summaryrefslogtreecommitdiffstats
path: root/binutils-2.25/gold/dynobj.cc
diff options
context:
space:
mode:
Diffstat (limited to 'binutils-2.25/gold/dynobj.cc')
-rw-r--r--binutils-2.25/gold/dynobj.cc1970
1 files changed, 1970 insertions, 0 deletions
diff --git a/binutils-2.25/gold/dynobj.cc b/binutils-2.25/gold/dynobj.cc
new file mode 100644
index 00000000..ac0c321c
--- /dev/null
+++ b/binutils-2.25/gold/dynobj.cc
@@ -0,0 +1,1970 @@
+// dynobj.cc -- dynamic object support for gold
+
+// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
+// Written by Ian Lance Taylor <iant@google.com>.
+
+// This file is part of gold.
+
+// This program is free software; you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation; either version 3 of the License, or
+// (at your option) any later version.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this program; if not, write to the Free Software
+// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+// MA 02110-1301, USA.
+
+#include "gold.h"
+
+#include <vector>
+#include <cstring>
+
+#include "elfcpp.h"
+#include "parameters.h"
+#include "script.h"
+#include "symtab.h"
+#include "dynobj.h"
+
+namespace gold
+{
+
+// Class Dynobj.
+
+// Sets up the default soname_ to use, in the (rare) cases we never
+// see a DT_SONAME entry.
+
+Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
+ : Object(name, input_file, true, offset),
+ needed_(),
+ unknown_needed_(UNKNOWN_NEEDED_UNSET)
+{
+ // This will be overridden by a DT_SONAME entry, hopefully. But if
+ // we never see a DT_SONAME entry, our rule is to use the dynamic
+ // object's filename. The only exception is when the dynamic object
+ // is part of an archive (so the filename is the archive's
+ // filename). In that case, we use just the dynobj's name-in-archive.
+ if (input_file == NULL)
+ this->soname_ = name;
+ else
+ {
+ this->soname_ = input_file->found_name();
+ if (this->offset() != 0)
+ {
+ std::string::size_type open_paren = this->name().find('(');
+ std::string::size_type close_paren = this->name().find(')');
+ if (open_paren != std::string::npos
+ && close_paren != std::string::npos)
+ {
+ // It's an archive, and name() is of the form 'foo.a(bar.so)'.
+ open_paren += 1;
+ this->soname_ = this->name().substr(open_paren,
+ close_paren - open_paren);
+ }
+ }
+ }
+}
+
+// Class Sized_dynobj.
+
+template<int size, bool big_endian>
+Sized_dynobj<size, big_endian>::Sized_dynobj(
+ const std::string& name,
+ Input_file* input_file,
+ off_t offset,
+ const elfcpp::Ehdr<size, big_endian>& ehdr)
+ : Dynobj(name, input_file, offset),
+ elf_file_(this, ehdr),
+ dynsym_shndx_(-1U),
+ symbols_(NULL),
+ defined_count_(0)
+{
+}
+
+// Set up the object.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::setup()
+{
+ const unsigned int shnum = this->elf_file_.shnum();
+ this->set_shnum(shnum);
+}
+
+// Find the SHT_DYNSYM section and the various version sections, and
+// the dynamic section, given the section headers.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::find_dynsym_sections(
+ const unsigned char* pshdrs,
+ unsigned int* pversym_shndx,
+ unsigned int* pverdef_shndx,
+ unsigned int* pverneed_shndx,
+ unsigned int* pdynamic_shndx)
+{
+ *pversym_shndx = -1U;
+ *pverdef_shndx = -1U;
+ *pverneed_shndx = -1U;
+ *pdynamic_shndx = -1U;
+
+ unsigned int symtab_shndx = 0;
+ unsigned int xindex_shndx = 0;
+ unsigned int xindex_link = 0;
+ const unsigned int shnum = this->shnum();
+ const unsigned char* p = pshdrs;
+ for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
+ {
+ typename This::Shdr shdr(p);
+
+ unsigned int* pi;
+ switch (shdr.get_sh_type())
+ {
+ case elfcpp::SHT_DYNSYM:
+ this->dynsym_shndx_ = i;
+ if (xindex_shndx > 0 && xindex_link == i)
+ {
+ Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
+ xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
+ pshdrs);
+ this->set_xindex(xindex);
+ }
+ pi = NULL;
+ break;
+ case elfcpp::SHT_SYMTAB:
+ symtab_shndx = i;
+ pi = NULL;
+ break;
+ case elfcpp::SHT_GNU_versym:
+ pi = pversym_shndx;
+ break;
+ case elfcpp::SHT_GNU_verdef:
+ pi = pverdef_shndx;
+ break;
+ case elfcpp::SHT_GNU_verneed:
+ pi = pverneed_shndx;
+ break;
+ case elfcpp::SHT_DYNAMIC:
+ pi = pdynamic_shndx;
+ break;
+ case elfcpp::SHT_SYMTAB_SHNDX:
+ xindex_shndx = i;
+ xindex_link = this->adjust_shndx(shdr.get_sh_link());
+ if (xindex_link == this->dynsym_shndx_)
+ {
+ Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
+ xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
+ pshdrs);
+ this->set_xindex(xindex);
+ }
+ pi = NULL;
+ break;
+ default:
+ pi = NULL;
+ break;
+ }
+
+ if (pi == NULL)
+ continue;
+
+ if (*pi != -1U)
+ this->error(_("unexpected duplicate type %u section: %u, %u"),
+ shdr.get_sh_type(), *pi, i);
+
+ *pi = i;
+ }
+
+ // If there is no dynamic symbol table, use the normal symbol table.
+ // On some SVR4 systems, a shared library is stored in an archive.
+ // The version stored in the archive only has a normal symbol table.
+ // It has an SONAME entry which points to another copy in the file
+ // system which has a dynamic symbol table as usual. This is way of
+ // addressing the issues which glibc addresses using GROUP with
+ // libc_nonshared.a.
