aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.3.1/gcc/tree-parloops.c
diff options
context:
space:
mode:
authorJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
committerJing Yu <jingyu@google.com>2009-11-05 15:11:04 -0800
commitdf62c1c110e8532b995b23540b7e3695729c0779 (patch)
treedbbd4cbdb50ac38011e058a2533ee4c3168b0205 /gcc-4.3.1/gcc/tree-parloops.c
parent8d401cf711539af5a2f78d12447341d774892618 (diff)
downloadtoolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.gz
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.tar.bz2
toolchain_gcc-df62c1c110e8532b995b23540b7e3695729c0779.zip
Check in gcc sources for prebuilt toolchains in Eclair.
Diffstat (limited to 'gcc-4.3.1/gcc/tree-parloops.c')
-rw-r--r--gcc-4.3.1/gcc/tree-parloops.c1809
1 files changed, 1809 insertions, 0 deletions
diff --git a/gcc-4.3.1/gcc/tree-parloops.c b/gcc-4.3.1/gcc/tree-parloops.c
new file mode 100644
index 000000000..63d48b725
--- /dev/null
+++ b/gcc-4.3.1/gcc/tree-parloops.c
@@ -0,0 +1,1809 @@
+/* Loop autoparallelization.
+ Copyright (C) 2006, 2007 Free Software Foundation, Inc.
+ Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
+ Zdenek Dvorak <dvorakz@suse.cz>.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tree-flow.h"
+#include "cfgloop.h"
+#include "ggc.h"
+#include "tree-data-ref.h"
+#include "diagnostic.h"
+#include "tree-pass.h"
+#include "tree-scalar-evolution.h"
+#include "hashtab.h"
+#include "langhooks.h"
+#include "tree-vectorizer.h"
+
+/* This pass tries to distribute iterations of loops into several threads.
+ The implementation is straightforward -- for each loop we test whether its
+ iterations are independent, and if it is the case (and some additional
+ conditions regarding profitability and correctness are satisfied), we
+ add OMP_PARALLEL and OMP_FOR codes and let omp expansion machinery do
+ its job.
+
+ The most of the complexity is in bringing the code into shape expected
+ by the omp expanders:
+ -- for OMP_FOR, ensuring that the loop has only one induction variable
+ and that the exit test is at the start of the loop body
+ -- for OMP_PARALLEL, replacing the references to local addressable
+ variables by accesses through pointers, and breaking up ssa chains
+ by storing the values incoming to the parallelized loop to a structure
+ passed to the new function as an argument (something similar is done
+ in omp gimplification, unfortunately only a small part of the code
+ can be shared).
+
+ TODO:
+ -- if there are several parallelizable loops in a function, it may be
+ possible to generate the threads just once (using synchronization to
+ ensure that cross-loop dependences are obeyed).
+ -- handling of common scalar dependence patterns (accumulation, ...)
+ -- handling of non-innermost loops */
+
+/*
+ Reduction handling:
+ currently we use vect_is_simple_reduction() to detect reduction patterns.
+ The code transformation will be introduced by an example.
+
+
+parloop
+{
+ int sum=1;
+
+ for (i = 0; i < N; i++)
+ {
+ x[i] = i + 3;
+ sum+=x[i];
+ }
+}
+
+gimple-like code:
+header_bb:
+
+ # sum_29 = PHI <sum_11(5), 1(3)>
+ # i_28 = PHI <i_12(5), 0(3)>
+ D.1795_8 = i_28 + 3;
+ x[i_28] = D.1795_8;
+ sum_11 = D.1795_8 + sum_29;
+ i_12 = i_28 + 1;
+ if (N_6(D) > i_12)
+ goto header_bb;
+
+
+exit_bb:
+
+ # sum_21 = PHI <sum_11(4)>
+ printf (&"%d"[0], sum_21);
+
+
+after reduction transformation (only relevant parts):
+
+parloop
+{
+
+....
+
+
+ # Storing the the initial value given by the user. #
+
+ .paral_data_store.32.sum.27 = 1;
+
+ #pragma omp parallel num_threads(4)
+
+ #pragma omp for schedule(static)
+
+ # The neutral element corresponding to the particular
+ reduction's operation, e.g. 0 for PLUS_EXPR,
+ 1 for MULT_EXPR, etc. replaces the user's initial value. #
+
+ # sum.27_29 = PHI <sum.27_11, 0>
+
+ sum.27_11 = D.1827_8 + sum.27_29;
+
+ OMP_CONTINUE
+
+ # Adding this reduction phi is done at create_phi_for_local_result() #
+ # sum.27_56 = PHI <sum.27_11, 0>
+ OMP_RETURN
+
+ # Creating the atomic operation is done at
+ create_call_for_reduction_1() #
+
+ #pragma omp atomic_load
+ D.1839_59 = *&.paral_data_load.33_51->reduction.23;
+ D.1840_60 = sum.27_56 + D.1839_59;
+ #pragma omp atomic_store (D.1840_60);
+
+ OMP_RETURN
+
+ # collecting the result after the join of the threads is done at
+ create_loads_for_reductions().
+ The value computed by the threads is loaded from the
+ shared struct. #
+
+
+ .paral_data_load.33_52 = &.paral_data_store.32;
+ sum_37 = .paral_data_load.33_52->sum.27;
+ sum_43 = D.1795_41 + sum_37;
+
+ exit bb:
+ # sum_21 = PHI <sum_43, sum_26>
+ printf (&"%d"[0], sum_21);
+
+...
