aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/tree-ssa-reassoc.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
committerJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
commitdf62c1c110e8532b995b23540b7e3695729c0779 (patch)
treedbbd4cbdb50ac38011e058a2533ee4c3168b0205 /gcc-4.4.0/gcc/tree-ssa-reassoc.c
parent8d401cf711539af5a2f78d12447341d774892618 (diff)
downloadtoolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.gz
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.bz2
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.zip
Check in gcc sources for prebuilt toolchains in Eclair.
Diffstat (limited to 'gcc-4.4.0/gcc/tree-ssa-reassoc.c')
-rw-r--r--gcc-4.4.0/gcc/tree-ssa-reassoc.c2080
1 files changed, 2080 insertions, 0 deletions
diff --git a/gcc-4.4.0/gcc/tree-ssa-reassoc.c b/gcc-4.4.0/gcc/tree-ssa-reassoc.c
new file mode 100644
index 000000000..d28e1b620
--- /dev/null
+++ b/gcc-4.4.0/gcc/tree-ssa-reassoc.c
@@ -0,0 +1,2080 @@
+/* Reassociation for trees.
+ Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
+ Contributed by Daniel Berlin <dan@dberlin.org>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 3, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "ggc.h"
+#include "tree.h"
+#include "basic-block.h"
+#include "diagnostic.h"
+#include "tree-inline.h"
+#include "tree-flow.h"
+#include "gimple.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "tree-iterator.h"
+#include "tree-pass.h"
+#include "alloc-pool.h"
+#include "vec.h"
+#include "langhooks.h"
+#include "pointer-set.h"
+#include "cfgloop.h"
+#include "flags.h"
+
+/* This is a simple global reassociation pass. It is, in part, based
+ on the LLVM pass of the same name (They do some things more/less
+ than we do, in different orders, etc).
+
+ It consists of five steps:
+
+ 1. Breaking up subtract operations into addition + negate, where
+ it would promote the reassociation of adds.
+
+ 2. Left linearization of the expression trees, so that (A+B)+(C+D)
+ becomes (((A+B)+C)+D), which is easier for us to rewrite later.
+ During linearization, we place the operands of the binary
+ expressions into a vector of operand_entry_t
+
+ 3. Optimization of the operand lists, eliminating things like a +
+ -a, a & a, etc.
+
+ 4. Rewrite the expression trees we linearized and optimized so
+ they are in proper rank order.
+
+ 5. Repropagate negates, as nothing else will clean it up ATM.
+
+ A bit of theory on #4, since nobody seems to write anything down
+ about why it makes sense to do it the way they do it:
+
+ We could do this much nicer theoretically, but don't (for reasons
+ explained after how to do it theoretically nice :P).
+
+ In order to promote the most redundancy elimination, you want
+ binary expressions whose operands are the same rank (or
+ preferably, the same value) exposed to the redundancy eliminator,
+ for possible elimination.
+
+ So the way to do this if we really cared, is to build the new op
+ tree from the leaves to the roots, merging as you go, and putting the
+ new op on the end of the worklist, until you are left with one
+ thing on the worklist.
+
+ IE if you have to rewrite the following set of operands (listed with
+ rank in parentheses), with opcode PLUS_EXPR:
+
+ a (1), b (1), c (1), d (2), e (2)
+
+
+ We start with our merge worklist empty, and the ops list with all of
+ those on it.
+
+ You want to first merge all leaves of the same rank, as much as
+ possible.
+
+ So first build a binary op of
+
+ mergetmp = a + b, and put "mergetmp" on the merge worklist.
+
+ Because there is no three operand form of PLUS_EXPR, c is not going to
+ be exposed to redundancy elimination as a rank 1 operand.
+
+ So you might as well throw it on the merge worklist (you could also
+ consider it to now be a rank two operand, and merge it with d and e,
+ but in this case, you then have evicted e from a binary op. So at
+ least in this situation, you can't win.)
+
+ Then build a binary op of d + e
+ mergetmp2 = d + e
+
+ and put mergetmp2 on the merge worklist.
+
+ so merge worklist = {mergetmp, c, mergetmp2}
+
+ Continue building binary ops of these operations until you have only
+ one operation left on the worklist.
+
+ So we have
+
+ build binary op
+ mergetmp3 = mergetmp + c
+
+ worklist = {mergetmp2, mergetmp3}
+
+ mergetmp4 = mergetmp2 + mergetmp3
+
+ worklist = {mergetmp4}
+
+ because we have one operation left, we can now just set the original
+ statement equal to the result of that operation.
+
+ This will at least expose a + b and d + e to redundancy elimination
+ as binary operations.
+
+ For extra points, you can reuse the old statements to build the
+ mergetmps, since you shouldn't run out.
+
+ So why don't we do this?
+
+ Because it's expensive, and rarely will help. Most trees we are
+ reassociating have 3 or less ops. If they have 2 ops, they already
+ will be written into a nice single binary op. If you have 3 ops, a
+ single simple check suffices to tell you whether the first two are of the
+ same rank. If so, you know to order it
+
+ mergetmp = op1 + op2
+ newstmt = mergetmp + op3
+
+ instead of
+ mergetmp = op2 + op3
+ newstmt = mergetmp + op1
+
+ If all three are of the same rank, you can't expose them all in a
+ single binary operator anyway, so the above is *still* the best you
+ can do.
+
+ Thus, this is what we do. When we have three ops left, we check to see
+ what order to put them in, and call it a day. As a nod to vector sum
+ reduction, we check if any of the ops are really a phi node that is a
+ destructive update for the associating op, and keep the destructive
+ update together for vector sum reduction recognition. */
+
+
+/* Statistics */
+static struct
+{
+ int linearized;
+ int constants_eliminated;
+ int ops_eliminated;
+ int rewritten;
+} reassociate_stats;
+
+/* Operator, rank pair. */
+typedef struct operand_entry
+{
+ unsigned int rank;
+ tree op;
+} *operand_entry_t;
+
+static alloc_pool operand_entry_pool;
+
+
+/* Starting rank number for a given basic block, so that we can rank
+ operations using unmovable instructions in that BB based on the bb
+ depth. */
+static long *bb_rank;
+
+/* Operand->rank hashtable. */
+static struct pointer_map_t *operand_rank;
+
+
+/* Look up the operand rank structure for expression E. */
+
+static inline long
+find_operand_rank (tree e)
+{
+ void **slot = pointer_map_contains (operand_rank, e);
+ return slot ? (long) *slot : -1;
+}
+
+/* Insert {E,RANK} into the operand rank hashtable. */
+
+static inline void
+insert_operand_rank (tree e, long rank)
+{
+ void **slot;
+ gcc_assert (rank > 0);
+ slot = pointer_map_insert (operand_rank, e);
+ gcc_assert (!*slot);
+ *slot = (void *) rank;
+}
+
+/* Given an expression E, return the rank of the expression. */
+
+static long
+get_rank (tree e)
+{
+ /* Constants have rank 0. */
+ if (is_gimple_min_invariant (e))
+ return 0;
+
+ /* SSA_NAME's have the rank of the expression they are the result
+ of.
+ For globals and uninitialized values, the rank is 0.
+ For function arguments, use the pre-setup rank.
+ For PHI nodes, stores, asm statements, etc, we use the rank of
+ the BB.
+ For simple operations, the rank is the maximum rank of any of
+ its operands, or the bb_rank, whichever is less.