+ if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
+ {
+ this->dynsym_shndx_ = symtab_shndx;
+ if (xindex_shndx > 0 && xindex_link == symtab_shndx)
+ {
+ Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
+ xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
+ pshdrs);
+ this->set_xindex(xindex);
+ }
+ }
+}
+
+// Read the contents of section SHNDX. PSHDRS points to the section
+// headers. TYPE is the expected section type. LINK is the expected
+// section link. Store the data in *VIEW and *VIEW_SIZE. The
+// section's sh_info field is stored in *VIEW_INFO.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::read_dynsym_section(
+ const unsigned char* pshdrs,
+ unsigned int shndx,
+ elfcpp::SHT type,
+ unsigned int link,
+ File_view** view,
+ section_size_type* view_size,
+ unsigned int* view_info)
+{
+ if (shndx == -1U)
+ {
+ *view = NULL;
+ *view_size = 0;
+ *view_info = 0;
+ return;
+ }
+
+ typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
+
+ gold_assert(shdr.get_sh_type() == type);
+
+ if (this->adjust_shndx(shdr.get_sh_link()) != link)
+ this->error(_("unexpected link in section %u header: %u != %u"),
+ shndx, this->adjust_shndx(shdr.get_sh_link()), link);
+
+ *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
+ true, false);
+ *view_size = convert_to_section_size_type(shdr.get_sh_size());
+ *view_info = shdr.get_sh_info();
+}
+
+// Read the dynamic tags. Set the soname field if this shared object
+// has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
+// the section headers. DYNAMIC_SHNDX is the section index of the
+// SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
+// section index and contents of a string table which may be the one
+// associated with the SHT_DYNAMIC section.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
+ unsigned int dynamic_shndx,
+ unsigned int strtab_shndx,
+ const unsigned char* strtabu,
+ off_t strtab_size)
+{
+ typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
+ gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
+
+ const off_t dynamic_size = dynamicshdr.get_sh_size();
+ const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
+ dynamic_size, true, false);
+
+ const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
+ if (link != strtab_shndx)
+ {
+ if (link >= this->shnum())
+ {
+ this->error(_("DYNAMIC section %u link out of range: %u"),
+ dynamic_shndx, link);
+ return;
+ }
+
+ typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
+ if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
+ {
+ this->error(_("DYNAMIC section %u link %u is not a strtab"),
+ dynamic_shndx, link);
+ return;
+ }
+
+ strtab_size = strtabshdr.get_sh_size();
+ strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
+ false);
+ }
+
+ const char* const strtab = reinterpret_cast<const char*>(strtabu);
+
+ for (const unsigned char* p = pdynamic;
+ p < pdynamic + dynamic_size;
+ p += This::dyn_size)
+ {
+ typename This::Dyn dyn(p);
+
+ switch (dyn.get_d_tag())
+ {
+ case elfcpp::DT_NULL:
+ // We should always see DT_NULL at the end of the dynamic
+ // tags.
+ return;
+
+ case elfcpp::DT_SONAME:
+ {
+ off_t val = dyn.get_d_val();
+ if (val >= strtab_size)
+ this->error(_("DT_SONAME value out of range: %lld >= %lld"),
+ static_cast<long long>(val),
+ static_cast<long long>(strtab_size));
+ else
+ this->set_soname_string(strtab + val);
+ }
+ break;
+
+ case elfcpp::DT_NEEDED:
+ {
+ off_t val = dyn.get_d_val();
+ if (val >= strtab_size)
+ this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
+ static_cast<long long>(val),
+ static_cast<long long>(strtab_size));
+ else
+ this->add_needed(strtab + val);
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ this->error(_("missing DT_NULL in dynamic segment"));
+}
+
+// Read the symbols and sections from a dynamic object. We read the
+// dynamic symbols, not the normal symbols.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+ this->read_section_data(&this->elf_file_, sd);
+
+ const unsigned char* const pshdrs = sd->section_headers->data();
+
+ unsigned int versym_shndx;
+ unsigned int verdef_shndx;
+ unsigned int verneed_shndx;
+ unsigned int dynamic_shndx;
+ this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
+ &verneed_shndx, &dynamic_shndx);
+
+ unsigned int strtab_shndx = -1U;
+
+ sd->symbols = NULL;
+ sd->symbols_size = 0;
+ sd->external_symbols_offset = 0;
+ sd->symbol_names = NULL;
+ sd->symbol_names_size = 0;
+ sd->versym = NULL;
+ sd->versym_size = 0;
+ sd->verdef = NULL;
+ sd->verdef_size = 0;
+ sd->verdef_info = 0;
+ sd->verneed = NULL;
+ sd->verneed_size = 0;
+ sd->verneed_info = 0;
+
+ if (this->dynsym_shndx_ != -1U)
+ {
+ // Get the dynamic symbols.
+ typename This::Shdr dynsymshdr(pshdrs
+ + this->dynsym_shndx_ * This::shdr_size);
+
+ sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
+ dynsymshdr.get_sh_size(), true,
+ false);
+ sd->symbols_size =
+ convert_to_section_size_type(dynsymshdr.get_sh_size());
+
+ // Get the symbol names.
+ strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
+ if (strtab_shndx >= this->shnum())
+ {
+ this->error(_("invalid dynamic symbol table name index: %u"),
+ strtab_shndx);
+ return;
+ }
+ typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
+ if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
+ {
+ this->error(_("dynamic symbol table name section "
+ "has wrong type: %u"),
+ static_cast<unsigned int>(strtabshdr.get_sh_type()));
+ return;
+ }
+
+ sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
+ strtabshdr.get_sh_size(),
+ false, false);
+ sd->symbol_names_size =
+ convert_to_section_size_type(strtabshdr.get_sh_size());
+
+ // Get the version information.
+
+ unsigned int dummy;
+ this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
+ this->dynsym_shndx_,
+ &sd->versym, &sd->versym_size, &dummy);
+
+ // We require that the version definition and need section link
+ // to the same string table as the dynamic symbol table. This
+ // is not a technical requirement, but it always happens in
+ // practice. We could change this if necessary.
+
+ this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
+ strtab_shndx, &sd->verdef, &sd->verdef_size,
+ &sd->verdef_info);
+
+ this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
+ strtab_shndx, &sd->verneed, &sd->verneed_size,
+ &sd->verneed_info);
+ }
+
+ // Read the SHT_DYNAMIC section to find whether this shared object
+ // has a DT_SONAME tag and to record any DT_NEEDED tags. This
+ // doesn't really have anything to do with reading the symbols, but
+ // this is a convenient place to do it.
+ if (dynamic_shndx != -1U)
+ this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
+ (sd->symbol_names == NULL
+ ? NULL
+ : sd->symbol_names->data()),
+ sd->symbol_names_size);
+}
+
+// Return the Xindex structure to use for object with lots of
+// sections.
+
+template<int size, bool big_endian>
+Xindex*
+Sized_dynobj<size, big_endian>::do_initialize_xindex()
+{
+ gold_assert(this->dynsym_shndx_ != -1U);
+ Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
+ xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
+ return xindex;
+}
+
+// Lay out the input sections for a dynamic object. We don't want to
+// include sections from a dynamic object, so all that we actually do
+// here is check for .gnu.warning and .note.GNU-split-stack sections.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
+ Layout*,
+ Read_symbols_data* sd)
+{
+ const unsigned int shnum = this->shnum();
+ if (shnum == 0)
+ return;
+
+ // Get the section headers.