+
+}
+
+*/
+
+/* Minimal number of iterations of a loop that should be executed in each
+ thread. */
+#define MIN_PER_THREAD 100
+
+/* Element of the hashtable, representing a
+ reduction in the current loop. */
+struct reduction_info
+{
+ tree reduc_stmt; /* reduction statement. */
+ tree reduc_phi; /* The phi node defining the reduction. */
+ enum tree_code reduction_code; /* code for the reduction operation. */
+ tree keep_res; /* The PHI_RESULT of this phi is the resulting value
+ of the reduction variable when existing the loop. */
+ tree initial_value; /* The initial value of the reduction var before entering the loop. */
+ tree field; /* the name of the field in the parloop data structure intended for reduction. */
+ tree init; /* reduction initialization value. */
+ tree new_phi; /* (helper field) Newly created phi node whose result
+ will be passed to the atomic operation. Represents
+ the local result each thread computed for the reduction
+ operation. */
+};
+
+/* Equality and hash functions for hashtab code. */
+
+static int
+reduction_info_eq (const void *aa, const void *bb)
+{
+ const struct reduction_info *a = (const struct reduction_info *) aa;
+ const struct reduction_info *b = (const struct reduction_info *) bb;
+
+ return (a->reduc_phi == b->reduc_phi);
+}
+
+static hashval_t
+reduction_info_hash (const void *aa)
+{
+ const struct reduction_info *a = (const struct reduction_info *) aa;
+
+ return htab_hash_pointer (a->reduc_phi);
+}
+
+static struct reduction_info *
+reduction_phi (htab_t reduction_list, tree phi)
+{
+ struct reduction_info tmpred, *red;
+
+ if (htab_elements (reduction_list) == 0)
+ return NULL;
+
+ tmpred.reduc_phi = phi;
+ red = htab_find (reduction_list, &tmpred);
+
+ return red;
+}
+
+/* Element of hashtable of names to copy. */
+
+struct name_to_copy_elt
+{
+ unsigned version; /* The version of the name to copy. */
+ tree new_name; /* The new name used in the copy. */
+ tree field; /* The field of the structure used to pass the
+ value. */
+};
+
+/* Equality and hash functions for hashtab code. */
+
+static int
+name_to_copy_elt_eq (const void *aa, const void *bb)
+{
+ const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
+ const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
+
+ return a->version == b->version;
+}
+
+static hashval_t
+name_to_copy_elt_hash (const void *aa)
+{
+ const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
+
+ return (hashval_t) a->version;
+}
+
+/* Returns true if the iterations of LOOP are independent on each other (that
+ is, if we can execute them in parallel), and if LOOP satisfies other
+ conditions that we need to be able to parallelize it. Description of number
+ of iterations is stored to NITER. Reduction analysis is done, if
+ reductions are found, they are inserted to the REDUCTION_LIST. */
+
+static bool
+loop_parallel_p (struct loop *loop, htab_t reduction_list, struct tree_niter_desc *niter)
+{
+ edge exit = single_dom_exit (loop);
+ VEC (ddr_p, heap) * dependence_relations;
+ VEC (data_reference_p, heap) * datarefs;
+ lambda_trans_matrix trans;
+ bool ret = false;
+ tree phi;
+ loop_vec_info simple_loop_info;
+
+ /* Only consider innermost loops with just one exit. The innermost-loop
+ restriction is not necessary, but it makes things simpler. */
+ if (loop->inner || !exit)
+ return false;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\nConsidering loop %d\n", loop->num);
+
+ /* We need to know # of iterations, and there should be no uses of values
+ defined inside loop outside of it, unless the values are invariants of
+ the loop. */
+ if (!number_of_iterations_exit (loop, exit, niter, false))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " FAILED: number of iterations not known\n");
+ return false;
+ }
+
+ simple_loop_info = vect_analyze_loop_form (loop);
+
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ tree reduc_stmt = NULL, operation;
+
+ /* ??? TODO: Change this into a generic function that
+ recognizes reductions. */
+ if (!is_gimple_reg (PHI_RESULT (phi)))
+ continue;
+ if (simple_loop_info)
+ reduc_stmt = vect_is_simple_reduction (simple_loop_info, phi);
+
+ /* Create a reduction_info struct, initialize it and insert it to
+ the reduction list. */
+
+ if (reduc_stmt)
+ {
+ PTR *slot;
+ struct reduction_info *new_reduction;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file,
+ "Detected reduction. reduction stmt is: \n");
+ print_generic_stmt (dump_file, reduc_stmt, 0);
+ fprintf (dump_file, "\n");
+ }
+
+ new_reduction = XCNEW (struct reduction_info);
+
+ new_reduction->reduc_stmt = reduc_stmt;
+ new_reduction->reduc_phi = phi;
+ operation = GIMPLE_STMT_OPERAND (reduc_stmt, 1);
+ new_reduction->reduction_code = TREE_CODE (operation);
+ slot = htab_find_slot (reduction_list, new_reduction, INSERT);
+ *slot = new_reduction;
+ }
+ }
+
+ for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
+ {
+ struct reduction_info *red;
+ imm_use_iterator imm_iter;
+ use_operand_p use_p;
+ tree reduc_phi;
+
+ tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+
+ if (is_gimple_reg (val))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "phi is ");
+ print_generic_expr (dump_file, phi, 0);
+ fprintf (dump_file, "arg of phi to exit: value ");
+ print_generic_expr (dump_file, val, 0);
+ fprintf (dump_file, " used outside loop\n");
+ fprintf (dump_file,
+ " checking if it a part of reduction pattern: \n");
+ }
+ if (htab_elements (reduction_list) == 0)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: it is not a part of reduction.\n");
+ return false;
+ }
+ reduc_phi = NULL;
+ FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
+ {
+ if (flow_bb_inside_loop_p (loop, bb_for_stmt (USE_STMT (use_p))))
+ {
+ reduc_phi = USE_STMT (use_p);
+ break;
+ }
+ }
+ red = reduction_phi (reduction_list, reduc_phi);
+ if (red == NULL)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: it is not a part of reduction.\n");
+ return false;
+ }
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "reduction phi is ");
+ print_generic_expr (dump_file, red->reduc_phi, 0);
+ fprintf (dump_file, "reduction stmt is ");
+ print_generic_expr (dump_file, red->reduc_stmt, 0);
+ }
+
+ }
+ }
+
+ /* The iterations of the loop may communicate only through bivs whose
+ iteration space can be distributed efficiently. */
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ tree def = PHI_RESULT (phi);
+ affine_iv iv;
+
+ if (is_gimple_reg (def) && !simple_iv (loop, phi, def, &iv, true))
+ {
+ struct reduction_info *red;
+
+ red = reduction_phi (reduction_list, phi);
+ if (red == NULL)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: scalar dependency between iterations\n");
+ return false;
+ }
+ }
+ }
+
+ /* We need to version the loop to verify assumptions in runtime. */
+ if (!can_duplicate_loop_p (loop))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " FAILED: cannot be duplicated\n");
+ return false;
+ }
+
+ /* Check for problems with dependences. If the loop can be reversed,
+ the iterations are independent. */
+ datarefs = VEC_alloc (data_reference_p, heap, 10);
+ dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
+ compute_data_dependences_for_loop (loop, true, &datarefs,
+ &dependence_relations);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_data_dependence_relations (dump_file, dependence_relations);
+
+ trans = lambda_trans_matrix_new (1, 1);
+ LTM_MATRIX (trans)[0][0] = -1;
+
+ if (lambda_transform_legal_p (trans, 1, dependence_relations))
+ {
+ ret = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " SUCCESS: may be parallelized\n");
+ }
+ else if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file,
+ " FAILED: data dependencies exist across iterations\n");
+
+ free_dependence_relations (dependence_relations);
+ free_data_refs (datarefs);
+
+ return ret;
+}
+
+/* Return true when LOOP contains basic blocks marked with the
+ BB_IRREDUCIBLE_LOOP flag. */
+
+static inline bool
+loop_has_blocks_with_irreducible_flag (struct loop *loop)
+{
+ unsigned i;
+ basic_block *bbs = get_loop_body_in_dom_order (loop);
+ bool res = true;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
+ goto end;
+
+ res = false;
+ end:
+ free (bbs);
+ return res;
+}
+
+/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
+ The assignment statement is placed before LOOP. DECL_ADDRESS maps decls
+ to their addresses that can be reused. The address of OBJ is known to
+ be invariant in the whole function. */
+
+static tree
+take_address_of (tree obj, tree type, struct loop *loop, htab_t decl_address)
+{
+ int uid;
+ void **dslot;
+ struct int_tree_map ielt, *nielt;
+ tree *var_p, name, bvar, stmt, addr;
+ edge entry = loop_preheader_edge (loop);
+
+ /* Since the address of OBJ is invariant, the trees may be shared.