+ I make no claims that this is optimal, however, it gives good
+ results. */
+
+ if (TREE_CODE (e) == SSA_NAME)
+ {
+ gimple stmt;
+ long rank, maxrank;
+ int i, n;
+
+ if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
+ && SSA_NAME_IS_DEFAULT_DEF (e))
+ return find_operand_rank (e);
+
+ stmt = SSA_NAME_DEF_STMT (e);
+ if (gimple_bb (stmt) == NULL)
+ return 0;
+
+ if (!is_gimple_assign (stmt)
+ || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
+ return bb_rank[gimple_bb (stmt)->index];
+
+ /* If we already have a rank for this expression, use that. */
+ rank = find_operand_rank (e);
+ if (rank != -1)
+ return rank;
+
+ /* Otherwise, find the maximum rank for the operands, or the bb
+ rank, whichever is less. */
+ rank = 0;
+ maxrank = bb_rank[gimple_bb(stmt)->index];
+ if (gimple_assign_single_p (stmt))
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+ n = TREE_OPERAND_LENGTH (rhs);
+ if (n == 0)
+ rank = MAX (rank, get_rank (rhs));
+ else
+ {
+ for (i = 0;
+ i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
+ rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
+ }
+ }
+ else
+ {
+ n = gimple_num_ops (stmt);
+ for (i = 1; i < n && rank != maxrank; i++)
+ {
+ gcc_assert (gimple_op (stmt, i));
+ rank = MAX(rank, get_rank (gimple_op (stmt, i)));
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Rank for ");
+ print_generic_expr (dump_file, e, 0);
+ fprintf (dump_file, " is %ld\n", (rank + 1));
+ }
+
+ /* Note the rank in the hashtable so we don't recompute it. */
+ insert_operand_rank (e, (rank + 1));
+ return (rank + 1);
+ }
+
+ /* Globals, etc, are rank 0 */
+ return 0;
+}
+
+DEF_VEC_P(operand_entry_t);
+DEF_VEC_ALLOC_P(operand_entry_t, heap);
+
+/* We want integer ones to end up last no matter what, since they are
+ the ones we can do the most with. */
+#define INTEGER_CONST_TYPE 1 << 3
+#define FLOAT_CONST_TYPE 1 << 2
+#define OTHER_CONST_TYPE 1 << 1
+
+/* Classify an invariant tree into integer, float, or other, so that
+ we can sort them to be near other constants of the same type. */
+static inline int
+constant_type (tree t)
+{
+ if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
+ return INTEGER_CONST_TYPE;
+ else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
+ return FLOAT_CONST_TYPE;
+ else
+ return OTHER_CONST_TYPE;
+}
+
+/* qsort comparison function to sort operand entries PA and PB by rank
+ so that the sorted array is ordered by rank in decreasing order. */
+static int
+sort_by_operand_rank (const void *pa, const void *pb)
+{
+ const operand_entry_t oea = *(const operand_entry_t *)pa;
+ const operand_entry_t oeb = *(const operand_entry_t *)pb;
+
+ /* It's nicer for optimize_expression if constants that are likely
+ to fold when added/multiplied//whatever are put next to each
+ other. Since all constants have rank 0, order them by type. */
+ if (oeb->rank == 0 && oea->rank == 0)
+ return constant_type (oeb->op) - constant_type (oea->op);
+
+ /* Lastly, make sure the versions that are the same go next to each
+ other. We use SSA_NAME_VERSION because it's stable. */
+ if ((oeb->rank - oea->rank == 0)
+ && TREE_CODE (oea->op) == SSA_NAME
+ && TREE_CODE (oeb->op) == SSA_NAME)
+ return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
+
+ return oeb->rank - oea->rank;
+}
+
+/* Add an operand entry to *OPS for the tree operand OP. */
+
+static void
+add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
+{
+ operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
+
+ oe->op = op;
+ oe->rank = get_rank (op);
+ VEC_safe_push (operand_entry_t, heap, *ops, oe);
+}
+
+/* Return true if STMT is reassociable operation containing a binary
+ operation with tree code CODE, and is inside LOOP. */
+
+static bool
+is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
+{
+ basic_block bb = gimple_bb (stmt);
+
+ if (gimple_bb (stmt) == NULL)
+ return false;
+
+ if (!flow_bb_inside_loop_p (loop, bb))
+ return false;
+
+ if (is_gimple_assign (stmt)
+ && gimple_assign_rhs_code (stmt) == code
+ && has_single_use (gimple_assign_lhs (stmt)))
+ return true;
+
+ return false;
+}
+
+
+/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
+ operand of the negate operation. Otherwise, return NULL. */
+
+static tree
+get_unary_op (tree name, enum tree_code opcode)
+{
+ gimple stmt = SSA_NAME_DEF_STMT (name);
+
+ if (!is_gimple_assign (stmt))
+ return NULL_TREE;
+
+ if (gimple_assign_rhs_code (stmt) == opcode)
+ return gimple_assign_rhs1 (stmt);
+ return NULL_TREE;
+}
+
+/* If CURR and LAST are a pair of ops that OPCODE allows us to
+ eliminate through equivalences, do so, remove them from OPS, and
+ return true. Otherwise, return false. */
+
+static bool
+eliminate_duplicate_pair (enum tree_code opcode,
+ VEC (operand_entry_t, heap) **ops,
+ bool *all_done,
+ unsigned int i,
+ operand_entry_t curr,
+ operand_entry_t last)
+{
+
+ /* If we have two of the same op, and the opcode is & |, min, or max,
+ we can eliminate one of them.
