ }
+ high = low;
+ if (CASE_HIGH (gimple_switch_label (stmt, k)))
+ high = CASE_HIGH (gimple_switch_label (stmt, k));
+ }
+
+ *min_idx = i;
+ *max_idx = j;
+ return !take_default;
+ }
+}
+
+/* Visit switch statement STMT. If we can determine which edge
+ will be taken out of STMT's basic block, record it in
+ *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
+ SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
+{
+ tree op, val;
+ value_range_t *vr;
+ size_t i = 0, j = 0, n;
+ bool take_default;
+
+ *taken_edge_p = NULL;
+ op = gimple_switch_index (stmt);
+ if (TREE_CODE (op) != SSA_NAME)
+ return SSA_PROP_VARYING;
+
+ vr = get_value_range (op);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting switch expression with operand ");
+ print_generic_expr (dump_file, op, 0);
+ fprintf (dump_file, " with known range ");
+ dump_value_range (dump_file, vr);
+ fprintf (dump_file, "\n");
+ }
+
+ if (vr->type != VR_RANGE
+ || symbolic_range_p (vr))
+ return SSA_PROP_VARYING;
+
+ /* Find the single edge that is taken from the switch expression. */
+ n = gimple_switch_num_labels (stmt);
+
+ take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
+
+ /* Check if the range spans no CASE_LABEL. If so, we only reach the default
+ label */
+ if (j < i)
+ {
+ gcc_assert (take_default);
+ val = gimple_switch_default_label (stmt);
+ }
+ else
+ {
+ /* Check if labels with index i to j and maybe the default label
+ are all reaching the same label. */
+
+ val = gimple_switch_label (stmt, i);
+ if (take_default
+ && CASE_LABEL (gimple_switch_default_label (stmt))
+ != CASE_LABEL (val))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " not a single destination for this "
+ "range\n");
+ return SSA_PROP_VARYING;
+ }
+ for (++i; i <= j; ++i)
+ {
+ if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " not a single destination for this "
+ "range\n");
+ return SSA_PROP_VARYING;
+ }
+ }
+ }
+
+ *taken_edge_p = find_edge (gimple_bb (stmt),
+ label_to_block (CASE_LABEL (val)));
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " will take edge to ");
+ print_generic_stmt (dump_file, CASE_LABEL (val), 0);
+ }
+
+ return SSA_PROP_INTERESTING;
+}
+
+
+/* Evaluate statement STMT. If the statement produces a useful range,
+ return SSA_PROP_INTERESTING and record the SSA name with the
+ interesting range into *OUTPUT_P.
+
+ If STMT is a conditional branch and we can determine its truth
+ value, the taken edge is recorded in *TAKEN_EDGE_P.
+
+ If STMT produces a varying value, return SSA_PROP_VARYING. */
+
+static enum ssa_prop_result
+vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
+{
+ tree def;
+ ssa_op_iter iter;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting statement:\n");
+ print_gimple_stmt (dump_file, stmt, 0, dump_flags);
+ fprintf (dump_file, "\n");
+ }
+
+ if (is_gimple_assign (stmt) || is_gimple_call (stmt))
+ {
+ /* In general, assignments with virtual operands are not useful
+ for deriving ranges, with the obvious exception of calls to
+ builtin functions. */
+
+ if ((is_gimple_call (stmt)
+ && gimple_call_fndecl (stmt) != NULL_TREE
+ && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
+ || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
+ return vrp_visit_assignment_or_call (stmt, output_p);
+ }
+ else if (gimple_code (stmt) == GIMPLE_COND)
+ return vrp_visit_cond_stmt (stmt, taken_edge_p);
+ else if (gimple_code (stmt) == GIMPLE_SWITCH)
+ return vrp_visit_switch_stmt (stmt, taken_edge_p);
+
+ /* All other statements produce nothing of interest for VRP, so mark
+ their outputs varying and prevent further simulation. */
+ FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
+ set_value_range_to_varying (get_value_range (def));
+
+ return SSA_PROP_VARYING;
+}
+
+
+/* Meet operation for value ranges. Given two value ranges VR0 and
+ VR1, store in VR0 a range that contains both VR0 and VR1. This
+ may not be the smallest possible such range. */
+
+static void
+vrp_meet (value_range_t *vr0, value_range_t *vr1)
+{
+ if (vr0->type == VR_UNDEFINED)
+ {
+ copy_value_range (vr0, vr1);
+ return;
+ }
+
+ if (vr1->type == VR_UNDEFINED)
+ {
+ /* Nothing to do. VR0 already has the resulting range. */
+ return;
+ }
+
+ if (vr0->type == VR_VARYING)
+ {
+ /* Nothing to do. VR0 already has the resulting range. */
+ return;
+ }
+
+ if (vr1->type == VR_VARYING)
+ {
+ set_value_range_to_varying (vr0);
+ return;
+ }
+
+ if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
+ {
+ int cmp;
+ tree min, max;
+
+ /* Compute the convex hull of the ranges. The lower limit of
+ the new range is the minimum of the two ranges. If they
+ cannot be compared, then give up. */
+ cmp = compare_values (vr0->min, vr1->min);