+ const unsigned char* pshdrs = sd->section_headers->data();
+
+ // Get the section names.
+ const unsigned char* pnamesu = sd->section_names->data();
+ const char* pnames = reinterpret_cast<const char*>(pnamesu);
+
+ // Skip the first, dummy, section.
+ pshdrs += This::shdr_size;
+ for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
+ {
+ typename This::Shdr shdr(pshdrs);
+
+ if (shdr.get_sh_name() >= sd->section_names_size)
+ {
+ this->error(_("bad section name offset for section %u: %lu"),
+ i, static_cast<unsigned long>(shdr.get_sh_name()));
+ return;
+ }
+
+ const char* name = pnames + shdr.get_sh_name();
+
+ this->handle_gnu_warning_section(name, i, symtab);
+ this->handle_split_stack_section(name);
+ }
+
+ delete sd->section_headers;
+ sd->section_headers = NULL;
+ delete sd->section_names;
+ sd->section_names = NULL;
+}
+
+// Add an entry to the vector mapping version numbers to version
+// strings.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::set_version_map(
+ Version_map* version_map,
+ unsigned int ndx,
+ const char* name) const
+{
+ if (ndx >= version_map->size())
+ version_map->resize(ndx + 1);
+ if ((*version_map)[ndx] != NULL)
+ this->error(_("duplicate definition for version %u"), ndx);
+ (*version_map)[ndx] = name;
+}
+
+// Add mappings for the version definitions to VERSION_MAP.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::make_verdef_map(
+ Read_symbols_data* sd,
+ Version_map* version_map) const
+{
+ if (sd->verdef == NULL)
+ return;
+
+ const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
+ section_size_type names_size = sd->symbol_names_size;
+
+ const unsigned char* pverdef = sd->verdef->data();
+ section_size_type verdef_size = sd->verdef_size;
+ const unsigned int count = sd->verdef_info;
+
+ const unsigned char* p = pverdef;
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ elfcpp::Verdef<size, big_endian> verdef(p);
+
+ if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
+ {
+ this->error(_("unexpected verdef version %u"),
+ verdef.get_vd_version());
+ return;
+ }
+
+ const section_size_type vd_ndx = verdef.get_vd_ndx();
+
+ // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
+ // sure why.
+
+ // The first Verdaux holds the name of this version. Subsequent
+ // ones are versions that this one depends upon, which we don't
+ // care about here.
+ const section_size_type vd_cnt = verdef.get_vd_cnt();
+ if (vd_cnt < 1)
+ {
+ this->error(_("verdef vd_cnt field too small: %u"),
+ static_cast<unsigned int>(vd_cnt));
+ return;
+ }
+
+ const section_size_type vd_aux = verdef.get_vd_aux();
+ if ((p - pverdef) + vd_aux >= verdef_size)
+ {
+ this->error(_("verdef vd_aux field out of range: %u"),
+ static_cast<unsigned int>(vd_aux));
+ return;
+ }
+
+ const unsigned char* pvda = p + vd_aux;
+ elfcpp::Verdaux<size, big_endian> verdaux(pvda);
+
+ const section_size_type vda_name = verdaux.get_vda_name();
+ if (vda_name >= names_size)
+ {
+ this->error(_("verdaux vda_name field out of range: %u"),
+ static_cast<unsigned int>(vda_name));
+ return;
+ }
+
+ this->set_version_map(version_map, vd_ndx, names + vda_name);
+
+ const section_size_type vd_next = verdef.get_vd_next();
+ if ((p - pverdef) + vd_next >= verdef_size)
+ {
+ this->error(_("verdef vd_next field out of range: %u"),
+ static_cast<unsigned int>(vd_next));
+ return;
+ }
+
+ p += vd_next;
+ }
+}
+
+// Add mappings for the required versions to VERSION_MAP.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::make_verneed_map(
+ Read_symbols_data* sd,
+ Version_map* version_map) const
+{
+ if (sd->verneed == NULL)
+ return;
+
+ const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
+ section_size_type names_size = sd->symbol_names_size;
+
+ const unsigned char* pverneed = sd->verneed->data();
+ const section_size_type verneed_size = sd->verneed_size;
+ const unsigned int count = sd->verneed_info;
+
+ const unsigned char* p = pverneed;
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ elfcpp::Verneed<size, big_endian> verneed(p);
+
+ if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
+ {
+ this->error(_("unexpected verneed version %u"),
+ verneed.get_vn_version());
+ return;
+ }
+
+ const section_size_type vn_aux = verneed.get_vn_aux();
+
+ if ((p - pverneed) + vn_aux >= verneed_size)
+ {
+ this->error(_("verneed vn_aux field out of range: %u"),
+ static_cast<unsigned int>(vn_aux));
+ return;
+ }
+
+ const unsigned int vn_cnt = verneed.get_vn_cnt();
+ const unsigned char* pvna = p + vn_aux;
+ for (unsigned int j = 0; j < vn_cnt; ++j)
+ {
+ elfcpp::Vernaux<size, big_endian> vernaux(pvna);
+
+ const unsigned int vna_name = vernaux.get_vna_name();
+ if (vna_name >= names_size)
+ {
+ this->error(_("vernaux vna_name field out of range: %u"),
+ static_cast<unsigned int>(vna_name));
+ return;
+ }
+
+ this->set_version_map(version_map, vernaux.get_vna_other(),
+ names + vna_name);
+
+ const section_size_type vna_next = vernaux.get_vna_next();
+ if ((pvna - pverneed) + vna_next >= verneed_size)
+ {
+ this->error(_("verneed vna_next field out of range: %u"),
+ static_cast<unsigned int>(vna_next));
+ return;
+ }
+
+ pvna += vna_next;
+ }
+
+ const section_size_type vn_next = verneed.get_vn_next();
+ if ((p - pverneed) + vn_next >= verneed_size)
+ {
+ this->error(_("verneed vn_next field out of range: %u"),
+ static_cast<unsigned int>(vn_next));
+ return;
+ }
+
+ p += vn_next;
+ }
+}
+
+// Create a vector mapping version numbers to version strings.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::make_version_map(
+ Read_symbols_data* sd,
+ Version_map* version_map) const
+{
+ if (sd->verdef == NULL && sd->verneed == NULL)
+ return;
+
+ // A guess at the maximum version number we will see. If this is
+ // wrong we will be less efficient but still correct.