+ If we have two of the same op, and the opcode is ^, we can
+ eliminate both of them. */
+
+ if (last && last->op == curr->op)
+ {
+ switch (opcode)
+ {
+ case MAX_EXPR:
+ case MIN_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_AND_EXPR:
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Equivalence: ");
+ print_generic_expr (dump_file, curr->op, 0);
+ fprintf (dump_file, " [&|minmax] ");
+ print_generic_expr (dump_file, last->op, 0);
+ fprintf (dump_file, " -> ");
+ print_generic_stmt (dump_file, last->op, 0);
+ }
+
+ VEC_ordered_remove (operand_entry_t, *ops, i);
+ reassociate_stats.ops_eliminated ++;
+
+ return true;
+
+ case BIT_XOR_EXPR:
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Equivalence: ");
+ print_generic_expr (dump_file, curr->op, 0);
+ fprintf (dump_file, " ^ ");
+ print_generic_expr (dump_file, last->op, 0);
+ fprintf (dump_file, " -> nothing\n");
+ }
+
+ reassociate_stats.ops_eliminated += 2;
+
+ if (VEC_length (operand_entry_t, *ops) == 2)
+ {
+ VEC_free (operand_entry_t, heap, *ops);
+ *ops = NULL;
+ add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
+ integer_zero_node));
+ *all_done = true;
+ }
+ else
+ {
+ VEC_ordered_remove (operand_entry_t, *ops, i-1);
+ VEC_ordered_remove (operand_entry_t, *ops, i-1);
+ }
+
+ return true;
+
+ default:
+ break;
+ }
+ }
+ return false;
+}
+
+/* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
+ look in OPS for a corresponding positive operation to cancel it
+ out. If we find one, remove the other from OPS, replace
+ OPS[CURRINDEX] with 0, and return true. Otherwise, return
+ false. */
+
+static bool
+eliminate_plus_minus_pair (enum tree_code opcode,
+ VEC (operand_entry_t, heap) **ops,
+ unsigned int currindex,
+ operand_entry_t curr)
+{
+ tree negateop;
+ unsigned int i;
+ operand_entry_t oe;
+
+ if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
+ return false;
+
+ negateop = get_unary_op (curr->op, NEGATE_EXPR);
+ if (negateop == NULL_TREE)
+ return false;
+
+ /* Any non-negated version will have a rank that is one less than
+ the current rank. So once we hit those ranks, if we don't find
+ one, we can stop. */
+
+ for (i = currindex + 1;
+ VEC_iterate (operand_entry_t, *ops, i, oe)
+ && oe->rank >= curr->rank - 1 ;
+ i++)
+ {
+ if (oe->op == negateop)
+ {
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Equivalence: ");
+ print_generic_expr (dump_file, negateop, 0);
+ fprintf (dump_file, " + -");
+ print_generic_expr (dump_file, oe->op, 0);
+ fprintf (dump_file, " -> 0\n");
+ }
+
+ VEC_ordered_remove (operand_entry_t, *ops, i);
+ add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
+ integer_zero_node));
+ VEC_ordered_remove (operand_entry_t, *ops, currindex);
+ reassociate_stats.ops_eliminated ++;
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
+ bitwise not expression, look in OPS for a corresponding operand to
+ cancel it out. If we find one, remove the other from OPS, replace
+ OPS[CURRINDEX] with 0, and return true. Otherwise, return
+ false. */
+
+static bool
+eliminate_not_pairs (enum tree_code opcode,
+ VEC (operand_entry_t, heap) **ops,
+ unsigned int currindex,
+ operand_entry_t curr)
+{
+ tree notop;
+ unsigned int i;
+ operand_entry_t oe;
+
+ if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
+ || TREE_CODE (curr->op) != SSA_NAME)
+ return false;
+
+ notop = get_unary_op (curr->op, BIT_NOT_EXPR);
+ if (notop == NULL_TREE)
+ return false;
+
+ /* Any non-not version will have a rank that is one less than
+ the current rank. So once we hit those ranks, if we don't find
+ one, we can stop. */
+
+ for (i = currindex + 1;
+ VEC_iterate (operand_entry_t, *ops, i, oe)
+ && oe->rank >= curr->rank - 1;
+ i++)
+ {
+ if (oe->op == notop)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Equivalence: ");
+ print_generic_expr (dump_file, notop, 0);
+ if (opcode == BIT_AND_EXPR)
+ fprintf (dump_file, " & ~");
+ else if (opcode == BIT_IOR_EXPR)
+ fprintf (dump_file, " | ~");
+ print_generic_expr (dump_file, oe->op, 0);
+ if (opcode == BIT_AND_EXPR)
+ fprintf (dump_file, " -> 0\n");
+ else if (opcode == BIT_IOR_EXPR)
+ fprintf (dump_file, " -> -1\n");
+ }
+
+ if (opcode == BIT_AND_EXPR)
+ oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
+ else if (opcode == BIT_IOR_EXPR)
+ oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
+ TYPE_PRECISION (TREE_TYPE (oe->op)));
+
+ reassociate_stats.ops_eliminated
+ += VEC_length (operand_entry_t, *ops) - 1;
+ VEC_free (operand_entry_t, heap, *ops);
+ *ops = NULL;
+ VEC_safe_push (operand_entry_t, heap, *ops, oe);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/* Use constant value that may be present in OPS to try to eliminate
+ operands. Note that this function is only really used when we've
+ eliminated ops for other reasons, or merged constants. Across
+ single statements, fold already does all of this, plus more. There
+ is little point in duplicating logic, so I've only included the
+ identities that I could ever construct testcases to trigger. */
+
+static void
+eliminate_using_constants (enum tree_code opcode,
+ VEC(operand_entry_t, heap) **ops)
+{
+ operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
+ tree type = TREE_TYPE (oelast->op);
+
+ if (oelast->rank == 0
+ && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
+ {
+ switch (opcode)
+ {
+ case BIT_AND_EXPR:
+ if (integer_zerop (oelast->op))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found & 0, removing all other ops\n");
+
+ reassociate_stats.ops_eliminated
+ += VEC_length (operand_entry_t, *ops) - 1;
+
+ VEC_free (operand_entry_t, heap, *ops);
+ *ops = NULL;
+ VEC_safe_push (operand_entry_t, heap, *ops, oelast);
+ return;
+ }
+ }
+ else if (integer_all_onesp (oelast->op))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found & -1, removing\n");
+ VEC_pop (operand_entry_t, *ops);
+ reassociate_stats.ops_eliminated++;
+ }
+ }
+ break;
+ case BIT_IOR_EXPR:
+ if (integer_all_onesp (oelast->op))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found | -1, removing all other ops\n");
+
+ reassociate_stats.ops_eliminated
+ += VEC_length (operand_entry_t, *ops) - 1;
+
+ VEC_free (operand_entry_t, heap, *ops);
+ *ops = NULL;
+ VEC_safe_push (operand_entry_t, heap, *ops, oelast);
+ return;
+ }
+ }
+ else if (integer_zerop (oelast->op))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found | 0, removing\n");
+ VEC_pop (operand_entry_t, *ops);
+ reassociate_stats.ops_eliminated++;
+ }
+ }
+ break;
+ case MULT_EXPR:
+ if (integer_zerop (oelast->op)
+ || (FLOAT_TYPE_P (type)
+ && !HONOR_NANS (TYPE_MODE (type))
+ && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
+ && real_zerop (oelast->op)))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found * 0, removing all other ops\n");
