summaryrefslogtreecommitdiffstats
path: root/binutils-2.25/gold/object.cc
diff options
context:
space:
mode:
Diffstat (limited to 'binutils-2.25/gold/object.cc')
-rw-r--r--binutils-2.25/gold/object.cc3331
1 files changed, 3331 insertions, 0 deletions
diff --git a/binutils-2.25/gold/object.cc b/binutils-2.25/gold/object.cc
new file mode 100644
index 00000000..c98b3c5a
--- /dev/null
+++ b/binutils-2.25/gold/object.cc
@@ -0,0 +1,3331 @@
+// object.cc -- support for an object file for linking in gold
+
+// Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
+// Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
+#include "gold.h"
+
+#include <cerrno>
+#include <cstring>
+#include <cstdarg>
+#include "demangle.h"
+#include "libiberty.h"
+
+#include "gc.h"
+#include "target-select.h"
+#include "dwarf_reader.h"
+#include "layout.h"
+#include "output.h"
+#include "symtab.h"
+#include "cref.h"
+#include "reloc.h"
+#include "object.h"
+#include "dynobj.h"
+#include "plugin.h"
+#include "compressed_output.h"
+#include "incremental.h"
+
+namespace gold
+{
+
+// Struct Read_symbols_data.
+
+// Destroy any remaining File_view objects and buffers of decompressed
+// sections.
+
+Read_symbols_data::~Read_symbols_data()
+{
+ if (this->section_headers != NULL)
+ delete this->section_headers;
+ if (this->section_names != NULL)
+ delete this->section_names;
+ if (this->symbols != NULL)
+ delete this->symbols;
+ if (this->symbol_names != NULL)
+ delete this->symbol_names;
+ if (this->versym != NULL)
+ delete this->versym;
+ if (this->verdef != NULL)
+ delete this->verdef;
+ if (this->verneed != NULL)
+ delete this->verneed;
+}
+
+// Class Xindex.
+
+// Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
+// section and read it in. SYMTAB_SHNDX is the index of the symbol
+// table we care about.
+
+template<int size, bool big_endian>
+void
+Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
+{
+ if (!this->symtab_xindex_.empty())
+ return;
+
+ gold_assert(symtab_shndx != 0);
+
+ // Look through the sections in reverse order, on the theory that it
+ // is more likely to be near the end than the beginning.
+ unsigned int i = object->shnum();
+ while (i > 0)
+ {
+ --i;
+ if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
+ && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
+ {
+ this->read_symtab_xindex<size, big_endian>(object, i, NULL);
+ return;
+ }
+ }
+
+ object->error(_("missing SHT_SYMTAB_SHNDX section"));
+}
+
+// Read in the symtab_xindex_ array, given the section index of the
+// SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
+// section headers.
+
+template<int size, bool big_endian>
+void
+Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
+ const unsigned char* pshdrs)
+{
+ section_size_type bytecount;
+ const unsigned char* contents;
+ if (pshdrs == NULL)
+ contents = object->section_contents(xindex_shndx, &bytecount, false);
+ else
+ {
+ const unsigned char* p = (pshdrs
+ + (xindex_shndx
+ * elfcpp::Elf_sizes<size>::shdr_size));
+ typename elfcpp::Shdr<size, big_endian> shdr(p);
+ bytecount = convert_to_section_size_type(shdr.get_sh_size());
+ contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
+ }
+
+ gold_assert(this->symtab_xindex_.empty());
+ this->symtab_xindex_.reserve(bytecount / 4);
+ for (section_size_type i = 0; i < bytecount; i += 4)
+ {
+ unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
+ // We preadjust the section indexes we save.
+ this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
+ }
+}
+
+// Symbol symndx has a section of SHN_XINDEX; return the real section
+// index.
+
+unsigned int
+Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
+{
+ if (symndx >= this->symtab_xindex_.size())
+ {
+ object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
+ symndx);
+ return elfcpp::SHN_UNDEF;
+ }
+ unsigned int shndx = this->symtab_xindex_[symndx];
+ if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
+ {
+ object->error(_("extended index for symbol %u out of range: %u"),
+ symndx, shndx);
+ return elfcpp::SHN_UNDEF;
+ }
+ return shndx;
+}
+
+// Class Object.
+
+// Report an error for this object file. This is used by the
+// elfcpp::Elf_file interface, and also called by the Object code
+// itself.
+
+void
+Object::error(const char* format, ...) const
+{
+ va_list args;
+ va_start(args, format);
+ char* buf = NULL;
+ if (vasprintf(&buf, format, args) < 0)
+ gold_nomem();
+ va_end(args);
+ gold_error(_("%s: %s"), this->name().c_str(), buf);
+ free(buf);
+}
+
+// Return a view of the contents of a section.
+
+const unsigned char*
+Object::section_contents(unsigned int shndx, section_size_type* plen,
+ bool cache)
+{ return this->do_section_contents(shndx, plen, cache); }
+
+// Read the section data into SD. This is code common to Sized_relobj_file
+// and Sized_dynobj, so we put it into Object.
+
+template<int size, bool big_endian>
+void
+Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
+ Read_symbols_data* sd)
+{
+ const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+
+ // Read the section headers.
+ const off_t shoff = elf_file->shoff();
+ const unsigned int shnum = this->shnum();
+ sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
+ true, true);
+
+ // Read the section names.
+ const unsigned char* pshdrs = sd->section_headers->data();
+ const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
+ typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
+
+ if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
+ this->error(_("section name section has wrong type: %u"),
+ static_cast<unsigned int>(shdrnames.get_sh_type()));
+
+ sd->section_names_size =
+ convert_to_section_size_type(shdrnames.get_sh_size());
+ sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
+ sd->section_names_size, false,
+ false);
+}
+
+// If NAME is the name of a special .gnu.warning section, arrange for
+// the warning to be issued. SHNDX is the section index. Return
+// whether it is a warning section.
+
+bool
+Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
+ Symbol_table* symtab)
+{
+ const char warn_prefix[] = ".gnu.warning.";
+ const int warn_prefix_len = sizeof warn_prefix - 1;
+ if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
+ {
+ // Read the section contents to get the warning text. It would
+ // be nicer if we only did this if we have to actually issue a
+ // warning. Unfortunately, warnings are issued as we relocate
+ // sections. That means that we can not lock the object then,
+ // as we might try to issue the same warning multiple times
+ // simultaneously.
+ section_size_type len;
+ const unsigned char* contents = this->section_contents(shndx, &len,
+ false);
+ if (len == 0)
+ {
+ const char* warning = name + warn_prefix_len;
+ contents = reinterpret_cast<const unsigned char*>(warning);
+ len = strlen(warning);
+ }
+ std::string warning(reinterpret_cast<const char*>(contents), len);
+ symtab->add_warning(name + warn_prefix_len, this, warning);
+ return true;
+ }
+ return false;
+}
+
+// If NAME is the name of the special section which indicates that
+// this object was compiled with -fsplit-stack, mark it accordingly.
+
+bool
+Object::handle_split_stack_section(const char* name)
+{
+ if (strcmp(name, ".note.GNU-split-stack") == 0)
+ {
+ this->uses_split_stack_ = true;
+ return true;
+ }
+ if (strcmp(name, ".note.GNU-no-split-stack") == 0)
+ {
+ this->has_no_split_stack_ = true;
+ return true;
+ }
+ return false;
+}
+
+// Class Relobj
+
+// To copy the symbols data read from the file to a local data structure.
+// This function is called from do_layout only while doing garbage
+// collection.
+
+void
+Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
+ unsigned int section_header_size)
+{
+ gc_sd->section_headers_data =
+ new unsigned char[(section_header_size)];
+ memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
+ section_header_size);
+ gc_sd->section_names_data =
+ new unsigned char[sd->section_names_size];
+ memcpy(gc_sd->section_names_data, sd->section_names->data(),
+ sd->section_names_size);
+ gc_sd->section_names_size = sd->section_names_size;
+ if (sd->symbols != NULL)
+ {
+ gc_sd->symbols_data =
+ new unsigned char[sd->symbols_size];
+ memcpy(gc_sd->symbols_data, sd->symbols->data(),
+ sd->symbols_size);
+ }
+ else
+ {
+ gc_sd->symbols_data = NULL;
+ }
+ gc_sd->symbols_size = sd->symbols_size;
+ gc_sd->external_symbols_offset = sd->external_symbols_offset;
+ if (sd->symbol_names != NULL)
+ {
+ gc_sd->symbol_names_data =
+ new unsigned char[sd->symbol_names_size];
+ memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
+ sd->symbol_names_size);
+ }
+ else
+ {
+ gc_sd->symbol_names_data = NULL;
+ }
+ gc_sd->symbol_names_size = sd->symbol_names_size;
+}
+
+// This function determines if a particular section name must be included
+// in the link. This is used during garbage collection to determine the
+// roots of the worklist.
+
+bool
+Relobj::is_section_name_included(const char* name)
+{
+ if (is_prefix_of(".ctors", name)
+ || is_prefix_of(".dtors", name)
+ || is_prefix_of(".note", name)
+ || is_prefix_of(".init", name)
+ || is_prefix_of(".fini", name)
+ || is_prefix_of(".gcc_except_table", name)
+ || is_prefix_of(".jcr", name)
+ || is_prefix_of(".preinit_array", name)
+ || (is_prefix_of(".text", name)
+ && strstr(name, "personality"))
+ || (is_prefix_of(".data", name)
+ && strstr(name, "personality"))
+ || (is_prefix_of(".sdata", name)
+ && strstr(name, "personality"))
+ || (is_prefix_of(".gnu.linkonce.d", name)
+ && strstr(name, "personality")))
+ {
+ return true;
+ }
+ return false;
+}
+
+// Finalize the incremental relocation information. Allocates a block
+// of relocation entries for each symbol, and sets the reloc_bases_
+// array to point to the first entry in each block. If CLEAR_COUNTS
+// is TRUE, also clear the per-symbol relocation counters.
+
+void
+Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
+{
+ unsigned int nsyms = this->get_global_symbols()->size();
+ this->reloc_bases_ = new unsigned int[nsyms];
+
+ gold_assert(this->reloc_bases_ != NULL);
+ gold_assert(layout->incremental_inputs() != NULL);
+
+ unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
+ for (unsigned int i = 0; i < nsyms; ++i)
+ {
+ this->reloc_bases_[i] = rindex;
+ rindex += this->reloc_counts_[i];
+ if (clear_counts)
+ this->reloc_counts_[i] = 0;
+ }
+ layout->incremental_inputs()->set_reloc_count(rindex);
+}
+
+// Class Sized_relobj.
+
+// Iterate over local symbols, calling a visitor class V for each GOT offset
+// associated with a local symbol.
+
+template<int size, bool big_endian>
+void
+Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
+ Got_offset_list::Visitor* v) const
+{
+ unsigned int nsyms = this->local_symbol_count();
+ for (unsigned int i = 0; i < nsyms; i++)
+ {
+ Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
+ if (p != this->local_got_offsets_.end())
+ {
+ const Got_offset_list* got_offsets = p->second;
+ got_offsets->for_all_got_offsets(v);
+ }
+ }
+}
+
+// Get the address of an output section.
+
+template<int size, bool big_endian>
+uint64_t
+Sized_relobj<size, big_endian>::do_output_section_address(
+ unsigned int shndx)
+{
+ // If the input file is linked as --just-symbols, the output
+ // section address is the input section address.
+ if (this->just_symbols())
+ return this->section_address(shndx);
+
+ const Output_section* os = this->do_output_section(shndx);
+ gold_assert(os != NULL);
+ return os->address();
+}
+
+// Class Sized_relobj_file.