+ version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
+
+ this->make_verdef_map(sd, version_map);
+ this->make_verneed_map(sd, version_map);
+}
+
+// Add the dynamic symbols to the symbol table.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
+ Read_symbols_data* sd,
+ Layout*)
+{
+ if (sd->symbols == NULL)
+ {
+ gold_assert(sd->symbol_names == NULL);
+ gold_assert(sd->versym == NULL && sd->verdef == NULL
+ && sd->verneed == NULL);
+ return;
+ }
+
+ const int sym_size = This::sym_size;
+ const size_t symcount = sd->symbols_size / sym_size;
+ gold_assert(sd->external_symbols_offset == 0);
+ if (symcount * sym_size != sd->symbols_size)
+ {
+ this->error(_("size of dynamic symbols is not multiple of symbol size"));
+ return;
+ }
+
+ Version_map version_map;
+ this->make_version_map(sd, &version_map);
+
+ // If printing symbol counts or a cross reference table or
+ // preparing for an incremental link, we want to track symbols.
+ if (parameters->options().user_set_print_symbol_counts()
+ || parameters->options().cref()
+ || parameters->incremental())
+ {
+ this->symbols_ = new Symbols();
+ this->symbols_->resize(symcount);
+ }
+
+ const char* sym_names =
+ reinterpret_cast<const char*>(sd->symbol_names->data());
+ symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
+ sym_names, sd->symbol_names_size,
+ (sd->versym == NULL
+ ? NULL
+ : sd->versym->data()),
+ sd->versym_size,
+ &version_map,
+ this->symbols_,
+ &this->defined_count_);
+
+ delete sd->symbols;
+ sd->symbols = NULL;
+ delete sd->symbol_names;
+ sd->symbol_names = NULL;
+ if (sd->versym != NULL)
+ {
+ delete sd->versym;
+ sd->versym = NULL;
+ }
+ if (sd->verdef != NULL)
+ {
+ delete sd->verdef;
+ sd->verdef = NULL;
+ }
+ if (sd->verneed != NULL)
+ {
+ delete sd->verneed;
+ sd->verneed = NULL;
+ }
+
+ // This is normally the last time we will read any data from this
+ // file.
+ this->clear_view_cache_marks();
+}
+
+template<int size, bool big_endian>
+Archive::Should_include
+Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
+ Layout*,
+ Read_symbols_data*,
+ std::string*)
+{
+ return Archive::SHOULD_INCLUDE_YES;
+}
+
+// Iterate over global symbols, calling a visitor class V for each.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
+ Read_symbols_data* sd,
+ Library_base::Symbol_visitor_base* v)
+{
+ const char* sym_names =
+ reinterpret_cast<const char*>(sd->symbol_names->data());
+ const unsigned char* syms =
+ sd->symbols->data() + sd->external_symbols_offset;
+ const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
+ size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
+ / sym_size);
+ const unsigned char* p = syms;
+
+ for (size_t i = 0; i < symcount; ++i, p += sym_size)
+ {
+ elfcpp::Sym<size, big_endian> sym(p);
+ if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
+ && sym.get_st_bind() != elfcpp::STB_LOCAL)
+ v->visit(sym_names + sym.get_st_name());
+ }
+}
+
+// Iterate over local symbols, calling a visitor class V for each GOT offset
+// associated with a local symbol.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::do_for_all_local_got_entries(
+ Got_offset_list::Visitor*) const
+{
+}
+
+// Get symbol counts.
+
+template<int size, bool big_endian>
+void
+Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
+ const Symbol_table*,
+ size_t* defined,
+ size_t* used) const
+{
+ *defined = this->defined_count_;
+ size_t count = 0;
+ for (typename Symbols::const_iterator p = this->symbols_->begin();
+ p != this->symbols_->end();
+ ++p)
+ if (*p != NULL
+ && (*p)->source() == Symbol::FROM_OBJECT
+ && (*p)->object() == this
+ && (*p)->is_defined()
+ && (*p)->has_dynsym_index())
+ ++count;
+ *used = count;
+}
+
+// Given a vector of hash codes, compute the number of hash buckets to
+// use.
+
+unsigned int
+Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
+ bool for_gnu_hash_table)
+{
+ // FIXME: Implement optional hash table optimization.
+
+ // Array used to determine the number of hash table buckets to use
+ // based on the number of symbols there are. If there are fewer
+ // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
+ // buckets, fewer than 37 we use 17 buckets, and so forth. We never
+ // use more than 262147 buckets. This is straight from the old GNU
+ // linker.
+ static const unsigned int buckets[] =
+ {
+ 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
+ 16411, 32771, 65537, 131101, 262147
+ };
+ const int buckets_count = sizeof buckets / sizeof buckets[0];
+
+ unsigned int symcount = hashcodes.size();
+ unsigned int ret = 1;
+ const double full_fraction
+ = 1.0 - parameters->options().hash_bucket_empty_fraction();
+ for (int i = 0; i < buckets_count; ++i)
+ {
+ if (symcount < buckets[i] * full_fraction)
+ break;
+ ret = buckets[i];
+ }
+
+ if (for_gnu_hash_table && ret < 2)
+ ret = 2;
+
+ return ret;
+}
+
+// The standard ELF hash function. This hash function must not
+// change, as the dynamic linker uses it also.
+
+uint32_t
+Dynobj::elf_hash(const char* name)
+{
+ const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
+ uint32_t h = 0;
+ unsigned char c;
+ while ((c = *nameu++) != '\0')
+ {
+ h = (h << 4) + c;
+ uint32_t g = h & 0xf0000000;
+ if (g != 0)
+ {
+ h ^= g >> 24;
+ // The ELF ABI says h &= ~g, but using xor is equivalent in
+ // this case (since g was set from h) and may save one
+ // instruction.
+ h ^= g;
+ }
+ }
+ return h;
+}
+
+// Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
+// DYNSYMS is a vector with all the global dynamic symbols.
+// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
+// symbol table.
+
+void
+Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
+ unsigned int local_dynsym_count,
+ unsigned char** pphash,
+ unsigned int* phashlen)
+{
+ unsigned int dynsym_count = dynsyms.size();
+
+ // Get the hash values for all the symbols.
+ std::vector<uint32_t> dynsym_hashvals(dynsym_count);
+ for (unsigned int i = 0; i < dynsym_count; ++i)
+ dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
+
+ const unsigned int bucketcount =
+ Dynobj::compute_bucket_count(dynsym_hashvals, false);
+
+ std::vector<uint32_t> bucket(bucketcount);
+ std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
+
+ for (unsigned int i = 0; i < dynsym_count; ++i)
+ {
+ unsigned int dynsym_index = dynsyms[i]->dynsym_index();
+ unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
+ chain[dynsym_index] = bucket[bucketpos];
+ bucket[bucketpos] = dynsym_index;
+ }
+
+ unsigned int hashlen = ((2
+ + bucketcount
+ + local_dynsym_count
+ + dynsym_count)
+ * 4);
+ unsigned char* phash = new unsigned char[hashlen];
+
+ if (parameters->target().is_big_endian())
+ {
+#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
+ Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
+ hashlen);
+#else
+ gold_unreachable();
+#endif
+ }
+ else
+ {
+#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
+ Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
+ hashlen);
+#else
+ gold_unreachable();
+#endif
+ }
+
+ *pphash = phash;
+ *phashlen = hashlen;
+}
+
+// Fill in an ELF hash table.