+
+ reassociate_stats.ops_eliminated
+ += VEC_length (operand_entry_t, *ops) - 1;
+ VEC_free (operand_entry_t, heap, *ops);
+ *ops = NULL;
+ VEC_safe_push (operand_entry_t, heap, *ops, oelast);
+ return;
+ }
+ }
+ else if (integer_onep (oelast->op)
+ || (FLOAT_TYPE_P (type)
+ && !HONOR_SNANS (TYPE_MODE (type))
+ && real_onep (oelast->op)))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found * 1, removing\n");
+ VEC_pop (operand_entry_t, *ops);
+ reassociate_stats.ops_eliminated++;
+ return;
+ }
+ }
+ break;
+ case BIT_XOR_EXPR:
+ case PLUS_EXPR:
+ case MINUS_EXPR:
+ if (integer_zerop (oelast->op)
+ || (FLOAT_TYPE_P (type)
+ && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
+ && fold_real_zero_addition_p (type, oelast->op,
+ opcode == MINUS_EXPR)))
+ {
+ if (VEC_length (operand_entry_t, *ops) != 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Found [|^+] 0, removing\n");
+ VEC_pop (operand_entry_t, *ops);
+ reassociate_stats.ops_eliminated++;
+ return;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+
+static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
+ bool, bool);
+
+/* Structure for tracking and counting operands. */
+typedef struct oecount_s {
+ int cnt;
+ enum tree_code oecode;
+ tree op;
+} oecount;
+
+DEF_VEC_O(oecount);
+DEF_VEC_ALLOC_O(oecount,heap);
+
+/* The heap for the oecount hashtable and the sorted list of operands. */
+static VEC (oecount, heap) *cvec;
+
+/* Hash function for oecount. */
+
+static hashval_t
+oecount_hash (const void *p)
+{
+ const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
+ return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
+}
+
+/* Comparison function for oecount. */
+
+static int
+oecount_eq (const void *p1, const void *p2)
+{
+ const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
+ const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
+ return (c1->oecode == c2->oecode
+ && c1->op == c2->op);
+}
+
+/* Comparison function for qsort sorting oecount elements by count. */
+
+static int
+oecount_cmp (const void *p1, const void *p2)
+{
+ const oecount *c1 = (const oecount *)p1;
+ const oecount *c2 = (const oecount *)p2;
+ return c1->cnt - c2->cnt;
+}
+
+/* Walks the linear chain with result *DEF searching for an operation
+ with operand OP and code OPCODE removing that from the chain. *DEF
+ is updated if there is only one operand but no operation left. */
+
+static void
+zero_one_operation (tree *def, enum tree_code opcode, tree op)
+{
+ gimple stmt = SSA_NAME_DEF_STMT (*def);
+
+ do
+ {
+ tree name = gimple_assign_rhs1 (stmt);
+
+ /* If this is the operation we look for and one of the operands
+ is ours simply propagate the other operand into the stmts
+ single use. */
+ if (gimple_assign_rhs_code (stmt) == opcode
+ && (name == op
+ || gimple_assign_rhs2 (stmt) == op))
+ {
+ gimple use_stmt;
+ use_operand_p use;
+ gimple_stmt_iterator gsi;
+ if (name == op)
+ name = gimple_assign_rhs2 (stmt);
+ gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
+ single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
+ if (gimple_assign_lhs (stmt) == *def)
+ *def = name;
+ SET_USE (use, name);
+ if (TREE_CODE (name) != SSA_NAME)
+ update_stmt (use_stmt);
+ gsi = gsi_for_stmt (stmt);
+ gsi_remove (&gsi, true);
+ release_defs (stmt);
+ return;
+ }
+
+ /* Continue walking the chain. */
+ gcc_assert (name != op
+ && TREE_CODE (name) == SSA_NAME);
+ stmt = SSA_NAME_DEF_STMT (name);
+ }
+ while (1);
+}
+
+/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
+ the result. Places the statement after the definition of either
+ OP1 or OP2. Returns the new statement. */
+
+static gimple
+build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
+{
+ gimple op1def = NULL, op2def = NULL;
+ gimple_stmt_iterator gsi;
+ tree op;
+ gimple sum;
+
+ /* Create the addition statement. */
+ sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
+ op = make_ssa_name (tmpvar, sum);
+ gimple_assign_set_lhs (sum, op);
+
+ /* Find an insertion place and insert. */
+ if (TREE_CODE (op1) == SSA_NAME)
+ op1def = SSA_NAME_DEF_STMT (op1);
+ if (TREE_CODE (op2) == SSA_NAME)
+ op2def = SSA_NAME_DEF_STMT (op2);
+ if ((!op1def || gimple_nop_p (op1def))
+ && (!op2def || gimple_nop_p (op2def)))
+ {
+ gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR));
+ gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+ }
+ else if ((!op1def || gimple_nop_p (op1def))
+ || (op2def && !gimple_nop_p (op2def)
+ && stmt_dominates_stmt_p (op1def, op2def)))
+ {
+ if (gimple_code (op2def) == GIMPLE_PHI)
+ {
+ gsi = gsi_start_bb (gimple_bb (op2def));
+ gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+ }
+ else
+ {
+ if (!stmt_ends_bb_p (op2def))
+ {
+ gsi = gsi_for_stmt (op2def);
+ gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
+ }
+ else
+ {
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
+ if (e->flags & EDGE_FALLTHRU)
+ gsi_insert_on_edge_immediate (e, sum);
+ }
+ }
+ }
+ else
+ {
+ if (gimple_code (op1def) == GIMPLE_PHI)
+ {
+ gsi = gsi_start_bb (gimple_bb (op1def));
+ gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
+ }
+ else
+ {
+ if (!stmt_ends_bb_p (op1def))
+ {
+ gsi = gsi_for_stmt (op1def);
+ gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
+ }
+ else
+ {
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
+ if (e->flags & EDGE_FALLTHRU)
+ gsi_insert_on_edge_immediate (e, sum);
+ }
+ }
+ }
+ update_stmt (sum);
+
+ return sum;
+}
+
+/* Perform un-distribution of divisions and multiplications.
+ A * X + B * X is transformed into (A + B) * X and A / X + B / X
+ to (A + B) / X for real X.
+
+ The algorithm is organized as follows.
+
+ - First we walk the addition chain *OPS looking for summands that
+ are defined by a multiplication or a real division. This results
+ in the candidates bitmap with relevant indices into *OPS.
+
+ - Second we build the chains of multiplications or divisions for
+ these candidates, counting the number of occurences of (operand, code)
+ pairs in all of the candidates chains.
+
+ - Third we sort the (operand, code) pairs by number of occurence and
+ process them starting with the pair with the most uses.
+
+ * For each such pair we walk the candidates again to build a
+ second candidate bitmap noting all multiplication/division chains
+ that have at least one occurence of (operand, code).
+
+ * We build an alternate addition chain only covering these
+ candidates with one (operand, code) operation removed from their
+ multiplication/division chain.
+
+ * The first candidate gets replaced by the alternate addition chain
+ multiplied/divided by the operand.
+
+ * All candidate chains get disabled for further processing and
+ processing of (operand, code) pairs continues.