+
+template<int size, bool big_endian>
+Sized_relobj_file<size, big_endian>::Sized_relobj_file(
+ const std::string& name,
+ Input_file* input_file,
+ off_t offset,
+ const elfcpp::Ehdr<size, big_endian>& ehdr)
+ : Sized_relobj<size, big_endian>(name, input_file, offset),
+ elf_file_(this, ehdr),
+ symtab_shndx_(-1U),
+ local_symbol_count_(0),
+ output_local_symbol_count_(0),
+ output_local_dynsym_count_(0),
+ symbols_(),
+ defined_count_(0),
+ local_symbol_offset_(0),
+ local_dynsym_offset_(0),
+ local_values_(),
+ local_plt_offsets_(),
+ kept_comdat_sections_(),
+ has_eh_frame_(false),
+ discarded_eh_frame_shndx_(-1U),
+ deferred_layout_(),
+ deferred_layout_relocs_(),
+ compressed_sections_()
+{
+ this->e_type_ = ehdr.get_e_type();
+}
+
+template<int size, bool big_endian>
+Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
+{
+}
+
+// Set up an object file based on the file header. This sets up the
+// section information.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_setup()
+{
+ const unsigned int shnum = this->elf_file_.shnum();
+ this->set_shnum(shnum);
+}
+
+// Find the SHT_SYMTAB section, given the section headers. The ELF
+// standard says that maybe in the future there can be more than one
+// SHT_SYMTAB section. Until somebody figures out how that could
+// work, we assume there is only one.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
+{
+ const unsigned int shnum = this->shnum();
+ this->symtab_shndx_ = 0;
+ if (shnum > 0)
+ {
+ // Look through the sections in reverse order, since gas tends
+ // to put the symbol table at the end.
+ const unsigned char* p = pshdrs + shnum * This::shdr_size;
+ unsigned int i = shnum;
+ unsigned int xindex_shndx = 0;
+ unsigned int xindex_link = 0;
+ while (i > 0)
+ {
+ --i;
+ p -= This::shdr_size;
+ typename This::Shdr shdr(p);
+ if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
+ {
+ this->symtab_shndx_ = i;
+ if (xindex_shndx > 0 && xindex_link == i)
+ {
+ Xindex* xindex =
+ new Xindex(this->elf_file_.large_shndx_offset());
+ xindex->read_symtab_xindex<size, big_endian>(this,
+ xindex_shndx,
+ pshdrs);
+ this->set_xindex(xindex);
+ }
+ break;
+ }
+
+ // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
+ // one. This will work if it follows the SHT_SYMTAB
+ // section.
+ if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
+ {
+ xindex_shndx = i;
+ xindex_link = this->adjust_shndx(shdr.get_sh_link());
+ }
+ }
+ }
+}
+
+// Return the Xindex structure to use for object with lots of
+// sections.
+
+template<int size, bool big_endian>
+Xindex*
+Sized_relobj_file<size, big_endian>::do_initialize_xindex()
+{
+ gold_assert(this->symtab_shndx_ != -1U);
+ Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
+ xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
+ return xindex;
+}
+
+// Return whether SHDR has the right type and flags to be a GNU
+// .eh_frame section.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
+ const elfcpp::Shdr<size, big_endian>* shdr) const
+{
+ elfcpp::Elf_Word sh_type = shdr->get_sh_type();
+ return ((sh_type == elfcpp::SHT_PROGBITS
+ || sh_type == elfcpp::SHT_X86_64_UNWIND)
+ && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
+}
+
+// Find the section header with the given name.
+
+template<int size, bool big_endian>
+const unsigned char*
+Object::find_shdr(
+ const unsigned char* pshdrs,
+ const char* name,
+ const char* names,
+ section_size_type names_size,
+ const unsigned char* hdr) const
+{
+ const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+ const unsigned int shnum = this->shnum();
+ const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
+ size_t sh_name = 0;
+
+ while (1)
+ {
+ if (hdr)
+ {
+ // We found HDR last time we were called, continue looking.
+ typename elfcpp::Shdr<size, big_endian> shdr(hdr);
+ sh_name = shdr.get_sh_name();
+ }
+ else
+ {
+ // Look for the next occurrence of NAME in NAMES.
+ // The fact that .shstrtab produced by current GNU tools is
+ // string merged means we shouldn't have both .not.foo and
+ // .foo in .shstrtab, and multiple .foo sections should all
+ // have the same sh_name. However, this is not guaranteed
+ // by the ELF spec and not all ELF object file producers may
+ // be so clever.
+ size_t len = strlen(name) + 1;
+ const char *p = sh_name ? names + sh_name + len : names;
+ p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
+ name, len));
+ if (p == NULL)
+ return NULL;
+ sh_name = p - names;
+ hdr = pshdrs;
+ if (sh_name == 0)
+ return hdr;
+ }
+
+ hdr += shdr_size;
+ while (hdr < hdr_end)
+ {
+ typename elfcpp::Shdr<size, big_endian> shdr(hdr);
+ if (shdr.get_sh_name() == sh_name)
+ return hdr;
+ hdr += shdr_size;
+ }
+ hdr = NULL;
+ if (sh_name == 0)
+ return hdr;
+ }
+}
+
+// Return whether there is a GNU .eh_frame section, given the section
+// headers and the section names.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::find_eh_frame(
+ const unsigned char* pshdrs,
+ const char* names,
+ section_size_type names_size) const
+{
+ const unsigned char* s = NULL;
+
+ while (1)
+ {
+ s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
+ names, names_size, s);
+ if (s == NULL)
+ return false;
+
+ typename This::Shdr shdr(s);
+ if (this->check_eh_frame_flags(&shdr))
+ return true;
+ }
+}
+
+// Return TRUE if this is a section whose contents will be needed in the
+// Add_symbols task. This function is only called for sections that have
+// already passed the test in is_compressed_debug_section(), so we know
+// that the section name begins with ".zdebug".
+
+static bool
+need_decompressed_section(const char* name)
+{
+ // Skip over the ".zdebug" and a quick check for the "_".
+ name += 7;
+ if (*name++ != '_')
+ return false;
+
+#ifdef ENABLE_THREADS
+ // Decompressing these sections now will help only if we're
+ // multithreaded.
+ if (parameters->options().threads())
+ {
+ // We will need .zdebug_str if this is not an incremental link
+ // (i.e., we are processing string merge sections) or if we need
+ // to build a gdb index.
+ if ((!parameters->incremental() || parameters->options().gdb_index())
+ && strcmp(name, "str") == 0)
+ return true;
+
+ // We will need these other sections when building a gdb index.
+ if (parameters->options().gdb_index()
+ && (strcmp(name, "info") == 0
+ || strcmp(name, "types") == 0
+ || strcmp(name, "pubnames") == 0
+ || strcmp(name, "pubtypes") == 0
+ || strcmp(name, "ranges") == 0
+ || strcmp(name, "abbrev") == 0))
+ return true;
+ }
+#endif
+
+ // Even when single-threaded, we will need .zdebug_str if this is
+ // not an incremental link and we are building a gdb index.
+ // Otherwise, we would decompress the section twice: once for
+ // string merge processing, and once for building the gdb index.
+ if (!parameters->incremental()
+ && parameters->options().gdb_index()
+ && strcmp(name, "str") == 0)
+ return true;
+
+ return false;
+}
+
+// Build a table for any compressed debug sections, mapping each section index
+// to the uncompressed size and (if needed) the decompressed contents.
+
+template<int size, bool big_endian>
+Compressed_section_map*
+build_compressed_section_map(
+ const unsigned char* pshdrs,
+ unsigned int shnum,
+ const char* names,
+ section_size_type names_size,
+ Sized_relobj_file<size, big_endian>* obj)
+{
+ Compressed_section_map* uncompressed_map = new Compressed_section_map();
+ const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
+ const unsigned char* p = pshdrs + shdr_size;
+
+ for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
+ {
+ typename elfcpp::Shdr<size, big_endian> shdr(p);
+ if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
+ && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
+ {
+ if (shdr.get_sh_name() >= names_size)
+ {
+ obj->error(_("bad section name offset for section %u: %lu"),
+ i, static_cast<unsigned long>(shdr.get_sh_name()));
+ continue;
+ }
+
+ const char* name = names + shdr.get_sh_name();
+ if (is_compressed_debug_section(name))
+ {
+ section_size_type len;
+ const unsigned char* contents =
+ obj->section_contents(i, &len, false);
+ uint64_t uncompressed_size = get_uncompressed_size(contents, len);
+ Compressed_section_info info;
+ info.size = convert_to_section_size_type(uncompressed_size);
+ info.contents = NULL;
+ if (uncompressed_size != -1ULL)
+ {
+ unsigned char* uncompressed_data = NULL;
+ if (need_decompressed_section(name))
+ {
+ uncompressed_data = new unsigned char[uncompressed_size];
+ if (decompress_input_section(contents, len,
+ uncompressed_data,
+ uncompressed_size))
+ info.contents = uncompressed_data;
+ else
+ delete[] uncompressed_data;
+ }
+ (*uncompressed_map)[i] = info;
+ }
+ }
+ }
+ }
+ return uncompressed_map;
+}
+
+// Stash away info for a number of special sections.
+// Return true if any of the sections found require local symbols to be read.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::do_find_special_sections(
+ Read_symbols_data* sd)
+{
+ const unsigned char* const pshdrs = sd->section_headers->data();
+ const unsigned char* namesu = sd->section_names->data();
+ const char* names = reinterpret_cast<const char*>(namesu);
+
+ if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
+ this->has_eh_frame_ = true;
+
+ if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
+ this->compressed_sections_
+ = build_compressed_section_map(pshdrs, this->shnum(), names,
+ sd->section_names_size, this);
+ return (this->has_eh_frame_
+ || (!parameters->options().relocatable()
+ && parameters->options().gdb_index()
+ && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
+ || memmem(names, sd->section_names_size, "debug_types",
+ 13) == 0)));
+}
+
+// Read the sections and symbols from an object file.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+ this->read_section_data(&this->elf_file_, sd);
+
+ const unsigned char* const pshdrs = sd->section_headers->data();
+
+ this->find_symtab(pshdrs);
+
+ bool need_local_symbols = this->do_find_special_sections(sd);
+
+ sd->symbols = NULL;
+ sd->symbols_size = 0;
+ sd->external_symbols_offset = 0;
+ sd->symbol_names = NULL;
+ sd->symbol_names_size = 0;
+
+ if (this->symtab_shndx_ == 0)
+ {
+ // No symbol table. Weird but legal.
+ return;
+ }
+
+ // Get the symbol table section header.
+ typename This::Shdr symtabshdr(pshdrs
+ + this->symtab_shndx_ * This::shdr_size);
+ gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+ // If this object has a .eh_frame section, or if building a .gdb_index
+ // section and there is debug info, we need all the symbols.
+ // Otherwise we only need the external symbols. While it would be
+ // simpler to just always read all the symbols, I've seen object
+ // files with well over 2000 local symbols, which for a 64-bit
+ // object file format is over 5 pages that we don't need to read
+ // now.
+
+ const int sym_size = This::sym_size;
+ const unsigned int loccount = symtabshdr.get_sh_info();
+ this->local_symbol_count_ = loccount;
+ this->local_values_.resize(loccount);
+ section_offset_type locsize = loccount * sym_size;
+ off_t dataoff = symtabshdr.get_sh_offset();
+ section_size_type datasize =
+ convert_to_section_size_type(symtabshdr.get_sh_size());
+ off_t extoff = dataoff + locsize;
+ section_size_type extsize = datasize - locsize;
+
+ off_t readoff = need_local_symbols ? dataoff : extoff;
+ section_size_type readsize = need_local_symbols ? datasize : extsize;
+
+ if (readsize == 0)
+ {
+ // No external symbols. Also weird but also legal.
+ return;
+ }
+
+ File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
+
+ // Read the section header for the symbol names.
+ unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
+ if (strtab_shndx >= this->shnum())
+ {
+ this->error(_("invalid symbol table name index: %u"), strtab_shndx);
+ return;
+ }
+ typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
+ if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
+ {
+ this->error(_("symbol table name section has wrong type: %u"),
+ static_cast<unsigned int>(strtabshdr.get_sh_type()));
+ return;
+ }
+
+ // Read the symbol names.