+
+template<bool big_endian>
+void
+Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
+ const std::vector<uint32_t>& chain,
+ unsigned char* phash,
+ unsigned int hashlen)
+{
+ unsigned char* p = phash;
+
+ const unsigned int bucketcount = bucket.size();
+ const unsigned int chaincount = chain.size();
+
+ elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
+ p += 4;
+ elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
+ p += 4;
+
+ for (unsigned int i = 0; i < bucketcount; ++i)
+ {
+ elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
+ p += 4;
+ }
+
+ for (unsigned int i = 0; i < chaincount; ++i)
+ {
+ elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
+ p += 4;
+ }
+
+ gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
+}
+
+// The hash function used for the GNU hash table. This hash function
+// must not change, as the dynamic linker uses it also.
+
+uint32_t
+Dynobj::gnu_hash(const char* name)
+{
+ const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
+ uint32_t h = 5381;
+ unsigned char c;
+ while ((c = *nameu++) != '\0')
+ h = (h << 5) + h + c;
+ return h;
+}
+
+// Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
+// tables are an extension to ELF which are recognized by the GNU
+// dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
+// TARGET is the target. DYNSYMS is a vector with all the global
+// symbols which will be going into the dynamic symbol table.
+// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
+// symbol table.
+
+void
+Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
+ unsigned int local_dynsym_count,
+ unsigned char** pphash,
+ unsigned int* phashlen)
+{
+ const unsigned int count = dynsyms.size();
+
+ // Sort the dynamic symbols into two vectors. Symbols which we do
+ // not want to put into the hash table we store into
+ // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
+ // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
+ // and records the hash codes.
+
+ std::vector<Symbol*> unhashed_dynsyms;
+ unhashed_dynsyms.reserve(count);
+
+ std::vector<Symbol*> hashed_dynsyms;
+ hashed_dynsyms.reserve(count);
+
+ std::vector<uint32_t> dynsym_hashvals;
+ dynsym_hashvals.reserve(count);
+
+ for (unsigned int i = 0; i < count; ++i)
+ {
+ Symbol* sym = dynsyms[i];
+
+ if (!sym->needs_dynsym_value()
+ && (sym->is_undefined()
+ || sym->is_from_dynobj()
+ || sym->is_forced_local()))
+ unhashed_dynsyms.push_back(sym);
+ else
+ {
+ hashed_dynsyms.push_back(sym);
+ dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
+ }
+ }
+
+ // Put the unhashed symbols at the start of the global portion of
+ // the dynamic symbol table.
+ const unsigned int unhashed_count = unhashed_dynsyms.size();
+ unsigned int unhashed_dynsym_index = local_dynsym_count;
+ for (unsigned int i = 0; i < unhashed_count; ++i)
+ {
+ unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
+ ++unhashed_dynsym_index;
+ }
+
+ // For the actual data generation we call out to a templatized
+ // function.
+ int size = parameters->target().get_size();
+ bool big_endian = parameters->target().is_big_endian();
+ if (size == 32)
+ {
+ if (big_endian)
+ {
+#ifdef HAVE_TARGET_32_BIG
+ Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
+ dynsym_hashvals,
+ unhashed_dynsym_index,
+ pphash,
+ phashlen);
+#else
+ gold_unreachable();
+#endif
+ }
+ else
+ {
+#ifdef HAVE_TARGET_32_LITTLE
+ Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
+ dynsym_hashvals,
+ unhashed_dynsym_index,
+ pphash,
+ phashlen);
+#else
+ gold_unreachable();
+#endif
+ }
+ }
+ else if (size == 64)
+ {
+ if (big_endian)
+ {
+#ifdef HAVE_TARGET_64_BIG
+ Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
+ dynsym_hashvals,
+ unhashed_dynsym_index,
+ pphash,
+ phashlen);
+#else
+ gold_unreachable();
+#endif
+ }
+ else
+ {
+#ifdef HAVE_TARGET_64_LITTLE
+ Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
+ dynsym_hashvals,
+ unhashed_dynsym_index,
+ pphash,
+ phashlen);
+#else
+ gold_unreachable();
+#endif
+ }
+ }
+ else
+ gold_unreachable();
+}
+
+// Create the actual data for a GNU hash table. This is just a copy
+// of the code from the old GNU linker.
+
+template<int size, bool big_endian>
+void
+Dynobj::sized_create_gnu_hash_table(
+ const std::vector<Symbol*>& hashed_dynsyms,
+ const std::vector<uint32_t>& dynsym_hashvals,
+ unsigned int unhashed_dynsym_count,
+ unsigned char** pphash,
+ unsigned int* phashlen)
+{
+ if (hashed_dynsyms.empty())
+ {
+ // Special case for the empty hash table.
+ unsigned int hashlen = 5 * 4 + size / 8;
+ unsigned char* phash = new unsigned char[hashlen];
+ // One empty bucket.
+ elfcpp::Swap<32, big_endian>::writeval(phash, 1);
+ // Symbol index above unhashed symbols.
+ elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
+ // One word for bitmask.
+ elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
+ // Only bloom filter.
+ elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
+ // No valid hashes.
+ elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
+ // No hashes in only bucket.
+ elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
+
+ *phashlen = hashlen;
+ *pphash = phash;
+
+ return;
+ }
+
+ const unsigned int bucketcount =
+ Dynobj::compute_bucket_count(dynsym_hashvals, true);
+
+ const unsigned int nsyms = hashed_dynsyms.size();
+
+ uint32_t maskbitslog2 = 1;
+ uint32_t x = nsyms >> 1;
+ while (x != 0)
+ {
+ ++maskbitslog2;
+ x >>= 1;
+ }
+ if (maskbitslog2 < 3)
+ maskbitslog2 = 5;
+ else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
+ maskbitslog2 += 3;
+ else
+ maskbitslog2 += 2;
+
+ uint32_t shift1;
+ if (size == 32)
+ shift1 = 5;
+ else
+ {
+ if (maskbitslog2 == 5)
+ maskbitslog2 = 6;
+ shift1 = 6;
+ }
+ uint32_t mask = (1U << shift1) - 1U;
+ uint32_t shift2 = maskbitslog2;
+ uint32_t maskbits = 1U << maskbitslog2;
+ uint32_t maskwords = 1U << (maskbitslog2 - shift1);
+
+ typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
+ std::vector<Word> bitmask(maskwords);
+ std::vector<uint32_t> counts(bucketcount);
+ std::vector<uint32_t> indx(bucketcount);
+ uint32_t symindx = unhashed_dynsym_count;
+
+ // Count the number of times each hash bucket is used.
