aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c
diff options
context:
space:
mode:
authorDan Albert <danalbert@google.com>2015-06-17 11:09:54 -0700
committerDan Albert <danalbert@google.com>2015-06-17 14:15:22 -0700
commitf378ebf14df0952eae870c9865bab8326aa8f137 (patch)
tree31794503eb2a8c64ea5f313b93100f1163afcffb /gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c
parent2c58169824949d3a597d9fa81931e001ef9b1bd0 (diff)
downloadtoolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.gz
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.tar.bz2
toolchain_gcc-f378ebf14df0952eae870c9865bab8326aa8f137.zip
Delete old versions of GCC.
Change-Id: I710f125d905290e1024cbd67f48299861790c66c
Diffstat (limited to 'gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c')
-rw-r--r--gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c1601
1 files changed, 0 insertions, 1601 deletions
diff --git a/gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c b/gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c
deleted file mode 100644
index d0e460cf9..000000000
--- a/gcc-4.4.0/gcc/tree-ssa-loop-prefetch.c
+++ /dev/null
@@ -1,1601 +0,0 @@
-/* Array prefetching.
- Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tm_p.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "output.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "cfgloop.h"
-#include "varray.h"
-#include "expr.h"
-#include "tree-pass.h"
-#include "ggc.h"
-#include "insn-config.h"
-#include "recog.h"
-#include "hashtab.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "toplev.h"
-#include "params.h"
-#include "langhooks.h"
-#include "tree-inline.h"
-#include "tree-data-ref.h"
-#include "optabs.h"
-
-/* This pass inserts prefetch instructions to optimize cache usage during
- accesses to arrays in loops. It processes loops sequentially and:
-
- 1) Gathers all memory references in the single loop.
- 2) For each of the references it decides when it is profitable to prefetch
- it. To do it, we evaluate the reuse among the accesses, and determines
- two values: PREFETCH_BEFORE (meaning that it only makes sense to do
- prefetching in the first PREFETCH_BEFORE iterations of the loop) and
- PREFETCH_MOD (meaning that it only makes sense to prefetch in the
- iterations of the loop that are zero modulo PREFETCH_MOD). For example
- (assuming cache line size is 64 bytes, char has size 1 byte and there
- is no hardware sequential prefetch):
-
- char *a;
- for (i = 0; i < max; i++)
- {
- a[255] = ...; (0)
- a[i] = ...; (1)
- a[i + 64] = ...; (2)
- a[16*i] = ...; (3)
- a[187*i] = ...; (4)
- a[187*i + 50] = ...; (5)
- }
-
- (0) obviously has PREFETCH_BEFORE 1
- (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
- location 64 iterations before it, and PREFETCH_MOD 64 (since
- it hits the same cache line otherwise).
- (2) has PREFETCH_MOD 64
- (3) has PREFETCH_MOD 4
- (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
- the cache line accessed by (4) is the same with probability only
- 7/32.
- (5) has PREFETCH_MOD 1 as well.
-
- Additionally, we use data dependence analysis to determine for each
- reference the distance till the first reuse; this information is used
- to determine the temporality of the issued prefetch instruction.
-
- 3) We determine how much ahead we need to prefetch. The number of
- iterations needed is time to fetch / time spent in one iteration of
- the loop. The problem is that we do not know either of these values,
- so we just make a heuristic guess based on a magic (possibly)
- target-specific constant and size of the loop.
-
- 4) Determine which of the references we prefetch. We take into account
- that there is a maximum number of simultaneous prefetches (provided
- by machine description). We prefetch as many prefetches as possible
- while still within this bound (starting with those with lowest
- prefetch_mod, since they are responsible for most of the cache
- misses).
-
- 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
- and PREFETCH_BEFORE requirements (within some bounds), and to avoid
- prefetching nonaccessed memory.
- TODO -- actually implement peeling.
-
- 6) We actually emit the prefetch instructions. ??? Perhaps emit the
- prefetch instructions with guards in cases where 5) was not sufficient
- to satisfy the constraints?