+ File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
+ strtabshdr.get_sh_size(),
+ false, true);
+
+ sd->symbols = fvsymtab;
+ sd->symbols_size = readsize;
+ sd->external_symbols_offset = need_local_symbols ? locsize : 0;
+ sd->symbol_names = fvstrtab;
+ sd->symbol_names_size =
+ convert_to_section_size_type(strtabshdr.get_sh_size());
+}
+
+// Return the section index of symbol SYM. Set *VALUE to its value in
+// the object file. Set *IS_ORDINARY if this is an ordinary section
+// index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
+// Note that for a symbol which is not defined in this object file,
+// this will set *VALUE to 0 and return SHN_UNDEF; it will not return
+// the final value of the symbol in the link.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
+ Address* value,
+ bool* is_ordinary)
+{
+ section_size_type symbols_size;
+ const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
+ &symbols_size,
+ false);
+
+ const size_t count = symbols_size / This::sym_size;
+ gold_assert(sym < count);
+
+ elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
+ *value = elfsym.get_st_value();
+
+ return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
+}
+
+// Return whether to include a section group in the link. LAYOUT is
+// used to keep track of which section groups we have already seen.
+// INDEX is the index of the section group and SHDR is the section
+// header. If we do not want to include this group, we set bits in
+// OMIT for each section which should be discarded.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::include_section_group(
+ Symbol_table* symtab,
+ Layout* layout,
+ unsigned int index,
+ const char* name,
+ const unsigned char* shdrs,
+ const char* section_names,
+ section_size_type section_names_size,
+ std::vector<bool>* omit)
+{
+ // Read the section contents.
+ typename This::Shdr shdr(shdrs + index * This::shdr_size);
+ const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
+ shdr.get_sh_size(), true, false);
+ const elfcpp::Elf_Word* pword =
+ reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
+
+ // The first word contains flags. We only care about COMDAT section
+ // groups. Other section groups are always included in the link
+ // just like ordinary sections.
+ elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
+
+ // Look up the group signature, which is the name of a symbol. ELF
+ // uses a symbol name because some group signatures are long, and
+ // the name is generally already in the symbol table, so it makes
+ // sense to put the long string just once in .strtab rather than in
+ // both .strtab and .shstrtab.
+
+ // Get the appropriate symbol table header (this will normally be
+ // the single SHT_SYMTAB section, but in principle it need not be).
+ const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
+ typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
+
+ // Read the symbol table entry.
+ unsigned int symndx = shdr.get_sh_info();
+ if (symndx >= symshdr.get_sh_size() / This::sym_size)
+ {
+ this->error(_("section group %u info %u out of range"),
+ index, symndx);
+ return false;
+ }
+ off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
+ const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
+ false);
+ elfcpp::Sym<size, big_endian> sym(psym);
+
+ // Read the symbol table names.
+ section_size_type symnamelen;
+ const unsigned char* psymnamesu;
+ psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
+ &symnamelen, true);
+ const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
+
+ // Get the section group signature.
+ if (sym.get_st_name() >= symnamelen)
+ {
+ this->error(_("symbol %u name offset %u out of range"),
+ symndx, sym.get_st_name());
+ return false;
+ }
+
+ std::string signature(psymnames + sym.get_st_name());
+
+ // It seems that some versions of gas will create a section group
+ // associated with a section symbol, and then fail to give a name to
+ // the section symbol. In such a case, use the name of the section.
+ if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
+ {
+ bool is_ordinary;
+ unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
+ sym.get_st_shndx(),
+ &is_ordinary);
+ if (!is_ordinary || sym_shndx >= this->shnum())
+ {
+ this->error(_("symbol %u invalid section index %u"),
+ symndx, sym_shndx);
+ return false;
+ }
+ typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
+ if (member_shdr.get_sh_name() < section_names_size)
+ signature = section_names + member_shdr.get_sh_name();
+ }
+
+ // Record this section group in the layout, and see whether we've already
+ // seen one with the same signature.
+ bool include_group;
+ bool is_comdat;
+ Kept_section* kept_section = NULL;
+
+ if ((flags & elfcpp::GRP_COMDAT) == 0)
+ {
+ include_group = true;
+ is_comdat = false;
+ }
+ else
+ {
+ include_group = layout->find_or_add_kept_section(signature,
+ this, index, true,
+ true, &kept_section);
+ is_comdat = true;
+ }
+
+ if (is_comdat && include_group)
+ {
+ Incremental_inputs* incremental_inputs = layout->incremental_inputs();
+ if (incremental_inputs != NULL)
+ incremental_inputs->report_comdat_group(this, signature.c_str());
+ }
+
+ size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
+
+ std::vector<unsigned int> shndxes;
+ bool relocate_group = include_group && parameters->options().relocatable();
+ if (relocate_group)
+ shndxes.reserve(count - 1);
+
+ for (size_t i = 1; i < count; ++i)
+ {
+ elfcpp::Elf_Word shndx =
+ this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
+
+ if (relocate_group)
+ shndxes.push_back(shndx);
+
+ if (shndx >= this->shnum())
+ {
+ this->error(_("section %u in section group %u out of range"),
+ shndx, index);
+ continue;
+ }
+
+ // Check for an earlier section number, since we're going to get
+ // it wrong--we may have already decided to include the section.
+ if (shndx < index)
+ this->error(_("invalid section group %u refers to earlier section %u"),
+ index, shndx);
+
+ // Get the name of the member section.
+ typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
+ if (member_shdr.get_sh_name() >= section_names_size)
+ {
+ // This is an error, but it will be diagnosed eventually
+ // in do_layout, so we don't need to do anything here but
+ // ignore it.
+ continue;
+ }
+ std::string mname(section_names + member_shdr.get_sh_name());
+
+ if (include_group)
+ {
+ if (is_comdat)
+ kept_section->add_comdat_section(mname, shndx,
+ member_shdr.get_sh_size());
+ }
+ else
+ {
+ (*omit)[shndx] = true;
+
+ if (is_comdat)
+ {
+ Relobj* kept_object = kept_section->object();
+ if (kept_section->is_comdat())
+ {
+ // Find the corresponding kept section, and store
+ // that info in the discarded section table.
+ unsigned int kept_shndx;
+ uint64_t kept_size;
+ if (kept_section->find_comdat_section(mname, &kept_shndx,
+ &kept_size))
+ {
+ // We don't keep a mapping for this section if
+ // it has a different size. The mapping is only
+ // used for relocation processing, and we don't
+ // want to treat the sections as similar if the
+ // sizes are different. Checking the section
+ // size is the approach used by the GNU linker.
+ if (kept_size == member_shdr.get_sh_size())
+ this->set_kept_comdat_section(shndx, kept_object,
+ kept_shndx);
+ }
+ }
+ else
+ {
+ // The existing section is a linkonce section. Add
+ // a mapping if there is exactly one section in the
+ // group (which is true when COUNT == 2) and if it
+ // is the same size.
+ if (count == 2
+ && (kept_section->linkonce_size()
+ == member_shdr.get_sh_size()))
+ this->set_kept_comdat_section(shndx, kept_object,
+ kept_section->shndx());
+ }
+ }
+ }
+ }
+
+ if (relocate_group)
+ layout->layout_group(symtab, this, index, name, signature.c_str(),
+ shdr, flags, &shndxes);
+
+ return include_group;
+}
+
+// Whether to include a linkonce section in the link. NAME is the
+// name of the section and SHDR is the section header.
+
+// Linkonce sections are a GNU extension implemented in the original
+// GNU linker before section groups were defined. The semantics are
+// that we only include one linkonce section with a given name. The
+// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
+// where T is the type of section and SYMNAME is the name of a symbol.
+// In an attempt to make linkonce sections interact well with section
+// groups, we try to identify SYMNAME and use it like a section group
+// signature. We want to block section groups with that signature,
+// but not other linkonce sections with that signature. We also use
+// the full name of the linkonce section as a normal section group
+// signature.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::include_linkonce_section(
+ Layout* layout,
+ unsigned int index,
+ const char* name,
+ const elfcpp::Shdr<size, big_endian>& shdr)
+{
+ typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
+ // In general the symbol name we want will be the string following
+ // the last '.'. However, we have to handle the case of
+ // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
+ // some versions of gcc. So we use a heuristic: if the name starts
+ // with ".gnu.linkonce.t.", we use everything after that. Otherwise
+ // we look for the last '.'. We can't always simply skip
+ // ".gnu.linkonce.X", because we have to deal with cases like
+ // ".gnu.linkonce.d.rel.ro.local".
+ const char* const linkonce_t = ".gnu.linkonce.t.";
+ const char* symname;
+ if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
+ symname = name + strlen(linkonce_t);
+ else
+ symname = strrchr(name, '.') + 1;
+ std::string sig1(symname);
+ std::string sig2(name);
+ Kept_section* kept1;
+ Kept_section* kept2;
+ bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
+ false, &kept1);
+ bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
+ true, &kept2);
+
+ if (!include2)
+ {
+ // We are not including this section because we already saw the
+ // name of the section as a signature. This normally implies
+ // that the kept section is another linkonce section. If it is
+ // the same size, record it as the section which corresponds to
+ // this one.
+ if (kept2->object() != NULL
+ && !kept2->is_comdat()
+ && kept2->linkonce_size() == sh_size)
+ this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
+ }
+ else if (!include1)
+ {
+ // The section is being discarded on the basis of its symbol
+ // name. This means that the corresponding kept section was
+ // part of a comdat group, and it will be difficult to identify
+ // the specific section within that group that corresponds to
+ // this linkonce section. We'll handle the simple case where
+ // the group has only one member section. Otherwise, it's not
+ // worth the effort.
+ unsigned int kept_shndx;
+ uint64_t kept_size;
+ if (kept1->object() != NULL
+ && kept1->is_comdat()
+ && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
+ && kept_size == sh_size)
+ this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
+ }
+ else
+ {
+ kept1->set_linkonce_size(sh_size);
+ kept2->set_linkonce_size(sh_size);
+ }
+
+ return include1 && include2;
+}
+
+// Layout an input section.
+
+template<int size, bool big_endian>
+inline void
+Sized_relobj_file<size, big_endian>::layout_section(
+ Layout* layout,
+ unsigned int shndx,
+ const char* name,
+ const typename This::Shdr& shdr,
+ unsigned int reloc_shndx,
+ unsigned int reloc_type)
+{
+ off_t offset;
+ Output_section* os = layout->layout(this, shndx, name, shdr,
+ reloc_shndx, reloc_type, &offset);
+
+ this->output_sections()[shndx] = os;
+ if (offset == -1)
+ this->section_offsets()[shndx] = invalid_address;
+ else
+ this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
+
+ // If this section requires special handling, and if there are
+ // relocs that apply to it, then we must do the special handling
+ // before we apply the relocs.
+ if (offset == -1 && reloc_shndx != 0)
+ this->set_relocs_must_follow_section_writes();
+}
+
+// Layout an input .eh_frame section.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
+ Layout* layout,
+ const unsigned char* symbols_data,
+ section_size_type symbols_size,
+ const unsigned char* symbol_names_data,
+ section_size_type symbol_names_size,
+ unsigned int shndx,
+ const typename This::Shdr& shdr,
+ unsigned int reloc_shndx,
+ unsigned int reloc_type)
+{
+ gold_assert(this->has_eh_frame_);
+
+ off_t offset;
+ Output_section* os = layout->layout_eh_frame(this,
+ symbols_data,
+ symbols_size,
+ symbol_names_data,
+ symbol_names_size,
+ shndx,
+ shdr,
+ reloc_shndx,
+ reloc_type,
+ &offset);
+ this->output_sections()[shndx] = os;
+ if (os == NULL || offset == -1)
+ {
+ // An object can contain at most one section holding exception
+ // frame information.
+ gold_assert(this->discarded_eh_frame_shndx_ == -1U);
+ this->discarded_eh_frame_shndx_ = shndx;
+ this->section_offsets()[shndx] = invalid_address;
+ }
+ else
+ this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
+
+ // If this section requires special handling, and if there are
+ // relocs that aply to it, then we must do the special handling
+ // before we apply the relocs.