+ for (unsigned int i = 0; i < nsyms; ++i)
+ ++counts[dynsym_hashvals[i] % bucketcount];
+
+ unsigned int cnt = symindx;
+ for (unsigned int i = 0; i < bucketcount; ++i)
+ {
+ indx[i] = cnt;
+ cnt += counts[i];
+ }
+
+ unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
+ hashlen += maskbits / 8;
+ unsigned char* phash = new unsigned char[hashlen];
+
+ elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
+ elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
+ elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
+ elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
+
+ unsigned char* p = phash + 16 + maskbits / 8;
+ for (unsigned int i = 0; i < bucketcount; ++i)
+ {
+ if (counts[i] == 0)
+ elfcpp::Swap<32, big_endian>::writeval(p, 0);
+ else
+ elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
+ p += 4;
+ }
+
+ for (unsigned int i = 0; i < nsyms; ++i)
+ {
+ Symbol* sym = hashed_dynsyms[i];
+ uint32_t hashval = dynsym_hashvals[i];
+
+ unsigned int bucket = hashval % bucketcount;
+ unsigned int val = ((hashval >> shift1)
+ & ((maskbits >> shift1) - 1));
+ bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
+ bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
+ val = hashval & ~ 1U;
+ if (counts[bucket] == 1)
+ {
+ // Last element terminates the chain.
+ val |= 1;
+ }
+ elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
+ val);
+ --counts[bucket];
+
+ sym->set_dynsym_index(indx[bucket]);
+ ++indx[bucket];
+ }
+
+ p = phash + 16;
+ for (unsigned int i = 0; i < maskwords; ++i)
+ {
+ elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
+ p += size / 8;
+ }
+
+ *phashlen = hashlen;
+ *pphash = phash;
+}
+
+// Verdef methods.
+
+// Write this definition to a buffer for the output section.
+
+template<int size, bool big_endian>
+unsigned char*
+Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
+{
+ const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
+ const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
+
+ elfcpp::Verdef_write<size, big_endian> vd(pb);
+ vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
+ vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
+ | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
+ | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
+ vd.set_vd_ndx(this->index());
+ vd.set_vd_cnt(1 + this->deps_.size());
+ vd.set_vd_hash(Dynobj::elf_hash(this->name()));
+ vd.set_vd_aux(verdef_size);
+ vd.set_vd_next(is_last
+ ? 0
+ : verdef_size + (1 + this->deps_.size()) * verdaux_size);
+ pb += verdef_size;
+
+ elfcpp::Verdaux_write<size, big_endian> vda(pb);
+ vda.set_vda_name(dynpool->get_offset(this->name()));
+ vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
+ pb += verdaux_size;
+
+ Deps::const_iterator p;
+ unsigned int i;
+ for (p = this->deps_.begin(), i = 0;
+ p != this->deps_.end();
+ ++p, ++i)
+ {
+ elfcpp::Verdaux_write<size, big_endian> vda(pb);
+ vda.set_vda_name(dynpool->get_offset(*p));
+ vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
+ pb += verdaux_size;
+ }
+
+ return pb;
+}
+
+// Verneed methods.
+
+Verneed::~Verneed()
+{
+ for (Need_versions::iterator p = this->need_versions_.begin();
+ p != this->need_versions_.end();
+ ++p)
+ delete *p;
+}
+
+// Add a new version to this file reference.
+
+Verneed_version*
+Verneed::add_name(const char* name)
+{
+ Verneed_version* vv = new Verneed_version(name);
+ this->need_versions_.push_back(vv);
+ return vv;
+}
+
+// Set the version indexes starting at INDEX.
+
+unsigned int
+Verneed::finalize(unsigned int index)
+{
+ for (Need_versions::iterator p = this->need_versions_.begin();
+ p != this->need_versions_.end();
+ ++p)
+ {
+ (*p)->set_index(index);
+ ++index;
+ }
+ return index;
+}
+
+// Write this list of referenced versions to a buffer for the output
+// section.
+
+template<int size, bool big_endian>
+unsigned char*
+Verneed::write(const Stringpool* dynpool, bool is_last,
+ unsigned char* pb) const
+{
+ const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
+ const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
+
+ elfcpp::Verneed_write<size, big_endian> vn(pb);
+ vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
+ vn.set_vn_cnt(this->need_versions_.size());
+ vn.set_vn_file(dynpool->get_offset(this->filename()));
+ vn.set_vn_aux(verneed_size);
+ vn.set_vn_next(is_last
+ ? 0
+ : verneed_size + this->need_versions_.size() * vernaux_size);
+ pb += verneed_size;
+
+ Need_versions::const_iterator p;
+ unsigned int i;
+ for (p = this->need_versions_.begin(), i = 0;
+ p != this->need_versions_.end();
+ ++p, ++i)
+ {
+ elfcpp::Vernaux_write<size, big_endian> vna(pb);
+ vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
+ // FIXME: We need to sometimes set VER_FLG_WEAK here.
+ vna.set_vna_flags(0);
+ vna.set_vna_other((*p)->index());
+ vna.set_vna_name(dynpool->get_offset((*p)->version()));
+ vna.set_vna_next(i + 1 >= this->need_versions_.size()
+ ? 0
+ : vernaux_size);
+ pb += vernaux_size;
+ }
+
+ return pb;
+}
+
+// Versions methods.
+
+Versions::Versions(const Version_script_info& version_script,
+ Stringpool* dynpool)
+ : defs_(), needs_(), version_table_(),
+ is_finalized_(false), version_script_(version_script),
+ needs_base_version_(parameters->options().shared())
+{
+ if (!this->version_script_.empty())
+ {
+ // Parse the version script, and insert each declared version into
+ // defs_ and version_table_.
+ std::vector<std::string> versions = this->version_script_.get_versions();
+
+ if (this->needs_base_version_ && !versions.empty())
+ this->define_base_version(dynpool);
+
+ for (size_t k = 0; k < versions.size(); ++k)
+ {
+ Stringpool::Key version_key;
+ const char* version = dynpool->add(versions[k].c_str(),
+ true, &version_key);
+ Verdef* const vd = new Verdef(
+ version,
+ this->version_script_.get_dependencies(version),
+ false, false, false, false);
+ this->defs_.push_back(vd);
+ Key key(version_key, 0);
+ this->version_table_.insert(std::make_pair(key, vd));
+ }
+ }
+}
+
+Versions::~Versions()
+{
+ for (Defs::iterator p = this->defs_.begin();
+ p != this->defs_.end();
+ ++p)
+ delete *p;
+
+ for (Needs::iterator p = this->needs_.begin();
+ p != this->needs_.end();
+ ++p)
+ delete *p;
+}
+
+// Define the base version of a shared library. The base version definition
+// must be the first entry in defs_. We insert it lazily so that defs_ is
+// empty if no symbol versioning is used. Then layout can just drop the
+// version sections.