-
- Some other TODO:
- -- write and use more general reuse analysis (that could be also used
- in other cache aimed loop optimizations)
- -- make it behave sanely together with the prefetches given by user
- (now we just ignore them; at the very least we should avoid
- optimizing loops in that user put his own prefetches)
- -- we assume cache line size alignment of arrays; this could be
- improved. */
-
-/* Magic constants follow. These should be replaced by machine specific
- numbers. */
-
-/* True if write can be prefetched by a read prefetch. */
-
-#ifndef WRITE_CAN_USE_READ_PREFETCH
-#define WRITE_CAN_USE_READ_PREFETCH 1
-#endif
-
-/* True if read can be prefetched by a write prefetch. */
-
-#ifndef READ_CAN_USE_WRITE_PREFETCH
-#define READ_CAN_USE_WRITE_PREFETCH 0
-#endif
-
-/* The size of the block loaded by a single prefetch. Usually, this is
- the same as cache line size (at the moment, we only consider one level
- of cache hierarchy). */
-
-#ifndef PREFETCH_BLOCK
-#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
-#endif
-
-/* Do we have a forward hardware sequential prefetching? */
-
-#ifndef HAVE_FORWARD_PREFETCH
-#define HAVE_FORWARD_PREFETCH 0
-#endif
-
-/* Do we have a backward hardware sequential prefetching? */
-
-#ifndef HAVE_BACKWARD_PREFETCH
-#define HAVE_BACKWARD_PREFETCH 0
-#endif
-
-/* In some cases we are only able to determine that there is a certain
- probability that the two accesses hit the same cache line. In this
- case, we issue the prefetches for both of them if this probability
- is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
-
-#ifndef ACCEPTABLE_MISS_RATE
-#define ACCEPTABLE_MISS_RATE 50
-#endif
-
-#ifndef HAVE_prefetch
-#define HAVE_prefetch 0
-#endif
-
-#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
-#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
-
-/* We consider a memory access nontemporal if it is not reused sooner than
- after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
- accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
- so that we use nontemporal prefetches e.g. if single memory location
- is accessed several times in a single iteration of the loop. */
-#define NONTEMPORAL_FRACTION 16
-
-/* In case we have to emit a memory fence instruction after the loop that
- uses nontemporal stores, this defines the builtin to use. */
-
-#ifndef FENCE_FOLLOWING_MOVNT
-#define FENCE_FOLLOWING_MOVNT NULL_TREE
-#endif
-
-/* The group of references between that reuse may occur. */
-
-struct mem_ref_group
-{
- tree base; /* Base of the reference. */
- HOST_WIDE_INT step; /* Step of the reference. */
- struct mem_ref *refs; /* References in the group. */
- struct mem_ref_group *next; /* Next group of references. */
-};
-
-/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
-
-#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
-
-/* The memory reference. */
-
-struct mem_ref
-{
- gimple stmt; /* Statement in that the reference appears. */
- tree mem; /* The reference. */
- HOST_WIDE_INT delta; /* Constant offset of the reference. */
- struct mem_ref_group *group; /* The group of references it belongs to. */
- unsigned HOST_WIDE_INT prefetch_mod;
- /* Prefetch only each PREFETCH_MOD-th
- iteration. */
- unsigned HOST_WIDE_INT prefetch_before;
- /* Prefetch only first PREFETCH_BEFORE
- iterations. */
- unsigned reuse_distance; /* The amount of data accessed before the first
- reuse of this value. */
- struct mem_ref *next; /* The next reference in the group. */
- unsigned write_p : 1; /* Is it a write? */
- unsigned independent_p : 1; /* True if the reference is independent on
- all other references inside the loop. */
- unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
- unsigned storent_p : 1; /* True if we changed the store to a
- nontemporal one. */
-};
-
-/* Dumps information about reference REF to FILE. */
-
-static void
-dump_mem_ref (FILE *file, struct mem_ref *ref)
-{
- fprintf (file, "Reference %p:\n", (void *) ref);
-
- fprintf (file, " group %p (base ", (void *) ref->group);
- print_generic_expr (file, ref->group->base, TDF_SLIM);
- fprintf (file, ", step ");
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
- fprintf (file, ")\n");
-
- fprintf (file, " delta ");
- fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
- fprintf (file, "\n");
-
- fprintf (file, " %s\n", ref->write_p ? "write" : "read");
-
- fprintf (file, "\n");
-}
-
-/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
- exist. */
-
-static struct mem_ref_group *
-find_or_create_group (struct mem_ref_group **groups, tree base,
- HOST_WIDE_INT step)
-{
- struct mem_ref_group *group;
-
- for (; *groups; groups = &(*groups)->next)
- {
- if ((*groups)->step == step
- && operand_equal_p ((*groups)->base, base, 0))
- return *groups;
-
- /* Keep the list of groups sorted by decreasing step. */
- if ((*groups)->step < step)
- break;
- }
-
- group = XNEW (struct mem_ref_group);
- group->base = base;
- group->step = step;
- group->refs = NULL;
- group->next = *groups;
- *groups = group;
-
- return group;
-}
-
-/* Records a memory reference MEM in GROUP with offset DELTA and write status
- WRITE_P. The reference occurs in statement STMT. */
-
-static void
-record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
- HOST_WIDE_INT delta, bool write_p)
-{
- struct mem_ref **aref;
-
- /* Do not record the same address twice. */
- for (aref = &group->refs; *aref; aref = &(*aref)->next)
- {
- /* It does not have to be possible for write reference to reuse the read
- prefetch, or vice versa. */
- if (!WRITE_CAN_USE_READ_PREFETCH
- && write_p
- && !(*aref)->write_p)
- continue;
- if (!READ_CAN_USE_WRITE_PREFETCH
- && !write_p
- && (*aref)->write_p)
- continue;
-
- if ((*aref)->delta == delta)
- return;
- }
-
- (*aref) = XNEW (struct mem_ref);
- (*aref)->stmt = stmt;
- (*aref)->mem = mem;
- (*aref)->delta = delta;
- (*aref)->write_p = write_p;
- (*aref)->prefetch_before = PREFETCH_ALL;
- (*aref)->prefetch_mod = 1;
- (*aref)->reuse_distance = 0;
- (*aref)->issue_prefetch_p = false;
- (*aref)->group = group;
- (*aref)->next = NULL;
- (*aref)->independent_p = false;