+ if (cmp == 0 || cmp == 1)
+ min = vr1->min;
+ else if (cmp == -1)
+ min = vr0->min;
+ else
+ goto give_up;
+
+ /* Similarly, the upper limit of the new range is the maximum
+ of the two ranges. If they cannot be compared, then
+ give up. */
+ cmp = compare_values (vr0->max, vr1->max);
+ if (cmp == 0 || cmp == -1)
+ max = vr1->max;
+ else if (cmp == 1)
+ max = vr0->max;
+ else
+ goto give_up;
+
+ /* Check for useless ranges. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (min))
+ && ((vrp_val_is_min (min) || is_overflow_infinity (min))
+ && (vrp_val_is_max (max) || is_overflow_infinity (max))))
+ goto give_up;
+
+ /* The resulting set of equivalences is the intersection of
+ the two sets. */
+ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+ bitmap_and_into (vr0->equiv, vr1->equiv);
+ else if (vr0->equiv && !vr1->equiv)
+ bitmap_clear (vr0->equiv);
+
+ set_value_range (vr0, vr0->type, min, max, vr0->equiv);
+ }
+ else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
+ {
+ /* Two anti-ranges meet only if their complements intersect.
+ Only handle the case of identical ranges. */
+ if (compare_values (vr0->min, vr1->min) == 0
+ && compare_values (vr0->max, vr1->max) == 0
+ && compare_values (vr0->min, vr0->max) == 0)
+ {
+ /* The resulting set of equivalences is the intersection of
+ the two sets. */
+ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+ bitmap_and_into (vr0->equiv, vr1->equiv);
+ else if (vr0->equiv && !vr1->equiv)
+ bitmap_clear (vr0->equiv);
+ }
+ else
+ goto give_up;
+ }
+ else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
+ {
+ /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
+ only handle the case where the ranges have an empty intersection.
+ The result of the meet operation is the anti-range. */
+ if (!symbolic_range_p (vr0)
+ && !symbolic_range_p (vr1)
+ && !value_ranges_intersect_p (vr0, vr1))
+ {
+ /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
+ set. We need to compute the intersection of the two
+ equivalence sets. */
+ if (vr1->type == VR_ANTI_RANGE)
+ set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
+
+ /* The resulting set of equivalences is the intersection of
+ the two sets. */
+ if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
+ bitmap_and_into (vr0->equiv, vr1->equiv);
+ else if (vr0->equiv && !vr1->equiv)
+ bitmap_clear (vr0->equiv);
+ }
+ else
+ goto give_up;
+ }
+ else
+ gcc_unreachable ();
+
+ return;
+
+give_up:
+ /* Failed to find an efficient meet. Before giving up and setting
+ the result to VARYING, see if we can at least derive a useful
+ anti-range. FIXME, all this nonsense about distinguishing
+ anti-ranges from ranges is necessary because of the odd
+ semantics of range_includes_zero_p and friends. */
+ if (!symbolic_range_p (vr0)
+ && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
+ || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
+ && !symbolic_range_p (vr1)
+ && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
+ || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
+ {
+ set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
+
+ /* Since this meet operation did not result from the meeting of
+ two equivalent names, VR0 cannot have any equivalences. */
+ if (vr0->equiv)
+ bitmap_clear (vr0->equiv);
+ }
+ else
+ set_value_range_to_varying (vr0);
+}
+
+
+/* Visit all arguments for PHI node PHI that flow through executable
+ edges. If a valid value range can be derived from all the incoming
+ value ranges, set a new range for the LHS of PHI. */
+
+static enum ssa_prop_result
+vrp_visit_phi_node (gimple phi)
+{
+ size_t i;
+ tree lhs = PHI_RESULT (phi);
+ value_range_t *lhs_vr = get_value_range (lhs);
+ value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
+ int edges, old_edges;
+
+ copy_value_range (&vr_result, lhs_vr);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\nVisiting PHI node: ");
+ print_gimple_stmt (dump_file, phi, 0, dump_flags);
+ }
+
+ edges = 0;
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ edge e = gimple_phi_arg_edge (phi, i);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file,
+ "\n Argument #%d (%d -> %d %sexecutable)\n",
+ (int) i, e->src->index, e->dest->index,
+ (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
+ }
+
+ if (e->flags & EDGE_EXECUTABLE)
+ {
+ tree arg = PHI_ARG_DEF (phi, i);
+ value_range_t vr_arg;
+
+ ++edges;
+
+ if (TREE_CODE (arg) == SSA_NAME)
+ {
+ vr_arg = *(get_value_range (arg));
+ }
+ else
+ {
+ if (is_overflow_infinity (arg))
+ {
+ arg = copy_node (arg);
+ TREE_OVERFLOW (arg) = 0;
+ }
+
+ vr_arg.type = VR_RANGE;
+ vr_arg.min = arg;
+ vr_arg.max = arg;
+ vr_arg.equiv = NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\t");