+ Avoid rewriting unrelated parts of the code. */
+ obj = unshare_expr (obj);
+ for (var_p = &obj;
+ handled_component_p (*var_p);
+ var_p = &TREE_OPERAND (*var_p, 0))
+ continue;
+ uid = DECL_UID (*var_p);
+
+ ielt.uid = uid;
+ dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
+ if (!*dslot)
+ {
+ addr = build_addr (*var_p, current_function_decl);
+ bvar = create_tmp_var (TREE_TYPE (addr), get_name (*var_p));
+ add_referenced_var (bvar);
+ stmt = build_gimple_modify_stmt (bvar, addr);
+ name = make_ssa_name (bvar, stmt);
+ GIMPLE_STMT_OPERAND (stmt, 0) = name;
+ bsi_insert_on_edge_immediate (entry, stmt);
+
+ nielt = XNEW (struct int_tree_map);
+ nielt->uid = uid;
+ nielt->to = name;
+ *dslot = nielt;
+ }
+ else
+ name = ((struct int_tree_map *) *dslot)->to;
+
+ if (var_p != &obj)
+ {
+ *var_p = build1 (INDIRECT_REF, TREE_TYPE (*var_p), name);
+ name = force_gimple_operand (build_addr (obj, current_function_decl),
+ &stmt, true, NULL_TREE);
+ if (stmt)
+ bsi_insert_on_edge_immediate (entry, stmt);
+ }
+
+ if (TREE_TYPE (name) != type)
+ {
+ name = force_gimple_operand (fold_convert (type, name), &stmt, true,
+ NULL_TREE);
+ if (stmt)
+ bsi_insert_on_edge_immediate (entry, stmt);
+ }
+
+ return name;
+}
+
+/* Callback for htab_traverse. Create the initialization statement
+ for reduction described in SLOT, and place it at the preheader of
+ the loop described in DATA. */
+
+static int
+initialize_reductions (void **slot, void *data)
+{
+ tree init, c;
+ tree bvar, type, arg;
+ edge e;
+
+ struct reduction_info *reduc = *slot;
+ struct loop *loop = (struct loop *) data;
+
+ /* Create initialization in preheader:
+ reduction_variable = initialization value of reduction. */
+
+ /* In the phi node at the header, replace the argument coming
+ from the preheader with the reduction initialization value. */
+
+ /* Create a new variable to initialize the reduction. */
+ type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
+ bvar = create_tmp_var (type, "reduction");
+ add_referenced_var (bvar);
+
+ c = build_omp_clause (OMP_CLAUSE_REDUCTION);
+ OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
+ OMP_CLAUSE_DECL (c) =
+ SSA_NAME_VAR (GIMPLE_STMT_OPERAND (reduc->reduc_stmt, 0));
+
+ init = omp_reduction_init (c, TREE_TYPE (bvar));
+ reduc->init = init;
+
+ /* Replace the argument representing the initialization value
+ with the initialization value for the reduction (neutral
+ element for the particular operation, e.g. 0 for PLUS_EXPR,
+ 1 for MULT_EXPR, etc).
+ Keep the old value in a new variable "reduction_initial",
+ that will be taken in consideration after the parallel
+ computing is done. */
+
+ e = loop_preheader_edge (loop);
+ arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
+ /* Create new variable to hold the initial value. */
+
+ SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
+ (reduc->reduc_phi, loop_preheader_edge (loop)), init);
+ reduc->initial_value = arg;
+ return 1;
+}
+
+struct elv_data
+{
+ struct loop *loop;
+ htab_t decl_address;
+ bool changed;
+};
+
+/* Eliminates references to local variables in *TP out of LOOP. DECL_ADDRESS
+ contains addresses of the references that had their address taken already.
+ If the expression is changed, CHANGED is set to true. Callback for
+ walk_tree. */
+
+static tree
+eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
+{
+ struct elv_data *dta = data;
+ tree t = *tp, var, addr, addr_type, type, obj;
+
+ if (DECL_P (t))
+ {
+ *walk_subtrees = 0;
+
+ if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
+ return NULL_TREE;
+
+ type = TREE_TYPE (t);
+ addr_type = build_pointer_type (type);
+ addr = take_address_of (t, addr_type, dta->loop, dta->decl_address);
+ *tp = build1 (INDIRECT_REF, TREE_TYPE (*tp), addr);
+
+ dta->changed = true;
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (t) == ADDR_EXPR)
+ {
+ /* ADDR_EXPR may appear in two contexts:
+ -- as a gimple operand, when the address taken is a function invariant
+ -- as gimple rhs, when the resulting address in not a function
+ invariant
+ We do not need to do anything special in the latter case (the base of
+ the memory reference whose address is taken may be replaced in the
+ DECL_P case). The former case is more complicated, as we need to
+ ensure that the new address is still a gimple operand. Thus, it
+ is not sufficient to replace just the base of the memory reference --
+ we need to move the whole computation of the address out of the
+ loop. */
+ if (!is_gimple_val (t))
+ return NULL_TREE;
+
+ *walk_subtrees = 0;
+ obj = TREE_OPERAND (t, 0);
+ var = get_base_address (obj);
+ if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
+ return NULL_TREE;
+
+ addr_type = TREE_TYPE (t);
+ addr = take_address_of (obj, addr_type, dta->loop, dta->decl_address);
+ *tp = addr;
+
+ dta->changed = true;
+ return NULL_TREE;
+ }
+
+ if (!EXPR_P (t) && !GIMPLE_STMT_P (t))
+ *walk_subtrees = 0;
+
+ return NULL_TREE;
+}
+
+/* Moves the references to local variables in STMT from LOOP. DECL_ADDRESS
+ contains addresses for the references for that we have already taken
+ them. */
+
+static void
+eliminate_local_variables_stmt (struct loop *loop, tree stmt,
+ htab_t decl_address)
+{
+ struct elv_data dta;
+
+ dta.loop = loop;
+ dta.decl_address = decl_address;
+ dta.changed = false;
+
+ walk_tree (&stmt, eliminate_local_variables_1, &dta, NULL);
+
+ if (dta.changed)
+ update_stmt (stmt);
+}
+
+/* Eliminates the references to local variables from LOOP.
+ This includes:
+ 1) Taking address of a local variable -- these are moved out of the
+ loop (and temporary variable is created to hold the address if
+ necessary).
+ 2) Dereferencing a local variable -- these are replaced with indirect
+ references. */
+
+static void
+eliminate_local_variables (struct loop *loop)
+{
+ basic_block bb, *body = get_loop_body (loop);
+ unsigned i;
+ block_stmt_iterator bsi;
+ htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
+ free);
+
+ /* Find and rename the ssa names defined outside of loop. */
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ bb = body[i];
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ eliminate_local_variables_stmt (loop, bsi_stmt (bsi), decl_address);
+ }
+
+ htab_delete (decl_address);
+}
+
+/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
+ The copies are stored to NAME_COPIES, if NAME was already duplicated,
+ its duplicate stored in NAME_COPIES is returned.