- (*aref)->storent_p = false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_mem_ref (dump_file, *aref);
-}
-
-/* Release memory references in GROUPS. */
-
-static void
-release_mem_refs (struct mem_ref_group *groups)
-{
- struct mem_ref_group *next_g;
- struct mem_ref *ref, *next_r;
-
- for (; groups; groups = next_g)
- {
- next_g = groups->next;
- for (ref = groups->refs; ref; ref = next_r)
- {
- next_r = ref->next;
- free (ref);
- }
- free (groups);
- }
-}
-
-/* A structure used to pass arguments to idx_analyze_ref. */
-
-struct ar_data
-{
- struct loop *loop; /* Loop of the reference. */
- gimple stmt; /* Statement of the reference. */
- HOST_WIDE_INT *step; /* Step of the memory reference. */
- HOST_WIDE_INT *delta; /* Offset of the memory reference. */
-};
-
-/* Analyzes a single INDEX of a memory reference to obtain information
- described at analyze_ref. Callback for for_each_index. */
-
-static bool
-idx_analyze_ref (tree base, tree *index, void *data)
-{
- struct ar_data *ar_data = (struct ar_data *) data;
- tree ibase, step, stepsize;
- HOST_WIDE_INT istep, idelta = 0, imult = 1;
- affine_iv iv;
-
- if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
- || TREE_CODE (base) == ALIGN_INDIRECT_REF)
- return false;
-
- if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
- *index, &iv, false))
- return false;
- ibase = iv.base;
- step = iv.step;
-
- if (!cst_and_fits_in_hwi (step))
- return false;
- istep = int_cst_value (step);
-
- if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
- && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
- {
- idelta = int_cst_value (TREE_OPERAND (ibase, 1));
- ibase = TREE_OPERAND (ibase, 0);
- }
- if (cst_and_fits_in_hwi (ibase))
- {
- idelta += int_cst_value (ibase);
- ibase = build_int_cst (TREE_TYPE (ibase), 0);
- }
-
- if (TREE_CODE (base) == ARRAY_REF)
- {
- stepsize = array_ref_element_size (base);
- if (!cst_and_fits_in_hwi (stepsize))
- return false;
- imult = int_cst_value (stepsize);
-
- istep *= imult;
- idelta *= imult;
- }
-
- *ar_data->step += istep;
- *ar_data->delta += idelta;
- *index = ibase;
-
- return true;
-}
-
-/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
- STEP are integer constants and iter is number of iterations of LOOP. The
- reference occurs in statement STMT. Strips nonaddressable component
- references from REF_P. */
-
-static bool
-analyze_ref (struct loop *loop, tree *ref_p, tree *base,
- HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
- gimple stmt)
-{
- struct ar_data ar_data;
- tree off;
- HOST_WIDE_INT bit_offset;
- tree ref = *ref_p;
-
- *step = 0;
- *delta = 0;
-
- /* First strip off the component references. Ignore bitfields. */
- if (TREE_CODE (ref) == COMPONENT_REF
- && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
- ref = TREE_OPERAND (ref, 0);
-
- *ref_p = ref;
-
- for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
- {
- off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
- bit_offset = TREE_INT_CST_LOW (off);
- gcc_assert (bit_offset % BITS_PER_UNIT == 0);
-
- *delta += bit_offset / BITS_PER_UNIT;
- }
-
- *base = unshare_expr (ref);
- ar_data.loop = loop;
- ar_data.stmt = stmt;
- ar_data.step = step;
- ar_data.delta = delta;
- return for_each_index (base, idx_analyze_ref, &ar_data);
-}
-
-/* Record a memory reference REF to the list REFS. The reference occurs in
- LOOP in statement STMT and it is write if WRITE_P. Returns true if the
- reference was recorded, false otherwise. */
-
-static bool
-gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
- tree ref, bool write_p, gimple stmt)
-{
- tree base;
- HOST_WIDE_INT step, delta;
- struct mem_ref_group *agrp;
-
- if (get_base_address (ref) == NULL)
- return false;
-
- if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
- return false;
-
- /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
- are integer constants. */
- agrp = find_or_create_group (refs, base, step);
- record_ref (agrp, stmt, ref, delta, write_p);
-
- return true;
-}
-
-/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
- true if there are no other memory references inside the loop. */
-
-static struct mem_ref_group *
-gather_memory_references (struct loop *loop, bool *no_other_refs)
-{
- basic_block *body = get_loop_body_in_dom_order (loop);
- basic_block bb;
- unsigned i;
- gimple_stmt_iterator bsi;
- gimple stmt;
- tree lhs, rhs;
- struct mem_ref_group *refs = NULL;
-
- *no_other_refs = true;
-
- /* Scan the loop body in order, so that the former references precede the
- later ones. */
- for (i = 0; i < loop->num_nodes; i++)
- {
- bb = body[i];
- if (bb->loop_father != loop)
- continue;
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- stmt = gsi_stmt (bsi);
-
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- {
- if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
- || (is_gimple_call (stmt)
- && !(gimple_call_flags (stmt) & ECF_CONST)))
- *no_other_refs = false;
- continue;
- }
-
- lhs = gimple_assign_lhs (stmt);
- rhs = gimple_assign_rhs1 (stmt);
-
- if (REFERENCE_CLASS_P (rhs))
- *no_other_refs &= gather_memory_references_ref (loop, &refs,
- rhs, false, stmt);
- if (REFERENCE_CLASS_P (lhs))
- *no_other_refs &= gather_memory_references_ref (loop, &refs,
- lhs, true, stmt);
- }
- }
- free (body);
-
- return refs;
-}
-
-/* Prune the prefetch candidate REF using the self-reuse. */
-
-static void
-prune_ref_by_self_reuse (struct mem_ref *ref)
-{
- HOST_WIDE_INT step = ref->group->step;
- bool backward = step < 0;
-
- if (step == 0)
- {
- /* Prefetch references to invariant address just once. */
- ref->prefetch_before = 1;
- return;
- }
-
- if (backward)
- step = -step;
-
- if (step > PREFETCH_BLOCK)
- return;
-
- if ((backward && HAVE_BACKWARD_PREFETCH)
- || (!backward && HAVE_FORWARD_PREFETCH))
- {
- ref->prefetch_before = 1;
- return;
- }
-
- ref->prefetch_mod = PREFETCH_BLOCK / step;
-}
-
-/* Divides X by BY, rounding down. */
-
-static HOST_WIDE_INT
-ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
-{
- gcc_assert (by > 0);
-
- if (x >= 0)
- return x / by;
- else
- return (x + by - 1) / by;
-}
-
-/* Prune the prefetch candidate REF using the reuse with BY.