+ print_generic_expr (dump_file, arg, dump_flags);
+ fprintf (dump_file, "\n\tValue: ");
+ dump_value_range (dump_file, &vr_arg);
+ fprintf (dump_file, "\n");
+ }
+
+ vrp_meet (&vr_result, &vr_arg);
+
+ if (vr_result.type == VR_VARYING)
+ break;
+ }
+ }
+
+ if (vr_result.type == VR_VARYING)
+ goto varying;
+
+ old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
+ vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
+
+ /* To prevent infinite iterations in the algorithm, derive ranges
+ when the new value is slightly bigger or smaller than the
+ previous one. We don't do this if we have seen a new executable
+ edge; this helps us avoid an overflow infinity for conditionals
+ which are not in a loop. */
+ if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
+ && edges <= old_edges)
+ {
+ if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
+ {
+ int cmp_min = compare_values (lhs_vr->min, vr_result.min);
+ int cmp_max = compare_values (lhs_vr->max, vr_result.max);
+
+ /* If the new minimum is smaller or larger than the previous
+ one, go all the way to -INF. In the first case, to avoid
+ iterating millions of times to reach -INF, and in the
+ other case to avoid infinite bouncing between different
+ minimums. */
+ if (cmp_min > 0 || cmp_min < 0)
+ {
+ /* If we will end up with a (-INF, +INF) range, set it to
+ VARYING. Same if the previous max value was invalid for
+ the type and we'd end up with vr_result.min > vr_result.max. */
+ if (vrp_val_is_max (vr_result.max)
+ || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
+ vr_result.max) > 0)
+ goto varying;
+
+ if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
+ || !vrp_var_may_overflow (lhs, phi))
+ vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
+ else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
+ vr_result.min =
+ negative_overflow_infinity (TREE_TYPE (vr_result.min));
+ else
+ goto varying;
+ }
+
+ /* Similarly, if the new maximum is smaller or larger than
+ the previous one, go all the way to +INF. */
+ if (cmp_max < 0 || cmp_max > 0)
+ {
+ /* If we will end up with a (-INF, +INF) range, set it to
+ VARYING. Same if the previous min value was invalid for
+ the type and we'd end up with vr_result.max < vr_result.min. */
+ if (vrp_val_is_min (vr_result.min)
+ || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
+ vr_result.min) < 0)
+ goto varying;
+
+ if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
+ || !vrp_var_may_overflow (lhs, phi))
+ vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
+ else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
+ vr_result.max =
+ positive_overflow_infinity (TREE_TYPE (vr_result.max));
+ else
+ goto varying;
+ }
+ }
+ }
+
+ /* If the new range is different than the previous value, keep
+ iterating. */
+ if (update_value_range (lhs, &vr_result))
+ return SSA_PROP_INTERESTING;
+
+ /* Nothing changed, don't add outgoing edges. */
+ return SSA_PROP_NOT_INTERESTING;
+
+ /* No match found. Set the LHS to VARYING. */
+varying:
+ set_value_range_to_varying (lhs_vr);
+ return SSA_PROP_VARYING;
+}
+
+/* Simplify boolean operations if the source is known
+ to be already a boolean. */
+static bool
+simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
+{
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree val = NULL;
+ tree op0, op1;
+ value_range_t *vr;
+ bool sop = false;
+ bool need_conversion;
+
+ op0 = gimple_assign_rhs1 (stmt);
+ if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
+ {
+ if (TREE_CODE (op0) != SSA_NAME)
+ return false;
+ vr = get_value_range (op0);
+
+ val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
+ if (!val || !integer_onep (val))
+ return false;
+
+ val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
+ if (!val || !integer_onep (val))
+ return false;
+ }
+
+ if (rhs_code == TRUTH_NOT_EXPR)
+ {
+ rhs_code = NE_EXPR;
+ op1 = build_int_cst (TREE_TYPE (op0), 1);
+ }
+ else
+ {
+ op1 = gimple_assign_rhs2 (stmt);
+
+ /* Reduce number of cases to handle. */
+ if (is_gimple_min_invariant (op1))
+ {
+ /* Exclude anything that should have been already folded. */
+ if (rhs_code != EQ_EXPR
+ && rhs_code != NE_EXPR
+ && rhs_code != TRUTH_XOR_EXPR)
+ return false;
+
+ if (!integer_zerop (op1)
+ && !integer_onep (op1)
+ && !integer_all_onesp (op1))
+ return false;
+
+ /* Limit the number of cases we have to consider. */
+ if (rhs_code == EQ_EXPR)
+ {
+ rhs_code = NE_EXPR;
+ op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
+ }
+ }
+ else
+ {
+ /* Punt on A == B as there is no BIT_XNOR_EXPR. */
+ if (rhs_code == EQ_EXPR)
+ return false;
+
+ if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
+ {
+ vr = get_value_range (op1);