+ if (os != NULL && offset == -1 && reloc_shndx != 0)
+ this->set_relocs_must_follow_section_writes();
+}
+
+// Lay out the input sections. We walk through the sections and check
+// whether they should be included in the link. If they should, we
+// pass them to the Layout object, which will return an output section
+// and an offset.
+// This function is called twice sometimes, two passes, when mapping
+// of input sections to output sections must be delayed.
+// This is true for the following :
+// * Garbage collection (--gc-sections): Some input sections will be
+// discarded and hence the assignment must wait until the second pass.
+// In the first pass, it is for setting up some sections as roots to
+// a work-list for --gc-sections and to do comdat processing.
+// * Identical Code Folding (--icf=<safe,all>): Some input sections
+// will be folded and hence the assignment must wait.
+// * Using plugins to map some sections to unique segments: Mapping
+// some sections to unique segments requires mapping them to unique
+// output sections too. This can be done via plugins now and this
+// information is not available in the first pass.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
+ Layout* layout,
+ Read_symbols_data* sd)
+{
+ const unsigned int shnum = this->shnum();
+
+ /* Should this function be called twice? */
+ bool is_two_pass = (parameters->options().gc_sections()
+ || parameters->options().icf_enabled()
+ || layout->is_unique_segment_for_sections_specified());
+
+ /* Only one of is_pass_one and is_pass_two is true. Both are false when
+ a two-pass approach is not needed. */
+ bool is_pass_one = false;
+ bool is_pass_two = false;
+
+ Symbols_data* gc_sd = NULL;
+
+ /* Check if do_layout needs to be two-pass. If so, find out which pass
+ should happen. In the first pass, the data in sd is saved to be used
+ later in the second pass. */
+ if (is_two_pass)
+ {
+ gc_sd = this->get_symbols_data();
+ if (gc_sd == NULL)
+ {
+ gold_assert(sd != NULL);
+ is_pass_one = true;
+ }
+ else
+ {
+ if (parameters->options().gc_sections())
+ gold_assert(symtab->gc()->is_worklist_ready());
+ if (parameters->options().icf_enabled())
+ gold_assert(symtab->icf()->is_icf_ready());
+ is_pass_two = true;
+ }
+ }
+
+ if (shnum == 0)
+ return;
+
+ if (is_pass_one)
+ {
+ // During garbage collection save the symbols data to use it when
+ // re-entering this function.
+ gc_sd = new Symbols_data;
+ this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
+ this->set_symbols_data(gc_sd);
+ }
+
+ const unsigned char* section_headers_data = NULL;
+ section_size_type section_names_size;
+ const unsigned char* symbols_data = NULL;
+ section_size_type symbols_size;
+ const unsigned char* symbol_names_data = NULL;
+ section_size_type symbol_names_size;
+
+ if (is_two_pass)
+ {
+ section_headers_data = gc_sd->section_headers_data;
+ section_names_size = gc_sd->section_names_size;
+ symbols_data = gc_sd->symbols_data;
+ symbols_size = gc_sd->symbols_size;
+ symbol_names_data = gc_sd->symbol_names_data;
+ symbol_names_size = gc_sd->symbol_names_size;
+ }
+ else
+ {
+ section_headers_data = sd->section_headers->data();
+ section_names_size = sd->section_names_size;
+ if (sd->symbols != NULL)
+ symbols_data = sd->symbols->data();
+ symbols_size = sd->symbols_size;
+ if (sd->symbol_names != NULL)
+ symbol_names_data = sd->symbol_names->data();
+ symbol_names_size = sd->symbol_names_size;
+ }
+
+ // Get the section headers.
+ const unsigned char* shdrs = section_headers_data;
+ const unsigned char* pshdrs;
+
+ // Get the section names.
+ const unsigned char* pnamesu = (is_two_pass
+ ? gc_sd->section_names_data
+ : sd->section_names->data());
+
+ const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+ // If any input files have been claimed by plugins, we need to defer
+ // actual layout until the replacement files have arrived.
+ const bool should_defer_layout =
+ (parameters->options().has_plugins()
+ && parameters->options().plugins()->should_defer_layout());
+ unsigned int num_sections_to_defer = 0;
+
+ // For each section, record the index of the reloc section if any.
+ // Use 0 to mean that there is no reloc section, -1U to mean that
+ // there is more than one.
+ std::vector<unsigned int> reloc_shndx(shnum, 0);
+ std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
+ // Skip the first, dummy, section.
+ pshdrs = shdrs + This::shdr_size;
+ for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
+ {
+ typename This::Shdr shdr(pshdrs);
+
+ // Count the number of sections whose layout will be deferred.
+ if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
+ ++num_sections_to_defer;
+
+ unsigned int sh_type = shdr.get_sh_type();
+ if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
+ {
+ unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
+ if (target_shndx == 0 || target_shndx >= shnum)
+ {
+ this->error(_("relocation section %u has bad info %u"),
+ i, target_shndx);
+ continue;
+ }
+
+ if (reloc_shndx[target_shndx] != 0)
+ reloc_shndx[target_shndx] = -1U;
+ else
+ {
+ reloc_shndx[target_shndx] = i;
+ reloc_type[target_shndx] = sh_type;
+ }
+ }
+ }
+
+ Output_sections& out_sections(this->output_sections());
+ std::vector<Address>& out_section_offsets(this->section_offsets());
+
+ if (!is_pass_two)
+ {
+ out_sections.resize(shnum);
+ out_section_offsets.resize(shnum);
+ }
+
+ // If we are only linking for symbols, then there is nothing else to
+ // do here.
+ if (this->input_file()->just_symbols())
+ {
+ if (!is_pass_two)
+ {
+ delete sd->section_headers;
+ sd->section_headers = NULL;
+ delete sd->section_names;
+ sd->section_names = NULL;
+ }
+ return;
+ }
+
+ if (num_sections_to_defer > 0)
+ {
+ parameters->options().plugins()->add_deferred_layout_object(this);
+ this->deferred_layout_.reserve(num_sections_to_defer);
+ }
+
+ // Whether we've seen a .note.GNU-stack section.
+ bool seen_gnu_stack = false;
+ // The flags of a .note.GNU-stack section.
+ uint64_t gnu_stack_flags = 0;
+
+ // Keep track of which sections to omit.
+ std::vector<bool> omit(shnum, false);
+
+ // Keep track of reloc sections when emitting relocations.
+ const bool relocatable = parameters->options().relocatable();
+ const bool emit_relocs = (relocatable
+ || parameters->options().emit_relocs());
+ std::vector<unsigned int> reloc_sections;
+
+ // Keep track of .eh_frame sections.
+ std::vector<unsigned int> eh_frame_sections;
+
+ // Keep track of .debug_info and .debug_types sections.
+ std::vector<unsigned int> debug_info_sections;
+ std::vector<unsigned int> debug_types_sections;
+
+ // Skip the first, dummy, section.
+ pshdrs = shdrs + This::shdr_size;
+ for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
+ {
+ typename This::Shdr shdr(pshdrs);
+
+ if (shdr.get_sh_name() >= section_names_size)
+ {
+ this->error(_("bad section name offset for section %u: %lu"),
+ i, static_cast<unsigned long>(shdr.get_sh_name()));
+ return;
+ }
+
+ const char* name = pnames + shdr.get_sh_name();
+
+ if (!is_pass_two)
+ {
+ if (this->handle_gnu_warning_section(name, i, symtab))
+ {
+ if (!relocatable && !parameters->options().shared())
+ omit[i] = true;
+ }
+
+ // The .note.GNU-stack section is special. It gives the
+ // protection flags that this object file requires for the stack
+ // in memory.
+ if (strcmp(name, ".note.GNU-stack") == 0)
+ {
+ seen_gnu_stack = true;
+ gnu_stack_flags |= shdr.get_sh_flags();
+ omit[i] = true;
+ }
+
+ // The .note.GNU-split-stack section is also special. It
+ // indicates that the object was compiled with
+ // -fsplit-stack.
+ if (this->handle_split_stack_section(name))
+ {
+ if (!relocatable && !parameters->options().shared())
+ omit[i] = true;
+ }
+
+ // Skip attributes section.
+ if (parameters->target().is_attributes_section(name))
+ {
+ omit[i] = true;
+ }
+
+ bool discard = omit[i];
+ if (!discard)
+ {
+ if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
+ {
+ if (!this->include_section_group(symtab, layout, i, name,
+ shdrs, pnames,
+ section_names_size,
+ &omit))
+ discard = true;
+ }
+ else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
+ && Layout::is_linkonce(name))
+ {
+ if (!this->include_linkonce_section(layout, i, name, shdr))
+ discard = true;
+ }
+ }
+
+ // Add the section to the incremental inputs layout.
+ Incremental_inputs* incremental_inputs = layout->incremental_inputs();
+ if (incremental_inputs != NULL
+ && !discard
+ && can_incremental_update(shdr.get_sh_type()))
+ {
+ off_t sh_size = shdr.get_sh_size();
+ section_size_type uncompressed_size;
+ if (this->section_is_compressed(i, &uncompressed_size))
+ sh_size = uncompressed_size;
+ incremental_inputs->report_input_section(this, i, name, sh_size);
+ }
+
+ if (discard)
+ {
+ // Do not include this section in the link.
+ out_sections[i] = NULL;
+ out_section_offsets[i] = invalid_address;
+ continue;
+ }
+ }
+
+ if (is_pass_one && parameters->options().gc_sections())
+ {
+ if (this->is_section_name_included(name)
+ || layout->keep_input_section (this, name)
+ || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
+ || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
+ {
+ symtab->gc()->worklist().push(Section_id(this, i));
+ }
+ // If the section name XXX can be represented as a C identifier
+ // it cannot be discarded if there are references to
+ // __start_XXX and __stop_XXX symbols. These need to be
+ // specially handled.
+ if (is_cident(name))
+ {
+ symtab->gc()->add_cident_section(name, Section_id(this, i));
+ }
+ }
+
+ // When doing a relocatable link we are going to copy input
+ // reloc sections into the output. We only want to copy the
+ // ones associated with sections which are not being discarded.
+ // However, we don't know that yet for all sections. So save
+ // reloc sections and process them later. Garbage collection is
+ // not triggered when relocatable code is desired.
+ if (emit_relocs
+ && (shdr.get_sh_type() == elfcpp::SHT_REL
+ || shdr.get_sh_type() == elfcpp::SHT_RELA))
+ {
+ reloc_sections.push_back(i);
+ continue;
+ }
+
+ if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
+ continue;
+
+ // The .eh_frame section is special. It holds exception frame
+ // information that we need to read in order to generate the
+ // exception frame header. We process these after all the other
+ // sections so that the exception frame reader can reliably
+ // determine which sections are being discarded, and discard the
+ // corresponding information.
+ if (!relocatable
+ && strcmp(name, ".eh_frame") == 0
+ && this->check_eh_frame_flags(&shdr))
+ {
+ if (is_pass_one)
+ {
+ out_sections[i] = reinterpret_cast<Output_section*>(1);
+ out_section_offsets[i] = invalid_address;
+ }
+ else if (should_defer_layout)
+ this->deferred_layout_.push_back(Deferred_layout(i, name,
+ pshdrs,
+ reloc_shndx[i],
+ reloc_type[i]));
+ else
+ eh_frame_sections.push_back(i);
+ continue;
+ }
+
+ if (is_pass_two && parameters->options().gc_sections())
+ {
+ // This is executed during the second pass of garbage
+ // collection. do_layout has been called before and some
+ // sections have been already discarded. Simply ignore
+ // such sections this time around.