- If BY_IS_BEFORE is true, BY is before REF in the loop. */
-
-static void
-prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
- bool by_is_before)
-{
- HOST_WIDE_INT step = ref->group->step;
- bool backward = step < 0;
- HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
- HOST_WIDE_INT delta = delta_b - delta_r;
- HOST_WIDE_INT hit_from;
- unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
-
- if (delta == 0)
- {
- /* If the references has the same address, only prefetch the
- former. */
- if (by_is_before)
- ref->prefetch_before = 0;
-
- return;
- }
-
- if (!step)
- {
- /* If the reference addresses are invariant and fall into the
- same cache line, prefetch just the first one. */
- if (!by_is_before)
- return;
-
- if (ddown (ref->delta, PREFETCH_BLOCK)
- != ddown (by->delta, PREFETCH_BLOCK))
- return;
-
- ref->prefetch_before = 0;
- return;
- }
-
- /* Only prune the reference that is behind in the array. */
- if (backward)
- {
- if (delta > 0)
- return;
-
- /* Transform the data so that we may assume that the accesses
- are forward. */
- delta = - delta;
- step = -step;
- delta_r = PREFETCH_BLOCK - 1 - delta_r;
- delta_b = PREFETCH_BLOCK - 1 - delta_b;
- }
- else
- {
- if (delta < 0)
- return;
- }
-
- /* Check whether the two references are likely to hit the same cache
- line, and how distant the iterations in that it occurs are from
- each other. */
-
- if (step <= PREFETCH_BLOCK)
- {
- /* The accesses are sure to meet. Let us check when. */
- hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
- prefetch_before = (hit_from - delta_r + step - 1) / step;
-
- if (prefetch_before < ref->prefetch_before)
- ref->prefetch_before = prefetch_before;
-
- return;
- }
-
- /* A more complicated case. First let us ensure that size of cache line
- and step are coprime (here we assume that PREFETCH_BLOCK is a power
- of two. */
- prefetch_block = PREFETCH_BLOCK;
- while ((step & 1) == 0
- && prefetch_block > 1)
- {
- step >>= 1;
- prefetch_block >>= 1;
- delta >>= 1;
- }
-
- /* Now step > prefetch_block, and step and prefetch_block are coprime.
- Determine the probability that the accesses hit the same cache line. */
-
- prefetch_before = delta / step;
- delta %= step;
- if ((unsigned HOST_WIDE_INT) delta
- <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
- {
- if (prefetch_before < ref->prefetch_before)
- ref->prefetch_before = prefetch_before;
-
- return;
- }
-
- /* Try also the following iteration. */
- prefetch_before++;
- delta = step - delta;
- if ((unsigned HOST_WIDE_INT) delta
- <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
- {
- if (prefetch_before < ref->prefetch_before)
- ref->prefetch_before = prefetch_before;
-
- return;
- }
-
- /* The ref probably does not reuse by. */
- return;
-}
-
-/* Prune the prefetch candidate REF using the reuses with other references
- in REFS. */
-
-static void
-prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
-{
- struct mem_ref *prune_by;
- bool before = true;
-
- prune_ref_by_self_reuse (ref);
-
- for (prune_by = refs; prune_by; prune_by = prune_by->next)
- {
- if (prune_by == ref)
- {
- before = false;
- continue;
- }
-
- if (!WRITE_CAN_USE_READ_PREFETCH
- && ref->write_p
- && !prune_by->write_p)
- continue;
- if (!READ_CAN_USE_WRITE_PREFETCH
- && !ref->write_p
- && prune_by->write_p)
- continue;
-
- prune_ref_by_group_reuse (ref, prune_by, before);
- }
-}
-
-/* Prune the prefetch candidates in GROUP using the reuse analysis. */
-
-static void
-prune_group_by_reuse (struct mem_ref_group *group)
-{
- struct mem_ref *ref_pruned;
-
- for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
- {
- prune_ref_by_reuse (ref_pruned, group->refs);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
-
- if (ref_pruned->prefetch_before == PREFETCH_ALL
- && ref_pruned->prefetch_mod == 1)
- fprintf (dump_file, " no restrictions");
- else if (ref_pruned->prefetch_before == 0)
- fprintf (dump_file, " do not prefetch");
- else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
- fprintf (dump_file, " prefetch once");
- else
- {
- if (ref_pruned->prefetch_before != PREFETCH_ALL)
- {
- fprintf (dump_file, " prefetch before ");
- fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
- ref_pruned->prefetch_before);
- }
- if (ref_pruned->prefetch_mod != 1)
- {
- fprintf (dump_file, " prefetch mod ");
- fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
- ref_pruned->prefetch_mod);
- }
- }
- fprintf (dump_file, "\n");
- }
- }
-}
-
-/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
-
-static void
-prune_by_reuse (struct mem_ref_group *groups)
-{
- for (; groups; groups = groups->next)
- prune_group_by_reuse (groups);
-}
-
-/* Returns true if we should issue prefetch for REF. */
-
-static bool
-should_issue_prefetch_p (struct mem_ref *ref)
-{
- /* For now do not issue prefetches for only first few of the
- iterations. */
- if (ref->prefetch_before != PREFETCH_ALL)
- return false;
-
- /* Do not prefetch nontemporal stores. */
- if (ref->storent_p)
- return false;
-
- return true;
-}
-
-/* Decide which of the prefetch candidates in GROUPS to prefetch.