+ val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
+ if (!val || !integer_onep (val))
+ return false;
+
+ val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
+ if (!val || !integer_onep (val))
+ return false;
+ }
+ }
+ }
+
+ if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+ {
+ location_t location;
+
+ if (!gimple_has_location (stmt))
+ location = input_location;
+ else
+ location = gimple_location (stmt);
+
+ if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
+ warning_at (location, OPT_Wstrict_overflow,
+ _("assuming signed overflow does not occur when "
+ "simplifying && or || to & or |"));
+ else
+ warning_at (location, OPT_Wstrict_overflow,
+ _("assuming signed overflow does not occur when "
+ "simplifying ==, != or ! to identity or ^"));
+ }
+
+ need_conversion =
+ !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
+ TREE_TYPE (op0));
+
+ /* Make sure to not sign-extend -1 as a boolean value. */
+ if (need_conversion
+ && !TYPE_UNSIGNED (TREE_TYPE (op0))
+ && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
+ return false;
+
+ switch (rhs_code)
+ {
+ case TRUTH_AND_EXPR:
+ rhs_code = BIT_AND_EXPR;
+ break;
+ case TRUTH_OR_EXPR:
+ rhs_code = BIT_IOR_EXPR;
+ break;
+ case TRUTH_XOR_EXPR:
+ case NE_EXPR:
+ if (integer_zerop (op1))
+ {
+ gimple_assign_set_rhs_with_ops (gsi,
+ need_conversion ? NOP_EXPR : SSA_NAME,
+ op0, NULL);
+ update_stmt (gsi_stmt (*gsi));
+ return true;
+ }
+
+ rhs_code = BIT_XOR_EXPR;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ if (need_conversion)
+ return false;
+
+ gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
+ update_stmt (gsi_stmt (*gsi));
+ return true;
+}
+
+/* Simplify a division or modulo operator to a right shift or
+ bitwise and if the first operand is unsigned or is greater
+ than zero and the second operand is an exact power of two. */
+
+static bool
+simplify_div_or_mod_using_ranges (gimple stmt)
+{
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+ tree val = NULL;
+ tree op0 = gimple_assign_rhs1 (stmt);
+ tree op1 = gimple_assign_rhs2 (stmt);
+ value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
+
+ if (TYPE_UNSIGNED (TREE_TYPE (op0)))
+ {
+ val = integer_one_node;
+ }
+ else
+ {
+ bool sop = false;
+
+ val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
+
+ if (val
+ && sop
+ && integer_onep (val)
+ && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+ {
+ location_t location;
+
+ if (!gimple_has_location (stmt))
+ location = input_location;
+ else
+ location = gimple_location (stmt);
+ warning (OPT_Wstrict_overflow,
+ ("%Hassuming signed overflow does not occur when "
+ "simplifying / or %% to >> or &"),
+ &location);
+ }
+ }
+
+ if (val && integer_onep (val))
+ {
+ tree t;
+
+ if (rhs_code == TRUNC_DIV_EXPR)
+ {
+ t = build_int_cst (NULL_TREE, tree_log2 (op1));
+ gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
+ gimple_assign_set_rhs1 (stmt, op0);
+ gimple_assign_set_rhs2 (stmt, t);
+ }
+ else
+ {
+ t = build_int_cst (TREE_TYPE (op1), 1);
+ t = int_const_binop (MINUS_EXPR, op1, t, 0);
+ t = fold_convert (TREE_TYPE (op0), t);
+
+ gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
+ gimple_assign_set_rhs1 (stmt, op0);
+ gimple_assign_set_rhs2 (stmt, t);
+ }
+
+ update_stmt (stmt);
+ return true;
+ }
+
+ return false;
+}
+
+/* If the operand to an ABS_EXPR is >= 0, then eliminate the
+ ABS_EXPR. If the operand is <= 0, then simplify the
+ ABS_EXPR into a NEGATE_EXPR. */
+
+static bool
+simplify_abs_using_ranges (gimple stmt)
+{
+ tree val = NULL;
+ tree op = gimple_assign_rhs1 (stmt);
+ tree type = TREE_TYPE (op);
+ value_range_t *vr = get_value_range (op);
+
+ if (TYPE_UNSIGNED (type))
+ {
+ val = integer_zero_node;
+ }
+ else if (vr)
+ {
+ bool sop = false;
+
+ val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
+ if (!val)
+ {
+ sop = false;
+ val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
+ &sop);
+
+ if (val)
+ {
+ if (integer_zerop (val))
+ val = integer_one_node;
+ else if (integer_onep (val))
+ val = integer_zero_node;
+ }
+ }
+
+ if (val
+ && (integer_onep (val) || integer_zerop (val)))
+ {
+ if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
+ {
+ location_t location;
+
+ if (!gimple_has_location (stmt))
+ location = input_location;
+ else
+ location = gimple_location (stmt);
+ warning (OPT_Wstrict_overflow,
+ ("%Hassuming signed overflow does not occur when "
+ "simplifying abs (X) to X or -X"),
+ &location);
+ }
+
+ gimple_assign_set_rhs1 (stmt, op);
+ if (integer_onep (val))
+ gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
+ else
+ gimple_assign_set_rhs_code (stmt, SSA_NAME);
+ update_stmt (stmt);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
+ a known value range VR.