+
+void
+Versions::define_base_version(Stringpool* dynpool)
+{
+ // If we do any versioning at all, we always need a base version, so
+ // define that first. Nothing explicitly declares itself as part of base,
+ // so it doesn't need to be in version_table_.
+ gold_assert(this->defs_.empty());
+ const char* name = parameters->options().soname();
+ if (name == NULL)
+ name = parameters->options().output_file_name();
+ name = dynpool->add(name, false, NULL);
+ Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
+ true, false, false, true);
+ this->defs_.push_back(vdbase);
+ this->needs_base_version_ = false;
+}
+
+// Return the dynamic object which a symbol refers to.
+
+Dynobj*
+Versions::get_dynobj_for_sym(const Symbol_table* symtab,
+ const Symbol* sym) const
+{
+ if (sym->is_copied_from_dynobj())
+ return symtab->get_copy_source(sym);
+ else
+ {
+ Object* object = sym->object();
+ gold_assert(object->is_dynamic());
+ return static_cast<Dynobj*>(object);
+ }
+}
+
+// Record version information for a symbol going into the dynamic
+// symbol table.
+
+void
+Versions::record_version(const Symbol_table* symtab,
+ Stringpool* dynpool, const Symbol* sym)
+{
+ gold_assert(!this->is_finalized_);
+ gold_assert(sym->version() != NULL);
+
+ Stringpool::Key version_key;
+ const char* version = dynpool->add(sym->version(), false, &version_key);
+
+ if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
+ {
+ if (parameters->options().shared())
+ this->add_def(dynpool, sym, version, version_key);
+ }
+ else
+ {
+ // This is a version reference.
+ Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
+ this->add_need(dynpool, dynobj->soname(), version, version_key);
+ }
+}
+
+// We've found a symbol SYM defined in version VERSION.
+
+void
+Versions::add_def(Stringpool* dynpool, const Symbol* sym, const char* version,
+ Stringpool::Key version_key)
+{
+ Key k(version_key, 0);
+ Version_base* const vbnull = NULL;
+ std::pair<Version_table::iterator, bool> ins =
+ this->version_table_.insert(std::make_pair(k, vbnull));
+
+ if (!ins.second)
+ {
+ // We already have an entry for this version.
+ Version_base* vb = ins.first->second;
+
+ // We have now seen a symbol in this version, so it is not
+ // weak.
+ gold_assert(vb != NULL);
+ vb->clear_weak();
+ }
+ else
+ {
+ // If we are creating a shared object, it is an error to
+ // find a definition of a symbol with a version which is not
+ // in the version script.
+ if (parameters->options().shared())
+ {
+ gold_error(_("symbol %s has undefined version %s"),
+ sym->demangled_name().c_str(), version);
+ if (this->needs_base_version_)
+ this->define_base_version(dynpool);
+ }
+ else
+ // We only insert a base version for shared library.
+ gold_assert(!this->needs_base_version_);
+
+ // When creating a regular executable, automatically define
+ // a new version.
+ Verdef* vd = new Verdef(version, std::vector<std::string>(),
+ false, false, false, false);
+ this->defs_.push_back(vd);
+ ins.first->second = vd;
+ }
+}
+
+// Add a reference to version NAME in file FILENAME.
+
+void
+Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
+ Stringpool::Key name_key)
+{
+ Stringpool::Key filename_key;
+ filename = dynpool->add(filename, true, &filename_key);
+
+ Key k(name_key, filename_key);
+ Version_base* const vbnull = NULL;
+ std::pair<Version_table::iterator, bool> ins =
+ this->version_table_.insert(std::make_pair(k, vbnull));
+
+ if (!ins.second)
+ {
+ // We already have an entry for this filename/version.
+ return;
+ }
+
+ // See whether we already have this filename. We don't expect many
+ // version references, so we just do a linear search. This could be
+ // replaced by a hash table.
+ Verneed* vn = NULL;
+ for (Needs::iterator p = this->needs_.begin();
+ p != this->needs_.end();
+ ++p)
+ {
+ if ((*p)->filename() == filename)
+ {
+ vn = *p;
+ break;
+ }
+ }
+
+ if (vn == NULL)
+ {
+ // Create base version definition lazily for shared library.
+ if (this->needs_base_version_)
+ this->define_base_version(dynpool);
+
+ // We have a new filename.
+ vn = new Verneed(filename);
+ this->needs_.push_back(vn);
+ }
+
+ ins.first->second = vn->add_name(name);
+}
+
+// Set the version indexes. Create a new dynamic version symbol for
+// each new version definition.
+
+unsigned int
+Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
+ std::vector<Symbol*>* syms)
+{
+ gold_assert(!this->is_finalized_);
+
+ unsigned int vi = 1;
+
+ for (Defs::iterator p = this->defs_.begin();
+ p != this->defs_.end();
+ ++p)
+ {
+ (*p)->set_index(vi);
+ ++vi;
+
+ // Create a version symbol if necessary.
+ if (!(*p)->is_symbol_created())
+ {
+ Symbol* vsym = symtab->define_as_constant((*p)->name(),
+ (*p)->name(),
+ Symbol_table::PREDEFINED,
+ 0, 0,
+ elfcpp::STT_OBJECT,
+ elfcpp::STB_GLOBAL,
+ elfcpp::STV_DEFAULT, 0,
+ false, false);
+ vsym->set_needs_dynsym_entry();
+ vsym->set_dynsym_index(dynsym_index);
+ vsym->set_is_default();
+ ++dynsym_index;
+ syms->push_back(vsym);
+ // The name is already in the dynamic pool.
+ }
+ }
+
+ // Index 1 is used for global symbols.
+ if (vi == 1)
+ {
+ gold_assert(this->defs_.empty());
+ vi = 2;
+ }
+
+ for (Needs::iterator p = this->needs_.begin();
+ p != this->needs_.end();
+ ++p)
+ vi = (*p)->finalize(vi);
+
+ this->is_finalized_ = true;
+
+ return dynsym_index;
+}
+
+// Return the version index to use for a symbol. This does two hash
+// table lookups: one in DYNPOOL and one in this->version_table_.
+// Another approach alternative would be store a pointer in SYM, which
+// would increase the size of the symbol table. Or perhaps we could
+// use a hash table from dynamic symbol pointer values to Version_base
+// pointers.