+
+ Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
+ duplicated, storing the copies in DECL_COPIES. */
+
+static tree
+separate_decls_in_loop_name (tree name,
+ htab_t name_copies, htab_t decl_copies,
+ bool copy_name_p)
+{
+ tree copy, var, var_copy;
+ unsigned idx, uid, nuid;
+ struct int_tree_map ielt, *nielt;
+ struct name_to_copy_elt elt, *nelt;
+ void **slot, **dslot;
+
+ if (TREE_CODE (name) != SSA_NAME)
+ return name;
+
+ idx = SSA_NAME_VERSION (name);
+ elt.version = idx;
+ slot = htab_find_slot_with_hash (name_copies, &elt, idx,
+ copy_name_p ? INSERT : NO_INSERT);
+ if (slot && *slot)
+ return ((struct name_to_copy_elt *) *slot)->new_name;
+
+ var = SSA_NAME_VAR (name);
+ uid = DECL_UID (var);
+ ielt.uid = uid;
+ dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
+ if (!*dslot)
+ {
+ var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
+ DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
+ add_referenced_var (var_copy);
+ nielt = XNEW (struct int_tree_map);
+ nielt->uid = uid;
+ nielt->to = var_copy;
+ *dslot = nielt;
+
+ /* Ensure that when we meet this decl next time, we won't duplicate
+ it again. */
+ nuid = DECL_UID (var_copy);
+ ielt.uid = nuid;
+ dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
+ gcc_assert (!*dslot);
+ nielt = XNEW (struct int_tree_map);
+ nielt->uid = nuid;
+ nielt->to = var_copy;
+ *dslot = nielt;
+ }
+ else
+ var_copy = ((struct int_tree_map *) *dslot)->to;
+
+ if (copy_name_p)
+ {
+ copy = duplicate_ssa_name (name, NULL_TREE);
+ nelt = XNEW (struct name_to_copy_elt);
+ nelt->version = idx;
+ nelt->new_name = copy;
+ nelt->field = NULL_TREE;
+ *slot = nelt;
+ }
+ else
+ {
+ gcc_assert (!slot);
+ copy = name;
+ }
+
+ SSA_NAME_VAR (copy) = var_copy;
+ return copy;
+}
+
+/* Finds the ssa names used in STMT that are defined outside of LOOP and
+ replaces such ssa names with their duplicates. The duplicates are stored to
+ NAME_COPIES. Base decls of all ssa names used in STMT
+ (including those defined in LOOP) are replaced with the new temporary
+ variables; the replacement decls are stored in DECL_COPIES. */
+
+static void
+separate_decls_in_loop_stmt (struct loop *loop, tree stmt,
+ htab_t name_copies, htab_t decl_copies)
+{
+ use_operand_p use;
+ def_operand_p def;
+ ssa_op_iter oi;
+ tree name, copy;
+ bool copy_name_p;
+
+ mark_virtual_ops_for_renaming (stmt);
+
+ FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
+ {
+ name = DEF_FROM_PTR (def);
+ gcc_assert (TREE_CODE (name) == SSA_NAME);
+ copy = separate_decls_in_loop_name (name, name_copies, decl_copies,
+ false);
+ gcc_assert (copy == name);
+ }
+
+ FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
+ {
+ name = USE_FROM_PTR (use);
+ if (TREE_CODE (name) != SSA_NAME)
+ continue;
+
+ copy_name_p = expr_invariant_in_loop_p (loop, name);
+ copy = separate_decls_in_loop_name (name, name_copies, decl_copies,
+ copy_name_p);
+ SET_USE (use, copy);
+ }
+}
+
+/* Callback for htab_traverse. Adds a field corresponding to the reduction
+ specified in SLOT. The type is passed in DATA. */
+
+static int
+add_field_for_reduction (void **slot, void *data)
+{
+
+ struct reduction_info *red = *slot;
+ tree type = data;
+ tree var = SSA_NAME_VAR (GIMPLE_STMT_OPERAND (red->reduc_stmt, 0));
+ tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
+
+ insert_field_into_struct (type, field);
+
+ red->field = field;
+
+ return 1;
+}
+
+/* Callback for htab_traverse. Adds a field corresponding to a ssa name
+ described in SLOT. The type is passed in DATA. */
+
+static int
+add_field_for_name (void **slot, void *data)
+{
+ struct name_to_copy_elt *elt = *slot;
+ tree type = data;
+ tree name = ssa_name (elt->version);
+ tree var = SSA_NAME_VAR (name);
+ tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
+
+ insert_field_into_struct (type, field);
+ elt->field = field;
+
+ return 1;
+}
+
+/* Callback for htab_traverse. A local result is the intermediate result
+ computed by a single
+ thread, or the intial value in case no iteration was executed.
+ This function creates a phi node reflecting these values.
+ The phi's result will be stored in NEW_PHI field of the
+ reduction's data structure. */
+
+static int
+create_phi_for_local_result (void **slot, void *data)
+{
+ struct reduction_info *reduc = *slot;
+ struct loop *loop = data;
+ edge e;
+ tree new_phi;
+ basic_block store_bb;
+ tree local_res;
+
+ /* STORE_BB is the block where the phi
+ should be stored. It is the destination of the loop exit.
+ (Find the fallthru edge from OMP_CONTINUE). */
+ store_bb = FALLTHRU_EDGE (loop->latch)->dest;
+
+ /* STORE_BB has two predecessors. One coming from the loop
+ (the reduction's result is computed at the loop),
+ and another coming from a block preceding the loop,
+ when no iterations
+ are executed (the initial value should be taken). */
+ if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
+ e = EDGE_PRED (store_bb, 1);
+ else
+ e = EDGE_PRED (store_bb, 0);
+ local_res = make_ssa_name (SSA_NAME_VAR (GIMPLE_STMT_OPERAND (reduc->reduc_stmt, 0)), NULL_TREE);
+ new_phi = create_phi_node (local_res, store_bb);
+ SSA_NAME_DEF_STMT (local_res) = new_phi;
+ add_phi_arg (new_phi, reduc->init, e);
+ add_phi_arg (new_phi, GIMPLE_STMT_OPERAND (reduc->reduc_stmt, 0),
+ FALLTHRU_EDGE (loop->latch));
+ reduc->new_phi = new_phi;
+
+ return 1;
+}
+
+struct clsn_data
+{
+ tree store;
+ tree load;
+
+ basic_block store_bb;
+ basic_block load_bb;
+};
+
+/* Callback for htab_traverse. Create an atomic instruction for the
+ reduction described in SLOT.
+ DATA annotates the place in memory the atomic operation relates to,
+ and the basic block it needs to be generated in. */
+
+static int
+create_call_for_reduction_1 (void **slot, void *data)
+{
+ struct reduction_info *reduc = *slot;
+ struct clsn_data *clsn_data = data;
+ block_stmt_iterator bsi;
+ tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
+ tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
+ tree load_struct;
+ basic_block bb;
+ basic_block new_bb;
+ edge e;
+ tree t, addr, addr_type, ref, x;
+ tree tmp_load, load, name;
+
+ load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
+ t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
+ addr_type = build_pointer_type (type);
+
+ addr = build_addr (t, current_function_decl);
+
+ /* Create phi node. */
+ bb = clsn_data->load_bb;
+
+ e = split_block (bb, t);
+ new_bb = e->dest;
+
+ tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
+ add_referenced_var (tmp_load);
+ tmp_load = make_ssa_name (tmp_load, NULL);
+ load = build2 (OMP_ATOMIC_LOAD, void_type_node, tmp_load, addr);
+ SSA_NAME_DEF_STMT (tmp_load) = load;
+ bsi = bsi_start (new_bb);
+ bsi_insert_after (&bsi, load, BSI_NEW_STMT);
+
+ e = split_block (new_bb, load);
+ new_bb = e->dest;
+ bsi = bsi_start (new_bb);
+ ref = tmp_load;
+ x =
+ fold_build2 (reduc->reduction_code,
+ TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
+ PHI_RESULT (reduc->new_phi));
+
+ name =
+ force_gimple_operand_bsi (&bsi, x, true, NULL_TREE, true,
+ BSI_CONTINUE_LINKING);
+
+ x = build1 (OMP_ATOMIC_STORE, void_type_node, name);
+
+ bsi_insert_after (&bsi, x, BSI_NEW_STMT);
+ return 1;
+}
+
+/* Create the atomic operation at the join point of the threads.
+ REDUCTION_LIST describes the reductions in the LOOP.