+ if (out_sections[i] == NULL)
+ {
+ gold_assert(out_section_offsets[i] == invalid_address);
+ continue;
+ }
+ if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
+ && symtab->gc()->is_section_garbage(this, i))
+ {
+ if (parameters->options().print_gc_sections())
+ gold_info(_("%s: removing unused section from '%s'"
+ " in file '%s'"),
+ program_name, this->section_name(i).c_str(),
+ this->name().c_str());
+ out_sections[i] = NULL;
+ out_section_offsets[i] = invalid_address;
+ continue;
+ }
+ }
+
+ if (is_pass_two && parameters->options().icf_enabled())
+ {
+ if (out_sections[i] == NULL)
+ {
+ gold_assert(out_section_offsets[i] == invalid_address);
+ continue;
+ }
+ if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
+ && symtab->icf()->is_section_folded(this, i))
+ {
+ if (parameters->options().print_icf_sections())
+ {
+ Section_id folded =
+ symtab->icf()->get_folded_section(this, i);
+ Relobj* folded_obj =
+ reinterpret_cast<Relobj*>(folded.first);
+ gold_info(_("%s: ICF folding section '%s' in file '%s'"
+ "into '%s' in file '%s'"),
+ program_name, this->section_name(i).c_str(),
+ this->name().c_str(),
+ folded_obj->section_name(folded.second).c_str(),
+ folded_obj->name().c_str());
+ }
+ out_sections[i] = NULL;
+ out_section_offsets[i] = invalid_address;
+ continue;
+ }
+ }
+
+ // Defer layout here if input files are claimed by plugins. When gc
+ // is turned on this function is called twice. For the second call
+ // should_defer_layout should be false.
+ if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
+ {
+ gold_assert(!is_pass_two);
+ this->deferred_layout_.push_back(Deferred_layout(i, name,
+ pshdrs,
+ reloc_shndx[i],
+ reloc_type[i]));
+ // Put dummy values here; real values will be supplied by
+ // do_layout_deferred_sections.
+ out_sections[i] = reinterpret_cast<Output_section*>(2);
+ out_section_offsets[i] = invalid_address;
+ continue;
+ }
+
+ // During gc_pass_two if a section that was previously deferred is
+ // found, do not layout the section as layout_deferred_sections will
+ // do it later from gold.cc.
+ if (is_pass_two
+ && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
+ continue;
+
+ if (is_pass_one)
+ {
+ // This is during garbage collection. The out_sections are
+ // assigned in the second call to this function.
+ out_sections[i] = reinterpret_cast<Output_section*>(1);
+ out_section_offsets[i] = invalid_address;
+ }
+ else
+ {
+ // When garbage collection is switched on the actual layout
+ // only happens in the second call.
+ this->layout_section(layout, i, name, shdr, reloc_shndx[i],
+ reloc_type[i]);
+
+ // When generating a .gdb_index section, we do additional
+ // processing of .debug_info and .debug_types sections after all
+ // the other sections for the same reason as above.
+ if (!relocatable
+ && parameters->options().gdb_index()
+ && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
+ {
+ if (strcmp(name, ".debug_info") == 0
+ || strcmp(name, ".zdebug_info") == 0)
+ debug_info_sections.push_back(i);
+ else if (strcmp(name, ".debug_types") == 0
+ || strcmp(name, ".zdebug_types") == 0)
+ debug_types_sections.push_back(i);
+ }
+ }
+ }
+
+ if (!is_pass_two)
+ layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
+
+ // When doing a relocatable link handle the reloc sections at the
+ // end. Garbage collection and Identical Code Folding is not
+ // turned on for relocatable code.
+ if (emit_relocs)
+ this->size_relocatable_relocs();
+
+ gold_assert(!is_two_pass || reloc_sections.empty());
+
+ for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
+ p != reloc_sections.end();
+ ++p)
+ {
+ unsigned int i = *p;
+ const unsigned char* pshdr;
+ pshdr = section_headers_data + i * This::shdr_size;
+ typename This::Shdr shdr(pshdr);
+
+ unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
+ if (data_shndx >= shnum)
+ {
+ // We already warned about this above.
+ continue;
+ }
+
+ Output_section* data_section = out_sections[data_shndx];
+ if (data_section == reinterpret_cast<Output_section*>(2))
+ {
+ // The layout for the data section was deferred, so we need
+ // to defer the relocation section, too.
+ const char* name = pnames + shdr.get_sh_name();
+ this->deferred_layout_relocs_.push_back(
+ Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
+ out_sections[i] = reinterpret_cast<Output_section*>(2);
+ out_section_offsets[i] = invalid_address;
+ continue;
+ }
+ if (data_section == NULL)
+ {
+ out_sections[i] = NULL;
+ out_section_offsets[i] = invalid_address;
+ continue;
+ }
+
+ Relocatable_relocs* rr = new Relocatable_relocs();
+ this->set_relocatable_relocs(i, rr);
+
+ Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
+ rr);
+ out_sections[i] = os;
+ out_section_offsets[i] = invalid_address;
+ }
+
+ // Handle the .eh_frame sections at the end.
+ gold_assert(!is_pass_one || eh_frame_sections.empty());
+ for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
+ p != eh_frame_sections.end();
+ ++p)
+ {
+ unsigned int i = *p;
+ const unsigned char* pshdr;
+ pshdr = section_headers_data + i * This::shdr_size;
+ typename This::Shdr shdr(pshdr);
+
+ this->layout_eh_frame_section(layout,
+ symbols_data,
+ symbols_size,
+ symbol_names_data,
+ symbol_names_size,
+ i,
+ shdr,
+ reloc_shndx[i],
+ reloc_type[i]);
+ }
+
+ // When building a .gdb_index section, scan the .debug_info and
+ // .debug_types sections.
+ gold_assert(!is_pass_one
+ || (debug_info_sections.empty() && debug_types_sections.empty()));
+ for (std::vector<unsigned int>::const_iterator p
+ = debug_info_sections.begin();
+ p != debug_info_sections.end();
+ ++p)
+ {
+ unsigned int i = *p;
+ layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
+ i, reloc_shndx[i], reloc_type[i]);
+ }
+ for (std::vector<unsigned int>::const_iterator p
+ = debug_types_sections.begin();
+ p != debug_types_sections.end();
+ ++p)
+ {
+ unsigned int i = *p;
+ layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
+ i, reloc_shndx[i], reloc_type[i]);
+ }
+
+ if (is_pass_two)
+ {
+ delete[] gc_sd->section_headers_data;
+ delete[] gc_sd->section_names_data;
+ delete[] gc_sd->symbols_data;
+ delete[] gc_sd->symbol_names_data;
+ this->set_symbols_data(NULL);
+ }
+ else
+ {
+ delete sd->section_headers;
+ sd->section_headers = NULL;
+ delete sd->section_names;
+ sd->section_names = NULL;
+ }
+}
+
+// Layout sections whose layout was deferred while waiting for
+// input files from a plugin.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
+{
+ typename std::vector<Deferred_layout>::iterator deferred;
+
+ for (deferred = this->deferred_layout_.begin();
+ deferred != this->deferred_layout_.end();
+ ++deferred)
+ {
+ typename This::Shdr shdr(deferred->shdr_data_);
+
+ if (!parameters->options().relocatable()
+ && deferred->name_ == ".eh_frame"
+ && this->check_eh_frame_flags(&shdr))
+ {
+ // Checking is_section_included is not reliable for
+ // .eh_frame sections, because they do not have an output
+ // section. This is not a problem normally because we call
+ // layout_eh_frame_section unconditionally, but when
+ // deferring sections that is not true. We don't want to
+ // keep all .eh_frame sections because that will cause us to
+ // keep all sections that they refer to, which is the wrong
+ // way around. Instead, the eh_frame code will discard
+ // .eh_frame sections that refer to discarded sections.
+
+ // Reading the symbols again here may be slow.
+ Read_symbols_data sd;
+ this->read_symbols(&sd);
+ this->layout_eh_frame_section(layout,
+ sd.symbols->data(),
+ sd.symbols_size,
+ sd.symbol_names->data(),
+ sd.symbol_names_size,
+ deferred->shndx_,
+ shdr,
+ deferred->reloc_shndx_,
+ deferred->reloc_type_);
+ continue;
+ }
+
+ // If the section is not included, it is because the garbage collector
+ // decided it is not needed. Avoid reverting that decision.
+ if (!this->is_section_included(deferred->shndx_))
+ continue;
+
+ this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
+ shdr, deferred->reloc_shndx_,
+ deferred->reloc_type_);
+ }
+
+ this->deferred_layout_.clear();
+
+ // Now handle the deferred relocation sections.
+
+ Output_sections& out_sections(this->output_sections());
+ std::vector<Address>& out_section_offsets(this->section_offsets());
+
+ for (deferred = this->deferred_layout_relocs_.begin();
+ deferred != this->deferred_layout_relocs_.end();
+ ++deferred)
+ {
+ unsigned int shndx = deferred->shndx_;
+ typename This::Shdr shdr(deferred->shdr_data_);
+ unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
+
+ Output_section* data_section = out_sections[data_shndx];
+ if (data_section == NULL)
+ {
+ out_sections[shndx] = NULL;
+ out_section_offsets[shndx] = invalid_address;
+ continue;
+ }
+
+ Relocatable_relocs* rr = new Relocatable_relocs();
+ this->set_relocatable_relocs(shndx, rr);
+
+ Output_section* os = layout->layout_reloc(this, shndx, shdr,
+ data_section, rr);
+ out_sections[shndx] = os;
+ out_section_offsets[shndx] = invalid_address;
+ }
+}
+
+// Add the symbols to the symbol table.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
+ Read_symbols_data* sd,
+ Layout*)
+{
+ if (sd->symbols == NULL)
+ {
+ gold_assert(sd->symbol_names == NULL);
+ return;
+ }
+
+ const int sym_size = This::sym_size;
+ size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
+ / sym_size);
+ if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
+ {
+ this->error(_("size of symbols is not multiple of symbol size"));
+ return;
+ }
+
+ this->symbols_.resize(symcount);
+
+ const char* sym_names =
+ reinterpret_cast<const char*>(sd->symbol_names->data());
+ symtab->add_from_relobj(this,
+ sd->symbols->data() + sd->external_symbols_offset,
+ symcount, this->local_symbol_count_,
+ sym_names, sd->symbol_names_size,
+ &this->symbols_,
+ &this->defined_count_);
+
+ delete sd->symbols;
+ sd->symbols = NULL;
+ delete sd->symbol_names;
+ sd->symbol_names = NULL;
+}
+
+// Find out if this object, that is a member of a lib group, should be included
+// in the link. We check every symbol defined by this object. If the symbol
+// table has a strong undefined reference to that symbol, we have to include
+// the object.
+
+template<int size, bool big_endian>
+Archive::Should_include
+Sized_relobj_file<size, big_endian>::do_should_include_member(
+ Symbol_table* symtab,
+ Layout* layout,
+ Read_symbols_data* sd,
+ std::string* why)
+{
+ char* tmpbuf = NULL;
+ size_t tmpbuflen = 0;
+ const char* sym_names =
+ reinterpret_cast<const char*>(sd->symbol_names->data());
+ const unsigned char* syms =
+ sd->symbols->data() + sd->external_symbols_offset;
+ const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
+ size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
+ / sym_size);
+
+ const unsigned char* p = syms;
+
+ for (size_t i = 0; i < symcount; ++i, p += sym_size)
+ {
+ elfcpp::Sym<size, big_endian> sym(p);
+ unsigned int st_shndx = sym.get_st_shndx();
+ if (st_shndx == elfcpp::SHN_UNDEF)
+ continue;
+
+ unsigned int st_name = sym.get_st_name();
+ const char* name = sym_names + st_name;
+ Symbol* symbol;
+ Archive::Should_include t = Archive::should_include_member(symtab,
+ layout,
+ name,
+ &symbol, why,
+ &tmpbuf,
+ &tmpbuflen);
+ if (t == Archive::SHOULD_INCLUDE_YES)
+ {
+ if (tmpbuf != NULL)
+ free(tmpbuf);
+ return t;
+ }
+ }
+ if (tmpbuf != NULL)
+ free(tmpbuf);
+ return Archive::SHOULD_INCLUDE_UNKNOWN;
+}
+
+// Iterate over global defined symbols, calling a visitor class V for each.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
+ Read_symbols_data* sd,
+ Library_base::Symbol_visitor_base* v)
+{
+ const char* sym_names =
+ reinterpret_cast<const char*>(sd->symbol_names->data());
+ const unsigned char* syms =
+ sd->symbols->data() + sd->external_symbols_offset;
+ const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
+ size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
+ / sym_size);
+ const unsigned char* p = syms;
+
+ for (size_t i = 0; i < symcount; ++i, p += sym_size)
+ {
+ elfcpp::Sym<size, big_endian> sym(p);
+ if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
+ v->visit(sym_names + sym.get_st_name());
+ }
+}
+
+// Return whether the local symbol SYMNDX has a PLT offset.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::local_has_plt_offset(
+ unsigned int symndx) const
+{
+ typename Local_plt_offsets::const_iterator p =
+ this->local_plt_offsets_.find(symndx);
+ return p != this->local_plt_offsets_.end();
+}
+
+// Get the PLT offset of a local symbol.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj_file<size, big_endian>::do_local_plt_offset(
+ unsigned int symndx) const
+{
+ typename Local_plt_offsets::const_iterator p =
+ this->local_plt_offsets_.find(symndx);
+ gold_assert(p != this->local_plt_offsets_.end());
+ return p->second;
+}
+
+// Set the PLT offset of a local symbol.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::set_local_plt_offset(
+ unsigned int symndx, unsigned int plt_offset)
+{
+ std::pair<typename Local_plt_offsets::iterator, bool> ins =
+ this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
+ gold_assert(ins.second);
+}
+
+// First pass over the local symbols. Here we add their names to
+// *POOL and *DYNPOOL, and we store the symbol value in
+// THIS->LOCAL_VALUES_. This function is always called from a
+// singleton thread. This is followed by a call to
+// finalize_local_symbols.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
+ Stringpool* dynpool)
+{
+ gold_assert(this->symtab_shndx_ != -1U);
+ if (this->symtab_shndx_ == 0)
+ {
+ // This object has no symbols. Weird but legal.