+
+ If there is one and only one value which will satisfy the
+ conditional, then return that value. Else return NULL. */
+
+static tree
+test_for_singularity (enum tree_code cond_code, tree op0,
+ tree op1, value_range_t *vr)
+{
+ tree min = NULL;
+ tree max = NULL;
+
+ /* Extract minimum/maximum values which satisfy the
+ the conditional as it was written. */
+ if (cond_code == LE_EXPR || cond_code == LT_EXPR)
+ {
+ /* This should not be negative infinity; there is no overflow
+ here. */
+ min = TYPE_MIN_VALUE (TREE_TYPE (op0));
+
+ max = op1;
+ if (cond_code == LT_EXPR && !is_overflow_infinity (max))
+ {
+ tree one = build_int_cst (TREE_TYPE (op0), 1);
+ max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
+ if (EXPR_P (max))
+ TREE_NO_WARNING (max) = 1;
+ }
+ }
+ else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
+ {
+ /* This should not be positive infinity; there is no overflow
+ here. */
+ max = TYPE_MAX_VALUE (TREE_TYPE (op0));
+
+ min = op1;
+ if (cond_code == GT_EXPR && !is_overflow_infinity (min))
+ {
+ tree one = build_int_cst (TREE_TYPE (op0), 1);
+ min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
+ if (EXPR_P (min))
+ TREE_NO_WARNING (min) = 1;
+ }
+ }
+
+ /* Now refine the minimum and maximum values using any
+ value range information we have for op0. */
+ if (min && max)
+ {
+ if (compare_values (vr->min, min) == -1)
+ min = min;
+ else
+ min = vr->min;
+ if (compare_values (vr->max, max) == 1)
+ max = max;
+ else
+ max = vr->max;
+
+ /* If the new min/max values have converged to a single value,
+ then there is only one value which can satisfy the condition,
+ return that value. */
+ if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
+ return min;
+ }
+ return NULL;
+}
+
+/* Simplify a conditional using a relational operator to an equality
+ test if the range information indicates only one value can satisfy
+ the original conditional. */
+
+static bool
+simplify_cond_using_ranges (gimple stmt)
+{
+ tree op0 = gimple_cond_lhs (stmt);
+ tree op1 = gimple_cond_rhs (stmt);
+ enum tree_code cond_code = gimple_cond_code (stmt);
+
+ if (cond_code != NE_EXPR
+ && cond_code != EQ_EXPR
+ && TREE_CODE (op0) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (op0))
+ && is_gimple_min_invariant (op1))
+ {
+ value_range_t *vr = get_value_range (op0);
+
+ /* If we have range information for OP0, then we might be
+ able to simplify this conditional. */
+ if (vr->type == VR_RANGE)
+ {
+ tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
+
+ if (new_tree)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "Simplified relational ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, " into ");
+ }
+
+ gimple_cond_set_code (stmt, EQ_EXPR);
+ gimple_cond_set_lhs (stmt, op0);
+ gimple_cond_set_rhs (stmt, new_tree);
+
+ update_stmt (stmt);
+
+ if (dump_file)
+ {
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ return true;
+ }
+
+ /* Try again after inverting the condition. We only deal
+ with integral types here, so no need to worry about
+ issues with inverting FP comparisons. */
+ cond_code = invert_tree_comparison (cond_code, false);
+ new_tree = test_for_singularity (cond_code, op0, op1, vr);
+
+ if (new_tree)
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "Simplified relational ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, " into ");
+ }
+
+ gimple_cond_set_code (stmt, NE_EXPR);
+ gimple_cond_set_lhs (stmt, op0);
+ gimple_cond_set_rhs (stmt, new_tree);
+
+ update_stmt (stmt);
+
+ if (dump_file)
+ {
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/* Simplify a switch statement using the value range of the switch
+ argument. */
+
+static bool
+simplify_switch_using_ranges (gimple stmt)
+{
+ tree op = gimple_switch_index (stmt);
+ value_range_t *vr;
+ bool take_default;
+ edge e;
+ edge_iterator ei;
+ size_t i = 0, j = 0, n, n2;
+ tree vec2;
+ switch_update su;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return false;
+
+ vr = get_value_range (op);
+
+ /* We can only handle integer ranges. */
+ if (vr->type != VR_RANGE
+ || symbolic_range_p (vr))
+ return false;
+
+ /* Find case label for min/max of the value range. */
+ n = gimple_switch_num_labels (stmt);
+ take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
+
+ /* Bail out if this is just all edges taken. */
+ if (i == 1
+ && j == n - 1