+ LD_ST_DATA describes the shared data structure where
+ shared data is stored in and loaded from. */
+static void
+create_call_for_reduction (struct loop *loop, htab_t reduction_list,
+ struct clsn_data *ld_st_data)
+{
+ htab_traverse (reduction_list, create_phi_for_local_result, loop);
+ /* Find the fallthru edge from OMP_CONTINUE. */
+ ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
+ htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
+}
+
+/* Callback for htab_traverse. Loads the final reduction value at the
+ join point of all threads, and inserts it in the right place. */
+
+static int
+create_loads_for_reductions (void **slot, void *data)
+{
+ struct reduction_info *red = *slot;
+ struct clsn_data *clsn_data = data;
+ tree stmt;
+ block_stmt_iterator bsi;
+ tree type = TREE_TYPE (GIMPLE_STMT_OPERAND (red->reduc_stmt, 0));
+ tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
+ tree load_struct;
+ tree name;
+ tree x;
+
+ bsi = bsi_after_labels (clsn_data->load_bb);
+ load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
+ load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
+ NULL_TREE);
+
+ x = load_struct;
+ name = PHI_RESULT (red->keep_res);
+ stmt = build_gimple_modify_stmt (name, x);
+ GIMPLE_STMT_OPERAND (stmt, 0) = name;
+ SSA_NAME_DEF_STMT (name) = stmt;
+
+ bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
+
+ remove_phi_node (red->keep_res, NULL_TREE, false);
+
+ return 1;
+}
+
+/* Load the reduction result that was stored in LD_ST_DATA.
+ REDUCTION_LIST describes the list of reductions that the
+ loades should be generated for. */
+static void
+create_final_loads_for_reduction (htab_t reduction_list,
+ struct clsn_data *ld_st_data)
+{
+ block_stmt_iterator bsi;
+ tree t;
+
+ bsi = bsi_after_labels (ld_st_data->load_bb);
+ t = build_fold_addr_expr (ld_st_data->store);
+ t =
+ build_gimple_modify_stmt (ld_st_data->load,
+ build_fold_addr_expr (ld_st_data->store));
+
+ bsi_insert_before (&bsi, t, BSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (ld_st_data->load) = t;
+ GIMPLE_STMT_OPERAND (t, 0) = ld_st_data->load;
+
+ htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
+
+}
+
+/* Callback for htab_traverse. Store the neutral value for the
+ particular reduction's operation, e.g. 0 for PLUS_EXPR,
+ 1 for MULT_EXPR, etc. into the reduction field.
+ The reduction is specified in SLOT. The store information is
+ passed in DATA. */
+
+static int
+create_stores_for_reduction (void **slot, void *data)
+{
+ struct reduction_info *red = *slot;
+ struct clsn_data *clsn_data = data;
+ tree stmt;
+ block_stmt_iterator bsi;
+ tree type = TREE_TYPE (GIMPLE_STMT_OPERAND (red->reduc_stmt, 0));
+
+ bsi = bsi_last (clsn_data->store_bb);
+ stmt =
+ build_gimple_modify_stmt (build3
+ (COMPONENT_REF, type, clsn_data->store,
+ red->field, NULL_TREE),
+ red->initial_value);
+ mark_virtual_ops_for_renaming (stmt);
+ bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
+
+ return 1;
+}
+
+/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
+ store to a field of STORE in STORE_BB for the ssa name and its duplicate
+ specified in SLOT. */
+
+static int
+create_loads_and_stores_for_name (void **slot, void *data)
+{
+ struct name_to_copy_elt *elt = *slot;
+ struct clsn_data *clsn_data = data;
+ tree stmt;
+ block_stmt_iterator bsi;
+ tree type = TREE_TYPE (elt->new_name);
+ tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
+ tree load_struct;
+
+ bsi = bsi_last (clsn_data->store_bb);
+ stmt =
+ build_gimple_modify_stmt (build3
+ (COMPONENT_REF, type, clsn_data->store,
+ elt->field, NULL_TREE),
+ ssa_name (elt->version));
+ mark_virtual_ops_for_renaming (stmt);
+ bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
+
+ bsi = bsi_last (clsn_data->load_bb);
+ load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
+ stmt = build_gimple_modify_stmt (elt->new_name,
+ build3 (COMPONENT_REF, type, load_struct,
+ elt->field, NULL_TREE));
+ SSA_NAME_DEF_STMT (elt->new_name) = stmt;
+ bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
+
+ return 1;
+}
+
+/* Moves all the variables used in LOOP and defined outside of it (including
+ the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
+ name) to a structure created for this purpose. The code
+
+ while (1)
+ {
+ use (a);
+ use (b);
+ }
+
+ is transformed this way:
+
+ bb0:
+ old.a = a;
+ old.b = b;
+
+ bb1:
+ a' = new->a;
+ b' = new->b;
+ while (1)
+ {
+ use (a');
+ use (b');
+ }
+
+ `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
+ pointer `new' is intentionally not initialized (the loop will be split to a
+ separate function later, and `new' will be initialized from its arguments).
+ LD_ST_DATA holds information about the shared data structure used to pass
+ information among the threads. It is initialized here, and
+ gen_parallel_loop will pass it to create_call_for_reduction that
+ needs this information. REDUCTION_LIST describes the reductions
+ in LOOP. */
+
+static void
+separate_decls_in_loop (struct loop *loop, htab_t reduction_list,
+ tree * arg_struct, tree * new_arg_struct,
+ struct clsn_data *ld_st_data)
+
+{
+ basic_block bb1 = split_edge (loop_preheader_edge (loop));
+ basic_block bb0 = single_pred (bb1);
+ htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
+ name_to_copy_elt_eq, free);
+ htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
+ free);
+ basic_block bb, *body = get_loop_body (loop);
+ unsigned i;
+ tree phi, type, type_name, nvar;
+ block_stmt_iterator bsi;
+ struct clsn_data clsn_data;
+
+ /* Find and rename the ssa names defined outside of loop. */
+ for (i = 0; i < loop->num_nodes; i++)
+ {
+ bb = body[i];
+
+ for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
+ separate_decls_in_loop_stmt (loop, phi, name_copies, decl_copies);
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ separate_decls_in_loop_stmt (loop, bsi_stmt (bsi), name_copies,
+ decl_copies);
+ }
+ free (body);
+
+ if (htab_elements (name_copies) == 0)
+ {
+ /* It may happen that there is nothing to copy (if there are only
+ loop carried and external variables in the loop). */
+ *arg_struct = NULL;
+ *new_arg_struct = NULL;
+ }
+ else
+ {
+ /* Create the type for the structure to store the ssa names to. */
+ type = lang_hooks.types.make_type (RECORD_TYPE);
+ type_name = build_decl (TYPE_DECL, create_tmp_var_name (".paral_data"),