+ return;
+ }
+
+ // Read the symbol table section header.
+ const unsigned int symtab_shndx = this->symtab_shndx_;
+ typename This::Shdr symtabshdr(this,
+ this->elf_file_.section_header(symtab_shndx));
+ gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+ // Read the local symbols.
+ const int sym_size = This::sym_size;
+ const unsigned int loccount = this->local_symbol_count_;
+ gold_assert(loccount == symtabshdr.get_sh_info());
+ off_t locsize = loccount * sym_size;
+ const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+ locsize, true, true);
+
+ // Read the symbol names.
+ const unsigned int strtab_shndx =
+ this->adjust_shndx(symtabshdr.get_sh_link());
+ section_size_type strtab_size;
+ const unsigned char* pnamesu = this->section_contents(strtab_shndx,
+ &strtab_size,
+ true);
+ const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+ // Loop over the local symbols.
+
+ const Output_sections& out_sections(this->output_sections());
+ unsigned int shnum = this->shnum();
+ unsigned int count = 0;
+ unsigned int dyncount = 0;
+ // Skip the first, dummy, symbol.
+ psyms += sym_size;
+ bool strip_all = parameters->options().strip_all();
+ bool discard_all = parameters->options().discard_all();
+ bool discard_locals = parameters->options().discard_locals();
+ for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
+ {
+ elfcpp::Sym<size, big_endian> sym(psyms);
+
+ Symbol_value<size>& lv(this->local_values_[i]);
+
+ bool is_ordinary;
+ unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
+ &is_ordinary);
+ lv.set_input_shndx(shndx, is_ordinary);
+
+ if (sym.get_st_type() == elfcpp::STT_SECTION)
+ lv.set_is_section_symbol();
+ else if (sym.get_st_type() == elfcpp::STT_TLS)
+ lv.set_is_tls_symbol();
+ else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
+ lv.set_is_ifunc_symbol();
+
+ // Save the input symbol value for use in do_finalize_local_symbols().
+ lv.set_input_value(sym.get_st_value());
+
+ // Decide whether this symbol should go into the output file.
+
+ if ((shndx < shnum && out_sections[shndx] == NULL)
+ || shndx == this->discarded_eh_frame_shndx_)
+ {
+ lv.set_no_output_symtab_entry();
+ gold_assert(!lv.needs_output_dynsym_entry());
+ continue;
+ }
+
+ if (sym.get_st_type() == elfcpp::STT_SECTION
+ || !this->adjust_local_symbol(&lv))
+ {
+ lv.set_no_output_symtab_entry();
+ gold_assert(!lv.needs_output_dynsym_entry());
+ continue;
+ }
+
+ if (sym.get_st_name() >= strtab_size)
+ {
+ this->error(_("local symbol %u section name out of range: %u >= %u"),
+ i, sym.get_st_name(),
+ static_cast<unsigned int>(strtab_size));
+ lv.set_no_output_symtab_entry();
+ continue;
+ }
+
+ const char* name = pnames + sym.get_st_name();
+
+ // If needed, add the symbol to the dynamic symbol table string pool.
+ if (lv.needs_output_dynsym_entry())
+ {
+ dynpool->add(name, true, NULL);
+ ++dyncount;
+ }
+
+ if (strip_all
+ || (discard_all && lv.may_be_discarded_from_output_symtab()))
+ {
+ lv.set_no_output_symtab_entry();
+ continue;
+ }
+
+ // If --discard-locals option is used, discard all temporary local
+ // symbols. These symbols start with system-specific local label
+ // prefixes, typically .L for ELF system. We want to be compatible
+ // with GNU ld so here we essentially use the same check in
+ // bfd_is_local_label(). The code is different because we already
+ // know that:
+ //
+ // - the symbol is local and thus cannot have global or weak binding.
+ // - the symbol is not a section symbol.
+ // - the symbol has a name.
+ //
+ // We do not discard a symbol if it needs a dynamic symbol entry.
+ if (discard_locals
+ && sym.get_st_type() != elfcpp::STT_FILE
+ && !lv.needs_output_dynsym_entry()
+ && lv.may_be_discarded_from_output_symtab()
+ && parameters->target().is_local_label_name(name))
+ {
+ lv.set_no_output_symtab_entry();
+ continue;
+ }
+
+ // Discard the local symbol if -retain_symbols_file is specified
+ // and the local symbol is not in that file.
+ if (!parameters->options().should_retain_symbol(name))
+ {
+ lv.set_no_output_symtab_entry();
+ continue;
+ }
+
+ // Add the symbol to the symbol table string pool.
+ pool->add(name, true, NULL);
+ ++count;
+ }
+
+ this->output_local_symbol_count_ = count;
+ this->output_local_dynsym_count_ = dyncount;
+}
+
+// Compute the final value of a local symbol.
+
+template<int size, bool big_endian>
+typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
+Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
+ unsigned int r_sym,
+ const Symbol_value<size>* lv_in,
+ Symbol_value<size>* lv_out,
+ bool relocatable,
+ const Output_sections& out_sections,
+ const std::vector<Address>& out_offsets,
+ const Symbol_table* symtab)
+{
+ // We are going to overwrite *LV_OUT, if it has a merged symbol value,
+ // we may have a memory leak.
+ gold_assert(lv_out->has_output_value());
+
+ bool is_ordinary;
+ unsigned int shndx = lv_in->input_shndx(&is_ordinary);
+
+ // Set the output symbol value.
+
+ if (!is_ordinary)
+ {
+ if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
+ lv_out->set_output_value(lv_in->input_value());
+ else
+ {
+ this->error(_("unknown section index %u for local symbol %u"),
+ shndx, r_sym);
+ lv_out->set_output_value(0);
+ return This::CFLV_ERROR;
+ }
+ }
+ else
+ {
+ if (shndx >= this->shnum())
+ {
+ this->error(_("local symbol %u section index %u out of range"),
+ r_sym, shndx);
+ lv_out->set_output_value(0);
+ return This::CFLV_ERROR;
+ }
+
+ Output_section* os = out_sections[shndx];
+ Address secoffset = out_offsets[shndx];
+ if (symtab->is_section_folded(this, shndx))
+ {
+ gold_assert(os == NULL && secoffset == invalid_address);
+ // Get the os of the section it is folded onto.
+ Section_id folded = symtab->icf()->get_folded_section(this,
+ shndx);
+ gold_assert(folded.first != NULL);
+ Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
+ <Sized_relobj_file<size, big_endian>*>(folded.first);
+ os = folded_obj->output_section(folded.second);
+ gold_assert(os != NULL);
+ secoffset = folded_obj->get_output_section_offset(folded.second);
+
+ // This could be a relaxed input section.
+ if (secoffset == invalid_address)
+ {
+ const Output_relaxed_input_section* relaxed_section =
+ os->find_relaxed_input_section(folded_obj, folded.second);
+ gold_assert(relaxed_section != NULL);
+ secoffset = relaxed_section->address() - os->address();
+ }
+ }
+
+ if (os == NULL)
+ {
+ // This local symbol belongs to a section we are discarding.
+ // In some cases when applying relocations later, we will
+ // attempt to match it to the corresponding kept section,
+ // so we leave the input value unchanged here.
+ return This::CFLV_DISCARDED;
+ }
+ else if (secoffset == invalid_address)
+ {
+ uint64_t start;
+
+ // This is a SHF_MERGE section or one which otherwise
+ // requires special handling.
+ if (shndx == this->discarded_eh_frame_shndx_)
+ {
+ // This local symbol belongs to a discarded .eh_frame
+ // section. Just treat it like the case in which
+ // os == NULL above.
+ gold_assert(this->has_eh_frame_);
+ return This::CFLV_DISCARDED;
+ }
+ else if (!lv_in->is_section_symbol())
+ {
+ // This is not a section symbol. We can determine
+ // the final value now.
+ lv_out->set_output_value(
+ os->output_address(this, shndx, lv_in->input_value()));
+ }
+ else if (!os->find_starting_output_address(this, shndx, &start))
+ {
+ // This is a section symbol, but apparently not one in a
+ // merged section. First check to see if this is a relaxed
+ // input section. If so, use its address. Otherwise just
+ // use the start of the output section. This happens with
+ // relocatable links when the input object has section
+ // symbols for arbitrary non-merge sections.
+ const Output_section_data* posd =
+ os->find_relaxed_input_section(this, shndx);
+ if (posd != NULL)
+ {
+ Address relocatable_link_adjustment =
+ relocatable ? os->address() : 0;
+ lv_out->set_output_value(posd->address()
+ - relocatable_link_adjustment);
+ }
+ else
+ lv_out->set_output_value(os->address());
+ }
+ else
+ {
+ // We have to consider the addend to determine the
+ // value to use in a relocation. START is the start
+ // of this input section. If we are doing a relocatable
+ // link, use offset from start output section instead of
+ // address.
+ Address adjusted_start =
+ relocatable ? start - os->address() : start;
+ Merged_symbol_value<size>* msv =
+ new Merged_symbol_value<size>(lv_in->input_value(),
+ adjusted_start);
+ lv_out->set_merged_symbol_value(msv);
+ }
+ }
+ else if (lv_in->is_tls_symbol())
+ lv_out->set_output_value(os->tls_offset()
+ + secoffset
+ + lv_in->input_value());
+ else
+ lv_out->set_output_value((relocatable ? 0 : os->address())
+ + secoffset
+ + lv_in->input_value());
+ }
+ return This::CFLV_OK;
+}
+
+// Compute final local symbol value. R_SYM is the index of a local
+// symbol in symbol table. LV points to a symbol value, which is
+// expected to hold the input value and to be over-written by the
+// final value. SYMTAB points to a symbol table. Some targets may want
+// to know would-be-finalized local symbol values in relaxation.
+// Hence we provide this method. Since this method updates *LV, a
+// callee should make a copy of the original local symbol value and
+// use the copy instead of modifying an object's local symbols before
+// everything is finalized. The caller should also free up any allocated
+// memory in the return value in *LV.
+template<int size, bool big_endian>
+typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
+Sized_relobj_file<size, big_endian>::compute_final_local_value(
+ unsigned int r_sym,
+ const Symbol_value<size>* lv_in,
+ Symbol_value<size>* lv_out,
+ const Symbol_table* symtab)
+{
+ // This is just a wrapper of compute_final_local_value_internal.