+
+unsigned int
+Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
+ const Symbol* sym) const
+{
+ Stringpool::Key version_key;
+ const char* version = dynpool->find(sym->version(), &version_key);
+ gold_assert(version != NULL);
+
+ Key k;
+ if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
+ {
+ if (!parameters->options().shared())
+ return elfcpp::VER_NDX_GLOBAL;
+ k = Key(version_key, 0);
+ }
+ else
+ {
+ Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
+
+ Stringpool::Key filename_key;
+ const char* filename = dynpool->find(dynobj->soname(), &filename_key);
+ gold_assert(filename != NULL);
+
+ k = Key(version_key, filename_key);
+ }
+
+ Version_table::const_iterator p = this->version_table_.find(k);
+ gold_assert(p != this->version_table_.end());
+
+ return p->second->index();
+}
+
+// Return an allocated buffer holding the contents of the symbol
+// version section.
+
+template<int size, bool big_endian>
+void
+Versions::symbol_section_contents(const Symbol_table* symtab,
+ const Stringpool* dynpool,
+ unsigned int local_symcount,
+ const std::vector<Symbol*>& syms,
+ unsigned char** pp,
+ unsigned int* psize) const
+{
+ gold_assert(this->is_finalized_);
+
+ unsigned int sz = (local_symcount + syms.size()) * 2;
+ unsigned char* pbuf = new unsigned char[sz];
+
+ for (unsigned int i = 0; i < local_symcount; ++i)
+ elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
+ elfcpp::VER_NDX_LOCAL);
+
+ for (std::vector<Symbol*>::const_iterator p = syms.begin();
+ p != syms.end();
+ ++p)
+ {
+ unsigned int version_index;
+ const char* version = (*p)->version();
+ if (version != NULL)
+ version_index = this->version_index(symtab, dynpool, *p);
+ else
+ {
+ if ((*p)->is_defined() && !(*p)->is_from_dynobj())
+ version_index = elfcpp::VER_NDX_GLOBAL;
+ else
+ version_index = elfcpp::VER_NDX_LOCAL;
+ }
+ // If the symbol was defined as foo@V1 instead of foo@@V1, add
+ // the hidden bit.
+ if ((*p)->version() != NULL && !(*p)->is_default())
+ version_index |= elfcpp::VERSYM_HIDDEN;
+ elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
+ version_index);
+ }
+
+ *pp = pbuf;
+ *psize = sz;
+}
+
+// Return an allocated buffer holding the contents of the version
+// definition section.
+
+template<int size, bool big_endian>
+void
+Versions::def_section_contents(const Stringpool* dynpool,
+ unsigned char** pp, unsigned int* psize,
+ unsigned int* pentries) const
+{
+ gold_assert(this->is_finalized_);
+ gold_assert(!this->defs_.empty());
+
+ const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
+ const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
+
+ unsigned int sz = 0;
+ for (Defs::const_iterator p = this->defs_.begin();
+ p != this->defs_.end();
+ ++p)
+ {
+ sz += verdef_size + verdaux_size;
+ sz += (*p)->count_dependencies() * verdaux_size;
+ }
+
+ unsigned char* pbuf = new unsigned char[sz];
+
+ unsigned char* pb = pbuf;
+ Defs::const_iterator p;
+ unsigned int i;
+ for (p = this->defs_.begin(), i = 0;
+ p != this->defs_.end();
+ ++p, ++i)
+ pb = (*p)->write<size, big_endian>(dynpool,
+ i + 1 >= this->defs_.size(),
+ pb);
+
+ gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
+
+ *pp = pbuf;
+ *psize = sz;
+ *pentries = this->defs_.size();
+}
+
+// Return an allocated buffer holding the contents of the version
+// reference section.
+
+template<int size, bool big_endian>
+void
+Versions::need_section_contents(const Stringpool* dynpool,
+ unsigned char** pp, unsigned int* psize,
+ unsigned int* pentries) const
+{
+ gold_assert(this->is_finalized_);
+ gold_assert(!this->needs_.empty());
+
+ const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
+ const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
+
+ unsigned int sz = 0;
+ for (Needs::const_iterator p = this->needs_.begin();
+ p != this->needs_.end();
+ ++p)
+ {
+ sz += verneed_size;
+ sz += (*p)->count_versions() * vernaux_size;
+ }
+
+ unsigned char* pbuf = new unsigned char[sz];
+
+ unsigned char* pb = pbuf;
+ Needs::const_iterator p;
+ unsigned int i;
+ for (p = this->needs_.begin(), i = 0;
+ p != this->needs_.end();
+ ++p, ++i)
+ pb = (*p)->write<size, big_endian>(dynpool,
+ i + 1 >= this->needs_.size(),
+ pb);
+
+ gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
+
+ *pp = pbuf;
+ *psize = sz;
+ *pentries = this->needs_.size();
+}
+
+// Instantiate the templates we need. We could use the configure
+// script to restrict this to only the ones for implemented targets.
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+class Sized_dynobj<32, false>;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+class Sized_dynobj<32, true>;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+class Sized_dynobj<64, false>;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+class Sized_dynobj<64, true>;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+void
+Versions::symbol_section_contents<32, false>(
+ const Symbol_table*,
+ const Stringpool*,
+ unsigned int,
+ const std::vector<Symbol*>&,
+ unsigned char**,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+void
+Versions::symbol_section_contents<32, true>(
+ const Symbol_table*,
+ const Stringpool*,
+ unsigned int,
+ const std::vector<Symbol*>&,
+ unsigned char**,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+void
+Versions::symbol_section_contents<64, false>(
+ const Symbol_table*,
+ const Stringpool*,
+ unsigned int,
+ const std::vector<Symbol*>&,
+ unsigned char**,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+void
+Versions::symbol_section_contents<64, true>(
+ const Symbol_table*,
+ const Stringpool*,
+ unsigned int,
+ const std::vector<Symbol*>&,
+ unsigned char**,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+void
+Versions::def_section_contents<32, false>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+void
+Versions::def_section_contents<32, true>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+void
+Versions::def_section_contents<64, false>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+void
+Versions::def_section_contents<64, true>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_LITTLE
+template
+void
+Versions::need_section_contents<32, false>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_32_BIG
+template
+void
+Versions::need_section_contents<32, true>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_LITTLE
+template
+void
+Versions::need_section_contents<64, false>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+#ifdef HAVE_TARGET_64_BIG
+template
+void
+Versions::need_section_contents<64, true>(
+ const Stringpool*,
+ unsigned char**,
+ unsigned int*,
+ unsigned int*) const;
+#endif
+
+} // End namespace gold.