+ type);
+ TYPE_NAME (type) = type_name;
+
+ htab_traverse (name_copies, add_field_for_name, type);
+ if (htab_elements (reduction_list) > 0)
+ {
+ /* Create the fields for reductions. */
+ htab_traverse (reduction_list, add_field_for_reduction,
+ type);
+ }
+ layout_type (type);
+
+ /* Create the loads and stores. */
+ *arg_struct = create_tmp_var (type, ".paral_data_store");
+ add_referenced_var (*arg_struct);
+ nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
+ add_referenced_var (nvar);
+ *new_arg_struct = make_ssa_name (nvar, NULL_TREE);
+
+ ld_st_data->store = *arg_struct;
+ ld_st_data->load = *new_arg_struct;
+ ld_st_data->store_bb = bb0;
+ ld_st_data->load_bb = bb1;
+
+ htab_traverse (name_copies, create_loads_and_stores_for_name,
+ ld_st_data);
+
+ /* Load the calculation from memory (after the join of the threads). */
+
+ if (htab_elements (reduction_list) > 0)
+ {
+ htab_traverse (reduction_list, create_stores_for_reduction,
+ ld_st_data);
+ clsn_data.load = make_ssa_name (nvar, NULL_TREE);
+ clsn_data.load_bb = single_dom_exit (loop)->dest;
+ clsn_data.store = ld_st_data->store;
+ create_final_loads_for_reduction (reduction_list, &clsn_data);
+ }
+ }
+
+ htab_delete (decl_copies);
+ htab_delete (name_copies);
+}
+
+/* Bitmap containing uids of functions created by parallelization. We cannot
+ allocate it from the default obstack, as it must live across compilation
+ of several functions; we make it gc allocated instead. */
+
+static GTY(()) bitmap parallelized_functions;
+
+/* Returns true if FN was created by create_loop_fn. */
+
+static bool
+parallelized_function_p (tree fn)
+{
+ if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
+ return false;
+
+ return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
+}
+
+/* Creates and returns an empty function that will receive the body of
+ a parallelized loop. */
+
+static tree
+create_loop_fn (void)
+{
+ char buf[100];
+ char *tname;
+ tree decl, type, name, t;
+ struct function *act_cfun = cfun;
+ static unsigned loopfn_num;
+
+ snprintf (buf, 100, "%s.$loopfn", current_function_name ());
+ ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
+ clean_symbol_name (tname);
+ name = get_identifier (tname);
+ type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+
+ decl = build_decl (FUNCTION_DECL, name, type);
+ if (!parallelized_functions)
+ parallelized_functions = BITMAP_GGC_ALLOC ();
+ bitmap_set_bit (parallelized_functions, DECL_UID (decl));
+
+ TREE_STATIC (decl) = 1;
+ TREE_USED (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ DECL_IGNORED_P (decl) = 0;
+ TREE_PUBLIC (decl) = 0;
+ DECL_UNINLINABLE (decl) = 1;
+ DECL_EXTERNAL (decl) = 0;
+ DECL_CONTEXT (decl) = NULL_TREE;
+ DECL_INITIAL (decl) = make_node (BLOCK);
+
+ t = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_IGNORED_P (t) = 1;
+ DECL_RESULT (decl) = t;
+
+ t = build_decl (PARM_DECL, get_identifier (".paral_data_param"),
+ ptr_type_node);
+ DECL_ARTIFICIAL (t) = 1;
+ DECL_ARG_TYPE (t) = ptr_type_node;
+ DECL_CONTEXT (t) = decl;
+ TREE_USED (t) = 1;
+ DECL_ARGUMENTS (decl) = t;
+
+ allocate_struct_function (decl, false);
+
+ /* The call to allocate_struct_function clobbers CFUN, so we need to restore
+ it. */
+ set_cfun (act_cfun);
+
+ return decl;
+}
+
+/* Bases all the induction variables in LOOP on a single induction variable
+ (unsigned with base 0 and step 1), whose final value is compared with
+ NIT. The induction variable is incremented in the loop latch.
+ REDUCTION_LIST describes the reductions in LOOP. */
+
+static void
+canonicalize_loop_ivs (struct loop *loop, htab_t reduction_list, tree nit)
+{
+ unsigned precision = TYPE_PRECISION (TREE_TYPE (nit));
+ tree phi, prev, res, type, var_before, val, atype, mtype, t, next;
+ block_stmt_iterator bsi;
+ bool ok;
+ affine_iv iv;
+ edge exit = single_dom_exit (loop);
+ struct reduction_info *red;
+
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ res = PHI_RESULT (phi);
+
+ if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision)
+ precision = TYPE_PRECISION (TREE_TYPE (res));
+ }
+
+ type = lang_hooks.types.type_for_size (precision, 1);
+
+ bsi = bsi_last (loop->latch);
+ create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
+ loop, &bsi, true, &var_before, NULL);
+
+ bsi = bsi_after_labels (loop->header);
+ prev = NULL;
+ for (phi = phi_nodes (loop->header); phi; phi = next)
+ {
+ next = PHI_CHAIN (phi);
+ res = PHI_RESULT (phi);
+
+ if (!is_gimple_reg (res) || res == var_before)
+ {
+ prev = phi;
+ continue;
+ }
+
+ ok = simple_iv (loop, phi, res, &iv, true);
+ red = reduction_phi (reduction_list, phi);
+ /* We preserve the reduction phi nodes. */
+ if (!ok && red)
+ {
+ prev = phi;
+ continue;
+ }
+ else
+ gcc_assert (ok);
+ remove_phi_node (phi, prev, false);
+
+ atype = TREE_TYPE (res);
+ mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
+ val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
+ fold_convert (mtype, var_before));
+ val = fold_build2 (POINTER_TYPE_P (atype)
+ ? POINTER_PLUS_EXPR : PLUS_EXPR,
+ atype, unshare_expr (iv.base), val);
+ val = force_gimple_operand_bsi (&bsi, val, false, NULL_TREE, true,
+ BSI_SAME_STMT);
+ t = build_gimple_modify_stmt (res, val);
+ bsi_insert_before (&bsi, t, BSI_SAME_STMT);
+ SSA_NAME_DEF_STMT (res) = t;
+ }
+
+ t = last_stmt (exit->src);
+ /* Make the loop exit if the control condition is not satisfied. */
+ if (exit->flags & EDGE_TRUE_VALUE)
+ {
+ edge te, fe;
+
+ extract_true_false_edges_from_block (exit->src, &te, &fe);
+ te->flags = EDGE_FALSE_VALUE;
+ fe->flags = EDGE_TRUE_VALUE;
+ }
+ COND_EXPR_COND (t) = build2 (LT_EXPR, boolean_type_node, var_before, nit);
+}
+
+/* Moves the exit condition of LOOP to the beginning of its header, and
+ duplicates the part of the last iteration that gets disabled to the
+ exit of the loop. NIT is the number of iterations of the loop
+ (used to initialize the variables in the duplicated part).
+
+ TODO: the common case is that latch of the loop is empty and immediatelly
+ follows the loop exit. In this case, it would be better not to copy the
+ body of the loop, but only move the entry of the loop directly before the
+ exit check and increase the number of iterations of the loop by one.
+ This may need some additional preconditioning in case NIT = ~0.