+ const bool relocatable = parameters->options().relocatable();
+ const Output_sections& out_sections(this->output_sections());
+ const std::vector<Address>& out_offsets(this->section_offsets());
+ return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
+ relocatable, out_sections,
+ out_offsets, symtab);
+}
+
+// Finalize the local symbols. Here we set the final value in
+// THIS->LOCAL_VALUES_ and set their output symbol table indexes.
+// This function is always called from a singleton thread. The actual
+// output of the local symbols will occur in a separate task.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
+ unsigned int index,
+ off_t off,
+ Symbol_table* symtab)
+{
+ gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
+
+ const unsigned int loccount = this->local_symbol_count_;
+ this->local_symbol_offset_ = off;
+
+ const bool relocatable = parameters->options().relocatable();
+ const Output_sections& out_sections(this->output_sections());
+ const std::vector<Address>& out_offsets(this->section_offsets());
+
+ for (unsigned int i = 1; i < loccount; ++i)
+ {
+ Symbol_value<size>* lv = &this->local_values_[i];
+
+ Compute_final_local_value_status cflv_status =
+ this->compute_final_local_value_internal(i, lv, lv, relocatable,
+ out_sections, out_offsets,
+ symtab);
+ switch (cflv_status)
+ {
+ case CFLV_OK:
+ if (!lv->is_output_symtab_index_set())
+ {
+ lv->set_output_symtab_index(index);
+ ++index;
+ }
+ break;
+ case CFLV_DISCARDED:
+ case CFLV_ERROR:
+ // Do nothing.
+ break;
+ default:
+ gold_unreachable();
+ }
+ }
+ return index;
+}
+
+// Set the output dynamic symbol table indexes for the local variables.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
+ unsigned int index)
+{
+ const unsigned int loccount = this->local_symbol_count_;
+ for (unsigned int i = 1; i < loccount; ++i)
+ {
+ Symbol_value<size>& lv(this->local_values_[i]);
+ if (lv.needs_output_dynsym_entry())
+ {
+ lv.set_output_dynsym_index(index);
+ ++index;
+ }
+ }
+ return index;
+}
+
+// Set the offset where local dynamic symbol information will be stored.
+// Returns the count of local symbols contributed to the symbol table by
+// this object.
+
+template<int size, bool big_endian>
+unsigned int
+Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
+{
+ gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
+ this->local_dynsym_offset_ = off;
+ return this->output_local_dynsym_count_;
+}
+
+// If Symbols_data is not NULL get the section flags from here otherwise
+// get it from the file.
+
+template<int size, bool big_endian>
+uint64_t
+Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
+{
+ Symbols_data* sd = this->get_symbols_data();
+ if (sd != NULL)
+ {
+ const unsigned char* pshdrs = sd->section_headers_data
+ + This::shdr_size * shndx;
+ typename This::Shdr shdr(pshdrs);
+ return shdr.get_sh_flags();
+ }
+ // If sd is NULL, read the section header from the file.
+ return this->elf_file_.section_flags(shndx);
+}
+
+// Get the section's ent size from Symbols_data. Called by get_section_contents
+// in icf.cc
+
+template<int size, bool big_endian>
+uint64_t
+Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
+{
+ Symbols_data* sd = this->get_symbols_data();
+ gold_assert(sd != NULL);
+
+ const unsigned char* pshdrs = sd->section_headers_data
+ + This::shdr_size * shndx;
+ typename This::Shdr shdr(pshdrs);
+ return shdr.get_sh_entsize();
+}
+
+// Write out the local symbols.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::write_local_symbols(
+ Output_file* of,
+ const Stringpool* sympool,
+ const Stringpool* dynpool,
+ Output_symtab_xindex* symtab_xindex,
+ Output_symtab_xindex* dynsym_xindex,
+ off_t symtab_off)
+{
+ const bool strip_all = parameters->options().strip_all();
+ if (strip_all)
+ {
+ if (this->output_local_dynsym_count_ == 0)
+ return;
+ this->output_local_symbol_count_ = 0;
+ }
+
+ gold_assert(this->symtab_shndx_ != -1U);
+ if (this->symtab_shndx_ == 0)
+ {
+ // This object has no symbols. Weird but legal.
+ return;
+ }
+
+ // Read the symbol table section header.
+ const unsigned int symtab_shndx = this->symtab_shndx_;
+ typename This::Shdr symtabshdr(this,
+ this->elf_file_.section_header(symtab_shndx));
+ gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+ const unsigned int loccount = this->local_symbol_count_;
+ gold_assert(loccount == symtabshdr.get_sh_info());
+
+ // Read the local symbols.
+ const int sym_size = This::sym_size;
+ off_t locsize = loccount * sym_size;
+ const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+ locsize, true, false);
+
+ // Read the symbol names.
+ const unsigned int strtab_shndx =
+ this->adjust_shndx(symtabshdr.get_sh_link());
+ section_size_type strtab_size;
+ const unsigned char* pnamesu = this->section_contents(strtab_shndx,
+ &strtab_size,
+ false);
+ const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+ // Get views into the output file for the portions of the symbol table
+ // and the dynamic symbol table that we will be writing.
+ off_t output_size = this->output_local_symbol_count_ * sym_size;
+ unsigned char* oview = NULL;
+ if (output_size > 0)
+ oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
+ output_size);
+
+ off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
+ unsigned char* dyn_oview = NULL;
+ if (dyn_output_size > 0)
+ dyn_oview = of->get_output_view(this->local_dynsym_offset_,
+ dyn_output_size);
+
+ const Output_sections out_sections(this->output_sections());
+
+ gold_assert(this->local_values_.size() == loccount);
+
+ unsigned char* ov = oview;
+ unsigned char* dyn_ov = dyn_oview;
+ psyms += sym_size;
+ for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
+ {
+ elfcpp::Sym<size, big_endian> isym(psyms);
+
+ Symbol_value<size>& lv(this->local_values_[i]);
+
+ bool is_ordinary;
+ unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
+ &is_ordinary);
+ if (is_ordinary)
+ {
+ gold_assert(st_shndx < out_sections.size());
+ if (out_sections[st_shndx] == NULL)
+ continue;
+ st_shndx = out_sections[st_shndx]->out_shndx();
+ if (st_shndx >= elfcpp::SHN_LORESERVE)
+ {
+ if (lv.has_output_symtab_entry())
+ symtab_xindex->add(lv.output_symtab_index(), st_shndx);
+ if (lv.has_output_dynsym_entry())
+ dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
+ st_shndx = elfcpp::SHN_XINDEX;
+ }
+ }
+
+ // Write the symbol to the output symbol table.
+ if (lv.has_output_symtab_entry())
+ {
+ elfcpp::Sym_write<size, big_endian> osym(ov);
+
+ gold_assert(isym.get_st_name() < strtab_size);
+ const char* name = pnames + isym.get_st_name();
+ osym.put_st_name(sympool->get_offset(name));
+ osym.put_st_value(this->local_values_[i].value(this, 0));
+ osym.put_st_size(isym.get_st_size());
+ osym.put_st_info(isym.get_st_info());
+ osym.put_st_other(isym.get_st_other());
+ osym.put_st_shndx(st_shndx);
+
+ ov += sym_size;
+ }
+
+ // Write the symbol to the output dynamic symbol table.
+ if (lv.has_output_dynsym_entry())
+ {
+ gold_assert(dyn_ov < dyn_oview + dyn_output_size);
+ elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
+
+ gold_assert(isym.get_st_name() < strtab_size);
+ const char* name = pnames + isym.get_st_name();
+ osym.put_st_name(dynpool->get_offset(name));
+ osym.put_st_value(this->local_values_[i].value(this, 0));
+ osym.put_st_size(isym.get_st_size());
+ osym.put_st_info(isym.get_st_info());
+ osym.put_st_other(isym.get_st_other());
+ osym.put_st_shndx(st_shndx);
+
+ dyn_ov += sym_size;
+ }
+ }
+
+
+ if (output_size > 0)
+ {
+ gold_assert(ov - oview == output_size);
+ of->write_output_view(symtab_off + this->local_symbol_offset_,
+ output_size, oview);
+ }
+
+ if (dyn_output_size > 0)
+ {
+ gold_assert(dyn_ov - dyn_oview == dyn_output_size);
+ of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
+ dyn_oview);
+ }
+}
+
+// Set *INFO to symbolic information about the offset OFFSET in the
+// section SHNDX. Return true if we found something, false if we
+// found nothing.
+
+template<int size, bool big_endian>
+bool
+Sized_relobj_file<size, big_endian>::get_symbol_location_info(
+ unsigned int shndx,
+ off_t offset,
+ Symbol_location_info* info)
+{
+ if (this->symtab_shndx_ == 0)
+ return false;
+
+ section_size_type symbols_size;
+ const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
+ &symbols_size,
+ false);
+
+ unsigned int symbol_names_shndx =
+ this->adjust_shndx(this->section_link(this->symtab_shndx_));
+ section_size_type names_size;
+ const unsigned char* symbol_names_u =
+ this->section_contents(symbol_names_shndx, &names_size, false);
+ const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
+
+ const int sym_size = This::sym_size;
+ const size_t count = symbols_size / sym_size;
+
+ const unsigned char* p = symbols;
+ for (size_t i = 0; i < count; ++i, p += sym_size)
+ {
+ elfcpp::Sym<size, big_endian> sym(p);
+
+ if (sym.get_st_type() == elfcpp::STT_FILE)
+ {
+ if (sym.get_st_name() >= names_size)
+ info->source_file = "(invalid)";
+ else
+ info->source_file = symbol_names + sym.get_st_name();
+ continue;
+ }
+
+ bool is_ordinary;
+ unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
+ &is_ordinary);
+ if (is_ordinary
+ && st_shndx == shndx
+ && static_cast<off_t>(sym.get_st_value()) <= offset
+ && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
+ > offset))
+ {
+ info->enclosing_symbol_type = sym.get_st_type();
+ if (sym.get_st_name() > names_size)
+ info->enclosing_symbol_name = "(invalid)";
+ else
+ {
+ info->enclosing_symbol_name = symbol_names + sym.get_st_name();
+ if (parameters->options().do_demangle())
+ {
+ char* demangled_name = cplus_demangle(
+ info->enclosing_symbol_name.c_str(),
+ DMGL_ANSI | DMGL_PARAMS);
+ if (demangled_name != NULL)
+ {
+ info->enclosing_symbol_name.assign(demangled_name);
+ free(demangled_name);
+ }
+ }
+ }
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Look for a kept section corresponding to the given discarded section,
+// and return its output address. This is used only for relocations in
+// debugging sections. If we can't find the kept section, return 0.
+
+template<int size, bool big_endian>
+typename Sized_relobj_file<size, big_endian>::Address
+Sized_relobj_file<size, big_endian>::map_to_kept_section(
+ unsigned int shndx,
+ bool* found) const
+{
+ Relobj* kept_object;
+ unsigned int kept_shndx;
+ if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
+ {
+ Sized_relobj_file<size, big_endian>* kept_relobj =
+ static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
+ Output_section* os = kept_relobj->output_section(kept_shndx);
+ Address offset = kept_relobj->get_output_section_offset(kept_shndx);
+ if (os != NULL && offset != invalid_address)
+ {
+ *found = true;
+ return os->address() + offset;
+ }
+ }
+ *found = false;
+ return 0;
+}
+
+// Get symbol counts.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
+ const Symbol_table*,
+ size_t* defined,
+ size_t* used) const
+{
+ *defined = this->defined_count_;
+ size_t count = 0;
+ for (typename Symbols::const_iterator p = this->symbols_.begin();
+ p != this->symbols_.end();
+ ++p)
+ if (*p != NULL
+ && (*p)->source() == Symbol::FROM_OBJECT
+ && (*p)->object() == this
+ && (*p)->is_defined())
+ ++count;
+ *used = count;
+}
+
+// Return a view of the decompressed contents of a section. Set *PLEN
+// to the size. Set *IS_NEW to true if the contents need to be freed
+// by the caller.