+
+ The alternate addition chains built are re-processed by the main
+ reassociation algorithm which allows optimizing a * x * y + b * y * x
+ to (a + b ) * x * y in one invocation of the reassociation pass. */
+
+static bool
+undistribute_ops_list (enum tree_code opcode,
+ VEC (operand_entry_t, heap) **ops, struct loop *loop)
+{
+ unsigned int length = VEC_length (operand_entry_t, *ops);
+ operand_entry_t oe1;
+ unsigned i, j;
+ sbitmap candidates, candidates2;
+ unsigned nr_candidates, nr_candidates2;
+ sbitmap_iterator sbi0;
+ VEC (operand_entry_t, heap) **subops;
+ htab_t ctable;
+ bool changed = false;
+
+ if (length <= 1
+ || opcode != PLUS_EXPR)
+ return false;
+
+ /* Build a list of candidates to process. */
+ candidates = sbitmap_alloc (length);
+ sbitmap_zero (candidates);
+ nr_candidates = 0;
+ for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
+ {
+ enum tree_code dcode;
+ gimple oe1def;
+
+ if (TREE_CODE (oe1->op) != SSA_NAME)
+ continue;
+ oe1def = SSA_NAME_DEF_STMT (oe1->op);
+ if (!is_gimple_assign (oe1def))
+ continue;
+ dcode = gimple_assign_rhs_code (oe1def);
+ if ((dcode != MULT_EXPR
+ && dcode != RDIV_EXPR)
+ || !is_reassociable_op (oe1def, dcode, loop))
+ continue;
+
+ SET_BIT (candidates, i);
+ nr_candidates++;
+ }
+
+ if (nr_candidates < 2)
+ {
+ sbitmap_free (candidates);
+ return false;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "searching for un-distribute opportunities ");
+ print_generic_expr (dump_file,
+ VEC_index (operand_entry_t, *ops,
+ sbitmap_first_set_bit (candidates))->op, 0);
+ fprintf (dump_file, " %d\n", nr_candidates);
+ }
+
+ /* Build linearized sub-operand lists and the counting table. */
+ cvec = NULL;
+ ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
+ subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
+ VEC_length (operand_entry_t, *ops));
+ EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
+ {
+ gimple oedef;
+ enum tree_code oecode;
+ unsigned j;
+
+ oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
+ oecode = gimple_assign_rhs_code (oedef);
+ linearize_expr_tree (&subops[i], oedef,
+ associative_tree_code (oecode), false);
+
+ for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
+ {
+ oecount c;
+ void **slot;
+ size_t idx;
+ c.oecode = oecode;
+ c.cnt = 1;
+ c.op = oe1->op;
+ VEC_safe_push (oecount, heap, cvec, &c);
+ idx = VEC_length (oecount, cvec) + 41;
+ slot = htab_find_slot (ctable, (void *)idx, INSERT);
+ if (!*slot)
+ {
+ *slot = (void *)idx;
+ }
+ else
+ {
+ VEC_pop (oecount, cvec);
+ VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
+ }
+ }
+ }
+ htab_delete (ctable);
+
+ /* Sort the counting table. */
+ qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
+ sizeof (oecount), oecount_cmp);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ oecount *c;
+ fprintf (dump_file, "Candidates:\n");
+ for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
+ {
+ fprintf (dump_file, " %u %s: ", c->cnt,
+ c->oecode == MULT_EXPR
+ ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
+ print_generic_expr (dump_file, c->op, 0);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ /* Process the (operand, code) pairs in order of most occurence. */
+ candidates2 = sbitmap_alloc (length);
+ while (!VEC_empty (oecount, cvec))
+ {
+ oecount *c = VEC_last (oecount, cvec);
+ if (c->cnt < 2)
+ break;
+
+ /* Now collect the operands in the outer chain that contain
+ the common operand in their inner chain. */
+ sbitmap_zero (candidates2);
+ nr_candidates2 = 0;
+ EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
+ {
+ gimple oedef;
+ enum tree_code oecode;
+ unsigned j;
+ tree op = VEC_index (operand_entry_t, *ops, i)->op;
+
+ /* If we undistributed in this chain already this may be
+ a constant. */
+ if (TREE_CODE (op) != SSA_NAME)
+ continue;
+
+ oedef = SSA_NAME_DEF_STMT (op);
+ oecode = gimple_assign_rhs_code (oedef);
+ if (oecode != c->oecode)
+ continue;
+
+ for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
+ {
+ if (oe1->op == c->op)
+ {
+ SET_BIT (candidates2, i);
+ ++nr_candidates2;
+ break;
+ }
+ }
+ }
+
+ if (nr_candidates2 >= 2)
+ {
+ operand_entry_t oe1, oe2;
+ tree tmpvar;
+ gimple prod;
+ int first = sbitmap_first_set_bit (candidates2);
+
+ /* Build the new addition chain. */
+ oe1 = VEC_index (operand_entry_t, *ops, first);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Building (");
+ print_generic_expr (dump_file, oe1->op, 0);
+ }
+ tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
+ add_referenced_var (tmpvar);
+ zero_one_operation (&oe1->op, c->oecode, c->op);
+ EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
+ {
+ gimple sum;
+ oe2 = VEC_index (operand_entry_t, *ops, i);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " + ");
+ print_generic_expr (dump_file, oe2->op, 0);
+ }
+ zero_one_operation (&oe2->op, c->oecode, c->op);
+ sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
+ oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
+ oe2->rank = 0;
+ oe1->op = gimple_get_lhs (sum);
+ }
+
+ /* Apply the multiplication/division. */
+ prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
+ print_generic_expr (dump_file, c->op, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ /* Record it in the addition chain and disable further
+ undistribution with this op. */
+ oe1->op = gimple_assign_lhs (prod);
+ oe1->rank = get_rank (oe1->op);
+ VEC_free (operand_entry_t, heap, subops[first]);
+
+ changed = true;
+ }
+
+ VEC_pop (oecount, cvec);
+ }
+
+ for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
+ VEC_free (operand_entry_t, heap, subops[i]);
+ free (subops);
+ VEC_free (oecount, heap, cvec);
+ sbitmap_free (candidates);
+ sbitmap_free (candidates2);
+
+ return changed;
+}
+
+
+/* Perform various identities and other optimizations on the list of
+ operand entries, stored in OPS. The tree code for the binary
+ operation between all the operands is OPCODE. */
+
+static void
+optimize_ops_list (enum tree_code opcode,
+ VEC (operand_entry_t, heap) **ops)
+{
+ unsigned int length = VEC_length (operand_entry_t, *ops);
+ unsigned int i;
+ operand_entry_t oe;
+ operand_entry_t oelast = NULL;
+ bool iterate = false;
+
+ if (length == 1)
+ return;
+
+ oelast = VEC_last (operand_entry_t, *ops);
+
+ /* If the last two are constants, pop the constants off, merge them
+ and try the next two. */
+ if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
+ {
+ operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
+
+ if (oelm1->rank == 0
+ && is_gimple_min_invariant (oelm1->op)
+ && useless_type_conversion_p (TREE_TYPE (oelm1->op),
+ TREE_TYPE (oelast->op)))
+ {
+ tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
+ oelm1->op, oelast->op);
+
+ if (folded && is_gimple_min_invariant (folded))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Merging constants\n");
+
+ VEC_pop (operand_entry_t, *ops);
+ VEC_pop (operand_entry_t, *ops);
+
+ add_to_ops_vec (ops, folded);
+ reassociate_stats.constants_eliminated++;
+
+ optimize_ops_list (opcode, ops);
+ return;
+ }
+ }
+ }
+
+ eliminate_using_constants (opcode, ops);
+ oelast = NULL;
+
+ for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
+ {
+ bool done = false;
+
+ if (eliminate_not_pairs (opcode, ops, i, oe))
+ return;
+ if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
+ || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
+ {
+ if (done)
+ return;
+ iterate = true;
+ oelast = NULL;
+ continue;
+ }
+ oelast = oe;
+ i++;
+ }
+
+ length = VEC_length (operand_entry_t, *ops);
+ oelast = VEC_last (operand_entry_t, *ops);
+
+ if (iterate)
+ optimize_ops_list (opcode, ops);
+}
+
+/* Return true if OPERAND is defined by a PHI node which uses the LHS
+ of STMT in it's operands. This is also known as a "destructive
+ update" operation. */
+
+static bool
+is_phi_for_stmt (gimple stmt, tree operand)
+{
+ gimple def_stmt;
+ tree lhs;
+ use_operand_p arg_p;
+ ssa_op_iter i;
+
+ if (TREE_CODE (operand) != SSA_NAME)
+ return false;
+
+ lhs = gimple_assign_lhs (stmt);
+
+ def_stmt = SSA_NAME_DEF_STMT (operand);
+ if (gimple_code (def_stmt) != GIMPLE_PHI)
+ return false;
+
+ FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
+ if (lhs == USE_FROM_PTR (arg_p))
+ return true;
+ return false;
+}
+
+/* Remove def stmt of VAR if VAR has zero uses and recurse
+ on rhs1 operand if so. */
+
+static void
+remove_visited_stmt_chain (tree var)
+{
+ gimple stmt;
+ gimple_stmt_iterator gsi;
+
+ while (1)
+ {
+ if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
+ return;
+ stmt = SSA_NAME_DEF_STMT (var);
+ if (!is_gimple_assign (stmt)
+ || !gimple_visited_p (stmt))
+ return;
+ var = gimple_assign_rhs1 (stmt);
+ gsi = gsi_for_stmt (stmt);
+ gsi_remove (&gsi, true);
+ release_defs (stmt);
+ }
+}
+
+/* Recursively rewrite our linearized statements so that the operators
+ match those in OPS[OPINDEX], putting the computation in rank
+ order. */
+
+static void
+rewrite_expr_tree (gimple stmt, unsigned int opindex,
+ VEC(operand_entry_t, heap) * ops, bool moved)
+{
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+ operand_entry_t oe;
+
+ /* If we have three operands left, then we want to make sure the one
+ that gets the double binary op are the ones with the same rank.