+ REDUCTION_LIST describes the reductions in LOOP. */
+
+static void
+transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
+{
+ basic_block *bbs, *nbbs, ex_bb, orig_header;
+ unsigned n;
+ bool ok;
+ edge exit = single_dom_exit (loop), hpred;
+ tree phi, nphi, cond, control, control_name, res, t, cond_stmt;
+ block_stmt_iterator bsi;
+
+ split_block_after_labels (loop->header);
+ orig_header = single_succ (loop->header);
+ hpred = single_succ_edge (loop->header);
+
+ cond_stmt = last_stmt (exit->src);
+ cond = COND_EXPR_COND (cond_stmt);
+ control = TREE_OPERAND (cond, 0);
+ gcc_assert (TREE_OPERAND (cond, 1) == nit);
+
+ /* Make sure that we have phi nodes on exit for all loop header phis
+ (create_parallel_loop requires that). */
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ res = PHI_RESULT (phi);
+ t = make_ssa_name (SSA_NAME_VAR (res), phi);
+ SET_PHI_RESULT (phi, t);
+
+ nphi = create_phi_node (res, orig_header);
+ SSA_NAME_DEF_STMT (res) = nphi;
+ add_phi_arg (nphi, t, hpred);
+
+ if (res == control)
+ {
+ TREE_OPERAND (cond, 0) = t;
+ update_stmt (cond_stmt);
+ control = t;
+ }
+ }
+
+ bbs = get_loop_body_in_dom_order (loop);
+ for (n = 0; bbs[n] != exit->src; n++)
+ continue;
+ nbbs = XNEWVEC (basic_block, n);
+ ok = tree_duplicate_sese_tail (single_succ_edge (loop->header), exit,
+ bbs + 1, n, nbbs);
+ gcc_assert (ok);
+ free (bbs);
+ ex_bb = nbbs[0];
+ free (nbbs);
+
+ /* Other than reductions, the only gimple reg that should be copied
+ out of the loop is the control variable. */
+
+ control_name = NULL_TREE;
+ for (phi = phi_nodes (ex_bb); phi; phi = PHI_CHAIN (phi))
+ {
+ res = PHI_RESULT (phi);
+ if (!is_gimple_reg (res))
+ continue;
+
+ /* Check if it is a part of reduction. If it is,
+ keep the phi at the reduction's keep_res field. The
+ PHI_RESULT of this phi is the resulting value of the reduction
+ variable when exiting the loop. */
+
+ exit = single_dom_exit (loop);
+
+ if (htab_elements (reduction_list) > 0)
+ {
+ struct reduction_info *red;
+
+ tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
+
+ red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
+ if (red)
+ red->keep_res = phi;
+ }
+ else
+ gcc_assert (control_name == NULL_TREE
+ && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
+ control_name = res;
+ }
+ gcc_assert (control_name != NULL_TREE);
+ phi = SSA_NAME_DEF_STMT (control_name);
+ remove_phi_node (phi, NULL_TREE, false);
+
+ /* Initialize the control variable to NIT. */
+ bsi = bsi_after_labels (ex_bb);
+ nit = force_gimple_operand_bsi (&bsi,
+ fold_convert (TREE_TYPE (control_name), nit),
+ false, NULL_TREE, false, BSI_SAME_STMT);
+ t = build_gimple_modify_stmt (control_name, nit);
+ bsi_insert_before (&bsi, t, BSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (control_name) = t;
+}
+
+/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
+ LOOP_FN and DATA are the arguments of OMP_PARALLEL.
+ NEW_DATA is the variable that should be initialized from the argument
+ of LOOP_FN. N_THREADS is the requested number of threads. Returns the
+ basic block containing OMP_PARALLEL tree. */
+
+static basic_block
+create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
+ tree new_data, unsigned n_threads)
+{
+ block_stmt_iterator bsi;
+ basic_block bb, paral_bb, for_bb, ex_bb;
+ tree t, param, res, for_stmt;
+ tree cvar, cvar_init, initvar, cvar_next, cvar_base, cond, phi, type;
+ edge exit, nexit, guard, end, e;
+
+ /* Prepare the OMP_PARALLEL statement. */
+ bb = loop_preheader_edge (loop)->src;
+ paral_bb = single_pred (bb);
+ bsi = bsi_last (paral_bb);
+
+ t = build_omp_clause (OMP_CLAUSE_NUM_THREADS);
+ OMP_CLAUSE_NUM_THREADS_EXPR (t)
+ = build_int_cst (integer_type_node, n_threads);
+ t = build4 (OMP_PARALLEL, void_type_node, NULL_TREE, t, loop_fn, data);
+
+ bsi_insert_after (&bsi, t, BSI_NEW_STMT);
+
+ /* Initialize NEW_DATA. */
+ if (data)
+ {
+ bsi = bsi_after_labels (bb);
+
+ param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL_TREE);
+ t = build_gimple_modify_stmt (param, build_fold_addr_expr (data));
+ bsi_insert_before (&bsi, t, BSI_SAME_STMT);
+ SSA_NAME_DEF_STMT (param) = t;
+
+ t = build_gimple_modify_stmt (new_data,
+ fold_convert (TREE_TYPE (new_data),
+ param));
+ bsi_insert_before (&bsi, t, BSI_SAME_STMT);
+ SSA_NAME_DEF_STMT (new_data) = t;
+ }
+
+ /* Emit OMP_RETURN for OMP_PARALLEL. */
+ bb = split_loop_exit_edge (single_dom_exit (loop));
+ bsi = bsi_last (bb);
+ bsi_insert_after (&bsi, make_node (OMP_RETURN), BSI_NEW_STMT);
+
+ /* Extract data for OMP_FOR. */
+ gcc_assert (loop->header == single_dom_exit (loop)->src);
+ cond = COND_EXPR_COND (last_stmt (loop->header));
+
+ cvar = TREE_OPERAND (cond, 0);
+ cvar_base = SSA_NAME_VAR (cvar);
+ phi = SSA_NAME_DEF_STMT (cvar);
+ cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
+ initvar = make_ssa_name (cvar_base, NULL_TREE);
+ SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
+ initvar);
+ cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
+
+ bsi = bsi_last (loop->latch);
+ gcc_assert (bsi_stmt (bsi) == SSA_NAME_DEF_STMT (cvar_next));
+ bsi_remove (&bsi, true);
+
+ /* Prepare cfg. */
+ for_bb = split_edge (loop_preheader_edge (loop));
+ ex_bb = split_loop_exit_edge (single_dom_exit (loop));
+ extract_true_false_edges_from_block (loop->header, &nexit, &exit);
+ gcc_assert (exit == single_dom_exit (loop));
+
+ guard = make_edge (for_bb, ex_bb, 0);
+ single_succ_edge (loop->latch)->flags = 0;
+ end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
+ for (phi = phi_nodes (ex_bb); phi; phi = PHI_CHAIN (phi))
+ {
+ res = PHI_RESULT (phi);
+ gcc_assert (!is_gimple_reg (phi));
+ t = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
+ add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (t, loop_preheader_edge (loop)),
+ guard);
+ add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (t, loop_latch_edge (loop)),
+ end);
+ }
+ e = redirect_edge_and_branch (exit, nexit->dest);
+ PENDING_STMT (e) = NULL;
+
+ /* Emit OMP_FOR. */
+ TREE_OPERAND (cond, 0) = cvar_base;
+ type = TREE_TYPE (cvar);
+ t = build_omp_clause (OMP_CLAUSE_SCHEDULE);
+ OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
+
+ for_stmt = make_node (OMP_FOR);
+ TREE_TYPE (for_stmt) = void_type_node;
+ OMP_FOR_CLAUSES (for_stmt) = t;
+ OMP_FOR_INIT (for_stmt) = build_gimple_modify_stmt (initvar, cvar_init);
+ OMP_FOR_COND (for_stmt) = cond;
+ OMP_FOR_INCR (for_stmt) = build_gimple_modify_stmt (cvar_base,
+ build2 (PLUS_EXPR, type,
+ cvar_base,
+ build_int_cst
+ (type, 1)));
+ OMP_FOR_BODY (for_stmt) = NULL_TREE;
+ OMP_FOR_PRE_BODY (for_stmt) = NULL_TREE;
+
+ bsi = bsi_last (for_bb);
+ bsi_insert_after (&bsi, for_stmt, BSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (initvar) = for_stmt;
+
+ /* Emit OMP_CONTINUE. */
+ bsi = bsi_last (loop->latch);
+ t = build2 (OMP_CONTINUE, void_type_node, cvar_next, cvar);
+ bsi_insert_after (&bsi, t, BSI_NEW_STMT);
+ SSA_NAME_DEF_STMT (cvar_next) = t;
+
+ /* Emit OMP_RETURN for OMP_FOR. */
+ bsi = bsi_last (ex_bb);
+ bsi_insert_after (&bsi, make_node (OMP_RETURN), BSI_NEW_STMT);
+
+ return paral_bb;
+}
+
+/* Generates code to execute the iterations of LOOP in N_THREADS threads in
+ parallel. NITER describes number of iterations of LOOP.