+ && take_default)
+ return false;
+
+ /* Build a new vector of taken case labels. */
+ vec2 = make_tree_vec (j - i + 1 + (int)take_default);
+ n2 = 0;
+
+ /* Add the default edge, if necessary. */
+ if (take_default)
+ TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
+
+ for (; i <= j; ++i, ++n2)
+ TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
+
+ /* Mark needed edges. */
+ for (i = 0; i < n2; ++i)
+ {
+ e = find_edge (gimple_bb (stmt),
+ label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
+ e->aux = (void *)-1;
+ }
+
+ /* Queue not needed edges for later removal. */
+ FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
+ {
+ if (e->aux == (void *)-1)
+ {
+ e->aux = NULL;
+ continue;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "removing unreachable case label\n");
+ }
+ VEC_safe_push (edge, heap, to_remove_edges, e);
+ }
+
+ /* And queue an update for the stmt. */
+ su.stmt = stmt;
+ su.vec = vec2;
+ VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
+ return false;
+}
+
+/* Simplify STMT using ranges if possible. */
+
+bool
+simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
+{
+ gimple stmt = gsi_stmt (*gsi);
+ if (is_gimple_assign (stmt))
+ {
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+
+ switch (rhs_code)
+ {
+ case EQ_EXPR:
+ case NE_EXPR:
+ case TRUTH_NOT_EXPR:
+ case TRUTH_AND_EXPR:
+ case TRUTH_OR_EXPR:
+ case TRUTH_XOR_EXPR:
+ /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
+ or identity if the RHS is zero or one, and the LHS are known
+ to be boolean values. Transform all TRUTH_*_EXPR into
+ BIT_*_EXPR if both arguments are known to be boolean values. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
+ return simplify_truth_ops_using_ranges (gsi, stmt);
+ break;
+
+ /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
+ and BIT_AND_EXPR respectively if the first operand is greater
+ than zero and the second operand is an exact power of two. */
+ case TRUNC_DIV_EXPR:
+ case TRUNC_MOD_EXPR:
+ if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
+ && integer_pow2p (gimple_assign_rhs2 (stmt)))
+ return simplify_div_or_mod_using_ranges (stmt);
+ break;
+
+ /* Transform ABS (X) into X or -X as appropriate. */
+ case ABS_EXPR:
+ if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
+ return simplify_abs_using_ranges (stmt);
+ break;
+
+ default:
+ break;
+ }
+ }
+ else if (gimple_code (stmt) == GIMPLE_COND)
+ return simplify_cond_using_ranges (stmt);
+ else if (gimple_code (stmt) == GIMPLE_SWITCH)
+ return simplify_switch_using_ranges (stmt);
+
+ return false;
+}
+
+/* Stack of dest,src equivalency pairs that need to be restored after
+ each attempt to thread a block's incoming edge to an outgoing edge.
+
+ A NULL entry is used to mark the end of pairs which need to be
+ restored. */
+static VEC(tree,heap) *stack;
+
+/* A trivial wrapper so that we can present the generic jump threading
+ code with a simple API for simplifying statements. STMT is the
+ statement we want to simplify, WITHIN_STMT provides the location
+ for any overflow warnings. */
+
+static tree
+simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
+{
+ /* We only use VRP information to simplify conditionals. This is
+ overly conservative, but it's unclear if doing more would be
+ worth the compile time cost. */
+ if (gimple_code (stmt) != GIMPLE_COND)
+ return NULL;
+
+ return vrp_evaluate_conditional (gimple_cond_code (stmt),
+ gimple_cond_lhs (stmt),
+ gimple_cond_rhs (stmt), within_stmt);
+}
+
+/* Blocks which have more than one predecessor and more than
+ one successor present jump threading opportunities, i.e.,
+ when the block is reached from a specific predecessor, we
+ may be able to determine which of the outgoing edges will
+ be traversed. When this optimization applies, we are able
+ to avoid conditionals at runtime and we may expose secondary
+ optimization opportunities.
+
+ This routine is effectively a driver for the generic jump
+ threading code. It basically just presents the generic code
+ with edges that may be suitable for jump threading.
+
+ Unlike DOM, we do not iterate VRP if jump threading was successful.
+ While iterating may expose new opportunities for VRP, it is expected
+ those opportunities would be very limited and the compile time cost
+ to expose those opportunities would be significant.