- AHEAD is the number of iterations to prefetch ahead (which corresponds
- to the number of simultaneous instances of one prefetch running at a
- time). UNROLL_FACTOR is the factor by that the loop is going to be
- unrolled. Returns true if there is anything to prefetch. */
-
-static bool
-schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
- unsigned ahead)
-{
- unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
- unsigned slots_per_prefetch;
- struct mem_ref *ref;
- bool any = false;
-
- /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
- remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
-
- /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
- AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
- it will need a prefetch slot. */
- slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
- slots_per_prefetch);
-
- /* For now we just take memory references one by one and issue
- prefetches for as many as possible. The groups are sorted
- starting with the largest step, since the references with
- large step are more likely to cause many cache misses. */
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- {
- if (!should_issue_prefetch_p (ref))
- continue;
-
- /* If we need to prefetch the reference each PREFETCH_MOD iterations,
- and we unroll the loop UNROLL_FACTOR times, we need to insert
- ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
- iteration. */
- n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
- / ref->prefetch_mod);
- prefetch_slots = n_prefetches * slots_per_prefetch;
-
- /* If more than half of the prefetches would be lost anyway, do not
- issue the prefetch. */
- if (2 * remaining_prefetch_slots < prefetch_slots)
- continue;
-
- ref->issue_prefetch_p = true;
-
- if (remaining_prefetch_slots <= prefetch_slots)
- return true;
- remaining_prefetch_slots -= prefetch_slots;
- any = true;
- }
-
- return any;
-}
-
-/* Determine whether there is any reference suitable for prefetching
- in GROUPS. */
-
-static bool
-anything_to_prefetch_p (struct mem_ref_group *groups)
-{
- struct mem_ref *ref;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- if (should_issue_prefetch_p (ref))
- return true;
-
- return false;
-}
-
-/* Issue prefetches for the reference REF into loop as decided before.
- HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
- is the factor by which LOOP was unrolled. */
-
-static void
-issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
-{
- HOST_WIDE_INT delta;
- tree addr, addr_base, write_p, local;
- gimple prefetch;
- gimple_stmt_iterator bsi;
- unsigned n_prefetches, ap;
- bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Issued%s prefetch for %p.\n",
- nontemporal ? " nontemporal" : "",
- (void *) ref);
-
- bsi = gsi_for_stmt (ref->stmt);
-
- n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
- / ref->prefetch_mod);
- addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
- addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
- true, NULL, true, GSI_SAME_STMT);
- write_p = ref->write_p ? integer_one_node : integer_zero_node;
- local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
-
- for (ap = 0; ap < n_prefetches; ap++)
- {
- /* Determine the address to prefetch. */
- delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
- addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
- addr_base, size_int (delta));
- addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
- true, GSI_SAME_STMT);
-
- /* Create the prefetch instruction. */
- prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
- 3, addr, write_p, local);
- gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
- }
-}
-
-/* Issue prefetches for the references in GROUPS into loop as decided before.
- HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
- factor by that LOOP was unrolled. */
-
-static void
-issue_prefetches (struct mem_ref_group *groups,
- unsigned unroll_factor, unsigned ahead)
-{
- struct mem_ref *ref;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- if (ref->issue_prefetch_p)
- issue_prefetch_ref (ref, unroll_factor, ahead);
-}
-
-/* Returns true if REF is a memory write for that a nontemporal store insn
- can be used. */
-
-static bool
-nontemporal_store_p (struct mem_ref *ref)
-{
- enum machine_mode mode;
- enum insn_code code;
-
- /* REF must be a write that is not reused. We require it to be independent
- on all other memory references in the loop, as the nontemporal stores may
- be reordered with respect to other memory references. */
- if (!ref->write_p
- || !ref->independent_p
- || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
- return false;
-
- /* Check that we have the storent instruction for the mode. */
- mode = TYPE_MODE (TREE_TYPE (ref->mem));
- if (mode == BLKmode)
- return false;
-
- code = optab_handler (storent_optab, mode)->insn_code;
- return code != CODE_FOR_nothing;
-}
-
-/* If REF is a nontemporal store, we mark the corresponding modify statement
- and return true. Otherwise, we return false. */
-
-static bool
-mark_nontemporal_store (struct mem_ref *ref)
-{
- if (!nontemporal_store_p (ref))
- return false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
- (void *) ref);
-
- gimple_assign_set_nontemporal_move (ref->stmt, true);
- ref->storent_p = true;
-
- return true;
-}
-
-/* Issue a memory fence instruction after LOOP. */
-
-static void
-emit_mfence_after_loop (struct loop *loop)
-{
- VEC (edge, heap) *exits = get_loop_exit_edges (loop);
- edge exit;
- gimple call;
- gimple_stmt_iterator bsi;
- unsigned i;
-
- for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
- {
- call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
-
- if (!single_pred_p (exit->dest)
- /* If possible, we prefer not to insert the fence on other paths
- in cfg. */
- && !(exit->flags & EDGE_ABNORMAL))
- split_loop_exit_edge (exit);
- bsi = gsi_after_labels (exit->dest);
-
- gsi_insert_before (&bsi, call, GSI_NEW_STMT);
- mark_virtual_ops_for_renaming (call);
- }
-
- VEC_free (edge, heap, exits);
- update_ssa (TODO_update_ssa_only_virtuals);
-}
-
-/* Returns true if we can use storent in loop, false otherwise. */
-
-static bool
-may_use_storent_in_loop_p (struct loop *loop)
-{
- bool ret = true;
-
- if (loop->inner != NULL)
- return false;
-
- /* If we must issue a mfence insn after using storent, check that there
- is a suitable place for it at each of the loop exits. */
- if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
- {
- VEC (edge, heap) *exits = get_loop_exit_edges (loop);