+ REDUCTION_LIST describes the reductions existant in the LOOP. */
+
+static void
+gen_parallel_loop (struct loop *loop, htab_t reduction_list,
+ unsigned n_threads, struct tree_niter_desc *niter)
+{
+ struct loop *nloop;
+ loop_iterator li;
+ tree many_iterations_cond, type, nit;
+ tree stmts, arg_struct, new_arg_struct;
+ basic_block parallel_head;
+ struct clsn_data clsn_data;
+ unsigned prob;
+
+ /* From
+
+ ---------------------------------------------------------------------
+ loop
+ {
+ IV = phi (INIT, IV + STEP)
+ BODY1;
+ if (COND)
+ break;
+ BODY2;
+ }
+ ---------------------------------------------------------------------
+
+ with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
+ we generate the following code:
+
+ ---------------------------------------------------------------------
+
+ if (MAY_BE_ZERO
+ || NITER < MIN_PER_THREAD * N_THREADS)
+ goto original;
+
+ BODY1;
+ store all local loop-invariant variables used in body of the loop to DATA.
+ OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
+ load the variables from DATA.
+ OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
+ BODY2;
+ BODY1;
+ OMP_CONTINUE;
+ OMP_RETURN -- OMP_FOR
+ OMP_RETURN -- OMP_PARALLEL
+ goto end;
+
+ original:
+ loop
+ {
+ IV = phi (INIT, IV + STEP)
+ BODY1;
+ if (COND)
+ break;
+ BODY2;
+ }
+
+ end:
+
+ */
+
+ /* Create two versions of the loop -- in the old one, we know that the
+ number of iterations is large enough, and we will transform it into the
+ loop that will be split to loop_fn, the new one will be used for the
+ remaining iterations. */
+
+ type = TREE_TYPE (niter->niter);
+ nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
+ NULL_TREE);
+ if (stmts)
+ bsi_insert_on_edge_immediate (loop_preheader_edge (loop), stmts);
+
+ many_iterations_cond =
+ fold_build2 (GE_EXPR, boolean_type_node,
+ nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
+ many_iterations_cond
+ = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
+ invert_truthvalue (unshare_expr (niter->may_be_zero)),
+ many_iterations_cond);
+ many_iterations_cond
+ = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
+ if (stmts)
+ bsi_insert_on_edge_immediate (loop_preheader_edge (loop), stmts);
+ if (!is_gimple_condexpr (many_iterations_cond))
+ {
+ many_iterations_cond
+ = force_gimple_operand (many_iterations_cond, &stmts,
+ true, NULL_TREE);
+ if (stmts)
+ bsi_insert_on_edge_immediate (loop_preheader_edge (loop), stmts);
+ }
+
+ initialize_original_copy_tables ();
+
+ /* We assume that the loop usually iterates a lot. */
+ prob = 4 * REG_BR_PROB_BASE / 5;
+ nloop = loop_version (loop, many_iterations_cond, NULL,
+ prob, prob, REG_BR_PROB_BASE - prob, true);
+ update_ssa (TODO_update_ssa);
+ free_original_copy_tables ();
+
+ /* Base all the induction variables in LOOP on a single control one. */
+ canonicalize_loop_ivs (loop, reduction_list, nit);
+
+ /* Ensure that the exit condition is the first statement in the loop. */
+ transform_to_exit_first_loop (loop, reduction_list, nit);
+
+
+ /* Generate intializations for reductions. */
+
+ if (htab_elements (reduction_list) > 0)
+ htab_traverse (reduction_list, initialize_reductions, loop);
+
+ /* Eliminate the references to local variables from the loop. */
+ eliminate_local_variables (loop);
+
+ /* In the old loop, move all variables non-local to the loop to a structure
+ and back, and create separate decls for the variables used in loop. */
+ separate_decls_in_loop (loop, reduction_list, &arg_struct, &new_arg_struct, &clsn_data);
+
+ /* Create the parallel constructs. */
+ parallel_head = create_parallel_loop (loop, create_loop_fn (), arg_struct,
+ new_arg_struct, n_threads);
+ if (htab_elements (reduction_list) > 0)
+ create_call_for_reduction (loop, reduction_list, &clsn_data);
+
+ scev_reset ();
+
+ /* Cancel the loop (it is simpler to do it here rather than to teach the
+ expander to do it). */
+ cancel_loop_tree (loop);
+
+ /* Free loop bound estimations that could contain references to
+ removed statements. */
+ FOR_EACH_LOOP (li, loop, 0)
+ free_numbers_of_iterations_estimates_loop (loop);
+
+ /* Expand the parallel constructs. We do it directly here instead of running
+ a separate expand_omp pass, since it is more efficient, and less likely to
+ cause troubles with further analyses not being able to deal with the
+ OMP trees. */
+
+ omp_expand_local (parallel_head);
+}
+
+/* Returns true when LOOP contains vector phi nodes. */
+
+static bool
+loop_has_vector_phi_nodes (struct loop *loop)
+{
+ unsigned i;
+ basic_block *bbs = get_loop_body_in_dom_order (loop);
+ bool res = true;
+ tree phi;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ for (phi = phi_nodes (bbs[i]); phi; phi = PHI_CHAIN (phi))
+ if (TREE_CODE (TREE_TYPE (PHI_RESULT (phi))) == VECTOR_TYPE)
+ goto end;
+
+ res = false;
+ end:
+ free (bbs);
+ return res;
+}
+
+/* Detect parallel loops and generate parallel code using libgomp
+ primitives. Returns true if some loop was parallelized, false
+ otherwise. */
+
+bool
+parallelize_loops (void)
+{
+ unsigned n_threads = flag_tree_parallelize_loops;
+ bool changed = false;
+ struct loop *loop;
+ struct tree_niter_desc niter_desc;
+ loop_iterator li;
+ htab_t reduction_list;
+
+ /* Do not parallelize loops in the functions created by parallelization. */
+ if (parallelized_function_p (cfun->decl))
+ return false;
+
+ reduction_list = htab_create (10, reduction_info_hash,
+ reduction_info_eq, free);
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ htab_empty (reduction_list);
+ if (/* Do not bother with loops in cold areas. */
+ !maybe_hot_bb_p (loop->header)
+ /* Or loops that roll too little. */
+ || expected_loop_iterations (loop) <= n_threads
+ /* And of course, the loop must be parallelizable. */
+ || !can_duplicate_loop_p (loop)
+ || loop_has_blocks_with_irreducible_flag (loop)
+ /* FIXME: the check for vector phi nodes could be removed. */
+ || loop_has_vector_phi_nodes (loop)
+ || !loop_parallel_p (loop, reduction_list, &niter_desc))
+ continue;
+
+ changed = true;
+ gen_parallel_loop (loop, reduction_list, n_threads, &niter_desc);
+ verify_flow_info ();
+ verify_dominators (CDI_DOMINATORS);
+ verify_loop_structure ();
+ verify_loop_closed_ssa ();
+ }
+
+ htab_delete (reduction_list);
+ return changed;
+}
+
+#include "gt-tree-parloops.h"