+
+ As jump threading opportunities are discovered, they are registered
+ for later realization. */
+
+static void
+identify_jump_threads (void)
+{
+ basic_block bb;
+ gimple dummy;
+ int i;
+ edge e;
+
+ /* Ugh. When substituting values earlier in this pass we can
+ wipe the dominance information. So rebuild the dominator
+ information as we need it within the jump threading code. */
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ /* We do not allow VRP information to be used for jump threading
+ across a back edge in the CFG. Otherwise it becomes too
+ difficult to avoid eliminating loop exit tests. Of course
+ EDGE_DFS_BACK is not accurate at this time so we have to
+ recompute it. */
+ mark_dfs_back_edges ();
+
+ /* Do not thread across edges we are about to remove. Just marking
+ them as EDGE_DFS_BACK will do. */
+ for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
+ e->flags |= EDGE_DFS_BACK;
+
+ /* Allocate our unwinder stack to unwind any temporary equivalences
+ that might be recorded. */
+ stack = VEC_alloc (tree, heap, 20);
+
+ /* To avoid lots of silly node creation, we create a single
+ conditional and just modify it in-place when attempting to
+ thread jumps. */
+ dummy = gimple_build_cond (EQ_EXPR,
+ integer_zero_node, integer_zero_node,
+ NULL, NULL);
+
+ /* Walk through all the blocks finding those which present a
+ potential jump threading opportunity. We could set this up
+ as a dominator walker and record data during the walk, but
+ I doubt it's worth the effort for the classes of jump
+ threading opportunities we are trying to identify at this
+ point in compilation. */
+ FOR_EACH_BB (bb)
+ {
+ gimple last;
+
+ /* If the generic jump threading code does not find this block
+ interesting, then there is nothing to do. */
+ if (! potentially_threadable_block (bb))
+ continue;
+
+ /* We only care about blocks ending in a COND_EXPR. While there
+ may be some value in handling SWITCH_EXPR here, I doubt it's
+ terribly important. */
+ last = gsi_stmt (gsi_last_bb (bb));
+ if (gimple_code (last) != GIMPLE_COND)
+ continue;
+
+ /* We're basically looking for any kind of conditional with
+ integral type arguments. */
+ if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
+ && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
+ && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
+ || is_gimple_min_invariant (gimple_cond_rhs (last)))
+ && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
+ {
+ edge_iterator ei;
+
+ /* We've got a block with multiple predecessors and multiple
+ successors which also ends in a suitable conditional. For
+ each predecessor, see if we can thread it to a specific
+ successor. */
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ /* Do not thread across back edges or abnormal edges
+ in the CFG. */
+ if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
+ continue;
+
+ thread_across_edge (dummy, e, true, &stack,
+ simplify_stmt_for_jump_threading);
+ }
+ }
+ }
+
+ /* We do not actually update the CFG or SSA graphs at this point as
+ ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
+ handle ASSERT_EXPRs gracefully. */
+}
+
+/* We identified all the jump threading opportunities earlier, but could
+ not transform the CFG at that time. This routine transforms the
+ CFG and arranges for the dominator tree to be rebuilt if necessary.
+
+ Note the SSA graph update will occur during the normal TODO
+ processing by the pass manager. */
+static void
+finalize_jump_threads (void)
+{
+ thread_through_all_blocks (false);
+ VEC_free (tree, heap, stack);
+}
+
+
+/* Traverse all the blocks folding conditionals with known ranges. */
+
+static void
+vrp_finalize (void)
+{
+ size_t i;
+ prop_value_t *single_val_range;
+ bool do_value_subst_p;
+
+ if (dump_file)
+ {
+ fprintf (dump_file, "\nValue ranges after VRP:\n\n");
+ dump_all_value_ranges (dump_file);
+ fprintf (dump_file, "\n");
+ }
+
+ /* We may have ended with ranges that have exactly one value. Those
+ values can be substituted as any other copy/const propagated
+ value using substitute_and_fold. */
+ single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
+
+ do_value_subst_p = false;
+ for (i = 0; i < num_ssa_names; i++)
+ if (vr_value[i]
+ && vr_value[i]->type == VR_RANGE
+ && vr_value[i]->min == vr_value[i]->max)
+ {
+ single_val_range[i].value = vr_value[i]->min;
+ do_value_subst_p = true;
+ }
+
+ if (!do_value_subst_p)
+ {
+ /* We found no single-valued ranges, don't waste time trying to
+ do single value substitution in substitute_and_fold. */
+ free (single_val_range);
+ single_val_range = NULL;
+ }
+
+ substitute_and_fold (single_val_range, true);
+
+ if (warn_array_bounds)
+ check_all_array_refs ();
+
+ /* We must identify jump threading opportunities before we release
+ the datastructures built by VRP. */
+ identify_jump_threads ();
+
+ /* Free allocated memory. */
+ for (i = 0; i < num_ssa_names; i++)
+ if (vr_value[i])
+ {
+ BITMAP_FREE (vr_value[i]->equiv);
+ free (vr_value[i]);
+ }
+
+ free (single_val_range);
+ free (vr_value);
+ free (vr_phi_edge_counts);
+
+ /* So that we can distinguish between VRP data being available
+ and not available. */
+ vr_value = NULL;
+ vr_phi_edge_counts = NULL;
+}
+
+
+/* Main entry point to VRP (Value Range Propagation). This pass is
+ loosely based on J. R. C. Patterson, ``Accurate Static Branch
+ Prediction by Value Range Propagation,'' in SIGPLAN Conference on
+ Programming Language Design and Implementation, pp. 67-78, 1995.
+ Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
+
+ This is essentially an SSA-CCP pass modified to deal with ranges
+ instead of constants.
+
+ While propagating ranges, we may find that two or more SSA name
+ have equivalent, though distinct ranges. For instance,
+
+ 1 x_9 = p_3->a;
+ 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
+ 3 if (p_4 == q_2)
+ 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
+ 5 endif
+ 6 if (q_2)
+
+ In the code above, pointer p_5 has range [q_2, q_2], but from the
+ code we can also determine that p_5 cannot be NULL and, if q_2 had
+ a non-varying range, p_5's range should also be compatible with it.
+
+ These equivalences are created by two expressions: ASSERT_EXPR and
+ copy operations. Since p_5 is an assertion on p_4, and p_4 was the
+ result of another assertion, then we can use the fact that p_5 and
+ p_4 are equivalent when evaluating p_5's range.
+
+ Together with value ranges, we also propagate these equivalences
+ between names so that we can take advantage of information from
+ multiple ranges when doing final replacement. Note that this
+ equivalency relation is transitive but not symmetric.
+
+ In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
+ cannot assert that q_2 is equivalent to p_5 because q_2 may be used
+ in contexts where that assertion does not hold (e.g., in line 6).
+
+ TODO, the main difference between this pass and Patterson's is that
+ we do not propagate edge probabilities. We only compute whether
+ edges can be taken or not. That is, instead of having a spectrum
+ of jump probabilities between 0 and 1, we only deal with 0, 1 and
+ DON'T KNOW. In the future, it may be worthwhile to propagate
+ probabilities to aid branch prediction. */
+
+static unsigned int
+execute_vrp (void)
+{
+ int i;
+ edge e;
+ switch_update *su;
+
+ loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
+ rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+ scev_initialize ();
+
+ insert_range_assertions ();
+
+ to_remove_edges = VEC_alloc (edge, heap, 10);
+ to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
+
+ vrp_initialize ();
+ ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
+ vrp_finalize ();
+
+ /* ASSERT_EXPRs must be removed before finalizing jump threads
+ as finalizing jump threads calls the CFG cleanup code which
+ does not properly handle ASSERT_EXPRs. */
+ remove_range_assertions ();
+
+ /* If we exposed any new variables, go ahead and put them into
+ SSA form now, before we handle jump threading. This simplifies
+ interactions between rewriting of _DECL nodes into SSA form
+ and rewriting SSA_NAME nodes into SSA form after block
+ duplication and CFG manipulation. */
+ update_ssa (TODO_update_ssa);
+
+ finalize_jump_threads ();
+
+ /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
+ CFG in a broken state and requires a cfg_cleanup run. */
+ for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
+ remove_edge (e);
+ /* Update SWITCH_EXPR case label vector. */
+ for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
+ {
+ size_t j;
+ size_t n = TREE_VEC_LENGTH (su->vec);
+ tree label;
+ gimple_switch_set_num_labels (su->stmt, n);
+ for (j = 0; j < n; j++)
+ gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
+ /* As we may have replaced the default label with a regular one
+ make sure to make it a real default label again. This ensures
+ optimal expansion. */
+ label = gimple_switch_default_label (su->stmt);
+ CASE_LOW (label) = NULL_TREE;
+ CASE_HIGH (label) = NULL_TREE;
+ }
+
+ if (VEC_length (edge, to_remove_edges) > 0)
+ free_dominance_info (CDI_DOMINATORS);
+
+ VEC_free (edge, heap, to_remove_edges);
+ VEC_free (switch_update, heap, to_update_switch_stmts);
+
+ scev_finalize ();
+ loop_optimizer_finalize ();
+ return 0;
+}
+
+static bool
+gate_vrp (void)
+{
+ return flag_tree_vrp != 0;
+}
+
+struct gimple_opt_pass pass_vrp =
+{
+ {
+ GIMPLE_PASS,
+ "vrp", /* name */
+ gate_vrp, /* gate */
+ execute_vrp, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_TREE_VRP, /* tv_id */
+ PROP_ssa | PROP_alias, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_cleanup_cfg
+ | TODO_ggc_collect
+ | TODO_verify_ssa
+ | TODO_dump_func
+ | TODO_update_ssa /* todo_flags_finish */
+ }
+};