- unsigned i;
- edge exit;
-
- for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
- if ((exit->flags & EDGE_ABNORMAL)
- && exit->dest == EXIT_BLOCK_PTR)
- ret = false;
-
- VEC_free (edge, heap, exits);
- }
-
- return ret;
-}
-
-/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
- references in the loop. */
-
-static void
-mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
-{
- struct mem_ref *ref;
- bool any = false;
-
- if (!may_use_storent_in_loop_p (loop))
- return;
-
- for (; groups; groups = groups->next)
- for (ref = groups->refs; ref; ref = ref->next)
- any |= mark_nontemporal_store (ref);
-
- if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
- emit_mfence_after_loop (loop);
-}
-
-/* Determines whether we can profitably unroll LOOP FACTOR times, and if
- this is the case, fill in DESC by the description of number of
- iterations. */
-
-static bool
-should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
- unsigned factor)
-{
- if (!can_unroll_loop_p (loop, factor, desc))
- return false;
-
- /* We only consider loops without control flow for unrolling. This is not
- a hard restriction -- tree_unroll_loop works with arbitrary loops
- as well; but the unrolling/prefetching is usually more profitable for
- loops consisting of a single basic block, and we want to limit the
- code growth. */
- if (loop->num_nodes > 2)
- return false;
-
- return true;
-}
-
-/* Determine the coefficient by that unroll LOOP, from the information
- contained in the list of memory references REFS. Description of
- umber of iterations of LOOP is stored to DESC. NINSNS is the number of
- insns of the LOOP. EST_NITER is the estimated number of iterations of
- the loop, or -1 if no estimate is available. */
-
-static unsigned
-determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
- unsigned ninsns, struct tree_niter_desc *desc,
- HOST_WIDE_INT est_niter)
-{
- unsigned upper_bound;
- unsigned nfactor, factor, mod_constraint;
- struct mem_ref_group *agp;
- struct mem_ref *ref;
-
- /* First check whether the loop is not too large to unroll. We ignore
- PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
- from unrolling them enough to make exactly one cache line covered by each
- iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
- us from unrolling the loops too many times in cases where we only expect
- gains from better scheduling and decreasing loop overhead, which is not
- the case here. */
- upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
-
- /* If we unrolled the loop more times than it iterates, the unrolled version
- of the loop would be never entered. */
- if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
- upper_bound = est_niter;
-
- if (upper_bound <= 1)
- return 1;
-
- /* Choose the factor so that we may prefetch each cache just once,
- but bound the unrolling by UPPER_BOUND. */
- factor = 1;
- for (agp = refs; agp; agp = agp->next)
- for (ref = agp->refs; ref; ref = ref->next)
- if (should_issue_prefetch_p (ref))
- {
- mod_constraint = ref->prefetch_mod;
- nfactor = least_common_multiple (mod_constraint, factor);
- if (nfactor <= upper_bound)
- factor = nfactor;
- }
-
- if (!should_unroll_loop_p (loop, desc, factor))
- return 1;
-
- return factor;
-}
-
-/* Returns the total volume of the memory references REFS, taking into account
- reuses in the innermost loop and cache line size. TODO -- we should also
- take into account reuses across the iterations of the loops in the loop
- nest. */
-
-static unsigned
-volume_of_references (struct mem_ref_group *refs)
-{
- unsigned volume = 0;
- struct mem_ref_group *gr;
- struct mem_ref *ref;
-
- for (gr = refs; gr; gr = gr->next)
- for (ref = gr->refs; ref; ref = ref->next)
- {
- /* Almost always reuses another value? */
- if (ref->prefetch_before != PREFETCH_ALL)
- continue;
-
- /* If several iterations access the same cache line, use the size of
- the line divided by this number. Otherwise, a cache line is
- accessed in each iteration. TODO -- in the latter case, we should
- take the size of the reference into account, rounding it up on cache
- line size multiple. */
- volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
- }
- return volume;
-}
-
-/* Returns the volume of memory references accessed across VEC iterations of
- loops, whose sizes are described in the LOOP_SIZES array. N is the number
- of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
-
-static unsigned
-volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
-{
- unsigned i;
-
- for (i = 0; i < n; i++)
- if (vec[i] != 0)
- break;
-
- if (i == n)
- return 0;
-
- gcc_assert (vec[i] > 0);
-
- /* We ignore the parts of the distance vector in subloops, since usually
- the numbers of iterations are much smaller. */
- return loop_sizes[i] * vec[i];
-}
-
-/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
- at the position corresponding to the loop of the step. N is the depth
- of the considered loop nest, and, LOOP is its innermost loop. */
-
-static void
-add_subscript_strides (tree access_fn, unsigned stride,
- HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
-{
- struct loop *aloop;
- tree step;
- HOST_WIDE_INT astep;
- unsigned min_depth = loop_depth (loop) - n;
-
- while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
- {
- aloop = get_chrec_loop (access_fn);
- step = CHREC_RIGHT (access_fn);
- access_fn = CHREC_LEFT (access_fn);
-
- if ((unsigned) loop_depth (aloop) <= min_depth)
- continue;
-
- if (host_integerp (step, 0))
- astep = tree_low_cst (step, 0);
- else
- astep = L1_CACHE_LINE_SIZE;
-
- strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
-
- }
-}
-
-/* Returns the volume of memory references accessed between two consecutive
- self-reuses of the reference DR. We consider the subscripts of DR in N
- loops, and LOOP_SIZES contains the volumes of accesses in each of the
- loops. LOOP is the innermost loop of the current loop nest. */
-
-static unsigned
-self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
- struct loop *loop)
-{
- tree stride, access_fn;
- HOST_WIDE_INT *strides, astride;
- VEC (tree, heap) *access_fns;
- tree ref = DR_REF (dr);
- unsigned i, ret = ~0u;
-
- /* In the following example:
-
- for (i = 0; i < N; i++)
- for (j = 0; j < N; j++)
- use (a[j][i]);
- the same cache line is accessed each N steps (except if the change from
- i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
- we cannot rely purely on the results of the data dependence analysis.