+
+template<int size, bool big_endian>
+const unsigned char*
+Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
+ unsigned int shndx,
+ section_size_type* plen,
+ bool* is_new)
+{
+ section_size_type buffer_size;
+ const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
+ false);
+
+ if (this->compressed_sections_ == NULL)
+ {
+ *plen = buffer_size;
+ *is_new = false;
+ return buffer;
+ }
+
+ Compressed_section_map::const_iterator p =
+ this->compressed_sections_->find(shndx);
+ if (p == this->compressed_sections_->end())
+ {
+ *plen = buffer_size;
+ *is_new = false;
+ return buffer;
+ }
+
+ section_size_type uncompressed_size = p->second.size;
+ if (p->second.contents != NULL)
+ {
+ *plen = uncompressed_size;
+ *is_new = false;
+ return p->second.contents;
+ }
+
+ unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
+ if (!decompress_input_section(buffer,
+ buffer_size,
+ uncompressed_data,
+ uncompressed_size))
+ this->error(_("could not decompress section %s"),
+ this->do_section_name(shndx).c_str());
+
+ // We could cache the results in p->second.contents and store
+ // false in *IS_NEW, but build_compressed_section_map() would
+ // have done so if it had expected it to be profitable. If
+ // we reach this point, we expect to need the contents only
+ // once in this pass.
+ *plen = uncompressed_size;
+ *is_new = true;
+ return uncompressed_data;
+}
+
+// Discard any buffers of uncompressed sections. This is done
+// at the end of the Add_symbols task.
+
+template<int size, bool big_endian>
+void
+Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
+{
+ if (this->compressed_sections_ == NULL)
+ return;
+
+ for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
+ p != this->compressed_sections_->end();
+ ++p)
+ {
+ if (p->second.contents != NULL)
+ {
+ delete[] p->second.contents;
+ p->second.contents = NULL;
+ }
+ }
+}
+
+// Input_objects methods.
+
+// Add a regular relocatable object to the list. Return false if this
+// object should be ignored.
+
+bool
+Input_objects::add_object(Object* obj)
+{
+ // Print the filename if the -t/--trace option is selected.
+ if (parameters->options().trace())
+ gold_info("%s", obj->name().c_str());
+
+ if (!obj->is_dynamic())
+ this->relobj_list_.push_back(static_cast<Relobj*>(obj));
+ else
+ {
+ // See if this is a duplicate SONAME.
+ Dynobj* dynobj = static_cast<Dynobj*>(obj);
+ const char* soname = dynobj->soname();
+
+ std::pair<Unordered_set<std::string>::iterator, bool> ins =
+ this->sonames_.insert(soname);
+ if (!ins.second)
+ {
+ // We have already seen a dynamic object with this soname.
+ return false;
+ }
+
+ this->dynobj_list_.push_back(dynobj);
+ }
+
+ // Add this object to the cross-referencer if requested.
+ if (parameters->options().user_set_print_symbol_counts()
+ || parameters->options().cref())
+ {
+ if (this->cref_ == NULL)
+ this->cref_ = new Cref();
+ this->cref_->add_object(obj);
+ }
+
+ return true;
+}
+
+// For each dynamic object, record whether we've seen all of its
+// explicit dependencies.
+
+void
+Input_objects::check_dynamic_dependencies() const
+{
+ bool issued_copy_dt_needed_error = false;
+ for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
+ p != this->dynobj_list_.end();
+ ++p)
+ {
+ const Dynobj::Needed& needed((*p)->needed());
+ bool found_all = true;
+ Dynobj::Needed::const_iterator pneeded;
+ for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
+ {
+ if (this->sonames_.find(*pneeded) == this->sonames_.end())
+ {
+ found_all = false;
+ break;
+ }
+ }
+ (*p)->set_has_unknown_needed_entries(!found_all);
+
+ // --copy-dt-needed-entries aka --add-needed is a GNU ld option
+ // that gold does not support. However, they cause no trouble
+ // unless there is a DT_NEEDED entry that we don't know about;
+ // warn only in that case.
+ if (!found_all
+ && !issued_copy_dt_needed_error
+ && (parameters->options().copy_dt_needed_entries()
+ || parameters->options().add_needed()))
+ {
+ const char* optname;
+ if (parameters->options().copy_dt_needed_entries())
+ optname = "--copy-dt-needed-entries";
+ else
+ optname = "--add-needed";
+ gold_error(_("%s is not supported but is required for %s in %s"),
+ optname, (*pneeded).c_str(), (*p)->name().c_str());
+ issued_copy_dt_needed_error = true;
+ }
+ }
+}
+
+// Start processing an archive.
+
+void
+Input_objects::archive_start(Archive* archive)
+{
+ if (parameters->options().user_set_print_symbol_counts()
+ || parameters->options().cref())
+ {
+ if (this->cref_ == NULL)
+ this->cref_ = new Cref();
+ this->cref_->add_archive_start(archive);
+ }
+}
+
+// Stop processing an archive.
+
+void
+Input_objects::archive_stop(Archive* archive)
+{
+ if (parameters->options().user_set_print_symbol_counts()
+ || parameters->options().cref())
+ this->cref_->add_archive_stop(archive);
+}
+
+// Print symbol counts
+
+void
+Input_objects::print_symbol_counts(const Symbol_table* symtab) const
+{
+ if (parameters->options().user_set_print_symbol_counts()
+ && this->cref_ != NULL)
+ this->cref_->print_symbol_counts(symtab);
+}
+
+// Print a cross reference table.
+
+void
+Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
+{
+ if (parameters->options().cref() && this->cref_ != NULL)
+ this->cref_->print_cref(symtab, f);
+}
+
+// Relocate_info methods.
+
+// Return a string describing the location of a relocation when file
+// and lineno information is not available. This is only used in
+// error messages.
+
+template<int size, bool big_endian>
+std::string
+Relocate_info<size, big_endian>::location(size_t, off_t offset) const
+{
+ Sized_dwarf_line_info<size, big_endian> line_info(this->object);
+ std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
+ if (!ret.empty())
+ return ret;
+
+ ret = this->object->name();
+
+ Symbol_location_info info;
+ if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
+ {
+ if (!info.source_file.empty())
+ {
+ ret += ":";
+ ret += info.source_file;
+ }
+ ret += ":";
+ if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
+ ret += _("function ");
+ ret += info.enclosing_symbol_name;
+ return ret;
+ }
+
+ ret += "(";
+ ret += this->object->section_name(this->data_shndx);
+ char buf[100];
+ snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
+ ret += buf;
+ return ret;
+}
+
+} // End namespace gold.
+
+namespace
+{
+
+using namespace gold;
+
+// Read an ELF file with the header and return the appropriate
+// instance of Object.
+
+template<int size, bool big_endian>
+Object*
+make_elf_sized_object(const std::string& name, Input_file* input_file,
+ off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
+ bool* punconfigured)
+{
+ Target* target = select_target(input_file, offset,
+ ehdr.get_e_machine(), size, big_endian,
+ ehdr.get_e_ident()[elfcpp::EI_OSABI],
+ ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
+ if (target == NULL)
+ gold_fatal(_("%s: unsupported ELF machine number %d"),
+ name.c_str(), ehdr.get_e_machine());
+
+ if (!parameters->target_valid())
+ set_parameters_target(target);
+ else if (target != &parameters->target())
+ {
+ if (punconfigured != NULL)
+ *punconfigured = true;
+ else
+ gold_error(_("%s: incompatible target"), name.c_str());
+ return NULL;
+ }
+
+ return target->make_elf_object<size, big_endian>(name, input_file, offset,
+ ehdr);
+}
+
+} // End anonymous namespace.
+
+namespace gold
+{
+
+// Return whether INPUT_FILE is an ELF object.
+
+bool
+is_elf_object(Input_file* input_file, off_t offset,
+ const unsigned char** start, int* read_size)
+{
+ off_t filesize = input_file->file().filesize();
+ int want = elfcpp::Elf_recognizer::max_header_size;
+ if (filesize - offset < want)
+ want = filesize - offset;
+
+ const unsigned char* p = input_file->file().get_view(offset, 0, want,
+ true, false);
+ *start = p;
+ *read_size = want;
+
+ return elfcpp::Elf_recognizer::is_elf_file(p, want);
+}
+
+// Read an ELF file and return the appropriate instance of Object.
+
+Object*
+make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
+ const unsigned char* p, section_offset_type bytes,
+ bool* punconfigured)
+{
+ if (punconfigured != NULL)
+ *punconfigured = false;
+
+ std::string error;
+ bool big_endian = false;
+ int size = 0;
+ if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
+ &big_endian, &error))
+ {
+ gold_error(_("%s: %s"), name.c_str(), error.c_str());
+ return NULL;
+ }
+
+ if (size == 32)
+ {
+ if (big_endian)
+ {
+#ifdef HAVE_TARGET_32_BIG
+ elfcpp::Ehdr<32, true> ehdr(p);
+ return make_elf_sized_object<32, true>(name, input_file,
+ offset, ehdr, punconfigured);
+#else
+ if (punconfigured != NULL)
+ *punconfigured = true;
+ else
+ gold_error(_("%s: not configured to support "
+ "32-bit big-endian object"),
+ name.c_str());
+ return NULL;
+#endif
+ }
+ else
+ {
+#ifdef HAVE_TARGET_32_LITTLE
+ elfcpp::Ehdr<32, false> ehdr(p);
+ return make_elf_sized_object<32, false>(name, input_file,
+ offset, ehdr, punconfigured);
+#else
+ if (punconfigured != NULL)
+ *punconfigured = true;
+ else
+ gold_error(_("%s: not configured to support "
+ "32-bit little-endian object"),
+ name.c_str());
+ return NULL;
+#endif
+ }
+ }
+ else if (size == 64)
+ {
+ if (big_endian)
+ {
+#ifdef HAVE_TARGET_64_BIG
+ elfcpp::Ehdr<64, true> ehdr(p);
+ return make_elf_sized_object<64, true>(name, input_file,
+ offset, ehdr, punconfigured);
+#else
+ if (punconfigured != NULL)
+ *punconfigured = true;
+ else
+ gold_error(_("%s: not configured to support "
+ "64-bit big-endian object"),
+ name.c_str());
+ return NULL;
+#endif
+ }
+ else
+ {
+#ifdef HAVE_TARGET_64_LITTLE
+ elfcpp::Ehdr<64, false> ehdr(p);
+ return make_elf_sized_object<64, false>(name, input_file,
+ offset, ehdr, punconfigured);
+#else
+ if (punconfigured != NULL)
+ *punconfigured = true;
+ else
+ gold_error(_("%s: not configured to support "
+ "64-bit little-endian object"),
+ name.c_str());
+ return NULL;
+#endif
+ }
+ }
+ else
+ gold_unreachable();
+}
+
+// Instantiate the templates we need.
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+void
+Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
+ Read_symbols_data*);
+template
+const unsigned char*
+Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
+ section_size_type, const unsigned char*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+void
+Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
+ Read_symbols_data*);
+template
+const unsigned char*
+Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
+ section_size_type, const unsigned char*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+void
+Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
+ Read_symbols_data*);
+template
+const unsigned char*
+Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
+ section_size_type, const unsigned char*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+void
+Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
+ Read_symbols_data*);
+template
+const unsigned char*
+Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
+ section_size_type, const unsigned char*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Sized_relobj<32, false>;
+
+template
+class Sized_relobj_file<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Sized_relobj<32, true>;
+
+template
+class Sized_relobj_file<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Sized_relobj<64, false>;
+
+template
+class Sized_relobj_file<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Sized_relobj<64, true>;
+
+template
+class Sized_relobj_file<64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+struct Relocate_info<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+struct Relocate_info<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+struct Relocate_info<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+struct Relocate_info<64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+void
+Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
+
+template
+void
+Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
+ const unsigned char*);
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+void
+Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
+
+template
+void
+Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
+ const unsigned char*);
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+void
+Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
+
+template
+void
+Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
+ const unsigned char*);
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+void
+Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
+
+template
+void
+Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
+ const unsigned char*);
+#endif
+
+} // End namespace gold.