+
+ The alternative we try is to see if this is a destructive
+ update style statement, which is like:
+ b = phi (a, ...)
+ a = c + b;
+ In that case, we want to use the destructive update form to
+ expose the possible vectorizer sum reduction opportunity.
+ In that case, the third operand will be the phi node.
+
+ We could, of course, try to be better as noted above, and do a
+ lot of work to try to find these opportunities in >3 operand
+ cases, but it is unlikely to be worth it. */
+ if (opindex + 3 == VEC_length (operand_entry_t, ops))
+ {
+ operand_entry_t oe1, oe2, oe3;
+
+ oe1 = VEC_index (operand_entry_t, ops, opindex);
+ oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
+ oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
+
+ if ((oe1->rank == oe2->rank
+ && oe2->rank != oe3->rank)
+ || (is_phi_for_stmt (stmt, oe3->op)
+ && !is_phi_for_stmt (stmt, oe1->op)
+ && !is_phi_for_stmt (stmt, oe2->op)))
+ {
+ struct operand_entry temp = *oe3;
+ oe3->op = oe1->op;
+ oe3->rank = oe1->rank;
+ oe1->op = temp.op;
+ oe1->rank= temp.rank;
+ }
+ else if ((oe1->rank == oe3->rank
+ && oe2->rank != oe3->rank)
+ || (is_phi_for_stmt (stmt, oe2->op)
+ && !is_phi_for_stmt (stmt, oe1->op)
+ && !is_phi_for_stmt (stmt, oe3->op)))
+ {
+ struct operand_entry temp = *oe2;
+ oe2->op = oe1->op;
+ oe2->rank = oe1->rank;
+ oe1->op = temp.op;
+ oe1->rank= temp.rank;
+ }
+ }
+
+ /* The final recursion case for this function is that you have
+ exactly two operations left.
+ If we had one exactly one op in the entire list to start with, we
+ would have never called this function, and the tail recursion
+ rewrites them one at a time. */
+ if (opindex + 2 == VEC_length (operand_entry_t, ops))
+ {
+ operand_entry_t oe1, oe2;
+
+ oe1 = VEC_index (operand_entry_t, ops, opindex);
+ oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
+
+ if (rhs1 != oe1->op || rhs2 != oe2->op)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Transforming ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ gimple_assign_set_rhs1 (stmt, oe1->op);
+ gimple_assign_set_rhs2 (stmt, oe2->op);
+ update_stmt (stmt);
+ if (rhs1 != oe1->op && rhs1 != oe2->op)
+ remove_visited_stmt_chain (rhs1);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " into ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ }
+ return;
+ }
+
+ /* If we hit here, we should have 3 or more ops left. */
+ gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
+
+ /* Rewrite the next operator. */
+ oe = VEC_index (operand_entry_t, ops, opindex);
+
+ if (oe->op != rhs2)
+ {
+ if (!moved)
+ {
+ gimple_stmt_iterator gsinow, gsirhs1;
+ gimple stmt1 = stmt, stmt2;
+ unsigned int count;
+
+ gsinow = gsi_for_stmt (stmt);
+ count = VEC_length (operand_entry_t, ops) - opindex - 2;
+ while (count-- != 0)
+ {
+ stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
+ gsirhs1 = gsi_for_stmt (stmt2);
+ gsi_move_before (&gsirhs1, &gsinow);
+ gsi_prev (&gsinow);
+ stmt1 = stmt2;
+ }
+ moved = true;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Transforming ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ gimple_assign_set_rhs2 (stmt, oe->op);
+ update_stmt (stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " into ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+ }
+ /* Recurse on the LHS of the binary operator, which is guaranteed to
+ be the non-leaf side. */
+ rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
+}
+
+/* Transform STMT, which is really (A +B) + (C + D) into the left
+ linear form, ((A+B)+C)+D.
+ Recurse on D if necessary. */
+
+static void
+linearize_expr (gimple stmt)
+{
+ gimple_stmt_iterator gsinow, gsirhs;
+ gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
+ gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
+ enum tree_code rhscode = gimple_assign_rhs_code (stmt);
+ gimple newbinrhs = NULL;
+ struct loop *loop = loop_containing_stmt (stmt);
+
+ gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
+ && is_reassociable_op (binrhs, rhscode, loop));
+
+ gsinow = gsi_for_stmt (stmt);
+ gsirhs = gsi_for_stmt (binrhs);
+ gsi_move_before (&gsirhs, &gsinow);
+
+ gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
+ gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
+ gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
+
+ if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
+ newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Linearized: ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ reassociate_stats.linearized++;
+ update_stmt (binrhs);
+ update_stmt (binlhs);
+ update_stmt (stmt);
+
+ gimple_set_visited (stmt, true);
+ gimple_set_visited (binlhs, true);
+ gimple_set_visited (binrhs, true);
+
+ /* Tail recurse on the new rhs if it still needs reassociation. */
+ if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
+ /* ??? This should probably be linearize_expr (newbinrhs) but I don't
+ want to change the algorithm while converting to tuples. */
+ linearize_expr (stmt);
+}
+
+/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
+ it. Otherwise, return NULL. */
+
+static gimple
+get_single_immediate_use (tree lhs)
+{
+ use_operand_p immuse;
+ gimple immusestmt;
+
+ if (TREE_CODE (lhs) == SSA_NAME
+ && single_imm_use (lhs, &immuse, &immusestmt)
+ && is_gimple_assign (immusestmt))
+ return immusestmt;
+
+ return NULL;
+}
+
+static VEC(tree, heap) *broken_up_subtracts;
+
+/* Recursively negate the value of TONEGATE, and return the SSA_NAME
+ representing the negated value. Insertions of any necessary
+ instructions go before GSI.