-
- Instead, we compute the stride of the reference in each loop, and consider
- the innermost loop in that the stride is less than cache size. */
-
- strides = XCNEWVEC (HOST_WIDE_INT, n);
- access_fns = DR_ACCESS_FNS (dr);
-
- for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
- {
- /* Keep track of the reference corresponding to the subscript, so that we
- know its stride. */
- while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
- ref = TREE_OPERAND (ref, 0);
-
- if (TREE_CODE (ref) == ARRAY_REF)
- {
- stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
- if (host_integerp (stride, 1))
- astride = tree_low_cst (stride, 1);
- else
- astride = L1_CACHE_LINE_SIZE;
-
- ref = TREE_OPERAND (ref, 0);
- }
- else
- astride = 1;
-
- add_subscript_strides (access_fn, astride, strides, n, loop);
- }
-
- for (i = n; i-- > 0; )
- {
- unsigned HOST_WIDE_INT s;
-
- s = strides[i] < 0 ? -strides[i] : strides[i];
-
- if (s < (unsigned) L1_CACHE_LINE_SIZE
- && (loop_sizes[i]
- > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
- {
- ret = loop_sizes[i];
- break;
- }
- }
-
- free (strides);
- return ret;
-}
-
-/* Determines the distance till the first reuse of each reference in REFS
- in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
- memory references in the loop. */
-
-static void
-determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
- bool no_other_refs)
-{
- struct loop *nest, *aloop;
- VEC (data_reference_p, heap) *datarefs = NULL;
- VEC (ddr_p, heap) *dependences = NULL;
- struct mem_ref_group *gr;
- struct mem_ref *ref, *refb;
- VEC (loop_p, heap) *vloops = NULL;
- unsigned *loop_data_size;
- unsigned i, j, n;
- unsigned volume, dist, adist;
- HOST_WIDE_INT vol;
- data_reference_p dr;
- ddr_p dep;
-
- if (loop->inner)
- return;
-
- /* Find the outermost loop of the loop nest of loop (we require that
- there are no sibling loops inside the nest). */
- nest = loop;
- while (1)
- {
- aloop = loop_outer (nest);
-
- if (aloop == current_loops->tree_root
- || aloop->inner->next)
- break;
-
- nest = aloop;
- }
-
- /* For each loop, determine the amount of data accessed in each iteration.
- We use this to estimate whether the reference is evicted from the
- cache before its reuse. */
- find_loop_nest (nest, &vloops);
- n = VEC_length (loop_p, vloops);
- loop_data_size = XNEWVEC (unsigned, n);
- volume = volume_of_references (refs);
- i = n;
- while (i-- != 0)
- {
- loop_data_size[i] = volume;
- /* Bound the volume by the L2 cache size, since above this bound,
- all dependence distances are equivalent. */
- if (volume > L2_CACHE_SIZE_BYTES)
- continue;
-
- aloop = VEC_index (loop_p, vloops, i);
- vol = estimated_loop_iterations_int (aloop, false);
- if (vol < 0)
- vol = expected_loop_iterations (aloop);
- volume *= vol;
- }
-
- /* Prepare the references in the form suitable for data dependence
- analysis. We ignore unanalyzable data references (the results
- are used just as a heuristics to estimate temporality of the
- references, hence we do not need to worry about correctness). */
- for (gr = refs; gr; gr = gr->next)
- for (ref = gr->refs; ref; ref = ref->next)
- {
- dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
-
- if (dr)
- {
- ref->reuse_distance = volume;
- dr->aux = ref;
- VEC_safe_push (data_reference_p, heap, datarefs, dr);
- }
- else
- no_other_refs = false;
- }
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- {
- dist = self_reuse_distance (dr, loop_data_size, n, loop);
- ref = (struct mem_ref *) dr->aux;
- if (ref->reuse_distance > dist)
- ref->reuse_distance = dist;
-
- if (no_other_refs)
- ref->independent_p = true;
- }
-
- compute_all_dependences (datarefs, &dependences, vloops, true);
-
- for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
- {
- if (DDR_ARE_DEPENDENT (dep) == chrec_known)
- continue;
-
- ref = (struct mem_ref *) DDR_A (dep)->aux;
- refb = (struct mem_ref *) DDR_B (dep)->aux;
-
- if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
- || DDR_NUM_DIST_VECTS (dep) == 0)
- {
- /* If the dependence cannot be analyzed, assume that there might be
- a reuse. */
- dist = 0;
-
- ref->independent_p = false;
- refb->independent_p = false;
- }
- else
- {
- /* The distance vectors are normalized to be always lexicographically
- positive, hence we cannot tell just from them whether DDR_A comes
- before DDR_B or vice versa. However, it is not important,
- anyway -- if DDR_A is close to DDR_B, then it is either reused in
- DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
- in cache (and marking it as nontemporal would not affect
- anything). */
-
- dist = volume;
- for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
- {
- adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
- loop_data_size, n);
-
- /* If this is a dependence in the innermost loop (i.e., the
- distances in all superloops are zero) and it is not
- the trivial self-dependence with distance zero, record that
- the references are not completely independent. */
- if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
- && (ref != refb
- || DDR_DIST_VECT (dep, j)[n-1] != 0))
- {
- ref->independent_p = false;
- refb->independent_p = false;
- }
-
- /* Ignore accesses closer than
- L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
- so that we use nontemporal prefetches e.g. if single memory
- location is accessed several times in a single iteration of
- the loop. */
- if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
- continue;
-
- if (adist < dist)
- dist = adist;
- }
- }
-
- if (ref->reuse_distance > dist)
- ref->reuse_distance = dist;
- if (refb->reuse_distance > dist)
- refb->reuse_distance = dist;
- }
-
- free_dependence_relations (dependences);
- free_data_refs (datarefs);
- free (loop_data_size);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Reuse distances:\n");
- for (gr = refs; gr; gr = gr->next)
- for (ref = gr->refs; ref; ref = ref->next)
- fprintf (dump_file, " ref %p distance %u\n",
- (void *) ref, ref->reuse_distance);
- }
-}
-
-/* Issue prefetch instructions for array references in LOOP. Returns
- true if the LOOP was unrolled. */
-
-static bool
-loop_prefetch_arrays (struct loop *loop)
-{
- struct mem_ref_group *refs;
- unsigned ahead, ninsns, time, unroll_factor;
- HOST_WIDE_INT est_niter;
- struct tree_niter_desc desc;
- bool unrolled = false, no_other_refs;
-
- if (optimize_loop_nest_for_size_p (loop))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " ignored (cold area)\n");
- return false;
- }
-
- /* Step 1: gather the memory references. */
- refs = gather_memory_references (loop, &no_other_refs);
-
- /* Step 2: estimate the reuse effects. */
- prune_by_reuse (refs);
-
- if (!anything_to_prefetch_p (refs))
- goto fail;
-
- determine_loop_nest_reuse (loop, refs, no_other_refs);
-
- /* Step 3: determine the ahead and unroll factor. */
-
- /* FIXME: the time should be weighted by the probabilities of the blocks in
- the loop body. */
- time = tree_num_loop_insns (loop, &eni_time_weights);
- ahead = (PREFETCH_LATENCY + time - 1) / time;
- est_niter = estimated_loop_iterations_int (loop, false);
-
- /* The prefetches will run for AHEAD iterations of the original loop. Unless
- the loop rolls at least AHEAD times, prefetching the references does not
- make sense. */
- if (est_niter >= 0 && est_niter <= (HOST_WIDE_INT) ahead)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Not prefetching -- loop estimated to roll only %d times\n",
- (int) est_niter);
- goto fail;
- }
-
- mark_nontemporal_stores (loop, refs);
-
- ninsns = tree_num_loop_insns (loop, &eni_size_weights);
- unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
- est_niter);
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Ahead %d, unroll factor %d\n", ahead, unroll_factor);
-
- /* Step 4: what to prefetch? */
- if (!schedule_prefetches (refs, unroll_factor, ahead))
- goto fail;
-
- /* Step 5: unroll the loop. TODO -- peeling of first and last few
- iterations so that we do not issue superfluous prefetches. */
- if (unroll_factor != 1)
- {
- tree_unroll_loop (loop, unroll_factor,
- single_dom_exit (loop), &desc);
- unrolled = true;
- }
-
- /* Step 6: issue the prefetches. */
- issue_prefetches (refs, unroll_factor, ahead);
-
-fail:
- release_mem_refs (refs);
- return unrolled;
-}
-
-/* Issue prefetch instructions for array references in loops. */
-
-unsigned int
-tree_ssa_prefetch_arrays (void)
-{
- loop_iterator li;
- struct loop *loop;
- bool unrolled = false;
- int todo_flags = 0;
-
- if (!HAVE_prefetch
- /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
- -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
- of processor costs and i486 does not have prefetch, but
- -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
- || PREFETCH_BLOCK == 0)
- return 0;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Prefetching parameters:\n");
- fprintf (dump_file, " simultaneous prefetches: %d\n",
- SIMULTANEOUS_PREFETCHES);
- fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
- fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
- fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
- L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
- fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
- fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
- fprintf (dump_file, "\n");
- }
-
- initialize_original_copy_tables ();
-
- if (!built_in_decls[BUILT_IN_PREFETCH])
- {
- tree type = build_function_type (void_type_node,
- tree_cons (NULL_TREE,
- const_ptr_type_node,
- NULL_TREE));
- tree decl = add_builtin_function ("__builtin_prefetch", type,
- BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
- NULL, NULL_TREE);
- DECL_IS_NOVOPS (decl) = true;
- built_in_decls[BUILT_IN_PREFETCH] = decl;
- }
-
- /* We assume that size of cache line is a power of two, so verify this
- here. */
- gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
-
- FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Processing loop %d:\n", loop->num);
-
- unrolled |= loop_prefetch_arrays (loop);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "\n\n");
- }
-
- if (unrolled)
- {
- scev_reset ();
- todo_flags |= TODO_cleanup_cfg;
- }
-
- free_original_copy_tables ();
- return todo_flags;
-}