+ This function is recursive in that, if you hand it "a_5" as the
+ value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
+ transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
+
+static tree
+negate_value (tree tonegate, gimple_stmt_iterator *gsi)
+{
+ gimple negatedefstmt= NULL;
+ tree resultofnegate;
+
+ /* If we are trying to negate a name, defined by an add, negate the
+ add operands instead. */
+ if (TREE_CODE (tonegate) == SSA_NAME)
+ negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
+ if (TREE_CODE (tonegate) == SSA_NAME
+ && is_gimple_assign (negatedefstmt)
+ && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
+ && has_single_use (gimple_assign_lhs (negatedefstmt))
+ && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
+ {
+ gimple_stmt_iterator gsi;
+ tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
+ tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
+
+ gsi = gsi_for_stmt (negatedefstmt);
+ rhs1 = negate_value (rhs1, &gsi);
+ gimple_assign_set_rhs1 (negatedefstmt, rhs1);
+
+ gsi = gsi_for_stmt (negatedefstmt);
+ rhs2 = negate_value (rhs2, &gsi);
+ gimple_assign_set_rhs2 (negatedefstmt, rhs2);
+
+ update_stmt (negatedefstmt);
+ return gimple_assign_lhs (negatedefstmt);
+ }
+
+ tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
+ resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
+ NULL_TREE, true, GSI_SAME_STMT);
+ VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
+ return resultofnegate;
+}
+
+/* Return true if we should break up the subtract in STMT into an add
+ with negate. This is true when we the subtract operands are really
+ adds, or the subtract itself is used in an add expression. In
+ either case, breaking up the subtract into an add with negate
+ exposes the adds to reassociation. */
+
+static bool
+should_break_up_subtract (gimple stmt)
+{
+ tree lhs = gimple_assign_lhs (stmt);
+ tree binlhs = gimple_assign_rhs1 (stmt);
+ tree binrhs = gimple_assign_rhs2 (stmt);
+ gimple immusestmt;
+ struct loop *loop = loop_containing_stmt (stmt);
+
+ if (TREE_CODE (binlhs) == SSA_NAME
+ && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
+ return true;
+
+ if (TREE_CODE (binrhs) == SSA_NAME
+ && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
+ return true;
+
+ if (TREE_CODE (lhs) == SSA_NAME
+ && (immusestmt = get_single_immediate_use (lhs))
+ && is_gimple_assign (immusestmt)
+ && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
+ || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
+ return true;
+ return false;
+}
+
+/* Transform STMT from A - B into A + -B. */
+
+static void
+break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
+{
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Breaking up subtract ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ rhs2 = negate_value (rhs2, gsip);
+ gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
+ update_stmt (stmt);
+}
+
+/* Recursively linearize a binary expression that is the RHS of STMT.
+ Place the operands of the expression tree in the vector named OPS. */
+
+static void
+linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
+ bool is_associative, bool set_visited)
+{
+ tree binlhs = gimple_assign_rhs1 (stmt);
+ tree binrhs = gimple_assign_rhs2 (stmt);
+ gimple binlhsdef, binrhsdef;
+ bool binlhsisreassoc = false;
+ bool binrhsisreassoc = false;
+ enum tree_code rhscode = gimple_assign_rhs_code (stmt);
+ struct loop *loop = loop_containing_stmt (stmt);
+
+ if (set_visited)
+ gimple_set_visited (stmt, true);
+
+ if (TREE_CODE (binlhs) == SSA_NAME)
+ {
+ binlhsdef = SSA_NAME_DEF_STMT (binlhs);
+ binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
+ }
+
+ if (TREE_CODE (binrhs) == SSA_NAME)
+ {
+ binrhsdef = SSA_NAME_DEF_STMT (binrhs);
+ binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
+ }
+
+ /* If the LHS is not reassociable, but the RHS is, we need to swap
+ them. If neither is reassociable, there is nothing we can do, so
+ just put them in the ops vector. If the LHS is reassociable,
+ linearize it. If both are reassociable, then linearize the RHS
+ and the LHS. */
+
+ if (!binlhsisreassoc)
+ {
+ tree temp;
+
+ /* If this is not a associative operation like division, give up. */
+ if (!is_associative)
+ {
+ add_to_ops_vec (ops, binrhs);
+ return;
+ }
+
+ if (!binrhsisreassoc)
+ {
+ add_to_ops_vec (ops, binrhs);
+ add_to_ops_vec (ops, binlhs);
+ return;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "swapping operands of ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ swap_tree_operands (stmt,
+ gimple_assign_rhs1_ptr (stmt),
+ gimple_assign_rhs2_ptr (stmt));
+ update_stmt (stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " is now ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ /* We want to make it so the lhs is always the reassociative op,
+ so swap. */
+ temp = binlhs;
+ binlhs = binrhs;
+ binrhs = temp;
+ }
+ else if (binrhsisreassoc)
+ {
+ linearize_expr (stmt);
+ binlhs = gimple_assign_rhs1 (stmt);
+ binrhs = gimple_assign_rhs2 (stmt);
+ }
+
+ gcc_assert (TREE_CODE (binrhs) != SSA_NAME
+ || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
+ rhscode, loop));
+ linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
+ is_associative, set_visited);
+ add_to_ops_vec (ops, binrhs);
+}
+
+/* Repropagate the negates back into subtracts, since no other pass
+ currently does it. */
+
+static void
+repropagate_negates (void)
+{
+ unsigned int i = 0;
+ tree negate;
+
+ for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
+ {
+ gimple user = get_single_immediate_use (negate);
+
+ /* The negate operand can be either operand of a PLUS_EXPR
+ (it can be the LHS if the RHS is a constant for example).
+
+ Force the negate operand to the RHS of the PLUS_EXPR, then
+ transform the PLUS_EXPR into a MINUS_EXPR. */
+ if (user
+ && is_gimple_assign (user)
+ && gimple_assign_rhs_code (user) == PLUS_EXPR)
+ {
+ /* If the negated operand appears on the LHS of the
+ PLUS_EXPR, exchange the operands of the PLUS_EXPR
+ to force the negated operand to the RHS of the PLUS_EXPR. */
+ if (gimple_assign_rhs1 (user) == negate)
+ {
+ swap_tree_operands (user,
+ gimple_assign_rhs1_ptr (user),
+ gimple_assign_rhs2_ptr (user));
+ }
+
+ /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
+ the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
+ if (gimple_assign_rhs2 (user) == negate)
+ {
+ tree rhs1 = gimple_assign_rhs1 (user);
+ tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
+ gimple_stmt_iterator gsi = gsi_for_stmt (user);
+ gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
+ update_stmt (user);
+ }
+ }
+ }
+}
+
+/* Break up subtract operations in block BB.
+
+ We do this top down because we don't know whether the subtract is
+ part of a possible chain of reassociation except at the top.
+
+ IE given
+ d = f + g
+ c = a + e
+ b = c - d
+ q = b - r
+ k = t - q
+
+ we want to break up k = t - q, but we won't until we've transformed q
+ = b - r, which won't be broken up until we transform b = c - d.
+
+ En passant, clear the GIMPLE visited flag on every statement. */
+
+static void
+break_up_subtract_bb (basic_block bb)
+{
+ gimple_stmt_iterator gsi;
+ basic_block son;
+
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+ gimple_set_visited (stmt, false);
+
+ /* Look for simple gimple subtract operations. */
+ if (is_gimple_assign (stmt)
+ && gimple_assign_rhs_code (stmt) == MINUS_EXPR)
+ {
+ tree lhs = gimple_assign_lhs (stmt);
+ tree rhs1 = gimple_assign_rhs1 (stmt);
+ tree rhs2 = gimple_assign_rhs2 (stmt);
+
+ /* If associative-math we can do reassociation for
+ non-integral types. Or, we can do reassociation for
+ non-saturating fixed-point types. */
+ if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
+ && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
+ || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
+ || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
+ || !flag_associative_math)
+ && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
+ || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
+ || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
+ continue;
+
+ /* Check for a subtract used only in an addition. If this
+ is the case, transform it into add of a negate for better
+ reassociation. IE transform C = A-B into C = A + -B if C
+ is only used in an addition. */
+ if (should_break_up_subtract (stmt))
+ break_up_subtract (stmt, &gsi);
+ }
+ }
+ for (son = first_dom_son (CDI_DOMINATORS, bb);
+ son;
+ son = next_dom_son (CDI_DOMINATORS, son))
+ break_up_subtract_bb (son);
+}
+
+/* Reassociate expressions in basic block BB and its post-dominator as
+ children. */
+
+static void
+reassociate_bb (basic_block bb)
+{
+ gimple_stmt_iterator gsi;
+ basic_block son;
+
+ for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
+ {
+ gimple stmt = gsi_stmt (gsi);
+
+ if (is_gimple_assign (stmt))
+ {
+ tree lhs, rhs1, rhs2;
+ enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
+
+ /* If this is not a gimple binary expression, there is
+ nothing for us to do with it. */
+ if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
+ continue;
+
+ /* If this was part of an already processed statement,
+ we don't need to touch it again. */
+ if (gimple_visited_p (stmt))
+ {
+ /* This statement might have become dead because of previous
+ reassociations. */
+ if (has_zero_uses (gimple_get_lhs (stmt)))
+ {
+ gsi_remove (&gsi, true);
+ release_defs (stmt);
+ /* We might end up removing the last stmt above which
+ places the iterator to the end of the sequence.
+ Reset it to the last stmt in this case which might
+ be the end of the sequence as well if we removed
+ the last statement of the sequence. In which case
+ we need to bail out. */
+ if (gsi_end_p (gsi))
+ {
+ gsi = gsi_last_bb (bb);
+ if (gsi_end_p (gsi))
+ break;
+ }
+ }
+ continue;
+ }
+
+ lhs = gimple_assign_lhs (stmt);
+ rhs1 = gimple_assign_rhs1 (stmt);
+ rhs2 = gimple_assign_rhs2 (stmt);
+
+ /* If associative-math we can do reassociation for
+ non-integral types. Or, we can do reassociation for
+ non-saturating fixed-point types. */
+ if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
+ || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
+ || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
+ && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
+ || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
+ || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
+ || !flag_associative_math)
+ && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
+ || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
+ || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
+ continue;
+
+ if (associative_tree_code (rhs_code))
+ {
+ VEC(operand_entry_t, heap) *ops = NULL;
+
+ /* There may be no immediate uses left by the time we
+ get here because we may have eliminated them all. */
+ if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
+ continue;
+
+ gimple_set_visited (stmt, true);
+ linearize_expr_tree (&ops, stmt, true, true);
+ qsort (VEC_address (operand_entry_t, ops),
+ VEC_length (operand_entry_t, ops),
+ sizeof (operand_entry_t),
+ sort_by_operand_rank);
+ optimize_ops_list (rhs_code, &ops);
+ if (undistribute_ops_list (rhs_code, &ops,
+ loop_containing_stmt (stmt)))
+ {
+ qsort (VEC_address (operand_entry_t, ops),
+ VEC_length (operand_entry_t, ops),
+ sizeof (operand_entry_t),
+ sort_by_operand_rank);
+ optimize_ops_list (rhs_code, &ops);
+ }
+
+ if (VEC_length (operand_entry_t, ops) == 1)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Transforming ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+
+ rhs1 = gimple_assign_rhs1 (stmt);
+ gimple_assign_set_rhs_from_tree (&gsi,
+ VEC_last (operand_entry_t,
+ ops)->op);
+ update_stmt (stmt);
+ remove_visited_stmt_chain (rhs1);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " into ");
+ print_gimple_stmt (dump_file, stmt, 0, 0);
+ }
+ }
+ else
+ rewrite_expr_tree (stmt, 0, ops, false);
+
+ VEC_free (operand_entry_t, heap, ops);
+ }
+ }
+ }
+ for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
+ son;
+ son = next_dom_son (CDI_POST_DOMINATORS, son))
+ reassociate_bb (son);
+}
+
+void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
+void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
+
+/* Dump the operand entry vector OPS to FILE. */
+
+void
+dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
+{
+ operand_entry_t oe;
+ unsigned int i;
+
+ for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
+ {
+ fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
+ print_generic_expr (file, oe->op, 0);
+ }
+}
+
+/* Dump the operand entry vector OPS to STDERR. */
+
+void
+debug_ops_vector (VEC (operand_entry_t, heap) *ops)
+{
+ dump_ops_vector (stderr, ops);
+}
+
+static void
+do_reassoc (void)
+{
+ break_up_subtract_bb (ENTRY_BLOCK_PTR);
+ reassociate_bb (EXIT_BLOCK_PTR);
+}
+
+/* Initialize the reassociation pass. */
+
+static void
+init_reassoc (void)
+{
+ int i;
+ long rank = 2;
+ tree param;
+ int *bbs = XNEWVEC (int, last_basic_block + 1);
+
+ /* Find the loops, so that we can prevent moving calculations in
+ them. */
+ loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
+
+ memset (&reassociate_stats, 0, sizeof (reassociate_stats));
+
+ operand_entry_pool = create_alloc_pool ("operand entry pool",
+ sizeof (struct operand_entry), 30);
+
+ /* Reverse RPO (Reverse Post Order) will give us something where
+ deeper loops come later. */
+ pre_and_rev_post_order_compute (NULL, bbs, false);
+ bb_rank = XCNEWVEC (long, last_basic_block + 1);
+ operand_rank = pointer_map_create ();
+
+ /* Give each argument a distinct rank. */
+ for (param = DECL_ARGUMENTS (current_function_decl);
+ param;
+ param = TREE_CHAIN (param))
+ {
+ if (gimple_default_def (cfun, param) != NULL)
+ {
+ tree def = gimple_default_def (cfun, param);
+ insert_operand_rank (def, ++rank);
+ }
+ }
+
+ /* Give the chain decl a distinct rank. */
+ if (cfun->static_chain_decl != NULL)
+ {
+ tree def = gimple_default_def (cfun, cfun->static_chain_decl);
+ if (def != NULL)
+ insert_operand_rank (def, ++rank);
+ }
+
+ /* Set up rank for each BB */
+ for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
+ bb_rank[bbs[i]] = ++rank << 16;
+
+ free (bbs);
+ calculate_dominance_info (CDI_POST_DOMINATORS);
+ broken_up_subtracts = NULL;
+}
+
+/* Cleanup after the reassociation pass, and print stats if
+ requested. */
+
+static void
+fini_reassoc (void)
+{
+ statistics_counter_event (cfun, "Linearized",
+ reassociate_stats.linearized);
+ statistics_counter_event (cfun, "Constants eliminated",
+ reassociate_stats.constants_eliminated);
+ statistics_counter_event (cfun, "Ops eliminated",
+ reassociate_stats.ops_eliminated);
+ statistics_counter_event (cfun, "Statements rewritten",
+ reassociate_stats.rewritten);
+
+ pointer_map_destroy (operand_rank);
+ free_alloc_pool (operand_entry_pool);
+ free (bb_rank);
+ VEC_free (tree, heap, broken_up_subtracts);
+ free_dominance_info (CDI_POST_DOMINATORS);
+ loop_optimizer_finalize ();
+}
+
+/* Gate and execute functions for Reassociation. */
+
+static unsigned int
+execute_reassoc (void)
+{
+ init_reassoc ();
+
+ do_reassoc ();
+ repropagate_negates ();
+
+ fini_reassoc ();
+ return 0;
+}
+
+static bool
+gate_tree_ssa_reassoc (void)
+{
+ return flag_tree_reassoc != 0;
+}
+
+struct gimple_opt_pass pass_reassoc =
+{
+ {
+ GIMPLE_PASS,
+ "reassoc", /* name */
+ gate_tree_ssa_reassoc, /* gate */
+ execute_reassoc, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_TREE_REASSOC, /* tv_id */
+ PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
+ }
+};
+